1
|
Ghosh S, Bishayi B. Neutralization of IL-17 and CXCR1 Protects Septic Arthritis by Regulating CXCL8-CXCR1 Pathway Along With Functional Activities in Neutrophils. Int J Rheum Dis 2025; 28:e70144. [PMID: 40195600 DOI: 10.1111/1756-185x.70144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/04/2025] [Accepted: 02/13/2025] [Indexed: 04/09/2025]
Abstract
AIM The main objective of this study is to elucidate the role of CXCR1 Ab, IL-17 Ab, and gentamicin in protecting septic arthritis by regulating neutrophil functional responses while evaluating the contribution of the CXCL8-CXCR1 pathway. METHODS Eighty-four experimental swiss albino mice were utilized to study septic arthritis. They were divided into eight groups. After developing sepsis, respective mice groups were treated with CXCR1 Ab, IL-17 Ab, and gentamicin doses. Doses were administered on days 1, 8, and 13 of the experimental schedule. At the early, middle, and late phases of the experiment i.e. at 3, 10, and 15 DPI (Days Post Infection), mice were sacrificed and blood and tissues were collected for further experimental evaluations. Different functional studies were performed on isolated blood neutrophils, spleen, and synovial tissues. Histological evaluation, immunofluorescence study, sepsis profile, and downstream signaling pathway analysis were done to obtain data. RESULTS Infected mice group exhibited high inflammatory responses while treatment helped to mitigate them. IL-17 neutralization helped to lower bacterial burden, neutrophil ROS activity, MPO activity, and ALP activity. However, the combined neutralization of CXCR1 and IL-17 greatly influenced PMN chemotactic activity and lysozyme activity. At the early phase of the experiment, IL-17 neutralization's impact was more prominent, while later, CXCR1 neutralization gained the upper hand. CONCLUSIONS We can conclude that IL-17 Ab in combination with gentamicin is potent in modulating neutrophil activities positively to cure sepsis, while CXCR1 Ab, through the CXCL8/CXCR1 pathway, regulates neutrophil functional activities by impacting different downstream signaling cascades.
Collapse
MESH Headings
- Animals
- Neutrophils/drug effects
- Neutrophils/immunology
- Neutrophils/metabolism
- Neutrophils/microbiology
- Signal Transduction/drug effects
- Interleukin-17/immunology
- Interleukin-17/antagonists & inhibitors
- Interleukin-17/metabolism
- Arthritis, Infectious/immunology
- Arthritis, Infectious/microbiology
- Arthritis, Infectious/prevention & control
- Arthritis, Infectious/metabolism
- Receptors, Interleukin-8A/metabolism
- Receptors, Interleukin-8A/immunology
- Receptors, Interleukin-8A/antagonists & inhibitors
- Disease Models, Animal
- Interleukin-8/metabolism
- Mice
- Time Factors
- Male
- Arthritis, Experimental/immunology
- Arthritis, Experimental/prevention & control
- Arthritis, Experimental/microbiology
- Arthritis, Experimental/metabolism
- Anti-Bacterial Agents/pharmacology
Collapse
Affiliation(s)
- Sharmistha Ghosh
- Immunology Laboratory, Department of Physiology, University of Calcutta, University Colleges of Science and Technology, Kolkata, West Bengal, India
| | - Biswadev Bishayi
- Immunology Laboratory, Department of Physiology, University of Calcutta, University Colleges of Science and Technology, Kolkata, West Bengal, India
| |
Collapse
|
2
|
Rasquel-Oliveira FS, Ribeiro JM, Martelossi-Cebinelli G, Costa FB, Nakazato G, Casagrande R, Verri WA. Staphylococcus aureus in Inflammation and Pain: Update on Pathologic Mechanisms. Pathogens 2025; 14:185. [PMID: 40005560 PMCID: PMC11858194 DOI: 10.3390/pathogens14020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/23/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Staphylococcus aureus (S. aureus) is a Gram-positive bacterium of significant clinical importance, known for its versatility and ability to cause a wide array of infections, such as osteoarticular, pulmonary, cardiovascular, device-related, and hospital-acquired infections. This review describes the most recent evidence of the pathogenic potential of S. aureus, which is commonly part of the human microbiota but can lead to severe infections. The prevalence of pathogenic S. aureus in hospital and community settings contributes to substantial morbidity and mortality, particularly in individuals with compromised immune systems. The immunopathogenesis of S. aureus infections involves intricate interactions with the host immune and non-immune cells, characterized by various virulence factors that facilitate adherence, invasion, and evasion of the host's defenses. This review highlights the complexity of S. aureus infections, ranging from mild to life-threatening conditions, and underscores the growing public health concern posed by multidrug-resistant strains, including methicillin-resistant S. aureus (MRSA). This article aims to provide an updated perspective on S. aureus-related infections, highlighting the main diseases linked to this pathogen, how the different cell types, virulence factors, and signaling molecules are involved in the immunopathogenesis, and the future perspectives to overcome the current challenges to treat the affected individuals.
Collapse
Affiliation(s)
- Fernanda S. Rasquel-Oliveira
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (F.S.R.-O.)
| | - Jhonatan Macedo Ribeiro
- Department of Microbiology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil (G.N.)
| | - Geovana Martelossi-Cebinelli
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (F.S.R.-O.)
| | - Fernanda Barbosa Costa
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (F.S.R.-O.)
| | - Gerson Nakazato
- Department of Microbiology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil (G.N.)
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Center of Health Science, Londrina State University, Londrina 86038-440, PR, Brazil
| | - Waldiceu A. Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (F.S.R.-O.)
| |
Collapse
|
3
|
Zhang J, Feng Y, Li D, Shi D. Fungal influence on immune cells and inflammatory responses in the tumor microenvironment (Review). Oncol Lett 2025; 29:50. [PMID: 39564373 PMCID: PMC11574707 DOI: 10.3892/ol.2024.14796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/25/2024] [Indexed: 11/21/2024] Open
Abstract
In recent years, a growing body of research has highlighted the significant influence of the microbiota on tumor immunity within the tumor microenvironment (TME). While much attention has been given to bacteria, emerging evidence suggests that fungi also play crucial roles in tumor development. The present review aimed to consolidate the latest findings on the mechanisms governing the interactions between fungi and the immune system or TME. By elucidating these intricate mechanisms, novel insights into the modulation of tumor immunity and therapeutic strategies may be uncovered. Ultimately, a deeper understanding of the interplay between fungi and the TME holds promise for the development of innovative management strategies and targeted drugs to enhance tumor therapy efficacy.
Collapse
Affiliation(s)
- Jinke Zhang
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington DC 20057, USA
| | - Yahui Feng
- Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Jining, Shandong 272001, P.R. China
| | - Dongmei Li
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington DC 20057, USA
| | - Dongmei Shi
- Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Jining, Shandong 272001, P.R. China
- Department of Dermatology, Jining No. 1 People's Hospital, Jining, Shandong 272001, P.R. China
| |
Collapse
|
4
|
Toya S, Struyf S, Huerta L, Morris P, Gavioli E, Minnella EM, Cesta MC, Allegretti M, Proost P. A narrative review of chemokine receptors CXCR1 and CXCR2 and their role in acute respiratory distress syndrome. Eur Respir Rev 2024; 33:230172. [PMID: 39048127 PMCID: PMC11267298 DOI: 10.1183/16000617.0172-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 05/15/2024] [Indexed: 07/27/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a severe form of acute respiratory failure characterised by extensive inflammatory injury to the alveolocapillary barrier leading to alveolar oedema, impaired gas exchange and, ultimately, hypoxaemia necessitating the use of supplemental oxygen combined with some degree of positive airway pressure. Although much heterogeneity exists regarding the aetiology, localisation and endotypic characterisation of ARDS, what remains largely undisputed is the role of the innate immune system, and in particular of neutrophils, in precipitating and propagating lung injury. Activated neutrophils, recruited to the lung through chemokine gradients, promote injury by releasing oxidants, proteases and neutrophil extracellular traps, which ultimately cause platelet aggregation, microvascular thrombosis and cellular death. Among various neutrophilic chemoattractants, interleukin-8/C-X-C motif ligand 8 and related chemokines, collectively called ELR+ chemokines, acting on neutrophils through the G protein-coupled receptors CXCR1 and CXCR2, are pivotal in orchestrating the neutrophil activation status and chemotaxis in the inflamed lung. This allows efficient elimination of infectious agents while at the same time minimising collateral damage to host tissue. Therefore, understanding how CXCR1 and CXCR2 receptors are regulated is important if we hope to effectively target them for therapeutic use in ARDS. In the following narrative review, we provide an overview of the role of ELR+ chemokines in acute lung injury (ALI) and ARDS, we summarise the relevant regulatory pathways of their cognisant receptors CXCR1/2 and highlight current preclinical and clinical evidence on the therapeutic role of CXCR1 and CXCR2 inhibition in animal models of ALI, as well as in ARDS patients.
Collapse
Affiliation(s)
| | - Sofie Struyf
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Leuven, Belgium
| | - Luis Huerta
- Keck School of Medicine of USC, Department of Medicine, Pulmonary and Critical Care Medicine, Los Angeles, CA, USA
| | - Peter Morris
- The University of Alabama at Birmingham, Department of Medicine, Pulmonary, Allergy, and Critical Care Medicine, Birmingham, AL, USA
| | | | | | | | | | - Paul Proost
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Leuven, Belgium
| |
Collapse
|
5
|
Nenciarini S, Renzi S, di Paola M, Meriggi N, Cavalieri D. The yeast-human coevolution: Fungal transition from passengers, colonizers, and invaders. WIREs Mech Dis 2024; 16:e1639. [PMID: 38146626 DOI: 10.1002/wsbm.1639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/27/2023]
Abstract
Fungi are the cause of more than a billion infections in humans every year, although their interactions with the host are still neglected compared to bacteria. Major systemic fungal infections are very unusual in the healthy population, due to the long history of coevolution with the human host. Humans are routinely exposed to environmental fungi and can host a commensal mycobiota, which is increasingly considered as a key player in health and disease. Here, we review the current knowledge on host-fungi coevolution and the factors that regulate their interaction. On one hand, fungi have learned to survive and inhabit the host organisms as a natural ecosystem, on the other hand, the host immune system finely tunes the response toward fungi. In turn, recognition of fungi as commensals or pathogens regulates the host immune balance in health and disease. In the human gut ecosystem, yeasts provide a fingerprint of the transient microbiota. Their status as passengers or colonizers is related to the integrity of the gut barrier and the risk of multiple disorders. Thus, the study of this less known component of the microbiota could unravel the rules of the transition from passengers to colonizers and invaders, as well as their dependence on the innate component of the host's immune response. This article is categorized under: Infectious Diseases > Environmental Factors Immune System Diseases > Environmental Factors Infectious Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
| | - Sonia Renzi
- Department of Biology, University of Florence, Florence, Italy
| | - Monica di Paola
- Department of Biology, University of Florence, Florence, Italy
| | - Niccolò Meriggi
- Department of Biology, University of Florence, Florence, Italy
| | | |
Collapse
|
6
|
Desai JV, Lionakis MS. Evaluation of murine renal phagocyte-fungal interactions using intravital confocal microscopy and flow cytometry. STAR Protoc 2024; 5:102781. [PMID: 38113143 PMCID: PMC10770751 DOI: 10.1016/j.xpro.2023.102781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/31/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023] Open
Abstract
Myeloid phagocytes are essential for antifungal host defense during systemic candidiasis. Here, we present a protocol for assessing phagocyte-fungal interactions in vivo in the kidney, the primary target organ of the murine systemic candidiasis model. We describe steps for intravital confocal microscopy and flow cytometry. We also detail a kidney tissue dissociation procedure to obtain highly pure functional phagocytes for utilization in downstream ex vivo fungal uptake and killing assays.
