1
|
Cueto-Ureña C, Ramírez-Expósito MJ, Carrera-González MP, Martínez-Martos JM. Age-Dependent Changes in Taurine, Serine, and Methionine Release in the Frontal Cortex of Awake Freely-Moving Rats: A Microdialysis Study. Life (Basel) 2025; 15:295. [PMID: 40003704 PMCID: PMC11857320 DOI: 10.3390/life15020295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Brain function declines because of aging and several metabolites change their concentration. However, this decrease may be a consequence or a driver of aging. It has been described that taurine levels decrease with age and that taurine supplementation increases health span in mice and monkeys, finding taurine as a driver of aging. The frontal cortex is one of the most key areas studied to know the normal processes of cerebral aging, due to its relevant role in cognitive processes, emotion, and motivation. In the present work, we analyzed by intracerebral microdialysis in vivo in the prefrontal cortex of young (3 months) and old (24 months) awake rats, the basal- and K+-evoked release of taurine, and its precursors methionine and serine. The taurine/serine/methionine (TSM) ratio was also calculated as an index of transmethylation reactions. No changes were found in the basal levels of taurine, serine, or methionine between young and aged animals. On the contrary, a significant decrease in the K+-evoked release of serine and taurine appeared in aged rats when compared with young animals. No changes were seen in methionine. TSM ratio also decreased with age in both basal- and K+-stimulated conditions. Therefore, taurine and its related precursor serine decrease with age in the frontal cortex of aged animals under K+-stimulated but not basal conditions, which supports the importance of the decline of evoked taurine in its functions at the brain level, also supporting the idea proposed by other authors of a pharmacological and/or nutritional intervention to its restoration. A deficit of precursors for transmethylation reactions in the brain with age is also considered.
Collapse
Affiliation(s)
| | | | | | - José Manuel Martínez-Martos
- Experimental and Clinical Physiopathology Research Group CTS-1039, Department of Health Sciences, School of Health Sciences, University of Jaén, E-23071 Jaén, Spain; (C.C.-U.); (M.J.R.-E.); (M.P.C.-G.)
| |
Collapse
|
2
|
Zhan Y, Yin A, Su X, Tang N, Zhang Z, Chen Y, Wang W, Wang J. Interpreting the molecular mechanisms of RBBP4/7 and their roles in human diseases (Review). Int J Mol Med 2024; 53:48. [PMID: 38577935 PMCID: PMC10999228 DOI: 10.3892/ijmm.2024.5372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/12/2024] [Indexed: 04/06/2024] Open
Abstract
Histone chaperones serve a pivotal role in maintaining human physiological processes. They interact with histones in a stable manner, ensuring the accurate and efficient execution of DNA replication, repair and transcription. Retinoblastoma binding protein (RBBP)4 and RBBP7 represent a crucial pair of histone chaperones, which not only govern the molecular behavior of histones H3 and H4, but also participate in the functions of several protein complexes, such as polycomb repressive complex 2 and nucleosome remodeling and deacetylase, thereby regulating the cell cycle, histone modifications, DNA damage and cell fate. A strong association has been indicated between RBBP4/7 and some major human diseases, such as cancer, age‑related memory loss and infectious diseases. The present review assesses the molecular mechanisms of RBBP4/7 in regulating cellular biological processes, and focuses on the variations in RBBP4/7 expression and their potential mechanisms in various human diseases, thus providing new insights for their diagnosis and treatment.
Collapse
Affiliation(s)
- Yajing Zhan
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, P.R. China
| | - Ankang Yin
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, P.R. China
| | - Xiyang Su
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Nan Tang
- Department of Clinical Laboratory, Wangcheng District People's Hospital, Changsha, Hunan 410000, P.R. China
| | - Zebin Zhang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, P.R. China
| | - Yi Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, P.R. China
| | - Wei Wang
- Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
- Department of Clinical Laboratory, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Juan Wang
- Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
- Department of Clinical Laboratory, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| |
Collapse
|
3
|
Kakizawa S, Park JJ, Tonoki A. Biology of cognitive aging across species. Geriatr Gerontol Int 2024; 24 Suppl 1:15-24. [PMID: 38126240 DOI: 10.1111/ggi.14782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
Aging is associated with cognitive decline, which can critically affect quality of life. Examining the biology of cognitive aging across species will lead to a better understanding of the fundamental mechanisms involved in this process, and identify potential interventions that could help to improve cognitive function in aging individuals. This minireview aimed to explore the mechanisms and processes involved in cognitive aging across a range of species, from flies to rodents, and covers topics, such as the role of reactive oxygen species and autophagy/mitophagy in cognitive aging. Overall, this literature provides a comprehensive overview of the biology of cognitive aging across species, highlighting the latest research findings and identifying potential avenues for future research. Geriatr Gerontol Int 2024; 24: 15-24.
Collapse
Affiliation(s)
- Sho Kakizawa
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Joong-Jean Park
- Department of Physiology, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Ayako Tonoki
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| |
Collapse
|
4
|
Chen H, Zhang W, Luo S, Li Y, Zhu Q, Xia Y, Tan H, Bian Y, Li Y, Ma J, Chen W, Luo X, Zhu G. Lead exposure induces neuronal apoptosis via NFκB p65/RBBP4/Survivin signaling pathway. Toxicology 2023; 499:153654. [PMID: 37866543 DOI: 10.1016/j.tox.2023.153654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/08/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
Lead (Pb), as a heavy metal that is easily exposed in daily life, can cause damage to various systems of body. Apoptosis is an autonomous cell death process regulated by genes in order to maintain the stability of internal environment, which plays an important role in the development of nervous system. RB binding protein 4 (RBBP4) is one of the core histone binding subunits and is closely related to the apoptosis process of nervous system cells. However, it is not known whether RBBP4 can regulate neuronal apoptosis in lead-exposed environments. We exposed PC12 cells to 0 μM (control group), 1 μM, and 100 μM PbAc for 24 h to obtain cell samples. The female rats ingested drinking water containing 0, 0.5 g/L, and 2.0 g/L PbAc from the first day of pregnancy to three weeks after delivery to obtain hippocampal tissue samples from mammary rats. The results of TUNEL showed that lead exposure promoted the onset of apoptosis in cells and hippocampus. The mRNA and protein levels of the apoptosis-related protein Survivin were significantly reduced in the lead-exposed group compared to the control group. In addition, we found that lead exposure reduces the mRNA and protein levels of RBBP4 in PC12 cells and hippocampus, and increases the mRNA and protein levels of NFκB p65. Moreover, inhibiting NFκB p65 can reverse the decrease in RBBP4 expression in the lead exposure model. Overexpression of RBBP4 increased Survivin expression and reduced apoptosis induced by lead exposure. This suggests that lead exposure induces apoptosis through the NFκB p65/RBBP4/Survivin signaling pathway.
Collapse
Affiliation(s)
- Hui Chen
- Department of Anatomy, School of Medicine, Nanchang University, BaYi Road 461, Nanchang 330006, PR China
| | - Wei Zhang
- Department of Anatomy, School of Medicine, Nanchang University, BaYi Road 461, Nanchang 330006, PR China
| | - Song Luo
- Department of Orthopaedic Surgery, Nanchang Hongdu Hospital of Traditional Chinese Medicine, Diezihu Avenue Honggutan District, Nanchang 330006, PR China
| | - Yanshu Li
- Jiangxi Center of Medical Device Testing, Nanchang 330029, PR China
| | - Qian Zhu
- Department of Anatomy, School of Medicine, Nanchang University, BaYi Road 461, Nanchang 330006, PR China
| | - Yongli Xia
- Department of Anatomy, School of Medicine, Nanchang University, BaYi Road 461, Nanchang 330006, PR China
| | - Hong Tan
- Department of Anatomy, School of Medicine, Nanchang University, BaYi Road 461, Nanchang 330006, PR China
| | - Ying Bian
- Department of Anatomy, School of Medicine, Nanchang University, BaYi Road 461, Nanchang 330006, PR China
| | - Yaobing Li
- Department of Anatomy, School of Medicine, Nanchang University, BaYi Road 461, Nanchang 330006, PR China
| | - Jianmin Ma
- Department of Anatomy, School of Medicine, Nanchang University, BaYi Road 461, Nanchang 330006, PR China
| | - Wei Chen
- Department of Anatomy, School of Medicine, Nanchang University, BaYi Road 461, Nanchang 330006, PR China
| | - Xietian Luo
- Department of Anatomy, School of Medicine, Nanchang University, BaYi Road 461, Nanchang 330006, PR China
| | - Gaochun Zhu
- Department of Anatomy, School of Medicine, Nanchang University, BaYi Road 461, Nanchang 330006, PR China.
| |
Collapse
|
5
|
Kumar A, Karuppagounder SS, Chen Y, Corona C, Kawaguchi R, Cheng Y, Balkaya M, Sagdullaev BT, Wen Z, Stuart C, Cho S, Ming GL, Tuvikene J, Timmusk T, Geschwind DH, Ratan RR. 2-Deoxyglucose drives plasticity via an adaptive ER stress-ATF4 pathway and elicits stroke recovery and Alzheimer's resilience. Neuron 2023; 111:2831-2846.e10. [PMID: 37453419 PMCID: PMC10528360 DOI: 10.1016/j.neuron.2023.06.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/10/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023]
Abstract
Intermittent fasting (IF) is a diet with salutary effects on cognitive aging, Alzheimer's disease (AD), and stroke. IF restricts a number of nutrient components, including glucose. 2-deoxyglucose (2-DG), a glucose analog, can be used to mimic glucose restriction. 2-DG induced transcription of the pro-plasticity factor, Bdnf, in the brain without ketosis. Accordingly, 2-DG enhanced memory in an AD model (5xFAD) and functional recovery in an ischemic stroke model. 2-DG increased Bdnf transcription via reduced N-linked glycosylation, consequent ER stress, and activity of ATF4 at an enhancer of the Bdnf gene, as well as other regulatory regions of plasticity/regeneration (e.g., Creb5, Cdc42bpa, Ppp3cc, and Atf3) genes. These findings demonstrate an unrecognized role for N-linked glycosylation as an adaptive sensor to reduced glucose availability. They further demonstrate that ER stress induced by 2-DG can, in the absence of ketosis, lead to the transcription of genes involved in plasticity and cognitive resilience as well as proteostasis.
Collapse
Affiliation(s)
- Amit Kumar
- Burke Neurological Institute and Brain and Mind Research Institute, Weill Cornell Medicine, 785 Mamaroneck Ave, White Plains, NY, USA
| | - Saravanan S Karuppagounder
- Burke Neurological Institute and Brain and Mind Research Institute, Weill Cornell Medicine, 785 Mamaroneck Ave, White Plains, NY, USA
| | - Yingxin Chen
- Burke Neurological Institute and Brain and Mind Research Institute, Weill Cornell Medicine, 785 Mamaroneck Ave, White Plains, NY, USA
| | - Carlo Corona
- Burke Neurological Institute and Brain and Mind Research Institute, Weill Cornell Medicine, 785 Mamaroneck Ave, White Plains, NY, USA
| | - Riki Kawaguchi
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yuyan Cheng
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mustafa Balkaya
- Burke Neurological Institute and Brain and Mind Research Institute, Weill Cornell Medicine, 785 Mamaroneck Ave, White Plains, NY, USA
| | - Botir T Sagdullaev
- Burke Neurological Institute and Brain and Mind Research Institute, Weill Cornell Medicine, 785 Mamaroneck Ave, White Plains, NY, USA; Regeneron Pharmaceuticals, Tarrytown, New York, NY, USA
| | - Zhexing Wen
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Charles Stuart
- East Tennessee State University Quillen College of Medicine, Johnson City, TN, USA
| | - Sunghee Cho
- Burke Neurological Institute and Brain and Mind Research Institute, Weill Cornell Medicine, 785 Mamaroneck Ave, White Plains, NY, USA
| | - Guo-Li Ming
- Department of Neuroscience, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jürgen Tuvikene
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Tõnis Timmusk
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Daniel H Geschwind
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Rajiv R Ratan
- Burke Neurological Institute and Brain and Mind Research Institute, Weill Cornell Medicine, 785 Mamaroneck Ave, White Plains, NY, USA.
| |
Collapse
|
6
|
Singh P, Gollapalli K, Mangiola S, Schranner D, Yusuf MA, Chamoli M, Shi SL, Bastos BL, Nair T, Riermeier A, Vayndorf EM, Wu JZ, Nilakhe A, Nguyen CQ, Muir M, Kiflezghi MG, Foulger A, Junker A, Devine J, Sharan K, Chinta SJ, Rajput S, Rane A, Baumert P, Schönfelder M, Iavarone F, Lorenzo GD, Kumari S, Gupta A, Sarkar R, Khyriem C, Chawla AS, Sharma A, Sarper N, Chattopadhyay N, Biswal BK, Settembre C, Nagarajan P, Targoff KL, Picard M, Gupta S, Velagapudi V, Papenfuss AT, Kaya A, Ferreira MG, Kennedy BK, Andersen JK, Lithgow GJ, Ali AM, Mukhopadhyay A, Palotie A, Kastenmüller G, Kaeberlein M, Wackerhage H, Pal B, Yadav VK. Taurine deficiency as a driver of aging. Science 2023; 380:eabn9257. [PMID: 37289866 PMCID: PMC10630957 DOI: 10.1126/science.abn9257] [Citation(s) in RCA: 186] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 04/14/2023] [Indexed: 06/10/2023]
Abstract
Aging is associated with changes in circulating levels of various molecules, some of which remain undefined. We find that concentrations of circulating taurine decline with aging in mice, monkeys, and humans. A reversal of this decline through taurine supplementation increased the health span (the period of healthy living) and life span in mice and health span in monkeys. Mechanistically, taurine reduced cellular senescence, protected against telomerase deficiency, suppressed mitochondrial dysfunction, decreased DNA damage, and attenuated inflammaging. In humans, lower taurine concentrations correlated with several age-related diseases and taurine concentrations increased after acute endurance exercise. Thus, taurine deficiency may be a driver of aging because its reversal increases health span in worms, rodents, and primates and life span in worms and rodents. Clinical trials in humans seem warranted to test whether taurine deficiency might drive aging in humans.
