1
|
Winheim E, Santos-Peral A, Ehm T, Rinke L, Riemer S, Zaucha M, Goresch S, Lehmann L, Eisenächer K, Pritsch M, Barba-Spaeth G, Straub T, Rothenfusser S, Krug AB. Interferon-induced activation of dendritic cells and monocytes by yellow fever vaccination correlates with early antibody responses. Proc Natl Acad Sci U S A 2025; 122:e2422236122. [PMID: 40333758 DOI: 10.1073/pnas.2422236122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 03/18/2025] [Indexed: 05/09/2025] Open
Abstract
Yellow fever vaccination provides long-lasting protection and is a unique model for studying the immune response to an acute RNA virus infection in humans. To elucidate the early innate immune events preceding the rapid generation of protective immunity, we performed transcriptome analysis of human blood dendritic cell (DC) and monocyte subpopulations before and 3, 7, 14, and 28 d after vaccination. We detected temporary upregulation of IFN-stimulated genes (ISG) in all DC and monocyte subsets on days 3 and 7 after vaccination as well as cell type-specific responses and response kinetics. Single-cell RNA sequencing revealed rapid appearance of activated DC and monocyte clusters dominated by ISGs, inflammatory chemokines, and genes involved in antigen processing and presentation. This was confirmed by flow cytometric analysis in a large cohort of vaccinees. We identified SIGLEC1/CD169 upregulation as a sensitive indicator of the transient IFN-induced activation state elicited in DCs and monocytes by YF17D vaccination correlating with early protective IgM antibody responses.
Collapse
Affiliation(s)
- Elena Winheim
- Institute for Immunology, Biomedical Center, Faculty of Medicine, LMU, Munich D-82152, Germany
| | - Antonio Santos-Peral
- Division of Clinical Pharmacology, University Hospital, Ludwig-Maximilans-Universität München, Munich D-80336, Germany
| | - Tamara Ehm
- Institute for Immunology, Biomedical Center, Faculty of Medicine, LMU, Munich D-82152, Germany
| | - Linus Rinke
- Institute for Immunology, Biomedical Center, Faculty of Medicine, LMU, Munich D-82152, Germany
| | - Sandra Riemer
- Institute for Immunology, Biomedical Center, Faculty of Medicine, LMU, Munich D-82152, Germany
| | - Magdalena Zaucha
- Division of Clinical Pharmacology, University Hospital, Ludwig-Maximilans-Universität München, Munich D-80336, Germany
- Einheit für Klinische Pharmakologie Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg D-85764, Germany
| | - Sebastian Goresch
- Division of Clinical Pharmacology, University Hospital, Ludwig-Maximilans-Universität München, Munich D-80336, Germany
| | - Lisa Lehmann
- Division of Clinical Pharmacology, University Hospital, Ludwig-Maximilans-Universität München, Munich D-80336, Germany
| | - Katharina Eisenächer
- Institute for Immunology, Biomedical Center, Faculty of Medicine, LMU, Munich D-82152, Germany
| | - Michael Pritsch
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU, Munich D-80802, Germany
| | - Giovanna Barba-Spaeth
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Unité de Virologie Structurale, Paris 75724, France
| | - Tobias Straub
- Core Facility Bioinformatics, Biomedical Center, Faculty of Medicine, LMU, Munich D-82152, Germany
| | - Simon Rothenfusser
- Division of Clinical Pharmacology, University Hospital, Ludwig-Maximilans-Universität München, Munich D-80336, Germany
- Einheit für Klinische Pharmakologie Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg D-85764, Germany
| | - Anne B Krug
- Institute for Immunology, Biomedical Center, Faculty of Medicine, LMU, Munich D-82152, Germany
| |
Collapse
|
2
|
Broomfield BJ, Tan CW, Qin RZ, Abberger H, Duckworth BC, Alvarado C, Dalit L, Lee CL, Shandre Mugan R, Mazrad ZA, Muramatsu H, Mackiewicz L, Williams BE, Chen J, Takanashi A, Fabb S, Pellegrini M, Rogers KL, Moon WJ, Pouton CW, Davis MJ, Nutt SL, Pardi N, Wimmer VC, Groom JR. Transient inhibition of type I interferon enhances CD8+ T cell stemness and vaccine protection. J Exp Med 2025; 222:e20241148. [PMID: 40062995 PMCID: PMC11893171 DOI: 10.1084/jem.20241148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/25/2024] [Accepted: 02/04/2025] [Indexed: 03/14/2025] Open
Abstract
Developing vaccines that promote CD8+ T cell memory is a challenge for infectious disease and cancer immunotherapy. TCF-1+ stem cell-like memory CD8+ T (TSCM) cells are important determinants of long-lived memory. Yet, the developmental requirements for TSCM cell formation are unclear. Here, we identify the temporal window for type I interferon receptor (IFNAR) blockade to drive TSCM cell generation following viral infection and mRNA-lipid nanoparticle vaccination. We reveal a reversible developmental trajectory where transcriptionally distinct TSCM cells emerged from a transitional precursor of exhausted T cellular state concomitant with viral clearance. TSCM cell differentiation correlated with T cell retention within the lymph node paracortex due to disrupted CXCR3 chemokine gradient formation. These effects were linked to increased antigen load and a counterintuitive increase in IFNγ, which controlled cell location. Vaccination with the IFNAR blockade promoted TSCM cell differentiation and enhanced protection against chronic infection. These findings propose an approach to vaccine design whereby modulation of inflammation promotes memory formation and function.
Collapse
Affiliation(s)
- Benjamin J. Broomfield
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Chin Wee Tan
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Raymond Z. Qin
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Hanna Abberger
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Brigette C. Duckworth
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Carolina Alvarado
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Lennard Dalit
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Chee Leng Lee
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Rekha Shandre Mugan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Zihnil A.I. Mazrad
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, Philadelphia, PA, USA
| | - Liana Mackiewicz
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Bailey E. Williams
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Jinjin Chen
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Asuka Takanashi
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Stewart Fabb
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Marc Pellegrini
- Centenary Institute of Cancer Medicine and Cell Biology, Camperdown, Australia
| | - Kelly L. Rogers
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | | | - Colin W. Pouton
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Melissa J. Davis
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
| | - Stephen L. Nutt
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, Philadelphia, PA, USA
| | - Verena C. Wimmer
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Joanna R. Groom
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| |
Collapse
|
3
|
Battisti P, Ykema MR, Kasal DN, Jennewein MF, Beaver S, Weight AE, Hanson D, Singh J, Bakken J, Cross N, Fusco P, Archer J, Reed S, Gerhardt A, Julander JG, Casper C, Voigt EA. A bivalent self-amplifying RNA vaccine against yellow fever and Zika viruses. Front Immunol 2025; 16:1569454. [PMID: 40364846 PMCID: PMC12069283 DOI: 10.3389/fimmu.2025.1569454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 04/08/2025] [Indexed: 05/15/2025] Open
Abstract
Introduction Yellow fever (YFV) and Zika (ZIKV) viruses cause significant morbidity and mortality, despite the existence of an approved YFV vaccine and the development of multiple ZIKV vaccine candidates to date. New technologies may improve access to vaccines against these pathogens. We previously described a nanostructured lipid carrier (NLC)-delivered self-amplifying RNA (saRNA) vaccine platform with excellent thermostability and immunogenicity, appropriate for prevention of tropical infectious diseases. Methods YFV and ZIKV prM-E antigen-expressing saRNA constructs were created using a TC-83 strain Venezuelan equine encephalitis virus-based replicon and complexed with NLC by simple mixing. Monovalent and bivalent vaccine formulations were injected intramuscularly into C57BL/6 mice and Syrian golden hamsters, and the magnitude, durability, and protective efficacy of the resulting immune responses were then characterized. Results and discussion Monovalent vaccines established durable neutralizing antibody responses to their respective flaviviral targets, with little evidence of cross-neutralization. Both vaccines additionally elicited robust antigen-reactive CD4+ and CD8+ T cell populations. Notably, humoral responses to YFV saRNA-NLC vaccination were comparable to those in YF-17D-vaccinated animals. Bivalent formulations established humoral and cellular responses against both viral targets, commensurate to those established by monovalent vaccines, without evidence of saRNA interference or immune competition. Finally, both monovalent and bivalent vaccines completely protected mice and hamsters against lethal ZIKV and YFV challenge. We present a bivalent saRNA-NLC vaccine against YFV and ZIKV capable of inducing robust and efficacious neutralizing antibody and cellular immune responses against both viruses. These data support the development of other multivalent saRNA-based vaccines against infectious diseases.
Collapse
Affiliation(s)
- Peter Battisti
- Access to Advanced Health Institute (AAHI), formerly Infectious Disease Research Institute, Seattle, WA, United States
| | - Matthew R. Ykema
- Access to Advanced Health Institute (AAHI), formerly Infectious Disease Research Institute, Seattle, WA, United States
| | - Darshan N. Kasal
- Access to Advanced Health Institute (AAHI), formerly Infectious Disease Research Institute, Seattle, WA, United States
| | - Madeleine F. Jennewein
- Access to Advanced Health Institute (AAHI), formerly Infectious Disease Research Institute, Seattle, WA, United States
| | - Samuel Beaver
- Access to Advanced Health Institute (AAHI), formerly Infectious Disease Research Institute, Seattle, WA, United States
| | - Abbie E. Weight
- Institute for Antiviral Research, Utah State University, Logan, UT, United States
| | - Derek Hanson
- Infectious Disease Research Institute, Seattle, WA, United States
| | - Jasneet Singh
- Access to Advanced Health Institute (AAHI), formerly Infectious Disease Research Institute, Seattle, WA, United States
| | - Julie Bakken
- Access to Advanced Health Institute (AAHI), formerly Infectious Disease Research Institute, Seattle, WA, United States
| | - Noah Cross
- Access to Advanced Health Institute (AAHI), formerly Infectious Disease Research Institute, Seattle, WA, United States
| | - Pauline Fusco
- Access to Advanced Health Institute (AAHI), formerly Infectious Disease Research Institute, Seattle, WA, United States
| | - Jacob Archer
- Infectious Disease Research Institute, Seattle, WA, United States
| | - Sierra Reed
- Access to Advanced Health Institute (AAHI), formerly Infectious Disease Research Institute, Seattle, WA, United States
| | - Alana Gerhardt
- Access to Advanced Health Institute (AAHI), formerly Infectious Disease Research Institute, Seattle, WA, United States
| | - Justin G. Julander
- Institute for Antiviral Research, Utah State University, Logan, UT, United States
| | - Corey Casper
- Access to Advanced Health Institute (AAHI), formerly Infectious Disease Research Institute, Seattle, WA, United States
- Department of Medicine, University of Washington, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
- Vaccine and Infectious Disease Division, Fred Hutch Cancer Center, Seattle, WA, United States
| | - Emily A. Voigt
- Access to Advanced Health Institute (AAHI), formerly Infectious Disease Research Institute, Seattle, WA, United States
| |
Collapse
|
4
|
Yin H, Chen J, Li C. Immune Memory: A New Frontier in Treating Recurrent Inflammatory Skin Diseases. Clin Rev Allergy Immunol 2025; 68:31. [PMID: 40100550 DOI: 10.1007/s12016-025-09039-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2025] [Indexed: 03/20/2025]
Abstract
The recurrence of inflammatory skin diseases represents a significant challenge in clinical practice, primarily mediated by immune memory. In inflammatory skin diseases, immune memory encompasses adaptive immune memory, trained immunity, and inflammatory memory, which are conducted by adaptive immune cells, innate immune cells, and structural cells, respectively. Adaptive immune memory is established through gene rearrangement, leading to antigen-specific immune memory. In contrast, trained immunity and inflammatory memory are formed through epigenetic and metabolic reprogramming, resulting in non-specific immune memory. Different types of immune memory work synergistically to aggravate localized inflammation in recurrent inflammatory skin diseases. However, immune memory in specific cells, such as macrophages, may also play an immunoregulatory role under certain conditions. We reviewed the immune memory mechanisms in different inflammatory skin diseases and discussed future strategies for targeted regulation of the molecular mechanisms underlying immune memory, such as targeted biological agents and epigenetic modifications. Additionally, we explored the potential for precise regulation of immune memory and its application in personalized treatment for recurrent inflammatory skin diseases.
Collapse
Affiliation(s)
- Hang Yin
- Department of Dermatology, Xijing Hospital, Forth Military Medical University, Xi'an, 710032, China
| | - Jianru Chen
- Department of Dermatology, Xijing Hospital, Forth Military Medical University, Xi'an, 710032, China.
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, 200433, China.
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Forth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
5
|
Fahnøe U, Feng S, Underwood AP, Jacobsen K, Ameri A, Blicher TH, Sølund CS, Rosenberg BR, Brix L, Weis N, Bukh J. T cell receptor usage and epitope specificity amongst CD8 + and CD4 + SARS-CoV-2-specific T cells. Front Immunol 2025; 16:1510436. [PMID: 40092978 PMCID: PMC11906682 DOI: 10.3389/fimmu.2025.1510436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/02/2025] [Indexed: 03/19/2025] Open
Abstract
Introduction The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has highlighted the critical importance of understanding protective long-lasting immune responses. This study investigates the epitope specificity, T cell receptor (TCR) usage, and phenotypic changes in SARS-CoV-2-specfic CD8+ and CD4+ T cells over time in convalescent individuals with COVID-19. Methods Peripheral blood mononuclear cells (PBMCs) were collected from 28 unvaccinated individuals with primary SARS-CoV-2 infection (6 identified as the D614G variant, clade 20C) and analyzed up to 12 months post-symptom onset. Antigen-specific CD8+ and CD4+ T cells were analyzed using flow cytometry and single-cell RNA sequencing (scRNAseq) using specific dextramer and antibody reagents. TCR clonotypes and activation markers were characterized to explore T cell dynamics. Results SARS-CoV-2-specific CD8+ T cells exhibited waning frequencies long-term, transitioning from memory-like to a naïve-like state. scRNAseq revealed specificity against both spike and non-spike antigens with increased CD95 and CD127 expression over time, indicating that naïve-like T cells may represent stem cell memory T cells, which are multipotent and self-renewing, likely important for long-lived immunity. TCR clonal expansion was observed mainly in memory T cells, with overlapping TCR beta chain (TRB)-complementary determining region 3 (CDR3) sequences between participants, suggesting shared public TCR epitope-specific repertoires against SARS-CoV-2. Further, unique spike-specific CD4+ T cells with high CD95 and CD127 expression were identified, which may play a crucial role in long-term protection. Discussion This study highlights epitope-specificity heterogeneity, with some immunodominant responses, and suggests a potential role for long-lived SARS-CoV-2-specific T cell immunity. Shared TCR repertoires offers insights into cross-reactive and protective T cell clones, providing valuable information for optimizing vaccine strategies against emerging SARS-CoV-2 variants. The findings underscore the critical role of cellular immunity in long-term protection against SARS-CoV-2 and emphasizes the importance of understanding T cell dynamics.
