1
|
Kordi R, Andrews TJ, Hicar MD. Infections, genetics, and Alzheimer's disease: Exploring the pathogenic factors for innovative therapies. Virology 2025; 607:110523. [PMID: 40174330 DOI: 10.1016/j.virol.2025.110523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/04/2025]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative condition that creates a significant global health challenge and profoundly affects patients and their families. Recent research has highlighted the critical role of microorganisms, particularly viral infections, in the pathogenesis of AD. The involvement of viral infections in AD pathogenesis is predominantly attributed to their ability to induce neuroinflammation and amyloid beta (Aβ) deposition in the brain. The extant research exploring the relationship between viruses and AD has focused largely on Herpesviridae family. Traces of Herpesviruses, such as Herpes Simplex Virus-1 and Epstein Barr Virus, have been found in the brains of patients with AD. These viruses are thought to contribute to the disease progression by triggering chronic inflammatory responses in the brain. They can remain dormant in the brain, and become reactivated due to stress, a secondary viral infection, or immune-senescence in older adults. This review focuses on the association between Herpesviridae and bacterial infections with AD. We explore the genetic factors that might regulate viral illness and discuss clinical trials investigating antiviral and anti-inflammatory agents as possible therapeutic strategies to mitigate cognitive decline in patients with AD. In summary, understanding the interplay between infections, genetic factors, and AD pathogenesis may pave the way for novel therapeutic approaches, facilitating better management and possibly even prevent this debilitating disease.
Collapse
Affiliation(s)
- Ramesh Kordi
- Department of Pediatrics, Division of Infectious Diseases, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Ted J Andrews
- Department of Pediatrics, Division of Developmental Pediatrics and Rehabilitation, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Mark D Hicar
- Department of Pediatrics, Division of Infectious Diseases, State University of New York at Buffalo, Buffalo, NY, 14203, USA.
| |
Collapse
|
2
|
Luan Y, Zheng L, Denecke J, Dehsarvi A, Roemer‐Cassiano SN, Dewenter A, Steward A, Shcherbinin S, Svaldi DO, Kotari V, Higgins IA, Pontecorvo MJ, Valentim C, Schnabel JA, Casale FP, Dyrba M, Teipel S, Franzmeier N, Ewers M, for the Alzheimer's Disease Neuroimaging Initiative (ADNI). Multimodal spatial gradients to explain regional susceptibility to fibrillar tau in Alzheimer's disease. Alzheimers Dement 2025; 21:e70170. [PMID: 40342276 PMCID: PMC12060132 DOI: 10.1002/alz.70170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/26/2025] [Accepted: 03/13/2025] [Indexed: 05/11/2025]
Abstract
INTRODUCTION In Alzheimer's disease (AD), fibrillar tau gradually progresses from initial seed to larger brain area. However, those brain properties underlying the region-dependent susceptibility to tau accumulation remain unclear. METHODS We constructed multimodal spatial gradients to characterize molecular properties and connectomic architecture. A predictive model for regional tau deposition was developed by integrating embeddings in the principal gradients of global connectome gradients with gene expression, neurotransmitters, myelin, and amyloid-beta. The model was trained on amyloid-beta-positive participants from Alzheimer's Disease Neuroimaging Initiative (ADNI) and externally validated in independent datasets. RESULTS The combination of gradients explained up to 77.7% of cross-sectional and 77.3% of longitudinal inter-regional variance of tau deposition. Gene set enrichment analysis of a major gene expression gradient points to synaptic transmission to confer increased susceptibility to tau. DISCUSSION Our findings reveal a spatially heterogeneous molecular landscape shaping regional susceptibility to tau deposition, presenting a powerful system-level explanatory model of tau pathology in AD. HIGHLIGHTS Spatial gradients of fundamental molecular brain properties associated with tau pathology. The explanatory power showed high consistency across studies. Genetic analyses suggested that synapse expression plays a vital role in tau accumulation.
Collapse
Affiliation(s)
- Ying Luan
- Department of RadiologyZhongda Hospital, School of Medicine, Southeast UniversityNanjingChina
- Institute for Stroke and Dementia Research (ISD)University HospitalLudwig Maximilian University (LMU)MunichGermany
| | - Lukai Zheng
- Institute for Stroke and Dementia Research (ISD)University HospitalLudwig Maximilian University (LMU)MunichGermany
| | - Jannis Denecke
- Institute for Stroke and Dementia Research (ISD)University HospitalLudwig Maximilian University (LMU)MunichGermany
| | - Amir Dehsarvi
- Institute for Stroke and Dementia Research (ISD)University HospitalLudwig Maximilian University (LMU)MunichGermany
| | - Sebastian N. Roemer‐Cassiano
- Institute for Stroke and Dementia Research (ISD)University HospitalLudwig Maximilian University (LMU)MunichGermany
| | - Anna Dewenter
- Institute for Stroke and Dementia Research (ISD)University HospitalLudwig Maximilian University (LMU)MunichGermany
| | - Anna Steward
- Institute for Stroke and Dementia Research (ISD)University HospitalLudwig Maximilian University (LMU)MunichGermany
| | | | | | | | | | | | - Carolina Valentim
- Institute for Stroke and Dementia Research (ISD)University HospitalLudwig Maximilian University (LMU)MunichGermany
| | - Julia A. Schnabel
- Institute of Machine Learning in Biomedical Imaging, Helmholtz MunichNeuherbergGermany
- TUM School of ComputationInformation and Technology & TUM Institute for Advanced StudyTechnical University of MunichMunichGermany
- School of Biomedical Engineering and Imaging SciencesKing's College LondonStrandLondonUK
| | | | - Martin Dyrba
- German Center for Neurodegenerative Diseases (DZNE)RostockGermany
| | - Stefan Teipel
- German Center for Neurodegenerative Diseases (DZNE)RostockGermany
- Department of Psychosomatic MedicineRostock University Medical CenterRostockGermany
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research (ISD)University HospitalLudwig Maximilian University (LMU)MunichGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
- Department of Psychiatry and NeurochemistryThe Sahlgrenska AcademyInstitute of Neuroscience and PhysiologyUniversity of GothenburgGothenburgSweden
| | - Michael Ewers
- Institute for Stroke and Dementia Research (ISD)University HospitalLudwig Maximilian University (LMU)MunichGermany
| | | |
Collapse
|
3
|
Martinez JE, Bocanegra Y, Baena A, Langella S, Giudicessi A, Sanchez JS, Aguillon D, Cronin-Golomb A, Quiroz YT. Religious stress coping is associated with lower entorhinal tau pathology and better memory performance in autosomal dominant Alzheimer's disease. J Alzheimers Dis 2025:13872877251331569. [PMID: 40179230 DOI: 10.1177/13872877251331569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Stress is a known risk factor for Alzheimer's disease (AD), but religious stress coping practices, (e.g., prayer and attending religious services) may reduce this risk. We investigated the relation between religious stress coping and memory in cognitively-unimpaired individuals from the Colombian kindred with autosomal dominant AD. Additionally, we examined the link between religious stress coping and brain pathology. Religious coping was associated with lower entorhinal tau (p = 0.02) and better memory performance (p = 0.04) in Presenilin-1 E280A mutation carriers, but not in non-carriers. These findings suggest that religious coping may mitigate AD tau pathology and cognitive decline and warrant further investigation.
Collapse
Affiliation(s)
- Jairo E Martinez
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Yamile Bocanegra
- Grupo de Neurociencias, Universidad de Antioquia, Medellín, Colombia
| | - Ana Baena
- Grupo de Neurociencias, Universidad de Antioquia, Medellín, Colombia
| | - Stephanie Langella
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Averi Giudicessi
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Justin S Sanchez
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - David Aguillon
- Grupo de Neurociencias, Universidad de Antioquia, Medellín, Colombia
| | - Alice Cronin-Golomb
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Yakeel T Quiroz
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
- Grupo de Neurociencias, Universidad de Antioquia, Medellín, Colombia
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
4
|
Liang L, Liu W, Zhong Y, Guo T, Ye C, Ma T. Spatial-temporal interactions between white matter hyperintensities and multiple pathologies across the Alzheimer's disease continuum. Alzheimers Dement 2025; 21:e70098. [PMID: 40302045 PMCID: PMC12040729 DOI: 10.1002/alz.70098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 05/01/2025]
Abstract
INTRODUCTION The interactive relationships between Alzheimer's disease (AD) and white matter hyperintensities (WMHs) in multiscale brain structural networks still need to be clarified. METHODS Based on subjects enrolled from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, regional WMHs, amyloid beta (Aβ) accumulation, and microstructural changes detected by diffusion weighted imaging (DWI) in multiscale brain networks were modeled by time-evolving graphs; their interactive relationships were further investigated using Granger causality after constructing pseudo-time subject sequences. RESULTS In up to 86% of the extracted pseudo-time subject sequences, Aβ was determined to be the Granger cause of WMHs in the structural connectivity of the inferior longitudinal fasciculus (ILF). Meanwhile WMHs were significantly correlated with microstructural changes measured by reduced fractional anisotropy in the inferior fronto-occipital fasciculus, ILF, and cingulum, which Granger causality pathways detected in 91%, 94%, and 93% of pseudo-time subject sequences, respectively. DISCUSSION These findings provide novel insights for understanding the multiscale space-time interactions between WMHs and AD pathologies. HIGHLIGHTS This study proposed time-evolving graph modeling of heterogeneous disease markers (amyloid beta [Aβ], white matter hyperintensities [WMHs], and microstructural changes of white matter tracts) across the Alzheimer's disease (AD) continuum to investigate their complex interactions in multiscale brain structural networks. Regional accumulation of Aβ promoted WMH progression in subnetworks connected by the inferior longitudinal fasciculus (ILF). Regional WMHs were strongly associated with bundle-specific microstructural changes in the ILF, inferior fronto-occipital fasciculus, and cingulum. These results might provide novel insights for understanding the interactive relationship between cerebral small vessel disease and AD.
Collapse
Affiliation(s)
- Li Liang
- Department of Electronic & Information EngineeringHarbin Institute of Technology (Shenzhen)ShenzhenChina
- Department of Networked IntelligencePeng Cheng LaboratoryShenzhenChina
| | - Wei Liu
- Department of Electronic & Information EngineeringHarbin Institute of Technology (Shenzhen)ShenzhenChina
| | - Youping Zhong
- Department of Electronic & Information EngineeringHarbin Institute of Technology (Shenzhen)ShenzhenChina
| | - Tengfei Guo
- Institute of Neurological and Psychiatric DisordersShenzhen Bay LaboratoryShenzhenChina
| | - Chenfei Ye
- School of Biomedical EngineeringHarbin Institute of Technology (Shenzhen)ShenzhenChina
| | - Ting Ma
- Department of Networked IntelligencePeng Cheng LaboratoryShenzhenChina
- School of Biomedical EngineeringHarbin Institute of Technology (Shenzhen)ShenzhenChina
| |
Collapse
|
5
|
Salardini A, Himali JJ, Abdullah MS, Chaudhari R, Young V, Zilli EM, McGrath ER, Gonzales MM, Thibault EG, Salinas J, Aparicio HJ, Himali D, Ghosh S, Buckley RF, Satizabal CL, Johnson KA, DeCarli C, Fakhri GE, Vasan RS, Beiser AS, Seshadri S. Elevated serum cortisol associated with early-detected increase of brain amyloid deposition in Alzheimer's disease imaging biomarkers among menopausal women: The Framingham Heart Study. Alzheimers Dement 2025; 21:e70179. [PMID: 40271551 PMCID: PMC12019305 DOI: 10.1002/alz.70179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/05/2025] [Accepted: 03/17/2025] [Indexed: 04/25/2025]
Abstract
INTRODUCTION This study investigates whether midlife cortisol levels predict Alzheimer's disease (AD) biomarker burden 15 years later, with particular attention to sex differences and menopausal status. METHODS We analyzed data from 305 cognitively unimpaired Framingham Heart Study participants (48.5% female; mean age: 39.6 ± 8.1 years). Serum cortisol was categorized into tertiles, with amyloid ([11C]PiB) and tau ([18F]Flortaucipir) positron emission tomography (PET) imaging conducted 15 years later. We performed multivariable regression analyses adjusted for confounders including, apolipoprotein E4 (APOE4) status. RESULTS Elevated midlife cortisol correlated with increased amyloid deposition, specifically in post-menopausal women, predominantly in posterior cingulate, precuneus, and frontal-lateral regions (p < 0.05). No significant associations were observed with tau burden or in males. DISCUSSION These findings reveal post-menopausal women with high midlife cortisol are at increased risk of AD. Results highlight the importance of identifying early risk factors when biomarkers are detectable but cognitive impairment is absent. HIGHLIGHTS High midlife cortisol is linked to increased amyloid deposition in post-menopausal women. Cortisol showed no association with tau pathology. Post-menopausal hormone changes may amplify cortisol's effects on amyloid.
Collapse
Affiliation(s)
- Arash Salardini
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative DiseasesUT Health San AntonioSan AntonioTexasUSA
- Department of NeurologyUT Health San AntonioSan AntonioTexasUSA
| | - Jayandra J. Himali
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative DiseasesUT Health San AntonioSan AntonioTexasUSA
- NHLBI's Framingham Heart StudyFraminghamMassachusettsUSA
- Department of Population Health SciencesUT Health San AntonioSan AntonioTexasUSA
- Department of NeurologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
- Graduate School of Biomedical SciencesUT Health San AntonioSan AntonioTexasUSA
| | - Muhammad S. Abdullah
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative DiseasesUT Health San AntonioSan AntonioTexasUSA
- Department of NeurologyUT Health San AntonioSan AntonioTexasUSA
| | - Rima Chaudhari
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative DiseasesUT Health San AntonioSan AntonioTexasUSA
- Department of NeurologyUT Health San AntonioSan AntonioTexasUSA
| | - Vanessa Young
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative DiseasesUT Health San AntonioSan AntonioTexasUSA
- Department of NeurologyUT Health San AntonioSan AntonioTexasUSA
| | | | - Emer R. McGrath
- NHLBI's Framingham Heart StudyFraminghamMassachusettsUSA
- HRB Clinical Research FacilityUniversity of GalwayGalwayIreland
- School of MedicineUniversity of GalwayGalwayIreland
| | - Mitzi M. Gonzales
- Jona Goldrich Center for Alzheimer's and Memory DisordersNeurology DepartmentCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Emma G. Thibault
- Department of RadiologyMassachusetts General Hospital/Harvard Medical SchoolBostonMassachusettsUSA
| | - Joel Salinas
- Department of NeurologyNew York University Grossman School of MedicineNew YorkNew YorkUSA
| | - Hugo J. Aparicio
- NHLBI's Framingham Heart StudyFraminghamMassachusettsUSA
- Department of NeurologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Dibya Himali
- NHLBI's Framingham Heart StudyFraminghamMassachusettsUSA
| | | | - Rachel F. Buckley
- Department of NeurologyMassachusetts General Hospital/Harvard Medical SchoolBostonMassachusettsUSA
- Center for Alzheimer Research and TreatmentBrigham and Women's HospitalBostonMassachusettsUSA
| | - Claudia L. Satizabal
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative DiseasesUT Health San AntonioSan AntonioTexasUSA
- Department of Population Health SciencesUT Health San AntonioSan AntonioTexasUSA
- Department of NeurologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Keith A. Johnson
- Department of NeurologyMassachusetts General Hospital/Harvard Medical SchoolBostonMassachusettsUSA
| | - Charles DeCarli
- Department of NeurologyUniversity of California at DavisSacramentoCaliforniaUSA
| | - Georges El Fakhri
- Department of RadiologyMassachusetts General Hospital/Harvard Medical SchoolBostonMassachusettsUSA
- Department of Radiology & Biomedical ImagingYale UniversityNew HavenConnecticutUSA
| | | | - Alexa S. Beiser
- NHLBI's Framingham Heart StudyFraminghamMassachusettsUSA
- Department of NeurologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative DiseasesUT Health San AntonioSan AntonioTexasUSA
- Department of NeurologyUT Health San AntonioSan AntonioTexasUSA
- NHLBI's Framingham Heart StudyFraminghamMassachusettsUSA
- Department of NeurologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| |
Collapse
|
6
|
Hojjati SH, Butler TA, de Leon M, Gupta A, Nayak S, Luchsinger JA, Razlighi QR, Chiang GC. Inter-network functional connectivity increases by beta-amyloid and may facilitate the early stage of tau accumulation. Neurobiol Aging 2025; 148:16-26. [PMID: 39879839 DOI: 10.1016/j.neurobiolaging.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
Alzheimer's disease (AD) is pathologically marked by tau tangles and beta-amyloid (Aβ) plaques. It has been hypothesized that Aβ facilitates spread of tau outside of the medial temporal lobe (MTL), but exact mechanism of this facilitation remains unclear. We aimed to test the hypothesis that abnormal Aβ induces an increase in inter-network functional connectivity, which in turn induces early-stage tau elevation in limbic network. Our study used 18F-Florbetaben Aβ positron emission tomography (PET), 18F-MK6240 tau-PET, and resting-state functional magnetic resonance imaging (rs-fMRI) from 489 healthy unimpaired older adults, including 46 with longitudinal data. We found significant correlations between tau in limbic network and Aβ in distinct functional networks. We then demonstrated that Aβ+ /Tau- participants exhibited elevated inter-network functional connectivity of the limbic network. Finally, our longitudinal results showed that annual increases in inter-network functional connectivity between limbic network and default mode and control networks were linked to annual tau elevation in limbic network, primarily modulated by Aβ+ individuals. Understanding this early brain alteration in response to pathologies could guide treatments early in disease course.