Collapse
Affiliation(s)
- Jigar V Desai
- Fungal Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Michail S Lionakis
- Fungal Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
7
|
Yu Z, Xu Z, Li S, Tian Z, Feng Y, Zhao H, Xue G, Cui J, Yan C, Yuan J. Prophylactic vitamin C supplementation regulates DNA demethylation to protect against cisplatin-induced acute kidney injury in mice. Biochem Biophys Res Commun 2024; 695:149463. [PMID: 38176172 DOI: 10.1016/j.bbrc.2023.149463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/15/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024]
Abstract
Cisplatin-induced acute kidney injury (AKI) restricts the use of cisplatin as a first-line chemotherapeutic agent. Our previous study showed that prophylactic vitamin C supplementation may act as an epigenetic modulator in alleviating cisplatin-induced AKI in mice. However, the targets of vitamin C and the mechanisms underlying the epigenetics changes remain largely unknown. Herein, whole-genome bisulfite sequencing and bulk RNA sequencing were performed on the kidney tissues of mice treated with cisplatin with prophylactic vitamin C supplementation (treatment mice) or phosphate-buffered saline (control mice) at 24 h after cisplatin treatment. Ascorbyl phosphate magnesium (APM), an oxidation-resistant vitamin C derivative, was found that led to global hypomethylation in the kidney tissue and regulated different functional genes in the promoter region and gene body region. Integrated evidence suggested that APM enhanced renal ion transport and metabolism, and reduced apoptosis and inflammation in the kidney tissues. Strikingly, Mapk15, Slc22a6, Cxcl5, and Cd44 were the potential targets of APM that conferred protection against cisplatin-induced AKI. Moreover, APM was found to be difficult to rescue cell proliferation and apoptosis caused by cisplatin in the Slc22a6 knockdown cell line. These results elucidate the mechanism by which vitamin C as an epigenetic regulator to protects against cisplatin-induced AKI and provides a new perspective and evidence support for controlling the disease process through regulating DNA methylation.
Collapse
Affiliation(s)
- Zihui Yu
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Ziying Xu
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Shang Li
- Department of Orthopedics, Chinese PLA General Hospital, Fuxing Road 8th, Haidian District, Beijing, 100853, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Fuxing Road 8th, Haidian District, Beijing, 100853, China
| | - Ziyan Tian
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Yanling Feng
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Hanqing Zhao
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Guanhua Xue
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Jinghua Cui
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Chao Yan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Jing Yuan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China.
| |
Collapse
|
8
|
Lazennec G, Rajarathnam K, Richmond A. CXCR2 chemokine receptor - a master regulator in cancer and physiology. Trends Mol Med 2024; 30:37-55. [PMID: 37872025 PMCID: PMC10841707 DOI: 10.1016/j.molmed.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/25/2023]
Abstract
Recent findings have modified our understanding of the roles of chemokine receptor CXCR2 and its ligands in cancer, inflammation, and immunity. Studies in Cxcr2 tissue-specific knockout mice show that this receptor is involved in, among other things, cancer, central nervous system (CNS) function, metabolism, reproduction, COVID-19, and the response to circadian cycles. Moreover, CXCR2 involvement in neutrophil function has been revisited not only in physiology but also for its major contribution to cancers. The recent unfolding of the role of CXCR2 in numerous cancers has led to extensive evaluation of multiple CXCR2 antagonists in preclinical and clinical studies. In this review we discuss the potential of targeting CXCR2 for cancer treatment.
Collapse
Affiliation(s)
- Gwendal Lazennec
- Centre National de la Recherche Scientifique (CNRS), Sys2Diag-ALCEDIAG, Cap Delta, Montpellier, France; CNRS Groupement de Recherche (GDR) 3697 'Microenvironment of Tumor Niches', Micronit, France.
| | - Krishna Rajarathnam
- Department of Biochemistry and Molecular Biology, Department of Microbiology and Immunology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| | - Ann Richmond
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA; Vanderbilt University School of Medicine, Department of Pharmacology, Nashville, TN, USA; Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
9
|
Fahimi F, Alam MJ, Ang C, Adhyatma GP, Xie L, Mackay CR, Robert R. Human CXCR1 knock-in mice infer functional expression of a murine ortholog. J Leukoc Biol 2023; 114:373-380. [PMID: 37478375 DOI: 10.1093/jleuko/qiad085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 06/05/2023] [Accepted: 06/26/2023] [Indexed: 07/23/2023] Open
Abstract
Targeting CXCR1 and CXCR2 chemokine receptors to block neutrophil migration to sites of inflammation is a promising therapeutic approach for various inflammatory and autoimmune diseases. However, assessing the translational potential of such therapies using mouse models is challenging due to the unclear expression of CXCR1 at the protein level. Although CXCR2 has been well characterized in both mice and humans, the protein-level expression of CXCR1 in mice (mCXCR1) remains controversial. To address this issue, we generated a novel human CXCR1 knock-in (hCXCR1 KI) mouse model in which the transgene is under the control of the native mouse promoter and regulatory elements. Using an anti-human CXCR1 monoclonal antibody (anti-hCXCR1 monoclonal antibody), we found that hCXCR1 was highly expressed on neutrophils in the hCXCR1 KI mice, comparable to levels observed in human neutrophils. This successful expression of hCXCR1 in this mouse model suggests that functional mCXCR1 likely exists. To investigate the functional role of CXCR1, we investigated how antagonizing this receptor using anti-hCXCR1 monoclonal antibody in the arthritis model would affect disease outcomes. Antibody treatment significantly alleviated all signs of joint inflammation. In summary, our newly generated hCXCR1 KI transgenic mice provide a valuable tool to investigate the therapeutic efficacy of small molecules or monoclonal antibodies that antagonize this receptor in neutrophil-mediated pathologies.
Collapse
Affiliation(s)
- Farnaz Fahimi
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Md Jahangir Alam
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Caroline Ang
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Galih Prakasa Adhyatma
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Liang Xie
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Charles R Mackay
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Remy Robert
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
10
|
Zhuang W, Zhou J, Zhong L, Lv J, Zhong X, Liu G, Xie L, Wang C, Saimaier K, Han S, Shi C, Hua Q, Zhang R, Xie X, Du C. CXCR1 drives the pathogenesis of EAE and ARDS via boosting dendritic cells-dependent inflammation. Cell Death Dis 2023; 14:608. [PMID: 37709757 PMCID: PMC10502121 DOI: 10.1038/s41419-023-06126-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/21/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023]
Abstract
Chemokines secreted by dendritic cells (DCs) play a key role in the regulation of inflammation and autoimmunity through chemokine receptors. However, the role of chemokine receptor CXCR1 in inflammation-inducing experimental autoimmune encephalomyelitis (EAE) and acute respiratory distress syndrome (ARDS) remains largely enigmatic. Here we reported that compared with healthy controls, the level of CXCR1 was aberrantly increased in multiple sclerosis (MS) patients. Knockout of CXCR1 not only ameliorated disease severity in EAE mice but also suppressed the secretion of inflammatory factors (IL-6/IL-12p70) production. We observed the same results in EAE mice with DCs-specific deletion of CXCR1 and antibody neutralization of the ligand CXCL5. Mechanically, we demonstrated a positive feedback loop composed of CXCL5/CXCR1/HIF-1α direct regulating of IL-6/IL-12p70 production in DCs. Meanwhile, we found CXCR1 deficiency in DCs limited IL-6/IL-12p70 production and lung injury in LPS-induced ARDS, a disease model caused by inflammation. Overall, our study reveals CXCR1 governs DCs-mediated inflammation and autoimmune disorders and its potential as a therapeutic target for related diseases.
Collapse
Affiliation(s)
- Wei Zhuang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinfeng Zhou
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Lan Zhong
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200092, China
| | - Jie Lv
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Xuan Zhong
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200092, China
| | - Guangyu Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Ling Xie
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Chun Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Kaidireya Saimaier
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Sanxing Han
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Changjie Shi
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Qiuhong Hua
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Ru Zhang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Xin Xie
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Changsheng Du
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
11
|
Abstract
Neutrophils represent the first line of defense against bacterial and fungal pathogens. Indeed, patients with inherited or acquired qualitative and quantitative neutrophil defects are at high risk for developing bacterial and fungal infections and suffering adverse outcomes from these infections. Therefore, research aiming at defining the molecular factors that modulate neutrophil effector function under homeostatic conditions and during infection is essential for devising strategies to augment neutrophil function and improve the outcomes of infected individuals. This article describes reproducible density-gradient-centrifugation-based as well as positive and negative immunomagnetic selection protocols that can be applied in any laboratory to harvest large numbers of highly enriched and highly viable neutrophils from the bone marrow of mice. In another protocol, we also present a method that combines gentle enzymatic tissue digestion with a positive immunomagnetic selection technique or fluorescence-activated cell sorting (FACS) to harvest highly pure and highly viable preparations of neutrophils directly from mouse tissues such as the kidney, the liver, or the spleen. Mouse neutrophils isolated by these protocols can be used to examine several aspects of cellular function ex vivo, including pathogen binding, phagocytosis, and killing, neutrophil chemotaxis, oxidative burst, degranulation, and cytokine production, and for performing neutrophil adoptive transfer experiments. © 2023 Wiley Periodicals LLC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA. Basic Protocol 1: Isolation of Neutrophils from Mouse Bone Marrow Using Positive Immunomagnetic Separation Alternate Protocol 1: Purification of Neutrophils from Bone Marrow Using Negative Immunomagnetic Separation Alternate Protocol 2: Purification of Neutrophils from Bone Marrow Using Histopaque-Based Density Gradient Centrifugation Basic Protocol 2: Isolation of Neutrophils from Mouse Tissues Using Positive Immunomagnetic Separation Alternate Protocol 3: Isolation of Neutrophils from Mouse Tissues Using FACS.
Collapse
Affiliation(s)
- Andrew L Wishart
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Muthulekha Swamydas
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
12
|
Balog BM, Sonti A, Zigmond RE. Neutrophil biology in injuries and diseases of the central and peripheral nervous systems. Prog Neurobiol 2023; 228:102488. [PMID: 37355220 PMCID: PMC10528432 DOI: 10.1016/j.pneurobio.2023.102488] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/24/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023]
Abstract
The role of inflammation in nervous system injury and disease is attracting increased attention. Much of that research has focused on microglia in the central nervous system (CNS) and macrophages in the peripheral nervous system (PNS). Much less attention has been paid to the roles played by neutrophils. Neutrophils are part of the granulocyte subtype of myeloid cells. These cells, like macrophages, originate and differentiate in the bone marrow from which they enter the circulation. After tissue damage or infection, neutrophils are the first immune cells to infiltrate into tissues and are directed there by specific chemokines, which act on chemokine receptors on neutrophils. We have reviewed here the basic biology of these cells, including their differentiation, the types of granules they contain, the chemokines that act on them, the subpopulations of neutrophils that exist, and their functions. We also discuss tools available for identification and further study of neutrophils. We then turn to a review of what is known about the role of neutrophils in CNS and PNS diseases and injury, including stroke, Alzheimer's disease, multiple sclerosis, amyotrophic lateral sclerosis, spinal cord and traumatic brain injuries, CNS and PNS axon regeneration, and neuropathic pain. While in the past studies have focused on neutrophils deleterious effects, we will highlight new findings about their benefits. Studies on their actions should lead to identification of ways to modify neutrophil effects to improve health.
