1
|
Tan R, Wei X, Zhong J, Wang Y, Yu Q. Analysis of Differentially Expressed Proteins Involved in Shrimp and Crab Allergies. J Clin Lab Anal 2025:e70053. [PMID: 40366057 DOI: 10.1002/jcla.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/20/2025] [Accepted: 05/04/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Shrimp and crab allergies have garnered increasing attention in recent years. Unlike many other food allergies, they are less likely to be outgrown by children and tend to trigger more severe allergic symptoms. The underlying mechanisms that lead to these phenomena have not yet been fully elucidated. METHODS We used proteomics iTRAQ technology to identify differentially expressed proteins in shrimp and crab allergic patients and normal controls. RESULTS Ninety differentially expressed proteins, including 82 upregulated proteins and 8 downregulated proteins, were identified. Furthermore, MRC2 was validated to be upregulated in shrimp and crab allergic patients by ELISA. CONCLUSION These findings have established a comprehensive proteomics map of shrimp and crab allergies, laying the foundation for further analysis of the pathogenesis and regulatory network of shrimp and crab allergies.
Collapse
Affiliation(s)
- Ruhong Tan
- Department of Clinical Laboratory, Foshan Women and Children Hospital, Foshan, Guangdong, P. R. China
| | - Xiwen Wei
- Department of Clinical Laboratory, Foshan Women and Children Hospital, Foshan, Guangdong, P. R. China
| | - Jiacheng Zhong
- Department of Clinical Laboratory, Foshan Women and Children Hospital, Foshan, Guangdong, P. R. China
| | - Yuanbin Wang
- Department of Clinical Laboratory, Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, Guangdong, P. R. China
| | - Qing Yu
- Department of Clinical Laboratory, Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, Guangdong, P. R. China
| |
Collapse
|
2
|
Dilollo J, Hu A, Qu H, Canziani KE, Clement RL, McCright SJ, Shreffler WG, Hakonarson H, Spergel JM, Cerosaletti K, Hill DA. A molecular basis for milk allergen immune recognition in eosinophilic esophagitis. J Allergy Clin Immunol 2025; 155:1396-1399. [PMID: 39891629 DOI: 10.1016/j.jaci.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/19/2024] [Accepted: 01/10/2025] [Indexed: 02/03/2025]
Affiliation(s)
- Julianna Dilollo
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Alex Hu
- Benaroya Research Institute, Seattle, Wash
| | - Huiqi Qu
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Karina E Canziani
- Center for Immunology and Inflammatory Diseases and Food Allergy Center, Massachusetts General Hospital, Boston, Mass; Harvard Medical School, Boston, Mass
| | - Rachel L Clement
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, Pa; Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Sam J McCright
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, Pa; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa; Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Wayne G Shreffler
- Center for Immunology and Inflammatory Diseases and Food Allergy Center, Massachusetts General Hospital, Boston, Mass; Harvard Medical School, Boston, Mass
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pa; Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pa; Division of Pulmonary Medicine, Children's Hospital of Philadelphia, Philadelphia, Pa; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Jonathan M Spergel
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, Pa; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | | | - David A Hill
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, Pa; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa.
| |
Collapse
|
3
|
Wong T, Kang R, Yun K. The multi-faceted immune modulatory role of S100A4 in cancer and chronic inflammatory disease. Front Immunol 2025; 16:1525567. [PMID: 40078995 PMCID: PMC11897520 DOI: 10.3389/fimmu.2025.1525567] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 02/10/2025] [Indexed: 03/14/2025] Open
Abstract
S100A4 is a Ca2+-binding protein involved in multiple chronic inflammatory and neoplastic conditions. This review focuses on recent advances in the understanding of S100A4 function in immune cells, comparing and contrasting S100A4 regulation of immune responses in cancer and chronic inflammatory diseases. We provide evidence that S100A4 regulation of immune cell function has a profound role in promoting the pathogenesis of cancer and pro-inflammatory conditions. Finally, we discuss relevant future directions to target S100A4 therapeutically in different disease states.
Collapse
Affiliation(s)
- Thomas Wong
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, United States
- College of Medicine, Texas A&M University, Bryan, TX, United States
| | - Reece Kang
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, United States
| | - Kyuson Yun
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, United States
- Department of Neurology, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
4
|
Bosticardo M, Dobbs K, Delmonte OM, Martins AJ, Pala F, Kawai T, Kenney H, Magro G, Rosen LB, Yamazaki Y, Yu HH, Calzoni E, Lee YN, Liu C, Stoddard J, Niemela J, Fink D, Castagnoli R, Ramba M, Cheng A, Riley D, Oikonomou V, Shaw E, Belaid B, Keles S, Al-Herz W, Cancrini C, Cifaldi C, Baris S, Sharapova S, Schuetz C, Gennery AR, Freeman AF, Somech R, Choo S, Giliani SC, Güngör T, Drozdov D, Meyts I, Moshous D, Neven B, Abraham RS, El-Marsafy A, Kanariou M, King A, Licciardi F, Cruz-Muñoz ME, Palma P, Poli C, Adeli M, Algeri M, Alroqi FJ, Bastard P, Bergerson JRE, Booth C, Brett A, Burns SO, Butte MJ, Padem N, de la Morena M, Dbaibo G, de Ravin SS, Dimitrova D, Djidjik R, Dorna MB, Dutmer CM, Elfeky R, Facchetti F, Fuleihan RL, Geha RS, Gonzalez-Granado LI, Haljasmägi L, Ale H, Hayward A, Hifanova AM, Ip W, Kaplan B, Kapoor N, Karakoc-Aydiner E, Kärner J, Keller MD, Dávila Saldaña BJ, Kiykim A, Kuijpers TW, Kuznetsova EE, Latysheva EA, Leiding JW, Locatelli F, Alva-Lozada G, McCusker C, Celmeli F, Morsheimer M, Ozen A, Parvaneh N, Pasic S, Plebani A, Preece K, Prockop S, Sakovich IS, Starkova EE, et alBosticardo M, Dobbs K, Delmonte OM, Martins AJ, Pala F, Kawai T, Kenney H, Magro G, Rosen LB, Yamazaki Y, Yu HH, Calzoni E, Lee YN, Liu C, Stoddard J, Niemela J, Fink D, Castagnoli R, Ramba M, Cheng A, Riley D, Oikonomou V, Shaw E, Belaid B, Keles S, Al-Herz W, Cancrini C, Cifaldi C, Baris S, Sharapova S, Schuetz C, Gennery AR, Freeman AF, Somech R, Choo S, Giliani SC, Güngör T, Drozdov D, Meyts I, Moshous D, Neven B, Abraham RS, El-Marsafy A, Kanariou M, King A, Licciardi F, Cruz-Muñoz ME, Palma P, Poli C, Adeli M, Algeri M, Alroqi FJ, Bastard P, Bergerson JRE, Booth C, Brett A, Burns SO, Butte MJ, Padem N, de la Morena M, Dbaibo G, de Ravin SS, Dimitrova D, Djidjik R, Dorna MB, Dutmer CM, Elfeky R, Facchetti F, Fuleihan RL, Geha RS, Gonzalez-Granado LI, Haljasmägi L, Ale H, Hayward A, Hifanova AM, Ip W, Kaplan B, Kapoor N, Karakoc-Aydiner E, Kärner J, Keller MD, Dávila Saldaña BJ, Kiykim A, Kuijpers TW, Kuznetsova EE, Latysheva EA, Leiding JW, Locatelli F, Alva-Lozada G, McCusker C, Celmeli F, Morsheimer M, Ozen A, Parvaneh N, Pasic S, Plebani A, Preece K, Prockop S, Sakovich IS, Starkova EE, Torgerson T, Verbsky J, Walter JE, Ward B, Wisner EL, Draper D, Myint-Hpu K, Truong PM, Lionakis MS, Similuk MB, Walkiewicz MA, Klion A, Holland SM, Oguz C, Bogunovic D, Kisand K, Su HC, Tsang JS, Kuhns D, Villa A, Rosenzweig SD, Pittaluga S, Notarangelo LD. Multiomics dissection of human RAG deficiency reveals distinctive patterns of immune dysregulation but a common inflammatory signature. Sci Immunol 2025; 10:eadq1697. [PMID: 39792639 DOI: 10.1126/sciimmunol.adq1697] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 12/12/2024] [Indexed: 01/30/2025]
Abstract
Human recombination-activating gene (RAG) deficiency can manifest with distinct clinical and immunological phenotypes. By applying a multiomics approach to a large group of RAG-mutated patients, we aimed at characterizing the immunopathology associated with each phenotype. Although defective T and B cell development is common to all phenotypes, patients with hypomorphic RAG variants can generate T and B cells with signatures of immune dysregulation and produce autoantibodies to a broad range of self-antigens, including type I interferons. T helper 2 (TH2) cell skewing and a prominent inflammatory signature characterize Omenn syndrome, whereas more hypomorphic forms of RAG deficiency are associated with a type 1 immune profile both in blood and tissues. We used cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) analysis to define the cell lineage-specific contribution to the immunopathology of the distinct RAG phenotypes. These insights may help improve the diagnosis and clinical management of the various forms of the disease.
Collapse
Affiliation(s)
- Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kerry Dobbs
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ottavia M Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Andrew J Martins
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Francesca Pala
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tomoki Kawai
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Heather Kenney
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Gloria Magro
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lindsey B Rosen
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yasuhiro Yamazaki
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hsin-Hui Yu
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Pediatrics, National Taiwan University Children's Hospital, Taipei, Taiwan
| | - Enrica Calzoni
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yu Nee Lee
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, 52621 Tel HaShomer, Israel
| | - Can Liu
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Jennifer Stoddard
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Julie Niemela
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Danielle Fink
- Neutrophil Monitoring Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Riccardo Castagnoli
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Meredith Ramba
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Aristine Cheng
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Deanna Riley
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vasileios Oikonomou
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Elana Shaw
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Brahim Belaid
- Department of Medical Immunology, Beni Messous University Hospital Center, Faculty of Pharmacy, University of Algiers, Algiers, Algeria
| | - Sevgi Keles
- Division of Pediatric Allergy and Immunology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Waleed Al-Herz
- Department of Pediatrics, College of Medicine, Kuwait University, Safat, Kuwait City, Kuwait
- Allergy and Clinical Immunology Unit, Pediatric Department, Al-Sabah Hospital, Kuwait City, Kuwait
| | - Caterina Cancrini
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Research Unit of Primary Immunodeficiencies, Academic Department of Pediatrics, Bambino Gesu' Children's Hospital, Scientific Institute for Research and Heathcare (IRCCS), Rome, Italy
| | - Cristina Cifaldi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Safa Baris
- Faculty of Medicine, Division of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
- Isil Berat Barlan Center for Translational Medicine, Istanbul Jeffrey Modell Foundation Diagnostic Center for Primary Immune Deficiencies, Istanbul, Turkey
| | - Svetlana Sharapova
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Catharina Schuetz
- Department of Paediatrics, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Andrew R Gennery
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Raz Somech
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, 52621 Tel HaShomer, Israel
| | - Sharon Choo
- Department of Allergy and Immunology, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Silvia C Giliani
- Angelo Nocivelli Institute for Molecular Medicine, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Laboratory Department, Spedali Civili, Brescia, Italy
- National Center for Gene Therapy and Drugs based on RNA Technology, CN3, Brescia, Italy
| | - Tayfun Güngör
- Division of Hematology/Oncology/Immunology, Gene-Therapy, and Stem Cell Transplantation, University Children's Hospital Zürich, Zürich, Switzerland
- Eleonore Foundation & Children's Research Center (CRC), Zürich, Switzerland
| | - Daniel Drozdov
- Division of Hematology/Oncology/Immunology, Gene-Therapy, and Stem Cell Transplantation, University Children's Hospital Zürich, Zürich, Switzerland
- Eleonore Foundation & Children's Research Center (CRC), Zürich, Switzerland
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Kantonsspital Aarau, Aarau, Switzerland
| | - Isabelle Meyts
- Department of Immunology and Microbiology, Inborn Errors of Immunity, KU Leuven, Leuven, Belgium
- University Hospitals Leuven and ERN-RITA Core Center, Leuven, Belgium
| | - Despina Moshous
- Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
- Institut Imagine, Université Paris Cité, Paris, France
| | - Benedicte Neven
- Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
- Institut Imagine, Université Paris Cité, Paris, France
| | - Roshini S Abraham
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Aisha El-Marsafy
- Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Maria Kanariou
- Department of Immunology-Histocompatibility, Specialized & Referral Center for Primary Immunodeficiencies-Paediatric Immunology, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Alejandra King
- Departamento de Pediatría, Hospital Luis Calvo Mackenna, Santiago, Chile
| | - Francesco Licciardi
- Immuno-reumatologia, Pediatria Specialistica Universitaria, Ospedale Infantile Regina Margherita, Torino, Italy
| | - Mario E Cruz-Muñoz
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Paolo Palma
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Clinical Immunology and Vaccinology Unit, Children's Hospital "Bambino Gesu," Rome, Italy
| | - Cecilia Poli
- Faculty of Medicine, Clínica Alemana Universidad del Desarrollo Roberto del Rio, Santiago, Chile
| | - Mehdi Adeli
- Department of Immunology, Sidra Medicine, Ar-Rayyan, Qatar
| | - Mattia Algeri
- Department of Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Catholic University of the Sacred Heart, Rome, Italy
| | - Fayhan J Alroqi
- King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Paul Bastard
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
| | - Jenna R E Bergerson
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Claire Booth
- Molecular and Cellular Immunology, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Ana Brett
- Hospital Pediátrico, Unidade Local de Saúde de Coimbra, Coimbra, Portugal
- Clínica Universitária de Pediatria, Faculdade de Medicina, Universidade de Coimbra, Coimbra, Portugal
| | - Siobhan O Burns
- Institute of Immunity and Transplantation, University College London, London, UK
- Department of Immunology, Royal Free London NHS Foundation Trust, London, UK
| | - Manish J Butte
- Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nurcicek Padem
- Division of Pediatric Pulmonology, Allergy-Immunology and Sleep Medicine, Riley Hospital for Children/Indiana University, Indianapolis, IN, USA
| | - M de la Morena
- Division of Immunology, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | - Ghassan Dbaibo
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
- Center for Infectious Diseases Research (CIDR) and WHO Collaborating Center for Reference and Research on Bacterial Pathogens, American University of Beirut, Beirut, Lebanon
| | - Suk See de Ravin
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dimana Dimitrova
- Experimental Transplantation and Immunotherapy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Reda Djidjik
- Department of Medical Immunology, Beni Messous University Hospital Center, Faculty of Pharmacy, University of Algiers, Algiers, Algeria
| | - Mayra B Dorna
- Division of Allergy and Immunology, Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Cullen M Dutmer
- Allergy and Immunology Section, Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, CO, USA
| | - Reem Elfeky
- Department of Clinical Immunology, Royal Free Hospital, London, UK
| | - Fabio Facchetti
- Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, Spedali Civili di Brescia, Brescia, Italy
| | - Ramsay L Fuleihan
- Division of Allergy & Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Raif S Geha
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA
| | - Luis I Gonzalez-Granado
- Primary Immunodeficiency Unit, Pediatrics, Hospital 12 Octubre, Madrid, Spain
- Instituto de Investigation Hospital 12 Octubre (imas12), Madrid, Spain
- School of Medicine Complutense University, Madrid, Spain
| | - Liis Haljasmägi
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Hanadys Ale
- Division of Immunology, Allergy and Rheumatology, Joe DiMaggio Children's Hospital, Memorial Healthcare System, Hollywood, FL, USA
- Florida International University Herbert Wertheim College of Medicine, Miami, FL, USA
| | - Anthony Hayward
- Division of Infectious Diseases, Department of Pediatrics, Brown University and Rhode Island Hospital, Providence, RI, USA
| | - Anna M Hifanova
- Department of Pediatric Infectious Diseases and Pediatric Immunology, Shupyk National Healthcare University of Ukraine, Kiev, Ukraine
| | - Winnie Ip
- Molecular and Cellular Immunology, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Blanka Kaplan
- Division of Allergy, Asthma and Immunology, Cohen Children's Medical Center, Northwell Health, New Hyde Park, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Neena Kapoor
- Children's Hospital of Los Angeles, Los Angeles, CA, USA
| | - Elif Karakoc-Aydiner
- Faculty of Medicine, Division of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
- Isil Berat Barlan Center for Translational Medicine, Istanbul Jeffrey Modell Foundation Diagnostic Center for Primary Immune Deficiencies, Istanbul, Turkey
| | - Jaanika Kärner
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Michael D Keller
- Division of Allergy and Immunology, Children's National Hospital, Washington, DC, USA
| | | | - Ayça Kiykim
- Division of Pediatric Allergy and Immunology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Taco W Kuijpers
- Department of Pediatric Immunology, Amsterdam UMC Locatie AMC, Amsterdam, Netherlands
| | | | - Elena A Latysheva
- Immunopathology Department, NRC Institute of Immunology FMBA, Pigorov Russian National Research Medical University, Moscow, Russia
| | - Jennifer W Leiding
- Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins University, Baltimore, MD, USA
- Institute for Clinical and Translational Research, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
- Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Franco Locatelli
- Department of Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Catholic University of the Sacred Heart, Rome, Italy
| | - Guisela Alva-Lozada
- Allergy and Immunology Division Hospital Nacional Edgardo Rebagliati Martins, Lima, Peru
| | - Christine McCusker
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Montreal Children's Hospital, McGill University Health Centre, Montreal, QC, Canada
| | - Fatih Celmeli
- Immunology and Allergy Diseases, Saglık Bilimleri University, Antalya Training and Research Hospital Pediatric, Antalya, Turkey
| | - Megan Morsheimer
- Division of Allergy, Immunology and Transplantation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ahmet Ozen
- Faculty of Medicine, Division of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
- Isil Berat Barlan Center for Translational Medicine, Istanbul Jeffrey Modell Foundation Diagnostic Center for Primary Immune Deficiencies, Istanbul, Turkey
| | - Nima Parvaneh
- Infectious Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Srdjan Pasic
- Department of Pediatric Immunology, Mother and Child Health Institute, Medical Faculty, University of Belgrade, Belgrade, Serbia
| | | | - Kahn Preece
- Department of Immunology, John Hunter Children's Hospital, Newcastle, NSW, Australia
| | - Susan Prockop
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Inga S Sakovich
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Elena E Starkova
- Clinical Department, Regional Clinical Hospital No. 2, Orenburg, Russia
| | | | - James Verbsky
- Division of Rheumatology, Department of Pediatrics, Medical College of Wisconsin and Children's Wisconsin, Milwaukee, WI, USA
| | - Jolan E Walter
- Division of Pediatric Allergy/Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Brant Ward
- Division of Rheumatology, Allergy and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Elizabeth L Wisner
- Division of Allergy Immunology, Department of Pediatrics, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, USA
| | - Deborah Draper
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Katherine Myint-Hpu
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Pooi M Truong
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michail S Lionakis
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Morgan B Similuk
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Magdalena A Walkiewicz
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Amy Klion
- Laboratory of Parasitic Diseases, NIAID, NIH, Bethesda, MD, USA
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Cihan Oguz
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dusan Bogunovic
- Center for Genetic Errors of Immunity, Columbia University Medical Center, New York City, NY, USA
| | - Kai Kisand
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Helen C Su
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John S Tsang
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Douglas Kuhns
- Neutrophil Monitoring Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Anna Villa
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
- San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget), IRCSS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Stefania Pittaluga
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Jingjing H, Tongqian W, Shirong Y, Lan M, Jing L, Shihui M, Haijian Y, Fang Y. S100A4 promotes experimental autoimmune encephalomyelitis by impacting microglial inflammation through TLR4/NF-κB signaling pathway. Int Immunopharmacol 2024; 142:112849. [PMID: 39241524 DOI: 10.1016/j.intimp.2024.112849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 06/30/2024] [Accepted: 07/29/2024] [Indexed: 09/09/2024]
Abstract
Multiple sclerosis (MS) is a neurodegenerating autoimmune disease with no clinical cure currently. The calcium-binding protein S100A4 has been demonstrated to exert regulatory roles in inflammatory disorders including MS. However, the precise mechanisms by which S100A4 regulates neuroinflammation in MS remains unknown. To investigate the regulatory effect of S100A4 on microglial inflammation and its impact on neuroinflammation, the mouse-derived microglia cell line BV2 cells were infected with lentivirus to knockout S100A4 for in vitro studies. Wild-type (WT) and S100A4-/- mice were induced to develop experimental autoimmune encephalomyelitis (EAE), an animal model of MS, for in vivo investigation. Results indicated that the frequencies of microglia in the spinal cord and brain and the expression of S100A4 in these tissues varied kinetically along with the progression of the disease in mice with EAE. S100A4-/- mice presented ameliorated clinical scores of EAE and exhibited less severe EAE signs, including inflammatory cell infiltration in the spinal cord and brain and demyelination of the spinal cord. Moreover, these mice demonstrated overall reduced levels of inflammatory cytokines in the spinal cord and brain. Compromised systematic inflammatory responses including circulating cytokines and frequencies of immune cells in the spleen were also observed in these mice. In addition, both exogenous and endogenous S100A4 could promote the microglial inflammation, affect the polarization of microglia and enhance inflamed microglia-mediated apoptosis of neuronal cells through TLR4/NF-κB signaling pathway. Thus, S100A4 may participate in the regulation of neuroinflammation at least partly through regulating the inflammation of microglia.