Collapse
Affiliation(s)
- Parminder Singh
- Metabolic Research Laboratories, National Institute of Immunology; New Delhi, India
| | - Kishore Gollapalli
- Vagelos College of Physicians and Surgeons, Columbia University; New York, USA
| | - Stefano Mangiola
- Department of Medical Biology, University of Melbourne; Melbourne, Australia
- School of Cancer Medicine, La Trobe University; Bundoora, Australia
- Olivia Newton-John Cancer Research Institute; Heidelberg, Australia
| | - Daniela Schranner
- Exercise Biology Group, Technical University of Munich; Munich, Germany
- Institute of Computational Biology, Helmholtz Zentrum München; Neuherberg, Germany
| | - Mohd Aslam Yusuf
- Department of Bioengineering, Integral University; Lucknow, India
| | - Manish Chamoli
- Buck Institute of Age Research, 8001 Redwood Blvd; California, USA
| | - Sting L. Shi
- Vagelos College of Physicians and Surgeons, Columbia University; New York, USA
| | - Bruno Lopes Bastos
- Institute for Research on Cancer and Aging of Nice (IRCAN); Nice, France
| | - Tripti Nair
- Molecular Aging Laboratory, National Institute of Immunology; New Delhi, India
| | - Annett Riermeier
- Exercise Biology Group, Technical University of Munich; Munich, Germany
| | - Elena M. Vayndorf
- Department of Laboratory Medicine and Pathology, University of Washington; WA, USA
| | - Judy Z. Wu
- Department of Laboratory Medicine and Pathology, University of Washington; WA, USA
| | - Aishwarya Nilakhe
- Metabolic Research Laboratories, National Institute of Immunology; New Delhi, India
| | - Christina Q. Nguyen
- Department of Laboratory Medicine and Pathology, University of Washington; WA, USA
| | - Michael Muir
- Department of Laboratory Medicine and Pathology, University of Washington; WA, USA
| | - Michael G. Kiflezghi
- Department of Laboratory Medicine and Pathology, University of Washington; WA, USA
| | - Anna Foulger
- Buck Institute of Age Research, 8001 Redwood Blvd; California, USA
| | - Alex Junker
- Department of Neurology, Columbia University; New York, USA
| | - Jack Devine
- Department of Neurology, Columbia University; New York, USA
| | - Kunal Sharan
- Mouse Genetics Project, Wellcome Sanger Institute; Cambridge, UK
| | | | - Swati Rajput
- Division of Endocrinology, CSIR-Central Drug Research Institute; Lucknow, India
| | - Anand Rane
- Buck Institute of Age Research, 8001 Redwood Blvd; California, USA
| | - Philipp Baumert
- Exercise Biology Group, Technical University of Munich; Munich, Germany
| | | | | | | | - Swati Kumari
- Metabolic Research Laboratories, National Institute of Immunology; New Delhi, India
| | - Alka Gupta
- Metabolic Research Laboratories, National Institute of Immunology; New Delhi, India
| | - Rajesh Sarkar
- Metabolic Research Laboratories, National Institute of Immunology; New Delhi, India
| | - Costerwell Khyriem
- Harry Perkins Institute of Medical Research; Perth, Australia
- Curtin Medical School, Curtin University; Perth, Australia
| | - Amanpreet S. Chawla
- Immunobiology Laboratory, National Institute of Immunology; New Delhi, India
- MRC-Protein Phosphorylation and Ubiquitination Unit, University of Dundee; Dundee, UK
| | - Ankur Sharma
- Harry Perkins Institute of Medical Research; Perth, Australia
- Curtin Medical School, Curtin University; Perth, Australia
| | - Nazan Sarper
- Pediatrics and Pediatric Hematology, Kocaeli University Hospital; Kocaeli, Turkey
| | | | - Bichitra K. Biswal
- Metabolic Research Laboratories, National Institute of Immunology; New Delhi, India
| | - Carmine Settembre
- Telethon Institute of Genetics and Medicine (TIGEM); Pozzuoli, Italy
- Department of Clinical Medicine and Surgery, Federico II University; Naples, Italy
| | - Perumal Nagarajan
- Primate Research Facility, National Institute of Immunology; New Delhi, India
- Small Animal Research Facility, National Institute of Immunology; New Delhi, India
| | - Kimara L. Targoff
- Division of Cardiology, Department of Pediatrics, Columbia University; New York, USA
| | - Martin Picard
- Department of Neurology, Columbia University; New York, USA
| | - Sarika Gupta
- Metabolic Research Laboratories, National Institute of Immunology; New Delhi, India
| | - Vidya Velagapudi
- Institute for Molecular Medicine Finland FIMM, University of Helsinki; Helsinki, Finland
| | | | - Alaattin Kaya
- Department of Biology, Virginia Commonwealth University; Virginia, USA
| | | | - Brian K. Kennedy
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore; Singapore, Singapore
- Centre for Healthy Longevity, National University Health System; Singapore, Singapore
- Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University of Singapore; Singapore, Singapore
| | | | | | - Abdullah Mahmood Ali
- Department of Medicine, Columbia University Irving Medical Center; New York, USA
| | - Arnab Mukhopadhyay
- Molecular Aging Laboratory, National Institute of Immunology; New Delhi, India
| | - Aarno Palotie
- Institute for Molecular Medicine Finland FIMM, University of Helsinki; Helsinki, Finland
- Broad Institute of Harvard and MIT; Cambridge, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital; Boston, USA
| | - Gabi Kastenmüller
- Institute of Computational Biology, Helmholtz Zentrum München; Neuherberg, Germany
| | - Matt Kaeberlein
- Department of Laboratory Medicine and Pathology, University of Washington; WA, USA
| | | | - Bhupinder Pal
- Department of Medical Biology, University of Melbourne; Melbourne, Australia
- School of Cancer Medicine, La Trobe University; Bundoora, Australia
| | - Vijay K. Yadav
- Metabolic Research Laboratories, National Institute of Immunology; New Delhi, India
- Vagelos College of Physicians and Surgeons, Columbia University; New York, USA
- Mouse Genetics Project, Wellcome Sanger Institute; Cambridge, UK
- Department of Genetics and Development, Columbia University; New York, USA
| |
Collapse
|
7
|
Lauriola V, Brickman AM, Sloan RP, Small SA. Anatomical biology guides a search for nutrients for the aging brain. Mol Aspects Med 2023; 89:101154. [PMID: 36372583 PMCID: PMC10783103 DOI: 10.1016/j.mam.2022.101154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/22/2022] [Accepted: 10/23/2022] [Indexed: 11/11/2022]
Abstract
Considerable evidence has established the importance of specific nutrients that have been found vital for the developing brain. We hypothesize that in a similar manner there should be nutrients vital to the aging brain and that based on aging's distinct pathophysiology they should be different than those essential to development. Specific brain networks that govern cognition are particularly vulnerable to the aging process, resulting in what is referred to as 'cognitive aging'. Common late-life disorders, however, such as Alzheimer's disease also target these same brain networks. Studies have disambiguated cognitive aging from late-life disease by isolating regions and biological pathways within each network differentially linked to one or the other. This anatomical biology anchors a framework to identify nutrients and/or dietary bioactives relevant to cognitive aging whose utility is illustrated via a decades-long research program into how dietary bioactive flavanols benefit the brain. As we are living longer in cognitively more demanding lives, the framework's ultimate goal is to generate specific dietary recommendations that will fortify our mind for its golden years.
Collapse
Affiliation(s)
- Vincenzo Lauriola
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, 622 West 168th St., New York, NY, 10032, USA; New York State Psychiatric Institute, 1050 Riverside Drive, New York, NY, 10032, USA
| | - Adam M Brickman
- Department of Neurology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, 622 West 168th St., New York, NY, 10032, USA
| | - Richard P Sloan
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, 622 West 168th St., New York, NY, 10032, USA; New York State Psychiatric Institute, 1050 Riverside Drive, New York, NY, 10032, USA
| | - Scott A Small
- Department of Neurology and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, 622 West 168th St., New York, NY, 10032, USA.
| |
Collapse
|
8
|
Liu C, Zhu N, Sun H, Zhang J, Feng X, Gjerswold-Selleck S, Sikka D, Zhu X, Liu X, Nuriel T, Wei HJ, Wu CC, Vaughan JT, Laine AF, Provenzano FA, Small SA, Guo J. Deep learning of MRI contrast enhancement for mapping cerebral blood volume from single-modal non-contrast scans of aging and Alzheimer's disease brains. Front Aging Neurosci 2022; 14:923673. [PMID: 36034139 PMCID: PMC9407020 DOI: 10.3389/fnagi.2022.923673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
While MRI contrast agents such as those based on Gadolinium are needed for high-resolution mapping of brain metabolism, these contrast agents require intravenous administration, and there are rising concerns over their safety and invasiveness. Furthermore, non-contrast MRI scans are more commonly performed than those with contrast agents and are readily available for analysis in public databases such as the Alzheimer's Disease Neuroimaging Initiative (ADNI). In this article, we hypothesize that a deep learning model, trained using quantitative steady-state contrast-enhanced structural MRI datasets, in mice and humans, can generate contrast-equivalent information from a single non-contrast MRI scan. The model was first trained, optimized, and validated in mice, and was then transferred and adapted to humans. We observe that the model can substitute for Gadolinium-based contrast agents in approximating cerebral blood volume, a quantitative representation of brain activity, at sub-millimeter granularity. Furthermore, we validate the use of our deep-learned prediction maps to identify functional abnormalities in the aging brain using locally obtained MRI scans, and in the brain of patients with Alzheimer's disease using publicly available MRI scans from ADNI. Since it is derived from a commonly-acquired MRI protocol, this framework has the potential for broad clinical utility and can also be applied retrospectively to research scans across a host of neurological/functional diseases.
Collapse
Affiliation(s)
- Chen Liu
- Department of Electrical Engineering, Columbia University, New York, NY, United States
| | - Nanyan Zhu
- Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Haoran Sun
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Junhao Zhang
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Xinyang Feng
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | | | - Dipika Sikka
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Xuemin Zhu
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Xueqing Liu
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Tal Nuriel
- Department of Radiation Oncology, Columbia University, New York, NY, United States
| | - Hong-Jian Wei
- Department of Radiation Oncology, Columbia University, New York, NY, United States
| | - Cheng-Chia Wu
- Department of Radiation Oncology, Columbia University, New York, NY, United States
| | - J. Thomas Vaughan
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Andrew F. Laine
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | | | - Scott A. Small
- Department of Neurology, Columbia University, New York, NY, United States
- Department of Psychiatry, Columbia University, New York, NY, United States
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States
| | - Jia Guo
- Department of Psychiatry, Columbia University, New York, NY, United States
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
- *Correspondence: Jia Guo
| |
Collapse
|
9
|
Bhuiyan P, Chuwdhury GS, Sun Z, Chen Y, Dong H, Ahmed FF, Nana L, Rahman MH, Qian Y. Network Biology Approaches to Uncover Therapeutic Targets Associated with Molecular Signaling Pathways from circRNA in Postoperative Cognitive Dysfunction Pathogenesis. J Mol Neurosci 2022; 72:1875-1901. [PMID: 35792980 DOI: 10.1007/s12031-022-02042-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/07/2022] [Indexed: 12/19/2022]
Abstract
Postoperative cognitive dysfunction (POCD) is a cognitive deterioration and dementia that arise after a surgical procedure, affecting up to 40% of surgery patients over the age of 60. The precise etiology and molecular mechanisms underlying POCD remain uncovered. These reasons led us to employ integrative bioinformatics and machine learning methodologies to identify several biological signaling pathways involved and molecular signatures to better understand the pathophysiology of POCD. A total of 223 differentially expressed genes (DEGs) comprising 156 upregulated and 67 downregulated genes were identified from the circRNA microarray dataset by comparing POCD and non-POCD samples. Gene ontology (GO) analyses of DEGs were significantly involved in neurogenesis, autophagy regulation, translation in the postsynapse, modulating synaptic transmission, regulation of the cellular catabolic process, macromolecule modification, and chromatin remodeling. Pathway enrichment analysis indicated some key molecular pathways, including mTOR signaling pathway, AKT phosphorylation of cytosolic targets, MAPK and NF-κB signaling pathway, PI3K/AKT signaling pathway, nitric oxide signaling pathway, chaperones that modulate interferon signaling pathway, apoptosis signaling pathway, VEGF signaling pathway, cellular senescence, RANKL/RARK signaling pathway, and AGE/RAGE pathway. Furthermore, seven hub genes were identified from the PPI network and also determined transcription factors and protein kinases. Finally, we identified a new predictive drug for the treatment of SCZ using the LINCS L1000, GCP, and P100 databases. Together, our results bring a new era of the pathogenesis of a deeper understanding of POCD, identified novel therapeutic targets, and predicted drug inhibitors in POCD.
Collapse
Affiliation(s)
- Piplu Bhuiyan
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - G S Chuwdhury
- Department of Computer Science and Engineering, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Zhaochu Sun
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Yinan Chen
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Hongquan Dong
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Fee Faysal Ahmed
- Department of Mathematics, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Li Nana
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Md Habibur Rahman
- Department of Computer Science and Engineering, Islamic University, Kushtia, 7003, Bangladesh.
| | - Yanning Qian
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China.
| |
Collapse
|
10
|
Price JD, Lindtner S, Ypsilanti A, Binyameen F, Johnson JR, Newton BW, Krogan NJ, Rubenstein JLR. DLX1 and the NuRD complex cooperate in enhancer decommissioning and transcriptional repression. Development 2022; 149:dev199508. [PMID: 35695185 PMCID: PMC9245191 DOI: 10.1242/dev.199508] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 03/17/2022] [Indexed: 09/27/2023]
Abstract
In the developing subpallium, the fate decision between neurons and glia is driven by expression of Dlx1/2 or Olig1/2, respectively, two sets of transcription factors with a mutually repressive relationship. The mechanism by which Dlx1/2 repress progenitor and oligodendrocyte fate, while promoting transcription of genes needed for differentiation, is not fully understood. We identified a motif within DLX1 that binds RBBP4, a NuRD complex subunit. ChIP-seq studies of genomic occupancy of DLX1 and six different members of the NuRD complex show that DLX1 and NuRD colocalize to putative regulatory elements enriched near other transcription factor genes. Loss of Dlx1/2 leads to dysregulation of genome accessibility at putative regulatory elements near genes repressed by Dlx1/2, including Olig2. Consequently, heterozygosity of Dlx1/2 and Rbbp4 leads to an increase in the production of OLIG2+ cells. These findings highlight the importance of the interplay between transcription factors and chromatin remodelers in regulating cell-fate decisions.