Collapse
Affiliation(s)
- Seyed Hani Hojjati
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States.
| | - Tracy A Butler
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - Mony de Leon
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - Ajay Gupta
- Department of Radiology, Columbia University, New York, NY, United States
| | - Siddharth Nayak
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - José A Luchsinger
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States; Departments of Epidemiology, Columbia University Irving Medical Center, New York, NY, United States
| | - Qolamreza R Razlighi
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| | - Gloria C Chiang
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
7
|
Ding H, Lyu C, Karjadi C, Sunderaraman P, Young CB, Mormino EC, Low S, Devine S, Gifford K, Au R, Lin H. Association of the digital clock drawing test with amyloid and tau PET biomarkers in low age risk adults. Sci Rep 2025; 15:11104. [PMID: 40169870 PMCID: PMC11961701 DOI: 10.1038/s41598-025-95852-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 03/21/2025] [Indexed: 04/03/2025] Open
Abstract
Although brain amyloid and tau deposition measured by PET scans are established as biomarkers of Alzheimer's disease (AD), they can emerge decades before symptoms are detectable on traditional neuropsychological (NP) tests. There is a pressing need for early AD detection tools that are more accessible, cost-effective, and non-invasive. The digital clock drawing test (dCDT), a digital version of the clock drawing test, has emerged as a promising cognitive assessment tool that takes minutes to administer and can reveal clinical symptoms earlier than paper-pencil NP tests. This study explored the association between 53 dCDT measures and amyloid and tau PET biomarkers using data from 87 low age risk participants in the Framingham Heart Study. Our findings revealed a significant association between a dCDT measure related to spatial reasoning function and global amyloid burden (P < 0.05), and 4 dCDT measures correlated with tau accumulation after adjusting for multiple comparisons. Notably, the combination of demographic variables and a composite dCDT score achieved a mean area under the receiver operating characteristics curve of 0.86 in detecting amyloid positivity. These results highlight the potential of dCDT measures as effective predictors of amyloid and tau pathology in preclinical AD.
Collapse
Affiliation(s)
- Huitong Ding
- Department of Anatomy and Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- The Framingham Heart Study, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Chenglin Lyu
- Department of Anatomy and Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Cody Karjadi
- Department of Anatomy and Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- The Framingham Heart Study, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Preeti Sunderaraman
- The Framingham Heart Study, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Christina B Young
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Elizabeth C Mormino
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Spencer Low
- Department of Anatomy and Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Sherral Devine
- Department of Anatomy and Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- The Framingham Heart Study, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Katherine Gifford
- Department of Neurology, Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rhoda Au
- Department of Anatomy and Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA.
- The Framingham Heart Study, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA.
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA.
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA.
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA.
- Slone Epidemiology Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA.
| | - Honghuang Lin
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
8
|
Petersen RC, Graf A, Atkins AS, Brys M, Murphy J, Miller DS, Reyderman L, Siemers E, Smith J, Carrillo MC, Weber CJ. Understanding the impact of amyloid beta targeted therapies on biomarkers and clinical endpoints in Alzheimer's disease. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2025; 11:e70069. [PMID: 40417267 PMCID: PMC12102660 DOI: 10.1002/trc2.70069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 02/18/2025] [Accepted: 02/18/2025] [Indexed: 05/27/2025]
Abstract
The Alzheimer's disease (AD) scientific field continues to make significant advances in early detection and treatments, which importantly rest on advances in our fundamental understanding of AD pathobiology and its contribution to cognitive decline. Clinical readouts of monoclonal antibodies against various forms of the amyloid beta (Aβ) protein indicate that the impact of these treatments may extend beyond reduction in amyloid plaques. The Alzheimer's Association Research Roundtable meeting held on May 17 and 18, 2022, reviewed our understanding to date of the impact of treatments targeting various species of Aβ; its impact on other related pathophysiology including tau; and ultimately, its effects on neurodegeneration and clinical decline, driven by the latest available data. Participants discussed the current evidence for a causal relationship among amyloid accumulation, tau alteration, and cognitive decline; the effect of anti-amyloid therapies on clinical and biomarker endpoints; and how we can accelerate the pathway to therapeutic approval and what should guide us for the near future. Highlights The Alzheimer's Association Research Roundtable convened leaders from industry and academia, as well as patients, clinicians, and government and regulatory agency scientists to discuss the topic "Current Understanding of AD Pathophysiology & Impact of Amyloid-beta Targeted Treatments on Biomarkers and Clinical Endpoints."The totality of scientific evidence (clinical trials, animal data, modeling, and observational studies) on the relationship between amyloid beta (Aβ), amyloid, tau, and cognitive impairment is helping our understanding of the downstream effects and overall importance of lowering amyloid plaque load.Based on data from multiple phase 2 and 3 clinical trials of anti-amyloid monoclonal antibodies, there is strong evidence to support that a sufficiently large reduction in amyloid plaque load to near-normal levels is associated with positive changes in tau biomarkers and clinical endpoints.Reduction of Aβ plaque, measured easily by plasma amyloid biomarkers, is reasonably likely to predict benefit in clinical outcome measures.
Collapse
Affiliation(s)
| | - Ana Graf
- Novartis Pharma AGBaselSwitzerland
| | | | | | | | | | | | - Eric Siemers
- Acumen PharmaceuticalsCharlottesvilleVirginiaUSA
| | | | | | | |
Collapse
|
9
|
Nam Y, Shin SJ, Kumar V, Won J, Kim S, Moon M. Dual modulation of amyloid beta and tau aggregation and dissociation in Alzheimer's disease: a comprehensive review of the characteristics and therapeutic strategies. Transl Neurodegener 2025; 14:15. [PMID: 40133924 PMCID: PMC11938702 DOI: 10.1186/s40035-025-00479-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 03/05/2025] [Indexed: 03/27/2025] Open
Abstract
Alzheimer's disease (AD) is not a single-cause disease; rather, it is a complex neurodegenerative disease involving multiple pathological pathways influenced by various risk factors. Aggregation and accumulation of amyloid beta (Aβ) and tau are the most prominent features in the brains of AD patients. Aggregated Aβ and tau exert neurotoxic effects in the central nervous system, contributing to the pathogenesis and progression of AD. They also act synergistically to cause neurodegeneration, resulting in memory loss. In this context, dual inhibition of Aβ and tau aggregation, or dissociation of these two aggregates, is considered promising for AD treatment. Recently, dual inhibitors capable of simultaneously targeting the aggregation and dissociation of both Aβ and tau have been investigated. Specific amino acid domains of Aβ and tau associated with their aggregation/dissociation have been identified. Subsequently, therapeutic agents that prevent aggregation or promote disaggregation by targeting these domains have been identified/developed. In this review, we summarize the major domains and properties involved in Aβ and tau aggregation, as well as the therapeutic effects and mechanisms of agents that simultaneously regulate their aggregation and dissociation. This comprehensive review may contribute to the design and discovery of next-generation dual-targeting drugs for Aβ and tau, potentially leading to the development of more effective therapeutic strategies for AD.
Collapse
Affiliation(s)
- Yunkwon Nam
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea
| | - Soo Jung Shin
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea
| | - Vijay Kumar
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea
| | - Jihyeon Won
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea
| | - Sujin Kim
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea.
- Research Institute for Dementia Science, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea.
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea.
- Research Institute for Dementia Science, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea.
| |
Collapse
|
10
|
Tristão-Pereira C, Langella S, Sanchez JS, Malotaux V, He B, Alcina J, Martinez JE, Rubinstein Z, Baena A, Vila-Castelar C, Giudicessi A, Ramirez Gomez L, Ramos C, Vasquez D, Aguillon D, Jacobs HIL, Sperling RA, Johnson K, Gatchel JR, Quiroz YT. Tau-PET pathology in the subregions of the amygdala and its associations with cognitive performance and neuropsychiatric symptoms in autosomal dominant Alzheimer's disease. Alzheimers Res Ther 2025; 17:64. [PMID: 40108701 PMCID: PMC11924723 DOI: 10.1186/s13195-025-01711-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/06/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND The amygdala plays a role in behavior and emotional response and is vulnerable to Alzheimer's disease (AD) pathology, yet little is known about amygdala tau accumulation before clinical symptom onset. To investigate whether certain amygdala nuclei are particularly vulnerable to degeneration and might underlie early neuropsychiatric symptoms in AD, we aimed to characterize subregional amygdala tau pathology and its correlates associations with established biomarkers of early AD and cognitive-behavioral measures in Presenilin-1 E280A mutation carriers of autosomal dominant AD. METHODS Participants included 25 cognitively unimpaired mutation carriers and 37 non-carrier family members from the Colombia-Boston (COLBOS) Biomarker Study. Measures included 18F-flortaucipir, 11C-Pittsburgh compound B, Consortium to Establish a Registry for Alzheimer's Disease Word List Learning, Trail Making Test, Geriatric Depression Scale, and Geriatric Anxiety Inventory. We examined group differences in amygdala tau levels (whole amygdala, lateral nucleus and basal nucleus) and analyzed tau associations with disease markers and clinical measures. RESULTS Amygdala tau levels were higher in unimpaired carriers compared to non-carriers. Among carriers, the basal nucleus showed a greater tau burden than the lateral nucleus, and tau accumulation correlated with closer estimated age to clinical onset and increased cortical amyloid. Additionally, tau in both the basal and lateral amygdala was associated with poorer working memory, lower executive function and greater depressive symptoms. However, amygdala tau did not correlate with symptoms of anxiety. Notably, tau levels in the basal amygdala differentiated carriers from non-carriers, with higher predictive accuracy when neuropsychiatric measures were included. CONCLUSIONS These findings suggest that in autosomal dominant AD, tau accumulation in the amygdala begins early in the basal nucleus, while both the basal and the lateral nuclei are associated with early cognitive deficits and depressive symptoms. The nuclei's differential vulnerability to pathology underscores the importance of investigating tau spread within amygdala-associated networks, relative to the early clinical manifestations of AD. This study reinforces the potential of amygdala tau burden as a valuable biomarker for preclinical AD.
Collapse
Affiliation(s)
| | | | - Justin S Sanchez
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Vincent Malotaux
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Bing He
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jorge Alcina
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jairo E Martinez
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychological & Brain Sciences , Boston University, Boston, MA, USA
| | - Zoe Rubinstein
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ana Baena
- Grupo de Neurociencias de Antioquia, Universidad de Antioquia, Medellin, Colombia
| | | | - Averi Giudicessi
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychological & Brain Sciences , Boston University, Boston, MA, USA
| | | | - Claudia Ramos
- Grupo de Neurociencias de Antioquia, Universidad de Antioquia, Medellin, Colombia
| | - Daniel Vasquez
- Grupo de Neurociencias de Antioquia, Universidad de Antioquia, Medellin, Colombia
| | - David Aguillon
- Grupo de Neurociencias de Antioquia, Universidad de Antioquia, Medellin, Colombia
| | - Heidi I L Jacobs
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Reisa A Sperling
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Keith Johnson
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jennifer R Gatchel
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Yakeel T Quiroz
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Grupo de Neurociencias de Antioquia, Universidad de Antioquia, Medellin, Colombia.
| |
Collapse
|
11
|
Jasodanand VH, Kowshik SS, Puducheri S, Romano MF, Xu L, Au R, Kolachalama VB. AI-driven fusion of neurological work-up for assessment of biological Alzheimer's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.12.25323862. [PMID: 40166530 PMCID: PMC11957082 DOI: 10.1101/2025.03.12.25323862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Alzheimer's disease (AD) diagnosis hinges on detecting amyloid beta (Aβ) plaques and neurofibrillary tau (τ) tangles. While amyloid PET imaging is now clinically approved, tau PET remains largely restricted to research settings. These imaging techniques, though valuable, are expensive and often difficult to access, limiting their widespread use in routine clinical practice. Here, we introduce a computational framework that leverages multimodal data from seven distinct cohorts comprising 12, 185 participants to estimate individual PET profiles, both global and regional, using more accessible data modalities, such as demographics, medical history, medication use, fluid measurements, functional and neuropsychological assessments, and structural MRIs. Our approach achieved an area under the receiver operating characteristic curve of 0.79 and 0.84 in classifying persons with positive Aβ and τ status, respectively. Model predictions were consistent with various biomarker and cognitive profiles, as well as with different degrees of protein abnormalities observed in post-mortem examinations. Furthermore, the regional volumes identified by the model as important aligned with the spatial distributions of the standardized uptake value ratio for regional τ labels. Our model offers a practical approach to identify potential candidates for newly approved anti-amyloid treatments and AD clinical trials for combined amyloid and tau therapies by utilizing standard neurological evaluation data.
Collapse
Affiliation(s)
- Varuna H. Jasodanand
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Sahana S. Kowshik
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Faculty of Computing & Data Sciences, Boston University, MA, USA
| | - Shreyas Puducheri
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Computer Science, Boston University, MA, USA
| | - Michael F. Romano
- Department of Radiology & Biomedical Imaging, University of California San Francisco, CA, USA
| | - Lingyi Xu
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Faculty of Computing & Data Sciences, Boston University, MA, USA
| | - Rhoda Au
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Boston University Alzheimer’s Disease Research Center, Boston, MA, USA
- The Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Vijaya B. Kolachalama
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Faculty of Computing & Data Sciences, Boston University, MA, USA
- Department of Computer Science, Boston University, MA, USA
- Boston University Alzheimer’s Disease Research Center, Boston, MA, USA
| |
Collapse
|
12
|
Iaccarino L, Burnham SC, Tunali I, Wang J, Navitsky M, Arora AK, Pontecorvo MJ. A practical overview of the use of amyloid-PET Centiloid values in clinical trials and research. Neuroimage Clin 2025; 46:103765. [PMID: 40101674 PMCID: PMC11960669 DOI: 10.1016/j.nicl.2025.103765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/25/2025] [Accepted: 03/04/2025] [Indexed: 03/20/2025]
Abstract
The density of brain amyloid-beta neuritic plaque accumulation, a marker of Alzheimer's disease (AD), can be visualized and quantified using amyloid-positron emission tomography (PET). Amyloid-PET data can be obtained using different tracers and methodologies; therefore, comparison across studies can be difficult. The introduction of Centiloids in 2015 allowed for the transformation of amyloid-PET quantitative data to a common scale, enhancing comparability across studies and potentially enabling pooled analysis. Since then, Centiloid values have been used increasingly in research and clinical trials for multiple purposes, being tested and validated with a variety of clinical, biomarker and pathological standards of truth. In clinical trials, Centiloid values have been used for patient selection, to confirm the presence of AD pathology, as well as for treatment monitoring, especially in trials of disease-modifying treatments such as amyloid-targeting therapies. Building on their widespread adoption, Centiloid values are increasingly being integrated into commercially available software solutions for quantifying amyloid-PET, paving the way for real-world applications at the community level. This article addresses frequently asked questions about Centiloid definition, implementation, interpretation, and caveats, and also summarizes the available literature on published thresholds, ultimately supporting wider access and informed use of Centiloid values in Alzheimer's disease research.