Collapse
Affiliation(s)
- He Jingjing
- Center for Clinical Laboratories, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China; Department of Clinical Laboratory, Guizhou Hospital, the First Affiliated Hospital of Sun Yat-sen University, Guiyang 550004, China
| | - Wu Tongqian
- Clinical Research Center, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Yan Shirong
- Center for Clinical Laboratories, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China; School for Laboratory Science, Guizhou Medical University, Guiyang 550004, China
| | - Ma Lan
- School for Laboratory Science, Guizhou Medical University, Guiyang 550004, China
| | - Li Jing
- Center for Clinical Laboratories, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China; School for Laboratory Science, Guizhou Medical University, Guiyang 550004, China
| | - Mo Shihui
- School for Laboratory Science, Guizhou Medical University, Guiyang 550004, China
| | - Yan Haijian
- Department of Emergency, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Yu Fang
- Center for Clinical Laboratories, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China; School for Laboratory Science, Guizhou Medical University, Guiyang 550004, China.
| |
Collapse
|
6
|
Abil OZ, Liu S, Yeh YW, Wu Y, Sen Chaudhuri A, Li NS, Deng C, Xiang Z. A mucosal vaccine formulation against tuberculosis by exploiting the adjuvant activity of S100A4-A damage-associated molecular pattern molecule. Vaccine 2024; 42:126151. [PMID: 39089961 DOI: 10.1016/j.vaccine.2024.07.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/28/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024]
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), remains one of the top three causes of death. Currently, the only licensed vaccine against TB is the bacillus Calmette-Guerin (BCG), which lacks efficacy in preventing and controlling pulmonary TB in adults. We aimed to evaluate a nasal TB vaccine formulation composed of the Mtb-specific vaccine antigen ESAT-6, an Mtb-associated protein that can trigger protective immune responses, and S100A4, a recently characterized novel mucosal adjuvant. Mice were intranasally given recombinant ESAT-6 in the presence or absence of S100A4 as an adjuvant. We have provided experimental evidence demonstrating that S100A4 admixed to ESAT-6 could induce Mtb-specific adaptive immune responses after intranasal immunization. S100A4 remarkably augmented the levels of anti-ESAT-6 IgG in serum and IgA in mucosal sites, including lung exudates, bronchoalveolar lavage fluid (BALF) and nasal lavage. Furthermore, in both lung and spleen tissues, S100A4 strongly promoted ESAT-6-specific expansion of CD4 T cells. Both CD4 and CD8 T cells from these tissues expressed increased levels of IFN-γ, TNF-α, and IL-17, cytokines critical for antimicrobial activity. Antigen-reencounter-induced T cell proliferative responses, a key vaccine performance indicator, were augmented in the spleen of S100A4-adjuvanted mice. Furthermore, CD8 T cells from the spleen and lung tissues of these mice expressed higher levels of granzyme B upon antigen re-stimulation. S100A4-adjuvanted immunization may predict good mucosal protection against TB.
Collapse
Affiliation(s)
- Olifan Zewdie Abil
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Shuwei Liu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yu-Wen Yeh
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yuxuan Wu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Arka Sen Chaudhuri
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Nga Shan Li
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Chujun Deng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Zou Xiang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
7
|
Gu W, Eke C, Gonzalez Santiago E, Olaloye O, Konnikova L. Single-cell atlas of the small intestine throughout the human lifespan demonstrates unique features of fetal immune cells. Mucosal Immunol 2024; 17:599-617. [PMID: 38555026 PMCID: PMC11384551 DOI: 10.1016/j.mucimm.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/15/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
Proper development of mucosal immunity is critical for human health. Over the past decade, it has become evident that in humans, this process begins in utero. However, there are limited data on the unique features and functions of fetal mucosal immune cells. To address this gap, we integrated several single-cell ribonucleic acid sequencing datasets of the human small intestine (SI) to create an SI transcriptional atlas throughout the human life span, ranging from the first trimester to adulthood, with a focus on immune cells. Fetal SI displayed a complex immune landscape comprising innate and adaptive immune cells that exhibited distinct transcriptional programs from postnatal samples, especially compared with pediatric and adult samples. We identified shifts in myeloid populations across gestation and progression of memory T-cell states throughout the human lifespan. In particular, there was a marked shift of memory T cells from those with stem-like properties in the fetal samples to fully differentiated cells with a high expression of activation and effector function genes in adult samples, with neonatal samples containing both features. Finally, we demonstrate that the SI developmental atlas can be used to elucidate improper trajectories linked to mucosal diseases by implicating developmental abnormalities underlying necrotizing enterocolitis, a severe intestinal complication of prematurity. Collectively, our data provide valuable resources and important insights into intestinal immunity that will facilitate regenerative medicine and disease understanding.
Collapse
Affiliation(s)
- Weihong Gu
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Chino Eke
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | | | - Oluwabunmi Olaloye
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Liza Konnikova
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA; Department of Obstetrics, Gynecology and Reproductive Science, Yale University School of Medicine, New Haven, CT, USA; Program in Translational Biomedicine, Yale University School of Medicine, New Haven, CT, USA; Program in Human Translational Immunology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
8
|
Mohr AE, Ortega-Santos CP, Whisner CM, Klein-Seetharaman J, Jasbi P. Navigating Challenges and Opportunities in Multi-Omics Integration for Personalized Healthcare. Biomedicines 2024; 12:1496. [PMID: 39062068 PMCID: PMC11274472 DOI: 10.3390/biomedicines12071496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
The field of multi-omics has witnessed unprecedented growth, converging multiple scientific disciplines and technological advances. This surge is evidenced by a more than doubling in multi-omics scientific publications within just two years (2022-2023) since its first referenced mention in 2002, as indexed by the National Library of Medicine. This emerging field has demonstrated its capability to provide comprehensive insights into complex biological systems, representing a transformative force in health diagnostics and therapeutic strategies. However, several challenges are evident when merging varied omics data sets and methodologies, interpreting vast data dimensions, streamlining longitudinal sampling and analysis, and addressing the ethical implications of managing sensitive health information. This review evaluates these challenges while spotlighting pivotal milestones: the development of targeted sampling methods, the use of artificial intelligence in formulating health indices, the integration of sophisticated n-of-1 statistical models such as digital twins, and the incorporation of blockchain technology for heightened data security. For multi-omics to truly revolutionize healthcare, it demands rigorous validation, tangible real-world applications, and smooth integration into existing healthcare infrastructures. It is imperative to address ethical dilemmas, paving the way for the realization of a future steered by omics-informed personalized medicine.
Collapse
Affiliation(s)
- Alex E. Mohr
- Systems Precision Engineering and Advanced Research (SPEAR), Theriome Inc., Phoenix, AZ 85004, USA; (A.E.M.); (C.P.O.-S.); (C.M.W.); (J.K.-S.)
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
- Biodesign Institute Center for Health Through Microbiomes, Arizona State University, Tempe, AZ 85281, USA
| | - Carmen P. Ortega-Santos
- Systems Precision Engineering and Advanced Research (SPEAR), Theriome Inc., Phoenix, AZ 85004, USA; (A.E.M.); (C.P.O.-S.); (C.M.W.); (J.K.-S.)
- Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, George Washington University, Washington, DC 20052, USA
| | - Corrie M. Whisner
- Systems Precision Engineering and Advanced Research (SPEAR), Theriome Inc., Phoenix, AZ 85004, USA; (A.E.M.); (C.P.O.-S.); (C.M.W.); (J.K.-S.)
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
- Biodesign Institute Center for Health Through Microbiomes, Arizona State University, Tempe, AZ 85281, USA
| | - Judith Klein-Seetharaman
- Systems Precision Engineering and Advanced Research (SPEAR), Theriome Inc., Phoenix, AZ 85004, USA; (A.E.M.); (C.P.O.-S.); (C.M.W.); (J.K.-S.)
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Paniz Jasbi
- Systems Precision Engineering and Advanced Research (SPEAR), Theriome Inc., Phoenix, AZ 85004, USA; (A.E.M.); (C.P.O.-S.); (C.M.W.); (J.K.-S.)
| |
Collapse
|
9
|
Trinh-Minh T, Györfi AH, Tomcik M, Tran-Manh C, Zhou X, Dickel N, Tümerdem BS, Kreuter A, Burmann SN, Borchert SV, Hussain RI, Hallén J, Klingelhöfer J, Kunz M, Distler JHW. Effect of Anti-S100A4 Monoclonal Antibody Treatment on Experimental Skin Fibrosis and Systemic Sclerosis-Specific Transcriptional Signatures in Human Skin. Arthritis Rheumatol 2024; 76:783-795. [PMID: 38108109 DOI: 10.1002/art.42781] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 10/31/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
OBJECTIVE S100A4 is a DAMP protein. S100A4 is overexpressed in patients with systemic sclerosis (SSc), and levels correlate with organ involvement and disease activity. S100A4-/- mice are protected from fibrosis. The aim of this study was to assess the antifibrotic effects of anti-S100A4 monoclonal antibody (mAb) in murine models of SSc and in precision cut skin slices of patients with SSc. METHODS The effects of anti-S100A4 mAbs were evaluated in a bleomycin-induced skin fibrosis model and in Tsk-1 mice with a therapeutic dosing regimen. In addition, the effects of anti-S100A4 mAbs on precision cut SSc skin slices were analyzed by RNA sequencing. RESULTS Inhibition of S100A4 was effective in the treatment of pre-established bleomycin-induced skin fibrosis and in regression of pre-established fibrosis with reduced dermal thickening, myofibroblast counts, and collagen accumulation. Transcriptional profiling demonstrated targeting of multiple profibrotic and proinflammatory processes relevant to the pathogenesis of SSc on targeted S100A4 inhibition in a bleomycin-induced skin fibrosis model. Moreover, targeted S100A4 inhibition also modulated inflammation- and fibrosis-relevant gene sets in precision cut SSc skin slices in an ex vivo trial approach. Selected downstream targets of S100A4, such as AMP-activated protein kinase, calsequestrin-1, and phosphorylated STAT3, were validated on the protein level, and STAT3 inhibition was shown to prevent the profibrotic effects of S100A4 on fibroblasts in human skin. CONCLUSION Inhibition of S100A4 confers dual targeting of inflammatory and fibrotic pathways in complementary mouse models of fibrosis and in SSc skin. These effects support the further development of anti-S100A4 mAbs as disease-modifying targeted therapies for SSc.
Collapse
Affiliation(s)
- Thuong Trinh-Minh
- University Hospital Düsseldorf and Heinrich-Heine University, Düsseldorf, Germany
| | | | | | - Cuong Tran-Manh
- University Hospital Düsseldorf and Heinrich-Heine University, Düsseldorf, Germany
| | - Xiang Zhou
- University Hospital Düsseldorf and Heinrich-Heine University, Düsseldorf, Germany
| | - Nicholas Dickel
- Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | | | - Alexander Kreuter
- Helios St. Elisabeth Klinik Oberhausen, University Witten-Herdecke, Oberhausen, and Helios St. Johannes Klinik Duisburg, Duisburg, Germany
| | - Sven-Niklas Burmann
- Helios St. Elisabeth Klinik Oberhausen, University Witten-Herdecke, Oberhausen, Germany
| | | | | | | | | | - Meik Kunz
- Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Jörg H W Distler
- University Hospital Düsseldorf and Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
10
|
O'Reilly S. S100A4 a classical DAMP as a therapeutic target in fibrosis. Matrix Biol 2024; 127:1-7. [PMID: 38219976 DOI: 10.1016/j.matbio.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/02/2024] [Accepted: 01/11/2024] [Indexed: 01/16/2024]
Abstract
Fibrosis regardless of aetiology is characterised by persistently activated myofibroblasts that are contractile and secrete excessive amounts of extracellular matrix molecules that leads to loss of organ function. Damage-Associated Molecular Patterns (DAMPs) are endogenous host-derived molecules that are released from cells dying or under stress that can be triggered by a variety of insults, either chemical or physical, leading to an inflammatory response. Among these DAMPs is S100A4, part of the S100 family of calcium binding proteins that participate in a variety of cellular processes. S100A4 was first described in context of cancer as a pro-metastatic factor. It is now appreciated that aside from its role in cancer promotion, S100A4 is intimately involved in tissue fibrosis. The extracellular form of S100A4 exerts its effects through multiple receptors including Toll-Like Receptor 4 and RAGE to evoke signalling cascades involving downstream mediators facilitating extracellular matrix deposition and myofibroblast generation and can play a role in persistent activation of myofibroblasts. S100A4 may be best understood as an amplifier of inflammatory and fibrotic processes. S100A4 appears critical in systemic sclerosis pathogenesis and blocking the extracellular form of S100A4 in vivo in various animal models of disease mitigates fibrosis and may even reverse established disease. This review appraises S100A4's position as a DAMP and its role in fibrotic conditions and highlight therapeutically targeting this protein to halt fibrosis, suggesting that it is a tractable target.
Collapse
Affiliation(s)
- Steven O'Reilly
- Biosciences, Durham University, South Road, Durham, United Kingdom.
| |
Collapse
|
11
|
Shihui M, Shirong Y, Jing L, Jingjing H, Tongqian W, Tian T, Chenyu W, Fang Y. S100A4 reprofiles lipid metabolism in mast cells via RAGE and PPAR-γ signaling pathway. Int Immunopharmacol 2024; 128:111555. [PMID: 38280333 DOI: 10.1016/j.intimp.2024.111555] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/20/2023] [Accepted: 01/15/2024] [Indexed: 01/29/2024]
Abstract
S100A4 is implicated in metabolic reprogramming across various cell types and is known to propel the progression of numerous diseases including allergies. Nonetheless, the influence of S100A4 on mast cell metabolic reprogramming during allergic disorders remains unexplored. Utilizing a mast cell line (C57), cells were treated with recombinant mouse S100A4 protein, with or without a PPAR-γ agonist (ROSI) or a RAGE inhibitor (FPS-ZM1). Subsequent assessments were conducted for mast cell activation and lipid metabolism. S100A4 induced mast cell activation and the release of inflammatory mediators, concurrently altering molecules involved in lipid metabolism and glycolysis over time. Furthermore, S100A4 stimulation resulted in cellular oxidative stress and mitochondrial dysfunction. Alterations in the levels of pivotal molecules within the RAGE/Src/JAK2/STAT3/PPAR-γ and NF-κB signaling pathways were noted during this stimulation, which were partially counteracted by ROSI or FPS-ZMI. Additionally, a trend of metabolic alterations was identified in patients with allergic asthma who exhibited elevated serum S100A4 levels. Correlation analysis unveiled a positive association between serum S100A4 and serum IgE, implying an indirect association with asthma. Collectively, our findings suggest that S100A4 regulates the lipid-metabolic reprogramming of mast cells, potentially via the RAGE and PPAR-γ-involved signaling pathway, offering a novel perspective in the disease management in patients with allergic disorders.
Collapse
Affiliation(s)
- Mo Shihui
- Center for Clinical Laboratories, Affiliated Hospital of Guizhou Medical University, Guiyang, China; School for Laboratory Science, Guizhou Medical University, Guiyang, China
| | - Yan Shirong
- Center for Clinical Laboratories, Affiliated Hospital of Guizhou Medical University, Guiyang, China; School for Laboratory Science, Guizhou Medical University, Guiyang, China
| | - Li Jing
- Center for Clinical Laboratories, Affiliated Hospital of Guizhou Medical University, Guiyang, China; School for Laboratory Science, Guizhou Medical University, Guiyang, China
| | - He Jingjing
- School for Laboratory Science, Guizhou Medical University, Guiyang, China
| | - Wu Tongqian
- Clinical Research Center, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Tao Tian
- School for Laboratory Science, Guizhou Medical University, Guiyang, China
| | - Wang Chenyu
- School for Laboratory Science, Guizhou Medical University, Guiyang, China
| | - Yu Fang
- Center for Clinical Laboratories, Affiliated Hospital of Guizhou Medical University, Guiyang, China; School for Laboratory Science, Guizhou Medical University, Guiyang, China.
| |
Collapse
|
12
|
Liu S, Liu M, Zhong J, Chen S, Wang Z, Gao X, Li F. Anti-S100A4 antibody administration alleviates bronchial epithelial-mesenchymal transition in asthmatic mice. Open Med (Wars) 2023; 18:20220622. [PMID: 37873538 PMCID: PMC10590613 DOI: 10.1515/med-2022-0622] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 10/25/2023] Open
Abstract
We elucidated the effect of S100A4 on airway remodeling by regulating airway inflammation and epithelial-mesenchymal transition (EMT) in mouse models of asthma. Asthmatic mouse models were established by sensitization and challenged with ovalbumin (OVA). Anti-S100A4 antibody or control IgG antibody was administered daily before the OVA challenge. After the last challenge, airway inflammation and airway hyperresponsiveness were measured; lung tissues and bronchoalveolar lavage fluid (BALF) were harvested. Lung tissue sections were stained and evaluated for pathological changes. Levels of inflammatory cytokines were measured using ELISA. Levels of S100A4 and EMT markers were determined via western blotting analysis. Human bronchial epithelial cells were stimulated with 100 mg/mL house dust mites (HDMs) to evaluate the effect of S100A4 downregulation on EMT in vitro. S100A4 was increased in lung tissues and BALF from asthmatic mice. The asthmatic mice presented airway hyperresponsiveness, airway inflammation, and airway remodeling. After anti-S100A4 antibody administration, pathophysiological signs, including airway hyperresponsiveness and increased infiltration of inflammatory cells, were attenuated. Additionally, anti-S100A4 administration downregulated vimentin and α-SMA expression and upregulated E-cadherin expression in OVA-challenged mice. S100A4 downregulation also inhibited EMT process in HDM-stimulated 16HBE cells. Anti-S100A4 antibody administration alters airway remodeling by preventing EMT in mouse models of asthma.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Jianghan University, Wuhan430000, Hubei, China
| | - Min Liu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Jianghan University, Wuhan430000, Hubei, China
| | - Jinnan Zhong
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Jianghan University, Wuhan430000, Hubei, China
| | - Shi Chen
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Jianghan University, Wuhan430000, Hubei, China
| | - Ziming Wang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Jianghan University, Wuhan430000, Hubei, China
| | - Xiaoyan Gao
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Jianghan University, Wuhan430000, Hubei, China
| | - Fajiu Li
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Jianghan University, No. 168, Hong Kong Road, Jiang’an District, Wuhan430000, Hubei, China
| |
Collapse
|
13
|
Radushkevitz-Frishman T, Charni-Natan M, Goldstein I. Dynamic chromatin accessibility during nutritional iron overload reveals a BMP6-independent induction of cell cycle genes. J Nutr Biochem 2023:109407. [PMID: 37336330 DOI: 10.1016/j.jnutbio.2023.109407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/28/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023]
Abstract
Iron is essential to organism physiology as it participates in numerous biological processes including oxygen transport, respiration and erythropoiesis. Although iron is critical to physiology, excess iron is toxic to cells and tissues due to generation of reactive oxygen species. Therefore, well-kept iron homeostasis is a mainstay of proper cell and organ function. Iron overload disorders, caused by nutritional or genetic factors, contribute to many pathologies such as diabetes, non-alcoholic steatohepatitis and hepatocellular carcinoma. The liver is not only vulnerable to the effects of iron overload, it is also the major organ controlling iron homeostasis. During iron overload, Bone Morphogenic Protein (BMP) levels increase and initiate a hepatic response aimed at lowering iron levels. The transcriptional effects of iron overload are not well-characterized and the underlining enhancer regulation is uncharted. Here, we profiled the liver's transcriptome and chromatin accessibility following nutritional iron overload. We found marked changes in gene expression and enhancer accessibility following iron overload. Surprisingly, 16% of genes induced following iron overload participate in propagating the cell cycle. Induction of cell cycle genes was independent of BMP. Genome-wide enhancer landscape profiling revealed hundreds of enhancers with altered activity following iron overload. Characterization of transcription factor motifs and footprints in iron-regulated enhancers showed a role for the Activator Protein 1 (AP-1) transcription factor in promoting cell cycle-related transcription. In summary, we found that the transcriptional program at play during iron overload is bifurcated in which BMP signaling controls iron homeostasis genes while an AP-1-driven program controls cell cycle genes.