Collapse
Affiliation(s)
- James D. Price
- Department of Psychiatry, Langley Porter Psychiatric Institute, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
- Developmental and Stem Cell Biology Graduate Program, University of California San Francisco, San Francisco, CA 94143, USA
| | - Susan Lindtner
- Department of Psychiatry, Langley Porter Psychiatric Institute, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Athena Ypsilanti
- Department of Psychiatry, Langley Porter Psychiatric Institute, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Fadya Binyameen
- Department of Psychiatry, Langley Porter Psychiatric Institute, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Jeffrey R. Johnson
- Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94158, USA
- Gladstone Institute of Data Science and Biosciences, J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Billy W. Newton
- Gladstone Institute of Data Science and Biosciences, J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Nevan J. Krogan
- Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94158, USA
- Gladstone Institute of Data Science and Biosciences, J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - John L. R. Rubenstein
- Department of Psychiatry, Langley Porter Psychiatric Institute, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
11
|
Morozova A, Zorkina Y, Abramova O, Pavlova O, Pavlov K, Soloveva K, Volkova M, Alekseeva P, Andryshchenko A, Kostyuk G, Gurina O, Chekhonin V. Neurobiological Highlights of Cognitive Impairment in Psychiatric Disorders. Int J Mol Sci 2022; 23:1217. [PMID: 35163141 PMCID: PMC8835608 DOI: 10.3390/ijms23031217] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
This review is focused on several psychiatric disorders in which cognitive impairment is a major component of the disease, influencing life quality. There are plenty of data proving that cognitive impairment accompanies and even underlies some psychiatric disorders. In addition, sources provide information on the biological background of cognitive problems associated with mental illness. This scientific review aims to summarize the current knowledge about neurobiological mechanisms of cognitive impairment in people with schizophrenia, depression, mild cognitive impairment and dementia (including Alzheimer's disease).The review provides data about the prevalence of cognitive impairment in people with mental illness and associated biological markers.
Collapse
Affiliation(s)
- Anna Morozova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Yana Zorkina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Olga Abramova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Olga Pavlova
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Konstantin Pavlov
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Kristina Soloveva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Maria Volkova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Polina Alekseeva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Alisa Andryshchenko
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Georgiy Kostyuk
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Olga Gurina
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Vladimir Chekhonin
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
12
|
Cho Y, Kim G, Park J. Mitochondrial aconitase 1 regulates age-related memory impairment via autophagy/mitophagy-mediated neural plasticity in middle-aged flies. Aging Cell 2021; 20:e13520. [PMID: 34799973 PMCID: PMC8672789 DOI: 10.1111/acel.13520] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/06/2021] [Accepted: 11/03/2021] [Indexed: 01/24/2023] Open
Abstract
Age‐related memory impairment (AMI) occurs in many species, including humans. The underlying mechanisms are not fully understood. In wild‐type Drosophila (w1118), AMI appears in the form of a decrease in learning (3‐min memory) from middle age (30 days after eclosion [DAE]). We performed in vivo, DNA microarray, and behavioral screen studies to identify genes controlling both lifespan and AMI and selected mitochondrial Acon1 (mAcon1). mAcon1 expression in the head of w1118 decreased with age. Neuronal overexpression of mAcon1 extended its lifespan and improved AMI. Neuronal or mushroom body expression of mAcon1 regulated the learning of young (10 DAE) and middle‐aged flies. Interestingly, acetyl‐CoA and citrate levels increased in the heads of middle‐aged and neuronal mAcon1 knockdown flies. Acetyl‐CoA, as a cellular energy sensor, is related to autophagy. Autophagy activity and efficacy determined by the positive and negative changes in the expression levels of Atg8a‐II and p62 were proportional to the expression level of mAcon1. Levels of the presynaptic active zone scaffold protein Bruchpilot were inversely proportional to neuronal mAcon1 levels in the whole brain. Furthermore, mAcon1 overexpression in Kenyon cells induced mitophagy labeled with mt‐Keima and improved learning ability. Both processes were blocked by pink1 knockdown. Taken together, our results imply that the regulation of learning and AMI by mAcon1 occurs via autophagy/mitophagy‐mediated neural plasticity.
Collapse
Affiliation(s)
- Yun‐Ho Cho
- Department of Physiology Korea University College of Medicine Seoul Republic of Korea
| | - Gye‐Hyeong Kim
- Department of Physiology Korea University College of Medicine Seoul Republic of Korea
| | - Joong‐Jean Park
- Department of Physiology Korea University College of Medicine Seoul Republic of Korea
| |
Collapse
|
13
|
Dougal G, Ennaceur A, Chazot PL. Effect of Transcranial Near-Infrared Light 1068 nm Upon Memory Performance in Aging Healthy Individuals: A Pilot Study. Photobiomodul Photomed Laser Surg 2021; 39:654-660. [PMID: 34662523 DOI: 10.1089/photob.2020.4956] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: We present a pilot study of near-infrared (NIR) 1068 nm transcranial photobiomodulation therapy (PBM-T). Impact upon motor function, memory, and processing speed in healthy individuals, older than 45 years of age, was evaluated. Methods: PBM-T was performed at home using a transcranial phototherapy device, a helmet that comprised 14 air cooled light emitting diode panel arrays, with a peak wavelength of 1068 nm, full width at half maximum bandwidth of 60 nm and total average optical output power of 3.8 W. The device was used for 6 min twice daily on age-matched middle-aged subjects with normal intellectual function. The US Food and Drug Administration (FDA)-approved computerized assessment tool Automated Neuropsychological Assessment Metrics (ANAM) was adopted to quantify a series of cognitive and motor activities in the participating groups. Results: A significant improvement in motor function, memory performance, and processing speed was observed in healthy individuals with PBM-T compared to the placebo group. No adverse effects were reported. Conclusions: PBM-T may be a promising new approach to improve memory in healthy middle-aged individuals. ClinicalTrials.gov ID: NCT04568057.
Collapse
Affiliation(s)
| | - Abdel Ennaceur
- Sunderland Pharmacy School, Sunderland University, Sunderland, Tyne and Wear, United Kingdom
| | - Paul L Chazot
- Department of Biosciences, Durham University, Durham, United Kingdom
| |
Collapse
|
14
|
Miao X, Sun T, Barletta H, Mager J, Cui W. Loss of RBBP4 results in defective inner cell mass, severe apoptosis, hyperacetylated histones and preimplantation lethality in mice†. Biol Reprod 2021; 103:13-23. [PMID: 32285100 DOI: 10.1093/biolre/ioaa046] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/13/2020] [Accepted: 04/09/2020] [Indexed: 01/06/2023] Open
Abstract
Retinoblastoma-binding protein 4 (RBBP4) (also known as chromatin-remodeling factor RBAP48) is an evolutionarily conserved protein that has been involved in various biological processes. Although a variety of functions have been attributed to RBBP4 in vitro, mammalian RBBP4 has not been studied in vivo. Here we report that RBBP4 is essential during early mouse embryo development. Although Rbbp4 mutant embryos exhibit normal morphology at E3.5 blastocyst stage, they cannot be recovered at E7.5 early post-gastrulation stage, suggesting an implantation failure. Outgrowth (OG) assays reveal that mutant blastocysts cannot hatch from the zona or can hatch but then arrest without further development. We find that while there is no change in proliferation or levels of reactive oxygen species, both apoptosis and histone acetylation are significantly increased in mutant blastocysts. Analysis of lineage specification reveals that while the trophoblast is properly specified, both epiblast and primitive endoderm lineages are compromised with severe reductions in cell number and/or specification. In summary, these findings demonstrate the essential role of RBBP4 during early mammalian embryogenesis.
Collapse
Affiliation(s)
- Xiaosu Miao
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Tieqi Sun
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Holly Barletta
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Jesse Mager
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Wei Cui
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA.,Animal Models Core Facility, Institute for Applied Life Sciences (IALS), University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
15
|
Chai AP, Chen XF, Xu XS, Zhang N, Li M, Li JN, Zhang L, Zhang D, Zhang X, Mao RR, Ding YQ, Xu L, Zhou QX. A Temporal Activity of CA1 Neurons Underlying Short-Term Memory for Social Recognition Altered in PTEN Mouse Models of Autism Spectrum Disorder. Front Cell Neurosci 2021; 15:699315. [PMID: 34335191 PMCID: PMC8319669 DOI: 10.3389/fncel.2021.699315] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/21/2021] [Indexed: 11/30/2022] Open
Abstract
Memory-guided social recognition identifies someone from previous encounters or experiences, but the mechanisms of social memory remain unclear. Here, we find that a short-term memory from experiencing a stranger mouse lasting under 30 min interval is essential for subsequent social recognition in mice, but that interval prolonged to hours by replacing the stranger mouse with a familiar littermate. Optogenetic silencing of dorsal CA1 neuronal activity during trials or inter-trial intervals disrupted short-term memory-guided social recognition, without affecting the ability of being sociable or long-term memory-guided social recognition. Postnatal knockdown or knockout of autism spectrum disorder (ASD)-associated phosphatase and tensin homolog (PTEN) gene in dorsal hippocampal CA1 similarly impaired neuronal firing rate in vitro and altered firing pattern during social recognition. These PTEN mice showed deficits in social recognition with stranger mouse rather than littermate and exhibited impairment in T-maze spontaneous alternation task for testing short-term spatial memory. Thus, we suggest that a temporal activity of dorsal CA1 neurons may underlie formation of short-term memory to be critical for organizing subsequent social recognition but that is possibly disrupted in ASD.
Collapse
Affiliation(s)
- An-Ping Chai
- Key Laboratory of Animal Models and Human Disease Mechanisms, and Laboratory of Learning and Memory, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Xue-Feng Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms, and Laboratory of Learning and Memory, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Xiao-Shan Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms, and Laboratory of Learning and Memory, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
| | - Na Zhang
- School of Life Sciences, Anhui University, Hefei, China
| | - Meng Li
- Key Laboratory of Animal Models and Human Disease Mechanisms, and Laboratory of Learning and Memory, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
| | - Jin-Nan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms, and Laboratory of Learning and Memory, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
| | - Lei Zhang
- Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
| | - Dai Zhang
- Institute of Mental Health, The Sixth Hospital of Peking University, Beijing, China
| | - Xia Zhang
- Department of Cellular and Molecular Medicine, Institute of Mental Health Research at the Royal, University of Ottawa, Ottawa, ON, Canada
- Department of Psychiatry, Institute of Mental Health Research at the Royal, University of Ottawa, Ottawa, ON, Canada
| | - Rong-Rong Mao
- Key Laboratory of Animal Models and Human Disease Mechanisms, and Laboratory of Learning and Memory, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
| | - Yu-Qiang Ding
- Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
| | - Lin Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms, and Laboratory of Learning and Memory, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China
| | - Qi-Xin Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms, and Laboratory of Learning and Memory, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
16
|
Larrigan S, Shah S, Fernandes A, Mattar P. Chromatin Remodeling in the Brain-a NuRDevelopmental Odyssey. Int J Mol Sci 2021; 22:ijms22094768. [PMID: 33946340 PMCID: PMC8125410 DOI: 10.3390/ijms22094768] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 04/27/2021] [Indexed: 01/07/2023] Open
Abstract
During brain development, the genome must be repeatedly reconfigured in order to facilitate neuronal and glial differentiation. A host of chromatin remodeling complexes facilitates this process. At the genetic level, the non-redundancy of these complexes suggests that neurodevelopment may require a lexicon of remodelers with different specificities and activities. Here, we focus on the nucleosome remodeling and deacetylase (NuRD) complex. We review NuRD biochemistry, genetics, and functions in neural progenitors and neurons.
Collapse
Affiliation(s)
- Sarah Larrigan
- Department of Cell and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (S.L.); (S.S.); (A.F.)
- Ottawa Health Research Institute (OHRI), Ottawa, ON K1H 8L6, Canada
| | - Sujay Shah
- Department of Cell and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (S.L.); (S.S.); (A.F.)
- Ottawa Health Research Institute (OHRI), Ottawa, ON K1H 8L6, Canada
| | - Alex Fernandes
- Department of Cell and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (S.L.); (S.S.); (A.F.)
- Ottawa Health Research Institute (OHRI), Ottawa, ON K1H 8L6, Canada
| | - Pierre Mattar
- Department of Cell and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (S.L.); (S.S.); (A.F.)
- Ottawa Health Research Institute (OHRI), Ottawa, ON K1H 8L6, Canada
- Correspondence:
| |
Collapse
|
17
|
Ramis MR, Sarubbo F, Moranta D, Tejada S, Lladó J, Miralles A, Esteban S. Neurochemical and Cognitive Beneficial Effects of Moderate Physical Activity and Catechin in Aged Rats. Antioxidants (Basel) 2021; 10:antiox10040621. [PMID: 33921628 PMCID: PMC8072822 DOI: 10.3390/antiox10040621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
A healthy aging process is a requirement for good life quality. A relationship between physical activity, the consumption of antioxidants and brain health has been stablished via the activation of pathways that reduce the harmful effects of oxidative stress, by inducing enzymes such as SIRT1, which is a protector of brain function. We analyzed the cognitive and neurochemical effects of applying physical exercise in elderly rats, alone or in combination with the antioxidant catechin. Several tests of spatial and episodic memory and motor coordination were evaluated. In addition, brain monoaminergic neurotransmitters and SIRT1 protein levels were assessed in the brains of the same rats. The results show that physical activity by itself improved age-related memory and learning deficits, correlating with the restoration of brain monoaminergic neurotransmitters and SIRT1 protein levels in the hippocampus. The administration of the antioxidant catechin along with the exercise program enhanced further the monoaminergic pathways, but not the other parameters studied. These results agree with previous reports revealing a neuroprotective effect of physical activity, probably based on its ability to improve the redox status of the brain, demonstrating that exercise at an advanced age, combined with the consumption of antioxidants, could produce favorable effects in terms of brain health.