Collapse
Affiliation(s)
- Brian M Balog
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4975, USA
| | - Anisha Sonti
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4975, USA
| | - Richard E Zigmond
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4975, USA.
| |
Collapse
|
13
|
Desai JV, Lionakis MS. C5-C5aR1-mediated immune responses during fungal infection: Clinical and translational implications. Clin Transl Med 2023; 13:e1424. [PMID: 37723621 PMCID: PMC10507165 DOI: 10.1002/ctm2.1424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 09/09/2023] [Indexed: 09/20/2023] Open
Affiliation(s)
- Jigar V. Desai
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM)National Institute of Allergy and Infectious Diseases (NIAID)National Institutes of Health (NIH)BethesdaMarylandUSA
- Present address:
Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Michail S. Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM)National Institute of Allergy and Infectious Diseases (NIAID)National Institutes of Health (NIH)BethesdaMarylandUSA
| |
Collapse
|
14
|
Desai JV, Kumar D, Freiwald T, Chauss D, Johnson MD, Abers MS, Steinbrink JM, Perfect JR, Alexander B, Matzaraki V, Snarr BD, Zarakas MA, Oikonomou V, Silva LM, Shivarathri R, Beltran E, Demontel LN, Wang L, Lim JK, Launder D, Conti HR, Swamydas M, McClain MT, Moutsopoulos NM, Kazemian M, Netea MG, Kumar V, Köhl J, Kemper C, Afzali B, Lionakis MS. C5a-licensed phagocytes drive sterilizing immunity during systemic fungal infection. Cell 2023; 186:2802-2822.e22. [PMID: 37220746 PMCID: PMC10330337 DOI: 10.1016/j.cell.2023.04.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 03/10/2023] [Accepted: 04/21/2023] [Indexed: 05/25/2023]
Abstract
Systemic candidiasis is a common, high-mortality, nosocomial fungal infection. Unexpectedly, it has emerged as a complication of anti-complement C5-targeted monoclonal antibody treatment, indicating a critical niche for C5 in antifungal immunity. We identified transcription of complement system genes as the top biological pathway induced in candidemic patients and as predictive of candidemia. Mechanistically, C5a-C5aR1 promoted fungal clearance and host survival in a mouse model of systemic candidiasis by stimulating phagocyte effector function and ERK- and AKT-dependent survival in infected tissues. C5ar1 ablation rewired macrophage metabolism downstream of mTOR, promoting their apoptosis and enhancing mortality through kidney injury. Besides hepatocyte-derived C5, local C5 produced intrinsically by phagocytes provided a key substrate for antifungal protection. Lower serum C5a concentrations or a C5 polymorphism that decreases leukocyte C5 expression correlated independently with poor patient outcomes. Thus, local, phagocyte-derived C5 production licenses phagocyte antimicrobial function and confers innate protection during systemic fungal infection.
Collapse
Affiliation(s)
- Jigar V Desai
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy & Infectious Diseases, NIH, Bethesda, MD, USA
| | - Dhaneshwar Kumar
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA; Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Tilo Freiwald
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Daniel Chauss
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | | | - Michael S Abers
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy & Infectious Diseases, NIH, Bethesda, MD, USA
| | - Julie M Steinbrink
- Department of Medicine, Division of Infectious Diseases, Duke University, Durham, NC, USA
| | - John R Perfect
- Department of Medicine, Division of Infectious Diseases, Duke University, Durham, NC, USA
| | - Barbara Alexander
- Department of Medicine, Division of Infectious Diseases, Duke University, Durham, NC, USA
| | - Vasiliki Matzaraki
- Department of Genetics, University of Groningen, Groningen, the Netherlands
| | - Brendan D Snarr
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy & Infectious Diseases, NIH, Bethesda, MD, USA
| | - Marissa A Zarakas
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy & Infectious Diseases, NIH, Bethesda, MD, USA
| | - Vasileios Oikonomou
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy & Infectious Diseases, NIH, Bethesda, MD, USA
| | - Lakmali M Silva
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, USA
| | - Raju Shivarathri
- Center for Discovery & Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Emily Beltran
- Complement and Inflammation Research Section, National Heart Lung and Blood Institute, NIH, Bethesda, MD, USA
| | - Luciana Negro Demontel
- Complement and Inflammation Research Section, National Heart Lung and Blood Institute, NIH, Bethesda, MD, USA
| | - Luopin Wang
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Jean K Lim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dylan Launder
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Heather R Conti
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Muthulekha Swamydas
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy & Infectious Diseases, NIH, Bethesda, MD, USA
| | - Micah T McClain
- Department of Medicine, Division of Infectious Diseases, Duke University, Durham, NC, USA
| | - Niki M Moutsopoulos
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, USA
| | - Majid Kazemian
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University, Nijmegen, the Netherlands
| | - Vinod Kumar
- Department of Genetics, University of Groningen, Groningen, the Netherlands; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University, Nijmegen, the Netherlands
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Claudia Kemper
- Complement and Inflammation Research Section, National Heart Lung and Blood Institute, NIH, Bethesda, MD, USA
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy & Infectious Diseases, NIH, Bethesda, MD, USA.
| |
Collapse
|
15
|
Lionakis MS. Exploiting antifungal immunity in the clinical context. Semin Immunol 2023; 67:101752. [PMID: 37001464 PMCID: PMC10192293 DOI: 10.1016/j.smim.2023.101752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Indexed: 03/31/2023]
Abstract
The continuous expansion of immunocompromised patient populations at-risk for developing life-threatening opportunistic fungal infections in recent decades has helped develop a deeper understanding of antifungal host defenses, which has provided the foundation for eventually devising immune-based targeted interventions in the clinic. This review outlines how genetic variation in certain immune pathway-related genes may contribute to the observed clinical variability in the risk of acquisition and/or severity of fungal infections and how immunogenetic-based patient stratification may enable the eventual development of personalized strategies for antifungal prophylaxis and/or vaccination. Moreover, this review synthesizes the emerging cytokine-based, cell-based, and other immunotherapeutic strategies that have shown promise as adjunctive therapies for boosting or modulating tissue-specific antifungal immune responses in the context of opportunistic fungal infections.
Collapse
Affiliation(s)
- Michail S Lionakis
- From the Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
16
|
Korkmaz FT, Traber KE. Innate immune responses in pneumonia. Pneumonia (Nathan) 2023; 15:4. [PMID: 36829255 PMCID: PMC9957695 DOI: 10.1186/s41479-023-00106-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 01/05/2023] [Indexed: 02/26/2023] Open
Abstract
The lungs are an immunologically unique environment; they are exposed to innumerable pathogens and particulate matter daily. Appropriate clearance of pathogens and response to pollutants is required to prevent overwhelming infection, while preventing tissue damage and maintaining efficient gas exchange. Broadly, the innate immune system is the collection of immediate, intrinsic immune responses to pathogen or tissue injury. In this review, we will examine the innate immune responses of the lung, with a particular focus on their role in pneumonia. We will discuss the anatomic barriers and antimicrobial proteins of the lung, pathogen and injury recognition, and the role of leukocytes (macrophages, neutrophils, and innate lymphocytes) and lung stromal cells in innate immunity. Throughout the review, we will focus on new findings in innate immunity as well as features that are unique to the lung.
Collapse
Affiliation(s)
- Filiz T Korkmaz
- Department of Medicine, Division of Immunology & Infectious Disease, University of Massachusetts, Worcester, MA, USA
- Pulmonary Center, Boston University School of Medicine, Boston, MA, USA
| | - Katrina E Traber
- Pulmonary Center, Boston University School of Medicine, Boston, MA, USA.
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
17
|
Zhao M, Zhou J, Tang Y, Liu M, Dai Y, Xie H, Wang Z, Chen L, Wu Y. Genome-wide analysis of RNA-binding proteins co-expression with alternative splicing events in mitral valve prolapse. Front Immunol 2023; 14:1078266. [PMID: 37180137 PMCID: PMC10171460 DOI: 10.3389/fimmu.2023.1078266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/29/2023] [Indexed: 05/15/2023] Open
Abstract
Objectives We investigated the role and molecular mechanisms of RNA-binding proteins (RBPs) and their regulated alternative splicing events (RASEs) in the pathogenesis of mitral valve prolapse (MVP). Methods For RNA extraction, we obtained peripheral blood mononuclear cells (PBMCs) from five patients with MVP, with or without chordae tendineae rupture, and five healthy individuals. High-throughput sequencing was used for RNA sequencing (RNA-seq). Differentially expressed genes (DEGs) analysis, alternative splicing (AS) analysis, functional enrichment analysis, co-expression of RBPs, and alternative splicing events (ASEs) analysis were conducted. Results The MVP patients exhibited 306 up-regulated genes and 198 down-regulated genes. All down- and up-regulated genes were enriched in both Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Furthermore, MVP was closely associated with the top 10 enriched terms and pathways. In MVP patients, 2,288 RASEs were found to be significantly different, and four suitable RASEs (CARD11 A3ss, RBM5 ES, NCF1 A5SS, and DAXX A3ss) were tested. We identified 13 RNA-binding proteins (RBPs) from the DEGs and screened out four RBPs (ZFP36, HSPA1A, TRIM21, and P2RX7). We selected four RASEs based on the co-expression analyses of RBPs and RASEs, including exon skipping (ES) of DEDD2, alternative 3' splice site (A3SS) of ETV6, mutually exclusive 3'UTRs (3pMXE) of TNFAIP8L2, and A3SS of HLA-B. Furthermore, the selected four RBPs and four RASEs were validated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and showed high consistency with RNA sequencing (RNA-seq). Conclusion Dysregulated RBPs and their associated RASEs may play regulatory roles in MVP development and may therefore be used as therapeutic targets in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Liang Chen
- *Correspondence: Liang Chen, ; Yanhu Wu,
| | - Yanhu Wu
- *Correspondence: Liang Chen, ; Yanhu Wu,
| |
Collapse
|
18
|
Lopes JP, Lionakis MS. Pathogenesis and virulence of Candida albicans. Virulence 2022; 13:89-121. [PMID: 34964702 PMCID: PMC9728475 DOI: 10.1080/21505594.2021.2019950] [Citation(s) in RCA: 191] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 12/18/2022] Open
Abstract
Candida albicans is a commensal yeast fungus of the human oral, gastrointestinal, and genital mucosal surfaces, and skin. Antibiotic-induced dysbiosis, iatrogenic immunosuppression, and/or medical interventions that impair the integrity of the mucocutaneous barrier and/or perturb protective host defense mechanisms enable C. albicans to become an opportunistic pathogen and cause debilitating mucocutaneous disease and/or life-threatening systemic infections. In this review, we synthesize our current knowledge of the tissue-specific determinants of C. albicans pathogenicity and host immune defense mechanisms.
Collapse
Affiliation(s)
- José Pedro Lopes
- From the Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, USA
| | - Michail S. Lionakis
- From the Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, USA
| |
Collapse
|
19
|
A Fun-Guide to Innate Immune Responses to Fungal Infections. J Fungi (Basel) 2022; 8:jof8080805. [PMID: 36012793 PMCID: PMC9409918 DOI: 10.3390/jof8080805] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/22/2022] Open
Abstract
Immunocompromised individuals are at high risk of developing severe fungal infections with high mortality rates, while fungal pathogens pose little risk to most healthy people. Poor therapeutic outcomes and growing antifungal resistance pose further challenges for treatments. Identifying specific immunomodulatory mechanisms exploited by fungal pathogens is critical for our understanding of fungal diseases and development of new therapies. A gap currently exists between the large body of literature concerning the innate immune response to fungal infections and the potential manipulation of host immune responses to aid clearance of infection. This review considers the innate immune mechanisms the host deploys to prevent fungal infection and how these mechanisms fail in immunocompromised hosts. Three clinically relevant fungal pathogens (Candida albicans, Cryptococcus spp. and Aspergillus spp.) will be explored. This review will also examine potential mechanisms of targeting the host therapeutically to improve outcomes of fungal infection.
Collapse
|
20
|
Matsuda M, Inaba M, Hamaguchi J, Tomita H, Omori M, Shimora H, Sakae H, Kitatani K, Nabe T. Local IL-10 replacement therapy was effective for steroid-insensitive asthma in mice. Int Immunopharmacol 2022; 110:109037. [PMID: 35810490 DOI: 10.1016/j.intimp.2022.109037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/27/2022] [Accepted: 07/04/2022] [Indexed: 01/24/2023]
Abstract
Subgroups of patients with severe asthma showing marked increases in sputum eosinophils and/or neutrophils are insensitive to corticosteroids. Previous reports have shown that exogenous administration of an anti-inflammatory cytokine, interleukin (IL)-10 negatively regulated both eosinophilic and neutrophilic migration into tissues. The objective of this study was to elucidate whether intratracheal IL-10 administration suppresses asthmatic responses in a steroid-insensitive model of mice. Ovalbumin (OVA)-sensitized BALB/c mice were intratracheally challenged with OVA at 500 µg/animal four times. Dexamethasone (1 mg/kg, intraperitoneal) or IL-10 (25 ng/mouse, intratracheal) was administered during the multiple challenges. The number of leukocytes, expression of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and IL-10 receptor in the lung, and the development of airway remodeling and hyperresponsiveness were evaluated after the fourth challenge. Consistent with our previous study, dexamethasone hardly suppressed the development of airway remodeling and hyperresponsiveness. Although intratracheal IL-10 administration did not affect the development of airway remodeling, the infiltration of eosinophils and neutrophils, and the development of airway hyperresponsiveness were significantly inhibited. Moreover, IL-10 administration significantly decreased the numbers of ICAM-1+ and VCAM-1+ pulmonary vascular endothelial cells, which express IL-10 receptor 1, even though neither production of eosinophilic nor neutrophilic cytokines in the lung was inhibited. Therefore, IL-10 can suppress eosinophil and neutrophil infiltration by inhibiting the proliferation of ICAM-1+ and VCAM-1+ pulmonary vascular endothelial cells, resulting in inhibition of airway hyperresponsiveness in steroid-insensitive asthmatic mice. IL-10 replacement therapy may be clinically useful for the treatment of steroid-insensitive asthma.