Collapse
Affiliation(s)
- Talia Radushkevitz-Frishman
- Institute of Biochemistry, Food Science and Nutrition. The Robert H. Smith Faculty of Agriculture, Food and Environment. The Hebrew University of Jerusalem. 229 Herzl St., Rehovot 7610001, Israel
| | - Meital Charni-Natan
- Institute of Biochemistry, Food Science and Nutrition. The Robert H. Smith Faculty of Agriculture, Food and Environment. The Hebrew University of Jerusalem. 229 Herzl St., Rehovot 7610001, Israel
| | - Ido Goldstein
- Institute of Biochemistry, Food Science and Nutrition. The Robert H. Smith Faculty of Agriculture, Food and Environment. The Hebrew University of Jerusalem. 229 Herzl St., Rehovot 7610001, Israel.
| |
Collapse
|
14
|
Huang C, Zheng D, Fu C, Cai Z, Zhang H, Xie Z, Luo L, Li H, Huang Y, Chen J. Secreted S100A4 causes asthmatic airway epithelial barrier dysfunction induced by house dust mite extracts via activating VEGFA/VEGFR2 pathway. ENVIRONMENTAL TOXICOLOGY 2023; 38:1431-1444. [PMID: 36883729 DOI: 10.1002/tox.23776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/21/2023] [Accepted: 02/25/2023] [Indexed: 05/18/2023]
Abstract
The airway epithelial barrier dysfunction plays a crucial role in pathogenesis of asthma and causes the amplification of downstream inflammatory signal pathway. S100 calcium binding protein A4 (S100A4), which promotes metastasis, have recently been discovered as an effective inflammatory factor and elevated in bronchoalveolar lavage fluid in asthmatic mice. Vascular endothelial growth factor-A (VEGFA), is considered as vital regulator in vascular physiological activities. Here, we explored the probably function of S100A4 and VEGFA in asthma model dealt with house dust mite (HDM) extracts. Our results showed that secreted S100A4 caused epithelial barrier dysfunction, airway inflammation and the release of T-helper 2 cytokines through the activation of VEGFA/VEGFR2 signaling pathway, which could be partial reversed by S100A4 polyclonal antibody, niclosamide and S100A4 knockdown, representing a potential therapeutic target for airway epithelial barrier dysfunction in asthma.
Collapse
Affiliation(s)
- Chaowen Huang
- Department of Pulmonary and Critical Care Medicine, Jiangmen Institute of Respiratory Disease, Jiangmen Central Hospital, Jiangmen, China
| | - Dongyan Zheng
- Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Chunlai Fu
- Department of Emergency Intensive Care Unit, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Ziwei Cai
- Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, China
| | - He Zhang
- Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Zhefan Xie
- Department of Emergency Intensive Care Unit, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Lishan Luo
- Department of Respiratory and Critical Care Medicine, Huizhou Municipal Central Hospital, Huizhou, China
| | - Huifang Li
- Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yanming Huang
- Department of Pulmonary and Critical Care Medicine, Jiangmen Institute of Respiratory Disease, Jiangmen Central Hospital, Jiangmen, China
| | - Jialong Chen
- Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, China
| |
Collapse
|
15
|
Benson M. Digital Twins for Predictive, Preventive Personalized, and Participatory Treatment of Immune-Mediated Diseases. Arterioscler Thromb Vasc Biol 2023; 43:410-416. [PMID: 36700428 DOI: 10.1161/atvbaha.122.318331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/12/2023] [Indexed: 01/27/2023]
Abstract
Digital twins are computational models of complex systems, which aim to understand and optimize those systems more effectively than would be possible in real life. Ideally, digital twins can be translated to individual patients, to characterize and computationally treat their diseases with thousands of drugs, to select the drug or drugs that cure the patients. The background problem is that many patients do not respond adequately to drug treatment. This problem reflects a wide gap between the complexity of diseases and clinical practice. Each disease may involve altered interactions between thousands of genes that vary between different cell types in different organs. To our knowledge, these altered interactions have not been characterized on a genome-, cellulome-, and organ-wide scale in any disease. Thus, clinical translation of the digital twin ideal for predictive, preventive, personalized and participatory treatment involves formidable challenges, which are close to the limits of, or beyond today's technologies. Here, I discuss recent developments and challenges in relation to that ideal focusing on immune-mediated inflammatory diseases, as well as examples from other diseases.
Collapse
Affiliation(s)
- Mikael Benson
- Medical Digital Twin Research Group, Division of ENT Diseases, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
16
|
Zou S, Huang Z, Wu J. Predictive value of S100A4 in eosinophilic chronic rhinosinusitis with nasal polyps. Front Surg 2022; 9:989489. [PMID: 36386522 PMCID: PMC9663474 DOI: 10.3389/fsurg.2022.989489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/05/2022] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE S100A4 is a pro-inflammatory mediator which has been implicated in airway inflammatory diseases. However, its role in chronic rhinosinusitis with nasal polyps (CRSwNP) remains unclear. The purpose of this study is to determine the expression of S100A4 and evaluate its potential value in distinguishing its endotypes. METHODS Sixty CRSwNP patients, 30 chronic rhinosinusitis without nasal polyps (CRSsNP) patients, and 30 healthy controls (HC) were enrolled in this study, and serum and tissue samples were collected. Serum and tissue S100A4 levels were detected by enzyme-linked immunosorbent assay, reverse transcription-polymerase chain reaction, western blotting and immunofluorescence. Their clinical values in predicting postoperative recurrence of CRSwNP were evaluated by multivariate analysis and ROC curves. RESULTS Serum levels of S100A4 were notably increased in the CRSwNP group than in the CRSsNP and HC groups (p < 0.05), and positively correlated with tissue and peripheral eosinophil count and percentage (p < 0.05). The serum S100A4 concentrations were significantly elevated in the Eos CRSwNP group in comparison with the non-Eos CRSwNP group (p < 0.05). Multivariate analysis and ROC curve presented that serum S100A4 levels were associated with CRSwNP endotypes. Additionally, tissue S100A4 mRNA and protein levels were significantly enhanced in the CRSwNP group than in the HC group and CRSsNP group, especially in the Eos CRSwNP group. CONCLUSION Our results demonstrated that the S100A4 expression was increased in CRSwNP patients and associated with the endotypes. S100A4 could be a serologic biomarker for evaluating tissue eosinophilic inflammation and predicting endotypes in CRSwNP patients.
Collapse
Affiliation(s)
- Shangchu Zou
- The Affiliated Nanhua Hospital, Department of Otolaryngology Head and Neck Surgery, Hengyang Medical School, The University of South China, Hengyang, China,Correspondence: Shangchu Zou
| | - Zhicheng Huang
- The Second Affiliated Hospital, Department of Otolaryngology Head and Neck Surgery, Hengyang Medical School, University of South China, Hengyang, China
| | - Jinpeng Wu
- The First Affiliated Hospital, Department of Otorhinolaryngology Head and Neck Surgery, Xiamen University, Xiamen, China
| |
Collapse
|
17
|
Li X, Lee EJ, Lilja S, Loscalzo J, Schäfer S, Smelik M, Strobl MR, Sysoev O, Wang H, Zhang H, Zhao Y, Gawel DR, Bohle B, Benson M. A dynamic single cell-based framework for digital twins to prioritize disease genes and drug targets. Genome Med 2022; 14:48. [PMID: 35513850 PMCID: PMC9074288 DOI: 10.1186/s13073-022-01048-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Medical digital twins are computational disease models for drug discovery and treatment. Unresolved problems include how to organize and prioritize between disease-associated changes in digital twins, on cellulome- and genome-wide scales. We present a dynamic framework that can be used to model such changes and thereby prioritize upstream regulators (URs) for biomarker- and drug discovery. METHODS We started with seasonal allergic rhinitis (SAR) as a disease model, by analyses of in vitro allergen-stimulated peripheral blood mononuclear cells (PBMC) from SAR patients. Time-series a single-cell RNA-sequencing (scRNA-seq) data of these cells were used to construct multicellular network models (MNMs) at each time point of molecular interactions between cell types. We hypothesized that predicted molecular interactions between cell types in the MNMs could be traced to find an UR gene, at an early time point. We performed bioinformatic and functional studies of the MNMs to develop a scalable framework to prioritize UR genes. This framework was tested on a single-cell and bulk-profiling data from SAR and other inflammatory diseases. RESULTS Our scRNA-seq-based time-series MNMs of SAR showed thousands of differentially expressed genes (DEGs) across multiple cell types, which varied between time points. Instead of a single-UR gene in each MNM, we found multiple URs dispersed across the cell types. Thus, at each time point, the MNMs formed multi-directional networks. The absence of linear hierarchies and time-dependent variations in MNMs complicated the prioritization of URs. For example, the expression and functions of Th2 cytokines, which are approved drug targets in allergies, varied across cell types, and time points. Our analyses of bulk- and single-cell data from other inflammatory diseases also revealed multi-directional networks that showed stage-dependent variations. We therefore developed a quantitative approach to prioritize URs: we ranked the URs based on their predicted effects on downstream target cells. Experimental and bioinformatic analyses supported that this kind of ranking is a tractable approach for prioritizing URs. CONCLUSIONS We present a scalable framework for modeling dynamic changes in digital twins, on cellulome- and genome-wide scales, to prioritize UR genes for biomarker and drug discovery.
Collapse
Affiliation(s)
- Xinxiu Li
- Centre for Personalized Medicine, Linköping University, Linköping, Sweden
| | - Eun Jung Lee
- Centre for Personalized Medicine, Linköping University, Linköping, Sweden
- Department of Otorhinolaryngology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Sandra Lilja
- Centre for Personalized Medicine, Linköping University, Linköping, Sweden
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Samuel Schäfer
- Centre for Personalized Medicine, Linköping University, Linköping, Sweden
| | - Martin Smelik
- Centre for Personalized Medicine, Linköping University, Linköping, Sweden
| | - Maria Regina Strobl
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Oleg Sysoev
- Division of Statistics and Machine Learning, Department of Computer and Information Science, Linkoping University, Linköping, Sweden
| | - Hui Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Huan Zhang
- Centre for Personalized Medicine, Linköping University, Linköping, Sweden
| | - Yelin Zhao
- Centre for Personalized Medicine, Linköping University, Linköping, Sweden
| | - Danuta R Gawel
- Centre for Personalized Medicine, Linköping University, Linköping, Sweden
| | - Barbara Bohle
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Mikael Benson
- Centre for Personalized Medicine, Linköping University, Linköping, Sweden.
- Crown Princess Victoria Children's Hospital, Linköping University Hospital, Linköping, Sweden.
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
18
|
Liu Y, Wang H, Taylor M, Cook C, Martínez-Berdeja A, North JP, Harirchian P, Hailer AA, Zhao Z, Ghadially R, Ricardo-Gonzalez RR, Grekin RC, Mauro TM, Kim E, Choi J, Purdom E, Cho RJ, Cheng JB. Classification of human chronic inflammatory skin disease based on single-cell immune profiling. Sci Immunol 2022; 7:eabl9165. [PMID: 35427179 PMCID: PMC9301819 DOI: 10.1126/sciimmunol.abl9165] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Inflammatory conditions represent the largest class of chronic skin disease, but the molecular dysregulation underlying many individual cases remains unclear. Single-cell RNA sequencing (scRNA-seq) has increased precision in dissecting the complex mixture of immune and stromal cell perturbations in inflammatory skin disease states. We single-cell-profiled CD45+ immune cell transcriptomes from skin samples of 31 patients (7 atopic dermatitis, 8 psoriasis vulgaris, 2 lichen planus (LP), 1 bullous pemphigoid (BP), 6 clinical/histopathologically indeterminate rashes, and 7 healthy controls). Our data revealed active proliferative expansion of the Treg and Trm components and universal T cell exhaustion in human rashes, with a relative attenuation of antigen-presenting cells. Skin-resident memory T cells showed the greatest transcriptional dysregulation in both atopic dermatitis and psoriasis, whereas atopic dermatitis also demonstrated recurrent abnormalities in ILC and CD8+ cytotoxic lymphocytes. Transcript signatures differentiating these rash types included genes previously implicated in T helper cell (TH2)/TH17 diatheses, segregated in unbiased functional networks, and accurately identified disease class in untrained validation data sets. These gene signatures were able to classify clinicopathologically ambiguous rashes with diagnoses consistent with therapeutic response. Thus, we have defined major classes of human inflammatory skin disease at the molecular level and described a quantitative method to classify indeterminate instances of pathologic inflammation. To make this approach accessible to the scientific community, we created a proof-of-principle web interface (RashX), where scientists and clinicians can visualize their patient-level rash scRNA-seq-derived data in the context of our TH2/TH17 transcriptional framework.
Collapse
Affiliation(s)
- Yale Liu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, ShaanXi 710004, P. R. China
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94107, USA
- Dermatology, Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | - Hao Wang
- Department of Statistics, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Mark Taylor
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Christopher Cook
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94107, USA
- Dermatology, Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | | | - Jeffrey P North
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Paymann Harirchian
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94107, USA
- Dermatology, Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | - Ashley A Hailer
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94107, USA
- Dermatology, Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | - Zijun Zhao
- Santa Clara Valley Medical Center, Santa Clara, CA 95128, USA
| | - Ruby Ghadially
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94107, USA
- Dermatology, Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | - Roberto R Ricardo-Gonzalez
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94107, USA
- Department of Immunology and Microbiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Roy C Grekin
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Theodora M Mauro
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94107, USA
- Dermatology, Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | - Esther Kim
- Department of Plastic Surgery, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Jaehyuk Choi
- Department of Dermatology, Northwestern School of Medicine, Chicago, IL 60611, USA
| | - Elizabeth Purdom
- Department of Statistics, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Raymond J Cho
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Jeffrey B Cheng
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94107, USA
- Dermatology, Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| |
Collapse
|
19
|
Integrated bioinformatic analysis of gene expression profiling data to identify combinatorial biomarkers in inflammatory skin disease. Sci Rep 2022; 12:5889. [PMID: 35393522 PMCID: PMC8989986 DOI: 10.1038/s41598-022-09840-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 03/28/2022] [Indexed: 11/18/2022] Open
Abstract
Selection of appropriate biomarker to identify inflammatory skin diseases is complicated by the involvement of thousands of differentially expressed genes (DEGs) across multiple cell types and organs. This study aimed to identify combinatorial biomarkers in inflammatory skin diseases. From one gene expression microarray profiling dataset, we performed bioinformatic analyses on dataset from lesional skin biopsies of patients with inflammatory skin diseases (atopic dermatitis [AD], contact eczema [KE], lichen planus [Li], psoriasis vulgaris [Pso]) and healthy controls to identify the involved pathways, predict upstream regulators, and potential measurable extracellular biomarkers. Overall, 434, 629, 581, and 738 DEGs were mapped in AD, KE, Li, and Pso, respectively; 238 identified DEGs were shared among four different inflammatory skin diseases. Bioinformatic analysis on four inflammatory skin diseases showed significant activation of pathways with known pathogenic relevance. Common upstream regulators, with upregulated predicted activity, identified were CNR1 and BMP4. We found the following common serum biomarkers: ACR, APOE, ASIP, CRISP1, DKK1, IL12B, IL9, MANF, MDK, NRTN, PCSK5, and VEGFC. Considerable differences of gene expression changes, involved pathways, upstream regulators, and biomarkers were found in different inflammatory skin diseases. Integrated bioinformatic analysis identified 12 potential common biomarkers of inflammatory skin diseases requiring further evaluation.
Collapse
|
20
|
Zhang H, Liu S, Li Y, Li J, Ni C, Yang M, Dong J, Wang Z, Qin Z. Dysfunction of S100A4 + effector memory CD8 + T cells aggravates asthma. Eur J Immunol 2022; 52:978-993. [PMID: 35340022 DOI: 10.1002/eji.202149572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 11/09/2022]
Abstract
Progressive loss of effector functions, especially IFN-γ secreting capability, in effector memory CD8+ T (CD8+ TEM ) cells plays a crucial role in asthma worsening. However, the mechanisms of CD8+ TEM cell dysfunction remain elusive. Here, we report that S100A4 drives CD8+ TEM cell dysfunction, impairing their protective memory response and promoting asthma worsening in an ovalbumin (OVA)-induced asthmatic murine model. We find that CD8+ TEM cells contain two subsets based on S100A4 expression. S100A4+ subsets exhibit dysfunctional effector phenotypes with increased proliferative capability, whereas S100A4- subsets retain effector function but are more inclined to apoptosis, giving rise a dysfunctional CD8+ TEM cell pool. Mechanistically, S100A4 upregulation of mitochondrial metabolism results in a decrease of acetyl-CoA levels, which impair the transcription of effector genes, especially ifn-γ, facilitating cell survival, tolerance and memory potential. Our findings thus reveal general insights into how S100A4 CD8+ TEM cells reprogram into dysfunctional and less protective phenotypes to aggravate asthma. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Huilei Zhang
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450052, China.,University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Shuangqing Liu
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450052, China.,University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanan Li
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jianru Li
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Chen Ni
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ming Yang
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences & Pharmacy, Faculty of Health and Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW 2300, Australia
| | - Jun Dong
- German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, 10117, Germany
| | - Zhaoqing Wang
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhihai Qin
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450052, China.,University of Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
21
|
Deep neural network prediction of genome-wide transcriptome signatures - beyond the Black-box. NPJ Syst Biol Appl 2022; 8:9. [PMID: 35197482 PMCID: PMC8866467 DOI: 10.1038/s41540-022-00218-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 01/24/2022] [Indexed: 11/28/2022] Open
Abstract
Prediction algorithms for protein or gene structures, including transcription factor binding from sequence information, have been transformative in understanding gene regulation. Here we ask whether human transcriptomic profiles can be predicted solely from the expression of transcription factors (TFs). We find that the expression of 1600 TFs can explain >95% of the variance in 25,000 genes. Using the light-up technique to inspect the trained NN, we find an over-representation of known TF-gene regulations. Furthermore, the learned prediction network has a hierarchical organization. A smaller set of around 125 core TFs could explain close to 80% of the variance. Interestingly, reducing the number of TFs below 500 induces a rapid decline in prediction performance. Next, we evaluated the prediction model using transcriptional data from 22 human diseases. The TFs were sufficient to predict the dysregulation of the target genes (rho = 0.61, P < 10−216). By inspecting the model, key causative TFs could be extracted for subsequent validation using disease-associated genetic variants. We demonstrate a methodology for constructing an interpretable neural network predictor, where analyses of the predictors identified key TFs that were inducing transcriptional changes during disease.