Collapse
Affiliation(s)
- Margarita R. Ramis
- Laboratory of Neurophysiology, Biology Department, University of Balearic Islands (UIB), Ctra. Valldemossa Km 7.5, E-07122 Palma de Mallorca, Spain; (M.R.R.); (F.S.); (D.M.); (S.T.); (A.M.)
| | - Fiorella Sarubbo
- Laboratory of Neurophysiology, Biology Department, University of Balearic Islands (UIB), Ctra. Valldemossa Km 7.5, E-07122 Palma de Mallorca, Spain; (M.R.R.); (F.S.); (D.M.); (S.T.); (A.M.)
- Research Unit, University Hospital Son Llàtzer, Crta. Manacor Km 4, 07198 Palma, Spain
| | - David Moranta
- Laboratory of Neurophysiology, Biology Department, University of Balearic Islands (UIB), Ctra. Valldemossa Km 7.5, E-07122 Palma de Mallorca, Spain; (M.R.R.); (F.S.); (D.M.); (S.T.); (A.M.)
| | - Silvia Tejada
- Laboratory of Neurophysiology, Biology Department, University of Balearic Islands (UIB), Ctra. Valldemossa Km 7.5, E-07122 Palma de Mallorca, Spain; (M.R.R.); (F.S.); (D.M.); (S.T.); (A.M.)
- CIBERON (Physiopathology of Obesity and Nutrition), 28029 Madrid, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
| | - Jerònia Lladó
- Department of Biology and University Institute of Health Sciences Research (IUNICS-IdISBa), University of Balearic Islands, 07122 Palma, Spain;
| | - Antoni Miralles
- Laboratory of Neurophysiology, Biology Department, University of Balearic Islands (UIB), Ctra. Valldemossa Km 7.5, E-07122 Palma de Mallorca, Spain; (M.R.R.); (F.S.); (D.M.); (S.T.); (A.M.)
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
| | - Susana Esteban
- Laboratory of Neurophysiology, Biology Department, University of Balearic Islands (UIB), Ctra. Valldemossa Km 7.5, E-07122 Palma de Mallorca, Spain; (M.R.R.); (F.S.); (D.M.); (S.T.); (A.M.)
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
- Correspondence: ; Tel.: +34-971-173-145
| |
Collapse
|
18
|
Seyedaghamiri F, Farajdokht F, Vatandoust SM, Mahmoudi J, Khabbaz A, Sadigh-Eteghad S. Sericin modulates learning and memory behaviors by tuning of antioxidant, inflammatory, and apoptotic markers in the hippocampus of aged mice. Mol Biol Rep 2021; 48:1371-1382. [PMID: 33523373 DOI: 10.1007/s11033-021-06195-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/28/2021] [Indexed: 01/01/2023]
Abstract
Sericin is a protein derived from silkworm cocoons and identified as an anti-aging agent. This study aimed to examine the effects of sericin administration on episodic and avoidance memories, social interaction behavior, and molecular mechanisms including oxidative stress, inflammation, and apoptosis in the hippocampus of aged mice. Sericin was administered at 250 mg/kg/day (oral gavage) to 2-year-old BALB/c mice for a duration of 21 consecutive days. Lashley III Maze and Shuttle-Box tests were performed to assess episodic and avoidance memories, respectively. Subjects also underwent social interaction test to reveal any changes in their social behavior. Besides, markers of oxidative stress (TAC, SOD, GPx, and MDA) and neuroinflammation mediators (TNF-α, IL-1β, and IL-10) were measured in the hippocampus. The extent of apoptosis in the hippocampal tissue was further determined by TUNEL assay and histological assessment. The obtained results suggest that sericin promotes episodic and avoidance memories and social behaviors in aged mice. As of the molecular assay outcomes, it was noted that sericin regulates hippocampal inflammation by inhibiting the pro-inflammatory cytokines, TNF-α and IL-1β, and by increasing the anti-inflammatory factor IL-10. Moreover, sericin suppressed oxidative stress by enhancing antioxidant markers (TAC, SOD, and GPx) and inhibiting MDA. It was also identified that sericin can substantially suppress the apoptosis in the hippocampal tissue. Overall, sericin modulates memory and sociability behavior by tuning hippocampal antioxidant, inflammatory, and apoptotic markers in the aged mice.
Collapse
Affiliation(s)
| | - Fereshteh Farajdokht
- Neurosciences Research Center, Tabriz University of Medical Sciences, 5166614756, Tabriz, Iran
| | - Seyed Mehdi Vatandoust
- Neurosciences Research Center, Tabriz University of Medical Sciences, 5166614756, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, 5166614756, Tabriz, Iran
| | - Aytak Khabbaz
- Neurosciences Research Center, Tabriz University of Medical Sciences, 5166614756, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, 5166614756, Tabriz, Iran.
| |
Collapse
|
19
|
Low JKK, Silva APG, Sharifi Tabar M, Torrado M, Webb SR, Parker BL, Sana M, Smits C, Schmidberger JW, Brillault L, Jackman MJ, Williams DC, Blobel GA, Hake SB, Shepherd NE, Landsberg MJ, Mackay JP. The Nucleosome Remodeling and Deacetylase Complex Has an Asymmetric, Dynamic, and Modular Architecture. Cell Rep 2020; 33:108450. [PMID: 33264611 PMCID: PMC8908386 DOI: 10.1016/j.celrep.2020.108450] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/23/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022] Open
Abstract
The nucleosome remodeling and deacetylase (NuRD) complex is essential for metazoan development but has been refractory to biochemical analysis. We present an integrated analysis of the native mammalian NuRD complex, combining quantitative mass spectrometry, cross-linking, protein biochemistry, and electron microscopy to define the architecture of the complex. NuRD is built from a 2:2:4 (MTA, HDAC, and RBBP) deacetylase module and a 1:1:1 (MBD, GATAD2, and Chromodomain-Helicase-DNA-binding [CHD]) remodeling module, and the complex displays considerable structural dynamics. The enigmatic GATAD2 controls the asymmetry of the complex and directly recruits the CHD remodeler. The MTA-MBD interaction acts as a point of functional switching, with the transcriptional regulator PWWP2A competing with MBD for binding to the MTA-HDAC-RBBP subcomplex. Overall, our data address the long-running controversy over NuRD stoichiometry, provide imaging of the mammalian NuRD complex, and establish the biochemical mechanism by which PWWP2A can regulate NuRD composition. Low et al. examine the architecture of the nucleosome remodeling and deacetylase complex. They define its stoichiometry, use cross-linking mass spectrometry to define subunit locations, and use electron microscopy to reveal large-scale dynamics. They also demonstrate that PWWP2A competes with MBD3 to sequester the HDAC-MTA-RBBP module from NuRD.
Collapse
Affiliation(s)
- Jason K K Low
- School of Life and Environmental Sciences, University of Sydney, NSW, Australia.
| | - Ana P G Silva
- School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| | - Mehdi Sharifi Tabar
- School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| | - Mario Torrado
- School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| | - Sarah R Webb
- School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| | - Benjamin L Parker
- School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| | - Maryam Sana
- School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| | | | | | - Lou Brillault
- School of Chemistry and Molecular Biosciences, University of Queensland, QLD, Australia
| | - Matthew J Jackman
- School of Chemistry and Molecular Biosciences, University of Queensland, QLD, Australia
| | - David C Williams
- Dept of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, NC, USA
| | - Gerd A Blobel
- The Division of Hematology, Children's Hospital of Philadelphia, and the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sandra B Hake
- Institute for Genetics, FB08 Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Nicholas E Shepherd
- School of Life and Environmental Sciences, University of Sydney, NSW, Australia
| | - Michael J Landsberg
- School of Chemistry and Molecular Biosciences, University of Queensland, QLD, Australia.
| | - Joel P Mackay
- School of Life and Environmental Sciences, University of Sydney, NSW, Australia.
| |
Collapse
|
20
|
Schatz M, Saravanan S, d'Adesky ND, Bramlett H, Perez-Pinzon MA, Raval AP. Osteocalcin, ovarian senescence, and brain health. Front Neuroendocrinol 2020; 59:100861. [PMID: 32781196 DOI: 10.1016/j.yfrne.2020.100861] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/20/2020] [Accepted: 08/05/2020] [Indexed: 12/19/2022]
Abstract
Menopause, an inevitable event in a woman's life, significantly increases risk of bone resorption and diseases such as Alzheimer's, vascular dementia, cardiac arrest, and stroke. The sole role of bones, as traditionally regarded, is to provide structural support for skeletal muscles and allow for ambulation, however this concept is becoming quickly outdated. New literature has emerged that suggests the bone cell-derived hormone osteocalcin (OCN) plays a pivotal role in cognition. OCN levels are correlated with bone mass density and bone turnover, and thus are strongly influenced by the changes associated with menopause. The goal of the current review is to discuss potential gaps in our knowledge of OCN and cognition, discrepancies in methods of OCN quantification, and therapies to enhance circulating OCN. A discussion on implementing exercise or low frequency vibration interventions at the menopausal transition to reduce risk and severity of neurological diseases and associated cognitive decline is included.
Collapse
Affiliation(s)
- Marc Schatz
- Department of Orthopaedic Surgery, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Sharnikha Saravanan
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, Miami, FL 33136, USA
| | - Nathan D d'Adesky
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, Miami, FL 33136, USA
| | - Helen Bramlett
- Department of Neurological Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL 33136, USA
| | - Miguel A Perez-Pinzon
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, Miami, FL 33136, USA
| | - Ami P Raval
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratory, Department of Neurology, Miami, FL 33136, USA.
| |
Collapse
|
21
|
Swer PB, Sharma R. ATP-dependent chromatin remodelers in ageing and age-related disorders. Biogerontology 2020; 22:1-17. [PMID: 32968929 DOI: 10.1007/s10522-020-09899-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/16/2020] [Indexed: 11/27/2022]
Abstract
Ageing is characterized by the perturbation in cellular homeostasis associated with genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion and altered intracellular communication. Changes in the epigenome represent one of the crucial mechanisms during ageing and in age-related disorders. The ATP-dependent chromatin remodelers are an evolutionarily conserved family of nucleosome remodelling factors and generally regulate DNA repair, replication, recombination, transcription and cell cycle. Here, we review the chromatin based epigenetic changes that occur in ageing and age-related disorders with a specific reference to chromatin remodelers. We also discuss the link between dietary restriction and chromatin remodelers in regulating age-related processes with a view for consideration in future intervention studies.
Collapse
Affiliation(s)
- Pynskhem Bok Swer
- Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Ramesh Sharma
- Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India.
| |
Collapse
|
22
|
Brain regions vulnerable and resistant to aging without Alzheimer's disease. PLoS One 2020; 15:e0234255. [PMID: 32726311 PMCID: PMC7390259 DOI: 10.1371/journal.pone.0234255] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/21/2020] [Indexed: 11/19/2022] Open
Abstract
'Normal aging' in the brain refers to age-related changes that occur independent of disease, in particular Alzheimer's disease. A major barrier to mapping normal brain aging has been the difficulty in excluding the earliest preclinical stages of Alzheimer's disease. Here, before addressing this issue we first imaged a mouse model and learn that the best MRI measure of dendritic spine loss, a known pathophysiological driver of normal aging, is one that relies on the combined use of functional and structural MRI. In the primary study, we then deployed the combined functional-structural MRI measure to investigate over 100 cognitively-normal people from 20-72 years of age. Next, to cover the tail end of aging, in secondary analyses we investigated structural MRI acquired from cognitively-normal people, 60-84 years of age, who were Alzheimer's-free via biomarkers. Collectively, the results from the primary functional-structural study, and the secondary structural studies revealed that the dentate gyrus is a hippocampal region differentially affected by aging, and that the entorhinal cortex is a region most resistant to aging. Across the cortex, the primary functional-structural study revealed and that the inferior frontal gyrus is differentially affected by aging, however, the secondary structural studies implicated other frontal cortex regions. Together, the results clarify how normal aging may affect the brain and has possible mechanistic and therapeutic implications.
Collapse
|
23
|
Gao Y, Chen Y, Zhang Z, Yu X, Zheng J. Recent Advances in Mouse Models of Sjögren's Syndrome. Front Immunol 2020; 11:1158. [PMID: 32695097 PMCID: PMC7338666 DOI: 10.3389/fimmu.2020.01158] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 05/11/2020] [Indexed: 12/15/2022] Open
Abstract
Sjögren's syndrome (SS) is a complex rheumatoid disease that mainly affects exocrine glands, resulting in xerostomia (dry mouth) and xerophthalmia (dry eye). SS is characterized by autoantibodies, infiltration into exocrine glands, and ectopic expression of MHC II molecules on glandular epithelial cells. In contrast to the well-characterized clinical and immunological features, the etiology and pathogenesis of SS remain largely unknown. Animal models are powerful research tools for elucidating the pathogenesis of human diseases. To date, many mouse models of SS, including induced models, in which disease is induced in mice, and genetic models, in which mice spontaneously develop SS-like disease, have been established. These mouse models have provided new insight into the pathogenesis of SS. In this review, we aim to provide a comprehensive overview of recent advances in the field of experimental SS.