Collapse
Affiliation(s)
- Ulrik Fahnøe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Shan Feng
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Alexander P. Underwood
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | | | | | | | - Christina S. Sølund
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Brad R. Rosenberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Nina Weis
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| |
Collapse
|
6
|
Santos-Peral A, Zaucha M, Nikolova E, Yaman E, Puzek B, Winheim E, Goresch S, Scheck MK, Lehmann L, Dahlstroem F, Karimzadeh H, Thorn-Seshold J, Jia S, Luppa F, Pritsch M, Butt J, Metz-Zumaran C, Barba-Spaeth G, Endres S, Kim-Hellmuth S, Waterboer T, Krug AB, Rothenfusser S. Basal T cell activation predicts yellow fever vaccine response independently of cytomegalovirus infection and sex-related immune variations. Cell Rep Med 2025; 6:101946. [PMID: 39938525 PMCID: PMC11866508 DOI: 10.1016/j.xcrm.2025.101946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 09/19/2024] [Accepted: 01/15/2025] [Indexed: 02/14/2025]
Abstract
The live-attenuated yellow fever 17D (YF17D) vaccine is a model of acute viral infection that induces long-lasting protective immunity. Among immunocompetent adults, responses to YF17D vary significantly. To understand the sources of this variability, we investigate the influence of sex, age, human leukocyte antigen (HLA) type, and 20 prior infections on basal immune parameters and the cellular and antibody response to YF17D in 250 healthy young individuals. Multivariate regression found that sex and cytomegalovirus (CMV) infection significantly contribute to baseline immune variation but do not affect vaccine responses except for reduced YF17D-specific CD8+ frequencies in CMV-infected males. However, the abundance at baseline of non-specific cytokine-expressing T helper cells in circulation is associated with stronger vaccine responses, a state that smoking favors. Additionally, an elevated baseline level of interferon-stimulated CXCL10 is linked to poorer vaccination outcomes. Altogether, YF17D reactivity is conditioned by the baseline immune status independent of sex and CMV-related variations.
Collapse
Affiliation(s)
- Antonio Santos-Peral
- Division of Clinical Pharmacology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Magdalena Zaucha
- Division of Clinical Pharmacology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Elena Nikolova
- Division of Clinical Pharmacology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Ekin Yaman
- Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital Munich, Munich, Germany; Institute of Translational Genomics, Department of Computational Health, Helmholtz Munich, Munich, Germany
| | - Barbara Puzek
- Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital Munich, Munich, Germany; Institute of Translational Genomics, Department of Computational Health, Helmholtz Munich, Munich, Germany
| | - Elena Winheim
- Institute for Immunology, Biomedical Center, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Sebastian Goresch
- Division of Clinical Pharmacology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Magdalena K Scheck
- Division of Clinical Pharmacology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Lisa Lehmann
- Division of Clinical Pharmacology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Frank Dahlstroem
- Division of Clinical Pharmacology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Hadi Karimzadeh
- Division of Clinical Pharmacology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Julia Thorn-Seshold
- Division of Clinical Pharmacology, LMU University Hospital, LMU Munich, Munich, Germany; Faculty of Chemistry and Pharmacy, LMU Munich, Munich, Germany
| | - Shenzhi Jia
- Division of Clinical Pharmacology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Fabian Luppa
- Division of Infectious Diseases and Tropical Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Michael Pritsch
- Division of Infectious Diseases and Tropical Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Julia Butt
- Division of Infections and Cancer Epidemiology at the German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Camila Metz-Zumaran
- Division of Infections and Cancer Epidemiology at the German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Giovanna Barba-Spaeth
- Institut Pasteur, Université de Paris, CNRS UMR 3569, Unité de Virologie Structurale, Paris, France
| | - Stefan Endres
- Division of Clinical Pharmacology, LMU University Hospital, LMU Munich, Munich, Germany; Einheit für Klinische Pharmakologie (EKLiP) Helmholtz Zentrum München German Research Center for Environmental Health (HMGU), Neuherberg, Germany
| | - Sarah Kim-Hellmuth
- Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital Munich, Munich, Germany; Institute of Translational Genomics, Department of Computational Health, Helmholtz Munich, Munich, Germany
| | - Tim Waterboer
- Division of Infections and Cancer Epidemiology at the German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anne B Krug
- Institute for Immunology, Biomedical Center, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Simon Rothenfusser
- Division of Clinical Pharmacology, LMU University Hospital, LMU Munich, Munich, Germany; Einheit für Klinische Pharmakologie (EKLiP) Helmholtz Zentrum München German Research Center for Environmental Health (HMGU), Neuherberg, Germany.
| |
Collapse
|
7
|
Nguema L, Picard F, El Hajj M, Dupaty L, Fenwick C, Cardinaud S, Wiedemann A, Pantaleo G, Zurawski S, Centlivre M, Zurawski G, Lévy Y, Godot V. Subunit protein CD40.SARS.CoV2 vaccine induces SARS-CoV-2-specific stem cell-like memory CD8 + T cells. EBioMedicine 2025; 111:105479. [PMID: 39667270 PMCID: PMC11697708 DOI: 10.1016/j.ebiom.2024.105479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 12/14/2024] Open
Abstract
BACKGROUND Ideally, vaccination should induce protective long-lived humoral and cellular immunity. Current licensed COVID-19 mRNA vaccines focused on the spike (S) region induce neutralizing antibodies that rapidly wane. METHODS Herein, we show that a subunit vaccine (CD40.CoV2) targeting spike and nucleocapsid antigens to CD40-expressing cells elicits broad specific human (hu)Th1 CD4+ and CD8+ T cells in humanized mice. FINDINGS CD40.CoV2 vaccination selectively enriched long-lived spike- and nucleocapsid-specific CD8+ progenitors with stem-cell-like memory (Tscm) properties, whereas mRNA BNT162b2 induced effector memory CD8+ T cells. CD8+ Tscm cells produced IFNγ and TNF upon antigenic restimulation and showed a high proliferation rate. We demonstrate that CD40 activation is specifically required for the generation of huCD8+ Tscm cells. INTERPRETATION These results support the development of a CD40-vaccine platform capable of eliciting long-lasting T-cell immunity. FUNDING This work was supported by Inserm, Université Paris-Est Créteil, and the Investissements d'Avenir program, Vaccine Research Institute (VRI), managed by the ANR.
Collapse
Affiliation(s)
- Laury Nguema
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France
| | - Florence Picard
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France
| | - Marwa El Hajj
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France
| | - Léa Dupaty
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France
| | - Craig Fenwick
- Service of Immunology and Allergy Lausanne University Hospital, Swiss Vaccine Research Institute, University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Sylvain Cardinaud
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France
| | - Aurélie Wiedemann
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France
| | - Giuseppe Pantaleo
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France; Service of Immunology and Allergy Lausanne University Hospital, Swiss Vaccine Research Institute, University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Sandra Zurawski
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France; Baylor Scott and White Research Institute, Dallas, TX, United States
| | - Mireille Centlivre
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France
| | - Gerard Zurawski
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France; Baylor Scott and White Research Institute, Dallas, TX, United States
| | - Yves Lévy
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France; Assistance Publique-Hôpitaux de Paris, Groupe Henri-Mondor Albert-Chenevier, Service Immunologie Clinique, Créteil, France.
| | - Véronique Godot
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France.
| |
Collapse
|
8
|
Xiao J, Wang F, Yan H, Wang B, Su B, Lu X, Zhang T. Memory stem CD8 +T cells in HIV/Mtb mono- and co-infection: characteristics, implications, and clinical significance. Front Cell Infect Microbiol 2024; 14:1485825. [PMID: 39720790 PMCID: PMC11666416 DOI: 10.3389/fcimb.2024.1485825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/13/2024] [Indexed: 12/26/2024] Open
Abstract
Human immunodeficiency Virus (HIV) and Mycobacterium tuberculosis (Mtb) co-infection presents a significant public health challenge worldwide. Comprehensive assessment of the immune response in HIV/Mtb co-infection is complex and challenging. CD8+T cells play a pivotal role in the adaptive immune response to both HIV and Mtb. The differentiation of CD8+T cells follow a hierarchical pattern, with varying degrees of exhaustion throughout the process. Memory stem T cells (TSCM cells) is at the apex of the memory T lymphocyte system, which has recently emerged as a promising target in immunotherapy. In this context, we discuss the alterations of CD8+TSCM cells in HIV/Mtb mono- and co-infection, their implications and clinical significance, and potential for improving immunotherapy.
Collapse
Affiliation(s)
- Jing Xiao
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Fuchun Wang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Hongxia Yan
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Bo Wang
- Department of Respiratory Medicine, Beijing Fengtai Hospital of Integrated Traditional and Western Medicine, Beijing, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xiaofan Lu
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Schnyder JL, Bache BE, Welkers MRA, Spijker R, Schaumburg F, Goorhuis A, Grobusch MP, de Jong HK. Yellow fever breakthrough infections after yellow fever vaccination: a systematic review and meta-analysis. THE LANCET. MICROBE 2024; 5:100937. [PMID: 39522518 DOI: 10.1016/j.lanmic.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/12/2024] [Accepted: 06/28/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Yellow fever vaccination is considered to provide effective long-term immunity. However, yellow fever breakthrough infections in vaccinated patients have been reported. In this systematic review and meta-analysis we aimed to identify and summarise all documented symptomatic yellow fever breakthrough infections in the literature occurring less than 10 years and 10 years or more after primary yellow fever vaccination. METHODS We searched MEDLINE (Ovid), Embase (Ovid), and Global Index Medicus for records published between Jan 1, 1936 (introduction of yellow fever vaccination) and June 16, 2023. We included prospective and retrospective cohort studies, case series and reports, and epidemiological reports from national and international health organisations reporting symptomatic yellow fever among individuals vaccinated 30 days or more before symptom onset. We excluded cases vaccinated less than 30 days before symptom onset. The primary outcome for the meta-analysis was the proportions of vaccinees among virologically confirmed and probable cases of yellow fever (IgM seroconversion without seroconversion to other flaviviruses). Risk of bias was assessed with an adapted version of the Newcastle-Ottawa Scale. Records of moderate or good quality (probable or confirmed yellow fever diagnosis with documented proof of previous vaccination) were included for random-effects meta-analysis. This systematic review and meta-analysis is registered with PROSPERO, number CRD42023450205. FINDINGS After reviewing 1975 records, 37 records reported a total of 6951 yellow fever cases, of which 537 were vaccinated. 31 records were of low quality. Nine confirmed and 24 probable cases with proof of previous yellow fever vaccination were identified, all from Brazil. Confirmed cases were vaccinated 3 months to 3 years before symptom onset; of these patients two fell severely ill and died. The pooled proportion of verified yellow fever breakthrough infections among probable and confirmed cases was 3% (95% CI 1-19%). No confirmed yellow fever breakthrough infections were identified occurring 10 years or more after yellow fever vaccination. INTERPRETATION Yellow fever breakthrough infections documented in literature are rare, and not necessarily more common 10 years or more after primary yellow fever vaccination. This finding suggests that a single dose of yellow fever vaccination is sufficient to provide lifelong protective immunity against symptomatic yellow fever. FUNDING None.
Collapse
Affiliation(s)
- Jenny L Schnyder
- Amsterdam UMC, Location University of Amsterdam, Center for Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam Public Health - Global Health, and Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, Netherlands
| | - Bache E Bache
- Amsterdam UMC, Location University of Amsterdam, Center for Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam Public Health - Global Health, and Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, Netherlands; Masanga Medical Research Unit (MMRU), Masanga, Sierra Leone
| | - Matthijs R A Welkers
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Location University of Amsterdam, Amsterdam, Netherlands
| | - René Spijker
- Medical Library, Amsterdam Public Health, Amsterdam UMC, Location University of Amsterdam, Amsterdam, Netherlands
| | - Frieder Schaumburg
- Institute of Medical Microbiology, University Hospital Muenster, Muenster, Germany
| | - Abraham Goorhuis
- Amsterdam UMC, Location University of Amsterdam, Center for Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam Public Health - Global Health, and Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, Netherlands
| | - Martin P Grobusch
- Amsterdam UMC, Location University of Amsterdam, Center for Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam Public Health - Global Health, and Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, Netherlands; Masanga Medical Research Unit (MMRU), Masanga, Sierra Leone; Institute of Tropical Medicine, German Centre for Infection Research (DZIF), University of Tübingen, Tübingen, Germany; Centre de Recherches Médicales en Lambaréné (CERMEL), Lambaréné, Gabon; Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa.
| | - Hanna K de Jong
- Amsterdam UMC, Location University of Amsterdam, Center for Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam Public Health - Global Health, and Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, Netherlands.
| |
Collapse
|
10
|
Palianina D, Mietz J, Stühler C, Arnold B, Bantug G, Münz C, Chijioke O, Khanna N. Stem cell memory EBV-specific T cells control EBV tumor growth and persist in vivo. SCIENCE ADVANCES 2024; 10:eado2048. [PMID: 39178248 PMCID: PMC11343021 DOI: 10.1126/sciadv.ado2048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/19/2024] [Indexed: 08/25/2024]
Abstract
Adoptive T cell therapy (ACT), the therapeutic transfer of defined T cell immunity to patients, offers great potential in the fight against different human diseases including difficult-to-treat viral infections, but persistence and longevity of the cells are areas of concern. Very-early-differentiated stem cell memory T cells (TSCMs) have superior self-renewal, engraftment, persistence, and anticancer efficacy, but their potential for antiviral ACT remains unknown. Here, we developed a clinically scalable protocol for expanding Epstein-Barr virus (EBV)-specific TSCM-enriched T cells with high proportions of CD4+ T cells and broad EBV antigen coverage. These cells showed tumor control in a xenograft model of EBV-induced lymphoma and were superior to previous ACT protocols in terms of tumor infiltration, in vivo proliferation, persistence, proportion of functional CD4+ T cells, and diversity of EBV antigen specificity. Thus, our protocol may pave the way for the next generation of potent unmodified antigen-specific cell therapies for EBV-associated diseases, including tumors, and other indications.
Collapse
Affiliation(s)
- Darya Palianina
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Juliane Mietz
- Cellular Immunotherapy, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Claudia Stühler
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Brice Arnold
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Glenn Bantug
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Obinna Chijioke
- Cellular Immunotherapy, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
- Institute of Pathology and Medical Genetics, University Hospital Basel, Basel, Switzerland
| | - Nina Khanna
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
11
|
Guan L, Sun Y, Si Y, Yan Q, Han Z, Liu Y, Han T. A strategy to reconstitute immunity without GVHD via adoptive allogeneic Tscm therapy. Front Immunol 2024; 15:1367609. [PMID: 39035005 PMCID: PMC11259968 DOI: 10.3389/fimmu.2024.1367609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/19/2024] [Indexed: 07/23/2024] Open
Abstract
Introduction Adoption of allogeneic T cells directly supplements the number of T cells and rapidly induces T-cell immunity, which has good efficacy for treating some tumors and immunodeficiency diseases. However, poor adoptive T-cell engraftment and graft-versus-host disease (GVHD) limit the application of these methods. Alloreactive T-cell clones were eliminated from the donor T-cell repertoire, and the remaining T-cell clones were prepared as Tscm for T-cell adoptive treatment to reconstruct recipient T-cell immunity without GVHD. Methods The subjects in this study included three different strains of mice. Lymphocytes from mice (C57BL/6) were used as the donor T-cell repertoire, from which the Tscm allo-reactive T cell clone was depleted (ATD-Tscm). This was confirmed by showing that the Tscm was not responsive to the alloantigen of the recipient (BALB/c). To prepare ATD-Tscm cells, we used recipient lymphocytes as a simulator, and coculture of mouse and recipient lymphocytes was carried out for 7 days. Sorting of non-proliferative cells ensured that the prepared Tscm cells were nonresponsive. The sorted lymphocytes underwent further expansion by treatment with TWS119 and cytokines for an additional 10 days, after which the number of ATD-Tscm cells increased. The prepared Tscm cells were transferred into recipient mice to observe immune reconstitution and GVHD incidence. Results Our protocol began with the use of 1×107 donor lymphocytes and resulted in 1 ×107 ATD-Tscm cells after 17 days of preparation. The prepared ATD-Tscm cells exhibited a nonresponse upon restimulation of the recipient lymphocytes. Importantly, the prepared ATD-Tscm cells were able to bind long and reconstitute other T-cell subsets in vivo, effectively recognizing and answering the "foreign" antigen without causing GVHD after they were transferred into the recipients. Discussion Our strategy was succeeded to prepare ATD-Tscm cells from the donor T-cell repertoire. The prepared ATD-Tscm cells were able to reconstitute the immune system and prevent GVHD after transferred to the recipients. This study provides a good reference for generating ATD-Tscm for T-cell adoptive immunotherapy.