Collapse
Affiliation(s)
- Masaya Matsuda
- Laboratory of Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Osaka, Japan
| | - Miki Inaba
- Laboratory of Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Osaka, Japan
| | - Junpei Hamaguchi
- Laboratory of Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Osaka, Japan
| | - Hiro Tomita
- Laboratory of Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Osaka, Japan
| | - Miyu Omori
- Laboratory of Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Osaka, Japan
| | - Hayato Shimora
- Laboratory of Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Osaka, Japan
| | - Harumi Sakae
- Laboratory of Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Osaka, Japan
| | - Kazuyuki Kitatani
- Laboratory of Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Osaka, Japan
| | - Takeshi Nabe
- Laboratory of Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Osaka, Japan.
| |
Collapse
|
21
|
Gonçalves SM, Cunha C, Carvalho A. Understanding the genetic basis of immune responses to fungal infection. Expert Rev Anti Infect Ther 2022; 20:987-996. [PMID: 35385368 DOI: 10.1080/14787210.2022.2063839] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Fungal infections represent a global public health problem that affect millions of people. Despite remarkable advances achieved over the last decades, available diagnostic and therapeutic tools remain insufficient for the optimal management of these diseases. The clinical course of fungal infection is highly variable, and evidence accumulated from patients with rare mutations and cohort-based studies suggests that the trajectory of disease is largely defined by patient genetics and its impact on immune responses. Therefore, there is an urgent need to elucidate the precise mechanisms by which which genetic variants influence the risk, progression, and outcome of fungal infection. AREAS COVERED In this review, we highlight recent advances in our understanding of the genetic factors that influence antifungal immune responses based on candidate gene studies and genome-wide approaches performed in different experimental and clinical models. EXPERT OPINION Research on genetics of susceptibility to infection is expected to lead to a detailed knowledge framework for the pathogenesis of human fungal infections and unveil novel targets and pathways amenable to clinical intervention.
Collapse
Affiliation(s)
- Samuel M Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
22
|
Liu W, Huang W, Li S, Zhao H, Jiang L, Xu J, Gao X, Yang Z, Wei Z. Nanosilver-stimulated heterophil extracellular traps promoted liver and kidney injury in chicken. J Inorg Biochem 2022; 233:111838. [DOI: 10.1016/j.jinorgbio.2022.111838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 11/29/2022]
|
23
|
Wang L, Zhu Z, Liao Y, Zhang L, Yu Z, Yang R, Wu J, Wu Z, Sun X. Host Liver-Derived Extracellular Vesicles Deliver miR-142a-3p Induces Neutrophil Extracellular Traps via Targeting WASL to Block the Development of Schistosoma japonicum. Mol Ther 2022; 30:2092-2107. [PMID: 35351657 PMCID: PMC9092393 DOI: 10.1016/j.ymthe.2022.03.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/10/2022] [Accepted: 03/24/2022] [Indexed: 10/18/2022] Open
Abstract
Schistosomiasis is an important neglected tropical disease. Interactions between the host immune system and schistosomes are complex. Neutrophils contribute to clearance of large pathogens primarily by releasing neutrophil extracellular traps (NETs). However, the functional role of NETs in clearing schistosomes remains unclear. Herein, we report that extracellular vesicles (EVs) derived from the liver of Schistosoma japonicum-infected mice (IL-EVs) induce NET release by delivering miR-142a-3p to target WASL and block the development of S. japonicum. WASL knockout accelerated the formation of NETs that blocked further development of S. japonicum. miR-142a-3p and NETs upregulated the expression of CCL2, which recruits macrophages that block S. japonicum development. However, S. japonicum inhibited NET formation in wild-type mice by upregulating host interleukin-10 (IL-10) expression. In contrast, in WASL knockout mice, IL-10 expression was downregulated, and S. japonicum-mediated inhibition of NET formation was significantly reduced. IL-EV-mediated induction of NET formation is thus an anti-schistosome response that can be counteracted by S. japonicum. These findings suggest that IL-EV-mediated induction of NET formation plays a key role in schistosome infection and that WASL is a potential therapeutic target in schistosomiasis and other infectious diseases.
Collapse
|
24
|
Chemokines as Regulators of Neutrophils: Focus on Tumors, Therapeutic Targeting, and Immunotherapy. Cancers (Basel) 2022; 14:cancers14030680. [PMID: 35158948 PMCID: PMC8833344 DOI: 10.3390/cancers14030680] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Neutrophils are the main leukocyte subset present in human blood and play a fundamental role in the defense against infections. Neutrophils are also an important component of the tumor stroma because they are recruited by selected chemokines produced by both cancer cells and other cells of the stroma. Even if their presence has been mostly associated with a bad prognosis, tumor-associated neutrophils are present in different maturation and activation states and can exert both protumor and antitumor activities. In addition, it is now emerging that chemokines not only induce neutrophil directional migration but also have an important role in their activation and maturation. For these reasons, chemokines and chemokine receptors are now considered targets to improve the antitumoral function of neutrophils in cancer immunotherapy. Abstract Neutrophils are an important component of the tumor microenvironment, and their infiltration has been associated with a poor prognosis for most human tumors. However, neutrophils have been shown to be endowed with both protumor and antitumor activities, reflecting their heterogeneity and plasticity in cancer. A growing body of studies has demonstrated that chemokines and chemokine receptors, which are fundamental regulators of neutrophils trafficking, can affect neutrophil maturation and effector functions. Here, we review human and mouse data suggesting that targeting chemokines or chemokine receptors can modulate neutrophil activity and improve their antitumor properties and the efficiency of immunotherapy.
Collapse
|
25
|
Mairpady Shambat S, Gómez-Mejia A, Schweizer TA, Huemer M, Chang CC, Acevedo C, Bergada-Pijuan J, Vulin C, Hofmaenner DA, Scheier TC, Hertegonne S, Parietti E, Miroshnikova N, Wendel Garcia PD, Hilty MP, Buehler PK, Schuepbach RA, Brugger SD, Zinkernagel AS. Hyperinflammatory environment drives dysfunctional myeloid cell effector response to bacterial challenge in COVID-19. PLoS Pathog 2022; 18:e1010176. [PMID: 35007290 PMCID: PMC8782468 DOI: 10.1371/journal.ppat.1010176] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 01/21/2022] [Accepted: 12/06/2021] [Indexed: 02/06/2023] Open
Abstract
COVID-19 displays diverse disease severities and symptoms including acute systemic inflammation and hypercytokinemia, with subsequent dysregulation of immune cells. Bacterial superinfections in COVID-19 can further complicate the disease course and are associated with increased mortality. However, there is limited understanding of how SARS-CoV-2 pathogenesis and hypercytokinemia impede the innate immune function against bacterial superinfections. We assessed the influence of COVID-19 plasma hypercytokinemia on the functional responses of myeloid immune cells upon bacterial challenges from acute-phase COVID-19 patients and their corresponding recovery-phase. We show that a severe hypercytokinemia status in COVID-19 patients correlates with the development of bacterial superinfections. Neutrophils and monocytes derived from COVID-19 patients in their acute-phase showed an impaired intracellular microbicidal capacity upon bacterial challenges. The impaired microbicidal capacity was reflected by abrogated MPO and reduced NETs production in neutrophils along with reduced ROS production in both neutrophils and monocytes. Moreover, we observed a distinct pattern of cell surface receptor expression on both neutrophils and monocytes, in line with suppressed autocrine and paracrine cytokine signaling. This phenotype was characterized by a high expression of CD66b, CXCR4 and low expression of CXCR1, CXCR2 and CD15 in neutrophils and low expression of HLA-DR, CD86 and high expression of CD163 and CD11b in monocytes. Furthermore, the impaired antibacterial effector function was mediated by synergistic effect of the cytokines TNF-α, IFN-γ and IL-4. COVID-19 patients receiving dexamethasone showed a significant reduction of overall inflammatory markers in the plasma as well as exhibited an enhanced immune response towards bacterial challenge ex vivo. Finally, broad anti-inflammatory treatment was associated with a reduction in CRP, IL-6 levels as well as length of ICU stay and ventilation-days in critically ill COVID-19 patients. Our data provides insights into the transient functional dysregulation of myeloid immune cells against subsequent bacterial infections in COVID-19 patients and describe a beneficial role for the use of dexamethasone in these patients.
Collapse
Affiliation(s)
- Srikanth Mairpady Shambat
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Alejandro Gómez-Mejia
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Tiziano A. Schweizer
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Markus Huemer
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Chun-Chi Chang
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Claudio Acevedo
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Judith Bergada-Pijuan
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Clément Vulin
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Daniel A. Hofmaenner
- Institute of Intensive Care, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Thomas C. Scheier
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Sanne Hertegonne
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Elena Parietti
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Nataliya Miroshnikova
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Pedro D. Wendel Garcia
- Institute of Intensive Care, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Matthias P. Hilty
- Institute of Intensive Care, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Philipp Karl Buehler
- Institute of Intensive Care, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Reto A. Schuepbach
- Institute of Intensive Care, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Silvio D. Brugger
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Annelies S. Zinkernagel
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
26
|
Frank D, Carpino N. Induction and analysis of systemic C. albicans infections in mice. Methods Cell Biol 2022; 168:315-327. [DOI: 10.1016/bs.mcb.2021.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Wich M, Greim S, Ferreira-Gomes M, Krüger T, Kniemeyer O, Brakhage AA, Jacobsen ID, Hube B, Jungnickel B. Functionality of the human antibody response to Candida albicans. Virulence 2021; 12:3137-3148. [PMID: 34923920 PMCID: PMC8923069 DOI: 10.1080/21505594.2021.2015116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Candida albicans is a common commensal on human mucosal surfaces, but can become pathogenic, e.g. if the host is immunocompromised. While neutrophils, macrophages and T cells are regarded as major players in the defense against pathogenic C. albicans, the role of B cells and the protective function of their antibodies are less well characterized. In this study, we show that human serum antibodies are able to enhance the association of human THP-1 monocyte-like cells with C. albicans cells. Human serum antibodies are also capable of inhibiting the adherence and damage dealt to epithelial cells. Furthermore, human serum antibodies impair C. albicans invasion of human oral epithelial cells by blocking induced endocytosis and consequently host cell damage. While aspartic proteases secreted by C. albicans are able to cleave human IgG, this process does not appear to affect the protective function of human antibodies. Thus, humans are equipped with a robust antibody response to C. albicans, which can enhance antifungal activities and prevent fungal-mediated epithelial damage.