Collapse
|
22
|
de Weerd HA, Åkesson J, Guala D, Gustafsson M, Lubovac-Pilav Z. MODalyseR-a novel software for inference of disease module hub regulators identified a putative multiple sclerosis regulator supported by independent eQTL data. BIOINFORMATICS ADVANCES 2022; 2:vbac006. [PMID: 36699378 PMCID: PMC9710626 DOI: 10.1093/bioadv/vbac006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/04/2022] [Accepted: 01/24/2022] [Indexed: 02/01/2023]
Abstract
Motivation Network-based disease modules have proven to be a powerful concept for extracting knowledge about disease mechanisms, predicting for example disease risk factors and side effects of treatments. Plenty of tools exist for the purpose of module inference, but less effort has been put on simultaneously utilizing knowledge about regulatory mechanisms for predicting disease module hub regulators. Results We developed MODalyseR, a novel software for identifying disease module regulators and reducing modules to the most disease-associated genes. This pipeline integrates and extends previously published software packages MODifieR and ComHub and hereby provides a user-friendly network medicine framework combining the concepts of disease modules and hub regulators for precise disease gene identification from transcriptomics data. To demonstrate the usability of the tool, we designed a case study for multiple sclerosis that revealed IKZF1 as a promising hub regulator, which was supported by independent ChIP-seq data. Availability and implementation MODalyseR is available as a Docker image at https://hub.docker.com/r/ddeweerd/modalyser with user guide and installation instructions found at https://gustafsson-lab.gitlab.io/MODalyseR/. Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
- Hendrik A de Weerd
- School of Bioscience, Systems Biology Research Center, University of Skövde, Skövde 541 45, Sweden,Department of Physics, Chemistry and Biology, Linköping University, Linköping 581 83, Sweden
| | - Julia Åkesson
- School of Bioscience, Systems Biology Research Center, University of Skövde, Skövde 541 45, Sweden,Department of Physics, Chemistry and Biology, Linköping University, Linköping 581 83, Sweden
| | - Dimitri Guala
- Department of Biochemistry and Biophysics, Stockholm University, Solna 17121, Sweden,Merck AB, Solna 16970, Sweden
| | - Mika Gustafsson
- Department of Physics, Chemistry and Biology, Linköping University, Linköping 581 83, Sweden,To whom correspondence should be addressed. or
| | - Zelmina Lubovac-Pilav
- School of Bioscience, Systems Biology Research Center, University of Skövde, Skövde 541 45, Sweden,To whom correspondence should be addressed. or
| |
Collapse
|
23
|
Sakic A, Chaabane C, Ambartsumian N, Klingelhöfer J, Lemeille S, Kwak BR, Grigorian M, Bochaton-Piallat ML. Neutralization of S100A4 induces stabilization of atherosclerotic plaques: role of smooth muscle cells. Cardiovasc Res 2022; 118:141-155. [PMID: 33135065 PMCID: PMC8752361 DOI: 10.1093/cvr/cvaa311] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 10/20/2020] [Indexed: 01/20/2023] Open
Abstract
AIMS During atherosclerosis, smooth muscle cells (SMCs) accumulate in the intima where they switch from a contractile to a synthetic phenotype. From porcine coronary artery, we isolated spindle-shaped (S) SMCs exhibiting features of the contractile phenotype and rhomboid (R) SMCs typical of the synthetic phenotype. S100A4 was identified as a marker of R-SMCs in vitro and intimal SMCs, in pig and man. S100A4 exhibits intra- and extracellular functions. In this study, we investigated the role of extracellular S100A4 in SMC phenotypic transition. METHODS AND RESULTS S-SMCs were treated with oligomeric recombinant S100A4 (oS100A4), which induced nuclear factor (NF)-κB activation. Treatment of S-SMCs with oS100A4 in combination with platelet-derived growth factor (PDGF)-BB induced a complete SMC transition towards a pro-inflammatory R-phenotype associated with NF-κB activation, through toll-like receptor-4. RNA sequencing of cells treated with oS100A4/PDGF-BB revealed a strong up-regulation of pro-inflammatory genes and enrichment of transcription factor binding sites essential for SMC phenotypic transition. In a mouse model of established atherosclerosis, neutralization of extracellular S100A4 decreased area of atherosclerotic lesions, necrotic core, and CD68 expression and increased α-smooth muscle actin and smooth muscle myosin heavy chain expression. CONCLUSION We suggest that the neutralization of extracellular S100A4 promotes the stabilization of atherosclerotic plaques. Extracellular S100A4 could be a new target to influence the evolution of atherosclerotic plaques.
Collapse
MESH Headings
- Actins/metabolism
- Animals
- Antibodies, Neutralizing/pharmacology
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/metabolism
- Aorta/drug effects
- Aorta/metabolism
- Aorta/pathology
- Aortic Diseases/drug therapy
- Aortic Diseases/genetics
- Aortic Diseases/metabolism
- Aortic Diseases/pathology
- Atherosclerosis/drug therapy
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Becaplermin/pharmacology
- Cells, Cultured
- Disease Models, Animal
- Humans
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Myosin Heavy Chains/metabolism
- Phenotype
- Plaque, Atherosclerotic
- S100 Calcium-Binding Protein A4/antagonists & inhibitors
- S100 Calcium-Binding Protein A4/metabolism
- S100 Calcium-Binding Protein A4/pharmacology
- Signal Transduction
- Smooth Muscle Myosins/metabolism
- Sus scrofa
- Toll-Like Receptor 4/metabolism
- Mice
Collapse
Affiliation(s)
- Antonija Sakic
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Chiraz Chaabane
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Noona Ambartsumian
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Jörg Klingelhöfer
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Sylvain Lemeille
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Brenda R Kwak
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Mariam Grigorian
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | | |
Collapse
|
24
|
Early life exposure to house dust mite allergen prevents experimental allergic asthma requiring mitochondrial H 2O 2. Mucosal Immunol 2022; 15:154-164. [PMID: 34580428 PMCID: PMC8738138 DOI: 10.1038/s41385-021-00458-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/08/2021] [Accepted: 09/13/2021] [Indexed: 02/04/2023]
Abstract
Immune tolerance to allergens in early-life decreases the risk for asthma in later life. Here we show establishment of stable airway tolerance to the allergen, house dust mite (HDM), by exposing newborn mice repeatedly to a low dose of the allergen. Lung dendritic cells (DCs) from tolerized mice induced a low Th2 response in vitro mirroring impact of tolerance in vivo. In line with our previous finding of increased mitochondrial H2O2 production from lung DCs of mice tolerized to ovalbumin, depletion of mitochondrial H2O2 in MCAT mice abrogated HDM-induced airway tolerance (Tol) with elevated Th2 effector response, airway eosinophilia, and increased airway hyperreactivity. WT-Tol mice displayed a decrease in total, cDC1 and cDC2 subsets in the lung as compared to that in naive mice. In contrast, the lungs of MCAT-Tol mice showed 3-fold higher numbers of cDCs including those of the subsets as compared to that in WT mice. Our study demonstrates an important role of mitochondrial H2O2 in constraining lung DC numbers towards establishment of early-life airway tolerance to allergens.
Collapse
|
25
|
Sen Chaudhuri A, Yeh YW, Zewdie O, Li NS, Sun JB, Jin T, Wei B, Holmgren J, Xiang Z. S100A4 exerts robust mucosal adjuvant activity for co-administered antigens in mice. Mucosal Immunol 2022; 15:1028-1039. [PMID: 35729204 PMCID: PMC9212208 DOI: 10.1038/s41385-022-00535-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/15/2022] [Accepted: 05/31/2022] [Indexed: 02/04/2023]
Abstract
The lack of clinically applicable mucosal adjuvants is a major hurdle in designing effective mucosal vaccines. We hereby report that the calcium-binding protein S100A4, which regulates a wide range of biological functions, is a potent mucosal adjuvant in mice for co-administered antigens, including the SARS-CoV-2 spike protein, with comparable or even superior efficacy as cholera toxin but without causing any adverse reactions. Intranasal immunization with recombinant S100A4 elicited antigen-specific antibody and pulmonary cytotoxic T cell responses, and these responses were remarkably sustained for longer than 6 months. As a self-protein, S100A4 did not stimulate antibody responses against itself, a quality desired of adjuvants. S100A4 prolonged nasal residence of intranasally delivered antigens and promoted migration of antigen-presenting cells. S100A4-pulsed dendritic cells potently activated cognate T cells. Furthermore, S100A4 induced strong germinal center responses revealed by both microscopy and mass spectrometry, a novel label-free technique for measuring germinal center activity. Importantly, S100A4 did not induce olfactory bulb inflammation after nasal delivery, which is often a safety concern for nasal vaccination. In conclusion, S100A4 may be a promising adjuvant in formulating mucosal vaccines, including vaccines against pathogens that infect via the respiratory tract, such as SARS-CoV-2.
Collapse
Affiliation(s)
- Arka Sen Chaudhuri
- grid.16890.360000 0004 1764 6123Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China ,grid.16890.360000 0004 1764 6123The Hong Kong Polytechnic University Shenzhen Research Institute, 518000 Shenzhen, China
| | - Yu-Wen Yeh
- grid.16890.360000 0004 1764 6123Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Olifan Zewdie
- grid.16890.360000 0004 1764 6123Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Nga Shan Li
- grid.16890.360000 0004 1764 6123Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Jia-Bin Sun
- grid.8761.80000 0000 9919 9582University of Gothenburg Vaccine Research Institute (GUVAX) and Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, SE-405 30 Göteborg, Sweden
| | - Tao Jin
- grid.8761.80000 0000 9919 9582Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, SE-413 46 Göteborg, Sweden
| | - Bin Wei
- grid.39436.3b0000 0001 2323 5732School of Life Sciences, Shanghai University, 200444 Shanghai, China
| | - Jan Holmgren
- grid.8761.80000 0000 9919 9582University of Gothenburg Vaccine Research Institute (GUVAX) and Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, SE-405 30 Göteborg, Sweden
| | - Zou Xiang
- grid.16890.360000 0004 1764 6123Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| |
Collapse
|
26
|
Wu T, Ma L, Jin X, He J, Chen K, Zhang D, Yuan R, Yang J, Zhong Q, Zhou H, Xiang Z, Fang Y. S100A4 Is Critical for a Mouse Model of Allergic Asthma by Impacting Mast Cell Activation. Front Immunol 2021; 12:692733. [PMID: 34367151 PMCID: PMC8341765 DOI: 10.3389/fimmu.2021.692733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/07/2021] [Indexed: 01/12/2023] Open
Abstract
Background The calcium-binding protein S100A4 demonstrates important regulatory roles in many biological processes including tumorigenesis and inflammatory disorders such as allergy. However, the specific mechanism of the contribution of S100A4 to allergic diseases awaits further clarification. Objective To address the effect of S100A4 on the regulation of mast cell activation and its impact on allergy. Methods Bone marrow-derived cultured mast cells (BMMCs) were derived from wild-type (WT) or S100A4-/- mice for in vitro investigation. WT and S100A4-/- mice were induced to develop a passive cutaneous anaphylaxis (PCA) model, a passive systemic anaphylaxis (PSA) model, and an ovalbumin (OVA)-mediated mouse asthma model. Results Following OVA/alum-based sensitization and provocation, S100A4-/- mice demonstrated overall suppressed levels of serum anti-OVA IgE and IgG antibodies and proinflammatory cytokines in serum, bronchoalveolar lavage fluid (BALF), and lung exudates. S100A4-/- mice exhibited less severe asthma signs which included inflammatory cell infiltration in the lung tissue and BALF, and suppressed mast cell recruitment in the lungs. Reduced levels of antigen reencounter-induced splenocyte proliferation in vitro were recorded in splenocytes from OVA-sensitized and challenged mice that lacked S100A4-/-. Furthermore, deficiency in the S100A4 gene could dampen mast cell activation both in vitro and in vivo, evidenced by reduced β-hexosaminidase release and compromised PCA and PSA reaction. We also provided evidence supporting the expression of S100A4 by mast cells. Conclusion S100A4 is required for mast cell functional activation, and S100A4 may participate in the regulation of allergic responses at least partly through regulating the activation of mast cells.
Collapse
Affiliation(s)
- Tongqian Wu
- Center for Clinical Laboratory, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School for Clinical Laboratory, Guizhou Medical University, Guiyang, China
| | - Lan Ma
- School for Clinical Laboratory, Guizhou Medical University, Guiyang, China
| | - Xiaoqian Jin
- School for Clinical Laboratory, Guizhou Medical University, Guiyang, China
| | - Jingjing He
- School for Clinical Laboratory, Guizhou Medical University, Guiyang, China
| | - Ke Chen
- School for Clinical Laboratory, Guizhou Medical University, Guiyang, China
| | - Dingshan Zhang
- School for Clinical Laboratory, Guizhou Medical University, Guiyang, China
| | - Rui Yuan
- Center for Clinical Laboratory, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School for Clinical Laboratory, Guizhou Medical University, Guiyang, China
| | - Jun Yang
- Center for Pediatric Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Qin Zhong
- School for Clinical Laboratory, Guizhou Medical University, Guiyang, China
| | - Haiyan Zhou
- School for Clinical Laboratory, Guizhou Medical University, Guiyang, China
| | - Zou Xiang
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yu Fang
- Center for Clinical Laboratory, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School for Clinical Laboratory, Guizhou Medical University, Guiyang, China
| |
Collapse
|
27
|
The S100 Protein Family as Players and Therapeutic Targets in Pulmonary Diseases. Pulm Med 2021; 2021:5488591. [PMID: 34239729 PMCID: PMC8214497 DOI: 10.1155/2021/5488591] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
The S100 protein family consists of over 20 members in humans that are involved in many intracellular and extracellular processes, including proliferation, differentiation, apoptosis, Ca2+ homeostasis, energy metabolism, inflammation, tissue repair, and migration/invasion. Although there are structural similarities between each member, they are not functionally interchangeable. The S100 proteins function both as intracellular Ca2+ sensors and as extracellular factors. Dysregulated responses of multiple members of the S100 family are observed in several diseases, including the lungs (asthma, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, cystic fibrosis, pulmonary hypertension, and lung cancer). To this degree, extensive research was undertaken to identify their roles in pulmonary disease pathogenesis and the identification of inhibitors for several S100 family members that have progressed to clinical trials in patients for nonpulmonary conditions. This review outlines the potential role of each S100 protein in pulmonary diseases, details the possible mechanisms observed in diseases, and outlines potential therapeutic strategies for treatment.
Collapse
|
28
|
de Weerd HA, Badam TVS, Martínez-Enguita D, Åkesson J, Muthas D, Gustafsson M, Lubovac-Pilav Z. MODifieR: an Ensemble R Package for Inference of Disease Modules from Transcriptomics Networks. Bioinformatics 2020; 36:3918-3919. [PMID: 32271876 DOI: 10.1093/bioinformatics/btaa235] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/27/2020] [Accepted: 04/02/2020] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION Complex diseases are due to the dense interactions of many disease-associated factors that dysregulate genes that in turn form the so-called disease modules, which have shown to be a powerful concept for understanding pathological mechanisms. There exist many disease module inference methods that rely on somewhat different assumptions, but there is still no gold standard or best-performing method. Hence, there is a need for combining these methods to generate robust disease modules. RESULTS We developed MODule IdentiFIER (MODifieR), an ensemble R package of nine disease module inference methods from transcriptomics networks. MODifieR uses standardized input and output allowing the possibility to combine individual modules generated from these methods into more robust disease-specific modules, contributing to a better understanding of complex diseases. AVAILABILITY AND IMPLEMENTATION MODifieR is available under the GNU GPL license and can be freely downloaded from https://gitlab.com/Gustafsson-lab/MODifieR and as a Docker image from https://hub.docker.com/r/ddeweerd/modifier. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Hendrik A de Weerd
- School of Bioscience, Systems Biology Research Center, Skövde 541 45, Sweden.,Department of Physics, Chemistry and Biology, Linköping University, Linköping 581 83, Sweden
| | - Tejaswi V S Badam
- School of Bioscience, Systems Biology Research Center, Skövde 541 45, Sweden.,Department of Physics, Chemistry and Biology, Linköping University, Linköping 581 83, Sweden
| | - David Martínez-Enguita
- Department of Physics, Chemistry and Biology, Linköping University, Linköping 581 83, Sweden
| | - Julia Åkesson
- School of Bioscience, Systems Biology Research Center, Skövde 541 45, Sweden.,Department of Physics, Chemistry and Biology, Linköping University, Linköping 581 83, Sweden
| | - Daniel Muthas
- Translational Science and Experimental Medicine, Early Respiratory, Inflammation and Autoimmunity, BioPharmaceuticals R&D, AstraZeneca, Mölndal 43183, Sweden
| | - Mika Gustafsson
- Department of Physics, Chemistry and Biology, Linköping University, Linköping 581 83, Sweden
| | | |
Collapse
|
29
|
Ganaie AA, Mansini AP, Hussain T, Rao A, Siddique HR, Shabaneh A, Ferrari MG, Murugan P, Klingelhöfer J, Wang J, Ambartsumian N, Warlick CA, Konety BR, Saleem M. Anti-S100A4 Antibody Therapy Is Efficient in Treating Aggressive Prostate Cancer and Reversing Immunosuppression: Serum and Biopsy S100A4 as a Clinical Predictor. Mol Cancer Ther 2020; 19:2598-2611. [PMID: 32999046 DOI: 10.1158/1535-7163.mct-20-0410] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/27/2020] [Accepted: 09/16/2020] [Indexed: 11/16/2022]
Abstract
S100A4 oncoprotein plays a critical role during prostate cancer progression and induces immunosuppression in host tissues. We hypothesized that S100A4-regulated oncogenic activity in immunosuppressed prostate tumors promotes growth of neoplastic cells, which are likely to become aggressive. In the current study, we investigated whether biopsy-S100A4 gene alteration independently predicts the outcome of disease in patients and circulatory-S100A4 is druggable target for treating immunosuppressive prostate cancer. Aided by DECIPHER-genomic test, we show biopsy-S100A4 overexpression as predictive of (i) poor ADT response and (ii) high risk of mortality in 228 radical prostatectomy-treated patients. Furthermore, analysis of tumor genome data of more than 1,000 patients with prostate cancer (PRAD/SU2C/FHCRC studies) validated the association of S100A4-alteration to poor survival and metastasis. We show that increased serum-S100A4 levels are associated to the prostate cancer progression in patients. The prerequisite for metastasis is the escape of tumor cells via vascular system. We show that extracellular-S100A4 protein as a growth factor induces vascular transmigration of prostate cancer cells and bone demineralization thus forms an ideal target for therapies for treating prostate cancer. By employing surface plasmon resonance and isothermal titration calorimetry, we show that mab6B12 antibody interacts with and neutralizes S100A4 protein. When tested for therapeutic efficacy, the mab6B12 therapy reduced the (i) osteoblastic demineralization of bone-derived MSCs, (ii) S100A4-target (NFκB/MMP9/VEGF) levels in prostate cancer cells, and (iii) tumor growth in a TRAMPC2 syngeneic mouse model. The immuno-profile analysis showed that mAb6B12-therapy (i) shifted Th1/Th2 balance (increased Stat4+/T-bet+ and decreased GATA2+/CD68+/CD45+/CD206+ cells); (ii) modulated cytokine levels in CD4+ T cells; and (iii) decreased levels of IL5/6/12/13, sTNFR1, and serum-RANTES. We suggest that S100A4-antibody therapy has clinical applicability in treating immunosuppressive prostate cancer in patients.