Collapse
Affiliation(s)
- Liping Guan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yunqin Sun
- Clinical Department, Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Yanli Si
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Qingya Yan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- Xinxiang Key laboratory for Molecular Oncology, Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, China
| | - Ziyu Han
- Xinxiang Key laboratory for Molecular Oncology, Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, China
| | - Youxun Liu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Tao Han
- Xinxiang Key laboratory for Molecular Oncology, Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
12
|
Broomfield BJ, Tan CW, Qin RZ, Duckworth BC, Alvarado C, Dalit L, Chen J, Mackiewicz L, Muramatsu H, Pellegrini M, Rogers KL, Moon WJ, Nutt SL, Davis MJ, Pardi N, Wimmer VC, Groom JR. Transient inhibition of type I interferon enhances CD8 + T cell stemness and vaccine protection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600763. [PMID: 38979239 PMCID: PMC11230403 DOI: 10.1101/2024.06.26.600763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Developing vaccines that promote CD8 + T cell memory is a challenge for infectious disease and cancer immunotherapy. TCF-1 + stem cell-like memory T (T SCM ) cells are important determinants of long-lived memory. Yet, the developmental requirements for T SCM formation are unclear. Here, we identify the temporal window for type I interferon (IFN-I) receptor (IFNAR) blockade to drive T SCM cell generation. T SCM cells were transcriptionally distinct and emerged from a transitional precursor of exhausted (T PEX ) cellular state concomitant with viral clearance. T SCM differentiation correlated with T cell retention within the lymph node paracortex, due to increased CXCR3 chemokine abundance which disrupted gradient formation. These affects were due a counterintuitive increase in IFNψ, which controlled cell location. Combining IFNAR inhibition with mRNA-LNP vaccination promoted specific T SCM differentiation and enhanced protection against chronic infection. These finding propose a new approach to vaccine design whereby modulation of inflammation promotes memory formation and function. HIGHLIGHTS Early, transient inhibition of the type I interferon (IFN) receptor (IFNAR) during acute viral infection promotes stem cell-like memory T (T SCM ) cell differentiation without establishing chronic infection. T SCM and precursor of exhausted (T PEX ) cellular states are distinguished transcriptionally and by cell surface markers. Developmentally, T SCM cell differentiation occurs via a transition from a T PEX state coinciding with viral clearance. Transient IFNAR blockade increases IFNψ production to modulate the ligands of CXCR3 and couple T SCM differentiation to cell retention within the T cell paracortex of the lymph node. Specific promotion of T SCM cell differentiation with nucleoside-modified mRNA-LNP vaccination elicits enhanced protection against chronic viral challenge.
Collapse
|
13
|
Pan YG, Bartolo L, Xu R, Patel BV, Zarnitsyna VI, Su LF. Preservation of naive-phenotype CD4+ T cells after vaccination contributes to durable immunity. JCI Insight 2024; 9:e180667. [PMID: 38861490 PMCID: PMC11383171 DOI: 10.1172/jci.insight.180667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024] Open
Abstract
Memory T cells are conventionally associated with durable recall responses. In our longitudinal analyses of CD4+ T cell responses to the yellow fever virus (YFV) vaccine by peptide-MHC tetramers, we unexpectedly found CD45RO-CCR7+ virus-specific CD4+ T cells that expanded shortly after vaccination and persisted months to years after immunization. Further phenotypic analyses revealed the presence of stem cell-like memory T cells within this subset. In addition, after vaccination T cells lacking known memory markers and functionally resembling genuine naive T cells were identified, referred to herein as marker-negative T (TMN) cells. Single-cell TCR sequencing detected expanded clonotypes within the TMN subset and identified TMN TCRs shared with memory and effector T cells. Longitudinal tracking of YFV-specific responses over subsequent years revealed superior stability of TMN cells, which correlated with the longevity of the overall tetramer+ population. These findings uncover additional complexity within the post-immune T cell compartment and implicate TMN cells in durable immune responses.
Collapse
Affiliation(s)
- Yi-Gen Pan
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Laurent Bartolo
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ruozhang Xu
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
| | - Bijal V Patel
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
| | | | - Laura F Su
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
14
|
Correa-Medero LO, Jankowski SE, Hong HS, Armas ND, Vijendra AI, Reynolds MB, Fogo GM, Awad D, Dils AT, Inoki KA, Williams RG, Ye AM, Svezhova N, Gomez-Rivera F, Collins KL, O'Riordan MX, Sanderson TH, Lyssiotis CA, Carty SA. ER-associated degradation adapter Sel1L is required for CD8 + T cell function and memory formation following acute viral infection. Cell Rep 2024; 43:114156. [PMID: 38687642 PMCID: PMC11194752 DOI: 10.1016/j.celrep.2024.114156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/06/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024] Open
Abstract
The maintenance of antigen-specific CD8+ T cells underlies the efficacy of vaccines and immunotherapies. Pathways contributing to CD8+ T cell loss are not completely understood. Uncovering the pathways underlying the limited persistence of CD8+ T cells would be of significant benefit for developing novel strategies of promoting T cell persistence. Here, we demonstrate that murine CD8+ T cells experience endoplasmic reticulum (ER) stress following activation and that the ER-associated degradation (ERAD) adapter Sel1L is induced in activated CD8+ T cells. Sel1L loss limits CD8+ T cell function and memory formation following acute viral infection. Mechanistically, Sel1L is required for optimal bioenergetics and c-Myc expression. Finally, we demonstrate that human CD8+ T cells experience ER stress upon activation and that ER stress is negatively associated with improved T cell functionality in T cell-redirecting therapies. Together, these results demonstrate that ER stress and ERAD are important regulators of T cell function and persistence.
Collapse
Affiliation(s)
- Luis O Correa-Medero
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Hanna S Hong
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nicholas D Armas
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Mack B Reynolds
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Garrett M Fogo
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Dominik Awad
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alexander T Dils
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Reid G Williams
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Nadezhda Svezhova
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Kathleen L Collins
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA; Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mary X O'Riordan
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Thomas H Sanderson
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shannon A Carty
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
15
|
Ingels J, De Cock L, Stevens D, Mayer RL, Théry F, Sanchez GS, Vermijlen D, Weening K, De Smet S, Lootens N, Brusseel M, Verstraete T, Buyle J, Van Houtte E, Devreker P, Heyns K, De Munter S, Van Lint S, Goetgeluk G, Bonte S, Billiet L, Pille M, Jansen H, Pascal E, Deseins L, Vantomme L, Verdonckt M, Roelandt R, Eekhout T, Vandamme N, Leclercq G, Taghon T, Kerre T, Vanommeslaeghe F, Dhondt A, Ferdinande L, Van Dorpe J, Desender L, De Ryck F, Vermassen F, Surmont V, Impens F, Menten B, Vermaelen K, Vandekerckhove B. Neoantigen-targeted dendritic cell vaccination in lung cancer patients induces long-lived T cells exhibiting the full differentiation spectrum. Cell Rep Med 2024; 5:101516. [PMID: 38626769 PMCID: PMC11148567 DOI: 10.1016/j.xcrm.2024.101516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/09/2024] [Accepted: 03/25/2024] [Indexed: 05/24/2024]
Abstract
Non-small cell lung cancer (NSCLC) is known for high relapse rates despite resection in early stages. Here, we present the results of a phase I clinical trial in which a dendritic cell (DC) vaccine targeting patient-individual neoantigens is evaluated in patients with resected NSCLC. Vaccine manufacturing is feasible in six of 10 enrolled patients. Toxicity is limited to grade 1-2 adverse events. Systemic T cell responses are observed in five out of six vaccinated patients, with T cell responses remaining detectable up to 19 months post vaccination. Single-cell analysis indicates that the responsive T cell population is polyclonal and exhibits the near-entire spectrum of T cell differentiation states, including a naive-like state, but excluding exhausted cell states. Three of six vaccinated patients experience disease recurrence during the follow-up period of 2 years. Collectively, these data support the feasibility, safety, and immunogenicity of this treatment in resected NSCLC.
Collapse
Affiliation(s)
- Joline Ingels
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, East-Flanders, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Easy-Flanders, Belgium
| | - Laurenz De Cock
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Easy-Flanders, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, East-Flanders, Belgium
| | - Dieter Stevens
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Easy-Flanders, Belgium; Respiratory Medicine, Ghent University Hospital, 9000 Ghent, East-Flanders, Belgium
| | - Rupert L Mayer
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Easy-Flanders, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, East-Flanders, Belgium; VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, East-Flanders, Belgium
| | - Fabien Théry
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, East-Flanders, Belgium; VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, East-Flanders, Belgium
| | - Guillem Sanchez Sanchez
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles, 1050 Brussels, Brussels, Belgium; Institute for Medical Immunology, Université Libre de Bruxelles, 1050 Brussels, Brussels, Belgium; Université Libre de Bruxelles Center for Research in Immunology, Université Libre de Bruxelles, 1050 Brussels, Brussels, Belgium; WELBIO Department, WEL Research Institute, 1300 Wavre, Walloon Brabant, Belgium
| | - David Vermijlen
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles, 1050 Brussels, Brussels, Belgium; Institute for Medical Immunology, Université Libre de Bruxelles, 1050 Brussels, Brussels, Belgium; Université Libre de Bruxelles Center for Research in Immunology, Université Libre de Bruxelles, 1050 Brussels, Brussels, Belgium; WELBIO Department, WEL Research Institute, 1300 Wavre, Walloon Brabant, Belgium
| | - Karin Weening
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, East-Flanders, Belgium
| | - Saskia De Smet
- GMP Unit Cell Therapy, Ghent University Hospital, 9000 Ghent, East-Flanders, Belgium
| | - Nele Lootens
- GMP Unit Cell Therapy, Ghent University Hospital, 9000 Ghent, East-Flanders, Belgium
| | - Marieke Brusseel
- GMP Unit Cell Therapy, Ghent University Hospital, 9000 Ghent, East-Flanders, Belgium
| | - Tasja Verstraete
- Respiratory Medicine, Ghent University Hospital, 9000 Ghent, East-Flanders, Belgium
| | - Jolien Buyle
- Respiratory Medicine, Ghent University Hospital, 9000 Ghent, East-Flanders, Belgium
| | - Eva Van Houtte
- GMP Unit Cell Therapy, Ghent University Hospital, 9000 Ghent, East-Flanders, Belgium
| | - Pam Devreker
- GMP Unit Cell Therapy, Ghent University Hospital, 9000 Ghent, East-Flanders, Belgium
| | - Kelly Heyns
- GMP Unit Cell Therapy, Ghent University Hospital, 9000 Ghent, East-Flanders, Belgium
| | - Stijn De Munter
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, East-Flanders, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Easy-Flanders, Belgium
| | - Sandra Van Lint
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Easy-Flanders, Belgium; Respiratory Medicine, Ghent University Hospital, 9000 Ghent, East-Flanders, Belgium
| | - Glenn Goetgeluk
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, East-Flanders, Belgium
| | - Sarah Bonte
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Easy-Flanders, Belgium; VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, East-Flanders, Belgium
| | - Lore Billiet
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, East-Flanders, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Easy-Flanders, Belgium
| | - Melissa Pille
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, East-Flanders, Belgium
| | - Hanne Jansen
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, East-Flanders, Belgium
| | - Eva Pascal
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, East-Flanders, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Easy-Flanders, Belgium
| | - Lucas Deseins
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, East-Flanders, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Easy-Flanders, Belgium
| | - Lies Vantomme
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, East-Flanders, Belgium
| | - Maarten Verdonckt
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, East-Flanders, Belgium
| | - Ria Roelandt
- VIB Single Cell Core, VIB, 9000/3000 Ghent/Leuven, East-Flanders/Flemish Brabant, Belgium
| | - Thomas Eekhout
- VIB Single Cell Core, VIB, 9000/3000 Ghent/Leuven, East-Flanders/Flemish Brabant, Belgium
| | - Niels Vandamme
- VIB Single Cell Core, VIB, 9000/3000 Ghent/Leuven, East-Flanders/Flemish Brabant, Belgium
| | - Georges Leclercq
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, East-Flanders, Belgium
| | - Tom Taghon
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, East-Flanders, Belgium
| | - Tessa Kerre
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Easy-Flanders, Belgium; VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, East-Flanders, Belgium; Hematology, Ghent University Hospital, 9000 Ghent, East-Flanders, Belgium
| | - Floris Vanommeslaeghe
- Nephrology, Ghent University Hospital, Ghent University, 9000 Ghent, East-Flanders, Belgium
| | - Annemieke Dhondt
- Nephrology, Ghent University Hospital, Ghent University, 9000 Ghent, East-Flanders, Belgium
| | - Liesbeth Ferdinande
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Easy-Flanders, Belgium; Pathology, Ghent University Hospital, 9000 Ghent, East-Flanders, Belgium
| | - Jo Van Dorpe
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Easy-Flanders, Belgium; Pathology, Ghent University Hospital, 9000 Ghent, East-Flanders, Belgium
| | - Liesbeth Desender
- Thoracic and Vascular Surgery, Ghent University Hospital, 9000 Ghent, East-Flanders, Belgium
| | - Frederic De Ryck
- Thoracic and Vascular Surgery, Ghent University Hospital, 9000 Ghent, East-Flanders, Belgium
| | - Frank Vermassen
- Thoracic and Vascular Surgery, Ghent University Hospital, 9000 Ghent, East-Flanders, Belgium
| | - Veerle Surmont
- Respiratory Medicine, Ghent University Hospital, 9000 Ghent, East-Flanders, Belgium
| | - Francis Impens
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, East-Flanders, Belgium; VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, East-Flanders, Belgium
| | - Björn Menten
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Easy-Flanders, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, East-Flanders, Belgium
| | - Karim Vermaelen
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Easy-Flanders, Belgium; Respiratory Medicine, Ghent University Hospital, 9000 Ghent, East-Flanders, Belgium.
| | - Bart Vandekerckhove
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, East-Flanders, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Easy-Flanders, Belgium; GMP Unit Cell Therapy, Ghent University Hospital, 9000 Ghent, East-Flanders, Belgium.
| |
Collapse
|
16
|
Sanchez-Felipe L, Alpizar YA, Ma J, Coelmont L, Dallmeier K. YF17D-based vaccines - standing on the shoulders of a giant. Eur J Immunol 2024; 54:e2250133. [PMID: 38571392 DOI: 10.1002/eji.202250133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 02/11/2024] [Accepted: 02/16/2024] [Indexed: 04/05/2024]
Abstract
Live-attenuated yellow fever vaccine (YF17D) was developed in the 1930s as the first ever empirically derived human vaccine. Ninety years later, it is still a benchmark for vaccines made today. YF17D triggers a particularly broad and polyfunctional response engaging multiple arms of innate, humoral and cellular immunity. This unique immunogenicity translates into an extraordinary vaccine efficacy and outstanding longevity of protection, possibly by single-dose immunization. More recently, progress in molecular virology and synthetic biology allowed engineering of YF17D as a powerful vector and promising platform for the development of novel recombinant live vaccines, including two licensed vaccines against Japanese encephalitis and dengue, even in paediatric use. Likewise, numerous chimeric and transgenic preclinical candidates have been described. These include prophylactic vaccines against emerging viral infections (e.g. Lassa, Zika and SARS-CoV-2) and parasitic diseases (e.g. malaria), as well as therapeutic applications targeting persistent infections (e.g. HIV and chronic hepatitis), and cancer. Efforts to overcome historical safety concerns and manufacturing challenges are ongoing and pave the way for wider use of YF17D-based vaccines. In this review, we summarize recent insights regarding YF17D as vaccine platform, and how YF17D-based vaccines may complement as well as differentiate from other emerging modalities in response to unmet medical needs and for pandemic preparedness.