Collapse
Affiliation(s)
- Leonardo Iaccarino
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA; Eli Lilly Italia S.p.A., Sesto Fiorentino FI 50019, Italy.
| | - Samantha C Burnham
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA.
| | - Ilke Tunali
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA.
| | - Jian Wang
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA.
| | - Michael Navitsky
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA.
| | - Anupa K Arora
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA.
| | | |
Collapse
|
13
|
Molinare CP, Soberanes D, Dubbelman M, Hsieh S, Johnson KA, Rentz DM, Sperling RA, Marshall GA, Amariglio RE, Papp KV, Jutten RJ. Using remote, digital, multi-day testing to characterize long-term forgetting in cognitively unimpaired older adults. Alzheimers Dement 2025; 21:e70047. [PMID: 40110656 PMCID: PMC11923570 DOI: 10.1002/alz.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 03/22/2025]
Abstract
INTRODUCTION Accelerated long-term forgetting (LTF) might be an early marker of subtle memory changes in older adults at risk for Alzheimer's disease (AD). We leveraged remote, multi-day digital testing to characterize LTF in older adults and investigated its association with initial learning and AD imaging biomarkers. METHODS One hundred four cognitively unimpaired older adults completed a face-name memory task for seven consecutive days and were asked to recognize face-name pairs 1 week later. LTF was computed as the number of correctly identified stimuli divided by a participant's maximum performance during learning. RESULTS Better learning was associated with less LTF (β = 0.52, 95% confidence interval [CI]:0.34-0.71, p < 0.001). Accelerated LTF was associated with cortical thinning in AD-signature regions (β = 0.33, 95% CI: 0.13-0.52, p = 0.001), but associations with regional tau were more subtle. DISCUSSION Remote, multi-day testing may facilitate the assessment of LTF as an early cognitive marker of preclinical AD, but further replication is needed. HIGHLIGHTS Using digital, remote assessments, we evaluated long-term forgetting in cognitively unimpaired older adults. We found a potential association between long-term forgetting and tau in Alzheimer's disease (AD)-related regions. Assessing long-term forgetting may facilitate early detection of AD-related cognitive decline.
Collapse
Affiliation(s)
- Cassidy P. Molinare
- Department of NeurologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Present address:
University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Daniel Soberanes
- Department of NeurologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Mark Dubbelman
- Department of NeurologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Stephanie Hsieh
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Keith A. Johnson
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of PsychologyUSC Dornsife College of Letters, Arts, and SciencesBostonMassachusettsUSA
| | - Dorene M. Rentz
- Department of NeurologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Reisa A. Sperling
- Department of NeurologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Gad A. Marshall
- Department of NeurologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Rebecca E. Amariglio
- Department of NeurologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Kathryn V. Papp
- Department of NeurologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Roos J. Jutten
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
14
|
Phang KAS, Tan CH. Cognitive variation reflects amyloid, tau, and neurodegenerative biomarkers in Alzheimer's disease. GeroScience 2025:10.1007/s11357-025-01541-9. [PMID: 39873919 DOI: 10.1007/s11357-025-01541-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/20/2025] [Indexed: 01/30/2025] Open
Abstract
In Alzheimer's disease (AD), the accumulation of neuropathological markers such as amyloid-β plaques, neurofibrillary tangles, and cortical neurodegeneration occurs over many years before overt manifestation of cognitive impairment. There is thus a need for neuropsychological markers that are indicative of pathological changes in the early stages of the disease. Intra-individual cognitive variability (IICV), defined as the variation of an individual's performance across cognitive domains, is a promising neuropsychological marker measuring heterogeneous changes in cognition that may reflect these early pathological changes. In this study, we comprehensively evaluated the global and regional associations of IICV with positron emission tomography (PET) and magnetic resonance imaging (MRI) measures of AD biomarkers in cognitively normal (CN) and mild cognitive impairment (MCI) participants. We found that higher IICV was robustly associated with increased Aβ, increased tau, decreased brain glucose metabolism, and reduced cortical thickness. Higher IICV was also associated with tau (OR = 2.53, P < .001) and fluorodeoxyglucose (OR = 1.34, P < .001) positivity but not Aβ positivity (OR = 1.15, P = .107). In regional analyses, IICV showed widespread associations with AD biomarkers, with the strongest Aβ and tau effects in the frontal and temporal regions, respectively. The strongest regional cortical thickness effects were found in the entorhinal and parahippocampal cortices. Our findings suggest that IICV may be a useful neuropsychological marker for increased Aβ, and especially increased tau and neurodegeneration that are reflective of emerging AD pathology in individuals without dementia.
Collapse
Affiliation(s)
- Kia Ann Sean Phang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Psychology, School of Social Sciences, Nanyang Technological University, 48 Nanyang Avenue S639818, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Chin Hong Tan
- Psychology, School of Social Sciences, Nanyang Technological University, 48 Nanyang Avenue S639818, Singapore, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
15
|
Jutten RJ, Soberanes D, Molinare CP, Hsieh S, Farrell ME, Schultz AS, Rentz DM, Marshall GA, Johnson KA, Sperling RA, Amariglio RE, Papp KV. Detecting early cognitive deficits in preclinical Alzheimer's disease using a remote digital multi-day learning paradigm. NPJ Digit Med 2025; 8:24. [PMID: 39806194 PMCID: PMC11729905 DOI: 10.1038/s41746-024-01347-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 11/15/2024] [Indexed: 01/16/2025] Open
Abstract
Remote, digital cognitive testing on an individual's own device provides the opportunity to deploy previously understudied but promising cognitive paradigms in preclinical Alzheimer's disease (AD). The Boston Remote Assessment for NeuroCognitive Health (BRANCH) captures a personalized learning curve for the same information presented over seven consecutive days. Here, we examined BRANCH multi-day learning curves (MDLCs) in 167 cognitively unimpaired older adults (age = 74.3 ± 7.5, 63% female) with different amyloid-β (A) and tau (T) biomarker profiles on positron emission tomography. MDLC scores decreased across ascending biomarker groups, with the A + T- group performing numerically worse (β = -0.24, 95%CI[-0.55,0.07], p = 0.128) and the A + T+ group performing significantly worse (β = -0.58, 95%CI[-1.06,-0.10], p = 0.018) than the A-T- group. Further, lower MDLC scores were associated with greater cortical thinning (β = 0.18, 95%CI[0.04,0.34], p = 0.013). Our results suggest that diminished MDLCs track with advanced AD pathophysiology, and demonstrate how a digital multi-day learning paradigm can provide novel insights about cognitive decline during preclinical AD.
Collapse
Affiliation(s)
- Roos J Jutten
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA.
| | - Daniel Soberanes
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Cassidy P Molinare
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Stephanie Hsieh
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Michelle E Farrell
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Aaron S Schultz
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Dorene M Rentz
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Gad A Marshall
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Keith A Johnson
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Reisa A Sperling
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Rebecca E Amariglio
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Kathryn V Papp
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA.
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
16
|
de Bruin H, Groot C, Kamps S, Vijverberg EGB, Steward A, Dehsarvi A, Pijnenburg YAL, Ossenkoppele R, Franzmeier N. Amyloid-β and tau deposition in traumatic brain injury: a study of Vietnam War veterans. Brain Commun 2025; 7:fcaf009. [PMID: 39845735 PMCID: PMC11752645 DOI: 10.1093/braincomms/fcaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/15/2024] [Accepted: 01/09/2025] [Indexed: 01/24/2025] Open
Abstract
Traumatic brain injury is widely viewed as a risk factor for dementia, but the biological mechanisms underlying this association are still unclear. In previous studies, traumatic brain injury has been associated with the hallmark pathologies of Alzheimer's disease, i.e. amyloid-β plaques and neurofibrillary tangles comprised of hyperphosphorylated tau. Depending on the type and location of trauma, traumatic brain injury can induce spatially heterogeneous brain lesions that may pre-dispose for the development of Alzheimer's disease pathology in aging. Therefore, we hypothesized that a history of traumatic brain injury may be related to spatially heterogeneous amyloid-β and tau pathology patterns that deviate from the stereotypical temporo-parietal patterns in Alzheimer's disease. To test this, we included 103 Vietnam War veterans of whom 65 had experienced traumatic brain injury (n = 40, 38.8% mild; n = 25, 24.3% moderate/severe). Most individuals had a history of 1 (n = 35, 53.8%) or 2 (n = 15, 23.1%) traumatic brain injury events. We included the group without a history of traumatic brain injury (n = 38, 36.9%) as controls. The majority was cognitively normal (n = 80, 77.7%), while a subset had mild cognitive impairment (n = 23, 22.3%). All participants underwent [18F]florbetapir/Amyvid amyloid-β PET and [18F]flortaucipir/Tauvid tau-PET 39.63 ± 18.39 years after their last traumatic brain injury event. We found no differences in global amyloid-β and tau-PET levels between groups, suggesting that a history of traumatic brain injury does not pre-dispose to accumulate amyloid-β or tau pathology in general. However, we found that traumatic brain injury was associated with altered spatial patterns of amyloid-β and tau, with relatively greater deposition in fronto-parietal brain regions. These regions are prone to damage in traumatic brain injury, while they are typically only affected in later stages of Alzheimer's disease. Moreover, in our traumatic brain injury groups, the association between amyloid-β and tau was reduced in Alzheimer-typical temporal regions but increased in frontal regions that are commonly associated with traumatic brain injury. Altogether, while acknowledging the relatively small sample size and generally low levels of Alzheimer's disease pathology in this sample, our findings suggest that traumatic brain injury induces spatial patterns of amyloid-β and tau that differ from patterns observed in typical Alzheimer's disease. Furthermore, traumatic brain injury may be associated with a de-coupling of amyloid-β and tau in regions vulnerable in Alzheimer's disease. These findings indicate that focal brain damage in early/mid-life may change neurodegenerative trajectories in late-life.
Collapse
Affiliation(s)
- Hannah de Bruin
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam 1081 HZ, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Amsterdam 1081 HV, The Netherlands
- Institute for Stroke and Dementia Research, University Hospital, Ludwig Maximilian University of Munich, Munich 81377, Germany
| | - Colin Groot
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam 1081 HZ, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Amsterdam 1081 HV, The Netherlands
| | - Suzie Kamps
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam 1081 HZ, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Amsterdam 1081 HV, The Netherlands
| | - Everard G B Vijverberg
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam 1081 HZ, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Amsterdam 1081 HV, The Netherlands
| | - Anna Steward
- Institute for Stroke and Dementia Research, University Hospital, Ludwig Maximilian University of Munich, Munich 81377, Germany
| | - Amir Dehsarvi
- Institute for Stroke and Dementia Research, University Hospital, Ludwig Maximilian University of Munich, Munich 81377, Germany
| | - Yolande A L Pijnenburg
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam 1081 HZ, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Amsterdam 1081 HV, The Netherlands
| | - Rik Ossenkoppele
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam 1081 HZ, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Amsterdam 1081 HV, The Netherlands
- Clinical Memory Research Unit, Lund University, Lund 221 00, Sweden
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research, University Hospital, Ludwig Maximilian University of Munich, Munich 81377, Germany
- The Sahlgrenska Academy, Institute of Neuroscience and Physiology, Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg 413 45, Sweden
- Munich Cluster for Systems Neurology (SyNergy), University Hospital, Ludwig Maximilian University of Munich, Munich 81377, Germany
| |
Collapse
|
17
|
Rabinovici GD, Knopman DS, Arbizu J, Benzinger TLS, Donohoe KJ, Hansson O, Herscovitch P, Kuo PH, Lingler JH, Minoshima S, Murray ME, Price JC, Salloway SP, Weber CJ, Carrillo MC, Johnson KA. Updated Appropriate Use Criteria for Amyloid and Tau PET: A Report from the Alzheimer's Association and Society for Nuclear Medicine and Molecular Imaging Workgroup. J Nucl Med 2025:jnumed.124.268756. [PMID: 39778970 DOI: 10.2967/jnumed.124.268756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 01/11/2025] Open
Abstract
The Alzheimer's Association and the Society of Nuclear Medicine and Molecular Imaging convened a multidisciplinary workgroup to update appropriate use criteria (AUC) for amyloid positron emission tomography (PET) and to develop AUC for tau PET. Methods: The workgroup identified key research questions that guided a systematic literature review on clinical amyloid/tau PET. Building on this review, the workgroup developed 17 clinical scenarios in which amyloid or tau PET may be considered. A modified Delphi approach was used to rate each scenario by consensus as "rarely appropriate," "uncertain," or "appropriate." Ratings were performed separately for amyloid and tau PET as stand-alone modalities. Results: For amyloid PET, 7 scenarios were rated as appropriate, 2 as uncertain, and 8 as rarely appropriate. For tau PET, 5 scenarios were rated as appropriate, 6 as uncertain, and 6 as rarely appropriate. Conclusion: AUC for amyloid and tau PET provide expert recommendations for clinical use of these technologies in the evolving landscape of diagnostics and therapeutics for Alzheimer's disease.
Collapse
Affiliation(s)
- Gil D Rabinovici
- Department of Neurology and Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, California;
| | - David S Knopman
- Mayo Clinic Neurology and Neurosurgery, Rochester, Minnesota
| | - Javier Arbizu
- Department of Nuclear Medicine, University of Navarra Clinic, Pamplona, Spain
| | - Tammie L S Benzinger
- Mallinckrodt Institute of Radiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri; Knight Alzheimer's Disease Research Center, School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Kevin J Donohoe
- Nuclear Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Peter Herscovitch
- Positron Emission Tomography Department, National Institutes of Health Clinical Center, Bethesda, Maryland
| | - Phillip H Kuo
- Medical Imaging, Medicine, and Biomedical Engineering, University of Arizona, Tucson, Arizona
| | - Jennifer H Lingler
- Department of Health and Community Systems, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Satoshi Minoshima
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah
| | | | - Julie C Price
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Stephen P Salloway
- Department of Neurology and Psychiatry the Warren Alpert School of Medicine, Brown University, Providence, Rhode Island
- Butler Hospital Memory and Aging Program, Providence, Rhode Island
| | | | | | - Keith A Johnson
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
- Molecular Neuroimaging, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts; and
- Departments of Neurology and Radiology, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
18
|
Rabinovici GD, Knopman DS, Arbizu J, Benzinger TLS, Donohoe KJ, Hansson O, Herscovitch P, Kuo PH, Lingler JH, Minoshima S, Murray ME, Price JC, Salloway SP, Weber CJ, Carrillo MC, Johnson KA. Updated appropriate use criteria for amyloid and tau PET: A report from the Alzheimer's Association and Society for Nuclear Medicine and Molecular Imaging Workgroup. Alzheimers Dement 2025; 21:e14338. [PMID: 39776249 PMCID: PMC11772739 DOI: 10.1002/alz.14338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 01/11/2025]
Abstract
INTRODUCTION The Alzheimer's Association and the Society of Nuclear Medicine and Molecular Imaging convened a multidisciplinary workgroup to update appropriate use criteria (AUC) for amyloid positron emission tomography (PET) and to develop AUC for tau PET. METHODS The workgroup identified key research questions that guided a systematic literature review on clinical amyloid/tau PET. Building on this review, the workgroup developed 17 clinical scenarios in which amyloid or tau PET may be considered. A modified Delphi approach was used to rate each scenario by consensus as "rarely appropriate," "uncertain," or "appropriate." Ratings were performed separately for amyloid and tau PET as stand-alone modalities. RESULTS For amyloid PET, seven scenarios were rated as appropriate, two as uncertain, and eight as rarely appropriate. For tau PET, five scenarios were rated as appropriate, six as uncertain, and six as rarely appropriate. DISCUSSION AUC for amyloid and tau PET provide expert recommendations for clinical use of these technologies in the evolving landscape of diagnostics and therapeutics for Alzheimer's disease. HIGHLIGHTS A multidisciplinary workgroup convened by the Alzheimer's Association and the Society of Nuclear Medicine and Molecular Imaging updated the appropriate use criteria (AUC) for amyloid positron emission tomography (PET) and to develop AUC for tau PET. The goal of these updated AUC is to assist clinicians in identifying clinical scenarios in which amyloid or tau PET may be useful for guiding the diagnosis and management of patients who have, or are at risk for, cognitive decline These updated AUC are intended for dementia specialists who spend a significant proportion of their clinical effort caring for patients with cognitive complaints, as well as serve as a general reference for a broader audience interested in implementation of amyloid and tau PET in clinical practice.