Collapse
Affiliation(s)
- Arsheed A Ganaie
- Department of Urology, Medical School, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Adrian P Mansini
- Department of Urology, Medical School, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Tabish Hussain
- Department of Urology, Medical School, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Arpit Rao
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Hifzur R Siddique
- Department of Urology, Medical School, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.,Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Ashraf Shabaneh
- Institute for Health Informatics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Marina G Ferrari
- Department of Urology, Medical School, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Paari Murugan
- Department of Laboratory Medicine and Pathology, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Jörg Klingelhöfer
- Danish Cancer Society Research Center, Copenhagen, Denmark.,Laboratory of Neural Plasticity, Copenhagen University, Copenhagen, Denmark
| | - Jinhua Wang
- Institute for Health Informatics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Noona Ambartsumian
- Danish Cancer Society Research Center, Copenhagen, Denmark.,Laboratory of Neural Plasticity, Copenhagen University, Copenhagen, Denmark
| | - Christopher A Warlick
- Department of Urology, Medical School, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Badrinath R Konety
- Department of Urology, Medical School, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.,Rush Medical College, Rush University, Chicago, Illinois
| | - Mohammad Saleem
- Department of Urology, Medical School, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
30
|
Zhang W, Gunst SJ. S100A4 is activated by RhoA and catalyses the polymerization of non-muscle myosin, adhesion complex assembly and contraction in airway smooth muscle. J Physiol 2020; 598:4573-4590. [PMID: 32767681 DOI: 10.1113/jp280111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 06/29/2020] [Indexed: 12/27/2022] Open
Abstract
KEY POINTS S100A4 is expressed in many tissues, including smooth muscle (SM), but its physiologic function is unknown. S100A4 regulates the motility of metastatic cancer cells by binding to non-muscle (NM) myosin II. Contractile stimulation causes the polymerization of NM myosin in airway SM, which is necessary for tension development. NM myosin regulates the assembly of adhesion junction signalling complexes (adhesomes) that catalyse actin polymerization. In airway SM, ACh (acetylcholine) stimulated the binding of S100A4 to the NM myosin heavy chain, which was catalysed by RhoA GTPase via the RhoA-binding protein, rhotekin. The binding of S100A4 to NM myosin was required for NM myosin polymerization, adhesome assembly and actin polymerization. S100A4 plays a critical function in the regulation of airway SM contraction by catalysing NM myosin filament assembly. The interaction of S100A4 with NM myosin may also play an important role in the physiologic function of other tissues. ABSTRACT S100A4 binds to the heavy chain of non-muscle (NM) myosin II and can regulate the motility of crawling cells. S100A4 is widely expressed in many tissues including smooth muscle (SM), although its role in the regulation of their physiologic function is not known. We hypothesized that S100A4 contributes to the regulation of contraction in airway SM by regulating a pool of NM myosin II at the cell cortex. NM myosin II undergoes polymerization in airway SM and regulates contraction by catalysing the assembly of integrin-associated adhesome complexes that activate pathways that catalyse actin polymerization. ACh stimulated the interaction of S100A4 with NM myosin II in airway SM at the cell cortex and catalysed NM myosin filament assembly. RhoA GTPase regulated the activation of S100A4 via rhotekin, which facilitated the formation of a complex between RhoA, S100A4 and NM myosin II. The depletion of S100A4, RhoA or rhotekin from airway SM tissues using short hairpin RNA or small interfering RNA prevented NM myosin II polymerization as well as the recruitment of vinculin and paxillin to adhesome signalling complexes in response to ACh, and inhibited actin polymerization and tension development. S100A4 depletion did not affect ACh-stimulated SM myosin regulatory light chain phosphorylation. The results show that S100A4 plays a critical role in tension development in airway SM tissue by catalysing NM myosin filament assembly, and that the interaction of S100A4 with NM myosin in response to contractile stimulation is activated by RhoA GTPase. These results may be broadly relevant to the physiologic function of S100A4 in other cell and tissue types.
Collapse
Affiliation(s)
- Wenwu Zhang
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Susan J Gunst
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
31
|
Wu Y, Zhang W, Gunst SJ. S100A4 is secreted by airway smooth muscle tissues and activates inflammatory signaling pathways via receptors for advanced glycation end products. Am J Physiol Lung Cell Mol Physiol 2020; 319:L185-L195. [PMID: 32432920 DOI: 10.1152/ajplung.00347.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
S100A4 is a low-molecular-mass (12 kDa) EF-hand Ca2+-binding S100 protein that is expressed in a broad range of normal tissue and cell types. S100A4 can be secreted from some cells to act in an autocrine or paracrine fashion on target cells and tissues. S100A4 has been reported in the extracellular fluids of subjects with several inflammatory diseases, including asthma. Airway smooth muscle plays a critical role in airway inflammation by synthesizing and secreting inflammatory cytokines. We hypothesized that S100A4 may play an immunomodulatory role in airway smooth muscle. Trachealis smooth muscle tissues were stimulated with recombinant His-S100A4, and the effects on inflammatory responses were evaluated. S100A4 induced the activation of Akt and NF-κB and stimulated eotaxin secretion. It also increased the expression of RAGE and endogenous S100A4 in airway tissues. Stimulation of airway smooth muscle tissues with IL-13 or TNF-α induced the secretion of S100A4 from the tissues and promoted the expression of endogenous receptors for advanced glycation end products (RAGE) and S100A4. The role of RAGE in mediating the responses to S100A4A was evaluated by expressing a mutant nonfunctional RAGE (RAGEΔcyto) in tracheal muscle tissues and by treating tissues with a RAGE inhibitor. S100A4 did not activate NF-κB or Akt in tissues that were expressing RAGEΔcyto or treated with a RAGE inhibitor, indicating that S100A4 mediates its effects by acting on RAGE. Our results demonstrate that inflammatory mediators stimulate the synthesis and secretion of S100A4 in airway smooth muscle tissues and that extracellular S100A4 acts via RAGE to mediate airway smooth muscle inflammation.
Collapse
Affiliation(s)
- Yidi Wu
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Wenwu Zhang
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Susan J Gunst
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
32
|
Bulk and single cell transcriptomic data indicate that a dichotomy between inflammatory pathways in peripheral blood and arthritic joints complicates biomarker discovery. Cytokine 2020; 127:154960. [DOI: 10.1016/j.cyto.2019.154960] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 12/03/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022]
|
33
|
Früh SP, Saikia M, Eule J, Mazulis CA, Miller JE, Cowulich JM, Oyesola OO, Webb LM, Peng SA, Cubitt RL, Danko CG, Miller WH, Tait Wojno ED. Elevated circulating Th2 but not group 2 innate lymphoid cell responses characterize canine atopic dermatitis. Vet Immunol Immunopathol 2020; 221:110015. [PMID: 32058160 DOI: 10.1016/j.vetimm.2020.110015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/17/2020] [Accepted: 01/23/2020] [Indexed: 12/11/2022]
Abstract
Atopic dermatitis (AD) is an allergic skin disease that causes significant morbidity and affects multiple species. AD is highly prevalent in companion dogs, and the clinical management of the disease remains challenging. An improved understanding of the immunologic and genetic pathways that lead to disease could inform the development of novel treatments. In allergic humans and mouse models of AD, the disease is associated with Th2 and group 2 innate lymphoid cell (ILC2) activation that drives type 2 inflammation. Type 2 inflammation also appears to be associated with AD in dogs, but gaps remain in our understanding of how key type 2-associated cell types such as canine Th2 cells and ILC2s contribute to the pathogenesis of canine AD. Here, we describe previously uncharacterized canine ILC2-like cells and Th2 cells ex vivo that produced type 2 cytokines and expressed the transcription factor Gata3. Increased circulating Th2 cells were associated with chronic canine AD. Single-cell RNA sequencing revealed a unique gene expression signature in T cells in dogs with AD. These findings underline the importance of pro-allergic Th2 cells in orchestrating AD and provide new methods and pathways that can inform the development of improved therapies.
Collapse
Affiliation(s)
- Simon P Früh
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Ithaca, NY 14853, USA
| | - Mridusmita Saikia
- Baker Institute for Animal Health and Department of Biomedical Sciences, Ithaca, NY 14853, USA
| | - Jeremy Eule
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Ithaca, NY 14853, USA
| | - Christina A Mazulis
- Section of Dermatology and Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Julia E Miller
- Section of Dermatology and Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Joby M Cowulich
- Section of Dermatology and Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Oyebola O Oyesola
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Ithaca, NY 14853, USA; Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Lauren M Webb
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Ithaca, NY 14853, USA; Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Seth A Peng
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Ithaca, NY 14853, USA
| | - Rebecca L Cubitt
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Ithaca, NY 14853, USA
| | - Charles G Danko
- Baker Institute for Animal Health and Department of Biomedical Sciences, Ithaca, NY 14853, USA
| | - William H Miller
- Section of Dermatology and Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Elia D Tait Wojno
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Ithaca, NY 14853, USA; Department of Immunology, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
34
|
Gawel DR, Serra-Musach J, Lilja S, Aagesen J, Arenas A, Asking B, Bengnér M, Björkander J, Biggs S, Ernerudh J, Hjortswang H, Karlsson JE, Köpsen M, Lee EJ, Lentini A, Li X, Magnusson M, Martínez-Enguita D, Matussek A, Nestor CE, Schäfer S, Seifert O, Sonmez C, Stjernman H, Tjärnberg A, Wu S, Åkesson K, Shalek AK, Stenmarker M, Zhang H, Gustafsson M, Benson M. A validated single-cell-based strategy to identify diagnostic and therapeutic targets in complex diseases. Genome Med 2019; 11:47. [PMID: 31358043 PMCID: PMC6664760 DOI: 10.1186/s13073-019-0657-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/10/2019] [Indexed: 12/17/2022] Open
Abstract
Background Genomic medicine has paved the way for identifying biomarkers and therapeutically actionable targets for complex diseases, but is complicated by the involvement of thousands of variably expressed genes across multiple cell types. Single-cell RNA-sequencing study (scRNA-seq) allows the characterization of such complex changes in whole organs. Methods The study is based on applying network tools to organize and analyze scRNA-seq data from a mouse model of arthritis and human rheumatoid arthritis, in order to find diagnostic biomarkers and therapeutic targets. Diagnostic validation studies were performed using expression profiling data and potential protein biomarkers from prospective clinical studies of 13 diseases. A candidate drug was examined by a treatment study of a mouse model of arthritis, using phenotypic, immunohistochemical, and cellular analyses as read-outs. Results We performed the first systematic analysis of pathways, potential biomarkers, and drug targets in scRNA-seq data from a complex disease, starting with inflamed joints and lymph nodes from a mouse model of arthritis. We found the involvement of hundreds of pathways, biomarkers, and drug targets that differed greatly between cell types. Analyses of scRNA-seq and GWAS data from human rheumatoid arthritis (RA) supported a similar dispersion of pathogenic mechanisms in different cell types. Thus, systems-level approaches to prioritize biomarkers and drugs are needed. Here, we present a prioritization strategy that is based on constructing network models of disease-associated cell types and interactions using scRNA-seq data from our mouse model of arthritis, as well as human RA, which we term multicellular disease models (MCDMs). We find that the network centrality of MCDM cell types correlates with the enrichment of genes harboring genetic variants associated with RA and thus could potentially be used to prioritize cell types and genes for diagnostics and therapeutics. We validated this hypothesis in a large-scale study of patients with 13 different autoimmune, allergic, infectious, malignant, endocrine, metabolic, and cardiovascular diseases, as well as a therapeutic study of the mouse arthritis model. Conclusions Overall, our results support that our strategy has the potential to help prioritize diagnostic and therapeutic targets in human disease. Electronic supplementary material The online version of this article (10.1186/s13073-019-0657-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Danuta R Gawel
- Centre for Personalized Medicine, Linköping University, Linköping, Sweden
| | - Jordi Serra-Musach
- Centre for Personalized Medicine, Linköping University, Linköping, Sweden
| | - Sandra Lilja
- Centre for Personalized Medicine, Linköping University, Linköping, Sweden
| | - Jesper Aagesen
- Department of Internal Medicine, Region Jönköping County, Jönköping, Sweden
| | - Alex Arenas
- Departament d'Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Tarragona, Spain
| | - Bengt Asking
- Department of Surgery, Region Jönköping County, Jönköping, Sweden
| | - Malin Bengnér
- Office for Control of Communicable Diseases, Region Jönköping County, Jönköping, Sweden
| | - Janne Björkander
- Department of Internal Medicine, Region Jönköping County, Jönköping, Sweden
| | - Sophie Biggs
- Division of Rheumatology, Autoimmunity, and Immune Regulation, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Jan Ernerudh
- Department of Clinical Immunology and Transfusion Medicine, Linköping University, Linköping, Sweden
| | - Henrik Hjortswang
- Department of Gastroenterology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Jan-Erik Karlsson
- Department of Internal Medicine, Region Jönköping County, Jönköping, Sweden.,Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Mattias Köpsen
- Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Eun Jung Lee
- Centre for Personalized Medicine, Linköping University, Linköping, Sweden.,Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
| | - Antonio Lentini
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Xinxiu Li
- Centre for Personalized Medicine, Linköping University, Linköping, Sweden
| | - Mattias Magnusson
- Division of Rheumatology, Autoimmunity, and Immune Regulation, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - David Martínez-Enguita
- Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Andreas Matussek
- Clinical Microbiology, Region Jönköping County, Jönköping, Sweden.,Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden.,Karolinska University Laboratory, Karolinska University Hospital, Solna, Sweden
| | - Colm E Nestor
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Samuel Schäfer
- Centre for Personalized Medicine, Linköping University, Linköping, Sweden
| | - Oliver Seifert
- Department of Dermatology and Venereology, Region Jönköping County, Jönköping, Sweden.,Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Ceylan Sonmez
- Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Henrik Stjernman
- Department of Internal Medicine, Region Jönköping County, Jönköping, Sweden
| | - Andreas Tjärnberg
- Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Simon Wu
- Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Karin Åkesson
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden.,Futurum - Academy for Health and Care, Department of Pediatrics, Region Jönköping County, Jönköping, Sweden
| | - Alex K Shalek
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Margaretha Stenmarker
- Futurum - Academy for Health and Care, Department of Pediatrics, Region Jönköping County, Jönköping, Sweden.,Department of Pediatrics, Institution for Clinical Sciences, Göteborg, Sweden
| | - Huan Zhang
- Centre for Personalized Medicine, Linköping University, Linköping, Sweden.
| | - Mika Gustafsson
- Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Mikael Benson
- Centre for Personalized Medicine, Linköping University, Linköping, Sweden.
| |
Collapse
|
35
|
Abstract
The metastasis-promoting S100A4 protein, a member of the S100 family, has recently been discovered as a potent factor implicated in various inflammation-associated diseases. S100A4 is involved in a range of biological functions such as angiogenesis, cell differentiation, apoptosis, motility, and invasion. Moreover, S100A4 is also a potent trigger of inflammatory processes and induces the release of cytokines and growth factors under different pathological conditions.Indeed, the release of S100A4 upon stress and mainly its pro-inflammatory role emerges as the most decisive activity in disease development, such as rheumatoid arthritis (RA), systemic sclerosis (SSc) allergy, psoriasis, and cancer. In the scope of this review, we will focus on the role of S100A4 as a mediator of pro-inflammatory pathways and its associated biological processes involved in the pathogenesis of various human noncommunicable diseases (NCDs) including cancer.
Collapse
|
36
|
Heizmann CW. S100 proteins: Diagnostic and prognostic biomarkers in laboratory medicine. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1197-1206. [DOI: 10.1016/j.bbamcr.2018.10.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/12/2018] [Indexed: 01/04/2023]
|
37
|
Heizmann CW. Ca 2+-Binding Proteins of the EF-Hand Superfamily: Diagnostic and Prognostic Biomarkers and Novel Therapeutic Targets. Methods Mol Biol 2019; 1929:157-186. [PMID: 30710273 DOI: 10.1007/978-1-4939-9030-6_11] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A multitude of Ca2+-sensor proteins containing the specific Ca2+-binding motif (helix-loop-helix, called EF-hand) are of major clinical relevance in a many human diseases. Measurements of troponin, the first intracellular Ca-sensor protein to be discovered, is nowadays the "gold standard" in the diagnosis of patients with acute coronary syndrome (ACS). Mutations have been identified in calmodulin and linked to inherited ventricular tachycardia and in patients affected by severe cardiac arrhythmias. Parvalbumin, when introduced into the diseased heart by gene therapy to increase contraction and relaxation speed, is considered to be a novel therapeutic strategy to combat heart failure. S100 proteins, the largest subgroup with the EF-hand protein family, are closely associated with cardiovascular diseases, various types of cancer, inflammation, and autoimmune pathologies. The intention of this review is to summarize the clinical importance of this protein family and their use as biomarkers and potential drug targets, which could help to improve the diagnosis of human diseases and identification of more selective therapeutic interventions.
Collapse
Affiliation(s)
- Claus W Heizmann
- Department of Pediatrics, Division of Clinical Chemistry and Biochemistry, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
38
|
Bresnick AR. S100 proteins as therapeutic targets. Biophys Rev 2018; 10:1617-1629. [PMID: 30382555 PMCID: PMC6297089 DOI: 10.1007/s12551-018-0471-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/21/2018] [Indexed: 12/13/2022] Open
Abstract
The human genome codes for 21 S100 protein family members, which exhibit cell- and tissue-specific expression patterns. Despite sharing a high degree of sequence and structural similarity, the S100 proteins bind a diverse range of protein targets and contribute to a broad array of intracellular and extracellular functions. Consequently, the S100 proteins regulate multiple cellular processes such as proliferation, migration and/or invasion, and differentiation, and play important roles in a variety of cancers, autoimmune diseases, and chronic inflammatory disorders. This review focuses on the development of S100 neutralizing antibodies and small molecule inhibitors and their potential therapeutic use in controlling disease progression and severity.
Collapse
Affiliation(s)
- Anne R Bresnick
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| |
Collapse
|
39
|
Dulyaninova NG, Ruiz PD, Gamble MJ, Backer JM, Bresnick AR. S100A4 regulates macrophage invasion by distinct myosin-dependent and myosin-independent mechanisms. Mol Biol Cell 2017; 29:632-642. [PMID: 29282275 PMCID: PMC6004585 DOI: 10.1091/mbc.e17-07-0460] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 11/27/2017] [Accepted: 12/22/2017] [Indexed: 01/27/2023] Open
Abstract
S100A4, a member of the S100 family of Ca2+-binding proteins, is a key regulator of cell migration and invasion. Our previous studies showed that bone marrow–derived macrophages from S100A4−/− mice exhibit defects in directional motility and chemotaxis in vitro and reduced recruitment to sites of inflammation in vivo. We now show that the loss of S100A4 produces two mechanistically distinct phenotypes with regard to macrophage invasion: a defect in matrix degradation, due to a disruption of podosome rosettes caused by myosin-IIA overassembly, and a myosin-independent increase in microtubule acetylation, which increases podosome rosette stability and is sufficient to inhibit macrophage invasion. Our studies point to S100A4 as a critical regulator of matrix degradation, whose actions converge on the dynamics and degradative functions of podosome rosettes.
Collapse
Affiliation(s)
| | - Penelope D Ruiz
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Matthew J Gamble
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Jonathan M Backer
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461 .,Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Anne R Bresnick
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
40
|
S100A4 contributes to colitis development by increasing the adherence of Citrobacter rodentium in intestinal epithelial cells. Sci Rep 2017; 7:12099. [PMID: 28935867 PMCID: PMC5608709 DOI: 10.1038/s41598-017-12256-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 09/05/2017] [Indexed: 02/07/2023] Open
Abstract
S100A4 has been implicated in cancer and several inflammatory diseases, but its role in inflammatory bowel disease has not been well investigated. Here, upon infection with Citrobacter rodentium, a model for enteropathogenic Escherichia coli infection in humans, induced the infiltration of a large number of S100A4+ cells into the colon in wild type (WT) mice. Deficiency of S100A4 reduced weight loss, bacterial colonization and colonic pathology. Furthermore, the expression of inflammatory cytokines and the recruitment of macrophages and neutrophils also decreased significantly in S100A4 knock out (S100A4 -/-) mice. In vitro, soluble S100A4 directly up-regulated expression of integrin β-1 in intestinal epithelial cells and significantly increased the adherence of C. rodentium to intestinal epithelial cells. Additionally, the effects of S100A4 on the adherence of C. rodentium to epithelial cells could be abolished by a receptor for advanced glycation end products (RAGE)-specific inhibitor (FPS-ZM1). Therefore, these data indicate a novel mechanism for S100A4 that promotes colitis development by enhancing host adhesion and colonization of Citrobacter rodentium through the S100A4-mediated host inflammatory responses.