Collapse
Affiliation(s)
- Yunzhen Gao
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| | - Yan Chen
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| | - Zhongjian Zhang
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| | - Xinhua Yu
- Priority Area Asthma & Allergy, Research Center Borstel, Airway Research Center North (ARCN), Members of the German Center for Lung Research (DZL), Borstel, Germany
| | - Junfeng Zheng
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
24
|
Hippocampal Damage During Mechanical Ventilation in Trendelenburg Position: A Secondary Analysis of an Experimental Study on the Prevention of Ventilator-Associated Pneumonia. Shock 2020; 52:75-82. [PMID: 30052585 DOI: 10.1097/shk.0000000000001237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We previously corroborated benefits of the Trendelenburg position in the prevention of ventilator-associated pneumonia (VAP). We now investigate its potential effects on the brain versus the semirecumbent position. We studied 17 anesthetized pigs and randomized to be ventilated and positioned as follows: duty cycle (TI/TTOT) of 0.33, without positive end-expiratory pressure (PEEP), placed with the bed oriented 30° in anti-Trendelenburg (control group); positioned as in the control group, with TI/TTOT adjusted to achieve an expiratory flow bias, PEEP of 5 cm H2O (IRV-PEEP); positioned in 5° TP and ventilated as in the control group (TP). Animals were challenged into the oropharynx with Pseudomonas aeruginosa. We assessed hemodynamic parameters and systemic inflammation throughout the study. After 72 h, we evaluated incidence of microbiological/histological VAP and brain injury. Petechial hemorrhages score was greater in the TP group (P = 0.013). Analysis of the dentate gyrus showed higher cell apoptosis and deteriorating neurons in TP animals (P < 0.05 vs. the other groups). No differences in systemic inflammation were found among groups. Cerebral perfusion pressure was higher in TP animals (P < 0.001), mainly driven by higher mean arterial pressure. Microbiological/histological VAP developed in 0%, 67%, and 86% of the animals in the TP, control, and IRV-PEEP groups, respectively (P = 0.003). In conclusion, the TP prevents VAP; yet, we found deleterious neural effects in the dentate gyrus, likely associated with cerebrovascular modification in such position. Further laboratory and clinical studies are mandatory to appraise potential neurological risks associated with long-term TP.
Collapse
|
25
|
Brucato FH, Benjamin DE. Synaptic Pruning in Alzheimer's Disease: Role of the Complement System. GLOBAL JOURNAL OF MEDICAL RESEARCH 2020; 20:10.34257/gjmrfvol20is6pg1. [PMID: 32982106 PMCID: PMC7518506 DOI: 10.34257/gjmrfvol20is6pg1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alz heimer’s disease (AD) continues to threaten aged individuals and health care systems around the world. Human beings have been trying to postpone, reduce, or eliminate the primary risk factor for AD, aging, throughout history. Despite this, there is currently only symptomatic treatment for AD and this treatment is limited to only a handful of FDA approved AD drugs.
Collapse
Affiliation(s)
- Frederic H Brucato
- Cascade Biotechnology Inc., Princeton Corporate Plaza 1 Deer Park Dr., Suite D5. Monmouth Junction NJ 08852
| | - Daniel E Benjamin
- Cascade Biotechnology Inc., Princeton Corporate Plaza 1 Deer Park Dr., Suite D5. Monmouth Junction NJ 08852
| |
Collapse
|
26
|
Park JH, Lee TK, Kim DW, Park CW, Park YE, Kim B, Lee JC, Lee HA, Won MH, Ahn JH. RbAp48 expression and neuronal damage in the gerbil hippocampus following 5 min of transient ischemia. Lab Anim Res 2020; 35:12. [PMID: 32257900 PMCID: PMC7081550 DOI: 10.1186/s42826-019-0011-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 07/14/2019] [Indexed: 11/10/2022] Open
Abstract
Histone-binding protein RbAp48 has been known to be involved in histone acetylation, and epigenetic alterations of histone modifications are closely associated with the pathogenesis of ischemic reperfusion injury. In the current study, we investigated chronological change of RbAp48 expression in the hippocampus following 5 min of transient ischemia in gerbils. RbAp48 expression was examined 1, 2, 5, and 10 days after transient ischemia using immunohistochemistry. In sham operated gerbils, RbAp48 immunoreactivity was strong in pyramidal and non-pyramidal cells in the hippocampus. After transient ischemia, RbAp48 immunoreactivity was changed in the cornu ammonis 1 subfield (CA1), not in CA2/3. RbAp48 immunoreactivity in CA1 pyramidal neurons was gradually decreased and not detected at 5 and 10 days after ischemia. RbAp48 immunoreactivity in non-pyramidal cells was maintained until 2 days post-ischemia and significantly increased from 5 days post-ischemia. Double immunohistofluorescence staining revealed that RbAp48 immunoreactive non-pyramidal cells were astrocytes. At 5 days post-ischemia, death of pyramidal neurons occurred only in the CA1. These results showed that RbAp48 immunoreactivity was distinctively altered in pyramidal neurons and astrocytes in the hippocampal CA1 following 5 mins of transient ischemia. Ischemia-induced change in RbAp48 expression may be closely associated with neuronal death and astrocyte activation following 5 min of transient ischemia.
Collapse
Affiliation(s)
- Joon Ha Park
- 1Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252 Republic of Korea
| | - Tae-Kyeong Lee
- 2Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341 Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, and Research Institute of Oral Sciences, College of Dentistry, Gangnung-Wonju National University, Gangneung, Gangwon 25457 Republic of Korea
| | - Cheol Woo Park
- 2Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341 Republic of Korea
| | - Young Eun Park
- 2Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341 Republic of Korea
| | - Bora Kim
- 2Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341 Republic of Korea
| | - Jae-Chul Lee
- 2Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341 Republic of Korea
| | - Hyang-Ah Lee
- 4Department of Obstetrics and Gynecology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341 Republic of Korea
| | - Moo-Ho Won
- 2Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341 Republic of Korea
| | - Ji Hyeon Ahn
- 1Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252 Republic of Korea
| |
Collapse
|
27
|
Soontornniyomkij V, Chang RC, Soontornniyomkij B, Schilling JM, Patel HH, Jeste DV. Loss of Immunohistochemical Reactivity in Association With Handling-Induced Dark Neurons in Mouse Brains. Toxicol Pathol 2020; 48:437-445. [PMID: 31896310 PMCID: PMC7113115 DOI: 10.1177/0192623319896263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The handling-induced dark neuron is a histological artifact observed in brain samples handled before fixation with aldehydes. To explore associations between dark neurons and immunohistochemical alterations in mouse brains, we examined protein products encoded by Cav3 (neuronal perikarya/neurites), Rbbp4 (neuronal nuclei), Gfap (astroglia), and Aif1 (microglia) genes in adjacent tissue sections. Here, dark neurons were incidental findings from our prior project, studying the effects of age and high-fat diet on metabolic homeostasis in male C57BL/6N mice. Available were brains from 4 study groups: middle-aged/control diet, middle-aged/high-fat diet, old/control diet, and old/high-fat diet. Young/control diet mice were used as baseline. The hemibrains were immersion-fixed with paraformaldehyde and paraffin-embedded. In the hippocampal formation, we found negative correlations between dark neuron hyperbasophilia and immunoreactivity for CAV3, RBBP4, and glial fibrillary acidic protein (GFAP) using quantitative image analysis. There was no significant difference in dark neuron hyperbasophilia or immunoreactivity for any protein examined among all groups. In contrast, in the hippocampal fimbria, old age seemed to be associated with higher immunoreactivity for GFAP and allograft inflammatory factor-1. Our findings suggest that loss of immunohistochemical reactivity for CAV3, RBBP4, and GFAP in the hippocampal formation is an artifact associated with the occurrence of dark neurons. The unawareness of dark neurons may lead to misinterpretation of immunohistochemical reactivity alterations.
Collapse
Affiliation(s)
- Virawudh Soontornniyomkij
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Rachel C. Chang
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, California, USA
| | | | - Jan M. Schilling
- Department of Anesthesiology, School of Medicine, University of California San Diego, La Jolla, California, USA
- VA San Diego Healthcare System, U.S. Department of Veterans Affairs, San Diego, California, USA
| | - Hemal H. Patel
- Department of Anesthesiology, School of Medicine, University of California San Diego, La Jolla, California, USA
- VA San Diego Healthcare System, U.S. Department of Veterans Affairs, San Diego, California, USA
| | - Dilip V. Jeste
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, California, USA
- Sam and Rose Stein Institute for Research on Aging, School of Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
28
|
Müthel S, Tursun B. Epigenetic chaperoning of aging. Aging (Albany NY) 2020; 12:1044-1046. [PMID: 31991401 PMCID: PMC7053630 DOI: 10.18632/aging.102808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 01/23/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Stefanie Müthel
- Berlin Institute of Medical Systems Biology, 10115 Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Baris Tursun
- Berlin Institute of Medical Systems Biology, 10115 Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| |
Collapse
|
29
|
Chronic Polyphenon-60 or Catechin Treatments Increase Brain Monoamines Syntheses and Hippocampal SIRT1 Levels Improving Cognition in Aged Rats. Nutrients 2020; 12:nu12020326. [PMID: 31991916 PMCID: PMC7071257 DOI: 10.3390/nu12020326] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 12/12/2022] Open
Abstract
Polyphenolic compounds from green tea have great interest due to its large CONSUMPTION and therapeutic potential on the age-associated brain decline. The current work compares a similar dose regimen of a whole-green-tea extract and catechin in old rats over the course of 36 days. Results showed a significant improvement in visuo-spatial working memory and episodic memory of old rats after polyphenolic compounds administration assessed by behavioral tests. No effects were observed on the age-associated motor coordination decline. Statistically, results were correlated with significant improvements, mainly in hippocampal and striatal noradrenergic and serotonergic systems, but also with the striatal dopaminergic system. Both polyphenolic treatments also reverted the age-associated reduction of the neuroinflammation by modulating protein sirtuin 1 (SIRT1) expression in hippocampus, but no effects were observed in the usual reduction of the histone-binding protein RBAP46/48 protein linked to aging. These results are in line with previous ones obtained with other polyphenolic compounds, suggesting a general protective effect of all these compounds on the age-associated brain decline, pointing to a reduction of the oxidative stress and neuroinflammatory status reduction as the leading mechanisms. Results also reinforce the relevance of SIRT1-mediated mechanism on the neuroprotective effect and rule out the participation of RBAP46/48 protein.
Collapse
|
30
|
Müthel S, Uyar B, He M, Krause A, Vitrinel B, Bulut S, Vasiljevic D, Marchal I, Kempa S, Akalin A, Tursun B. The conserved histone chaperone LIN-53 is required for normal lifespan and maintenance of muscle integrity in Caenorhabditis elegans. Aging Cell 2019; 18:e13012. [PMID: 31397537 PMCID: PMC6826145 DOI: 10.1111/acel.13012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/27/2019] [Accepted: 07/02/2019] [Indexed: 12/27/2022] Open
Abstract
Whether extension of lifespan provides an extended time without health deteriorations is an important issue for human aging. However, to which degree lifespan and aspects of healthspan regulation might be linked is not well understood. Chromatin factors could be involved in linking both aging aspects, as epigenetic mechanisms bridge regulation of different biological processes. The epigenetic factor LIN‐53 (RBBP4/7) associates with different chromatin‐regulating complexes to safeguard cell identities in Caenorhabditis elegans as well as mammals, and has a role in preventing memory loss and premature aging in humans. We show that LIN‐53 interacts with the nucleosome remodeling and deacetylase (NuRD) complex in C. elegans muscles to ensure functional muscles during postembryonic development and in adults. While mutants for other NuRD members show a normal lifespan, animals lacking LIN‐53 die early because LIN‐53 depletion affects also the histone deacetylase complex Sin3, which is required for a normal lifespan. To determine why lin‐53 and sin‐3 mutants die early, we performed transcriptome and metabolomic analysis revealing that levels of the disaccharide trehalose are significantly decreased in both mutants. As trehalose is required for normal lifespan in C. elegans, lin‐53 and sin‐3 mutants could be rescued by either feeding with trehalose or increasing trehalose levels via the insulin/IGF1 signaling pathway. Overall, our findings suggest that LIN‐53 is required for maintaining lifespan and muscle integrity through discrete chromatin regulatory mechanisms. Since both LIN‐53 and its mammalian homologs safeguard cell identities, it is conceivable that its implication in lifespan regulation is also evolutionarily conserved.
Collapse
Affiliation(s)
- Stefanie Müthel
- Berlin Institute of Medical Systems Biology Berlin Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin Germany
| | - Bora Uyar
- Berlin Institute of Medical Systems Biology Berlin Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin Germany
| | - Mei He
- Berlin Institute of Medical Systems Biology Berlin Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin Germany
| | - Anne Krause
- Berlin Institute of Medical Systems Biology Berlin Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin Germany
| | - Burcu Vitrinel
- Berlin Institute of Medical Systems Biology Berlin Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin Germany
| | - Selman Bulut
- Berlin Institute of Medical Systems Biology Berlin Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin Germany
| | - Djordje Vasiljevic
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin Germany
| | - Iris Marchal
- Berlin Institute of Medical Systems Biology Berlin Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin Germany
| | - Stefan Kempa
- Berlin Institute of Medical Systems Biology Berlin Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin Germany
| | - Altuna Akalin
- Berlin Institute of Medical Systems Biology Berlin Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin Germany
| | - Baris Tursun
- Berlin Institute of Medical Systems Biology Berlin Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin Germany
| |
Collapse
|
31
|
Kosmidis S, Polyzos A, Harvey L, Youssef M, Denny CA, Dranovsky A, Kandel ER. RbAp48 Protein Is a Critical Component of GPR158/OCN Signaling and Ameliorates Age-Related Memory Loss. Cell Rep 2019; 25:959-973.e6. [PMID: 30355501 PMCID: PMC7725275 DOI: 10.1016/j.celrep.2018.09.077] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 06/25/2018] [Accepted: 09/24/2018] [Indexed: 10/28/2022] Open
Abstract
Precisely deciphering the molecular mechanisms of age-related memory loss is crucial to create appropriate therapeutic interventions. We have previously shown that the histone-binding protein RbAp48/Rbbp4 is a molecular determinant of Age-Related Memory Loss. By exploring how this protein regulates the genomic landscape of the hippocampal circuit, we find that RbAp48 controls the expression of BDNF and GPR158 proteins, both critical components of osteocalcin (OCN) signaling in the mouse hippocampus. We show that inhibition of RbAp48 in the hippocampal formation inhibits OCN's beneficial functions in cognition and causes deficits in discrimination memory. In turn, disruption of OCN/GPR158 signaling leads to the downregulation of RbAp48 protein, mimicking the discrimination memory deficits observed in the aged hippocampus. We also show that activation of the OCN/GPR158 pathway increases the expression of RbAp48 in the aged dentate gyrus and rescues age-related memory loss.