Collapse
Affiliation(s)
- Lorena Sanchez-Felipe
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| | - Yeranddy A Alpizar
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| | - Ji Ma
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| | - Lotte Coelmont
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| | - Kai Dallmeier
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Molecular Vaccinology and Vaccine Discovery, Leuven, Belgium
| |
Collapse
|
17
|
Pan YG, Bartolo L, Xu R, Patel B, Zarnitsyna V, Su L. Differentiation marker-negative CD4 + T cells persist after yellow fever virus vaccination and contribute to durable memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.584523. [PMID: 38559113 PMCID: PMC10979963 DOI: 10.1101/2024.03.11.584523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Factors that contribute to durable immunological memory remain incompletely understood. In our longitudinal analyses of CD4+ T cell responses to the yellow fever virus (YFV) vaccine by peptide-MHC tetramers, we unexpectedly found naïve phenotype virus-specific CD4+ T cells that persisted months to years after immunization. These Marker negative T cells (TMN) lacked CD95, CXCR3, CD11a, and CD49d surface protein expression, distinguishing them from previously discovered stem-cell memory T cells. Functionally, they resembled genuine naïve T cells upon in vitro stimulation. Single-cell TCR sequencing detected expanded clonotypes within the TMN subset and identified a shared repertoire with memory and effector T cells. T cells expressing TMN-associated TCRs were rare before vaccination, suggesting their expansion following vaccination. Longitudinal tracking of YFV-specific responses over the subsequent years revealed superior stability of the TMN subset and their association with the longevity of the overall population. The identification of these long-lived, antigen-experienced T cells may inform the design of durable T cell-based vaccines and engineered T cell therapies.
Collapse
Affiliation(s)
- Yi-Gen Pan
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laurent Bartolo
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ruozhang Xu
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Corporal Michael J Crescenz VA Medical Center, Philadelphia, PA, 19104, USA
| | - Bijal Patel
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Corporal Michael J Crescenz VA Medical Center, Philadelphia, PA, 19104, USA
| | - Veronika Zarnitsyna
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Laura Su
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Corporal Michael J Crescenz VA Medical Center, Philadelphia, PA, 19104, USA
| |
Collapse
|
18
|
Abdala-Torres T, Campi-Azevedo AC, da Silva-Pereira RA, Dos Santos LI, Henriques PM, Costa-Rocha IA, Otta DA, Peruhype-Magalhães V, Teixeira-Carvalho A, Araújo MSS, Fernandes EG, Sato HK, Fantinato FFST, Domingues CMAS, Kallás EG, Tomiyama HTI, Lemos JAC, Coelho-Dos-Reis JG, de Lima SMB, Schwarcz WD, de Souza Azevedo A, Trindade GF, Ano Bom APD, da Silva AMV, Fernandes CB, Camacho LAB, de Sousa Maia MDL, Martins-Filho OA, do Antonelli LRDV. Immune response induced by standard and fractional doses of 17DD yellow fever vaccine. NPJ Vaccines 2024; 9:54. [PMID: 38459059 PMCID: PMC10923915 DOI: 10.1038/s41541-024-00836-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/05/2024] [Indexed: 03/10/2024] Open
Abstract
The re-emergence of yellow fever (YF) urged new mass vaccination campaigns and, in 2017, the World Health Organization approved the use of the fractional dose (FD) of the YF vaccine due to stock shortage. In an observational cross-sectional investigation, we have assessed viremia, antibodies, soluble mediators and effector and memory T and B-cells induced by primary vaccination of volunteers with FD and standard dose (SD). Similar viremia and levels of antibodies and soluble markers were induced early after immunization. However, a faster decrease in the latter was observed after SD. The FD led to a sustained expansion of helper T-cells and an increased expression of activation markers on T-cells early after vaccination. Although with different kinetics, expansion of plasma cells was induced upon SD and FD immunization. Integrative analysis reveals that FD induces a more complex network involving follicular helper T cells and B-cells than SD. Our findings substantiate that FD can replace SD inducing robust correlates of protective immune response against YF.
Collapse
Affiliation(s)
- Thais Abdala-Torres
- Laboratório de Biologia e Imunologia de Doenças Infecciosas e Parasitárias, Instituto René Rachou, FIOCRUZ-Minas, Belo Horizonte, MG, Brazil
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Carolina Campi-Azevedo
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, FIOCRUZ-Minas, Belo Horizonte, MG, Brazil
| | - Rosiane Aparecida da Silva-Pereira
- Laboratório de Biologia e Imunologia de Doenças Infecciosas e Parasitárias, Instituto René Rachou, FIOCRUZ-Minas, Belo Horizonte, MG, Brazil
| | | | - Priscilla Miranda Henriques
- Laboratório de Biologia e Imunologia de Doenças Infecciosas e Parasitárias, Instituto René Rachou, FIOCRUZ-Minas, Belo Horizonte, MG, Brazil
| | - Ismael Artur Costa-Rocha
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, FIOCRUZ-Minas, Belo Horizonte, MG, Brazil
| | - Dayane Andriotti Otta
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, FIOCRUZ-Minas, Belo Horizonte, MG, Brazil
| | - Vanessa Peruhype-Magalhães
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, FIOCRUZ-Minas, Belo Horizonte, MG, Brazil
| | - Andréa Teixeira-Carvalho
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, FIOCRUZ-Minas, Belo Horizonte, MG, Brazil
| | | | - Eder Gatti Fernandes
- Divisão de Imunização, Secretaria de Estado de Saúde de São Paulo, São Paulo, SP, Brazil
- Departamento de Vigilância das Doenças Transmissíveis, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, DF, Brazil
| | - Helena Keico Sato
- Divisão de Imunização, Secretaria de Estado de Saúde de São Paulo, São Paulo, SP, Brazil
| | | | | | - Esper Georges Kallás
- Departamento de Doenças Infecciosas e Parasitárias, Escola de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | | - Jordana Grazziela Coelho-Dos-Reis
- Laboratório de Virologia Básica e Aplicada, Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Sheila Maria Barbosa de Lima
- Departamento de Desenvolvimento Experimental e Pré-clínico, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Waleska Dias Schwarcz
- Laboratório de Análise Imunomecular, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Adriana de Souza Azevedo
- Laboratório de Análise Imunomecular, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Gisela Freitas Trindade
- Laboratório de Tecnologia Virológica, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Ana Paula Dinis Ano Bom
- Laboratório de Tecnologia Imunológica, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Andrea Marques Vieira da Silva
- Laboratório de Tecnologia Imunológica, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Camilla Bayma Fernandes
- Laboratório de Tecnologia Imunológica, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | | | - Maria de Lourdes de Sousa Maia
- Departamento de Assuntos Médicos, Estudos Clínicos e Vigilância Pós-Registro, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Olindo Assis Martins-Filho
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, FIOCRUZ-Minas, Belo Horizonte, MG, Brazil.
| | - Lis Ribeiro do Valle do Antonelli
- Laboratório de Biologia e Imunologia de Doenças Infecciosas e Parasitárias, Instituto René Rachou, FIOCRUZ-Minas, Belo Horizonte, MG, Brazil.
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
19
|
Hasani-Sadrabadi MM, Majedi FS, Zarubova J, Thauland TJ, Arumugaswami V, Hsiai TK, Bouchard LS, Butte MJ, Li S. Harnessing Biomaterials to Amplify Immunity in Aged Mice through T Memory Stem Cells. ACS NANO 2024; 18:6908-6926. [PMID: 38381620 DOI: 10.1021/acsnano.3c08559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The durability of a protective immune response generated by a vaccine depends on its ability to induce long-term T cell immunity, which tends to decline in aging populations. The longest protection appears to arise from T memory stem cells (TMSCs) that confer high expandability and effector functions when challenged. Here we engineered artificial antigen presenting cells (aAPC) with optimized size, stiffness and activation signals to induce human and mouse CD8+ TMSCs in vitro. This platform was optimized as a vaccine booster of TMSCs (Vax-T) with prolonged release of small-molecule blockade of the glycogen synthase kinase-3β together with target antigens. By using SARS-CoV-2 antigen as a model, we show that a single injection of Vax-T induces durable antigen-specific CD8+ TMSCs in young and aged mice, and generates humoral responses at a level stronger than or similar to soluble vaccines. This Vax-T approach can boost long-term immunity to fight infectious diseases, cancer, and other diseases.
Collapse
Affiliation(s)
| | - Fatemeh S Majedi
- Department of Bioengineering, University of California Los Angeles; Los Angeles, California 90095 United States
| | - Jana Zarubova
- Department of Bioengineering, University of California Los Angeles; Los Angeles, California 90095 United States
| | - Timothy J Thauland
- Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, University of California Los Angeles, Los Angeles, California 90095 United States
| | - Vaithilingaraja Arumugaswami
- Jonsson Comprehensive Cancer Center, University of California Los Angeles; Los Angeles, California 90095 United States
- Department of Molecular and Medical Pharmacology, University of California Los Angeles; Los Angeles, California 90095 United States
| | - Tzung K Hsiai
- Department of Bioengineering, University of California Los Angeles; Los Angeles, California 90095 United States
| | - Louis-S Bouchard
- Department of Bioengineering, University of California Los Angeles; Los Angeles, California 90095 United States
- Jonsson Comprehensive Cancer Center, University of California Los Angeles; Los Angeles, California 90095 United States
- Department of Chemistry and Biochemistry, University of California Los Angeles; Los Angeles, California 90095 United States
- The Molecular Biology Institute, University of California Los Angeles; Los Angeles, California 90095 United States
| | - Manish J Butte
- Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, University of California Los Angeles, Los Angeles, California 90095 United States
- Jonsson Comprehensive Cancer Center, University of California Los Angeles; Los Angeles, California 90095 United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles; Los Angeles, California 90095 United States
| | - Song Li
- Department of Bioengineering, University of California Los Angeles; Los Angeles, California 90095 United States
- Jonsson Comprehensive Cancer Center, University of California Los Angeles; Los Angeles, California 90095 United States
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles; Los Angeles, California 90095 United States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles; Los Angeles, California 90095 United States
| |
Collapse
|
20
|
Cianciotti BC, Magnani ZI, Ugolini A, Camisa B, Merelli I, Vavassori V, Potenza A, Imparato A, Manfredi F, Abbati D, Perani L, Spinelli A, Shifrut E, Ciceri F, Vago L, Di Micco R, Naldini L, Genovese P, Ruggiero E, Bonini C. TIM-3, LAG-3, or 2B4 gene disruptions increase the anti-tumor response of engineered T cells. Front Immunol 2024; 15:1315283. [PMID: 38510235 PMCID: PMC10953820 DOI: 10.3389/fimmu.2024.1315283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/05/2024] [Indexed: 03/22/2024] Open
Abstract
Background In adoptive T cell therapy, the long term therapeutic benefits in patients treated with engineered tumor specific T cells are limited by the lack of long term persistence of the infused cellular products and by the immunosuppressive mechanisms active in the tumor microenvironment. Exhausted T cells infiltrating the tumor are characterized by loss of effector functions triggered by multiple inhibitory receptors (IRs). In patients, IR blockade reverts T cell exhaustion but has low selectivity, potentially unleashing autoreactive clones and resulting in clinical autoimmune side effects. Furthermore, loss of long term protective immunity in cell therapy has been ascribed to the effector memory phenotype of the infused cells. Methods We simultaneously redirected T cell specificity towards the NY-ESO-1 antigen via TCR gene editing (TCRED) and permanently disrupted LAG3, TIM-3 or 2B4 genes (IRKO) via CRISPR/Cas9 in a protocol to expand early differentiated long-living memory stem T cells. The effector functions of the TCRED-IRKO and IR competent (TCRED-IRCOMP) cells were tested in short-term co-culture assays and under a chronic stimulation setting in vitro. Finally, the therapeutic efficacy of the developed cellular products were evaluated in multiple myeloma xenograft models. Results We show that upon chronic stimulation, TCRED-IRKO cells are superior to TCRED-IRCOMP cells in resisting functional exhaustion through different mechanisms and efficiently eliminate cancer cells upon tumor re-challenge in vivo. Our data indicate that TIM-3 and 2B4-disruption preserve T-cell degranulation capacity, while LAG-3 disruption prevents the upregulation of additional inhibitory receptors in T cells. Conclusion These results highlight that TIM-3, LAG-3, and 2B4 disruptions increase the therapeutic benefit of tumor specific cellular products and suggest distinct, non-redundant roles for IRs in anti-tumor responses.
Collapse
Affiliation(s)
| | - Zulma Irene Magnani
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessia Ugolini
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Barbara Camisa
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Innovative Immunotherapies Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ivan Merelli
- Institute for Biomedical Technologies, National Research Council, Segrate, Italy
| | - Valentina Vavassori
- Gene Transfer Technologies and New Gene Therapy Strategies Unit, San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessia Potenza
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonio Imparato
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Manfredi
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Danilo Abbati
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Perani
- Experimental Imaging Centre, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonello Spinelli
- Experimental Imaging Centre, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Eric Shifrut
- The School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Dotan Center for Advanced Therapies, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Fabio Ciceri
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Luca Vago
- Università Vita-Salute San Raffaele, Milan, Italy
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Raffaella Di Micco
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luigi Naldini
- Gene Transfer Technologies and New Gene Therapy Strategies Unit, San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Pietro Genovese
- Gene Transfer Technologies and New Gene Therapy Strategies Unit, San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Gene Therapy Program, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Department of Pediatric Oncology, Harvard Medical School, Boston, MA, United States
| | - Eliana Ruggiero
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Bonini
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
21
|
Pokharel J, Shryki I, Zwijnenburg AJ, Sandu I, Krumm L, Bekiari C, Avramov V, Heinbäck R, Lysell J, Eidsmo L, Harris HE, Gerlach C. The cellular microenvironment regulates CX3CR1 expression on CD8 + T cells and the maintenance of CX3CR1 + CD8 + T cells. Eur J Immunol 2024; 54:e2350658. [PMID: 37816219 DOI: 10.1002/eji.202350658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/12/2023]
Abstract
Expression levels of the chemokine receptor CX3CR1 serve as high-resolution marker delineating functionally distinct antigen-experienced T-cell states. The factors that influence CX3CR1 expression in T cells are, however, incompletely understood. Here, we show that in vitro priming of naïve CD8+ T cells failed to robustly induce CX3CR1, which highlights the shortcomings of in vitro priming settings in recapitulating in vivo T-cell differentiation. Nevertheless, in vivo generated memory CD8+ T cells maintained CX3CR1 expression during culture. This allowed us to investigate whether T-cell receptor ligation, cell death, and CX3CL1 binding influence CX3CR1 expression. T-cell receptor stimulation led to downregulation of CX3CR1. Without stimulation, CX3CR1+ CD8+ T cells had a selective survival disadvantage, which was enhanced by factors released from necrotic but not apoptotic cells. Exposure to CX3CL1 did not rescue their survival and resulted in a dose-dependent loss of CX3CR1 surface expression. At physiological concentrations of CX3CL1, CX3CR1 surface expression was only minimally reduced, which did not hamper the interpretability of T-cell differentiation states delineated by CX3CR1. Our data further support the broad utility of CX3CR1 surface levels as T-cell differentiation marker and identify factors that influence CX3CR1 expression and the maintenance of CX3CR1 expressing CD8+ T cells.