Collapse
|
41
|
Sun JB, Holmgren J, Larena M, Terrinoni M, Fang Y, Bresnick AR, Xiang Z. Deficiency in Calcium-Binding Protein S100A4 Impairs the Adjuvant Action of Cholera Toxin. Front Immunol 2017; 8:1119. [PMID: 28951732 PMCID: PMC5600718 DOI: 10.3389/fimmu.2017.01119] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/25/2017] [Indexed: 01/11/2023] Open
Abstract
The calcium-binding protein S100A4 has been described to promote pathological inflammation in experimental autoimmune and inflammatory disorders and in allergy and to contribute to antigen presentation and antibody response after parenteral immunization with an alum-adjuvanted antigen. In this study, we extend these findings by demonstrating that mice lacking S100A4 have a defective humoral and cellular immune response to mucosal (sublingual) immunization with a model protein antigen [ovalbumin (OVA)] given together with the strong mucosal adjuvant cholera toxin (CT), and that this impairment is due to defective adjuvant-stimulated antigen presentation by antigen-presenting cells. In comparison to wild-type (WT) mice, mice genetically lacking S100A4 had reduced humoral and cellular immune responses after immunization with OVA plus CT, including a complete lack of detectable germinal center reaction. Further, when stimulated in vitro with OVA plus CT, S100A4−/− dendritic cells (DCs) showed impaired responses in several CT-stimulated immune regulatory molecules including the co-stimulatory molecule CD86, inflammasome-associated caspase-1 and IL-1β. Coculture of OVA-specific OT-II T cells with S100A4−/− DCs that had been pulse incubated with OVA plus CT resulted in impaired OT-II T cell proliferation and reduced production of Th1, Th2, and Th17 cytokines compared to similar cocultures with WT DCs. In accordance with these findings, transfection of WT DCs with S100A4-targeting small interfering RNA (siRNA) but not mock-siRNA resulted in significant reductions in the expression of caspase-1 and IL-1β as well as CD86 in response to CT. Importantly, also engraftment of WT DCs into S100A4−/− mice effectively restored the immune response to immunization in the recipients. In conclusion, our results demonstrate that deficiency in S100A4 has a strong impact on the development of both humoral and cellular immunity after mucosal immunization using CT as adjuvant.
Collapse
Affiliation(s)
- Jia-Bin Sun
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg Vaccine Research Institute (GUVAX), Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Jan Holmgren
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg Vaccine Research Institute (GUVAX), Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Maximilian Larena
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg Vaccine Research Institute (GUVAX), Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Manuela Terrinoni
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg Vaccine Research Institute (GUVAX), Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Yu Fang
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg Vaccine Research Institute (GUVAX), Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Department of Microbiology and Immunology, Clinical Research Center, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Anne R Bresnick
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Zou Xiang
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg Vaccine Research Institute (GUVAX), Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Faculty of Health and Social Sciences, Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong
| |
Collapse
|
42
|
Magnusson R, Mariotti GP, Köpsén M, Lövfors W, Gawel DR, Jörnsten R, Linde J, Nordling TEM, Nyman E, Schulze S, Nestor CE, Zhang H, Cedersund G, Benson M, Tjärnberg A, Gustafsson M. LASSIM-A network inference toolbox for genome-wide mechanistic modeling. PLoS Comput Biol 2017. [PMID: 28640810 PMCID: PMC5501685 DOI: 10.1371/journal.pcbi.1005608] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Recent technological advancements have made time-resolved, quantitative, multi-omics data available for many model systems, which could be integrated for systems pharmacokinetic use. Here, we present large-scale simulation modeling (LASSIM), which is a novel mathematical tool for performing large-scale inference using mechanistically defined ordinary differential equations (ODE) for gene regulatory networks (GRNs). LASSIM integrates structural knowledge about regulatory interactions and non-linear equations with multiple steady state and dynamic response expression datasets. The rationale behind LASSIM is that biological GRNs can be simplified using a limited subset of core genes that are assumed to regulate all other gene transcription events in the network. The LASSIM method is implemented as a general-purpose toolbox using the PyGMO Python package to make the most of multicore computers and high performance clusters, and is available at https://gitlab.com/Gustafsson-lab/lassim. As a method, LASSIM works in two steps, where it first infers a non-linear ODE system of the pre-specified core gene expression. Second, LASSIM in parallel optimizes the parameters that model the regulation of peripheral genes by core system genes. We showed the usefulness of this method by applying LASSIM to infer a large-scale non-linear model of naïve Th2 cell differentiation, made possible by integrating Th2 specific bindings, time-series together with six public and six novel siRNA-mediated knock-down experiments. ChIP-seq showed significant overlap for all tested transcription factors. Next, we performed novel time-series measurements of total T-cells during differentiation towards Th2 and verified that our LASSIM model could monitor those data significantly better than comparable models that used the same Th2 bindings. In summary, the LASSIM toolbox opens the door to a new type of model-based data analysis that combines the strengths of reliable mechanistic models with truly systems-level data. We demonstrate the power of this approach by inferring a mechanistically motivated, genome-wide model of the Th2 transcription regulatory system, which plays an important role in several immune related diseases. There are excellent methods to mathematically model time-resolved biological data on a small scale using accurate mechanistic models. Despite the rapidly increasing availability of such data, mechanistic models have not been applied on a genome-wide level due to excessive runtimes and the non-identifiability of model parameters. However, genome-wide, mechanistic models could potentially answer key clinical questions, such as finding the best drug combinations to induce an expression change from a disease to a healthy state. We present LASSIM, which is a toolbox built to infer parameters within mechanistic models on a genomic scale. This is made possible due to a property shared across biological systems, namely the existence of a subset of master regulators, here denoted the core system. The introduction of a core system of genes simplifies the network inference into small solvable sub-problems, and implies that all main regulatory actions on peripheral genes come from a small set of regulator genes. This separation allows substantial parts of computations to be solved in parallel, i.e. permitting the use of a computer cluster, which substantially reduces computation time.
Collapse
Affiliation(s)
- Rasmus Magnusson
- Bioinformatics Unit, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Guido Pio Mariotti
- Bioinformatics Unit, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Mattias Köpsén
- Centre for Personalised Medicine, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- Integrative Systems Biology, Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - William Lövfors
- Centre for Personalised Medicine, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- Integrative Systems Biology, Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Danuta R. Gawel
- Centre for Personalised Medicine, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Rebecka Jörnsten
- Mathematical Sciences, Chalmers University of Technology, University of Gothenburg, Gothenburg, Sweden
| | - Jörg Linde
- Leibniz-Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Research Group Systems Biology and Bioinformatics, Jena, Germany
- Research Group PiDOMICS, Leibniz Institute for Natural Product Research and Infection Biology -Hans Knöll Institute, Jena, Germany
| | - Torbjörn E. M. Nordling
- Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan
- Stockholm Bioinformatics Center, Science for Life Laboratory, Solna, Sweden
| | - Elin Nyman
- Integrative Systems Biology, Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Sylvie Schulze
- Leibniz-Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Research Group Systems Biology and Bioinformatics, Jena, Germany
| | - Colm E. Nestor
- Centre for Personalised Medicine, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Huan Zhang
- Centre for Personalised Medicine, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Gunnar Cedersund
- Integrative Systems Biology, Department of Biomedical Engineering, Linköping University, Linköping, Sweden
- Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Mikael Benson
- Centre for Personalised Medicine, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Andreas Tjärnberg
- Bioinformatics Unit, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Mika Gustafsson
- Bioinformatics Unit, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
- * E-mail:
| |
Collapse
|
43
|
Gustafsson M, Gawel DR, Alfredsson L, Baranzini S, Björkander J, Blomgran R, Hellberg S, Eklund D, Ernerudh J, Kockum I, Konstantinell A, Lahesmaa R, Lentini A, Liljenström HRI, Mattson L, Matussek A, Mellergård J, Mendez M, Olsson T, Pujana MA, Rasool O, Serra-Musach J, Stenmarker M, Tripathi S, Viitala M, Wang H, Zhang H, Nestor CE, Benson M. A validated gene regulatory network and GWAS identifies early regulators of T cell-associated diseases. Sci Transl Med 2016; 7:313ra178. [PMID: 26560356 DOI: 10.1126/scitranslmed.aad2722] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Early regulators of disease may increase understanding of disease mechanisms and serve as markers for presymptomatic diagnosis and treatment. However, early regulators are difficult to identify because patients generally present after they are symptomatic. We hypothesized that early regulators of T cell-associated diseases could be found by identifying upstream transcription factors (TFs) in T cell differentiation and by prioritizing hub TFs that were enriched for disease-associated polymorphisms. A gene regulatory network (GRN) was constructed by time series profiling of the transcriptomes and methylomes of human CD4(+) T cells during in vitro differentiation into four helper T cell lineages, in combination with sequence-based TF binding predictions. The TFs GATA3, MAF, and MYB were identified as early regulators and validated by ChIP-seq (chromatin immunoprecipitation sequencing) and small interfering RNA knockdowns. Differential mRNA expression of the TFs and their targets in T cell-associated diseases supports their clinical relevance. To directly test if the TFs were altered early in disease, T cells from patients with two T cell-mediated diseases, multiple sclerosis and seasonal allergic rhinitis, were analyzed. Strikingly, the TFs were differentially expressed during asymptomatic stages of both diseases, whereas their targets showed altered expression during symptomatic stages. This analytical strategy to identify early regulators of disease by combining GRNs with genome-wide association studies may be generally applicable for functional and clinical studies of early disease development.
Collapse
Affiliation(s)
- Mika Gustafsson
- The Centre for Individualised Medicine, Department of Clinical and Experimental Medicine, Division of Pediatrics, Linköping University, SE-581 83 Linköping, Sweden. Bioinformatics, Department of Physics, Chemistry, and Biology, Linköping University, SE-581 83 Linköping, Sweden.
| | - Danuta R Gawel
- The Centre for Individualised Medicine, Department of Clinical and Experimental Medicine, Division of Pediatrics, Linköping University, SE-581 83 Linköping, Sweden
| | - Lars Alfredsson
- Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Solna, Sweden
| | - Sergio Baranzini
- Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Janne Björkander
- Futurum-Academy for Health and Care, County Council of Jönköping, SE-551 85 Jönköping, Sweden
| | - Robert Blomgran
- Department of Clinical and Experimental Medicine, Division of Microbiology and Molecular Medicine, Linköping University, SE-581 83 Linköping, Sweden
| | - Sandra Hellberg
- Department of Clinical and Experimental Medicine, Division of Clinical Immunology, Unit of Autoimmunity and Immune Regulation, Linköping University, SE-581 83 Linköping, Sweden
| | - Daniel Eklund
- Department of Clinical Immunology and Transfusion Medicine, Linköping University, SE-581 83 Linköping, Sweden
| | - Jan Ernerudh
- Department of Clinical and Experimental Medicine, Division of Clinical Immunology, Unit of Autoimmunity and Immune Regulation, Linköping University, SE-581 83 Linköping, Sweden. Department of Clinical Immunology and Transfusion Medicine, Linköping University, SE-581 83 Linköping, Sweden
| | - Ingrid Kockum
- Department of Clinical Neurosciences, Karolinska Institutet and Centrum for Molecular Medicine, SE-171 77 Stockholm, Sweden
| | - Aelita Konstantinell
- The Centre for Individualised Medicine, Department of Clinical and Experimental Medicine, Division of Pediatrics, Linköping University, SE-581 83 Linköping, Sweden. Department of Medical Biology, The Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Riita Lahesmaa
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Antonio Lentini
- The Centre for Individualised Medicine, Department of Clinical and Experimental Medicine, Division of Pediatrics, Linköping University, SE-581 83 Linköping, Sweden
| | - H Robert I Liljenström
- The Centre for Individualised Medicine, Department of Clinical and Experimental Medicine, Division of Pediatrics, Linköping University, SE-581 83 Linköping, Sweden
| | - Lina Mattson
- The Centre for Individualised Medicine, Department of Clinical and Experimental Medicine, Division of Pediatrics, Linköping University, SE-581 83 Linköping, Sweden
| | - Andreas Matussek
- Futurum-Academy for Health and Care, County Council of Jönköping, SE-551 85 Jönköping, Sweden
| | - Johan Mellergård
- Department of Neurology and Department of Clinical and Experimental Medicine, Linköping University, SE-581 83 Linköping, Sweden
| | - Melissa Mendez
- Laboratorio de Investigación en Enfermedades Infecciosas, LID, Universidad Peruana Cayetano Heredia, Lima PE-15102, Peru
| | - Tomas Olsson
- Department of Clinical Neurosciences, Karolinska Institutet and Centrum for Molecular Medicine, SE-171 77 Stockholm, Sweden
| | - Miguel A Pujana
- Program Against Cancer Therapeutic Resistance (ProCURE), Cancer and Systems Biology Unit, Catalan Institute of Oncology, IDIBELL, L'Hospitalet del Llobregat, ES-08908 Barcelona, Spain
| | - Omid Rasool
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Jordi Serra-Musach
- Program Against Cancer Therapeutic Resistance (ProCURE), Cancer and Systems Biology Unit, Catalan Institute of Oncology, IDIBELL, L'Hospitalet del Llobregat, ES-08908 Barcelona, Spain
| | - Margaretha Stenmarker
- Futurum-Academy for Health and Care, County Council of Jönköping, SE-551 85 Jönköping, Sweden
| | - Subhash Tripathi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Miro Viitala
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Hui Wang
- The Centre for Individualised Medicine, Department of Clinical and Experimental Medicine, Division of Pediatrics, Linköping University, SE-581 83 Linköping, Sweden. Department of Immunology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Huan Zhang
- The Centre for Individualised Medicine, Department of Clinical and Experimental Medicine, Division of Pediatrics, Linköping University, SE-581 83 Linköping, Sweden
| | - Colm E Nestor
- The Centre for Individualised Medicine, Department of Clinical and Experimental Medicine, Division of Pediatrics, Linköping University, SE-581 83 Linköping, Sweden
| | - Mikael Benson
- The Centre for Individualised Medicine, Department of Clinical and Experimental Medicine, Division of Pediatrics, Linköping University, SE-581 83 Linköping, Sweden.
| |
Collapse
|
44
|
|
45
|
Zong J, Keskinov AA, Shurin GV, Shurin MR. Tumor-derived factors modulating dendritic cell function. Cancer Immunol Immunother 2016; 65:821-33. [PMID: 26984847 PMCID: PMC11028482 DOI: 10.1007/s00262-016-1820-y] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/26/2016] [Indexed: 12/22/2022]
Abstract
Dendritic cells (DC) play unique and diverse roles in the tumor occurrence, development, progression and response to therapy. First of all, DC can actively uptake tumor-associated antigens, process them and present antigenic peptides to T cells inducing and maintaining tumor-specific T cell responses. DC interaction with different immune effector cells may also support innate antitumor immunity, as well as humoral responses also known to inhibit tumor development in certain cases. On the other hand, DC are recruited to the tumor site by specific tumor-derived and stroma-derived factors, which may also impair DC maturation, differentiation and function, thus resulting in the deficient formation of antitumor immune response or development of DC-mediated tolerance and immune suppression. Identification of DC-stimulating and DC-suppressing/polarizing factors in the tumor environment and the mechanism of DC modulation are important for designing effective DC-based vaccines and for recovery of immunodeficient resident DC responsible for maintenance of clinically relevant antitumor immunity in patients with cancer. DC-targeting tumor-derived factors and their effects on resident and administered DC in the tumor milieu are described and discussed in this review.
Collapse
Affiliation(s)
- Jinbao Zong
- Department of Pathology, University of Pittsburgh Medical Center, Scaife Hall S735, 3550 Terrace Street, Pittsburgh, PA, 15261, USA
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao City, China
| | - Anton A Keskinov
- Department of Pathology, University of Pittsburgh Medical Center, Scaife Hall S735, 3550 Terrace Street, Pittsburgh, PA, 15261, USA
| | - Galina V Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Scaife Hall S735, 3550 Terrace Street, Pittsburgh, PA, 15261, USA
| | - Michael R Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Scaife Hall S735, 3550 Terrace Street, Pittsburgh, PA, 15261, USA.
- Department of Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
46
|
Benson M. Clinical implications of omics and systems medicine: focus on predictive and individualized treatment. J Intern Med 2016; 279:229-40. [PMID: 26891944 DOI: 10.1111/joim.12412] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Many patients with common diseases do not respond to treatment. This is a key challenge to modern health care, which causes both suffering and enormous costs. One important reason for the lack of treatment response is that common diseases are associated with altered interactions between thousands of genes, in combinations that differ between subgroups of patients who do or do not respond to a given treatment. Such subgroups, or even distinct disease entities, have been described recently in asthma, diabetes, autoimmune diseases and cancer. High-throughput techniques (omics) allow identification and characterization of such subgroups or entities. This may have important clinical implications, such as identification of diagnostic markers for individualized medicine, as well as new therapeutic targets for patients who do not respond to existing drugs. For example, whole-genome sequencing may be applied to more accurately guide treatment of neurodevelopmental diseases, or to identify drugs specifically targeting mutated genes in cancer. A study published in 2015 showed that 28% of hepatocellular carcinomas contained mutated genes that potentially could be targeted by drugs already approved by the US Food and Drug Administration. A translational study, which is described in detail, showed how combined omics, computational, functional and clinical studies could identify and validate a novel diagnostic and therapeutic candidate gene in allergy. Another important clinical implication is the identification of potential diagnostic markers and therapeutic targets for predictive and preventative medicine. By combining computational and experimental methods, early disease regulators may be identified and potentially used to predict and treat disease before it becomes symptomatic. Systems medicine is an emerging discipline, which may contribute to such developments through combining omics with computational, functional and clinical studies. The aims of this review are to provide a brief introduction to systems medicine and discuss how it may contribute to the clinical implementation of individualized treatment, using clinically relevant examples.
Collapse
Affiliation(s)
- M Benson
- Centre for Individualized Medicine, Department of Pediatrics, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
47
|
Landolina N, Levi-Schaffer F. Monoclonal antibodies: the new magic bullets for allergy: IUPHAR Review 17. Br J Pharmacol 2016; 173:793-803. [PMID: 26620589 DOI: 10.1111/bph.13396] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 11/08/2015] [Accepted: 11/22/2015] [Indexed: 12/18/2022] Open
Abstract
Allergic diseases and conditions are widespread and their incidence is on the increase. They are characterized by the activation of mast cells resident in tissues and the consequent infiltration and stimulation of several inflammatory cells, predominantly eosinophils. Cell-cell cross-talk and the release of mediators are responsible for the symptoms and for the modulation of the response. The gold standard of therapeutic intervention is still glucocorticosteroids, although they are not effective in all patients and may cause numerous side effects. Symptomatic medications are also widespread. As research has led to deeper insights into the mechanisms governing the diseases, new avenues have been opened resulting in recent years in the development of monoclonal antibodies (mAbs) such as anti-IgE mAbs (omalizumab) and others still undergoing clinical trials aimed to specifically target molecules involved in the migration and stimulation of inflammatory cells. In this review, we summarize new developments in the field of anti-allergic mAbs with special emphasis on the treatment of asthma, particularly severe forms of this condition, and atopic dermatitis, which are two unmet clinical needs.