Collapse
Affiliation(s)
- Stylianos Kosmidis
- Department of Neuroscience, Columbia University, New York, NY 10032, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA; New York State Psychiatric Institute, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA
| | - Alexandros Polyzos
- Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece; Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Lucas Harvey
- Department of Neuroscience, Columbia University, New York, NY 10032, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA; New York State Psychiatric Institute, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA
| | - Mary Youssef
- Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Christine A Denny
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Division of Systems Neuroscience, New York State Psychiatric Institute (NYSPI)/Research Foundation for Mental Hygiene, Inc. (RFMH), New York, NY 10032, USA
| | - Alex Dranovsky
- New York State Psychiatric Institute, New York, NY 10032, USA; Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Eric R Kandel
- Department of Neuroscience, Columbia University, New York, NY 10032, USA; New York State Psychiatric Institute, New York, NY 10032, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
32
|
Rossi M, Battafarano G, Pepe J, Minisola S, Del Fattore A. The Endocrine Function of Osteocalcin Regulated by Bone Resorption: A Lesson from Reduced and Increased Bone Mass Diseases. Int J Mol Sci 2019; 20:ijms20184502. [PMID: 31514440 PMCID: PMC6769834 DOI: 10.3390/ijms20184502] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 02/06/2023] Open
Abstract
Bone is a peculiar tissue subjected to a continuous process of self-renewal essential to assure the integrity of the skeleton and to explicate the endocrine functions. The study of bone diseases characterized by increased or reduced bone mass due to osteoclast alterations has been essential to understand the great role played by osteocalcin in the endocrine functions of the skeleton. The ability of osteoclasts to regulate the decarboxylation of osteocalcin and to control glucose metabolism, male fertility, and cognitive functions was demonstrated by the use of animal models. In this review we described how diseases characterized by defective and increased bone resorption activity, as osteopetrosis and osteoporosis, were essential to understand the involvement of bone tissue in whole body physiology. To translate this knowledge into humans, recently published reports on patients were described, but further studies should be performed to confirm this complex hormonal regulation in humans.
Collapse
Affiliation(s)
- Michela Rossi
- Bone Physiopathology Group, Multifactorial Disease and Complex Phenotype Research Area, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy.
| | - Giulia Battafarano
- Bone Physiopathology Group, Multifactorial Disease and Complex Phenotype Research Area, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy.
| | - Jessica Pepe
- Department of Internal Medicine and Medical Disciplines, Sapienza University of Rome, 00186 Rome, Italy.
| | - Salvatore Minisola
- Department of Internal Medicine and Medical Disciplines, Sapienza University of Rome, 00186 Rome, Italy.
| | - Andrea Del Fattore
- Bone Physiopathology Group, Multifactorial Disease and Complex Phenotype Research Area, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy.
| |
Collapse
|
33
|
Gorgun MF, Zhuo M, Dineley KT, Englander EW. Elevated Neuroglobin Lessens Neuroinflammation and Alleviates Neurobehavioral Deficits Induced by Acute Inhalation of Combustion Smoke in the Mouse. Neurochem Res 2019; 44:2170-2181. [PMID: 31420834 DOI: 10.1007/s11064-019-02856-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/03/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022]
Abstract
Acute inhalation of combustion smoke produces long-term neurologic deficits in survivors. To study the mechanisms that contribute to the development of neurologic deficits and identify targets for prevention, we developed a mouse model of acute inhalation of combustion smoke, which supports longitudinal investigation of mechanisms that underlie the smoke induced inimical sequelae in the brain. Using a transgenic mouse engineered to overexpress neuroglobin, a neuroprotective oxygen-binding globin protein, we previously demonstrated that elevated neuroglobin preserves mitochondrial respiration and attenuates formation of oxidative DNA damage in the mouse brain after smoke exposure. In the current study, we show that elevated neuronal neuroglobin attenuates the persistent inflammatory changes induced by smoke exposure in the mouse brain and mitigates concordant smoke-induced long-term neurobehavioral deficits. Specifically, we found that increases in hippocampal density of GFAP and Iba-1 positive cells that are detected post-smoke in wild-type mice are absent in the neuroglobin overexpressing transgenic (Ngb-tg) mice. Similarly, the smoke induced hippocampal myelin depletion is not observed in the Ngb-tg mice. Importantly, elevated neuroglobin alleviates behavioral and memory deficits that develop after acute smoke inhalation in the wild-type mice. Taken together, our findings suggest that the protective effects exerted by neuroglobin in the brains of smoke exposed mice afford protection from long-term neurologic sequelae of acute inhalation of combustion smoke. Our transgenic mouse provides a tool for assessing the potential of elevated neuroglobin as possible strategy for management of smoke inhalation injury.
Collapse
Affiliation(s)
- Murat F Gorgun
- Department of Surgery, Medical Branch, University of Texas, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Ming Zhuo
- Department of Surgery, Medical Branch, University of Texas, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Kelly T Dineley
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Center for Addiction Research, University of Texas Medical Branch, Galveston, TX, USA
| | - Ella W Englander
- Department of Surgery, Medical Branch, University of Texas, 301 University Boulevard, Galveston, TX, 77555, USA.
- Shriners Hospitals for Children, Galveston, TX, USA.
| |
Collapse
|
34
|
Jawaid A, Woldemichael BT, Kremer EA, Laferriere F, Gaur N, Afroz T, Polymenidou M, Mansuy IM. Memory Decline and Its Reversal in Aging and Neurodegeneration Involve miR-183/96/182 Biogenesis. Mol Neurobiol 2018; 56:3451-3462. [PMID: 30128653 DOI: 10.1007/s12035-018-1314-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/09/2018] [Indexed: 01/31/2023]
Abstract
Aging is characterized by progressive memory decline that can lead to dementia when associated with neurodegeneration. Here, we show in mice that aging-related memory decline involves defective biogenesis of microRNAs (miRNAs), in particular miR-183/96/182 cluster, resulting from increased protein phosphatase 1 (PP1) and altered receptor SMAD (R-SMAD) signaling. Correction of the defect by miR-183/96/182 overexpression in hippocampus or by environmental enrichment that normalizes PP1 activity restores memory in aged animals. Regulation of miR-183/96/182 biogenesis is shown to involve the neurodegeneration-related RNA-binding proteins TDP-43 and FUS. Similar alterations in miR-183/96/182, PP1, and R-SMADs are observed in the brains of patients with amyotrophic lateral sclerosis (ALS) or frontotemporal lobar degeneration (FTLD), two neurodegenerative diseases with pathological aggregation of TDP-43. Overall, these results identify new mechanistic links between miR-183/96/182, PP1, TDP-43, and FUS in age-related memory deficits and their reversal.
Collapse
Affiliation(s)
- Ali Jawaid
- Laboratory of Neuroepigenetics, Neuroscience Center Zürich, University of Zurich (UZH) and Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Bisrat T Woldemichael
- Laboratory of Neuroepigenetics, Neuroscience Center Zürich, University of Zurich (UZH) and Swiss Federal Institute of Technology (ETH), Zurich, Switzerland.,Icahn school of medicine at Mount Sinai, New York, USA
| | - Eloïse A Kremer
- Laboratory of Neuroepigenetics, Neuroscience Center Zürich, University of Zurich (UZH) and Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Florent Laferriere
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Niharika Gaur
- Laboratory of Neuroepigenetics, Neuroscience Center Zürich, University of Zurich (UZH) and Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Tariq Afroz
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | | | - Isabelle M Mansuy
- Laboratory of Neuroepigenetics, Neuroscience Center Zürich, University of Zurich (UZH) and Swiss Federal Institute of Technology (ETH), Zurich, Switzerland.
| |
Collapse
|
35
|
Liu H, Peng L, So J, Tsang KH, Chong CH, Mak PHS, Chan KM, Chan SY. TSPYL2 Regulates the Expression of EZH2 Target Genes in Neurons. Mol Neurobiol 2018; 56:2640-2652. [PMID: 30051352 PMCID: PMC6459796 DOI: 10.1007/s12035-018-1238-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 07/11/2018] [Indexed: 01/07/2023]
Abstract
Testis-specific protein, Y-encoded-like 2 (TSPYL2) is an X-linked gene in the locus for several neurodevelopmental disorders. We have previously shown that Tspyl2 knockout mice had impaired learning and sensorimotor gating, and TSPYL2 facilitates the expression of Grin2a and Grin2b through interaction with CREB-binding protein. To identify other genes regulated by TSPYL2, here, we showed that Tspyl2 knockout mice had an increased level of H3K27 trimethylation (H3K27me3) in the hippocampus, and TSPYL2 interacted with the H3K27 methyltransferase enhancer of zeste 2 (EZH2). We performed chromatin immunoprecipitation (ChIP)-sequencing in primary hippocampal neurons and divided all Refseq genes by k-mean clustering into four clusters from highest level of H3K27me3 to unmarked. We confirmed that mutant neurons had an increased level of H3K27me3 in cluster 1 genes, which consist of known EZH2 target genes important in development. We detected significantly reduced expression of genes including Gbx2 and Prss16 from cluster 1 and Acvrl1, Bdnf, Egr3, Grin2c, and Igf1 from cluster 2 in the mutant. In support of a dynamic role of EZH2 in repressing marked synaptic genes, the specific EZH2 inhibitor GSK126 significantly upregulated, while the demethylase inhibitor GSKJ4 downregulated the expression of Egr3 and Grin2c. GSK126 also upregulated the expression of Bdnf in mutant primary neurons. Finally, ChIP showed that hemagglutinin-tagged TSPYL2 co-existed with EZH2 in target promoters in neuroblastoma cells. Taken together, our data suggest that TSPYL2 is recruited to promoters of specific EZH2 target genes in neurons, and enhances their expression for proper neuronal maturation and function.
Collapse
Affiliation(s)
- Hang Liu
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,University Research Facility in Chemical and Environmental Analysis, The Hong Kong Polytechnic University, Hong Kong, China
| | - Lei Peng
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Joan So
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Ka Hing Tsang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Research and Development, Clinical Projects and Development, New B Innovation, Hong Kong, China
| | - Chi Ho Chong
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Priscilla Hoi Shan Mak
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kui Ming Chan
- Department of Biomedical Sciences, the City University of Hong Kong, Hong Kong, China. .,Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China.
| | - Siu Yuen Chan
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
36
|
Kummer KK, Kalpachidou T, Mitrić M, Langeslag M, Kress M. Altered Gene Expression in Prefrontal Cortex of a Fabry Disease Mouse Model. Front Mol Neurosci 2018; 11:201. [PMID: 30013462 PMCID: PMC6036252 DOI: 10.3389/fnmol.2018.00201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/18/2018] [Indexed: 11/13/2022] Open
Abstract
Fabry disease is an X-chromosome linked hereditary disease that is caused by loss of function mutations in the α-galactosidase A (α-Gal A) gene, resulting in defective glycolipid degradation and subsequent accumulation of globotriaosylceramide (Gb3) in different tissues, including vascular endothelial cells and neurons in the peripheral and central nervous system. We recently reported a differential gene expression profile of α-Gal A(−/0) mouse dorsal root ganglia, an established animal model of Fabry disease, thereby providing new gene targets that might underlie the neuropathic pain related symptoms. To investigate the cognitive symptoms experienced by Fabry patients, we performed one-color based hybridization microarray expression profiling of prefrontal cortex samples from adult α-Gal A(−/0) mice and age-matched wildtype controls, followed by protein-protein interaction and pathway analyses for the differentially regulated mRNAs. We found that from a total of 381 differentially expressed genes, 135 genes were significantly upregulated, whereas 246 genes were significantly downregulated between α-Gal A(−/0) mice and wildtype controls. Enrichment analysis for downregulated genes revealed mainly immune related pathways, including immune/defense responses, regulation of cytokine production, as well as signaling and transport regulation pathways. Further analysis of the regulated genes revealed a large number of genes involved in neurodegeneration. The current analysis for the first time presents a differential gene expression profile of central nervous system tissue from α-Gal A(−/0) mice, thereby providing novel knowledge on the deregulation and a possible contribution of gene expression to Fabry disease related brain pathologies.
Collapse
Affiliation(s)
- Kai K Kummer
- Division of Physiology, Department of Physiology and Medical Physics Medical, University of Innsbruck, Innsbruck, Austria
| | - Theodora Kalpachidou
- Division of Physiology, Department of Physiology and Medical Physics Medical, University of Innsbruck, Innsbruck, Austria
| | - Miodrag Mitrić
- Division of Physiology, Department of Physiology and Medical Physics Medical, University of Innsbruck, Innsbruck, Austria
| | - Michiel Langeslag
- Division of Physiology, Department of Physiology and Medical Physics Medical, University of Innsbruck, Innsbruck, Austria
| | - Michaela Kress
- Division of Physiology, Department of Physiology and Medical Physics Medical, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
37
|
Obri A, Khrimian L, Karsenty G, Oury F. Osteocalcin in the brain: from embryonic development to age-related decline in cognition. Nat Rev Endocrinol 2018; 14:174-182. [PMID: 29376523 PMCID: PMC5958904 DOI: 10.1038/nrendo.2017.181] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A remarkable, unexpected aspect of the bone-derived hormone osteocalcin is that it is necessary for both brain development and brain function in the mouse, as its absence results in a profound deficit in spatial learning and memory and an exacerbation of anxiety-like behaviour. The regulation of cognitive function by osteocalcin, together with the fact that its circulating levels decrease in midlife compared with adolescence in all species tested, raised the prospect that osteocalcin might be an anti-geronic hormone that could prevent age-related cognitive decline. As presented in this Review, recent data indicate that this is indeed the case and that osteocalcin is necessary for the anti-geronic activity recently ascribed to the plasma of young wild-type mice. The diversity and amplitude of the functions of osteocalcin in the brain, during development and postnatally, had long called for the identification of its receptor in the brain, which was also recently achieved. This Review presents our current understanding of the biology of osteocalcin in the brain, highlighting the bony vertebrate specificity of the regulation of cognitive function and pointing toward where therapeutic opportunities might exist.