Collapse
Affiliation(s)
- Melissa Wich
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Stephanie Greim
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Marta Ferreira-Gomes
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Thomas Krüger
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Olaf Kniemeyer
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Axel A Brakhage
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany.,Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Ilse D Jacobsen
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany.,Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Bernhard Hube
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany.,Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Berit Jungnickel
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
28
|
Karin N. Chemokines in the Landscape of Cancer Immunotherapy: How They and Their Receptors Can Be Used to Turn Cold Tumors into Hot Ones? Cancers (Basel) 2021; 13:6317. [PMID: 34944943 PMCID: PMC8699256 DOI: 10.3390/cancers13246317] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 02/07/2023] Open
Abstract
Over the last decade, monoclonal antibodies to immune checkpoint inhibitors (ICI), also known as immune checkpoint blockers (ICB), have been the most successful approach for cancer therapy. Starting with mAb to cytotoxic T lymphocyte antigen 4 (CTLA-4) inhibitors in metastatic melanoma and continuing with blockers of the interactions between program cell death 1 (PD-1) and its ligand program cell death ligand 1 (PDL-1) or program cell death ligand 2 (PDL-2), that have been approved for about 20 different indications. Yet for many cancers, ICI shows limited success. Several lines of evidence imply that the limited success in cancer immunotherapy is associated with attempts to treat patients with "cold tumors" that either lack effector T cells, or in which these cells are markedly suppressed by regulatory T cells (Tregs). Chemokines are a well-defined group of proteins that were so named due to their chemotactic properties. The current review focuses on key chemokines that not only attract leukocytes but also shape their biological properties. CXCR3 is a chemokine receptor with 3 ligands. We suggest using Ig-based fusion proteins of two of them: CXL9 and CXCL10, to enhance anti-tumor immunity and perhaps transform cold tumors into hot tumors. Potential differences between CXCL9 and CXCL10 regarding ICI are discussed. We also discuss the possibility of targeting the function or deleting a key subset of Tregs that are CCR8+ by monoclonal antibodies to CCR8. These cells are preferentially abundant in several tumors and are likely to be the key drivers in suppressing anti-cancer immune reactivity.
Collapse
Affiliation(s)
- Nathan Karin
- Department of Immunology, Faculty of Medicine, Technion, P.O. Box 9697, Haifa 31096, Israel
| |
Collapse
|
29
|
Marion MC, Ramos PS, Bachali P, Labonte AC, Zimmerman KD, Ainsworth HC, Heuer SE, Robl RD, Catalina MD, Kelly JA, Howard TD, Lipsky PE, Grammer AC, Langefeld CD. Nucleic Acid-Sensing and Interferon-Inducible Pathways Show Differential Methylation in MZ Twins Discordant for Lupus and Overexpression in Independent Lupus Samples: Implications for Pathogenic Mechanism and Drug Targeting. Genes (Basel) 2021; 12:genes12121898. [PMID: 34946847 PMCID: PMC8701117 DOI: 10.3390/genes12121898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 12/27/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic, multisystem, autoimmune inflammatory disease with genomic and non-genomic contributions to risk. We hypothesize that epigenetic factors are a significant contributor to SLE risk and may be informative for identifying pathogenic mechanisms and therapeutic targets. To test this hypothesis while controlling for genetic background, we performed an epigenome-wide analysis of DNA methylation in genomic DNA from whole blood in three pairs of female monozygotic (MZ) twins of European ancestry, discordant for SLE. Results were replicated on the same array in four cell types from a set of four Danish female MZ twin pairs discordant for SLE. Genes implicated by the epigenetic analyses were then evaluated in 10 independent SLE gene expression datasets from the Gene Expression Omnibus (GEO). There were 59 differentially methylated loci between unaffected and affected MZ twins in whole blood, including 11 novel loci. All but two of these loci were hypomethylated in the SLE twins relative to the unaffected twins. The genes harboring these hypomethylated loci exhibited increased expression in multiple independent datasets of SLE patients. This pattern was largely consistent regardless of disease activity, cell type, or renal tissue type. The genes proximal to CpGs exhibiting differential methylation (DM) in the SLE-discordant MZ twins and exhibiting differential expression (DE) in independent SLE GEO cohorts (DM-DE genes) clustered into two pathways: the nucleic acid-sensing pathway and the type I interferon pathway. The DM-DE genes were also informatically queried for potential gene–drug interactions, yielding a list of 41 drugs including a known SLE therapy. The DM-DE genes delineate two important biologic pathways that are not only reflective of the heterogeneity of SLE but may also correlate with distinct IFN responses that depend on the source, type, and location of nucleic acid molecules and the activated receptors in individual patients. Cell- and tissue-specific analyses will be critical to the understanding of genetic factors dysregulating the nucleic acid-sensing and IFN pathways and whether these factors could be appropriate targets for therapeutic intervention.
Collapse
Affiliation(s)
- Miranda C. Marion
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (M.C.M.); (H.C.A.)
- Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
| | - Paula S. Ramos
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Prathyusha Bachali
- AMPEL BioSolutions, LLC and RILITE Research Institute, Charlottesville, VA 22902, USA; (P.B.); (A.C.L.); (S.E.H.); (R.D.R.); (M.D.C.); (P.E.L.); (A.C.G.)
| | - Adam C. Labonte
- AMPEL BioSolutions, LLC and RILITE Research Institute, Charlottesville, VA 22902, USA; (P.B.); (A.C.L.); (S.E.H.); (R.D.R.); (M.D.C.); (P.E.L.); (A.C.G.)
| | - Kip D. Zimmerman
- Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
| | - Hannah C. Ainsworth
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (M.C.M.); (H.C.A.)
- Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
| | - Sarah E. Heuer
- AMPEL BioSolutions, LLC and RILITE Research Institute, Charlottesville, VA 22902, USA; (P.B.); (A.C.L.); (S.E.H.); (R.D.R.); (M.D.C.); (P.E.L.); (A.C.G.)
- The Jackson Laboratory, Tufts Graduate School of Biomedical Sciences, Bar Harbor, ME 04609, USA
| | - Robert D. Robl
- AMPEL BioSolutions, LLC and RILITE Research Institute, Charlottesville, VA 22902, USA; (P.B.); (A.C.L.); (S.E.H.); (R.D.R.); (M.D.C.); (P.E.L.); (A.C.G.)
| | - Michelle D. Catalina
- AMPEL BioSolutions, LLC and RILITE Research Institute, Charlottesville, VA 22902, USA; (P.B.); (A.C.L.); (S.E.H.); (R.D.R.); (M.D.C.); (P.E.L.); (A.C.G.)
| | - Jennifer A. Kelly
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA;
| | - Timothy D. Howard
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
| | - Peter E. Lipsky
- AMPEL BioSolutions, LLC and RILITE Research Institute, Charlottesville, VA 22902, USA; (P.B.); (A.C.L.); (S.E.H.); (R.D.R.); (M.D.C.); (P.E.L.); (A.C.G.)
| | - Amrie C. Grammer
- AMPEL BioSolutions, LLC and RILITE Research Institute, Charlottesville, VA 22902, USA; (P.B.); (A.C.L.); (S.E.H.); (R.D.R.); (M.D.C.); (P.E.L.); (A.C.G.)
| | - Carl D. Langefeld
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (M.C.M.); (H.C.A.)
- Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
- Correspondence:
| |
Collapse
|
30
|
Bergmann CB, Hammock BD, Wan D, Gogolla F, Goetzman H, Caldwell CC, Supp DM. TPPU treatment of burned mice dampens inflammation and generation of bioactive DHET which impairs neutrophil function. Sci Rep 2021; 11:16555. [PMID: 34400718 PMCID: PMC8368302 DOI: 10.1038/s41598-021-96014-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/03/2021] [Indexed: 12/20/2022] Open
Abstract
Oxylipins modulate the behavior of immune cells in inflammation. Soluble epoxide hydrolase (sEH) converts anti-inflammatory epoxyeicosatrienoic acid (EET) to dihydroxyeicosatrienoic acid (DHET). An sEH-inhibitor, TPPU, has been demonstrated to ameliorate lipopolysaccharide (LPS)- and sepsis-induced inflammation via EETs. The immunomodulatory role of DHET is not well characterized. We hypothesized that TPPU dampens inflammation and that sEH-derived DHET alters neutrophil functionality in burn induced inflammation. Outbred mice were treated with vehicle, TPPU or 14,15-DHET and immediately subjected to either sham or dorsal scald 28% total body surface area burn injury. After 6 and 24 h, interleukin 6 (IL-6) serum levels and neutrophil activation were analyzed. For in vitro analyses, bone marrow derived neutrophil functionality and mRNA expression were examined. In vivo, 14,15-DHET and IL-6 serum concentrations were decreased after burn injury with TPPU administration. In vitro, 14,15-DHET impaired neutrophil chemotaxis, acidification, CXCR1/CXCR2 expression and reactive oxygen species (ROS) production, the latter independent from p38MAPK and PI3K signaling. We conclude that TPPU administration decreases DHET post-burn. Furthermore, DHET downregulates key neutrophil immune functions and mRNA expression. Altogether, these data reveal that TPPU not only increases anti-inflammatory and inflammation resolving EET levels, but also prevents potential impairment of neutrophils by DHET in trauma.
Collapse
Affiliation(s)
- Christian B Bergmann
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Bruce D Hammock
- Department of Entomology, University of California, Davis, CA, USA
| | - Debin Wan
- Department of Entomology, University of California, Davis, CA, USA
| | - Falk Gogolla
- Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Holly Goetzman
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Charles C Caldwell
- Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Dorothy M Supp
- Division of Plastic, Reconstructive and Hand Surgery/Burn Surgery, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA. .,Scientific Staff, Shriners Children's Ohio, Dayton, OH, USA.
| |
Collapse
|
31
|
Li C, He K, Yin M, Zhang Q, Lin J, Niu Y, Wang Q, Xu Q, Jiang N, Zhao G. LOX-1 Regulates Neutrophil Apoptosis and Fungal Load in A. Fumigatus Keratitis. Curr Eye Res 2021; 46:1800-1811. [PMID: 34264144 DOI: 10.1080/02713683.2021.1948063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE To determine whether LOX-1 regulates neutrophil apoptosis and fungal load in A. fumigatus keratitis. METHODS Fas, FasL, CASP3, CASP8, CASP9 and BCL2 were tested in normal and infected corneas of C57BL/6 mice. Mice corneas were infected with A. fumigatus with or without pretreatment of LOX-1 neutralizing antibody or inhibitor (Poly I). Clinical score was recored and HE staining was tested. Fungal load in mice corneas was observed by plate counting. Poly morphonuclear neutrophilic leukocytes (PMNs) were stimulated with 75% ethanol-killed A. fumigatus with or without pretreatment of LOX-1 neutralizing antibody or Poly I. PCR, western blot and immunostaining tested expression of Fas, FasL, CASP3, CASP8, CASP9, BCL2 and cleaved caspase-3. PMNs infiltration and TUNEL-positive cells were assessed by immunofluorescent staining. Flow cytometry assay tested the percentage of apoptosis neutrophils. RESULTS Fas, Fas ligand, caspase-8, caspase-9 and caspase-3 mRNA levels were significantly higher in C57BL/6 mice corneas infected with A. fumigatus than normal corneas. Poly I treatment alleviated the severity and decreased clinical score at 3, 5 and 7 days post infecrion (p.i.). HE staining showed less infiltration in corneal tissue after LOX-1 inhibition. Plate counting experiment showed that number of viable fungus in corneas of Poly I treated group was significantly less than control group. LOX-1 neutralizing antibody or Poly I treatment significantly decreased neutrophil infiltration, the quantity of TUNEL-positive cells, the expression of Fas, Fas ligand, caspase-8, caspase-9, caspase-3, cleaved caspase-3 and the percentage of apoptosis neutrophils compared with control corneas. LOX-1 neutralizing antibody treatment significantly decreased Fas, FasL, CASP3, CASP8, CASP9 and cleaved caspase-3 expression in neutrophils. CONCLUSION LOX-1 inhibition decrease neutrophil apoptosis and fungal load in A. fumigatus keratitis.