Collapse
Affiliation(s)
- Gil D. Rabinovici
- Department of Neurology and Department of Radiology and Biomedical ImagingUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | | | - Javier Arbizu
- Department of Nuclear MedicineUniversity of Navarra ClinicPamplonaSpain
| | - Tammie L. S. Benzinger
- Mallinckrodt Institute of RadiologyWashington University in St. Louis School of MedicineSt. LouisMissouriUSA
- Knight Alzheimer's Disease Research CenterWashington University in St. Louis School of MedicineSt. LouisMissouriUSA
| | - Kevin J. Donohoe
- Nuclear Medicine, Beth Israel Deaconess Medical CenterBostonMassachusettsUSA
| | - Oskar Hansson
- Department of Clinical Sciences MalmöClinical Memory Research UnitFaculty of MedicineLund UniversityLundSweden
- Memory Clinic, Skåne University HospitalSkånes universitetssjukhusMalmöSweden
| | - Peter Herscovitch
- Positron Emission Tomography DepartmentNational Institutes of Health Clinical CenterBethesdaMarylandUSA
| | - Phillip H. Kuo
- Medical Imaging, Medicine, and Biomedical EngineeringUniversity of ArizonaTucsonArizonaUSA
| | - Jennifer H. Lingler
- Department of Health and Community SystemsUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Satoshi Minoshima
- Department of Radiology and Imaging SciencesUniversity of UtahSalt Lake CityUtahUSA
| | | | - Julie C. Price
- Department of RadiologyMassachusetts General Hospital, BostonCharlestownMassachusettsUSA
| | - Stephen P. Salloway
- Department of Neurology and Psychiatry the Warren Alpert School of Medicine at Brown UniversityProvidenceRhode IslandUSA
- Butler Hospital Memory and Aging ProgramProvidenceRhode IslandUSA
| | | | - Maria C. Carrillo
- Center for Alzheimer Research and TreatmentDepartment of NeurologyBrigham and Women's HospitalBostonMassachusettsUSA
| | - Keith A. Johnson
- Center for Alzheimer Research and TreatmentDepartment of NeurologyBrigham and Women's HospitalBostonMassachusettsUSA
- Molecular Neuroimaging, Massachusetts General HospitalBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
- Departments of Neurology and RadiologyMassachusetts General HospitalBostonMassachusettsUSA
| |
Collapse
|
19
|
Șovrea AS, Boșca AB, Dronca E, Constantin AM, Crintea A, Suflețel R, Ștefan RA, Ștefan PA, Onofrei MM, Tschall C, Crivii CB. Non-Drug and Non-Invasive Therapeutic Options in Alzheimer's Disease. Biomedicines 2025; 13:84. [PMID: 39857667 PMCID: PMC11760896 DOI: 10.3390/biomedicines13010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 12/28/2024] [Accepted: 12/29/2024] [Indexed: 01/27/2025] Open
Abstract
Despite the massive efforts of modern medicine to stop the evolution of Alzheimer's disease (AD), it affects an increasing number of people, changing individual lives and imposing itself as a burden on families and the health systems. Considering that the vast majority of conventional drug therapies did not lead to the expected results, this review will discuss the newly developing therapies as an alternative in the effort to stop or slow AD. Focused Ultrasound (FUS) and its derived Transcranial Pulse Stimulation (TPS) are non-invasive therapeutic approaches. Singly or as an applied technique to change the permeability of the blood-brain-barrier (BBB), FUS and TPS have demonstrated the benefits of use in treating AD in animal and human studies. Adipose-derived stem Cells (ADSCs), gene therapy, and many other alternative methods (diet, sleep pattern, physical exercise, nanoparticle delivery) are also new potential treatments since multimodal approaches represent the modern trend in this disorder research therapies.
Collapse
Affiliation(s)
- Alina Simona Șovrea
- Morpho-Functional Sciences Department, Iuliu Hațieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (A.S.Ș.); (A.-M.C.); (R.S.); (R.A.Ș.); (M.M.O.); (C.-B.C.)
| | - Adina Bianca Boșca
- Morpho-Functional Sciences Department, Iuliu Hațieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (A.S.Ș.); (A.-M.C.); (R.S.); (R.A.Ș.); (M.M.O.); (C.-B.C.)
| | - Eleonora Dronca
- Molecular Sciences Department, Iuliu Hațieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (E.D.); (A.C.)
| | - Anne-Marie Constantin
- Morpho-Functional Sciences Department, Iuliu Hațieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (A.S.Ș.); (A.-M.C.); (R.S.); (R.A.Ș.); (M.M.O.); (C.-B.C.)
| | - Andreea Crintea
- Molecular Sciences Department, Iuliu Hațieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (E.D.); (A.C.)
| | - Rada Suflețel
- Morpho-Functional Sciences Department, Iuliu Hațieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (A.S.Ș.); (A.-M.C.); (R.S.); (R.A.Ș.); (M.M.O.); (C.-B.C.)
| | - Roxana Adelina Ștefan
- Morpho-Functional Sciences Department, Iuliu Hațieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (A.S.Ș.); (A.-M.C.); (R.S.); (R.A.Ș.); (M.M.O.); (C.-B.C.)
| | - Paul Andrei Ștefan
- Radiology and Imaging Department, Emergency County Hospital Cluj, 400347 Cluj-Napoca, Romania;
| | - Mădălin Mihai Onofrei
- Morpho-Functional Sciences Department, Iuliu Hațieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (A.S.Ș.); (A.-M.C.); (R.S.); (R.A.Ș.); (M.M.O.); (C.-B.C.)
| | - Christoph Tschall
- Morpho-Functional Sciences Department, Iuliu Hațieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (A.S.Ș.); (A.-M.C.); (R.S.); (R.A.Ș.); (M.M.O.); (C.-B.C.)
| | - Carmen-Bianca Crivii
- Morpho-Functional Sciences Department, Iuliu Hațieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (A.S.Ș.); (A.-M.C.); (R.S.); (R.A.Ș.); (M.M.O.); (C.-B.C.)
| |
Collapse
|
20
|
Kobro-Flatmoen A, Omholt SW. Intraneuronal binding of amyloid beta with reelin-Implications for the onset of Alzheimer's disease. PLoS Comput Biol 2025; 21:e1012709. [PMID: 39775030 PMCID: PMC11741591 DOI: 10.1371/journal.pcbi.1012709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 01/17/2025] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Numerous studies of the human brain supported by experimental results from rodent and cell models point to a central role for intracellular amyloid beta (Aβ) in the onset of Alzheimer's disease (AD). In a rat model used to study AD, it was recently shown that in layer II neurons of the anteriolateral entorhinal cortex expressing high levels of the glycoprotein reelin (Re+alECLII neurons), reelin and Aβ engage in a direct protein-protein interaction. If reelin functions as a sink for intracellular Aβ and if the binding to reelin makes Aβ physiologically inert, it implies that reelin can prevent the neuron from being exposed to the harmful effects typically associated with increased levels of oligomeric Aβ. Considering that reelin expression is extraordinarily high in Re+alECLII neurons compared to most other cortical neurons, such a protective role appears to be very difficult to reconcile with the fact that this subset of ECLII neurons is clearly a major cradle for the onset of AD. Here, we show that this conundrum can be resolved if Re+alECLII neurons have a higher maximum production capacity of Aβ than neurons expressing low levels of reelin, and we provide a rationale for why this difference has evolved.
Collapse
Affiliation(s)
- Asgeir Kobro-Flatmoen
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- K. G. Jebsen Centre for Alzheimer’s Disease, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Stig W. Omholt
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
21
|
Amabebe E, Huang Z, Jash S, Krishnan B, Cheng S, Nakashima A, Li Y, Li Z, Wang R, Menon R, Zhou XZ, Lu KP, Sharma S. Novel Role of Pin1-Cis P-Tau-ApoE Axis in the Pathogenesis of Preeclampsia and Its Connection with Dementia. Biomedicines 2024; 13:29. [PMID: 39857613 PMCID: PMC11763151 DOI: 10.3390/biomedicines13010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
Preeclampsia (preE) is a severe multisystem hypertensive syndrome of pregnancy associated with ischemia/hypoxia, angiogenic imbalance, apolipoprotein E (ApoE)-mediated dyslipidemia, placental insufficiency, and inflammation at the maternal-fetal interface. Our recent data further suggest that preE is associated with impaired autophagy, vascular dysfunction, and proteinopathy/tauopathy disorder, similar to neurodegenerative diseases such as Alzheimer's disease (AD), including the presence of the cis stereo-isoform of phosphorylated tau (cis P-tau), amyloid-β, and transthyretin in the placenta and circulation. This review provides an overview of the factors that may lead to the induction and accumulation of cis P-tau-like proteins by focusing on the inactivation of peptidyl-prolyl cis-trans isomerase (Pin1) that catalyzes the cis to trans isomerization of P-tau. We also highlighted the novel role of the Pin1-cis P-tau-ApoE axis in the development of preE, and propagation of cis P-tau-mediated abnormal protein aggregation (tauopathy) from the placenta to cerebral tissues later in life, leading to neurodegenerative conditions. In the case of preE, proteinopathy/tauopathy may interrupt trophoblast differentiation and induce cell death, similar to the events occurring in neurons. These events may eventually damage the endothelium and cause systemic features of disorders such as preE. Despite impressive research and therapeutic advances in both fields of preE and neurodegenerative diseases, further investigation of Pin1-cis P-tau and ApoE-related mechanistic underpinnings may unravel novel therapeutic options, and new transcriptional and proteomic markers. This review will also cover genetic polymorphisms in the ApoE alleles leading to dyslipidemia induction that may regulate the pathways causing preE or dementia-like features in the reproductive age or later in life, respectively.
Collapse
Affiliation(s)
- Emmanuel Amabebe
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (E.A.); (Z.H.); (R.M.)
| | - Zheping Huang
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (E.A.); (Z.H.); (R.M.)
| | - Sukanta Jash
- Department of Molecular Biology, Cell Biology and Biochemistry, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA;
| | - Balaji Krishnan
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA;
| | - Shibin Cheng
- Department of Pediatrics, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA;
| | - Akitoshi Nakashima
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama 930-8555, Japan;
| | - Yitong Li
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry, Robarts Research Institute, Western University, London, ON N6A 3K7, Canada; (Y.L.); (Z.L.); (R.W.); (X.Z.Z.); (K.P.L.)
| | - Zhixong Li
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry, Robarts Research Institute, Western University, London, ON N6A 3K7, Canada; (Y.L.); (Z.L.); (R.W.); (X.Z.Z.); (K.P.L.)
| | - Ruizhi Wang
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry, Robarts Research Institute, Western University, London, ON N6A 3K7, Canada; (Y.L.); (Z.L.); (R.W.); (X.Z.Z.); (K.P.L.)
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (E.A.); (Z.H.); (R.M.)
| | - Xiao Zhen Zhou
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry, Robarts Research Institute, Western University, London, ON N6A 3K7, Canada; (Y.L.); (Z.L.); (R.W.); (X.Z.Z.); (K.P.L.)
- Departments of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Lawson Health Research Institute, Western University, London, ON N6A 3K7, Canada
| | - Kun Ping Lu
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry, Robarts Research Institute, Western University, London, ON N6A 3K7, Canada; (Y.L.); (Z.L.); (R.W.); (X.Z.Z.); (K.P.L.)
| | - Surendra Sharma
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (E.A.); (Z.H.); (R.M.)
| |
Collapse
|
22
|
Don Bosco RB, Selvan Christyraj JRS, Yesudhason BV. Synergistic activity of nootropic herbs as potent therapeutics for Alzheimer's disease: A cheminformatics, pharmacokinetics, and system pharmacology approach. J Alzheimers Dis Rep 2024; 8:1745-1762. [PMID: 40034353 PMCID: PMC11863741 DOI: 10.1177/25424823241307019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/11/2024] [Indexed: 03/05/2025] Open
Abstract
Background Alzheimer's disease (AD) is a progressive neurodegenerative disorder, which subdues over 55 million people and finding a cure, still remains disenchanting. Indian medicinal herbs notably, Withania somnifera, Bacopa monnieri, Curcuma longa, and Clitoria ternatea are traditionally utilized for their memory-enhancing properties. Objective We computationally investigated the therapeutic potential of four nootropic herbs by uncovering the molecular mechanisms underlying their treatment for AD. Methods Cheminformatics, pharmacokinetics, and system pharmacology studies were carried out to predict the phytocompounds drug-like properties, protein targets, targets functional association and enrichment analysis. A comparative study was performed with phytocompounds and FDA-approved drugs. Investigation on the expression of protein targets in the hippocampus and entorhinal cortex of the AD brain was performed. Network was constructed to depict the interaction between phytocompounds, drugs, and molecular targets. Results Through comparative analysis, we found that the phytocompounds shared common targets with both FDA drugs and drugs under clinical trials. We identified potential active compounds notably, Withaferin A, Withanolide-D, Withanolide-E, Withanolide-G, and Humulene epoxide II, that can combat AD. Interestingly, the enzyme inhibition scores of the identified drugs were much higher than FDA-approved drugs. In addition, regulatory proteins such as AβPP, acetylcholinesterase, BACE1, and PTPN1 were the targets of 8, 16, 9, and 22 phytocompounds, respectively. Nonetheless, AR and CYP19A, were the primary targets of most phytocompounds. Conclusions Herbal medicines can synergistically stimulate multiple protein targets, rendering a holistic and integrative treatment, encouraging a promising avenue to treat AD.
Collapse
Affiliation(s)
- Reiya Bosco Don Bosco
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, India
| | - Johnson Retnaraj Samuel Selvan Christyraj
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, India
| | - Beryl Vedha Yesudhason
- Johnson Retnaraj Samuel Selvan Christyraj and Beryl Vedha Yesudhason, Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India.