Collapse
Affiliation(s)
- Arnaud Obri
- Department of Genetics and Development, Columbia University Medical Center, 701 W 168th St. Rm 1602, New York City, New York 10032, USA
| | - Lori Khrimian
- Department of Genetics and Development, Columbia University Medical Center, 701 W 168th St. Rm 1602, New York City, New York 10032, USA
| | - Gerard Karsenty
- Department of Genetics and Development, Columbia University Medical Center, 701 W 168th St. Rm 1602, New York City, New York 10032, USA
| | - Franck Oury
- Institut Necker-Enfants Malades, CS 61431, Paris, France Institut National de la Santé et de la Recherche Médicale, U1151, F-75014 Paris, France Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| |
Collapse
|
38
|
de la Torre JC. Are Major Dementias Triggered by Poor Blood Flow to the Brain? Theoretical Considerations. J Alzheimers Dis 2018; 57:353-371. [PMID: 28211814 DOI: 10.3233/jad-161266] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is growing evidence that chronic brain hypoperfusion plays a central role in the development of Alzheimer's disease (AD) long before dyscognitive symptoms or amyloid-β accumulation in the brain appear. This commentary proposes that dementia with Lewy bodies (DLB), frontotemporal dementia (FTD), and Creutzfeldt-Jakob disease (CJD) may also develop from chronic brain hypoperfusion following a similar but not identical neurometabolic breakdown as AD. The argument to support this conclusion is that chronic brain hypoperfusion, which is found at the early stages of the three dementias reviewed here, will reduce oxygen delivery and lower oxidative phosphorylation promoting a steady decline in the synthesis of the cell energy fuel adenosine triphosphate (ATP). This process is known to lead to oxidative stress. Virtually all neurodegenerative diseases, including FTD, DLB, and CJD, are characterized by oxidative stress that promotes inclusion bodies which differ in structure, location, and origin, as well as which neurological disorder they typify. Inclusion bodies have one thing in common; they are known to diminish autophagic activity, the protective intracellular degradative process that removes malformed proteins, protein aggregates, and damaged subcellular organelles that can disrupt neuronal homeostasis. Neurons are dependent on autophagy for their normal function and survival. When autophagic activity is diminished or impaired in neurons, high levels of unfolded or misfolded proteins overwhelm and downregulate the neuroprotective activity of unfolded protein response which is unable to get rid of dysfunctional organelles such as damaged mitochondria and malformed proteins at the synapse. The endpoint of this neuropathologic process results in damaged synapses, impaired neurotransmission, cognitive decline, and dementia.
Collapse
|
39
|
Hollands C, Tobin MK, Hsu M, Musaraca K, Yu TS, Mishra R, Kernie SG, Lazarov O. Depletion of adult neurogenesis exacerbates cognitive deficits in Alzheimer's disease by compromising hippocampal inhibition. Mol Neurodegener 2017; 12:64. [PMID: 28886753 PMCID: PMC5591545 DOI: 10.1186/s13024-017-0207-7] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 08/31/2017] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The molecular mechanism underlying progressive memory loss in Alzheimer's disease is poorly understood. Neurogenesis in the adult hippocampus is a dynamic process that continuously changes the dentate gyrus and is important for hippocampal plasticity, learning and memory. However, whether impairments in neurogenesis affect the hippocampal circuitry in a way that leads to memory deficits characteristic of Alzheimer's disease is unknown. Controversial results in that regard were reported in transgenic mouse models of amyloidosis. METHODS Here, we conditionally ablated adult neurogenesis in APPswe/PS1ΔE9 mice by crossing these with mice expressing nestin-driven thymidine kinase (δ-HSV-TK). RESULTS These animals show impairment in performance in contextual conditioning and pattern separation tasks following depletion of neurogenesis. Importantly, these deficits were not observed in age-matched APPswe/PS1ΔE9 or δ-HSV-TK mice alone. Furthermore, we show that cognitive deficits were accompanied by the upregulation of hyperphosphorylated tau in the hippocampus and in immature neurons specifically. Interestingly, we observed upregulation of the immediate early gene Zif268 (Egr-1) in the dentate gyrus, CA1 and CA3 regions of the hippocampus following learning in the neurogenesis-depleted δ-HSV-TK mice. This may suggest overactivation of hippocampal neurons in these areas following depletion of neurogenesis. CONCLUSIONS These results imply that neurogenesis plays an important role in the regulation of inhibitory circuitry of the hippocampus. This study suggests that deficits in adult neurogenesis may contribute to cognitive impairments, tau hyperphosphorylation in new neurons and compromised hippocampal circuitry in Alzheimer's disease.
Collapse
Affiliation(s)
- Carolyn Hollands
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, 909 S Wolcott Ave, Chicago, IL, 60612, USA
| | - Matthew Kyle Tobin
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, 909 S Wolcott Ave, Chicago, IL, 60612, USA
| | - Michael Hsu
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, 909 S Wolcott Ave, Chicago, IL, 60612, USA
| | - Kianna Musaraca
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, 909 S Wolcott Ave, Chicago, IL, 60612, USA
| | - Tzong-Shiue Yu
- Department of Pediatrics and Pathology & Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Rachana Mishra
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, 909 S Wolcott Ave, Chicago, IL, 60612, USA
| | - Steven G Kernie
- Department of Pediatrics and Pathology & Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Orly Lazarov
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, 909 S Wolcott Ave, Chicago, IL, 60612, USA.
| |
Collapse
|
40
|
Increased GSNOR Expression during Aging Impairs Cognitive Function and Decreases S-Nitrosation of CaMKIIα. J Neurosci 2017; 37:9741-9758. [PMID: 28883020 DOI: 10.1523/jneurosci.0681-17.2017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/27/2017] [Accepted: 08/03/2017] [Indexed: 11/21/2022] Open
Abstract
As the population ages, an increasing number of people suffer from age-related cognitive impairment. However, the mechanisms underlying this process remain unclear. Here, we found that S-nitrosoglutathione reductase (GSNOR), the key enzyme that metabolizes intracellular nitric oxide (NO) and regulates S-nitrosation, was significantly increased in the hippocampus of both aging humans and mice. Transgenic mice overexpressing GSNOR exclusively in neurons showed cognitive impairment in behavioral tests, including the Morris water maze, fear conditioning, and the Y-maze test. We also found that GSNOR transgenic mice have LTP defects and lower dendrite spine density, whereas GSNOR knock-out mice rescued the age-related cognitive impairment. Analysis of S-nitrosation showed significantly decreased hippocampal CaMKIIα S-nitrosation in naturally aged mice and GSNOR transgenic mice. Consistent with the change in CaMKIIα S-nitrosation, the accumulation of CaMKIIα in the hippocampal synaptosomal fraction, as well as its downstream signaling targets p(S831)-GLUR1, was also significantly decreased. All these effects could be rescued in the GSNOR knock-out mice. We further verified that the S-nitrosation of CaMKIIα was responsible for the CaMKIIα synaptosomal accumulation by mutating CaMKIIα S-nitrosated sites (C280/C289). Upregulation of the NO signaling pathway rescued the cognitive impairment in GSNOR transgenic mice. In summary, our research demonstrates that GSNOR impairs cognitive function in aging and it could serve as a new potential target for the treatment of age-related cognitive impairment. In contrast to the free radical theory of aging, NO signaling deficiency may be the main mediator of age-related cognitive impairment.SIGNIFICANCE STATEMENT This study indicated that S-nitrosoglutathione reductase (GSNOR), a key protein S-nitrosation metabolic enzyme, is a new potential target in age-related cognitive impairment; and in contrast to the free radical theory of aging, NO signaling deficiency may be the main cause of this process. In addition, increased GSNOR expression during aging decreases S-nitrosation of CaMKIIα and reduces CaMKIIα synaptosomal accumulation. To our knowledge, it is for the first time to show the cellular function regulation of CaMKIIα by GSNOR-dependent S-nitrosation as a new post-translational modification after its phosphorylation was explored. These findings elucidate a novel mechanism of age-related cognitive impairment and may provide a new potential target and strategy for slowing down this process.
Collapse
|
41
|
Saul D, Ninkovic M, Komrakova M, Wolff L, Simka P, Gasimov T, Menger B, Hoffmann DB, Rohde V, Sehmisch S. Effect of zileuton on osteoporotic bone and its healing, expression of bone, and brain genes in rats. J Appl Physiol (1985) 2017; 124:118-130. [PMID: 28860177 DOI: 10.1152/japplphysiol.01126.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Estrogen deficiency and aging are associated with osteoporosis, impaired bone healing, and lower cognitive performance. Close functional and physical connections occur between bone and the central nervous system. An anti-inflammatory drug, zileuton (which is an inhibitor of arachidonate 5-lipoxygenase), is known to have a positive effect on bone tissue repair and brain ischemia. We studied the effect of zileuton on osteopenic bone and its healing and on the genes considered to be crucial for the cross talks between bone and brain. Three-month-old Sprague-Dawley rats were ovariectomized or left untreated. After 8 wk, bilateral metaphyseal tibia osteotomy with plate osteosynthesis was performed in all rats. Ovariectomized rats were fed with food containing zileuton (1, 10, or 100 mg/kg body wt) for 5 wk. In tibiae, bone volume, callus and cortical volume, and gene expression of osteocalcin and alkaline phosphatase were enhanced by zileuton (10 or 100 mg); biomechanical properties and bone density were not changed. In femur, zileuton enlarged cortical volume distal and trabecular volume proximal, decreasing their density. The expression level of brain Sema3a, known to regulate bone mass positively, was downregulated after ovariectomy. In contrast, bone Sema4d, a negative regulator of bone mass, was upregulated in the tibia callus after ovariectomy, whereas zileuton treatment (10 or 100 mg) resulted in reverse effects. Here, we describe for the first time the expression of Rbbp4 mRNA and its increase in tibia after ovariectomy. Zileuton caused downregulation of Rbbp4 in the hippocampus and had an effect on bone healing, changed the expression of genes involved in cross talk between bones and brain, and may be a potent drug for further examination in estrogen deficiency-related dysfunction(s). NEW & NOTEWORTHY Zileuton, a 5-lipoxygenase inhibitor, increased bone volume, callus and cortical volume in osteotomized tibia, and trabecular and cortical volume in femur. Although the expression of Sema3a (positively regulating bone mass) in brain was downregulated and Sema4d (negatively regulating bone mass) was upregulated in tibia callus after ovariectomy, zileuton could counteract these effects. Rbbp4 (involved in age-related memory loss) was increased in tibia callus after ovariectomy.
Collapse
Affiliation(s)
- D Saul
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Göttingen , Göttingen , Germany
| | - M Ninkovic
- Department of Neurosurgery, University Medical Center Göttingen , Göttingen , Germany
| | - M Komrakova
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Göttingen , Göttingen , Germany
| | - L Wolff
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Göttingen , Göttingen , Germany
| | - P Simka
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Göttingen , Göttingen , Germany
| | - T Gasimov
- Department of Neurosurgery, University Medical Center Göttingen , Göttingen , Germany
| | - B Menger
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Göttingen , Göttingen , Germany
| | - D B Hoffmann
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Göttingen , Göttingen , Germany
| | - V Rohde
- Department of Neurosurgery, University Medical Center Göttingen , Göttingen , Germany
| | - S Sehmisch
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Göttingen , Göttingen , Germany
| |
Collapse
|
42
|
Fan X, Wheatley EG, Villeda SA. Mechanisms of Hippocampal Aging and the Potential for Rejuvenation. Annu Rev Neurosci 2017; 40:251-272. [PMID: 28441118 DOI: 10.1146/annurev-neuro-072116-031357] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The past two decades have seen remarkable progress in our understanding of the multifactorial drivers of hippocampal aging and cognitive decline. Recent findings have also raised the possibility of functional rejuvenation in the aged hippocampus. In this review, we aim to synthesize the mechanisms that drive hippocampal aging and evaluate critically the potential for rejuvenation. We discuss the functional changes in synaptic plasticity and regenerative potential of the aged hippocampus, followed by mechanisms of microglia aging, and assess the cross talk between these proaging processes. We then examine proyouth interventions that demonstrate significant promise in reversing age-related impairments in the hippocampus and, finally, attempt to look ahead toward novel therapeutics for brain aging.
Collapse
Affiliation(s)
- Xuelai Fan
- Department of Anatomy, University of California, San Francisco, California 94143; , , .,The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, California 94143
| | - Elizabeth G Wheatley
- Department of Anatomy, University of California, San Francisco, California 94143; , , .,The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, California 94143.,Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, California 94143
| | - Saul A Villeda
- Department of Anatomy, University of California, San Francisco, California 94143; , , .,The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, California 94143.,Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, California 94143
| |
Collapse
|
43
|
Zhao H, Alam A, San CY, Eguchi S, Chen Q, Lian Q, Ma D. Molecular mechanisms of brain-derived neurotrophic factor in neuro-protection: Recent developments. Brain Res 2017; 1665:1-21. [PMID: 28396009 DOI: 10.1016/j.brainres.2017.03.029] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 03/02/2017] [Accepted: 03/28/2017] [Indexed: 12/13/2022]
Abstract
Neuronal cell injury, as a consequence of acute or chronic neurological trauma, is a significant cause of mortality around the world. On a molecular level, the condition is characterized by widespread cell death and poor regeneration, which can result in severe morbidity in survivors. Potential therapeutics are of major interest, with a promising candidate being brain-derived neurotrophic factor (BDNF), a ubiquitous agent in the brain which has been associated with neural development and may facilitate protective and regenerative effects following injury. This review summarizes the available information on the potential benefits of BDNF and the molecular mechanisms involved in several pathological conditions, including hypoxic brain injury, stroke, Alzheimer's disease and Parkinson's disease. It further explores the methods in which BDNF can be applied in clinical and therapeutic settings, and the potential challenges to overcome.