Collapse
Affiliation(s)
- Cui Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Kun He
- Department of Ophthalmology, Zhejiang Quhua Hospital Quzhou, Zhejiang, China
| | - Min Yin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Qiuqiu Zhang
- Department of Ophthalmology, Zaozhuang Municipal Hospital, Zaozhuang, Shandong, China
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yawen Niu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Qian Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Qiang Xu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Nan Jiang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
32
|
Challenges and Opportunities in Understanding Genetics of Fungal Diseases: Towards a Functional Genomics Approach. Infect Immun 2021; 89:e0000521. [PMID: 34031131 DOI: 10.1128/iai.00005-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Infectious diseases are a leading cause of morbidity and mortality worldwide, and human pathogens have long been recognized as one of the main sources of evolutionary pressure, resulting in a high variable genetic background in immune-related genes. The study of the genetic contribution to infectious diseases has undergone tremendous advances over the last decades. Here, focusing on genetic predisposition to fungal diseases, we provide an overview of the available approaches for studying human genetic susceptibility to infections, reviewing current methodological and practical limitations. We describe how the classical methods available, such as family-based studies and candidate gene studies, have contributed to the discovery of crucial susceptibility factors for fungal infections. We will also discuss the contribution of novel unbiased approaches to the field, highlighting their success but also their limitations for the fungal immunology field. Finally, we show how a systems genomics approach can overcome those limitations and can lead to efficient prioritization and identification of genes and pathways with a critical role in susceptibility to fungal diseases. This knowledge will help to stratify at-risk patient groups and, subsequently, develop early appropriate prophylactic and treatment strategies.
Collapse
|
33
|
Cavalli G, Tengesdal IW, Gresnigt M, Nemkov T, Arts RJW, Domínguez-Andrés J, Molteni R, Stefanoni D, Cantoni E, Cassina L, Giugliano S, Schraa K, Mills TS, Pietras EM, Eisenmensser EZ, Dagna L, Boletta A, D'Alessandro A, Joosten LAB, Netea MG, Dinarello CA. The anti-inflammatory cytokine interleukin-37 is an inhibitor of trained immunity. Cell Rep 2021; 35:108955. [PMID: 33826894 DOI: 10.1016/j.celrep.2021.108955] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/08/2020] [Accepted: 03/17/2021] [Indexed: 02/07/2023] Open
Abstract
Trained immunity (TI) is a de facto innate immune memory program induced in monocytes/macrophages by exposure to pathogens or vaccines, which evolved as protection against infections. TI is characterized by immunometabolic changes and histone post-translational modifications, which enhance production of pro-inflammatory cytokines. As aberrant activation of TI is implicated in inflammatory diseases, tight regulation is critical; however, the mechanisms responsible for this modulation remain elusive. Interleukin-37 (IL-37) is an anti-inflammatory cytokine that curbs inflammation and modulates metabolic pathways. In this study, we show that administration of recombinant IL-37 abrogates the protective effects of TI in vivo, as revealed by reduced host pro-inflammatory responses and survival to disseminated candidiasis. Mechanistically, IL-37 reverses the immunometabolic changes and histone post-translational modifications characteristic of TI in monocytes, thus suppressing cytokine production in response to infection. IL-37 thereby emerges as an inhibitor of TI and as a potential therapeutic target in immune-mediated pathologies.
Collapse
Affiliation(s)
- Giulio Cavalli
- Department of Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA; Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Isak W Tengesdal
- Department of Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Mark Gresnigt
- Department of Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA; Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80045, USA
| | - Rob J W Arts
- Department of Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Raffaella Molteni
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | | | - Laura Cassina
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Giugliano
- Laboratory of Mucosal Immunology and Microbiota, Humanitas Clinical and Research Center - IRCCS, via Manzoni 56, 20089 Rozzano (MI), Italy
| | - Kiki Schraa
- Department of Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Taylor S Mills
- Division of Hematology, Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Eric M Pietras
- Division of Hematology, Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Elan Z Eisenmensser
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80045, USA
| | - Lorenzo Dagna
- Vita-Salute San Raffaele University, Milan, Italy; Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Hospital, Milan, Italy
| | - Alessandra Boletta
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80045, USA
| | - Leo A B Joosten
- Department of Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mihai G Netea
- Department of Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Charles A Dinarello
- Department of Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA.
| |
Collapse
|
34
|
Bojang E, Ghuman H, Kumwenda P, Hall RA. Immune Sensing of Candida albicans. J Fungi (Basel) 2021; 7:jof7020119. [PMID: 33562068 PMCID: PMC7914548 DOI: 10.3390/jof7020119] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 02/03/2021] [Indexed: 12/13/2022] Open
Abstract
Candida albicans infections range from superficial to systemic and are one of the leading causes of fungus-associated nosocomial infections. The innate immune responses during these various infection types differ, suggesting that the host environment plays a key role in modulating the host–pathogen interaction. In addition, C. albicans is able to remodel its cell wall in response to environmental conditions to evade host clearance mechanisms and establish infection in niches, such as the oral and vaginal mucosa. Phagocytes play a key role in clearing C. albicans, which is primarily mediated by Pathogen Associated Molecular Pattern (PAMP)–Pattern Recognition Receptor (PRR) interactions. PRRs such as Dectin-1, DC-SIGN, and TLR2 and TLR4 interact with PAMPs such as β-glucans, N-mannan and O-mannan, respectively, to trigger the activation of innate immune cells. Innate immune cells exhibit distinct yet overlapping repertoires of PAMPs, resulting in the preferential recognition of particular Candida morphotypes by them. The role of phagocytes in the context of individual infection types also differs, with neutrophils playing a prominent role in kidney infections, and dendritic cells playing a prominent role in skin infections. In this review, we provide an overview of the key receptors involved in the detection of C. albicans and discuss the differential innate immune responses to C. albicans seen in different infection types such as vulvovaginal candidiasis (VVC) and oral candidiasis.
Collapse
Affiliation(s)
- Ebrima Bojang
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK; (E.B.); (H.G.); (P.K.)
| | - Harlene Ghuman
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK; (E.B.); (H.G.); (P.K.)
| | - Pizga Kumwenda
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK; (E.B.); (H.G.); (P.K.)
| | - Rebecca A. Hall
- Kent Fungal Group, Division of Natural Sciences, School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
- Correspondence:
| |
Collapse
|
35
|
Drummond RA, Lionakis MS. Measuring In Vivo Neutrophil Trafficking Responses During Fungal Infection Using Mixed Bone Marrow Chimeras. Methods Mol Biol 2021; 2260:179-196. [PMID: 33405038 DOI: 10.1007/978-1-0716-1182-1_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Neutrophil migration to the site of infection is an essential process for the control and clearance of microbial growth within the host. Identifying the molecular factors that mediate neutrophil chemotaxis is therefore critical for our understanding of disease pathogenesis and the mechanisms underlying protective immunity. Here, we describe a protocol that enables analysis of neutrophil recruitment from the blood into fungal-infected organs in vivo, using mixed bone marrow chimeras and flow cytometry. This method directly assesses the relative contribution of a receptor or intracellular molecule in controlling neutrophil chemotaxis during fungal infection and can be adapted to a variety of other non-fungal infection experimental settings.
Collapse
Affiliation(s)
- Rebecca A Drummond
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
- Institute of Immunology and Immunotherapy, Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK.
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
36
|
Nguyen NZN, Tran VG, Lee S, Kim M, Kang SW, Kim J, Kim HJ, Lee JS, Cho HR, Kwon B. CCR5-mediated Recruitment of NK Cells to the Kidney Is a Critical Step for Host Defense to Systemic Candida albicans Infection. Immune Netw 2020; 20:e49. [PMID: 33425434 PMCID: PMC7779867 DOI: 10.4110/in.2020.20.e49] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/20/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
C-C chemokine receptor type 5 (CCR5) regulates the trafficking of various immune cells to sites of infection. In this study, we showed that expression of CCR5 and its ligands was rapidly increased in the kidney after systemic Candida albicans infection, and infected CCR5−/− mice exhibited increased mortality and morbidity, indicating that CCR5 contributes to an effective defense mechanism against systemic C. albicans infection. The susceptibility of CCR5−/− mice to C. albicans infection was due to impaired fungal clearance, which in turn resulted in exacerbated renal inflammation and damage. CCR5-mediated recruitment of NK cells to the kidney in response to C. albicans infection was necessary for the anti-microbial activity of neutrophils, the main fungicidal effector cells. Mechanistically, C. albicans induced expression of IL-23 by CD11c+ dendritic cells (DCs). IL-23 in turn augmented the fungicidal activity of neutrophils through GM-CSF production by NK cells. As GM-CSF potentiated production of IL-23 in response to C. albicans, a positive feedback loop formed between NK cells and DCs seemed to function as an amplification point for host defense. Taken together, our results suggest that CCR5-mediated recruitment of NK cells to the site of fungal infection is an important step that underlies innate resistance to systemic C. albicans infection.
Collapse
Affiliation(s)
- Nu Z N Nguyen
- BK21 Integrated Immunometabolism Education and Research Team, School of Biological Sciences, University of Ulsan, Ulsan 44610, Korea
| | - Vuvi G Tran
- BK21 Integrated Immunometabolism Education and Research Team, School of Biological Sciences, University of Ulsan, Ulsan 44610, Korea
| | - Saerom Lee
- Biomedical Research Center, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan, Korea
| | - Minji Kim
- Biomedical Research Center, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan, Korea
| | - Sang W Kang
- Biomedical Research Center, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan, Korea
| | - Juyang Kim
- Biomedical Research Center, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan, Korea
| | - Hye J Kim
- Biomedical Research Center, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan, Korea
| | - Jong S Lee
- Division of Nephrology, Department of Internal Medicine, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan, Korea
| | - Hong R Cho
- Biomedical Research Center, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan, Korea.,Department of Surgery, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan, Korea
| | - Byungsuk Kwon
- BK21 Integrated Immunometabolism Education and Research Team, School of Biological Sciences, University of Ulsan, Ulsan 44610, Korea.,Biomedical Research Center, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan, Korea
| |
Collapse
|
37
|
Sepuru KM, Nair V, Prakash P, Gorfe AA, Rajarathnam K. Long-Range Coupled Motions Underlie Ligand Recognition by a Chemokine Receptor. iScience 2020; 23:101858. [PMID: 33344917 PMCID: PMC7736917 DOI: 10.1016/j.isci.2020.101858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/02/2020] [Accepted: 11/19/2020] [Indexed: 12/28/2022] Open
Abstract
Chemokines are unusual class-A G protein-coupled receptor agonists because of their large size (∼10 kDa) and binding at two distinct receptor sites: N-terminal domain (Site-I, unique to chemokines) and a groove defined by extracellular loop/transmembrane helices (Site-II, shared with all small molecule class-A ligands). Structures and sequence analysis reveal that the receptor N-terminal domains (N-domains) are flexible and contain intrinsic disorder. Using a hybrid NMR-MD approach, we characterized the role of Site-I interactions for the CXCL8-CXCR1 pair. NMR data indicate that the CXCR1 N-domain becomes structured on binding and that the binding interface is extensive with 30% CXCL8 residues participating in this initial interaction. MD simulations indicate that CXCL8 bound at Site-I undergoes extensive reorganization on engaging Site-II with several residues initially engaged at Site-I also engaging at Site-II. We conclude that structural plasticity of Site-I interactions plays an active role in driving ligand recognition by a chemokine receptor. Structural plasticity governs chemokine-receptor interactions Receptor N-terminal domain captures the chemokine by a fly-casting mechanism Crosstalk between two distinct binding sites determines recognition and function A hybrid NMR-MD approach provides crucial insights into receptor binding mechanism
Collapse
Affiliation(s)
- Krishna Mohan Sepuru
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555, USA.,Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Vinay Nair
- Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Priyanka Prakash
- Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Alemayehu A Gorfe
- Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Krishna Rajarathnam
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555, USA.,Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA.,Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
38
|
Abstract
Growing interest in host-fungal interactions has implications for human health and disease
Collapse
Affiliation(s)
- Heidi H Kong
- Cutaneous Microbiome and Inflammation Section, Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD 20892, USA.
| | - Julia A Segre
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
39
|
Liu Y, Feng Q, Miao J, Wu Q, Zhou S, Shen W, Feng Y, Hou FF, Liu Y, Zhou L. C-X-C motif chemokine receptor 4 aggravates renal fibrosis through activating JAK/STAT/GSK3β/β-catenin pathway. J Cell Mol Med 2020; 24:3837-3855. [PMID: 32119183 PMCID: PMC7171406 DOI: 10.1111/jcmm.14973] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/18/2019] [Accepted: 12/24/2019] [Indexed: 12/13/2022] Open
Abstract
Chronic kidney disease (CKD) has a high prevalence worldwide. Renal fibrosis is the common pathological feature in various types of CKD. However, the underlying mechanisms are not determined. Here, we adopted different CKD mouse models and cultured human proximal tubular cell line (HKC-8) to examine the expression of C-X-C motif chemokine receptor 4 (CXCR4) and β-catenin signalling, as well as their relationship in renal fibrosis. In CKD mice and humans with a variety of nephropathies, CXCR4 was dramatically up-regulated in tubules, with a concomitant activation of β-catenin. CXCR4 expression level was positively correlated with the expression of β-catenin target MMP-7. AMD3100, a CXCR4 receptor blocker, and gene knockdown of CXCR4 significantly inhibited the activation of JAK/STAT and β-catenin signalling, protected against tubular injury and renal fibrosis. CXCR4-induced renal fibrosis was inhibited by treatment with ICG-001, an inhibitor of β-catenin signalling. In HKC-8 cells, overexpression of CXCR4 induced activation of β-catenin and deteriorated cell injury. These effects were inhibited by ICG-001. Stromal cell-derived factor (SDF)-1α, the ligand of CXCR4, stimulated the activation of JAK2/STAT3 and JAK3/STAT6 signalling in HKC-8 cells. Overexpression of STAT3 or STAT6 decreased the abundance of GSK3β mRNA. Silencing of STAT3 or STAT6 significantly blocked SDF-1α-induced activation of β-catenin and fibrotic lesions. These results uncover a novel mechanistic linkage between CXCR4 and β-catenin activation in renal fibrosis in association with JAK/STAT/GSK3β pathway. Our studies also suggest that targeted inhibition of CXCR4 may provide better therapeutic effects on renal fibrosis by inhibiting multiple downstream signalling cascades.