Emails: ;
| |
Collapse
|
23
|
Winer JR, Vossler H, Young CB, Smith V, Romero A, Shahid-Besanti M, Abdelnour C, Wilson EN, Anders D, Pacheco Morales A, Andreasson KI, Yutsis MV, Henderson VW, Davidzon GA, Mormino EC, Poston KL. 18F-PI-2620 Tau PET is associated with cognitive and motor impairment in Lewy body disease. Brain Commun 2024; 7:fcae458. [PMID: 39741783 PMCID: PMC11686406 DOI: 10.1093/braincomms/fcae458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/22/2024] [Accepted: 12/17/2024] [Indexed: 01/03/2025] Open
Abstract
Co-pathology is frequent in Lewy body disease, which includes clinical diagnoses of both Parkinson's disease and dementia with Lewy bodies. Measuring concomitant pathology in vivo can improve clinical and research diagnoses and prediction of cognitive trajectories. Tau PET imaging may serve a dual role in Lewy body disease by measuring cortical tau aggregation as well as assessing dopaminergic loss attributed to binding to neuromelanin within substantia nigra. We sought to characterize 18F-PI-2620, a next generation PET tracer, in individuals with Lewy body disease. We recruited 141 participants for 18F-PI-2620 PET scans from the Stanford Alzheimer's Disease Research Center and the Stanford Aging and Memory Study, most of whom also had β-amyloid status available (139/141) from PET or cerebrospinal fluid. We compared 18F-PI-2620 uptake within entorhinal cortex, inferior temporal cortex, precuneus and lingual gyrus, as well as substantia nigra, across participants with Lewy body disease [Parkinson's disease (n = 29), dementia with Lewy bodies (n = 14)] and Alzheimer's disease (n = 28), in addition to cognitively unimpaired healthy older adults (n = 70). Mean bilateral signal was extracted from cortical regions of interest in 18F-PI-2620 standard uptake value ratio (inferior cerebellar grey reference) images normalized to template space. A subset of participants received cognitive testing and/or the Movement Disorders Society Unified Parkinson's Disease Rating Scale Part III motor exam (off medication). 18F-PI-2620 uptake was low overall in Lewy body disease and correlated with β-amyloid PET in temporal lobe regions and precuneus. Moreover, inferior temporal 18F-PI-2620 uptake was significantly elevated in β-amyloid positive relative to β-amyloid negative participants with Lewy body disease. Temporal lobe 18F-PI-2620 signal was not associated with memory in Lewy body disease, but uptake within precuneus and lingual gyrus was associated with worse executive function and attention/working memory performance. Finally, substantia nigra 18F-PI-2620 signal was significantly reduced in participants with Parkinson's disease, and lower substantia nigra signal was associated with greater motor impairment. These findings suggest that although levels are lower than in Alzheimer's disease, small elevations in cortical tau are associated with cognitive function in Lewy body disease relevant domains, and that reduced 18F-PI-2620 binding in substantia nigra may represent loss of dopaminergic neurons. Cortical tau and neuromelanin binding within substantia nigra represent two unique signals in the same PET image that may be informative in the context of cognitive and motor deficits, respectively, in Lewy body disease.
Collapse
Affiliation(s)
- Joseph R Winer
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Hillary Vossler
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Christina B Young
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Viktorija Smith
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - America Romero
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Marian Shahid-Besanti
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Carla Abdelnour
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Edward N Wilson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - David Anders
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Aimara Pacheco Morales
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Katrin I Andreasson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Maya V Yutsis
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Victor W Henderson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA 94304, USA
| | - Guido A Davidzon
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Elizabeth C Mormino
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA 94304, USA
| | - Kathleen L Poston
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA 94304, USA
| |
Collapse
|
24
|
Lauber MV, Bellitti M, Kapadia K, Jasodanand VH, Au R, Kolachalama VB. Global amyloid burden enhances network efficiency of tau propagation in the brain. J Alzheimers Dis 2024:13872877241294084. [PMID: 39686595 DOI: 10.1177/13872877241294084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
BACKGROUND Amyloid-β (Aβ) and hyperphosphorylated tau are crucial biomarkers in Alzheimer's disease (AD) pathogenesis, interacting synergistically to accelerate disease progression. While Aβ initiates cascades leading to tau hyperphosphorylation and neurofibrillary tangles, PET imaging studies suggest a sequential progression from amyloidosis to tauopathy, closely linked with neurocognitive symptoms. OBJECTIVE To analyze the complex interactions between Aβ and tau in AD using probabilistic graphical models, assessing how regional tau accumulation is influenced by Aβ burden. METHODS Data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and Anti-Aβ Treatment in Asymptomatic Alzheimer's (A4) study were utilized, involving participants across various cognitive stages and employing both Florbetapir and Flortaucipir as tracers. Tau standardized uptake value ratio values were harmonized across studies, and participants were stratified into quantile groups based on Aβ levels. A LASSO regularized Gaussian graphical model analyzed partial correlations among brain regions to discern patterns of tau accumulation across different Aβ levels. RESULTS Statistical analyses revealed significant differences in tau structure among low, medium, and high Aβ groups in both ADNI and A4 cohorts, with graph metrics, such as small-world coefficient, indicating increased tau efficiency as Aβ burden increased. CONCLUSIONS Our findings indicate that tau accumulates more efficiently with increasing Aβ burden, highlighting an interplay that could inform development of dual-targeting therapies in AD. This study underscores the importance of Aβ and tau interactions in AD progression and supports the hypothesis that targeting both pathologies could be crucial for therapeutic interventions.
Collapse
Affiliation(s)
- Meagan V Lauber
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Graduate Program for Neuroscience, Division of Graduate Medical Sciences, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Matteo Bellitti
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Krish Kapadia
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Varuna H Jasodanand
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Rhoda Au
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- The Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Vijaya B Kolachalama
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Computer Science, Boston University, Boston, MA, USA
- Faculty of Computing & Data Sciences, Boston University, Boston, MA, USA
| |
Collapse
|
25
|
Lu S, Zhu X, Zeng P, Hu L, Huang Y, Guo X, Chen Q, Wang Y, Lai L, Xue A, Wang Y, Wang Z, Song W, Liu Q, Bian G, Li J, Bu Q, Cen X. Exposure to PFOA, PFOS, and PFHxS induces Alzheimer's disease-like neuropathology in cerebral organoids. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125098. [PMID: 39389246 DOI: 10.1016/j.envpol.2024.125098] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/25/2024] [Accepted: 10/08/2024] [Indexed: 10/12/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs), a class of ubiquitous synthetic organic chemicals, are widely utilized across various industrial applications. However, the long-term neurological health effects of PFAS mixture exposure in humans remain poorly understood. To address this gap, we have designed a comprehensive study to predict and validate cell-type-specific neurotoxicity of PFASs using single-cell RNA sequencing (scRNA-seq) and cerebral organoids. Cerebral organoids were exposed to a PFAS mixture at concentrations of 1 × (10 ng/ml PFOS and PFOA, and 1 ng/ml PFHxS), 30 × , and 900 × over 35 days, with a follow-up analysis at day 70. Pathological alterations and lipidomic profiles were analyzed to identify disrupted molecular pathways and mechanisms. The scRNA-seq data revealed a significant impact of PFASs on neurons, suggesting a potential role in Alzheimer's Disease (AD) pathology, as well as intellectual and cognitive impairments. PFAS-treated cerebral organoids exhibited Aβ accumulation and tau phosphorylation. Lipidomic analyses further revealed lipid disturbances in response to PFAS mixture exposure, linking PFAS-induced AD-like neuropathology to sphingolipid metabolism disruption. Collectively, our findings provide novel insights into the PFAS-induced neurotoxicity, highlighting the significance of sphingolipid metabolism in the development of AD-like neuropathology. The use of cerebral organoids and scRNA-seq offers a powerful methodology for evaluating the health risks associated with environmental contaminants, particularly those with neurotoxic potential.
Collapse
Affiliation(s)
- Shiya Lu
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Xizhi Zhu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Pinli Zeng
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Linxia Hu
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Yan Huang
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Xinhua Guo
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Qiqi Chen
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Yantang Wang
- Department of Pharmacology, School of Pharmacy, Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Li Lai
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Aiqin Xue
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Yanli Wang
- Jinniu Maternity and Child Health Hospital of Chengdu, Chengdu, 610036, China
| | - Zhiqiu Wang
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Wenbo Song
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Qian Liu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Guohui Bian
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Jiayuan Li
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Qian Bu
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China.
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
26
|
Moss DE, Perez RG. The phospho-tau cascade, basal forebrain neurodegeneration, and dementia in Alzheimer's disease: Anti-neurodegenerative benefits of acetylcholinesterase inhibitors. J Alzheimers Dis 2024; 102:617-626. [PMID: 39533696 DOI: 10.1177/13872877241289602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A conundrum in Alzheimer's disease (AD) is why the long-term use of acetylcholinesterase (AChE) inhibitors, intended for treatment of dementia, results in slowing neurodegeneration in the cholinergic basal forebrain, hippocampus, and cortex. The phospho-tau cascade hypothesis presented here attempts to answer that question by unifying three hallmark features of AD into a specific sequence of events. It is proposed that the hyperphosphorylation of tau protein leads to the AD-associated deficit of nerve growth factor (NGF), then to atrophy of the cholinergic basal forebrain and dementia. Because the release of pro-nerve growth factor (pro-NGF) is activity-dependent and is controlled by basal forebrain projections to the hippocampus and cortex, our hypothesis is that AChE inhibitors act by increasing acetylcholine-dependent pro-NGF release and, thus, augmenting the availability of mature NGF and improving basal forebrain survival. If correct, improved central nervous system-selective AChE inhibitor therapy started prophylactically, before AD-associated basal forebrain atrophy and cognitive impairment onset, has the potential to delay not only the onset of dementia but also its rate of advancement. The phospho-tau hypothesis thus suggests that preventing hyperphosphorylation of tau protein, early should be a high priority as a strategy to help reduce dementia and its associated widespread social and economic suffering.
Collapse
Affiliation(s)
- Donald E Moss
- Professor Emeritus, University of Texas at El Paso, El Paso, TX, USA
| | | |
Collapse
|
27
|
Schworer EK, Zammit MD, Wang J, Handen BL, Betthauser T, Laymon CM, Tudorascu DL, Cohen AD, Zaman SH, Ances BM, Mapstone M, Head E, Christian BT, Hartley SL. Timeline to symptomatic Alzheimer's disease in people with Down syndrome as assessed by amyloid-PET and tau-PET: a longitudinal cohort study. Lancet Neurol 2024; 23:1214-1224. [PMID: 39577922 DOI: 10.1016/s1474-4422(24)00426-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND Adults with Down syndrome are at risk for Alzheimer's disease. Natural history cohort studies have characterised the progression of Alzheimer's disease biomarkers in people with Down syndrome, with a focus on amyloid β-PET and tau-PET. In this study, we aimed to leverage these well characterised imaging biomarkers in a large cohort of individuals with Down syndrome, to examine the timeline to symptomatic Alzheimer's disease based on estimated years since the detection on PET of amyloid β-positivity, referred to here as amyloid age, and in relation to tau burden as assessed by PET. METHODS In this prospective, longitudinal, observational cohort study, data were collected at four university research sites in the UK and USA as part of the Alzheimer's Biomarker Consortium-Down Syndrome (ABC-DS) study. Eligible participants were aged 25 years or older with Down syndrome, had a mental age of at least 3 years (based on a standardised intelligence quotient test), and had trisomy 21 (full, mosaic, or translocation) confirmed through karyotyping. Participants were assessed twice between 2017 and 2022, with approximately 32 months between visits. Participants had amyloid-PET and tau-PET scans, and underwent cognitive assessment with the modified Cued Recall Test (mCRT) and the Down Syndrome Mental Status Examination (DSMSE) to assess cognitive functioning. Study partners completed the National Task Group-Early Detection Screen for Dementia (NTG-EDSD). Generalised linear models were used to assess the association between amyloid age (whereby 0 years equated to 18 centiloids) and mCRT, DSMSE, NTG-EDSD, and tau PET at baseline and the 32-month follow-up. Broken stick regression was used to identify the amyloid age that corresponded to decreases in cognitive performance and increases in tau PET after the onset of amyloid β positivity. FINDINGS 167 adults with Down syndrome, of whom 92 had longitudinal data, were included in our analyses. Generalised linear regressions showed significant quadratic associations between amyloid age and cognitive performance and cubic associations between amyloid age and tau, both at baseline and at the 32-month follow-up. Using broken stick regression models, differences in mCRT total scores were detected beginning 2·7 years (95% credible interval [CrI] 0·2 to 5·4; equating to 29·8 centiloids) after the onset of amyloid β positivity in cross-sectional models. Based on cross-sectional data, increases in tau deposition started a mean of 2·7-6·1 years (equating to 29·8-47·9 centiloids) after the onset of amyloid β positivity. Mild cognitive impairment was observed at a mean amyloid age of 7·4 years (SD 6·6; equating to 56·8 centiloids) and dementia was observed at a mean amyloid age of 12·7 years (5·6; equating to 97·4 centiloids). INTERPRETATION There is a short timeline to initial cognitive decline and dementia from onset of amyloid β positivity and tau deposition in people with Down syndrome. This newly established timeline based on amyloid age (or equivalent centiloid values) is important for clinical practice and informing the design of Alzheimer's disease clinical trials, and it avoids the limitations of timelines based on chronological age. FUNDING National Institute on Aging and the National Institute for Child Health and Human Development.
Collapse
Affiliation(s)
- Emily K Schworer
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Matthew D Zammit
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Jiebiao Wang
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Benjamin L Handen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tobey Betthauser
- Alzheimer's Disease Research Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Charles M Laymon
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dana L Tudorascu
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Annie D Cohen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shahid H Zaman
- Cambridge Intellectual Disability Research Group, University of Cambridge, Cambridge, UK
| | - Beau M Ances
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Mark Mapstone
- Department of Neurology, University of California, Irvine School of Medicine, Irvine, CA, USA
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, University of California, Irvine School of Medicine, Irvine, CA, USA
| | - Bradley T Christian
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Alzheimer's Disease Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Sigan L Hartley
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; School of Human Ecology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
28
|
Gabitto MI, Travaglini KJ, Rachleff VM, Kaplan ES, Long B, Ariza J, Ding Y, Mahoney JT, Dee N, Goldy J, Melief EJ, Agrawal A, Kana O, Zhen X, Barlow ST, Brouner K, Campos J, Campos J, Carr AJ, Casper T, Chakrabarty R, Clark M, Cool J, Dalley R, Darvas M, Ding SL, Dolbeare T, Egdorf T, Esposito L, Ferrer R, Fleckenstein LE, Gala R, Gary A, Gelfand E, Gloe J, Guilford N, Guzman J, Hirschstein D, Ho W, Hupp M, Jarsky T, Johansen N, Kalmbach BE, Keene LM, Khawand S, Kilgore MD, Kirkland A, Kunst M, Lee BR, Leytze M, Mac Donald CL, Malone J, Maltzer Z, Martin N, McCue R, McMillen D, Mena G, Meyerdierks E, Meyers KP, Mollenkopf T, Montine M, Nolan AL, Nyhus JK, Olsen PA, Pacleb M, Pagan CM, Peña N, Pham T, Pom CA, Postupna N, Rimorin C, Ruiz A, Saldi GA, Schantz AM, Shapovalova NV, Sorensen SA, Staats B, Sullivan M, Sunkin SM, Thompson C, Tieu M, Ting JT, Torkelson A, Tran T, Valera Cuevas NJ, Walling-Bell S, Wang MQ, Waters J, Wilson AM, Xiao M, Haynor D, Gatto NM, Jayadev S, Mufti S, Ng L, Mukherjee S, Crane PK, Latimer CS, Levi BP, Smith KA, et alGabitto MI, Travaglini KJ, Rachleff VM, Kaplan ES, Long B, Ariza J, Ding Y, Mahoney JT, Dee N, Goldy J, Melief EJ, Agrawal A, Kana O, Zhen X, Barlow ST, Brouner K, Campos J, Campos J, Carr AJ, Casper T, Chakrabarty R, Clark M, Cool J, Dalley R, Darvas M, Ding SL, Dolbeare T, Egdorf T, Esposito L, Ferrer R, Fleckenstein LE, Gala R, Gary A, Gelfand E, Gloe J, Guilford N, Guzman J, Hirschstein D, Ho W, Hupp M, Jarsky T, Johansen N, Kalmbach BE, Keene LM, Khawand S, Kilgore MD, Kirkland A, Kunst M, Lee BR, Leytze M, Mac Donald CL, Malone J, Maltzer Z, Martin N, McCue R, McMillen D, Mena G, Meyerdierks E, Meyers KP, Mollenkopf T, Montine M, Nolan AL, Nyhus JK, Olsen PA, Pacleb M, Pagan CM, Peña N, Pham T, Pom CA, Postupna N, Rimorin C, Ruiz A, Saldi GA, Schantz AM, Shapovalova NV, Sorensen SA, Staats B, Sullivan M, Sunkin SM, Thompson C, Tieu M, Ting JT, Torkelson A, Tran T, Valera Cuevas NJ, Walling-Bell S, Wang MQ, Waters J, Wilson AM, Xiao M, Haynor D, Gatto NM, Jayadev S, Mufti S, Ng L, Mukherjee S, Crane PK, Latimer CS, Levi BP, Smith KA, Close JL, Miller JA, Hodge RD, Larson EB, Grabowski TJ, Hawrylycz M, Keene CD, Lein ES. Integrated multimodal cell atlas of Alzheimer's disease. Nat Neurosci 2024; 27:2366-2383. [PMID: 39402379 PMCID: PMC11614693 DOI: 10.1038/s41593-024-01774-5] [Show More Authors] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/28/2024] [Indexed: 10/19/2024]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in older adults. Although AD progression is characterized by stereotyped accumulation of proteinopathies, the affected cellular populations remain understudied. Here we use multiomics, spatial genomics and reference atlases from the BRAIN Initiative to study middle temporal gyrus cell types in 84 donors with varying AD pathologies. This cohort includes 33 male donors and 51 female donors, with an average age at time of death of 88 years. We used quantitative neuropathology to place donors along a disease pseudoprogression score. Pseudoprogression analysis revealed two disease phases: an early phase with a slow increase in pathology, presence of inflammatory microglia, reactive astrocytes, loss of somatostatin+ inhibitory neurons, and a remyelination response by oligodendrocyte precursor cells; and a later phase with exponential increase in pathology, loss of excitatory neurons and Pvalb+ and Vip+ inhibitory neuron subtypes. These findings were replicated in other major AD studies.