Collapse
Affiliation(s)
- Jyoti Pokharel
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Iman Shryki
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Anthonie J Zwijnenburg
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Ioana Sandu
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Laura Krumm
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Christina Bekiari
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Victor Avramov
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Rebecka Heinbäck
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Josefin Lysell
- Dermatology and Venereology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Liv Eidsmo
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
- Leo Foundation Skin Immunology Center, University of Copenhagen, Kobenhavn, Denmark
| | - Helena E Harris
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Carmen Gerlach
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| |
Collapse
|
22
|
Slavkovic-Lukic D, Fioravanti J, Martín-Santos A, Han E, Zhou J, Gattinoni L. Rapid Screening of CAR T Cell Functional Improvement Strategies by Highly Multiplexed Single-Cell Secretomics. Methods Mol Biol 2024; 2748:135-149. [PMID: 38070113 DOI: 10.1007/978-1-0716-3593-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The functional fitness of CAR T cells plays a crucial role in determining their clinical efficacy. Several strategies are being explored to increase cellular fitness, but screening these approaches in vivo is expensive and time-consuming, limiting the number of strategies that can be tested at one time. The presence of polyfunctional CAR T cells has emerged as a critical parameter correlating with clinical responses. However, even sophisticated multiplexed secretomic assays often fail to detect differences in cytokine release due to the functional heterogeneity of CAR T cell products. Here, we describe a highly multiplexed single-cell secretomic assay based on the IsoLight platform to rapidly evaluate the impact of new pharmacologic or gene-engineering approaches aiming at improving CAR T cell function. As a key study, we focus on CD19-specific CAR CD8+ T cells modulated by miR-155 overexpression, but the protocol can be applied to characterize other functional immune cell modulation strategies.
Collapse
Affiliation(s)
- Dragana Slavkovic-Lukic
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany.
| | - Jessica Fioravanti
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany
| | - Azucena Martín-Santos
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany
| | - Edward Han
- IsoPlexis Corporation, Branford, CT, USA
| | - Jing Zhou
- IsoPlexis Corporation, Branford, CT, USA
| | - Luca Gattinoni
- Division of Functional Immune Cell Modulation, Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany.
- Center for Immunomedicine in Transplantation and Oncology (CITO), University Hospital Regensburg, Regensburg, Germany.
- University of Regensburg, Regensburg, Germany.
| |
Collapse
|
23
|
Liu Y, Wang T, Ma W, Jia Z, Wang Q, Zhang M, Luo Y, Sun H. Metabolic reprogramming in the tumor microenvironment: unleashing T cell stemness for enhanced cancer immunotherapy. Front Pharmacol 2023; 14:1327717. [PMID: 38169800 PMCID: PMC10758489 DOI: 10.3389/fphar.2023.1327717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
T cells play a pivotal role in the immune system by distinguishing between various harmful pathogens and cancerous cells within the human body and initiating an immune response. Within the tumor microenvironment (TME), immune effector T cells encounter both immunosuppressive cells and factors that hinder their functionality. Additionally, they endure robust and persistent antigenic stimulation, often leading to exhaustion and apoptosis. However, the stemness of T cells, characterized by their ability to survive and self-renew over extended periods, represents a primary target in immune checkpoint therapies such as anti-PD-1 therapy. T cell stemness encompasses specific memory T cell subsets and progenitor-exhausted T cells with stem cell-like properties. Therefore, understanding the impact of the TME on T cell stemness, including factors like K+, lactate, and H+, holds significant importance and can facilitate the mitigation of terminal T-cell depletion, the identification of potential resilient biomarkers or therapeutic targets resistant to immune checkpoint therapies, and ultimately lead to sustained anti-tumor effects. Thus, it offers a novel perspective for advancing tumor immunotherapy.
Collapse
Affiliation(s)
- Youhan Liu
- College of Sport and Health, Shandong Sport University, Jinan, China
| | - Tao Wang
- Department of Pediatric Surgery, Zibo Central Hospital, Zibo, China
| | - Wen Ma
- College of Sport and Health, Shandong Sport University, Jinan, China
| | - Zixuan Jia
- College of Sport and Health, Shandong Sport University, Jinan, China
| | - Qinglu Wang
- College of Sport and Health, Shandong Sport University, Jinan, China
| | - Maoling Zhang
- College of Sport and Health, Shandong Sport University, Jinan, China
| | - Ying Luo
- Department of Clinical Laboratory, Zibo Central Hospital, Zibo, China
| | - Hongmei Sun
- College of Sport and Health, Shandong Sport University, Jinan, China
| |
Collapse
|
24
|
Fenninger F, Sherwood KR, Wu V, Wong P, DeMarco ML, Wang M, Benedicto V, Dwarka KA, Günther OP, Tate L, Yoshida E, Keown PA, Kadatz M, Lan JH. Comprehensive immune profiling of SARS-CoV-2 infected kidney transplant patients. FRONTIERS IN TRANSPLANTATION 2023; 2:1261023. [PMID: 38993862 PMCID: PMC11235348 DOI: 10.3389/frtra.2023.1261023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/23/2023] [Indexed: 07/13/2024]
Abstract
Introduction The immune responses of kidney transplant recipients against SARS-CoV-2 remains under studied. Methods In this prospective pilot study, we performed comprehensive immune profiling using cellular, proteomic, and serologic assays on a cohort of 9 kidney transplant recipients and 12 non-transplant individuals diagnosed with COVID-19. Results Our data show that in addition to having reduced SARS-CoV-2 specific antibody levels, kidney transplant recipients exhibited significant cellular differences including a decrease in naïve-but increase in effector T cells, a high number of CD28+ CD4 effector memory T cells, and increased CD8 T memory stem cells compared with non-transplant patients. Furthermore, transplant patients had lower concentrations of serum cytokine MIP-1β as well as a less diverse T cell receptor repertoire. Conclusion Overall, our results show that compared to non-transplant patients, kidney transplant recipients with SARS-CoV-2 infection exhibit an immunophenotype that is reminiscent of the immune signature observed in patients with severe COVID-19.
Collapse
Affiliation(s)
- Franz Fenninger
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Karen R. Sherwood
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Vivian Wu
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Paaksum Wong
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Mari L. DeMarco
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, Providence Health Care, Vancouver, BC, Canada
| | - Meng Wang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Vincent Benedicto
- BC Provincial Immunology Laboratory, Vancouver Coastal Health, Vancouver, BC, Canada
| | - Krishna A. Dwarka
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - Logan Tate
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Eric Yoshida
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Division of Gastroenterology, University of British Columbia, Vancouver, BC, Canada
| | - Paul A. Keown
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Matthew Kadatz
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Division of Nephrology, University of British Columbia, Vancouver, BC, Canada
| | - James H. Lan
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Division of Nephrology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
25
|
Borgo GM, Rutishauser RL. Generating and measuring effective vaccine-elicited HIV-specific CD8 + T cell responses. Curr Opin HIV AIDS 2023; 18:331-341. [PMID: 37751362 PMCID: PMC10552829 DOI: 10.1097/coh.0000000000000824] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
PURPOSE OF REVIEW There is growing consensus that eliciting CD8 + T cells in addition to antibodies may be required for an effective HIV vaccine for both prevention and cure. Here, we review key qualities of vaccine-elicited CD8 + T cells as well as major CD8 + T cell-based delivery platforms used in recent HIV vaccine clinical trials. RECENT FINDINGS Much progress has been made in improving HIV immunogen design and delivery platforms to optimize CD8 + T cell responses. With regards to viral vectors, recent trials have tested newer chimp and human adenovirus vectors as well as a CMV vector. DNA vaccine immunogenicity has been increased by delivering the vaccines by electroporation and together with adjuvants as well as administering them as part of a heterologous regimen. In preclinical models, self-amplifying RNA vaccines can generate durable tissue-based CD8 + T cells. While it may be beneficial for HIV vaccines to recapitulate the functional and phenotypic features of HIV-specific CD8 + T cells isolated from elite controllers, most of these features are not routinely measured in HIV vaccine clinical trials. SUMMARY Identifying a vaccine capable of generating durable T cell responses that target mutationally vulnerable epitopes and that can rapidly intercept infecting or rebounding virus remains a challenge for HIV. Comprehensive assessment of HIV vaccine-elicited CD8 + T cells, as well as comparisons between different vaccine platforms, will be critical to advance our understanding of how to design better CD8 + T cell-based vaccines for HIV.
Collapse
Affiliation(s)
- Gina M Borgo
- Department of Medicine, University of California, San Francisco, California, USA
| | | |
Collapse
|
26
|
Thomson Z, He Z, Swanson E, Henderson K, Phalen C, Zaim SR, Pebworth MP, Okada LY, Heubeck AT, Roll CR, Hernandez V, Weiss M, Genge PC, Reading J, Giles JR, Manne S, Dougherty J, Jasen CJ, Greenplate AR, Becker LA, Graybuck LT, Vasaikar SV, Szeto GL, Savage AK, Speake C, Buckner JH, Li XJ, Bumol TF, Wherry EJ, Torgerson TR, Vella LA, Henrickson SE, Skene PJ, Gustafson CE. Trimodal single-cell profiling reveals a novel pediatric CD8αα + T cell subset and broad age-related molecular reprogramming across the T cell compartment. Nat Immunol 2023; 24:1947-1959. [PMID: 37845489 PMCID: PMC10602854 DOI: 10.1038/s41590-023-01641-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 09/07/2023] [Indexed: 10/18/2023]
Abstract
Age-associated changes in the T cell compartment are well described. However, limitations of current single-modal or bimodal single-cell assays, including flow cytometry, RNA-seq (RNA sequencing) and CITE-seq (cellular indexing of transcriptomes and epitopes by sequencing), have restricted our ability to deconvolve more complex cellular and molecular changes. Here, we profile >300,000 single T cells from healthy children (aged 11-13 years) and older adults (aged 55-65 years) by using the trimodal assay TEA-seq (single-cell analysis of mRNA transcripts, surface protein epitopes and chromatin accessibility), which revealed that molecular programming of T cell subsets shifts toward a more activated basal state with age. Naive CD4+ T cells, considered relatively resistant to aging, exhibited pronounced transcriptional and epigenetic reprogramming. Moreover, we discovered a novel CD8αα+ T cell subset lost with age that is epigenetically poised for rapid effector responses and has distinct inhibitory, costimulatory and tissue-homing properties. Together, these data reveal new insights into age-associated changes in the T cell compartment that may contribute to differential immune responses.
Collapse
Affiliation(s)
| | - Ziyuan He
- Allen Institute for Immunology, Seattle, WA, USA
| | - Elliott Swanson
- Allen Institute for Immunology, Seattle, WA, USA
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Cole Phalen
- Allen Institute for Immunology, Seattle, WA, USA
| | | | | | | | | | - Charles R Roll
- Allen Institute for Immunology, Seattle, WA, USA
- Microbiology, Immunology and Cancer Biology (MICaB) Program, University of Minnesota, Minneapolis, Minneapolis, MN, USA
| | | | - Morgan Weiss
- Allen Institute for Immunology, Seattle, WA, USA
| | | | | | - Josephine R Giles
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Sasikanth Manne
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Jeanette Dougherty
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - C J Jasen
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Allison R Greenplate
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | | | - Suhas V Vasaikar
- Allen Institute for Immunology, Seattle, WA, USA
- Seagen, Bothell, WA, USA
| | - Gregory L Szeto
- Allen Institute for Immunology, Seattle, WA, USA
- Seagen, Bothell, WA, USA
| | | | - Cate Speake
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Jane H Buckner
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Xiao-Jun Li
- Allen Institute for Immunology, Seattle, WA, USA
| | | | - E John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Laura A Vella
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pediatrics, Children's Hospital of Philadelphia and the University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sarah E Henrickson
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pediatrics, Children's Hospital of Philadelphia and the University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | | |
Collapse
|
27
|
Wu T, Tan JHL, Sin W, Luah YH, Tan SY, Goh M, Birnbaum ME, Chen Q, Cheow LF. Cell Granularity Reflects Immune Cell Function and Enables Selection of Lymphocytes with Superior Attributes for Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302175. [PMID: 37544893 PMCID: PMC10558660 DOI: 10.1002/advs.202302175] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/20/2023] [Indexed: 08/08/2023]
Abstract
In keeping with the rule of "form follows function", morphological aspects of a cell can reflect its role. Here, it is shown that the cellular granularity of a lymphocyte, represented by its intrinsic side scatter (SSC), is a potent indicator of its cell state and function. The granularity of a lymphocyte increases from naïve to terminal effector state. High-throughput cell-sorting yields a SSChigh population that can mediate immediate effector functions, and a highly prolific SSClow population that can give rise to the replenishment of the memory pool. CAR-T cells derived from the younger SSClow population possess desirable attributes for immunotherapy, manifested by increased naïve-like cells and stem cell memory (TSCM )-like cells together with a balanced CD4/CD8 ratio, as well as enhanced target-killing in vitro and in vivo. Altogether, lymphocyte segregation based on biophysical properties is an effective approach for label-free selection of cells that share collective functions and can have important applications for cell-based immunotherapies.
Collapse
Affiliation(s)
- Tongjin Wu
- Department of Biomedical EngineeringFaculty of EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
| | - Joel Heng Loong Tan
- Institute of Molecular and Cell Biology (IMCB)Agency for ScienceTechnology and Research (A*STAR)Singapore138673Singapore
| | - Wei‐Xiang Sin
- Critical Analytics for Manufacturing of Personalized MedicineSingapore‐MIT Alliance for Research and TechnologySingapore138602Singapore
| | - Yen Hoon Luah
- Department of Biomedical EngineeringFaculty of EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
- Critical Analytics for Manufacturing of Personalized MedicineSingapore‐MIT Alliance for Research and TechnologySingapore138602Singapore
| | - Sue Yee Tan
- Institute of Molecular and Cell Biology (IMCB)Agency for ScienceTechnology and Research (A*STAR)Singapore138673Singapore
| | - Myra Goh
- Institute of Molecular and Cell Biology (IMCB)Agency for ScienceTechnology and Research (A*STAR)Singapore138673Singapore
| | - Michael E. Birnbaum
- Critical Analytics for Manufacturing of Personalized MedicineSingapore‐MIT Alliance for Research and TechnologySingapore138602Singapore
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology (IMCB)Agency for ScienceTechnology and Research (A*STAR)Singapore138673Singapore
| | - Lih Feng Cheow
- Department of Biomedical EngineeringFaculty of EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
- Critical Analytics for Manufacturing of Personalized MedicineSingapore‐MIT Alliance for Research and TechnologySingapore138602Singapore
| |
Collapse
|
28
|
Sturmlechner I, Jain A, Mu Y, Weyand CM, Goronzy JJ. T cell fate decisions during memory cell generation with aging. Semin Immunol 2023; 69:101800. [PMID: 37494738 PMCID: PMC10528238 DOI: 10.1016/j.smim.2023.101800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The defense against infectious diseases, either through natural immunity or after vaccinations, relies on the generation and maintenance of protective T cell memory. Naïve T cells are at the center of memory T cell generation during primary responses. Upon activation, they undergo a complex, highly regulated differentiation process towards different functional states. Naïve T cells maintained into older age have undergone epigenetic adaptations that influence their fate decisions during differentiation. We review age-sensitive, molecular pathways and gene regulatory networks that bias naïve T cell differentiation towards effector cell generation at the expense of memory and Tfh cells. As a result, T cell differentiation in older adults is associated with release of bioactive waste products into the microenvironment, higher stress sensitivity as well as skewing towards pro-inflammatory signatures and shorter life spans. These maladaptations not only contribute to poor vaccine responses in older adults but also fuel a more inflammatory state.