Collapse
Affiliation(s)
- Yahong Liu
- Division of NephrologyState Key Laboratory of Organ Failure ResearchNational Clinical Research Center of Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouChina
- Division of NephrologyThe Second Affiliated Hospital of Xingtai Medical CollegeXingtaiChina
| | - Qijian Feng
- Division of NephrologyState Key Laboratory of Organ Failure ResearchNational Clinical Research Center of Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Jinhua Miao
- Division of NephrologyState Key Laboratory of Organ Failure ResearchNational Clinical Research Center of Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Qinyu Wu
- Division of NephrologyState Key Laboratory of Organ Failure ResearchNational Clinical Research Center of Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Shan Zhou
- Division of NephrologyState Key Laboratory of Organ Failure ResearchNational Clinical Research Center of Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Weiwei Shen
- Division of NephrologyState Key Laboratory of Organ Failure ResearchNational Clinical Research Center of Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yanqiu Feng
- School of Biomedical EngineeringSouthern Medical UniversityGuangzhouChina
| | - Fan Fan Hou
- Division of NephrologyState Key Laboratory of Organ Failure ResearchNational Clinical Research Center of Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Youhua Liu
- Division of NephrologyState Key Laboratory of Organ Failure ResearchNational Clinical Research Center of Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Lili Zhou
- Division of NephrologyState Key Laboratory of Organ Failure ResearchNational Clinical Research Center of Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
40
|
Metzemaekers M, Gouwy M, Proost P. Neutrophil chemoattractant receptors in health and disease: double-edged swords. Cell Mol Immunol 2020; 17:433-450. [PMID: 32238918 PMCID: PMC7192912 DOI: 10.1038/s41423-020-0412-0] [Citation(s) in RCA: 307] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/05/2020] [Indexed: 02/08/2023] Open
Abstract
Neutrophils are frontline cells of the innate immune system. These effector leukocytes are equipped with intriguing antimicrobial machinery and consequently display high cytotoxic potential. Accurate neutrophil recruitment is essential to combat microbes and to restore homeostasis, for inflammation modulation and resolution, wound healing and tissue repair. After fulfilling the appropriate effector functions, however, dampening neutrophil activation and infiltration is crucial to prevent damage to the host. In humans, chemoattractant molecules can be categorized into four biochemical families, i.e., chemotactic lipids, formyl peptides, complement anaphylatoxins and chemokines. They are critically involved in the tight regulation of neutrophil bone marrow storage and egress and in spatial and temporal neutrophil trafficking between organs. Chemoattractants function by activating dedicated heptahelical G protein-coupled receptors (GPCRs). In addition, emerging evidence suggests an important role for atypical chemoattractant receptors (ACKRs) that do not couple to G proteins in fine-tuning neutrophil migratory and functional responses. The expression levels of chemoattractant receptors are dependent on the level of neutrophil maturation and state of activation, with a pivotal modulatory role for the (inflammatory) environment. Here, we provide an overview of chemoattractant receptors expressed by neutrophils in health and disease. Depending on the (patho)physiological context, specific chemoattractant receptors may be up- or downregulated on distinct neutrophil subsets with beneficial or detrimental consequences, thus opening new windows for the identification of disease biomarkers and potential drug targets.
Collapse
Affiliation(s)
- Mieke Metzemaekers
- Laboratory of Molecular Immunology, Rega Institute, KU Leuven, Herestraat 49 bus 1042, B-3000, Leuven, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Rega Institute, KU Leuven, Herestraat 49 bus 1042, B-3000, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Rega Institute, KU Leuven, Herestraat 49 bus 1042, B-3000, Leuven, Belgium.
| |
Collapse
|
41
|
Merkhofer RM, Klein BS. Advances in Understanding Human Genetic Variations That Influence Innate Immunity to Fungi. Front Cell Infect Microbiol 2020; 10:69. [PMID: 32185141 PMCID: PMC7058545 DOI: 10.3389/fcimb.2020.00069] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/12/2020] [Indexed: 12/30/2022] Open
Abstract
Fungi are ubiquitous. Yet, despite our frequent exposure to commensal fungi of the normal mammalian microbiota and environmental fungi, serious, systemic fungal infections are rare in the general population. Few, if any, fungi are obligate pathogens that rely on infection of mammalian hosts to complete their lifecycle; however, many fungal species are able to cause disease under select conditions. The distinction between fungal saprophyte, commensal, and pathogen is artificial and heavily determined by the ability of an individual host's immune system to limit infection. Dramatic examples of commensal fungi acting as opportunistic pathogens are seen in hosts that are immune compromised due to congenital or acquired immune deficiency. Genetic variants that lead to immunological susceptibility to fungi have long been sought and recognized. Decreased myeloperoxidase activity in neutrophils was first reported as a mechanism for susceptibility to Candida infection in 1969. The ability to detect genetic variants and mutations that lead to rare or subtle susceptibilities has improved with techniques such as single nucleotide polymorphism (SNP) microarrays, whole exome sequencing (WES), and whole genome sequencing (WGS). Still, these approaches have been limited by logistical considerations and cost, and they have been applied primarily to Mendelian impairments in anti-fungal responses. For example, loss-of-function mutations in CARD9 were discovered by studying an extended family with a history of fungal infection. While discovery of such mutations furthers the understanding of human antifungal immunity, major Mendelian susceptibility loci are unlikely to explain genetic disparities in the rate or severity of fungal infection on the population level. Recent work using unbiased techniques has revealed, for example, polygenic mechanisms contributing to candidiasis. Understanding the genetic underpinnings of susceptibility to fungal infections will be a powerful tool in the age of personalized medicine. Future application of this knowledge may enable targeted health interventions for susceptible individuals, and guide clinical decision making based on a patient's individual susceptibility profile.
Collapse
Affiliation(s)
- Richard M Merkhofer
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Bruce S Klein
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States.,Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, United States.,Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States.,Department of Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
42
|
Bai W, Wang Q, Deng Z, Li T, Xiao H, Wu Z. TRAF1 suppresses antifungal immunity through CXCL1-mediated neutrophil recruitment during Candida albicans intradermal infection. Cell Commun Signal 2020; 18:30. [PMID: 32093731 PMCID: PMC7038620 DOI: 10.1186/s12964-020-00532-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 02/13/2020] [Indexed: 02/07/2023] Open
Abstract
Background Candida albicans is the most common opportunistic human fungal pathogen. The chemokine ligand CXCL1 plays a protective role in fungal infection through the recruitment of neutrophils. TRAF1 (tumor necrosis factor-associated factor 1) can be highly induced by proinflammatory stimuli such as LPS and TNF and has been implicated in septic shock. However, the role of TRAF1 in infection, especially fungal infection, remains elusive. Herein, we reveal that TRAF1 suppresses the antifungal immune response to Candida albicans intradermal infection through the regulation of CXCL1 induction and neutrophil recruitment. Methods A mouse model of C. albicans intradermal infection was established. The Traf1−/− mice and Traf1−/− immortalized human keratinocytes were generated. The p65 inhibitor triptolide, STAT1 inhibitor fludarabine, neutrophil-depletion antibody Ly6G, and neutralizing antibody for CXCL1 were utilized. The expression of proinflammatory cytokines and chemokines was assessed by real-time PCR and ELISA, and the activation of signaling molecules was analyzed by Western blotting. Hematoxylin and eosin staining and periodic acid Schiff staining were used for histology or fungal detection, respectively. The immunofluorescence and flow cytometry analyses were employed in the assessment of immune cell infiltration. Bone marrow transplantation and adoptive transfer experiments were conducted to establish a role for TRAF1 in the macrophage compartment in fungal skin infection. Results TRAF1-deficient mice demonstrated improved control of Candida albicans intradermal infection, and concomitant increase in neutrophil recruitment and reduction in fungal burden. The chemokine CXCL1 was upregulated in the TRAF1-deficient macrophages treated with heat-killed C. albicans. Mechanistically, TRAF1-deficient macrophages showed increased activation of transcription factor NFκB p65. The human CXCL8 was also highly induced in the TRAF1-deficient human keratinocytes upon TNF stimulation through decreasing the activation of transcription factor STAT1. TRAF1-deficient macrophages played a critical role in containing the C. albicans skin infection in vivo. Conclusion TRAF1-deficient mice can better control fungal infection in the skin, a process attributable to the CXCL-neutrophil axis. Mechanistically, TRAF1 likely regulates CXCL1 expression in both macrophages and keratinocytes through the transcriptional factor NFκB and STAT1, respectively. Our finding offers new insight into the understanding of the immune regulatory mechanisms in host defense against C. albicans infection. Graphical abstract ![]()
Collapse
Affiliation(s)
- Wenjuan Bai
- Pediatric Intensive Care Unit, Guangzhou Women and Children's Medical Center,
- Guangzhou Medical University, 9 Jinsui Road, Guangzhou, Guangdong, 510120, People's Republic of China.,Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | - Qingqing Wang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | - Zihou Deng
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | - Tiantian Li
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | - Hui Xiao
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | - Zhiyuan Wu
- Pediatric Intensive Care Unit, Guangzhou Women and Children's Medical Center,
- Guangzhou Medical University, 9 Jinsui Road, Guangzhou, Guangdong, 510120, People's Republic of China.
| |
Collapse
|
43
|
Nur S, Sparber F, Lemberg C, Guiducci E, Schweizer TA, Zwicky P, Becher B, LeibundGut-Landmann S. IL-23 supports host defense against systemic Candida albicans infection by ensuring myeloid cell survival. PLoS Pathog 2019; 15:e1008115. [PMID: 31887131 PMCID: PMC6957211 DOI: 10.1371/journal.ppat.1008115] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 01/13/2020] [Accepted: 10/01/2019] [Indexed: 01/21/2023] Open
Abstract
The opportunistic fungal pathogen Candida albicans can cause invasive infections in susceptible hosts and the innate immune system, in particular myeloid cell-mediated immunity, is critical for rapid immune protection and host survival during systemic candidiasis. Using a mouse model of the human disease, we identified a novel role of IL-23 in antifungal defense. IL-23-deficient mice are highly susceptible to systemic infection with C. albicans. We found that this results from a drastic reduction in all subsets of myeloid cells in the infected kidney, which in turn leads to rapid fungal overgrowth and renal tissue injury. The loss in myeloid cells is not due to a defect in emergency myelopoiesis or the recruitment of newly generated cells to the site of infection but, rather, is a consequence of impaired survival of myeloid cells at the site of infection. In fact, the absence of a functional IL-23 pathway causes massive myeloid cell apoptosis upon C. albicans infection. Importantly, IL-23 protects myeloid cells from apoptosis independently of the IL-23-IL-17 immune axis and independently of lymphocytes and innate lymphoid cells. Instead, our results suggest that IL-23 acts in a partially autocrine but not cell-intrinsic manner within the myeloid compartment to promote host protection from systemic candidiasis. Collectively, our data highlight an unprecedented and non-canonical role of IL-23 in securing survival of myeloid cells, which is key for maintaining sufficient numbers of cells at the site of infection to ensure efficient host protection. Linked to advances in medical technology and the resulting increase in the number of intensive care patients, nosocomial infections with Candida albicans are on the rise. In patients suffering from invasive candidiasis the innate immune response is typically severely impaired. Strengthening the innate immune system has become a promising approach complementing the use of antifungal drugs. Our findings identify an unexpected and IL-17-independent role of IL-23 that prevents rapid death of myeloid cells during systemic candidiasis and thereby promotes optimal protection from disease. As such, IL-23 represents an important new piece in the puzzle of the finely tuned network of cytokines that regulates the innate immune response to fungal infection. Our results contribute to a better understanding of myeloid cell regulation during infection and thereby open new perspectives for future immunotherapeutic applications that may improve patient outcome.