Collapse
Affiliation(s)
- Mariano I Gabitto
- Allen Institute for Brain Science, Seattle, WA, USA
- Department of Statistics, University of Washington, Seattle, WA, USA
| | | | - Victoria M Rachleff
- Allen Institute for Brain Science, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | - Brian Long
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Jeanelle Ariza
- Allen Institute for Brain Science, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Yi Ding
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Nick Dee
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Jeff Goldy
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Erica J Melief
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Anamika Agrawal
- Center for Data-Driven Discovery for Biology, Allen Institute, Seattle, WA, USA
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Omar Kana
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | - John Campos
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | | | | | | | - Jonah Cool
- Chan Zuckerberg Initiative, Redwood City, CA, USA
| | | | - Martin Darvas
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | - Tim Dolbeare
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Tom Egdorf
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Rohan Gala
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Amanda Gary
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Jessica Gloe
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Windy Ho
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Madison Hupp
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Tim Jarsky
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Brian E Kalmbach
- Allen Institute for Brain Science, Seattle, WA, USA
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Lisa M Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Sarah Khawand
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Mitchell D Kilgore
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Amanda Kirkland
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | - Brian R Lee
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Zoe Maltzer
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Naomi Martin
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Rachel McCue
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Gonzalo Mena
- Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | | | - Kelly P Meyers
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | | | - Mark Montine
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Amber L Nolan
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | - Paul A Olsen
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Maiya Pacleb
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | | | | | | | - Nadia Postupna
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | | | | | - Aimee M Schantz
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | | | - Brian Staats
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Michael Tieu
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Tracy Tran
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Jack Waters
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Angela M Wilson
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Ming Xiao
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - David Haynor
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Nicole M Gatto
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Suman Jayadev
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Shoaib Mufti
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Lydia Ng
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Paul K Crane
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Caitlin S Latimer
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Boaz P Levi
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | - Eric B Larson
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Thomas J Grabowski
- Department of Radiology, University of Washington, Seattle, WA, USA
- Department of Neurology, University of Washington, Seattle, WA, USA
| | | | - C Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| | - Ed S Lein
- Allen Institute for Brain Science, Seattle, WA, USA.
| |
Collapse
|
29
|
Nagata K, Hashimoto S, Joho D, Fujioka R, Matsuba Y, Sekiguchi M, Mihira N, Motooka D, Liu YC, Okuzaki D, Kikuchi M, Murayama S, Saido TC, Kiyama H, Sasaguri H. Tau Accumulation Induces Microglial State Alterations in Alzheimer's Disease Model Mice. eNeuro 2024; 11:ENEURO.0260-24.2024. [PMID: 39592224 PMCID: PMC11628182 DOI: 10.1523/eneuro.0260-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/25/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024] Open
Abstract
Unique microglial states have been identified in Alzheimer's disease (AD) model mice and postmortem AD brains. Although it has been well documented that amyloid-β accumulation induces the alteration of microglial states, the relationship between tau pathology and microglial states remains incompletely understood because of a lack of suitable AD models. In the present study, we generated a novel AD model mouse by the intracerebral administration of tau purified from human brains with primary age-related tauopathy into App knock-in mice with humanized tau. Immunohistochemical analyses revealed that Dectin-1-positive disease-associated microglia were increased in the AD model mice after tau accumulation in the brain. We then performed single-nucleus RNA sequencing on the AD model mice to evaluate the differences in microglial states with and without tau propagation and accumulation. By taking advantage of spatial transcriptomics and existing single-cell RNA sequencing datasets, we showed for the first time that tau propagation and accumulation induce a disease-associated microglial phenotype at the expense of an age-related nonhomeostatic counterpart (namely, white matter-associated microglia) in an AD model mouse brain. Future work using spatial transcriptomics at single-cell resolution will pave the way for a more appropriate interpretation of microglial alterations in response to tau pathology in the AD brain.
Collapse
Affiliation(s)
- Kenichi Nagata
- Department of Functional Anatomy and Neuroscience, Nagoya University, Graduate School of Medicine, Aichi 466-8550, Japan
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Shoko Hashimoto
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama 351-0198, Japan
- Pioneering Research Division, Medical Innovation Research Center, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Daisuke Joho
- Dementia Pathophysiology Collaboration Unit, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Ryo Fujioka
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Yukio Matsuba
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama 351-0198, Japan
- Pioneering Research Division, Medical Innovation Research Center, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Misaki Sekiguchi
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Naomi Mihira
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Yu-Chen Liu
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka 565-0871, Japan
- Single Cell Genomics, Human Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Daisuke Okuzaki
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka 565-0871, Japan
- Single Cell Genomics, Human Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Masataka Kikuchi
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Science, The University of Tokyo, Chiba 277-0882, Japan
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Shigeo Murayama
- Department of Neuropathology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
- Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Osaka 565-0871, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Hiroshi Kiyama
- Department of Functional Anatomy and Neuroscience, Nagoya University, Graduate School of Medicine, Aichi 466-8550, Japan
- Shijonawate Gakuen University, Osaka 574-0001, Japan
| | - Hiroki Sasaguri
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama 351-0198, Japan
- Dementia Pathophysiology Collaboration Unit, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| |
Collapse
|
30
|
Ziontz J, Harrison TM, Fonseca C, Giorgio J, Han F, Lee J, Jagust WJ, Alzheimer's Disease Neuroimaging Initiative. Connectivity, Pathology, and ApoE4 Interactions Predict Longitudinal Tau Spatial Progression and Memory. Hum Brain Mapp 2024; 45:e70083. [PMID: 39651679 PMCID: PMC11626484 DOI: 10.1002/hbm.70083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 12/11/2024] Open
Abstract
Tau pathology spread into neocortex indicates a transition from healthy aging to Alzheimer's disease (AD). Connectivity between tau epicenters and later accumulating regions of cortex has been proposed as a mechanism of tau spread, but how this relationship changes with greater AD pathology burden or genotype is not understood. We investigated tau accumulation in two key regions, precuneus and inferior temporal cortex, using resting state functional connectivity (rsFC) and longitudinal PET imaging from a multicohort sample of cognitively unimpaired older adults. We examined how baseline tau PET, Aβ PET, and ApoE4 genotype status interact with rsFC between hippocampus and these downstream regions to predict rate of tau accumulation in neocortex. We found that the 3-way interaction between connectivity, baseline tau, and baseline Aβ or ApoE4 status was associated with neocortical tau accumulation in precuneus and inferior temporal cortex. In addition, baseline tau, Aβ, and ApoE4 status also moderated the association between connectivity and rate of memory decline. Together, these results suggest that the extent and distribution of future tau accumulation may be predicted by the interaction of baseline connectivity, AD pathology, and genetic risk.
Collapse
Affiliation(s)
- Jacob Ziontz
- Department of NeuroscienceUC BerkeleyBerkeleyCaliforniaUSA
| | | | | | - Joseph Giorgio
- Department of NeuroscienceUC BerkeleyBerkeleyCaliforniaUSA
- School of Psychological Sciences, College of Engineering, Science and the Environment, University of NewcastleNewcastleNew South WalesAustralia
| | - Feng Han
- Department of NeuroscienceUC BerkeleyBerkeleyCaliforniaUSA
| | - JiaQie Lee
- Department of NeuroscienceUC BerkeleyBerkeleyCaliforniaUSA
| | - William J. Jagust
- Department of NeuroscienceUC BerkeleyBerkeleyCaliforniaUSA
- Lawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | | |
Collapse
|
31
|
Feldman HH, Cummings JL, Boxer AL, Staffaroni AM, Knopman DS, Sukoff Rizzo SJ, Territo PR, Arnold SE, Ballard C, Beher D, Boeve BF, Dacks PA, Diaz K, Ewen C, Fiske B, Gonzalez MI, Harris GA, Hoffman BJ, Martinez TN, McDade E, Nisenbaum LK, Palma J, Quintana M, Rabinovici GD, Rohrer JD, Rosen HJ, Troyer MD, Kim DY, Tanzi RE, Zetterberg H, Ziogas NK, May PC, Rommel A. A framework for translating tauopathy therapeutics: Drug discovery to clinical trials. Alzheimers Dement 2024; 20:8129-8152. [PMID: 39316411 PMCID: PMC11567863 DOI: 10.1002/alz.14250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/25/2024]
Abstract
The tauopathies are defined by pathological tau protein aggregates within a spectrum of clinically heterogeneous neurodegenerative diseases. The primary tauopathies meet the definition of rare diseases in the United States. There is no approved treatment for primary tauopathies. In this context, designing the most efficient development programs to translate promising targets and treatments from preclinical studies to early-phase clinical trials is vital. In September 2022, the Rainwater Charitable Foundation convened an international expert workshop focused on the translation of tauopathy therapeutics through early-phase trials. Our report on the workshop recommends a framework for principled drug development and a companion lexicon to facilitate communication focusing on reproducibility and achieving common elements. Topics include the selection of targets, drugs, biomarkers, participants, and study designs. The maturation of pharmacodynamic biomarkers to demonstrate target engagement and surrogate disease biomarkers is a crucial unmet need. HIGHLIGHTS: Experts provided a framework to translate therapeutics (discovery to clinical trials). Experts focused on the "5 Rights" (target, drug, biomarker, participants, trial). Current research on frontotemporal degeneration, progressive supranuclear palsy, and corticobasal syndrome therapeutics includes 32 trials (37% on biologics) Tau therapeutics are being tested in Alzheimer's disease; primary tauopathies have a large unmet need.
Collapse
Affiliation(s)
- Howard H. Feldman
- Department of NeurosciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Jeffrey L. Cummings
- Chambers‐Grundy Center for Transformative NeuroscienceDepartment of Brain HealthSchool of Integrated Health SciencesUniversity of Nevada at Las VegasLas VegasNevadaUSA
| | - Adam L. Boxer
- Department of NeurologyMemory and Aging CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Adam M. Staffaroni
- Department of NeurologyMemory and Aging CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | | | | | - Paul R. Territo
- Department of MedicineDivision of Clinical PharmacologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Steven E. Arnold
- Department of NeurologyHarvard Medical SchoolMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Clive Ballard
- College of Medicine and HealthUniversity of ExeterExeterUK
| | | | | | - Penny A. Dacks
- The Association for Frontotemporal DegenerationKing of PrussiaPennsylvaniaUSA
| | | | | | - Brian Fiske
- The Michael J. Fox Foundation for Parkinson's ResearchNew YorkNew YorkUSA
| | | | | | | | | | - Eric McDade
- Department of NeurologyWashington University School of MedicineSt. LouisMissouriUSA
| | | | - Jose‐Alberto Palma
- Novartis Institutes for Biomedical ResearchCambridgeMassachusettsUSA
- Department of NeurologyNew York University Grossman School of MedicineNew YorkNew YorkUSA
| | | | - Gil D. Rabinovici
- Department of NeurologyMemory and Aging CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Jonathan D. Rohrer
- Department of Neurodegenerative DiseaseDementia Research CentreQueen Square Institute of NeurologyUniversity College of LondonLondonUK
| | - Howard J. Rosen
- Department of NeurologyMemory and Aging CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | | | - Doo Yeon Kim
- Department of NeurologyGenetics and Aging Research UnitMcCance Center for Brain HealthMass General Institute for Neurodegenerative DiseaseMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Rudolph E. Tanzi
- Department of NeurologyGenetics and Aging Research UnitMcCance Center for Brain HealthMass General Institute for Neurodegenerative DiseaseMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistrySahlgrenska Academy at the University of GothenburgMölndalSweden
| | | | - Patrick C. May
- ADvantage Neuroscience Consulting LLCFort WayneIndianaUSA
| | - Amy Rommel
- Rainwater Charitable FoundationFort WorthTexasUSA
| |
Collapse
|
32
|
Isidro F. Brain aging and Alzheimer's disease, a perspective from non-human primates. Aging (Albany NY) 2024; 16:13145-13171. [PMID: 39475348 PMCID: PMC11552644 DOI: 10.18632/aging.206143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/03/2024] [Indexed: 11/07/2024]
Abstract
Brain aging is compared between Cercopithecinae (macaques and baboons), non-human Hominidae (chimpanzees, orangutans, and gorillas), and their close relative, humans. β-amyloid deposition in the form of senile plaques (SPs) and cerebral β-amyloid angiopathy (CAA) is a frequent neuropathological change in non-human primate brain aging. SPs are usually diffuse, whereas SPs with dystrophic neurites are rare. Tau pathology, if present, appears later, and it is generally mild or moderate, with rare exceptions in rhesus macaques and chimpanzees. Behavior and cognitive impairment are usually mild or moderate in aged non-human primates. In contrast, human brain aging is characterized by early tau pathology manifested as neurofibrillary tangles (NFTs), composed of paired helical filaments (PHFs), progressing from the entorhinal cortex, hippocampus, temporal cortex, and limbic system to other brain regions. β-amyloid pathology appears decades later, involves the neocortex, and progresses to the paleocortex, diencephalon, brain stem, and cerebellum. SPs with dystrophic neurites containing PHFs and CAA are common. Cognitive impairment and dementia of Alzheimer's type occur in about 1-5% of humans aged 65 and about 25% aged 85. In addition, other proteinopathies, such as limbic-predominant TDP-43 encephalopathy, amygdala-predominant Lewy body disease, and argyrophilic grain disease, primarily affecting the archicortex, paleocortex, and amygdala, are common in aged humans but non-existent in non-human primates. These observations show that human brain aging differs from brain aging in non-human primates, and humans constitute the exception among primates in terms of severity and extent of brain aging damage.