Collapse
Affiliation(s)
- Ines Sturmlechner
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Abhinav Jain
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Yunmei Mu
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Cornelia M Weyand
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Department of Medicine, Division of Rheumatology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Jörg J Goronzy
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Department of Medicine, Division of Rheumatology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA.
| |
Collapse
|
29
|
Jain A, Sturmlechner I, Weyand CM, Goronzy JJ. Heterogeneity of memory T cells in aging. Front Immunol 2023; 14:1250916. [PMID: 37662959 PMCID: PMC10471982 DOI: 10.3389/fimmu.2023.1250916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
Immune memory is a requisite and remarkable property of the immune system and is the biological foundation of the success of vaccinations in reducing morbidity from infectious diseases. Some vaccines and infections induce long-lasting protection, but immunity to other vaccines and particularly in older adults rarely persists over long time periods. Failed induction of an immune response and accelerated waning of immune memory both contribute to the immuno-compromised state of the older population. Here we review how T cell memory is influenced by age. T cell memory is maintained by a dynamic population of T cells that are heterogeneous in their kinetic parameters under homeostatic condition and their function. Durability of T cell memory can be influenced not only by the loss of a clonal progeny, but also by broader changes in the composition of functional states and transition of T cells to a dysfunctional state. Genome-wide single cell studies on total T cells have started to provide insights on the influence of age on cell heterogeneity over time. The most striking findings were a trend to progressive effector differentiation and the activation of pro-inflammatory pathways, including the emergence of CD4+ and CD8+ cytotoxic subsets. Genome-wide data on antigen-specific memory T cells are currently limited but can be expected to provide insights on how changes in T cell subset heterogeneity and transcriptome relate to durability of immune protection.
Collapse
Affiliation(s)
- Abhinav Jain
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Ines Sturmlechner
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Cornelia M. Weyand
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
- Department of Medicine, Division of Rheumatology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Jörg J. Goronzy
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
- Department of Medicine, Division of Rheumatology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
- Robert and Arlene Kogod Center on Aging, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| |
Collapse
|
30
|
Zwijnenburg AJ, Pokharel J, Varnaitė R, Zheng W, Hoffer E, Shryki I, Comet NR, Ehrström M, Gredmark-Russ S, Eidsmo L, Gerlach C. Graded expression of the chemokine receptor CX3CR1 marks differentiation states of human and murine T cells and enables cross-species interpretation. Immunity 2023; 56:1955-1974.e10. [PMID: 37490909 DOI: 10.1016/j.immuni.2023.06.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/02/2023] [Accepted: 06/29/2023] [Indexed: 07/27/2023]
Abstract
T cells differentiate into functionally distinct states upon antigen encounter. These states are delineated by different cell surface markers for murine and human T cells, which hamper cross-species translation of T cell properties. We aimed to identify surface markers that reflect the graded nature of CD8+ T cell differentiation and delineate functionally comparable states in mice and humans. CITEseq analyses revealed that graded expression of CX3CR1, encoding the chemokine receptor CX3CR1, correlated with the CD8+ T cell differentiation gradient. CX3CR1 expression distinguished human and murine CD8+ and CD4+ T cell states, as defined by migratory and functional properties. Graded CX3CR1 expression, refined with CD62L, accurately captured the high-dimensional T cell differentiation continuum. Furthermore, the CX3CR1 expression gradient delineated states with comparable properties in humans and mice in steady state and on longitudinally tracked virus-specific CD8+ T cells in both species. Thus, graded CX3CR1 expression provides a strategy to translate the behavior of distinct T cell differentiation states across species.
Collapse
Affiliation(s)
- Anthonie Johan Zwijnenburg
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, 17176 Stockholm, Sweden
| | - Jyoti Pokharel
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, 17176 Stockholm, Sweden
| | - Renata Varnaitė
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Wenning Zheng
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, 17176 Stockholm, Sweden
| | - Elena Hoffer
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, 17176 Stockholm, Sweden
| | - Iman Shryki
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, 17176 Stockholm, Sweden
| | - Natalia Ramirez Comet
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, 17176 Stockholm, Sweden
| | - Marcus Ehrström
- Department of Reconstructive Plastic Surgery, Karolinska University Hospital, 17176 Stockholm, Sweden; Nordiska Kliniken, 11151 Stockholm, Sweden
| | - Sara Gredmark-Russ
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 17176 Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, 17176 Stockholm, Sweden; Laboratory for Molecular Infection Medicine Sweden, 90187 Umeå, Sweden
| | - Liv Eidsmo
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, 17176 Stockholm, Sweden; Leo Foundation Skin Immunology Center, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Carmen Gerlach
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, 17176 Stockholm, Sweden.
| |
Collapse
|
31
|
Buggert M, Price DA, Mackay LK, Betts MR. Human circulating and tissue-resident memory CD8 + T cells. Nat Immunol 2023:10.1038/s41590-023-01538-6. [PMID: 37349380 DOI: 10.1038/s41590-023-01538-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/04/2023] [Indexed: 06/24/2023]
Abstract
Our current knowledge of human memory CD8+ T cells is derived largely from studies of the intravascular space. However, emerging data are starting to challenge some of the dogmas based on this work, suggesting that a conceptual revision may be necessary. In this review, we provide a brief history of the field and summarize the biology of circulating and tissue-resident memory CD8+ T cells, which are ultimately responsible for effective immune surveillance. We also incorporate recent findings into a biologically integrated model of human memory CD8+ T cell differentiation. Finally, we address how future innovative human studies could improve our understanding of anatomically localized CD8+ T cells to inform the development of more effective immunotherapies and vaccines, the need for which has been emphasized by the global struggle to contain severe acute respiratory syndrome coronavirus 2.
Collapse
Affiliation(s)
- Marcus Buggert
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, UK
| | - Laura K Mackay
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Michael R Betts
- Institute for Immunology and Center for AIDS Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
32
|
Wu T, Womersley HJ, Wang JR, Scolnick J, Cheow LF. Time-resolved assessment of single-cell protein secretion by sequencing. Nat Methods 2023; 20:723-734. [PMID: 37037998 DOI: 10.1038/s41592-023-01841-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 03/06/2023] [Indexed: 04/12/2023]
Abstract
Secreted proteins play critical roles in cellular communication. Methods enabling concurrent measurement of cellular protein secretion, phenotypes and transcriptomes are still unavailable. Here we describe time-resolved assessment of protein secretion from single cells by sequencing (TRAPS-seq). Released proteins are trapped onto the cell surface and probed by oligonucleotide-barcoded antibodies before being simultaneously sequenced with transcriptomes in single cells. We demonstrate that TRAPS-seq helps unravel the phenotypic and transcriptional determinants of the secretion of pleiotropic TH1 cytokines (IFNγ, IL-2 and TNF) in activated T cells. In addition, we show that TRAPS-seq can be used to track the secretion of multiple cytokines over time, uncovering unique molecular signatures that govern the dynamics of single-cell cytokine secretions. Our results revealed that early central memory T cells with CD45RA expression (TCMRA) are important in both the production and maintenance of polyfunctional cytokines. TRAPS-seq presents a unique tool for seamless integration of secretomics measurements with multi-omics profiling in single cells.
Collapse
Affiliation(s)
- Tongjin Wu
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore
| | - Howard John Womersley
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore
| | | | - Jonathan Scolnick
- Singleron Biotechnologies Pte. Ltd., Singapore, Singapore
- Healthy Longevity Translational Research Program, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lih Feng Cheow
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore.
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
33
|
Heidarian M, Griffith TS, Badovinac VP. Sepsis-induced changes in differentiation, maintenance, and function of memory CD8 T cell subsets. Front Immunol 2023; 14:1130009. [PMID: 36756117 PMCID: PMC9899844 DOI: 10.3389/fimmu.2023.1130009] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
Formation of long-lasting memory lymphocytes is one of the foundational characteristics of adaptive immunity and the basis of many vaccination strategies. Following the rapid expansion and contraction of effector CD8 T cells, the surviving antigen (Ag)-specific cells give rise to the memory CD8 T cells that persist for a long time and are phenotypically and functionally distinct from their naïve counterparts. Significant heterogeneity exists within the memory CD8 T cell pool, as different subsets display distinct tissue localization preferences, cytotoxic ability, and proliferative capacity, but all memory CD8 T cells are equipped to mount an enhanced immune response upon Ag re-encounter. Memory CD8 T cells demonstrate numerical stability under homeostatic conditions, but sepsis causes a significant decline in the number of memory CD8 T cells and diminishes their Ag-dependent and -independent functions. Sepsis also rewires the transcriptional profile of memory CD8 T cells, which profoundly impacts memory CD8 T cell differentiation and, ultimately, the protective capacity of memory CD8 T cells upon subsequent stimulation. This review delves into different aspects of memory CD8 T cell subsets as well as the immediate and long-term impact of sepsis on memory CD8 T cell biology.
Collapse
Affiliation(s)
| | - Thomas S. Griffith
- Department of Urology, University of Minnesota, Minneapolis, MN, United States,Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, United States
| | - Vladimir P. Badovinac
- Department of Pathology, University of Iowa, Iowa, IA, United States,Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa, IA, United States,*Correspondence: Vladimir P. Badovinac,
| |
Collapse
|
34
|
Hudson WH, Wieland A. Technology meets TILs: Deciphering T cell function in the -omics era. Cancer Cell 2023; 41:41-57. [PMID: 36206755 PMCID: PMC9839604 DOI: 10.1016/j.ccell.2022.09.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/15/2022] [Accepted: 09/15/2022] [Indexed: 01/17/2023]
Abstract
T cells are at the center of cancer immunology because of their ability to recognize mutations in tumor cells and directly mediate cancer cell killing. Immunotherapies to rejuvenate exhausted T cell responses have transformed the clinical management of several malignancies. In parallel, the development of novel multidimensional analysis platforms, such as single-cell RNA sequencing and high-dimensional flow cytometry, has yielded unprecedented insights into immune cell biology. This convergence has revealed substantial heterogeneity of tumor-infiltrating immune cells in single tumors, across tumor types, and among individuals with cancer. Here we discuss the opportunities and challenges of studying the complex tumor microenvironment with -omics technologies that generate vast amounts of data, highlighting the opportunities and limitations of these technologies with a particular focus on interpreting high-dimensional studies of CD8+ T cells in the tumor microenvironment.
Collapse
Affiliation(s)
- William H Hudson
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Andreas Wieland
- Department of Otolaryngology, The Ohio State University, Columbus, OH 43210, USA; Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA; Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
35
|
Lu X, Song B, Weng W, Su B, Wu H, Cheung AKL, Zhang T, Gao Y. Characteristics of CD8 + Stem Cell-Like Memory T Cell Subset in Chronic Hepatitis C Virus Infection. Viral Immunol 2023; 36:25-32. [PMID: 36346310 DOI: 10.1089/vim.2022.0079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The dysfunction of memory CD8+ T cell cannot be reverted by successful clearance of hepatitis C virus (HCV) after direct-acting antivirals (DAAs) therapy, increasing the risk of reinfection with HCV. Stem cell-like memory T cells (Tscm) with superior properties of long-lasting, self-renewing, and multipotency contribute to the maintenance of immune function. We investigated the impact of HCV infection on CD8+ Tscm, and their possible role in disease progression, by using DAA-naive HCV-infected and human immunodeficiency virus (HIV)/HCV-coinfected cohorts. The distribution of memory CD8+ T cell subsets and the level of T cell immune activation were determined by flow cytometry. Associations between CD8+ Tscm and other memory T cell subsets, HCV viral load, as well as the level of T cell immune activation were analyzed. We observed that the proportion of CD8+ Tscm increased in both HCV and HIV/HCV individuals. The proportion of CD8+ Tscm had positive and negative correlation with CD8+ Tcm (central memory T cells) and CD8+ Tem (effector memory T cell), respectively, representing the contribution of CD8+ Tscm in T cell homeostasis. In addition, higher frequency of CD8+ Tscm indicated lower HCV viral load and less T cell immune activation in HCV infection, which suggested that CD8+ Tscm is likely associated with effective control of HCV replication for protective immunity. Considering the characteristics of Tscm, our current findings provide implications for Tscm-based vaccine design and immunotherapy development to achieve HCV elimination.
Collapse
Affiliation(s)
- Xiaofan Lu
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Bingbing Song
- Department of Dermatology, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Department of Dermatology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Wenjia Weng
- Department of Dermatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Hao Wu
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Allen Ka Loon Cheung
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, China
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yanqing Gao
- Department of Dermatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
36
|
Chi X, Luo S, Ye P, Hwang WL, Cha JH, Yan X, Yang WH. T-cell exhaustion and stemness in antitumor immunity: Characteristics, mechanisms, and implications. Front Immunol 2023; 14:1104771. [PMID: 36891319 PMCID: PMC9986432 DOI: 10.3389/fimmu.2023.1104771] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
T cells play a crucial role in the regulation of immune response and are integral to the efficacy of cancer immunotherapy. Because immunotherapy has emerged as a promising treatment for cancer, increasing attention has been focused on the differentiation and function of T cells in immune response. In this review, we describe the research progress on T-cell exhaustion and stemness in the field of cancer immunotherapy and summarize advances in potential strategies to intervene and treat chronic infection and cancer by reversing T-cell exhaustion and maintaining and increasing T-cell stemness. Moreover, we discuss therapeutic strategies to overcome T-cell immunodeficiency in the tumor microenvironment and promote continuous breakthroughs in the anticancer activity of T cells.
Collapse
Affiliation(s)
- Xiaoxia Chi
- Affiliated Cancer Hospital & Institute and Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shahang Luo
- Affiliated Cancer Hospital & Institute and Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Peng Ye
- Department of Infectious Diseases, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong, China
| | - Wei-Lun Hwang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jong-Ho Cha
- Department of Biomedical Science, College of Medicine, and Program in Biomedical Sciences and Engineering, Inha University, Incheon, Republic of Korea
| | - Xiuwen Yan
- Affiliated Cancer Hospital & Institute and Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wen-Hao Yang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| |
Collapse
|
37
|
Lopes-Ribeiro Á, Araujo FP, Oliveira PDM, Teixeira LDA, Ferreira GM, Lourenço AA, Dias LCC, Teixeira CW, Retes HM, Lopes ÉN, Versiani AF, Barbosa-Stancioli EF, da Fonseca FG, Martins-Filho OA, Tsuji M, Peruhype-Magalhães V, Coelho-dos-Reis JGA. In silico and in vitro arboviral MHC class I-restricted-epitope signatures reveal immunodominance and poor overlapping patterns. Front Immunol 2022; 13:1035515. [PMID: 36466864 PMCID: PMC9713826 DOI: 10.3389/fimmu.2022.1035515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/31/2022] [Indexed: 08/27/2023] Open
Abstract
INTRODUCTION The present work sought to identify MHC-I-restricted peptide signatures for arbovirus using in silico and in vitro peptide microarray tools. METHODS First, an in-silico analysis of immunogenic epitopes restricted to four of the most prevalent human MHC class-I was performed by identification of MHC affinity score. For that, more than 10,000 peptide sequences from 5 Arbovirus and 8 different viral serotypes, namely Zika (ZIKV), Dengue (DENV serotypes 1-4), Chikungunya (CHIKV), Mayaro (MAYV) and Oropouche (OROV) viruses, in addition to YFV were analyzed. Haplotype HLA-A*02.01 was the dominant human MHC for all arboviruses. Over one thousand HLA-A2 immunogenic peptides were employed to build a comprehensive identity matrix. Intending to assess HLAA*02:01 reactivity of peptides in vitro, a peptide microarray was designed and generated using a dimeric protein containing HLA-A*02:01. RESULTS The comprehensive identity matrix allowed the identification of only three overlapping peptides between two or more flavivirus sequences, suggesting poor overlapping of virus-specific immunogenic peptides amongst arborviruses. Global analysis of the fluorescence intensity for peptide-HLA-A*02:01 binding indicated a dose-dependent effect in the array. Considering all assessed arboviruses, the number of DENV-derived peptides with HLA-A*02:01 reactivity was the highest. Furthermore, a lower number of YFV-17DD overlapping peptides presented reactivity when compared to non-overlapping peptides. In addition, the assessment of HLA-A*02:01-reactive peptides across virus polyproteins highlighted non-structural proteins as "hot-spots". Data analysis supported these findings showing the presence of major hydrophobic sites in the final segment of non-structural protein 1 throughout 2a (Ns2a) and in nonstructural proteins 2b (Ns2b), 4a (Ns4a) and 4b (Ns4b). DISCUSSION To our knowledge, these results provide the most comprehensive and detailed snapshot of the immunodominant peptide signature for arbovirus with MHC-class I restriction, which may bring insight into the design of future virus-specific vaccines to arboviruses and for vaccination protocols in highly endemic areas.