Collapse
Affiliation(s)
- N Landolina
- Pharmacology and Experimental Therapeutics Unit, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - F Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
48
|
Bousquet J, Schunemann HJ, Fonseca J, Samolinski B, Bachert C, Canonica GW, Casale T, Cruz AA, Demoly P, Hellings P, Valiulis A, Wickman M, Zuberbier T, Bosnic-Anticevitch S, Bedbrook A, Bergmann KC, Caimmi D, Dahl R, Fokkens WJ, Grisle I, Lodrup Carlsen K, Mullol J, Muraro A, Palkonen S, Papadopoulos N, Passalacqua G, Ryan D, Valovirta E, Yorgancioglu A, Aberer W, Agache I, Adachi M, Akdis CA, Akdis M, Annesi-Maesano I, Ansotegui IJ, Anto JM, Arnavielhe S, Arshad H, Baiardini I, Baigenzhin AK, Barbara C, Bateman ED, Beghé B, Bel EH, Ben Kheder A, Bennoor KS, Benson M, Bewick M, Bieber T, Bindslev-Jensen C, Bjermer L, Blain H, Boner AL, Boulet LP, Bonini M, Bonini S, Bosse I, Bourret R, Bousquet PJ, Braido F, Briggs AH, Brightling CE, Brozek J, Buhl R, Burney PG, Bush A, Caballero-Fonseca F, Calderon MA, Camargos PAM, Camuzat T, Carlsen KH, Carr W, Cepeda Sarabia AM, Chavannes NH, Chatzi L, Chen YZ, Chiron R, Chkhartishvili E, Chuchalin AG, Ciprandi G, Cirule I, Correia de Sousa J, Cox L, Crooks G, Costa DJ, Custovic A, Dahlen SE, Darsow U, De Carlo G, De Blay F, Dedeu T, Deleanu D, Denburg JA, Devillier P, Didier A, Dinh-Xuan AT, Dokic D, Douagui H, Dray G, et alBousquet J, Schunemann HJ, Fonseca J, Samolinski B, Bachert C, Canonica GW, Casale T, Cruz AA, Demoly P, Hellings P, Valiulis A, Wickman M, Zuberbier T, Bosnic-Anticevitch S, Bedbrook A, Bergmann KC, Caimmi D, Dahl R, Fokkens WJ, Grisle I, Lodrup Carlsen K, Mullol J, Muraro A, Palkonen S, Papadopoulos N, Passalacqua G, Ryan D, Valovirta E, Yorgancioglu A, Aberer W, Agache I, Adachi M, Akdis CA, Akdis M, Annesi-Maesano I, Ansotegui IJ, Anto JM, Arnavielhe S, Arshad H, Baiardini I, Baigenzhin AK, Barbara C, Bateman ED, Beghé B, Bel EH, Ben Kheder A, Bennoor KS, Benson M, Bewick M, Bieber T, Bindslev-Jensen C, Bjermer L, Blain H, Boner AL, Boulet LP, Bonini M, Bonini S, Bosse I, Bourret R, Bousquet PJ, Braido F, Briggs AH, Brightling CE, Brozek J, Buhl R, Burney PG, Bush A, Caballero-Fonseca F, Calderon MA, Camargos PAM, Camuzat T, Carlsen KH, Carr W, Cepeda Sarabia AM, Chavannes NH, Chatzi L, Chen YZ, Chiron R, Chkhartishvili E, Chuchalin AG, Ciprandi G, Cirule I, Correia de Sousa J, Cox L, Crooks G, Costa DJ, Custovic A, Dahlen SE, Darsow U, De Carlo G, De Blay F, Dedeu T, Deleanu D, Denburg JA, Devillier P, Didier A, Dinh-Xuan AT, Dokic D, Douagui H, Dray G, Dubakiene R, Durham SR, Dykewicz MS, El-Gamal Y, Emuzyte R, Fink Wagner A, Fletcher M, Fiocchi A, Forastiere F, Gamkrelidze A, Gemicioğlu B, Gereda JE, González Diaz S, Gotua M, Grouse L, Guzmán MA, Haahtela T, Hellquist-Dahl B, Heinrich J, Horak F, Hourihane JO', Howarth P, Humbert M, Hyland ME, Ivancevich JC, Jares EJ, Johnston SL, Joos G, Jonquet O, Jung KS, Just J, Kaidashev I, Kalayci O, Kalyoncu AF, Keil T, Keith PK, Khaltaev N, Klimek L, Koffi N'Goran B, Kolek V, Koppelman GH, Kowalski ML, Kull I, Kuna P, Kvedariene V, Lambrecht B, Lau S, Larenas-Linnemann D, Laune D, Le LTT, Lieberman P, Lipworth B, Li J, Louis R, Magard Y, Magnan A, Mahboub B, Majer I, Makela MJ, Manning P, De Manuel Keenoy E, Marshall GD, Masjedi MR, Maurer M, Mavale-Manuel S, Melén E, Melo-Gomes E, Meltzer EO, Merk H, Miculinic N, Mihaltan F, Milenkovic B, Mohammad Y, Molimard M, Momas I, Montilla-Santana A, Morais-Almeida M, Mösges R, Namazova-Baranova L, Naclerio R, Neou A, Neffen H, Nekam K, Niggemann B, Nyembue TD, O'Hehir RE, Ohta K, Okamoto Y, Okubo K, Ouedraogo S, Paggiaro P, Pali-Schöll I, Palmer S, Panzner P, Papi A, Park HS, Pavord I, Pawankar R, Pfaar O, Picard R, Pigearias B, Pin I, Plavec D, Pohl W, Popov TA, Portejoie F, Postma D, Potter P, Price D, Rabe KF, Raciborski F, Radier Pontal F, Repka-Ramirez S, Robalo-Cordeiro C, Rolland C, Rosado-Pinto J, Reitamo S, Rodenas F, Roman Rodriguez M, Romano A, Rosario N, Rosenwasser L, Rottem M, Sanchez-Borges M, Scadding GK, Serrano E, Schmid-Grendelmeier P, Sheikh A, Simons FER, Sisul JC, Skrindo I, Smit HA, Solé D, Sooronbaev T, Spranger O, Stelmach R, Strandberg T, Sunyer J, Thijs C, Todo-Bom A, Triggiani M, Valenta R, Valero AL, van Hage M, Vandenplas O, Vezzani G, Vichyanond P, Viegi G, Wagenmann M, Walker S, Wang DY, Wahn U, Williams DM, Wright J, Yawn BP, Yiallouros PK, Yusuf OM, Zar HJ, Zernotti ME, Zhang L, Zhong N, Zidarn M, Mercier J. MACVIA-ARIA Sentinel NetworK for allergic rhinitis (MASK-rhinitis): the new generation guideline implementation. Allergy 2015; 70:1372-1392. [PMID: 26148220 DOI: 10.1111/all.12686] [Show More Authors] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2015] [Indexed: 12/20/2022]
Abstract
Several unmet needs have been identified in allergic rhinitis: identification of the time of onset of the pollen season, optimal control of rhinitis and comorbidities, patient stratification, multidisciplinary team for integrated care pathways, innovation in clinical trials and, above all, patient empowerment. MASK-rhinitis (MACVIA-ARIA Sentinel NetworK for allergic rhinitis) is a simple system centred around the patient which was devised to fill many of these gaps using Information and Communications Technology (ICT) tools and a clinical decision support system (CDSS) based on the most widely used guideline in allergic rhinitis and its asthma comorbidity (ARIA 2015 revision). It is one of the implementation systems of Action Plan B3 of the European Innovation Partnership on Active and Healthy Ageing (EIP on AHA). Three tools are used for the electronic monitoring of allergic diseases: a cell phone-based daily visual analogue scale (VAS) assessment of disease control, CARAT (Control of Allergic Rhinitis and Asthma Test) and e-Allergy screening (premedical system of early diagnosis of allergy and asthma based on online tools). These tools are combined with a clinical decision support system (CDSS) and are available in many languages. An e-CRF and an e-learning tool complete MASK. MASK is flexible and other tools can be added. It appears to be an advanced, global and integrated ICT answer for many unmet needs in allergic diseases which will improve policies and standards.
Collapse
Affiliation(s)
- J Bousquet
- University Hospital, Montpellier, France
- MACVIA-LR, Contre les MAladies Chroniques pour un VIeillissement Actif en Languedoc - Roussillon, European Innovation Partnership on Active and Healthy Ageing Reference Site, Montpellier, France
- INSERM, VIMA: Ageing and Chronic Diseases, Epidemiological and Public Health Approaches, Paris, France
- UVSQ, UMR-S 1168, Université Versailles St-Quentin-en-Yvelines, Paris, France
| | - H J Schunemann
- Department of Clinical Epidemiology and Biostatistics and Medicine, McMaster University, Hamilton, ON, Canada
| | - J Fonseca
- Center for Research in Health Technologies and Information Systems - CINTESIS, Universidade do Porto, Porto, Portugal
- Allergy Unit, Instituto CUF Porto e Hospital CUF Porto, Porto, Portugal
- Health Information and Decision Sciences Department - CIDES, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - B Samolinski
- Department of Prevention of Environmental Hazards and Allergology, Medical University of Warsaw, Warsaw, Poland
| | - C Bachert
- Upper Airways Research Laboratory, ENT Department, Ghent University Hospital, Ghent, Belgium
| | - G W Canonica
- Allergy and Respiratory Diseases Clinic, DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - T Casale
- Division of Allergy/Immunology, University of South Florida, Tampa, FL, USA
| | - A A Cruz
- ProAR - Nucleo de Excelencia em Asma, Federal University of Bahia, Bahia, Brasil
- GARD Executive Committee, Bahia, Brasil
| | - P Demoly
- Department of Respiratory Diseases, Montpellier University Hospital, Montpellier, France
- EPAR U707 INSERM, Paris, France
- EPAR UMR-S UPMC, Paris, France
| | - P Hellings
- Laboratory of Clinical Immunology, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - A Valiulis
- Vilnius University Clinic of Children's Diseases, Vilnius, Lithuania
| | - M Wickman
- Sachs' Children's Hospital, Stockholm, Sweden
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - T Zuberbier
- Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Member of the Global Allergy and Asthma European Network (GA2LEN), Oslo, Norway
| | - S Bosnic-Anticevitch
- Woolcock Institute of Medical Research, University of Sydney and Sydney Local Health District, Glebe, NSW, Australia
| | - A Bedbrook
- MACVIA-LR, Contre les MAladies Chroniques pour un VIeillissement Actif en Languedoc - Roussillon, European Innovation Partnership on Active and Healthy Ageing Reference Site, Montpellier, France
| | - K C Bergmann
- Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Member of the Global Allergy and Asthma European Network (GA2LEN), Oslo, Norway
| | - D Caimmi
- Department of Respiratory Diseases, Montpellier University Hospital, Montpellier, France
| | - R Dahl
- Department of Dermatology and Allergy Centre, Odense University Hospital, Odense, Denmark
| | - W J Fokkens
- Department of Otorhinolaryngology, Academic Medical Centre, Amsterdam, The Netherlands
| | - I Grisle
- Latvian Association of Allergists, Center of Tuberculosis and Lung Diseases of Latvia, Riga, Latvia
| | - K Lodrup Carlsen
- Department of Paediatrics, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - J Mullol
- Unitat de Rinologia i Clínica de l'Olfacte, Servei d'ORL, Hospital Clínic, Clinical & Experimental Respiratory Immunoallergy, IDIBAPS, Barcelona, Catalonia, Spain
| | - A Muraro
- Food Allergy Referral Centre Veneto Region, Department of Women and Child Health, Padua General University Hospital, Padua, Italy
| | - S Palkonen
- EFA European Federation of Allergy and Airways Diseases Patients' Associations, Brussels, Belgium
| | - N Papadopoulos
- Center for Pediatrics and Child Health, Institute of Human Development, Royal Manchester Children's Hospital, University of Manchester, Manchester, UK
- Allergy Department, 2nd Pediatric Clinic, Athens General Children's Hospital "P&A Kyriakou", University of Athens, Athens, Greece
| | - G Passalacqua
- Allergy and Respiratory Diseases Clinic, DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - D Ryan
- General Practitioner, Woodbrook Medical Centre, Loughborough, UK
- Honorary Clinical Research Fellow, Allergy and Respiratory Research Group, The University of Edinburgh, Edinburgh, UK
| | - E Valovirta
- Department of Lung Diseases and Clinical Allergology, University of Turku, Turku, Finland
| | - A Yorgancioglu
- Department of Pulmonology, Celal Bayar University, Manisa, Turkey
| | - W Aberer
- Department of Dermatology, Medical University of Graz, Graz, Austria
| | - I Agache
- Transylvania University Brasov, Brasov, Romania
| | - M Adachi
- Department of Clinical Research Center, International University of Health and Welfare/Sanno Hospital, Tokyo, Japan
| | - C A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - M Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | | | - I J Ansotegui
- Department of Allergy and Immunology, Hospital Quirón Bizkaia, Erandio, Spain
| | - J M Anto
- Centre for Research in Environmental Epidemiology, Barcelona, Spain
- Hospital del Mar Research Institute, Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Barcelona, Spain
- Department of Experimental and Health Sciences, University of Pompeu Fabra, Barcelona, Spain
| | | | - H Arshad
- David Hide Asthma and Allergy Research Centre, Isle of Wight, UK
| | - I Baiardini
- Allergy and Respiratory Diseases Clinic, DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | | | - C Barbara
- Faculdade de Medicina de Lisboa, Portuguese National Programme for Respiratory Diseases, Lisbon, Portugal
| | - E D Bateman
- Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - B Beghé
- Section of Respiratory Disease, Department of Oncology, Haematology and Respiratory Diseases, University of Modena and Reggio Emilia, Modena, Italy
| | - E H Bel
- Department of Respiratory Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - A Ben Kheder
- Service de Pneumologie IV, Hôpital Abderrahman Mami, Ariana, Tunisie
| | - K S Bennoor
- Department of Respiratory Medicine, National Institute of Diseases of the Chest and Hospital, Dhaka, Bangladesh
| | - M Benson
- Centre for Individualized Medicine, Department of Pediatrics, Faculty of Medicine, Linköping University, Linköping, Sweden
| | - M Bewick
- Deputy National Medical Director, NHS England, England, UK
| | - T Bieber
- Department of Dermatology and Allergy, Rheinische Friedrich-Wilhelms-University Bonn, Bonn, Germany
| | - C Bindslev-Jensen
- Department of Dermatology and Allergy Centre, Odense University Hospital, Odense, Denmark
| | - L Bjermer
- Department of Respiratory Medicine and Allergology, University Hospital, Lund, Sweden
| | - H Blain
- Department of Geriatrics, Montpellier University Hospital, Montpellier, France
- EA 2991 Movement To Health, Euromov, University Montpellier, Montpellier, France
| | - A L Boner
- Pediatric Department, University of Verona Hospital, Verona, Italy
| | - L P Boulet
- Québec Heart and Lung Institute, Laval University, Québec City, QC, Canada
| | - M Bonini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - S Bonini
- Second University of Naples and Institute of Translational Medicine, Italian National Research Council, Naples, Italy
| | - I Bosse
- Allergist, La Rochelle, France
| | - R Bourret
- Directeur Général Adjoint, Montpellier University Hospital, Montpellier, France
| | - P J Bousquet
- EPAR U707 INSERM, Paris, France
- EPAR UMR-S UPMC, Paris, France
| | - F Braido
- Allergy and Respiratory Diseases Clinic, DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - A H Briggs
- Health Economics and Health Technology Assessment, Institute of Health & Wellbeing, University of Glasgow, Glasgow, UK
| | - C E Brightling
- Institute of Lung Health, Respiratory Biomedical Unit, University Hospitals of Leicester NHS Trust, Leicestershire, UK
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - J Brozek
- Department of Clinical Epidemiology and Biostatistics and Medicine, McMaster University, Hamilton, ON, Canada
| | - R Buhl
- Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - P G Burney
- National Heart and Lung Institute, Imperial College, London, UK
- Wellcome Centre for Global Health, Imperial College, London, UK
- MRC-PHE Centre for Environment and Health, Imperial College, London, UK
| | - A Bush
- Imperial College and Royal Brompton Hospital, London, UK
| | | | - M A Calderon
- Imperial College London - National Heart and Lung Institute, Royal Brompton Hospital NHS, London, UK
| | - P A M Camargos
- Federal University of Minas Gerais, Medical School, Department of Pediatrics, Belo Horizonte, Brazil
| | - T Camuzat
- Assitant Director General, Montpellier, France
- Région Languedoc Roussillon, Roussillon, France
| | - K H Carlsen
- Department of Paediatrics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - W Carr
- Allergy and Asthma Associates of Southern California, Mission Viejo, CA, USA
| | - A M Cepeda Sarabia
- Allergy and Immunology Laboratory, Metropolitan University, Simon Bolivar University, Barranquilla, Colombia
- SLaai, Sociedad Latinoamericana de Allergia, Asma e Immunologia, Barranquilla, Colombia
| | - N H Chavannes
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, The Netherlands
| | - L Chatzi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Y Z Chen
- National Cooperative Group of Paediatric Research on Asthma, Asthma Clinic and Education Center of the Capital Institute of Pediatrics, Peking and Center for Asthma Research and Education, Beijing, China
| | - R Chiron
- Department of Respiratory Diseases, Montpellier University Hospital, Montpellier, France
| | - E Chkhartishvili
- Chachava Clinic, David Tvildiani Medical University-AIETI Medical School, Grigol Robakidze University, Tbilisi, Georgia
| | - A G Chuchalin
- Pulmonolory Research Institute FMBA, Moscow, Russia
- GARD Executive Committee, Moscow, Russia
| | - G Ciprandi
- Medicine Department, IRCCS-Azienda Ospedaliera Universitaria San Martino, Genoa, Italy
| | - I Cirule
- Latvian Association of Allergists, University Children Hospital of Latvia, Riga, Latvia
| | - J Correia de Sousa
- Life and Health Sciences Research Institute, ICVS, School of Health Sciences, University of Minho, Braga, Portugal
| | - L Cox
- Department of Medicine, Nova Southeastern University, Davie, FL, USA
| | - G Crooks
- European Innovation Partnership on Active and Healthy Ageing, Reference Site, NHS Scotland, Glasgow, UK
| | - D J Costa
- MACVIA-LR, Contre les MAladies Chroniques pour un VIeillissement Actif en Languedoc - Roussillon, European Innovation Partnership on Active and Healthy Ageing Reference Site, Montpellier, France
- Department of Respiratory Diseases, Montpellier University Hospital, Montpellier, France
| | - A Custovic
- Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair, University of Manchester and University Hospital of South Manchester, Manchester, UK
| | - S E Dahlen
- The Centre for Allergy Research, The Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - U Darsow
- Department of Dermatology and Allergy, Technische Universität Mänchen, Munich, Germany
- ZAUM-Center for Allergy and Environment, Helmholtz Center Munich, Technische Universität München, Munich, Germany
| | - G De Carlo
- EFA European Federation of Allergy and Airways Diseases Patients' Associations, Brussels, Belgium
| | - F De Blay
- Allergy Division, Chest Disease Department, University Hospital of Strasbourg, Strasbourg, France
| | - T Dedeu
- European Regional and Local Health Association, Brussels, Belgium
| | - D Deleanu
- Allergology and Immunology Discipline, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - J A Denburg
- Department of Medicine, Division of Clinical Immunology and Allergy, McMaster University, Hamilton, ON, Canada
| | - P Devillier
- Laboratoire de Pharmacologie Respiratoire UPRES EA220, Hôpital Foch, Suresnes Université Versailles Saint-Quentin, Versailles Saint-Quentin, France
| | - A Didier
- Respiratory Diseases Department, Rangueil-Larrey Hospital, Toulouse, France
| | - A T Dinh-Xuan
- Service de physiologie, Hôpital Cochin, Université Paris-Descartes, Assistance publique-Hôpitaux de Paris, Paris, France
| | - D Dokic
- Medical Faculty Skopje, University Clinic of Pulmology and Allergy, Skopje, R. Macedonia
| | - H Douagui
- Service de Pneumo-Allergologie, Centre Hospitalo-Universitaire de Béni-Messous, Algers, Algeria
| | - G Dray
- Ecole des Mines, Alès, France
| | - R Dubakiene
- Medical Faculty, Vilnius University, Vilnius, Lithuania
| | - S R Durham
- Allergy and Clinical Immunology Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - M S Dykewicz
- Section of Allergy and Immunology, Saint Louis University School of Medicine, Saint Louis, MI, USA
| | - Y El-Gamal
- Pediatric Allergy and Immunology Unit, Ain Shams University, Cairo, Egypt
| | - R Emuzyte
- Clinic of Children's Diseases, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - A Fink Wagner
- Global Allergy and Asthma Platform GAAPP, Vienna, Austria
| | | | - A Fiocchi
- Allergy Department, The Bambino Gesù Children's Research Hospital Holy see, Rome, Italy
| | - F Forastiere
- Department of Epidemiology, Regional Health Service Lazio Region, Rome, Italy
| | - A Gamkrelidze
- National Center for Disease Control and Public Health of Georgia, Tbilisi, Georgia
| | - B Gemicioğlu
- Turkish Thoracic Society Asthma-Allergy Working Group, Kocaeli, Turkey
| | - J E Gereda
- Allergy and Immunology Division, Clinica Ricardo Palma, Lima, Peru
| | - S González Diaz
- Sociedad Latinoamericana de Allergia, Asma e Immunologia, Mexico City, Mexico