Collapse
Affiliation(s)
- Ferrer Isidro
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain
- Reial Acadèmia de Medicina de Catalunya, Barcelona, Spain
| |
Collapse
|
33
|
Engels-Domínguez N, Riphagen JM, Van Egroo M, Koops EA, Smegal LF, Becker JA, Prokopiou PC, Bueichekú E, Kwong KK, Rentz DM, Salat DH, Sperling RA, Johnson KA, Jacobs HIL. Lower Locus Coeruleus Integrity Signals Elevated Entorhinal Tau and Clinical Progression in Asymptomatic Older Individuals. Ann Neurol 2024; 96:650-661. [PMID: 39007398 PMCID: PMC11534559 DOI: 10.1002/ana.27022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/29/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024]
Abstract
OBJECTIVE Elevated entorhinal cortex (EC) tau in low beta-amyloid individuals can predict accumulation of pathology and cognitive decline. We compared the accuracy of magnetic resonance imaging (MRI)-derived locus coeruleus integrity, neocortical beta-amyloid burden by positron emission tomography (PET), and hippocampal volume in identifying elevated entorhinal tau signal in asymptomatic individuals who are considered beta-amyloid PET-negative. METHODS We included 188 asymptomatic individuals (70.78 ± 11.51 years, 58% female) who underwent 3T-MRI of the locus coeruleus, Pittsburgh compound-B (PiB), and Flortaucipir (FTP) PET. Associations between elevated EC tau and neocortical PiB, hippocampal volume, or locus coeruleus integrity were evaluated and compared using logistic regression and receiver operating characteristic analyses in the PiB- sample with a clinical dementia rating (CDR) of 0. Associations with clinical progression (CDR-sum-of-boxes) over a time span of 6 years were evaluated with Cox proportional hazard models. RESULTS We identified 26 (21%) individuals with high EC FTP in the CDR = 0/PiB- sample. Locus coeruleus integrity was a significantly more sensitive and specific predictor of elevated EC FTP (area under the curve [AUC] = 85%) compared with PiB (AUC = 77%) or hippocampal volume (AUC = 76%). Based on the Youden-index, locus coeruleus integrity obtained a sensitivity of 77% and 85% specificity. Using the resulting locus coeruleus Youden cut-off, lower locus coeruleus integrity was associated with a two-fold increase in clinical progression, including mild cognitive impairment. INTERPRETATION Locus coeruleus integrity has promise as a low-cost, non-invasive screening instrument to detect early cortical tau deposition and associated clinical progression in asymptomatic, low beta-amyloid individuals. ANN NEUROL 2024;96:650-661.
Collapse
Affiliation(s)
- Nina Engels-Domínguez
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Joost M Riphagen
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Maxime Van Egroo
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Elouise A Koops
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Lindsay F Smegal
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - J Alex Becker
- Harvard Medical School, Boston, MA, USA
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Prokopis C Prokopiou
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Elisenda Bueichekú
- Harvard Medical School, Boston, MA, USA
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Kenneth K Kwong
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Dorene M Rentz
- Harvard Medical School, Boston, MA, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - David H Salat
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Reisa A Sperling
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Keith A Johnson
- Harvard Medical School, Boston, MA, USA
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Heidi I L Jacobs
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
34
|
van Gils V, Tao Q, Ang TF, Young CB, Mormino EC, Qiu WQ, Visser PJ, Au R, Jansen WJ, Vos SJ. Associations Between Glucose Metabolism Measures and Amyloid-β and Tau Load on PET 14 Years Later: Findings From the Framingham Heart Study. Diabetes Care 2024; 47:1787-1793. [PMID: 39078159 PMCID: PMC11417279 DOI: 10.2337/dc24-0162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024]
Abstract
OBJECTIVE Type 2 diabetes and glucose metabolism have previously been linked to Alzheimer disease (AD). Yet, findings on the relation of glucose metabolism with amyloid-β and tau pathology later in life remain unclear. RESEARCH DESIGN AND METHODS We included 288 participants (mean age 43.1 years, SD 10.7, range 20-70 years) without dementia, from the Framingham Heart Study, who had available measures of glucose metabolism (i.e., one-time fasting plasma glucose and insulin) and positron emission tomography (PET) measures of amyloid-β and/or tau 14 years later. We performed linear regression analyses to test associations of plasma glucose (continuously and categorically; elevated defined as >100 mg/dL), plasma insulin, homeostatic model assessment for insulin resistance (HOMA-IR) with amyloid-β or tau load on PET. When significant, we explored whether age, sex, and APOE ε4 allele carriership (AD genetic risk) modified these associations. RESULTS Our findings indicated that elevated plasma glucose was associated with greater tau load 14 years later (B [95% CI] = 0.03 [0.01-0.05], P = 0.024 after false discovery rate [FDR] correction) but not amyloid-β. APOE ε4 carriership modified this association (B [95% CI] = -0.08 [-0.12 to -0.03], P = 0.001), indicating that the association was only present in APOE ε4 noncarriers (n = 225). Plasma insulin and HOMA-IR were not associated with amyloid-β or tau load 14 years later after FDR correction. CONCLUSIONS Our findings suggest that glucose metabolism is associated with increased future tau but not amyloid-β load. This provides relevant knowledge for prevention strategies and prognostics to improve health care.
Collapse
Affiliation(s)
- Veerle van Gils
- Alzheimer Center Limburg, School for Mental Health and Neuroscience, Department of Psychiatry & Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Qiushan Tao
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA
- Slone Epidemiology Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA
| | - Ting F.A. Ang
- Slone Epidemiology Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA
- Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA
| | - Christina B. Young
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA
| | - Elizabeth C. Mormino
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA
| | - Wei Qiao Qiu
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA
| | - Pieter Jelle Visser
- Alzheimer Center Limburg, School for Mental Health and Neuroscience, Department of Psychiatry & Neuroscience, Maastricht University, Maastricht, the Netherlands
- Alzheimer Center and Department of Neurology, Amsterdam Neuroscience Campus, VU University Medical Center, Amsterdam, the Netherlands
| | - Rhoda Au
- Slone Epidemiology Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA
- Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA
- Department of Neurology & Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA
| | - Willemijn J. Jansen
- Alzheimer Center Limburg, School for Mental Health and Neuroscience, Department of Psychiatry & Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Stephanie J.B. Vos
- Alzheimer Center Limburg, School for Mental Health and Neuroscience, Department of Psychiatry & Neuroscience, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
35
|
Nabizadeh F. Aβ remotely and locally facilitates Alzheimer's disease tau spreading. Cereb Cortex 2024; 34:bhae386. [PMID: 39329358 DOI: 10.1093/cercor/bhae386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/11/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by the accumulation of amyloid-beta plaques initiated approximately 2 decades before the symptom onset followed by build-up and spreading of neurofibrillary tau aggregates. Although it has been suggested that the amyloid-beta amplifies tau spreading the observed spatial disparity called it into question. Yet, it is unclear how neocortical amyloid-beta remotely affects early pathological tau, triggering it to leave the early formation area, and how amyloid-beta facilitates tau aggregate spreading throughout cortical regions. I aimed to investigate how amyloid-beta can facilitate tau spreading through neuronal connections in the Alzheimer's disease pathological process by combining functional magnetic resonance imaging normative connectomes and longitudinal in vivo molecular imaging data. In total, the imaging data of 317 participants, including 173 amyloid-beta-negative non-demented and 144 amyloid-beta -positive non-demented participants, have entered the study from Alzheimer's Disease Neuroimaging Initiative. Furthermore, normative resting-state functional magnetic resonance imaging connectomes were used to model tau spreading through functional connections. It was observed that the amyloid-beta in regions with the highest deposition (amyloid-beta epicenter) is remotely associated with connectivity-based spreading of tau pathology. Moreover, amyloid-beta in regions that exhibit the highest tau pathology (tau epicenter) is associated with increased connectivity-based tau spreading to non-epicenter regions. The findings provide a further explanation for a long-standing question of how amyloid-beta can affect tau aggregate spreading through neuronal connections despite spatial incongruity. The results suggest that amyloid-beta pathology can remotely and locally facilitate connectivity-based spreading of tau aggregates.
Collapse
Affiliation(s)
- Fardin Nabizadeh
- School of Medicine, Iran University of Medical Sciences, Shahid Hemmat Highway, Tehran 14496-14535, Iran
| |
Collapse
|
36
|
Gonzales MM, O'Donnell A, Ghosh S, Thibault E, Tanner J, Satizabal CL, Decarli CS, Fakhri GE, Johnson KA, Beiser AS, Seshadri S, Pase M. Associations of cerebral amyloid beta and tau with cognition from midlife. Alzheimers Dement 2024; 20:5901-5911. [PMID: 39039896 PMCID: PMC11497641 DOI: 10.1002/alz.14060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/12/2024] [Accepted: 05/01/2024] [Indexed: 07/24/2024]
Abstract
INTRODUCTION Understanding early neuropathological changes and their associations with cognition may aid dementia prevention. This study investigated associations of cerebral amyloid and tau positron emission tomography (PET) retention with cognition in a predominately middle-aged community-based cohort and examined factors that may modify these relationships. METHODS 11C-Pittsburgh compound B amyloid and 18F-flortaucipir tau PET imaging were performed. Associations of amyloid and tau PET with cognition were evaluated using linear regression. Interactions with age, apolipoprotein E (APOE) ε4 status, and education were examined. RESULTS Amyloid and tau PET were not associated with cognition in the overall sample (N = 423; mean: 57 ± 10 years; 50% female). However, younger age (< 55 years) and APOE ε4 were significant effect modifiers, worsening cognition in the presence of higher amyloid and tau. DISCUSSION Higher levels of Aβ and tau may have a pernicious effect on cognition among APOE ε4 carriers and younger adults, suggesting a potential role for targeted early interventions. HIGHLIGHTS Risk and resilience factors influenced cognitive vulnerability due to Aβ and tau. Higher fusiform tau associated with poorer visuospatial skills in younger adults. APOE ε4 interacted with Aβ and tau to worsen cognition across multiple domains.
Collapse
Affiliation(s)
- Mitzi M. Gonzales
- Department of NeurologyCedars Sinai Medical CenterLos AngelesCaliforniaUSA
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative DiseasesUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
- Department of NeurologyUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Adrienne O'Donnell
- The Framingham Heart StudyFraminghamMassachusettsUSA
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
| | - Saptaparni Ghosh
- The Framingham Heart StudyFraminghamMassachusettsUSA
- Department of NeurologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Emma Thibault
- Department of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Jeremy Tanner
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative DiseasesUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
- Department of NeurologyUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Claudia L. Satizabal
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative DiseasesUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
- The Framingham Heart StudyFraminghamMassachusettsUSA
- Department of NeurologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
- Department of NeurologyUniversity of California DavisSacramentoCaliforniaUSA
| | - Charles S. Decarli
- Department of Population Health SciencesUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
- Center for NeuroscienceUniversity of California DavisDavisCaliforniaUSA
| | - Georges El Fakhri
- Department of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Department of RadiologyYale School of MedicineNew HavenUnited States
| | - Keith A. Johnson
- Department of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Department of NeurologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Department of NeurologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Alexa S. Beiser
- The Framingham Heart StudyFraminghamMassachusettsUSA
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
- Department of NeurologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative DiseasesUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
- Department of NeurologyUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
- The Framingham Heart StudyFraminghamMassachusettsUSA
- Department of NeurologyBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Matthew Pase
- The Framingham Heart StudyFraminghamMassachusettsUSA
- School of Psychological SciencesTurner Institute for Brain and Mental HealthMonash UniversityClaytonVICAustralia
| |
Collapse
|
37
|
Schworer EK, Zammit MD, Wang J, Handen BL, Betthauser T, Laymon CM, Tudorascu DL, Cohen AD, Zaman SH, Ances BM, Mapstone M, Head E, Klunk WE, Christian BT, Hartley SL. Amyloid age and tau PET timeline to symptomatic Alzheimer's disease in Down syndrome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.08.24311702. [PMID: 39211859 PMCID: PMC11361254 DOI: 10.1101/2024.08.08.24311702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Background Adults with Down syndrome (DS) are at risk for Alzheimer's disease (AD). Recent natural history cohort studies have characterized AD biomarkers, with a focus on PET amyloid-beta (Aβ) and PET tau. Leveraging these well-characterized biomarkers, the present study examined the timeline to symptomatic AD based on estimated years since reaching Aβ+, referred to as "amyloid age", and in relation to tau in a large cohort of individuals with DS. Methods In this multicenter cohort study, 25 - 57-year-old adults with DS (n = 167) were assessed twice from 2017 to 2022, with approximately 32 months between visits as part of the Alzheimer Biomarker Consortium - Down Syndrome. Adults with DS completed amyloid and tau PET scans, and were administered the modified Cued Recall Test and the Down Syndrome Mental Status Examination. Study partners completed the National Task Group-Early Detection Screen for Dementia. Findings Mixed linear regressions showed significant quadratic associations between amyloid age and cognitive performance and cubic associations between amyloid age and tau, both at baseline and across 32 months. Using broken stick regression models, differences in mCRT scores were detected beginning 2.7 years following Aβ+ in cross-sectional models, with an estimated decline of 1.3 points per year. Increases in tau began, on average, 2.7 - 6.1 years following Aβ+. On average, participants with mild cognitive impairment were 7.4 years post Aβ+ and those with dementia were 12.7 years post Aβ+. Interpretation There is a short timeline to initial cognitive decline and dementia from Aβ+ (Centiloid = 18) and tau deposition in DS relative to late onset AD. The established timeline based on amyloid age (or equivalent Centiloid values) is important for clinical practice and informing AD clinical trials, and avoids limitations of timelines based on chronological age. Funding. National Institute on Aging and the National Institute for Child Health and Human Development. Research in Context Evidence before this study: We searched PubMed for articles published involving the progression of Aβ and tau deposition in adults with Down syndrome from database inception to March 1, 2024. Terms included "amyloid", "Down syndrome", "tau", "Alzheimer's disease", "cognitive decline", and "amyloid chronicity," with no language restrictions. One previous study outlined the progression of tau in adults with Down syndrome without consideration of cognitive decline or clinical status. Other studies reported cognitive decline associated with Aβ burden and estimated years to AD symptom onset in Down syndrome. Amyloid age estimates have also been created for older neurotypical adults and compared to cognitive performance, but this has not been investigated in Down syndrome.Added value of this study: The timeline to symptomatic Alzheimer's disease in relation to amyloid, expressed as duration of Aβ+, and tau has yet to be described in adults with Down syndrome. Our longitudinal study is the first to provide a timeline of cognitive decline and transition to mild cognitive impairment and dementia in relation to Aβ+.Implications of all the available evidence: In a cohort study of 167 adults with Down syndrome, cognitive decline began 2.7 - 5.4 years and tau deposition began 2.7 - 6.1 years following Aβ+ (Centiloid = 18). Adults with Down syndrome converted to MCI after ~7 years and dementia after ~12-13 years of Aβ+. This shortened timeline to AD symptomology from Aβ+ and tau deposition in DS based on amyloid age (or corresponding Centiloid values) can inform clinical AD intervention trials and is of use in clinical settings.
Collapse
|
38
|
Zhang X, Wang J, Zhang Z, Ye K. Tau in neurodegenerative diseases: molecular mechanisms, biomarkers, and therapeutic strategies. Transl Neurodegener 2024; 13:40. [PMID: 39107835 PMCID: PMC11302116 DOI: 10.1186/s40035-024-00429-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 07/05/2024] [Indexed: 09/14/2024] Open
Abstract
The deposition of abnormal tau protein is characteristic of Alzheimer's disease (AD) and a class of neurodegenerative diseases called tauopathies. Physiologically, tau maintains an intrinsically disordered structure and plays diverse roles in neurons. Pathologically, tau undergoes abnormal post-translational modifications and forms oligomers or fibrous aggregates in tauopathies. In this review, we briefly introduce several tauopathies and discuss the mechanisms mediating tau aggregation and propagation. We also describe the toxicity of tau pathology. Finally, we explore the early diagnostic biomarkers and treatments targeting tau. Although some encouraging results have been achieved in animal experiments and preclinical studies, there is still no cure for tauopathies. More in-depth basic and clinical research on the pathogenesis of tauopathies is necessary.