Collapse
Affiliation(s)
- Selim Nur
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Florian Sparber
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Christina Lemberg
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Eva Guiducci
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Tiziano A. Schweizer
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Pascale Zwicky
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | | |
Collapse
|
44
|
Abstract
Purpose of review Fungal infections cause significant mortality in patients with acquired immunodeficiencies including AIDS, hematological malignancies, transplantation, and receipt of corticosteroids, biologics or small-molecule kinase inhibitors that impair key immune pathways. The contribution of several such pathways in antifungal immunity has been uncovered by inherited immunodeficiencies featuring profound fungal susceptibility. Furthermore, the risk of fungal infection in patients with acquired immunodeficiencies may be modulated by single nucleotide polymorphisms (SNPs) in immune-related genes. This review outlines key features underlying human genetic fungal predisposition. Recent findings The discovery of monogenic disorders that cause fungal disease and the characterization of immune-related gene SNPs that may regulate fungal susceptibility have provided important insights into how genetic variation affects development and outcome of fungal infections in humans. Summary Recognition of individualized genetic fungal susceptibility traits in humans should help devise precision-medicine strategies for risk assessment, prognostication and treatment of patients with opportunistic fungal infections.
Collapse
|
45
|
Sody S, Uddin M, Grüneboom A, Görgens A, Giebel B, Gunzer M, Brandau S. Distinct Spatio-Temporal Dynamics of Tumor-Associated Neutrophils in Small Tumor Lesions. Front Immunol 2019; 10:1419. [PMID: 31293583 PMCID: PMC6603174 DOI: 10.3389/fimmu.2019.01419] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/05/2019] [Indexed: 12/30/2022] Open
Abstract
Across a majority of cancer types tumor-associated neutrophils (TAN) are linked with poor prognosis. However, the underlying mechanisms, especially the intratumoral behavior of TAN, are largely unknown. Using intravital multiphoton imaging on a mouse model with neutrophil-specific fluorescence, we measured the migration of TAN in distinct compartments of solid tumor cell lesions in vivo. By longitudinally quantifying the infiltration and persistence of TAN into growing tumors in the same animals, we observed cells that either populated the peripheral stromal zone of the tumor (peritumoral TAN) or infiltrated into the tumor core (intratumoral TAN). Intratumoral TAN showed prolonged tumor-associated persistence and reduced motility compared to peritumoral TAN, whose velocity increased with tumor progression. Selective pharmacological blockade of CXCR2 receptors using AZD5069 profoundly inhibited recruitment of TAN into peritumoral regions, while intratumoral infiltration was only transiently attenuated and rebounded at later time points. Our findings unravel distinct spatial dynamics of TAN that are partially and differentially regulated via the CXCR2 signaling pathway.
Collapse
Affiliation(s)
- Simon Sody
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Mohib Uddin
- Respiratory Global Medicines Development (GMD), AstraZeneca, Gothenburg, Sweden
| | - Anika Grüneboom
- Institute for Experimental Immunology and Imaging, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - André Görgens
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Sven Brandau
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
46
|
CARD9 + microglia promote antifungal immunity via IL-1β- and CXCL1-mediated neutrophil recruitment. Nat Immunol 2019; 20:559-570. [PMID: 30996332 PMCID: PMC6494474 DOI: 10.1038/s41590-019-0377-2] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 03/12/2019] [Indexed: 12/11/2022]
Abstract
The C-type lectin receptor–Syk adaptor CARD9 facilitates protective antifungal immunity within the central nervous system (CNS), as human CARD9-deficiency causes fungal-specific CNS-targeted infection susceptibility. CARD9 promotes neutrophil recruitment to the fungal-infected CNS, which mediates fungal clearance. Here, we investigated host and pathogen factors that promote protective neutrophil recruitment during Candida albicans CNS invasion. IL-1β was essential for CNS antifungal immunity by driving CXCL1 production, which recruited CXCR2-expressing neutrophils. Neutrophil-recruiting IL-1β and CXCL1 production was induced in microglia by the fungal-secreted toxin Candidalysin, in a p38-cFos-dependent manner. Importantly, microglia relied on CARD9 for production of IL-1β, via both Il1b transcriptional regulation and inflammasome activation, and of CXCL1 in the fungal-infected CNS. Microglia-specific Card9 deletion impaired IL-1β and CXCL1 production and neutrophil recruitment, and increased CNS fungal proliferation. Taken together, an intricate network of host-pathogen interactions promotes CNS antifungal immunity, which is impaired in human CARD9-deficiency leading to CNS fungal disease.
Collapse
|
47
|
Clark C, Drummond RA. The Hidden Cost of Modern Medical Interventions: How Medical Advances Have Shaped the Prevalence of Human Fungal Disease. Pathogens 2019; 8:pathogens8020045. [PMID: 30987351 PMCID: PMC6631793 DOI: 10.3390/pathogens8020045] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 02/07/2023] Open
Abstract
Life expectancy in the West is the highest it has ever been, due to the introduction of better hygiene practices and sophisticated medical interventions for cancer, autoimmunity and infectious disease. With these modern advances, a rise in the prevalence of opportunistic infections has also been observed. These include several fungal infections, which present a particular clinical challenge due to the lack of fungal vaccines, limited diagnostics and increasing antifungal drug resistance. This mini-review outlines how modern-day clinical practices have shaped the recent increase in fungal diseases observed in the last few decades. We discuss new research that has implicated the use of immune-modulating drugs in the enhanced susceptibility of vulnerable patients to life-threatening fungal infections.
Collapse
Affiliation(s)
- Callum Clark
- Institute of Immunology & Immunotherapy, Institute of Microbiology & Infection, University of Birmingham, Birmingham B15 2TT, UK.
| | - Rebecca A Drummond
- Institute of Immunology & Immunotherapy, Institute of Microbiology & Infection, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
48
|
Bottemanne P, Paquot A, Ameraoui H, Alhouayek M, Muccioli GG. The α/β–hydrolase domain 6 inhibitor WWL70 decreases endotoxin‐induced lung inflammation in mice, potential contribution of 2‐arachidonoylglycerol, and lysoglycerophospholipids. FASEB J 2019; 33:7635-7646. [DOI: 10.1096/fj.201802259r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Pauline Bottemanne
- Bioanalysis and Pharmacology of Bioactive Lipids Research GroupLouvain Drug Research InstituteUniversité Catholique de Louvain (UCLouvain)BrusselsBelgium
| | - Adrien Paquot
- Bioanalysis and Pharmacology of Bioactive Lipids Research GroupLouvain Drug Research InstituteUniversité Catholique de Louvain (UCLouvain)BrusselsBelgium
| | - Hafsa Ameraoui
- Bioanalysis and Pharmacology of Bioactive Lipids Research GroupLouvain Drug Research InstituteUniversité Catholique de Louvain (UCLouvain)BrusselsBelgium
| | - Mireille Alhouayek
- Bioanalysis and Pharmacology of Bioactive Lipids Research GroupLouvain Drug Research InstituteUniversité Catholique de Louvain (UCLouvain)BrusselsBelgium
| | - Giulio G. Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research GroupLouvain Drug Research InstituteUniversité Catholique de Louvain (UCLouvain)BrusselsBelgium
| |
Collapse
|
49
|
Rajarathnam K, Schnoor M, Richardson RM, Rajagopal S. How do chemokines navigate neutrophils to the target site: Dissecting the structural mechanisms and signaling pathways. Cell Signal 2019; 54:69-80. [PMID: 30465827 PMCID: PMC6664297 DOI: 10.1016/j.cellsig.2018.11.004] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 12/12/2022]
Abstract
Chemokines play crucial roles in combating microbial infection and initiating tissue repair by recruiting neutrophils in a timely and coordinated manner. In humans, no less than seven chemokines (CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, CXCL7, and CXCL8) and two receptors (CXCR1 and CXCR2) mediate neutrophil functions but in a context dependent manner. Neutrophil-activating chemokines reversibly exist as monomers and dimers, and their receptor binding triggers conformational changes that are coupled to G-protein and β-arrestin signaling pathways. G-protein signaling activates a variety of effectors including Ca2+ channels and phospholipase C. β-arrestin serves as a multifunctional adaptor and is coupled to several signaling hubs including MAP kinase and tyrosine kinase pathways. Both G-protein and β-arrestin signaling pathways play important non-overlapping roles in neutrophil trafficking and activation. Functional studies have established many similarities but distinct differences for a given chemokine and between chemokines at the level of monomer vs. dimer, CXCR1 vs. CXCR2 activation, and G-protein vs. β-arrestin pathways. We propose that two forms of the ligand binding two receptors and activating two signaling pathways enables fine-tuned neutrophil function compared to a single form, a single receptor, or a single pathway. We summarize the current knowledge on the molecular mechanisms by which chemokine monomers/dimers activate CXCR1/CXCR2 and how these interactions trigger G-protein/β-arrestin-coupled signaling pathways. We also discuss current challenges and knowledge gaps, and likely advances in the near future that will lead to a better understanding of the relationship between the chemokine-CXCR1/CXCR2-G-protein/β-arrestin axis and neutrophil function.
Collapse
Affiliation(s)
- Krishna Rajarathnam
- Department of Biochemistry and Molecular Biology, Department of Microbiology and Immunology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA.
| | - Michael Schnoor
- Department for Molecular Biomedicine, Cinvestav-IPN, 07360 Mexico City, Mexico
| | - Ricardo M Richardson
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | | |
Collapse
|
50
|
Díaz-Godínez C, Carrero JC. The state of art of neutrophil extracellular traps in protozoan and helminthic infections. Biosci Rep 2019; 39:BSR20180916. [PMID: 30498092 PMCID: PMC6328873 DOI: 10.1042/bsr20180916] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/26/2018] [Accepted: 11/15/2018] [Indexed: 12/23/2022] Open
Abstract
Neutrophil extracellular traps (NETs) are DNA fibers associated with histones, enzymes from neutrophil granules and anti-microbial peptides. NETs are released in a process denominated NETosis, which involves sequential steps that culminate with the DNA extrusion. NETosis has been described as a new mechanism of innate immunity related to defense against different pathogens. The initial studies of NETs were carried out with bacteria and fungi, but currently a large variety of microorganisms capable of inducing NETs have been described including protozoan and helminth parasites. Nevertheless, we have little knowledge about how NETosis process is carried out in response to the parasites, and about its implication in the resolution of this kind of disease. In the best case, the NETs entrap and kill parasites in vitro, but in others, immobilize the parasites without affecting their viability. Moreover, insufficient studies on the NETs in animal models of infections that would help to define their role, and the association of NETs with chronic inflammatory pathologies such as those occurring in several parasitic infections have left open the possibility of NETs contributing to pathology instead of protection. In this review, we focus on the reported mechanisms that lead to NET release by protozoan and helminth parasites and the evidence that support the role of NETosis in the resolution or pathogenesis of parasitic diseases.
Collapse
Affiliation(s)
- César Díaz-Godínez
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, México D.F., México
| | - Julio C Carrero
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, México D.F., México
| |
Collapse
|