Collapse
Affiliation(s)
- Ágata Lopes-Ribeiro
- Laboratório de Virologia Básica e Aplicada, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Franklin Pereira Araujo
- Laboratório de Virologia Básica e Aplicada, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Patrícia de Melo Oliveira
- Laboratório de Virologia Básica e Aplicada, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lorena de Almeida Teixeira
- Laboratório de Virologia Básica e Aplicada, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Geovane Marques Ferreira
- Laboratório de Virologia Básica e Aplicada, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Alice Aparecida Lourenço
- Laboratório de Virologia Básica e Aplicada, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Laura Cardoso Corrêa Dias
- Laboratório de Virologia Básica e Aplicada, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Caio Wilker Teixeira
- Laboratório de Virologia Básica e Aplicada, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Henrique Morais Retes
- Laboratório de Virologia Básica e Aplicada, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Élisson Nogueira Lopes
- Laboratorio de Genética Celular e Molecular, Instituto de Ciências Biológicas, Departamento de Genética, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Alice Freitas Versiani
- Laboratório de Virologia Básica e Aplicada, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Department of Pathology da University of Texas Medical Branch, Galveston, TX, United States
| | - Edel Figueiredo Barbosa-Stancioli
- Laboratório de Virologia Básica e Aplicada, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Flávio Guimarães da Fonseca
- Laboratório de Virologia Básica e Aplicada, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Olindo Assis Martins-Filho
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Moriya Tsuji
- Aaron Diamond AIDS Research Center, Irving Medical School, Columbia University, New York City, NY, United States
| | - Vanessa Peruhype-Magalhães
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Jordana Grazziela Alves Coelho-dos-Reis
- Laboratório de Virologia Básica e Aplicada, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| |
Collapse
|
38
|
Long-term antiretroviral therapy initiated in acute HIV infection prevents residual dysfunction of HIV-specific CD8+ T cells. EBioMedicine 2022; 84:104253. [PMID: 36088683 PMCID: PMC9471490 DOI: 10.1016/j.ebiom.2022.104253] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 11/22/2022] Open
Abstract
Background Harnessing CD8+ T cell responses is being explored to achieve HIV remission. Although HIV-specific CD8+ T cells become dysfunctional without treatment, antiretroviral therapy (ART) partially restores their function. However, the extent of this recovery under long-term ART is less understood. Methods We analyzed the differentiation status and function of HIV-specific CD8+ T cells after long-term ART initiated in acute or chronic HIV infection ex vivo and upon in vitro recall. Findings ART initiation in any stage of acute HIV infection promoted the persistence of long-lived HIV-specific CD8+ T cells with high expansion (P<0·0008) and cytotoxic capacity (P=0·02) after in vitro recall, albeit at low cell number (P=0·003). This superior expansion capacity correlated with stemness (r=0·90, P=0·006), measured by TCF-1 expression, similar to functional HIV-specific CD8+ T cells found in spontaneous controllers. Importanly, TCF-1 expression in these cells was associated with longer time to viral rebound ranging from 13 to 48 days after ART interruption (r =0·71, P=0·03). In contrast, ART initiation in chronic HIV infection led to more differentiated HIV-specific CD8+ T cells lacking stemness properties and exhibiting residual dysfunction upon recall, with reduced proliferation and cytolytic activity. Interpretation ART initiation in acute HIV infection preserves functional HIV-specific CD8+ T cells, albeit at numbers too low to control viral rebound post-ART. HIV remission strategies may need to boost HIV-specific CD8+ T cell numbers and induce stem cell-like properties to reverse the residual dysfunction persisting on ART in people treated after acute infection prior to ART release. Funding U.S. National Institutes of Health and U.S. Department of Defense.
Collapse
|
39
|
Sun Y, Zhang Z, Zhang C, Zhang N, Wang P, Chu Y, Chard Dunmall LS, Lemoine NR, Wang Y. An effective therapeutic regime for treatment of glioma using oncolytic vaccinia virus expressing IL-21 in combination with immune checkpoint inhibition. Mol Ther Oncolytics 2022; 26:105-119. [PMID: 35795092 PMCID: PMC9233193 DOI: 10.1016/j.omto.2022.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 05/13/2022] [Indexed: 12/24/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary malignant tumor in the brain, accounting for 51.4% of all primary brain tumors. GBM has a highly immunosuppressive tumor microenvironment (TME) and, as such, responses to immunotherapeutic strategies are poor. Vaccinia virus (VV) is an oncolytic virus that has shown tremendous therapeutic effect in various tumor types. In addition to its directly lytic effect on tumor cells, it has an ability to enhance immune cell infiltration into the TME allowing for improved immune control over the tumor. Here, we used a new generation of VV expressing the therapeutic payload interleukin-21 to treat murine GL261 glioma models. After both intratumoral and intravenous delivery, virus treatment induced remodeling of the TME to promote a robust anti-tumor immune response that resulted in control over tumor growth and long-term survival in both subcutaneous and orthotopic mouse models. Treatment efficacy was significantly improved in combination with systemic α-PD1 therapy, which is ineffective as a standalone treatment but synergizes with oncolytic VV to enhance therapeutic outcomes. Importantly, this study also revealed the upregulation of stem cell memory T cell populations after the virus treatment that exert strong and durable anti-tumor activity.
Collapse
Affiliation(s)
- Yijie Sun
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Zhe Zhang
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Chenglin Zhang
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Na Zhang
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Pengju Wang
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Yongchao Chu
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Louisa S. Chard Dunmall
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Nicholas R. Lemoine
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Yaohe Wang
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| |
Collapse
|
40
|
Sharma J, Mudalagiriyappa S, Nanjappa SG. T cell responses to control fungal infection in an immunological memory lens. Front Immunol 2022; 13:905867. [PMID: 36177012 PMCID: PMC9513067 DOI: 10.3389/fimmu.2022.905867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022] Open
Abstract
In recent years, fungal vaccine research emanated significant findings in the field of antifungal T-cell immunity. The generation of effector T cells is essential to combat many mucosal and systemic fungal infections. The development of antifungal memory T cells is integral for controlling or preventing fungal infections, and understanding the factors, regulators, and modifiers that dictate the generation of such T cells is necessary. Despite the deficiency in the clear understanding of antifungal memory T-cell longevity and attributes, in this review, we will compile some of the existing literature on antifungal T-cell immunity in the context of memory T-cell development against fungal infections.
Collapse
Affiliation(s)
| | | | - Som Gowda Nanjappa
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
41
|
Cas-CLOVER is a novel high-fidelity nuclease for safe and robust generation of TSCM-enriched allogeneic CAR-T cells. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:979-995. [PMID: 36189080 PMCID: PMC9481872 DOI: 10.1016/j.omtn.2022.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 06/08/2022] [Indexed: 12/26/2022]
Abstract
The use of T cells from healthy donors for allogeneic chimeric antigen receptor T (CAR-T) cell cancer therapy is attractive because healthy donor T cells can produce versatile off-the-shelf CAR-T treatments. To maximize safety and durability of allogeneic products, the endogenous T cell receptor and major histocompatibility complex class I molecules are often removed via knockout of T cell receptor beta constant (TRBC) (or T cell receptor alpha constant [TRAC]) and B2M, respectively. However, gene editing tools (e.g., CRISPR-Cas9) can display poor fidelity, which may result in dangerous off-target mutations. Additionally, many gene editing technologies require T cell activation, resulting in a low percentage of desirable stem cell memory T cells (TSCM). We characterize an RNA-guided endonuclease, called Cas-CLOVER, consisting of the Clo051 nuclease domain fused with catalytically dead Cas9. In primary T cells from multiple donors, we find that Cas-CLOVER is a high-fidelity site-specific nuclease, with low off-target activity. Notably, Cas-CLOVER yields efficient multiplexed gene editing in resting T cells. In conjunction with the piggyBac transposon for delivery of a CAR transgene against the B cell maturation antigen (BCMA), we produce allogeneic CAR-T cells composed of high percentages of TSCM cells and possessing potent in vivo anti-tumor cytotoxicity.
Collapse
|
42
|
Yi L, Yang L. Stem-like T cells and niches: Implications in human health and disease. Front Immunol 2022; 13:907172. [PMID: 36059484 PMCID: PMC9428355 DOI: 10.3389/fimmu.2022.907172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Recently, accumulating evidence has elucidated the important role of T cells with stem-like characteristics in long-term maintenance of T cell responses and better patient outcomes after immunotherapy. The fate of TSL cells has been correlated with many physiological and pathological human processes. In this review, we described present advances demonstrating that stem-like T (TSL) cells are central players in human health and disease. We interpreted the evolutionary characteristics, mechanism and functions of TSL cells. Moreover, we discuss the import role of distinct niches and how they affect the stemness of TSL cells. Furthermore, we also outlined currently available strategies to generate TSL cells and associated affecting factors. Moreover, we summarized implication of TSL cells in therapies in two areas: stemness enhancement for vaccines, ICB, and adoptive T cell therapies, and stemness disruption for autoimmune disorders.
Collapse
|
43
|
COVID-19 mRNA booster vaccine induces transient CD8+ T effector cell responses while conserving the memory pool for subsequent reactivation. Nat Commun 2022; 13:4631. [PMID: 35941157 PMCID: PMC9358914 DOI: 10.1038/s41467-022-32324-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/25/2022] [Indexed: 01/05/2023] Open
Abstract
Immunization with two mRNA vaccine doses elicits robust spike-specific CD8+ T cell responses, but reports of waning immunity after COVID-19 vaccination prompt the introduction of booster vaccination campaigns. However, the effect of mRNA booster vaccination on the spike-specific CD8+ T cell response remains unclear. Here we show that spike-specific CD8+ T cells are activated and expanded in all analyzed individuals receiving the 3rd and 4th mRNA vaccine shots. This CD8+ T cell boost response is followed by a contraction phase and lasts only for about 30-60 days. The spike-specific CD8+ T memory stem cell pool is not affected by the 3rd vaccination. Both 4th vaccination and breakthrough infections with Delta and Omicron rapidly reactivate CD8+ T memory cells. In contrast, neutralizing antibody responses display little boost effect towards Omicron. Thus, COVID-19 mRNA booster vaccination elicits a transient T effector cell response while long-term spike-specific CD8+ T cell immunity is conserved to mount robust memory recall targeting emerging variants of concern. Vaccines induce beneficial immunity for COVID-19, but immune waning prompts boosting vaccination. Here, the authors show that a third, boosting dose of COVID-19 mRNA vaccine induces transient CD8 + T effector cell response while conserving the CD8 memory T cell pool, thereby permitting reactivation of spike-specific CD8 + T cells upon breakthrough infection or 4th vaccination.
Collapse
|
44
|
Jung S, Jung JH, Noh JY, Kim WJ, Yoon SY, Jung J, Kim ES, Kim HB, Cheong HJ, Kim WJ, Park SH, Song KH, Song JY, Shin EC. The generation of stem cell-like memory cells early after BNT162b2 vaccination is associated with durability of memory CD8 + T cell responses. Cell Rep 2022; 40:111138. [PMID: 35839774 PMCID: PMC9263810 DOI: 10.1016/j.celrep.2022.111138] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/08/2022] [Accepted: 07/06/2022] [Indexed: 01/06/2023] Open
Abstract
COVID-19 vaccines elicit humoral and cellular immune responses. Durable maintenance of vaccine-induced immunity is required for long-term protection of the host. Here, we examine activation and differentiation of vaccine-induced CD8+ T cells using MHC class I (MHC-I) multimers and correlations between early differentiation and the durability of CD8+ T cell responses among healthcare workers immunized with two doses of BNT162b2. The frequency of MHC-I multimer+ cells is robustly increased by BNT162b2 but decreases 6 months post-second vaccination to 2.4%-65.6% (23.0% on average) of the peak. MHC-I multimer+ cells dominantly exhibit phenotypes of activated effector cells 1-2 weeks post-second vaccination and gradually acquire phenotypes of long-term memory cells, including stem cell-like memory T (TSCM) cells. Importantly, the frequency of TSCM cells 1-2 weeks post-second vaccination significantly correlates with the 6-month durability of CD8+ T cells, indicating that early generation of TSCM cells determines the longevity of vaccine-induced memory CD8+ T cell responses.
Collapse
Affiliation(s)
- Sungmin Jung
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jae Hyung Jung
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Ji Yun Noh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Division of Infectious Diseases, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul 08308, Republic of Korea
| | - Woo-Joong Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Soo-Young Yoon
- Department of Laboratory Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul 08308, Republic of Korea
| | - Jongtak Jung
- Division of Infectious Diseases, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Republic of Korea
| | - Eu Suk Kim
- Division of Infectious Diseases, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Republic of Korea
| | - Hong Bin Kim
- Division of Infectious Diseases, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Republic of Korea
| | - Hee Jin Cheong
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul 08308, Republic of Korea
| | - Woo Joo Kim
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul 08308, Republic of Korea
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kyoung-Ho Song
- Division of Infectious Diseases, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Republic of Korea.
| | - Joon Young Song
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul 08308, Republic of Korea.
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea.
| |
Collapse
|
45
|
Stem cell like memory T cells: A new paradigm in cancer immunotherapy. Clin Immunol 2022; 241:109078. [PMID: 35840054 DOI: 10.1016/j.clim.2022.109078] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 07/04/2022] [Accepted: 07/09/2022] [Indexed: 11/03/2022]
Abstract
Stem cell like memory T (TSCM) cells have emerged as the apex of memory T cell differentiation for their properties of self-renewal and replenishing progenies. With potent long-term persistence, proliferative capacity and antitumor activity, TSCM cells were thought to be the ideal candidate for cancer immunotherapies. Several strategies have been proposed, such as manipulations of cytokines, metabolic factors, signal pathways, and T cell receptor signal intensity, to induce more TSCM cells in vitro, in the hope that they could reach a clinical order of magnitude to provide more long-lasting and effective anti-tumor effects in vivo. In this review, we summarized the differentiation characteristics of TSCM cells and strategies to generate more TSCM cells. We focused on their roles and application in the cancer immunotherapy especially in adoptive cell transfer therapy and cancer therapeutic vaccines, and hopefully provided clues for future understanding and researches.
Collapse
|
46
|
Gao Y, Cai C, Wullimann D, Niessl J, Rivera-Ballesteros O, Chen P, Lange J, Cuapio A, Blennow O, Hansson L, Mielke S, Nowak P, Vesterbacka J, Akber M, Perez-Potti A, Sekine T, Müller TR, Boulouis C, Kammann T, Parrot T, Muvva JR, Sobkowiak M, Healy K, Bogdanovic G, Muschiol S, Söderdahl G, Österborg A, Hellgren F, Grifoni A, Weiskopf D, Sette A, Loré K, Sällberg Chen M, Ljungman P, Sandberg JK, Smith CIE, Bergman P, Ljunggren HG, Aleman S, Buggert M. Immunodeficiency syndromes differentially impact the functional spectrum of SARS-CoV-2-specific T cells elicited by mRNA vaccination. Immunity 2022; 55:1732-1746.e5. [PMID: 35961317 PMCID: PMC9293955 DOI: 10.1016/j.immuni.2022.07.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/05/2022] [Accepted: 07/13/2022] [Indexed: 11/19/2022]
Abstract
Many immunocompromised patients mount suboptimal humoral immunity after SARS-CoV-2 mRNA vaccination. Here, we assessed the single-cell profile of SARS-CoV-2-specific T cells post-mRNA vaccination in healthy individuals and patients with various forms of immunodeficiencies. Impaired vaccine-induced cell-mediated immunity was observed in many immunocompromised patients, particularly in solid-organ transplant and chronic lymphocytic leukemia patients. Notably, individuals with an inherited lack of mature B cells, i.e., X-linked agammaglobulinemia (XLA) displayed highly functional spike-specific T cell responses. Single-cell RNA-sequencing further revealed that mRNA vaccination induced a broad functional spectrum of spike-specific CD4+ and CD8+ T cells in healthy individuals and patients with XLA. These responses were founded on polyclonal repertoires of CD4+ T cells and robust expansions of oligoclonal effector-memory CD45RA+ CD8+ T cells with stem-like characteristics. Collectively, our data provide the functional continuum of SARS-CoV-2-specific T cell responses post-mRNA vaccination, highlighting that cell-mediated immunity is of variable functional quality across immunodeficiency syndromes.