Collapse
Affiliation(s)
- Hailin Zhao
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Azeem Alam
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Chun-Yin San
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Shiori Eguchi
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Qian Chen
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK; Department of Anaesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Qingquan Lian
- Department of Anesthesiology, Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, China.
| | - Daqing Ma
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK.
| |
Collapse
|
44
|
Voelker P, Sheese BE, Rothbart MK, Posner MI. Methylation polymorphism influences practice effects in children during attention tasks. Cogn Neurosci 2017; 8:72-84. [PMID: 27050482 PMCID: PMC5605136 DOI: 10.1080/17588928.2016.1170006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Epigenetic mechanisms mediate the influence of experience on gene expression. Methylation is a principal method for inducing epigenetic effects on DNA. In this paper, we examine alleles of the methylenetetrahydrofolate reductase (MTHFR) gene that vary enzyme activity, altering the availability of the methyl donor and thus changing the efficiency of methylation. We hypothesized that alleles of the MTHFR gene would influence behavior in an attention-related task in conjunction with genes known to influence attention. We found that seven-year-old children homozygous for the C allele of MTHFR in interaction with the catechol O-methyltransferase (COMT) gene showed greater improvement in overall reaction time (RT) and in conflict resolution with practice on the Attention Network Test (ANT). This finding indicates that methylation may operate on or through genes that influence executive network operation. However, MTHFR T allele carriers showed faster overall RT and conflict resolution. Some children showed an initial improvement in ANT RT followed by a decline in performance, and we found that alleles of the dopamine beta-hydroxylase (DBH) gene were related to this performance decline. These results suggest a genetic dissociation between improvement while learning a skill and reduction in performance with continued practice.
Collapse
Affiliation(s)
| | - Brad E Sheese
- b Psychology , Illinois Wesleyan University , Bloomington , USA
| | | | | |
Collapse
|
45
|
Alzheimer's Disease and Histone Code Alterations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 978:321-336. [PMID: 28523554 DOI: 10.1007/978-3-319-53889-1_17] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Substantial progress has been made in identifying Alzheimer's disease (AD) risk-associated variants using genome-wide association studies (GWAS). The majority of these risk variants reside in noncoding regions of the genome making their functional evaluation difficult; however, they also infer the presence of unconventional regulatory regions that may reside at these locations. We know from these studies that rare familial cases of AD account for less than 5% of all AD cases and autosomal dominant mutations in APP, PSEN1 and PSEN2 account for less than 10% of the genetic basis of these familial cases [1]. The sporadic form of AD, while more complex, still has a substantial genetic component evidenced by observational studies where 30-48% of AD patients have a first degree relative who is also affected [2]. In addition, the strongest risk factor after age is the APOE E4 polymorphism, and more than 20 other risk variants have been identified to date, reviewed in two recent papers [3, 4]. Monozygotic twin studies have revealed a discordance for AD, implicating that a combination of epigenetic and genetic factors are likely involved in the development of AD [5].
Collapse
|
46
|
Duncan MJ, Smith JT, Narbaiza J, Mueez F, Bustle LB, Qureshi S, Fieseler C, Legan SJ. Restricting feeding to the active phase in middle-aged mice attenuates adverse metabolic effects of a high-fat diet. Physiol Behav 2016; 167:1-9. [PMID: 27586251 DOI: 10.1016/j.physbeh.2016.08.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 08/22/2016] [Accepted: 08/26/2016] [Indexed: 12/01/2022]
Abstract
Time-restricted feeding ameliorates the deleterious effects of a high-fat diet on body weight and metabolism in young adult mice. Because obesity is highly prevalent in the middle-aged population, this study tested the hypothesis that time-restricted feeding alleviates the adverse effects of a high-fat diet in male middle-aged (12months) mice. C57BL6/J mice were fed one of three diets for 21-25weeks: 1) high-fat diet (60% total calories from fat) ad-libitum (HFD-AL), 2) HFD, time-restricted feeding (HFD-TRF), and 3) low-fat diet (10% total calories from fat) ad-libitum (LFD-AL) (n=15 each). HFD-TRF mice only had food access for 8h/day during their active period. HFD-TRF mice gained significantly less weight than HFD-AL mice (~20% vs 55% of initial weight, respectively). Caloric intake differed between these groups only during the first 8weeks and accounted for most but not all of their body weight difference during this time. TRF of a HFD lowered glucose tolerance in terms of incremental area under the curve (iAUC) (p<0.02) to that of LFD-AL mice. TRF of a HFD lowered liver weight (p<0.0001), but not retroperitoneal or epididymal fat pad weight, to that of LFD-AL mice. Neither HFD-AL nor HFD-TRF had any effect on performance in the novel object recognition or object location memory tests. Circulating corticosterone levels either before or after restraint stress were not affected by diet. In conclusion, TRF without caloric restriction is an effective strategy in middle-aged mice for alleviating the negative effects of a HFD on body weight, liver weight, and glucose tolerance.
Collapse
Affiliation(s)
- M J Duncan
- Dept. of Anatomy and Neurobiology, University of Kentucky Medical School, 800 Rose Street, Lexington, KY 40536-0298, United States.
| | - J T Smith
- Dept. of Anatomy and Neurobiology, University of Kentucky Medical School, 800 Rose Street, Lexington, KY 40536-0298, United States
| | - J Narbaiza
- Dept. of Anatomy and Neurobiology, University of Kentucky Medical School, 800 Rose Street, Lexington, KY 40536-0298, United States
| | - F Mueez
- Dept. of Physiology, University of Kentucky Medical School, 800 Rose Street, Lexington, KY 40536-0298, United States
| | - L B Bustle
- Dept. of Physiology, University of Kentucky Medical School, 800 Rose Street, Lexington, KY 40536-0298, United States
| | - S Qureshi
- Dept. of Physiology, University of Kentucky Medical School, 800 Rose Street, Lexington, KY 40536-0298, United States
| | - C Fieseler
- Dept. of Physiology, University of Kentucky Medical School, 800 Rose Street, Lexington, KY 40536-0298, United States
| | - S J Legan
- Dept. of Physiology, University of Kentucky Medical School, 800 Rose Street, Lexington, KY 40536-0298, United States
| |
Collapse
|
47
|
Ruan Q, D'Onofrio G, Sancarlo D, Greco A, Yu Z. Potential fluid biomarkers for pathological brain changes in Alzheimer's disease: Implication for the screening of cognitive frailty. Mol Med Rep 2016; 14:3184-98. [PMID: 27511317 PMCID: PMC5042792 DOI: 10.3892/mmr.2016.5618] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 07/18/2016] [Indexed: 11/27/2022] Open
Abstract
Cognitive frailty (CF) overlaps with early neuropathological alterations associated with aging-related major neurocognitive disorders, including Alzheimer's disease (AD). Fluid biomarkers for these pathological brain alterations allow for early diagnosis in the preclinical stages of AD, and for objective prognostic assessments in clinical intervention trials. These biomarkers may also be helpful in the screening of CF. The present study reviewed the literature and identified systematic reviews of cohort studies and other authoritative reports. The selection criteria for potentially suitable fluid biomarkers included: i) Frequent use in studies of fluid-derived markers and ii) evidence of novel measurement techniques for fluid-derived markers. The present study focused on studies that assessed these biomarkers in AD, mild cognitive impairment and non-AD demented subjects. At present, widely used fluid biomarkers include cerebrospinal fluid (CSF), total tau, phosphorylated tau and amyloid-β levels. With the development of novel measurement techniques and improvements in understanding regarding the mechanisms underlying aging-related major neurocognitive disorders, numerous novel biomarkers associated with various aspects of AD neuropathology are being explored. These include specific measurements of Aβ oligomer or monomer forms, tau proteins in the peripheral plasma and CSF, and novel markers of synaptic dysfunction, neuronal damage and apoptosis, neuronal activity alteration, neuroinflammation, blood brain barrier dysfunction, oxidative stress, metabolites, mitochondrial function and aberrant lipid metabolism. The proposed panels of fluid biomarkers may be useful in the early diagnosis of AD, prediction of the progression of AD from preclinical stages to the dementia stage, and the differentiation of AD from non-AD dementia. In combination with physical frailty, the present study surmised that these biomarkers may also be used as biomarkers for CF, thus contribute to discovering causes and informing interventions for cognitive impairment in individuals with CF.
Collapse
Affiliation(s)
- Qingwei Ruan
- Shanghai Institute of Geriatrics and Gerontology, Shanghai Key Laboratory of Clinical Geriatrics, Department of Geriatrics, Huadong Hospital, and Research Center of Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai 200040, P.R. China
| | - Grazia D'Onofrio
- Geriatric Unit & Laboratory of Gerontology and Geriatrics, Department of Medical Sciences, IRCCS 'Casa Sollievo della Sofferenza', San Giovanni Rotondo, I‑71013 Foggia, Italy
| | - Daniele Sancarlo
- Geriatric Unit & Laboratory of Gerontology and Geriatrics, Department of Medical Sciences, IRCCS 'Casa Sollievo della Sofferenza', San Giovanni Rotondo, I‑71013 Foggia, Italy
| | - Antonio Greco
- Geriatric Unit & Laboratory of Gerontology and Geriatrics, Department of Medical Sciences, IRCCS 'Casa Sollievo della Sofferenza', San Giovanni Rotondo, I‑71013 Foggia, Italy
| | - Zhuowei Yu
- Shanghai Institute of Geriatrics and Gerontology, Shanghai Key Laboratory of Clinical Geriatrics, Department of Geriatrics, Huadong Hospital, and Research Center of Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
48
|
Wang W, Lu Y, Stemmer PM, Zhang X, Bi Y, Yi Z, Chen F. The proteomic investigation reveals interaction of mdig protein with the machinery of DNA double-strand break repair. Oncotarget 2016; 6:28269-81. [PMID: 26293673 PMCID: PMC4695059 DOI: 10.18632/oncotarget.4961] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 07/03/2015] [Indexed: 12/28/2022] Open
Abstract
To investigate how mineral dust-induced gene (mdig, also named as mina53, MINA, or NO52) promotes carcinogenesis through inducing active chromatin, we performed proteomics analyses for the interacting proteins that were co-immunoprecipitated by anti-mdig antibody from either the lung cancer cell line A549 cells or the human bronchial epithelial cell line BEAS-2B cells. On SDS-PAGE gels, three to five unique protein bands were consistently observed in the complexes pulled-down by mdig antibody, but not the control IgG. In addition to the mdig protein, several DNA repair or chromatin binding proteins, including XRCC5, XRCC6, RBBP4, CBX8, PRMT5, and TDRD, were identified in the complexes by the proteomics analyses using both Orbitrap Fusion and Orbitrap XL nanoESI-MS/MS in four independent experiments. The interaction of mdig with some of these proteins was further validated by co-immunoprecipitation using antibodies against mdig and its partner proteins, respectively. These data, thus, provide evidence suggesting that mdig accomplishes its functions on chromatin, DNA repair and cell growth through interacting with the partner proteins.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA.,School of Public Health, Wuhan University, Wuhan, Hubei, P.R. China
| | - Yongju Lu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Paul M Stemmer
- The Proteomics Core and Institute of Environmental Health Sciences, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Xiangmin Zhang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Yongyi Bi
- School of Public Health, Wuhan University, Wuhan, Hubei, P.R. China
| | - Zhengping Yi
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| |
Collapse
|
49
|
Febo M, Foster TC. Preclinical Magnetic Resonance Imaging and Spectroscopy Studies of Memory, Aging, and Cognitive Decline. Front Aging Neurosci 2016; 8:158. [PMID: 27468264 PMCID: PMC4942756 DOI: 10.3389/fnagi.2016.00158] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 06/16/2016] [Indexed: 01/14/2023] Open
Abstract
Neuroimaging provides for non-invasive evaluation of brain structure and activity and has been employed to suggest possible mechanisms for cognitive aging in humans. However, these imaging procedures have limits in terms of defining cellular and molecular mechanisms. In contrast, investigations of cognitive aging in animal models have mostly utilized techniques that have offered insight on synaptic, cellular, genetic, and epigenetic mechanisms affecting memory. Studies employing magnetic resonance imaging and spectroscopy (MRI and MRS, respectively) in animal models have emerged as an integrative set of techniques bridging localized cellular/molecular phenomenon and broader in vivo neural network alterations. MRI methods are remarkably suited to longitudinal tracking of cognitive function over extended periods permitting examination of the trajectory of structural or activity related changes. Combined with molecular and electrophysiological tools to selectively drive activity within specific brain regions, recent studies have begun to unlock the meaning of fMRI signals in terms of the role of neural plasticity and types of neural activity that generate the signals. The techniques provide a unique opportunity to causally determine how memory-relevant synaptic activity is processed and how memories may be distributed or reconsolidated over time. The present review summarizes research employing animal MRI and MRS in the study of brain function, structure, and biochemistry, with a particular focus on age-related cognitive decline.
Collapse
Affiliation(s)
- Marcelo Febo
- Department of Psychiatry, William L. and Evelyn F. McKnight Brain Institute, University of Florida Gainesville, FL, USA
| | - Thomas C Foster
- Department of Neuroscience, William L. and Evelyn F. McKnight Brain Institute, University of Florida Gainesville, FL, USA
| |
Collapse
|
50
|
Cho KH, Joo JI, Shin D, Kim D, Park SM. The reverse control of irreversible biological processes. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2016; 8:366-77. [PMID: 27327189 PMCID: PMC5094504 DOI: 10.1002/wsbm.1346] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/16/2016] [Accepted: 04/28/2016] [Indexed: 12/17/2022]
Abstract
Most biological processes have been considered to be irreversible for a long time, but some recent studies have shown the possibility of their reversion at a cellular level. How can we then understand the reversion of such biological processes? We introduce a unified conceptual framework based on the attractor landscape, a molecular phase portrait describing the dynamics of a molecular regulatory network, and the phenotype landscape, a map of phenotypes determined by the steady states of particular output molecules in the attractor landscape. In this framework, irreversible processes involve reshaping of the phenotype landscape, and the landscape reshaping causes the irreversibility of processes. We suggest reverse control by network rewiring which changes network dynamics with constant perturbation, resulting in the restoration of the original phenotype landscape. The proposed framework provides a conceptual basis for the reverse control of irreversible biological processes through network rewiring. WIREs Syst Biol Med 2016, 8:366–377. doi: 10.1002/wsbm.1346 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Kwang-Hyun Cho
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jae Il Joo
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Dongkwan Shin
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Dongsan Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Sang-Min Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| |
Collapse
|