| | - M Gotua
- Center of Allergy and Immunology, Georgian Association of Allergology and Clinical Immunology, Tbilisi, Georgia
| | - L Grouse
- Faculty of the Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
| | - M A Guzmán
- Immunology and Allergy Division, Clinical Hospital, University of Chile, Santiago, Chile
| | - T Haahtela
- Skin and Allergy Hospital, Helsinki University Hospital, Helsinki, Finland
| | - B Hellquist-Dahl
- Department of Respiratory Diseases, Odense University Hospital, Odense, Denmark
| | - J Heinrich
- Institute of Epidemiology I, German Research Centre for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | - F Horak
- Vienna Challenge Chamber, Vienna, Austria
| | - J O 'b Hourihane
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | - P Howarth
- University of Southampton Faculty of Medicine, University Hospital Southampton, Southampton, UK
| | - M Humbert
- Université Paris-Sud, Le Kremlin Bicêtre, France
- Service de Pneumologie, Hôpital Bicêtre, Inserm UMR_S999, Le Kremlin Bicêtre, France
| | - M E Hyland
- School of Psychology, Plymouth University, Plymouth, UK
| | - J C Ivancevich
- Servicio de Alergia e Immunologia, Clinica Santa Isabel, Buenos Aires, Argentina
| | - E J Jares
- Libra Foundation, Buenos Aires, Argentina
| | - S L Johnston
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College, London, UK
- MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - G Joos
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - O Jonquet
- Medical Commission, Montpellier University Hospital, Montpellier, France
| | - K S Jung
- Hallym University College of Medicine, Hallym University Sacred Heart Hospital, Gyeonggi-do, South Korea
| | - J Just
- Allergology Department, Centre de l'Asthme et des Allergies. Hôpital d'Enfants Armand-Trousseau, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1136, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Equipe EPAR, Paris, France
| | - I Kaidashev
- Ukrainian Medical Stomatological Academy, Poltava, Ukraine
| | - O Kalayci
- Pediatric Allergy and Asthma Unit, Hacettepe University School of Medicine, Ankara, Turkey
| | - A F Kalyoncu
- School of Medicine, Department of Chest Diseases, Immunology and Allergy Division, Hacettepe University, Ankara, Turkey
| | - T Keil
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Institute for Clinical Epidemiology and Biometry, University of Wuerzburg, Wuerzburg, Germany
| | - P K Keith
- Department of Medicine, McMaster University, Health Sciences Centre 3V47, Hamilton, ON, Canada
| | | | - L Klimek
- Center for Rhinology and Allergology, Wiesbaden, Germany
| | - B Koffi N'Goran
- Société de Pneumologie de Langue Française et Espace Francophone de Pneumologie, Paris, France
| | - V Kolek
- Department of Respiratory Medicine, Faculty of Medicine and Dentistry, University Hospital Olomouc, Olomouc, Czech Republic
| | - G H Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - M L Kowalski
- Department of Immunology, Rheumatology and Allergy, Medical University of Lodz, Lodz, Poland
| | - I Kull
- Sachs' Children's Hospital, Stockholm, Sweden
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - P Kuna
- Division of Internal Medicine, Asthma and Allergy, KUNA, Barlicki University Hospital, Medical University of Lodz, Lodz, Poland
| | - V Kvedariene
- Pulmonology and Allergology Center, Vilnius University, Vilnius, Lithuania
| | - B Lambrecht
- VIB Inflammation Research Center, Ghent University, Ghent, Belgium
| | - S Lau
- Department for Pediatric Pneumology and Immunology, Charité Medical University, Berlin, Germany
| | - D Larenas-Linnemann
- Clínica de Alergia, Asma y Pediatría, Hospital Médica Sur, México City, México
| | - D Laune
- Digi Health, Montpellier, France
| | - L T T Le
- University of Medicine and Pharmacy, Hochiminh City, Vietnam
| | - P Lieberman
- Departments of Internal Medicine and Pediatrics (Divisions of Allergy and Immunology), University of Tennessee College of Medicine, Germantown, TN, USA
| | - B Lipworth
- Scottish Centre for Respiratory Research, Cardiovascular & Diabetes Medicine, Medical Research Institute, Ninewells Hospital, University of Dundee, Dundee, UK
| | - J Li
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - R Louis
- Department of Pulmonary Medicine, CHU Sart-Tilman, Liege, Belgium
| | - Y Magard
- Service de Pneumo-allergologie, Hôpital Saint-Joseph, Paris, France
| | - A Magnan
- Service de Pneumologie, University of Nantes, UMR INSERM, UMR1087/CNR 6291, l'Institut du Thorax, Nantes, France
| | - B Mahboub
- Department of Pulmonary Medicine, Rashid Hospital, Dubai, UAE
| | - I Majer
- Department of Respiratory Medicine, University Hospital, Bratislava, Slovakia
| | - M J Makela
- Skin and Allergy Hospital, Helsinki University Hospital, Helsinki, Finland
| | - P Manning
- Department of Medicine (RCSI), Bon Secours Hospital, Glasnevin, Dublin, Ireland
| | | | - G D Marshall
- Division of Clinical Immunology and Allergy, Laboratory of Behavioral Immunology Research, The University of Mississippi Medical Center, Jackson, MS, USA
| | - M R Masjedi
- Respiratory Disease Research, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - M Maurer
- Allergie-Centrum-Charité at the Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - S Mavale-Manuel
- Department of Paediatrics, Maputo Central Hospital, Maputo, Mozambique
| | - E Melén
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - E Melo-Gomes
- Faculdade de Medicina de Lisboa, Portuguese National Programme for Respiratory Diseases, Lisbon, Portugal
| | - E O Meltzer
- Allergy and Asthma Medical Group and Research Center, San Diego, CA, USA
| | - H Merk
- Hautklinik - Klinik für Dermatologie & Allergologie, Universitätsklinikum der RWTH Aachen, Aachen, Deutschland
| | | | - F Mihaltan
- National Institute of Pneumology M. Nasta, Bucharest, Romania
| | - B Milenkovic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Serbian Association for Asthma and COPD, Belgrade, Serbia
| | - Y Mohammad
- National Center for Research in Chronic Respiratory Diseases, Tishreen University School of Medicine, Latakia, Syria
| | - M Molimard
- Département de Pharmacologie, CHU de Bordeaux, Université Bordeaux, INSERM U657, Bordeaux Cedex, France
| | - I Momas
- Department of Public Health and Biostatistics, Paris Descartes University, Paris, France
- Paris Municipal Department of Social Action, Childhood and Health, Paris, France
| | | | - M Morais-Almeida
- Allergy and Clinical Immunology Department, Hospital CUF-Descobertas, Lisboa, Portugal
| | - R Mösges
- Institute of Medical Statistics, Informatics and Epidemiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - L Namazova-Baranova
- Scientific Centre of Children's Health under the Russian Academy of Medical Sciences, Moscow, Russia
| | - R Naclerio
- Section of Otolaryngology-Head and Neck Surgery, The University of Chicago Medical Center and The Pritzker School of Medicine, The University of Chicago, Chicago, IL, USA
| | - A Neou
- Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Member of the Global Allergy and Asthma European Network (GA2LEN), Oslo, Norway
| | - H Neffen
- Hospital de Niños Orlando Alassia, Santa Fe, Argentina
| | - K Nekam
- Hospital of the Hospitaller Brothers in Buda, Budapest, Hungary
| | - B Niggemann
- Pediatric Pneumology and Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - T D Nyembue
- ENT Department, University Hospital of Kinshasa, Kinshasa, Congo
| | - R E O'Hehir
- Department of Allergy, Immunology and Respiratory Medicine, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Vic., Australia
- Department of Immunology, Monash University, Melbourne, Vic., Australia
| | - K Ohta
- National Hospital Organization, Tokyo National Hospital, Tokyo, Japan
| | - Y Okamoto
- Depatment of Otorhinolaryngology, Chiba University Hospital, Chiba, Japan
| | - K Okubo
- Depatment of Otolaryngology, Nippon Medical School, Tokyo, Japan
| | - S Ouedraogo
- Centre Hospitalier Universitaire Pédiatrique Charles de Gaulle, Ouagadougou, Burkina Faso
| | - P Paggiaro
- Cardio-Thoracic and Vascular Department, University Hospital of Pisa, Pisa, Italy
| | - I Pali-Schöll
- Dept. of Comparative Medicine, Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University and University Vienna, Vienna, Austria
- Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University and University Vienna, Vienna, Austria
| | - S Palmer
- Centre for Health Economics, University of York, York, UK
| | - P Panzner
- Department of Immunology and Allergology, Faculty of Medicine and Faculty Hospital in Pilsen, Charles University in Prague, Pilsen, Czech Republic
| | - A Papi
- Respiratory Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - H S Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - I Pavord
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - R Pawankar
- Department of Pediatrics, Nippon Medical School, Tokyo, Japan
| | - O Pfaar
- Center for Rhinology and Allergology, Wiesbaden, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty Mannheim, Universitätsmedizin Mannheim, Heidelberg University, Mannheim, Germany
| | - R Picard
- Conseil Général de l'Economie. Ministère de l'Economie, de l'Industrie et du Numérique, Paris, France
| | - B Pigearias
- Société de Pneumologie de Langue Française et Espace Francophone de Pneumologie, Paris, France
| | - I Pin
- Département de pédiatrie, CHU de Grenoble, Grenoble cedex 9, France
| | - D Plavec
- Children's Hospital Srebrnjak, Zagreb, School of Medicine, University J.J. Strossmayer, Osijek, Croatia
| | - W Pohl
- Karl Landsteiner Institute for Clinical and Experimental Pneumology, Hietzing Hospital, Vienna, Austria
| | - T A Popov
- Clinic of Allergy & Asthma, Medical University Sofia, Sofia, Bulgaria
| | - F Portejoie
- MACVIA-LR, Contre les MAladies Chroniques pour un VIeillissement Actif en Languedoc - Roussillon, European Innovation Partnership on Active and Healthy Ageing Reference Site, Montpellier, France
| | - D Postma
- Department of Pulmonary Medicine and Tuberculosis, GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - P Potter
- Allergy Diagnostic and Clinical Research Unit, University of Cape Town Lung Institute, Cape Town, South Africa
| | - D Price
- Academic Centre of Primary Care, University of Aberdeen, Aberdeen, UK
- Research in Real-Life, Cambridge, UK
| | - K F Rabe
- LungenClinic Grosshansdorf, Airway Research Center North, Member of the German Center for Lung Research, Grosshansdorf, Germany
- Department of Medicine, Christian Albrechts University, Airway Research Center North, Member of the German Center for Lung Research, Kiel, Germany
| | - F Raciborski
- Department of Prevention of Environmental Hazards and Allergology, Medical University of Warsaw, Warsaw, Poland
| | - F Radier Pontal
- Conseil Départemental de l'Ordre des Pharmaciens, Maison des Professions Libérales, Montpellier, France
| | | | - C Robalo-Cordeiro
- Allergy and Clinical Immunology Department, Hospitais da Universidade de Coimbra, Coimbra, Portugal
| | - C Rolland
- Association Asthme et Allergie, Paris, France
| | - J Rosado-Pinto
- Serviço de Imunoalergologia, Hospital da Luz, Lisboa, Portugal
| | - S Reitamo
- Skin and Allergy Hospital, Helsinki University Hospital, Helsinki, Finland
| | - F Rodenas
- Polibienestar Research Institute, University of Valencia, Valencia, Spain
| | - M Roman Rodriguez
- Primary Care Respiratory Research Unit, Institutode Investigación Sanitaria de Palma IdisPa, Palma de Mallorca, Spain
| | - A Romano
- Allergy Unit, Complesso Integrato Columbus, Rome, Italy
| | - N Rosario
- Hospital de Clinicas, University of Parana, Parana, Brazil
| | - L Rosenwasser
- Department of Allergy, Asthma and Immunology, Children's Mercy Hospitals and Clinics and Pediatrics and Medicine University of Misouri-Kansas City School of Medicine, Kansas City, MI, USA
| | - M Rottem
- Division of Allergy Asthma and Clinical Immunology, Emek Medical Center, Afula, Israel
| | - M Sanchez-Borges
- Allergy and Clinical Immunology Department, Centro Médico-Docente la, Trinidad, Venezuela
- Clínica El Avila, 6a transversal Urb, Caracas, Venezuela
| | - G K Scadding
- The Royal National TNE Hospital, University College London, London, UK
| | - E Serrano
- Otolaryngology and Head & Neck Surgery, CHU Rangueil-Larrey, Toulouse, France
| | - P Schmid-Grendelmeier
- Allergy Unit, Department of Dermatology, University Hospital of Zurich, Zürich, Switzerland
| | - A Sheikh
- Allergy and Respiratory Research Group, Medical School, Centre for Population Health Sciences, The University of Edinburgh, Edinburgh, UK
| | - F E R Simons
- Department of Pediatrics & Child Health, Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - J C Sisul
- Sociedad Paraguaya de Alergia Asma e Inmunologıa, Paraguay, Paraguay
| | - I Skrindo
- Department of Paediatrics, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - H A Smit
- Julius Center of Health Sciences and Primary Care, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - D Solé
- Division of Allergy, Clinical Immunology and Rheumatology, Department of Pediatrics, Federal University of São Paulo, São Paulo, Brazil
| | - T Sooronbaev
- Kyrgyzstan National Centre of Cardiology and Internal medicine, Euro-Asian respiratory Society, Bishkek, Kyrgyzstan
| | - O Spranger
- Global Allergy and Asthma Platform GAAPP, Vienna, Austria
| | - R Stelmach
- Pulmonary Division, Heart Institute (InCor), Hospital da Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - T Strandberg
- European Union GeriatricMedicine Society, Vienna, Austria
| | - J Sunyer
- Centre for Research in Environmental Epidemiology, Barcelona, Spain
- Hospital del Mar Research Institute, Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Barcelona, Spain
- Department of Experimental and Health Sciences, University of Pompeu Fabra, Barcelona, Spain
| | - C Thijs
- Department of Epidemiology, CAPHRI School of Public Health and Primary Care, Maastricht University, Maastricht, The Netherlands
| | - A Todo-Bom
- Centre of Pneumology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - M Triggiani
- Division of Allergy and Clinical Immunology, University of Salerno, Salerno, Italy
| | - R Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - A L Valero
- Pneumology and Allergy Department, Hospital Clínic, Clinical & Experimental Respiratory Immunoallergy, IDIBAPS, Barcelona, Spain
| | - M van Hage
- Clinical Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - O Vandenplas
- Department of Chest Medicine, Centre Hospitalier Universitaire Dinant-Godinne, Université Catholique de Louvain, Yvoir, Belgium
| | - G Vezzani
- Pulmonary Unit, Department of Cardiology, Thoracic and Vascular Medicine, Arcispedale S.Maria Nuova/IRCCS, Research Hospital, Reggio Emilia, Italy
- Regional Agency for Health and Social Care, Reggio Emilia, Italy
| | - P Vichyanond
- Division of Allergy and Immunology, Department of Pediatrics, Siriraj Hospital, Mahidol University Faculty of Medicine, Bangkok, Thailand
| | - G Viegi
- Pulmonary Environmental Epidemiology Unit, CNR Institute of Clinical Physiology, Pisa, Italy
- CNR Institute of Biomedicine and Molecular Immunology "A. Monroy", Palermo, Italy
| | - M Wagenmann
- Department of Otorhinolaryngology, HNO-Klinik, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | | | - D Y Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| | - U Wahn
- Pediatric Pneumology and Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - D M Williams
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - J Wright
- Bradford Institute for Health Research, Bradford Royal Infirmary, Bradford, UJ, USA
| | - B P Yawn
- Department of Research, Olmsted Medical Center, Rochester, MN, USA
| | - P K Yiallouros
- Cyprus International Institute for Environmental & Public Health in Association with Harvard School of Public Health, Cyprus University of Technology, Limassol, Cyprus
- Department of Pediatrics, Hospital "Archbishop Makarios III", Nicosia, Cyprus
| | - O M Yusuf
- The Allergy and Asthma Institute, Islamabad, Pakistan
| | - H J Zar
- Department of Paediatrics and Child Health, Red Cross Children's Hospital, MRC Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - M E Zernotti
- Universidad Católica de Córdoba, Córdoba, Argentina
| | - L Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - N Zhong
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - M Zidarn
- University Clinic of Respiratory and Allergic Diseases, Golnik, Slovenia
| | - J Mercier
- Vice President for Research, University Montpellier, Montpellier, France
| |
Collapse
|
49
|
Weatherly K, Bettonville M, Torres D, Kohler A, Goriely S, Braun MY. Functional profile of S100A4-deficient T cells. IMMUNITY INFLAMMATION AND DISEASE 2015; 3:431-44. [PMID: 26734465 PMCID: PMC4693724 DOI: 10.1002/iid3.85] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/04/2015] [Accepted: 08/21/2015] [Indexed: 12/12/2022]
Abstract
The protein S100A4 is best known for its significant role in promoting motility and invasive capacity of cancer cells. Since S100A4 expression has been reported also in T cells, we analyzed its potential role in T cell motility and inflammation. Using S100a4(+/Gfp) mice, we show here that S100A4 is exclusively expressed by memory T cells of CD4(+) or CD8(+) subpopulations, predominantly of the effector memory T cell subtype. However, the protein was not required for in vitro memory T cell migration toward gradients of the inflammatory chemokine CXCL10. Moreover, T cell memory response was normal in S100A4-deficient mice and lack of S100a4 gene expression did not induce any defect in promoting the development of protective immunity or inflammatory reactions leading to autoimmunity. Taken together, our results demonstrate that S100A4 activity is dispensable for T cell motility/migration and inflammatory potential.
Collapse
Affiliation(s)
- Kathleen Weatherly
- Institute for Medical Immunology Université Libre de Bruxelles (ULB) Gosselies Belgium
| | - Marie Bettonville
- Institute for Medical Immunology Université Libre de Bruxelles (ULB) Gosselies Belgium
| | - David Torres
- Institute for Medical Immunology Université Libre de Bruxelles (ULB) Gosselies Belgium
| | - Arnaud Kohler
- Institute for Medical Immunology Université Libre de Bruxelles (ULB) Gosselies Belgium
| | - Stanislas Goriely
- Institute for Medical Immunology Université Libre de Bruxelles (ULB) Gosselies Belgium
| | - Michel Y Braun
- Institute for Medical Immunology Université Libre de Bruxelles (ULB) Gosselies Belgium
| |
Collapse
|
50
|
Payne KJ, Benitez A, Dovat S. Translating basic science discoveries to clinical practice-Let us not repeat the naiveté of the pre-omics era. ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:46. [PMID: 25861601 DOI: 10.3978/j.issn.2305-5839.2015.01.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 01/22/2015] [Indexed: 11/14/2022]
Affiliation(s)
- Kimberly J Payne
- 1 Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda, CA 92350, USA ; 2 Transplant Institute, Loma Linda University Medical Center, CA 92354, USA ; 3 Department of Pediatrics, Pennsylvania State University Medical College, Hershey, PA 17033, USA
| | - Abigail Benitez
- 1 Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda, CA 92350, USA ; 2 Transplant Institute, Loma Linda University Medical Center, CA 92354, USA ; 3 Department of Pediatrics, Pennsylvania State University Medical College, Hershey, PA 17033, USA
| | - Sinisa Dovat
- 1 Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda, CA 92350, USA ; 2 Transplant Institute, Loma Linda University Medical Center, CA 92354, USA ; 3 Department of Pediatrics, Pennsylvania State University Medical College, Hershey, PA 17033, USA
| |
Collapse
|