Collapse
Affiliation(s)
- Yu Gao
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Curtis Cai
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - David Wullimann
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Julia Niessl
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Olga Rivera-Ballesteros
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Puran Chen
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Joshua Lange
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Angelica Cuapio
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ola Blennow
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden; Department of Transplantation, Karolinska University Hospital, Stockholm, Sweden; Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Lotta Hansson
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden; Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Stephan Mielke
- Department of Laboratory Medicine, Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Piotr Nowak
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden; Department of Medicine Huddinge, Infectious Diseases, Karolinska Institute, Stockholm, Sweden; Laboratory for Molecular Infection Medicine Sweden MIMS, Umeå University, Umeå, Sweden
| | - Jan Vesterbacka
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden; Department of Medicine Huddinge, Infectious Diseases, Karolinska Institute, Stockholm, Sweden
| | - Mira Akber
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Andre Perez-Potti
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Takuya Sekine
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Thomas R Müller
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Caroline Boulouis
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tobias Kammann
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tiphaine Parrot
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jagadeeswara Rao Muvva
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Michal Sobkowiak
- Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Katie Healy
- Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gordana Bogdanovic
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Sandra Muschiol
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Gunnar Söderdahl
- Department of Transplantation, Karolinska University Hospital, Stockholm, Sweden; Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Anders Österborg
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden; Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Fredrika Hellgren
- Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Karin Loré
- Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | - Per Ljungman
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge, Stockholm, Sweden; Department of Medicine Huddinge, Hematology, Karolinska Institutet, Stockholm, Sweden
| | - Johan K Sandberg
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - C I Edvard Smith
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden; Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Peter Bergman
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden; Department of Laboratory Medicine, Clinical Microbiology, Karolinska Institutet, Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Soo Aleman
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden; Department of Medicine Huddinge, Infectious Diseases, Karolinska Institute, Stockholm, Sweden
| | - Marcus Buggert
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
47
|
Caël B, Galaine J, Bardey I, Marton C, Fredon M, Biichle S, Poussard M, Godet Y, Angelot-Delettre F, Barisien C, Bésiers C, Adotevi O, Pouthier F, Garnache-Ottou F, Bôle-Richard E. Umbilical Cord Blood as a Source of Less Differentiated T Cells to Produce CD123 CAR-T Cells. Cancers (Basel) 2022; 14:cancers14133168. [PMID: 35804941 PMCID: PMC9264759 DOI: 10.3390/cancers14133168] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/19/2022] Open
Abstract
Simple Summary We used fresh or thawed Umbilical Cord Blood (UCB) to produce CAR-T cells directed against CD123, and we compared their functionality to Peripheral Blood (PB) CAR-T cells. T cells expressing CD123 CAR, derived from UCB, was exhibited through a high transduction rate, activation status, and cytotoxic potential in vitro as PB derived CAR-T cells. Moreover, we obtained T cells that had a less differentiated profile than the PB-derived T cells. UCB derived CAR-T can significantly control tumor progression in mice models. CAR-T obtained from thawed or fresh UCB gives the same results. Abstract Chimeric Antigen Receptor (CAR) therapy has led to great successes in patients with leukemia and lymphoma. Umbilical Cord Blood (UCB), stored in UCB banks, is an attractive source of T cells for CAR-T production. We used a third generation CD123 CAR-T (CD28/4-1BB), which was previously developed using an adult’s Peripheral Blood (PB), to test the ability of obtaining CD123 CAR-T from fresh or cryopreserved UCB. We obtained a cell product with a high and stable transduction efficacy, and a poorly differentiated phenotype of CAR-T cells, while retaining high cytotoxic functions in vitro and in vivo. Moreover, CAR-T produced from cryopreserved UCB are as functional as CAR-T produced from fresh UCB. Overall, these data pave the way for the clinical development of UCB-derived CAR-T. UCB CAR-T could be transferred in an autologous manner (after an UCB transplant) to reduce post-transplant relapses, or in an allogeneic setting, thanks to fewer HLA restrictions which ease the requirements for a match between the donor and recipient.
Collapse
Affiliation(s)
- Blandine Caël
- RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, EFS BFC, INSERM, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France; (B.C.); (J.G.); (C.M.); (M.F.); (S.B.); (M.P.); (Y.G.); (F.A.-D.); (O.A.); (F.G.-O.)
| | - Jeanne Galaine
- RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, EFS BFC, INSERM, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France; (B.C.); (J.G.); (C.M.); (M.F.); (S.B.); (M.P.); (Y.G.); (F.A.-D.); (O.A.); (F.G.-O.)
| | - Isabelle Bardey
- Activité d’Ingénierie Cellulaire et Tissulaire, Etablissement Français du Sang Bourgogne/Franche-Comté, F-25000 Besançon, France; (I.B.); (F.P.)
| | - Chrystel Marton
- RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, EFS BFC, INSERM, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France; (B.C.); (J.G.); (C.M.); (M.F.); (S.B.); (M.P.); (Y.G.); (F.A.-D.); (O.A.); (F.G.-O.)
- Allogenic Stem Cell Transplantation Unit, Department of Hematology, CHU Lille, F-59000 Lille, France
| | - Maxime Fredon
- RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, EFS BFC, INSERM, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France; (B.C.); (J.G.); (C.M.); (M.F.); (S.B.); (M.P.); (Y.G.); (F.A.-D.); (O.A.); (F.G.-O.)
| | - Sabeha Biichle
- RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, EFS BFC, INSERM, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France; (B.C.); (J.G.); (C.M.); (M.F.); (S.B.); (M.P.); (Y.G.); (F.A.-D.); (O.A.); (F.G.-O.)
| | - Margaux Poussard
- RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, EFS BFC, INSERM, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France; (B.C.); (J.G.); (C.M.); (M.F.); (S.B.); (M.P.); (Y.G.); (F.A.-D.); (O.A.); (F.G.-O.)
| | - Yann Godet
- RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, EFS BFC, INSERM, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France; (B.C.); (J.G.); (C.M.); (M.F.); (S.B.); (M.P.); (Y.G.); (F.A.-D.); (O.A.); (F.G.-O.)
| | - Fanny Angelot-Delettre
- RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, EFS BFC, INSERM, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France; (B.C.); (J.G.); (C.M.); (M.F.); (S.B.); (M.P.); (Y.G.); (F.A.-D.); (O.A.); (F.G.-O.)
- EFS Bourgogne/Franche-Comté, F-25000 Besançon, France;
| | - Christophe Barisien
- Département Collecte et Production de PSL, Etablissement Français du Sang Bourgogne Franche-Comté, F-25000 Besançon, France;
| | | | - Olivier Adotevi
- RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, EFS BFC, INSERM, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France; (B.C.); (J.G.); (C.M.); (M.F.); (S.B.); (M.P.); (Y.G.); (F.A.-D.); (O.A.); (F.G.-O.)
- Service Oncologie Médicale, CHU Besançon, F-25000 Besançon, France
| | - Fabienne Pouthier
- Activité d’Ingénierie Cellulaire et Tissulaire, Etablissement Français du Sang Bourgogne/Franche-Comté, F-25000 Besançon, France; (I.B.); (F.P.)
| | - Francine Garnache-Ottou
- RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, EFS BFC, INSERM, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France; (B.C.); (J.G.); (C.M.); (M.F.); (S.B.); (M.P.); (Y.G.); (F.A.-D.); (O.A.); (F.G.-O.)
| | - Elodie Bôle-Richard
- RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, EFS BFC, INSERM, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France; (B.C.); (J.G.); (C.M.); (M.F.); (S.B.); (M.P.); (Y.G.); (F.A.-D.); (O.A.); (F.G.-O.)
- Correspondence:
| |
Collapse
|
48
|
La Manna MP, Shekarkar Azgomi M, Tamburini B, Badami GD, Mohammadnezhad L, Dieli F, Caccamo N. Phenotypic and Immunometabolic Aspects on Stem Cell Memory and Resident Memory CD8+ T Cells. Front Immunol 2022; 13:884148. [PMID: 35784300 PMCID: PMC9247337 DOI: 10.3389/fimmu.2022.884148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
The immune system, smartly and surprisingly, saves the exposure of a particular pathogen in its memory and reacts to the pathogen very rapidly, preventing serious diseases.Immunologists have long been fascinated by understanding the ability to recall and respond faster and more vigorously to a pathogen, known as “memory”.T-cell populations can be better described by using more sophisticated techniques to define phenotype, transcriptional and epigenetic signatures and metabolic pathways (single-cell resolution), which uncovered the heterogeneity of the memory T-compartment. Phenotype, effector functions, maintenance, and metabolic pathways help identify these different subsets. Here, we examine recent developments in the characterization of the heterogeneity of the memory T cell compartment. In particular, we focus on the emerging role of CD8+ TRM and TSCM cells, providing evidence on how their immunometabolism or modulation can play a vital role in their generation and maintenance in chronic conditions such as infections or autoimmune diseases.
Collapse
Affiliation(s)
- Marco Pio La Manna
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Mojtaba Shekarkar Azgomi
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Bartolo Tamburini
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Giusto Davide Badami
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Leila Mohammadnezhad
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Francesco Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Nadia Caccamo
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
- *Correspondence: Nadia Caccamo,
| |
Collapse
|
49
|
Kramer KJ, Wilfong EM, Voss K, Barone SM, Shiakolas AR, Raju N, Roe CE, Suryadevara N, Walker LM, Wall SC, Paulo A, Schaefer S, Dahunsi D, Westlake CS, Crowe JE, Carnahan RH, Rathmell JC, Bonami RH, Georgiev IS, Irish JM. Single-cell profiling of the antigen-specific response to BNT162b2 SARS-CoV-2 RNA vaccine. Nat Commun 2022; 13:3466. [PMID: 35710908 PMCID: PMC9201272 DOI: 10.1038/s41467-022-31142-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 05/26/2022] [Indexed: 12/15/2022] Open
Abstract
RNA-based vaccines against SARS-CoV-2 have proven critical to limiting COVID-19 disease severity and spread. Cellular mechanisms driving antigen-specific responses to these vaccines, however, remain uncertain. Here we identify and characterize antigen-specific cells and antibody responses to the RNA vaccine BNT162b2 using multiple single-cell technologies for in depth analysis of longitudinal samples from a cohort of healthy participants. Mass cytometry and unbiased machine learning pinpoint an expanding, population of antigen-specific memory CD4+ and CD8+ T cells with characteristics of follicular or peripheral helper cells. B cell receptor sequencing suggest progression from IgM, with apparent cross-reactivity to endemic coronaviruses, to SARS-CoV-2-specific IgA and IgG memory B cells and plasmablasts. Responding lymphocyte populations correlate with eventual SARS-CoV-2 IgG, and a participant lacking these cell populations failed to sustain SARS-CoV-2-specific antibodies and experienced breakthrough infection. These integrated proteomic and genomic platforms identify an antigen-specific cellular basis of RNA vaccine-based immunity.
Collapse
Affiliation(s)
- Kevin J Kramer
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Vaccine Center, Nashville, TN, 37232, USA
| | - Erin M Wilfong
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Nashville, TN, 37232, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN, 37232, USA
| | - Kelsey Voss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Sierra M Barone
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Andrea R Shiakolas
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Vaccine Center, Nashville, TN, 37232, USA
| | - Nagarajan Raju
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Vaccine Center, Nashville, TN, 37232, USA
| | - Caroline E Roe
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | | | - Lauren M Walker
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Vaccine Center, Nashville, TN, 37232, USA
| | - Steven C Wall
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Vaccine Center, Nashville, TN, 37232, USA
| | - Ariana Paulo
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Vaccine Center, Nashville, TN, 37232, USA
| | - Samuel Schaefer
- Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Nashville, TN, 37232, USA
| | - Debolanle Dahunsi
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Nashville, TN, 37232, USA
| | - Camille S Westlake
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Nashville, TN, 37232, USA
- Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Nashville, TN, 37232, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN, 37232, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Program in Computational Microbiology and Immunology, Nashville, TN, 37232, USA
| | | | - Jeffrey C Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Nashville, TN, 37232, USA.
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN, 37232, USA.
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Vanderbilt Program in Computational Microbiology and Immunology, Nashville, TN, 37232, USA.
| | - Rachel H Bonami
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Nashville, TN, 37232, USA.
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN, 37232, USA.
- Vanderbilt Program in Computational Microbiology and Immunology, Nashville, TN, 37232, USA.
| | - Ivelin S Georgiev
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Vanderbilt Vaccine Center, Nashville, TN, 37232, USA.
- Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Nashville, TN, 37232, USA.
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN, 37232, USA.
- Vanderbilt Program in Computational Microbiology and Immunology, Nashville, TN, 37232, USA.
| | - Jonathan M Irish
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Nashville, TN, 37232, USA.
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN, 37232, USA.
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA.
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Vanderbilt Program in Computational Microbiology and Immunology, Nashville, TN, 37232, USA.
| |
Collapse
|
50
|
Lv W, He P, Ma Y, Tan D, Li F, Xie T, Han J, Wang J, Mi Y, Niu H, Zhu B. Optimizing the Boosting Schedule of Subunit Vaccines Consisting of BCG and "Non-BCG" Antigens to Induce Long-Term Immune Memory. Front Immunol 2022; 13:862726. [PMID: 35493466 PMCID: PMC9039131 DOI: 10.3389/fimmu.2022.862726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Boosting Bacillus Calmette-Guérin (BCG) with subunit vaccine is expected to induce long-term protection against tuberculosis (TB). However, it is urgently needed to optimize the boosting schedule of subunit vaccines, which consists of antigens from or not from BCG, to induce long-term immune memory. To address it two subunit vaccines, Mtb10.4-HspX (MH) consisting of BCG antigens and ESAT6-CFP10 (EC) consisting of antigens from the region of difference (RD) of Mycobacterium tuberculosis (M. tuberculosis), were applied to immunize BCG-primed C57BL/6 mice twice or thrice with different intervals, respectively. The long-term antigen-specific immune responses and protective efficacy against M. tuberculosis H37Ra were determined. The results showed that following BCG priming, MH boosting twice at 12-24 weeks or EC immunizations thrice at 12-16-24 weeks enhanced the number and function of long-lived memory T cells with improved protection against H37Ra, while MH boosting thrice at 12-16-24 weeks or twice at 8-14 weeks and EC immunizations twice at 12-24 weeks or thrice at 8-10-14 weeks didn't induce long-term immunity. It suggests that following BCG priming, both BCG antigens MH boosting twice and "non-BCG" antigens EC immunizations thrice at suitable intervals induce long-lived memory T cell-mediated immunity.
Collapse
Affiliation(s)
- Wei Lv
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Pu He
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yanlin Ma
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Daquan Tan
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Fei Li
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Tao Xie
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jiangyuan Han
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Juan Wang
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Youjun Mi
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Institute of Pathophysiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Hongxia Niu
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Bingdong Zhu
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, China
| |
Collapse
|