Collapse
Affiliation(s)
- Xingyu Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jiangyu Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430000, China.
| | - Keqiang Ye
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
39
|
Farrell ME, Thibault EG, Becker JA, Price JC, Healy BC, Hanseeuw BJ, Buckley RF, Jacobs HIL, Schultz AP, Chen CD, Sperling RA, Johnson KA. Spatial extent as a sensitive amyloid-PET metric in preclinical Alzheimer's disease. Alzheimers Dement 2024; 20:5434-5449. [PMID: 38988055 PMCID: PMC11350060 DOI: 10.1002/alz.14036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 07/12/2024]
Abstract
INTRODUCTION Spatial extent-based measures of how far amyloid beta (Aβ) has spread throughout the neocortex may be more sensitive than traditional Aβ-positron emission tomography (PET) measures of Aβ level for detecting early Aβ deposits in preclinical Alzheimer's disease (AD) and improve understanding of Aβ's association with tau proliferation and cognitive decline. METHODS Pittsburgh Compound-B (PIB)-PET scans from 261 cognitively unimpaired older adults from the Harvard Aging Brain Study were used to measure Aβ level (LVL; neocortical PIB DVR) and spatial extent (EXT), calculated as the proportion of the neocortex that is PIB+. RESULTS EXT enabled earlier detection of Aβ deposits longitudinally confirmed to reach a traditional LVL-based threshold for Aβ+ within 5 years. EXT improved prediction of cognitive decline (Preclinical Alzheimer Cognitive Composite) and tau proliferation (flortaucipir-PET) over LVL. DISCUSSION These findings indicate EXT may be more sensitive to Aβ's role in preclinical AD than level and improve targeting of individuals for AD prevention trials. HIGHLIGHTS Aβ spatial extent (EXT) was measured as the percentage of the neocortex with elevated Pittsburgh Compound-B. Aβ EXT improved detection of Aβ below traditional PET thresholds. Early regional Aβ deposits were spatially heterogeneous. Cognition and tau were more closely tied to Aβ EXT than Aβ level. Neocortical tau onset aligned with reaching widespread neocortical Aβ.
Collapse
Affiliation(s)
- Michelle E. Farrell
- Department of NeurologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Emma G. Thibault
- Department of RadiologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - J. Alex Becker
- Department of RadiologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Julie C. Price
- Department of RadiologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Brian C. Healy
- Department of NeurologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Biostatistics CenterMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Bernard J. Hanseeuw
- Department of RadiologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Department of NeurologyCliniques Universitaires Saint‐LucUniversité Catholique de LouvainBruxellesBelgium
| | - Rachel F. Buckley
- Department of NeurologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Melbourne School of Psychological SciencesUniversity of MelbourneMelbourneVictoriaAustralia
- Center for Alzheimer Research and TreatmentDepartment of NeurologyBrigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Heidi I. L. Jacobs
- Department of RadiologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Aaron P. Schultz
- Department of NeurologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Charles D. Chen
- Department of RadiologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Reisa A. Sperling
- Department of NeurologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Center for Alzheimer Research and TreatmentDepartment of NeurologyBrigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Keith A. Johnson
- Department of NeurologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Department of RadiologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Center for Alzheimer Research and TreatmentDepartment of NeurologyBrigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
40
|
Jack CR, Andrews JS, Beach TG, Buracchio T, Dunn B, Graf A, Hansson O, Ho C, Jagust W, McDade E, Molinuevo JL, Okonkwo OC, Pani L, Rafii MS, Scheltens P, Siemers E, Snyder HM, Sperling R, Teunissen CE, Carrillo MC. Revised criteria for diagnosis and staging of Alzheimer's disease: Alzheimer's Association Workgroup. Alzheimers Dement 2024; 20:5143-5169. [PMID: 38934362 PMCID: PMC11350039 DOI: 10.1002/alz.13859] [Citation(s) in RCA: 509] [Impact Index Per Article: 509.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/21/2024] [Accepted: 04/04/2024] [Indexed: 06/28/2024]
Abstract
The National Institute on Aging and the Alzheimer's Association convened three separate work groups in 2011 and single work groups in 2012 and 2018 to create recommendations for the diagnosis and characterization of Alzheimer's disease (AD). The present document updates the 2018 research framework in response to several recent developments. Defining diseases biologically, rather than based on syndromic presentation, has long been standard in many areas of medicine (e.g., oncology), and is becoming a unifying concept common to all neurodegenerative diseases, not just AD. The present document is consistent with this principle. Our intent is to present objective criteria for diagnosis and staging AD, incorporating recent advances in biomarkers, to serve as a bridge between research and clinical care. These criteria are not intended to provide step-by-step clinical practice guidelines for clinical workflow or specific treatment protocols, but rather serve as general principles to inform diagnosis and staging of AD that reflect current science. HIGHLIGHTS: We define Alzheimer's disease (AD) to be a biological process that begins with the appearance of AD neuropathologic change (ADNPC) while people are asymptomatic. Progression of the neuropathologic burden leads to the later appearance and progression of clinical symptoms. Early-changing Core 1 biomarkers (amyloid positron emission tomography [PET], approved cerebrospinal fluid biomarkers, and accurate plasma biomarkers [especially phosphorylated tau 217]) map onto either the amyloid beta or AD tauopathy pathway; however, these reflect the presence of ADNPC more generally (i.e., both neuritic plaques and tangles). An abnormal Core 1 biomarker result is sufficient to establish a diagnosis of AD and to inform clinical decision making throughout the disease continuum. Later-changing Core 2 biomarkers (biofluid and tau PET) can provide prognostic information, and when abnormal, will increase confidence that AD is contributing to symptoms. An integrated biological and clinical staging scheme is described that accommodates the fact that common copathologies, cognitive reserve, and resistance may modify relationships between clinical and biological AD stages.
Collapse
Affiliation(s)
| | - J. Scott Andrews
- Global Evidence & OutcomesTakeda Pharmaceuticals Company LimitedCambridgeMassachusettsUSA
| | - Thomas G. Beach
- Civin Laboratory for NeuropathologyBanner Sun Health Research InstituteSun CityArizonaUSA
| | - Teresa Buracchio
- Office of NeuroscienceU.S. Food and Drug AdministrationSilver SpringMarylandUSA
| | - Billy Dunn
- The Michael J. Fox Foundation for Parkinson's ResearchNew YorkNew YorkUSA
| | - Ana Graf
- NovartisNeuroscience Global Drug DevelopmentBaselSwitzerland
| | - Oskar Hansson
- Department of Clinical Sciences Malmö, Faculty of MedicineLund UniversityLundSweden
- Memory ClinicSkåne University Hospital, MalmöLundSweden
| | - Carole Ho
- DevelopmentDenali TherapeuticsSouth San FranciscoCaliforniaUSA
| | - William Jagust
- School of Public Health and Helen Wills Neuroscience InstituteUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - Eric McDade
- Department of NeurologyWashington University St. Louis School of MedicineSt. LouisMissouriUSA
| | - Jose Luis Molinuevo
- Department of Global Clinical Development H. Lundbeck A/SExperimental MedicineCopenhagenDenmark
| | - Ozioma C. Okonkwo
- Department of Medicine, Division of Geriatrics and GerontologyUniversity of Wisconsin School of MedicineMadisonWisconsinUSA
| | - Luca Pani
- University of MiamiMiller School of MedicineMiamiFloridaUSA
| | - Michael S. Rafii
- Alzheimer's Therapeutic Research Institute (ATRI)Keck School of Medicine at the University of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Philip Scheltens
- Amsterdam University Medical Center (Emeritus)NeurologyAmsterdamthe Netherlands
| | - Eric Siemers
- Clinical ResearchAcumen PharmaceuticalsZionsvilleIndianaUSA
| | - Heather M. Snyder
- Medical & Scientific Relations DivisionAlzheimer's AssociationChicagoIllinoisUSA
| | - Reisa Sperling
- Department of Neurology, Brigham and Women's HospitalMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Charlotte E. Teunissen
- Department of Laboratory MedicineAmsterdam UMC, Neurochemistry LaboratoryAmsterdamthe Netherlands
| | - Maria C. Carrillo
- Medical & Scientific Relations DivisionAlzheimer's AssociationChicagoIllinoisUSA
| |
Collapse
|
41
|
Wagatsuma K, Miwa K, Yamao T, Kamitaka Y, Akamatsu G, Nakajima K, Miyaji N, Ishibashi K, Ishii K. Development of a novel phantom for tau PET imaging. Phys Med 2024; 123:103399. [PMID: 38852366 DOI: 10.1016/j.ejmp.2024.103399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024] Open
Abstract
PURPOSE The cortical uptake of tau positron emission tomography (PET) tracers corresponds to the Braak stage and reflects the distribution and progression of tau neurofibrillary tangles. The present study aimed to develop and validate the basic performance of a novel tau PET phantom, as well as to establish standard test procedures and analytical methods. METHODS The tau PET phantom consisted of a brain simulation section simulated medial temporal lobe region and resolution and uniformity sections. The brain simulation section and hot rods and uniformity section contained 4 and 2 kBq/mL of 18F, respectively and images were acquired three times for 20 min with a PET/CT scanner. The resolution section was visually assessed with two sets of hot and cold rods. Recovery coefficients (RCs) as a quantitative value and coefficient of variation (CV) as image noise were determined based on the brain simulation and the uniformity section, respectively. RESULTS Preparation of activity in the phantom was repeatable among three measurements. The quality of images in the brain simulation and uniformity section with the rods was good. The 5- or 6-mm rods were detected separately. The mean RCs calculated based on the VOI template were between 0.75 and 0.83. The CV at the center slice of uniformity section was 5.54%. CONCLUSIONS We developed a novel tau PET phantom to assess quantitative value, image noise, and detectability and resolution from brain simulation section, uniformity section, and rods, respectively. This phantom will contribute to the standardization and harmonization of tau PET imaging.
Collapse
Affiliation(s)
- Kei Wagatsuma
- School of Allied Health Sciences, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan; Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2, Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan.
| | - Kenta Miwa
- Department of Radiological Sciences, School of Health Sciences, Fukushima Medical University, 10-6 Sakaemachi, Fukushima-shi, Fukushima 960-8516, Japan
| | - Tensho Yamao
- Department of Radiological Sciences, School of Health Sciences, Fukushima Medical University, 10-6 Sakaemachi, Fukushima-shi, Fukushima 960-8516, Japan
| | - Yuto Kamitaka
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2, Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Go Akamatsu
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Kanta Nakajima
- School of Allied Health Sciences, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Noriaki Miyaji
- Department of Radiological Sciences, School of Health Sciences, Fukushima Medical University, 10-6 Sakaemachi, Fukushima-shi, Fukushima 960-8516, Japan
| | - Kenji Ishibashi
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2, Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Kenji Ishii
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2, Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| |
Collapse
|
42
|
Berron D, Olsson E, Andersson F, Janelidze S, Tideman P, Düzel E, Palmqvist S, Stomrud E, Hansson O. Remote and unsupervised digital memory assessments can reliably detect cognitive impairment in Alzheimer's disease. Alzheimers Dement 2024; 20:4775-4791. [PMID: 38867417 PMCID: PMC11247711 DOI: 10.1002/alz.13919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/05/2024] [Accepted: 05/02/2024] [Indexed: 06/14/2024]
Abstract
INTRODUCTION Remote unsupervised cognitive assessments have the potential to complement and facilitate cognitive assessment in clinical and research settings. METHODS Here, we evaluate the usability, validity, and reliability of unsupervised remote memory assessments via mobile devices in individuals without dementia from the Swedish BioFINDER-2 study and explore their prognostic utility regarding future cognitive decline. RESULTS Usability was rated positively; remote memory assessments showed good construct validity with traditional neuropsychological assessments and were significantly associated with tau-positron emission tomography and downstream magnetic resonance imaging measures. Memory performance at baseline was associated with future cognitive decline and prediction of future cognitive decline was further improved by combining remote digital memory assessments with plasma p-tau217. Finally, retest reliability was moderate for a single assessment and good for an aggregate of two sessions. DISCUSSION Our results demonstrate that unsupervised digital memory assessments might be used for diagnosis and prognosis in Alzheimer's disease, potentially in combination with plasma biomarkers. HIGHLIGHTS Remote and unsupervised digital memory assessments are feasible in older adults and individuals in early stages of Alzheimer's disease. Digital memory assessments are associated with neuropsychological in-clinic assessments, tau-positron emission tomography and magnetic resonance imaging measures. Combination of digital memory assessments with plasma p-tau217 holds promise for prognosis of future cognitive decline. Future validation in further independent, larger, and more diverse cohorts is needed to inform clinical implementation.
Collapse
Affiliation(s)
- David Berron
- Clinical Memory Research Unit, Department of Clinical Sciences MalmöLund UniversityLundSweden
- German Center for Neurodegenerative DiseasesMagdeburgGermany
| | - Emil Olsson
- Clinical Memory Research Unit, Department of Clinical Sciences MalmöLund UniversityLundSweden
| | | | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences MalmöLund UniversityLundSweden
| | - Pontus Tideman
- Clinical Memory Research Unit, Department of Clinical Sciences MalmöLund UniversityLundSweden
- Memory ClinicSkåne University HospitalMalmöSweden
| | - Emrah Düzel
- German Center for Neurodegenerative DiseasesMagdeburgGermany
- Institute for Cognitive Neurology and Dementia ResearchOtto‐von‐Guericke UniversityMagdeburgGermany
- Institute of Cognitive NeuroscienceUniversity College LondonLondonUK
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Department of Clinical Sciences MalmöLund UniversityLundSweden
- Memory ClinicSkåne University HospitalMalmöSweden
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences MalmöLund UniversityLundSweden
- Memory ClinicSkåne University HospitalMalmöSweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences MalmöLund UniversityLundSweden
- Memory ClinicSkåne University HospitalMalmöSweden
| |
Collapse
|
43
|
Jadick MF, Robinson T, Farrell ME, Klinger H, Buckley RF, Marshall GA, Vannini P, Rentz DM, Johnson KA, Sperling RA, Amariglio RE. Associations Between Self and Study Partner Report of Cognitive Decline With Regional Tau in a Multicohort Study. Neurology 2024; 102:e209447. [PMID: 38810211 PMCID: PMC11226320 DOI: 10.1212/wnl.0000000000209447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/04/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Self-reported cognitive decline is an early behavioral manifestation of Alzheimer disease (AD) at the preclinical stage, often believed to precede concerns reported by a study partner. Previous work shows cross-sectional associations with β-amyloid (Aβ) status and self-reported and study partner-reported cognitive decline, but less is known about their associations with tau deposition, particularly among those with preclinical AD. METHODS This cross-sectional study included participants from the Anti-Amyloid Treatment in Asymptomatic AD/Longitudinal Evaluation of Amyloid Risk and Neurodegeneration studies (N = 444) and the Harvard Aging Brain Study and affiliated studies (N = 231), which resulted in a cognitively unimpaired (CU) sample of individuals with both nonelevated (Aβ-) and elevated Aβ (Aβ+). All participants and study partners completed the Cognitive Function Index (CFI). Two regional tau composites were derived by averaging flortaucipir PET uptake in the medial temporal lobe (MTL) and neocortex (NEO). Global Aβ PET was measured in Centiloids (CLs) with Aβ+ >26 CL. We conducted multiple linear regression analyses to test associations between tau PET and CFI, covarying for amyloid, age, sex, education, and cohort. We also controlled for objective cognitive performance, measured using the Preclinical Alzheimer Cognitive Composite (PACC). RESULTS Across 675 CU participants (age = 72.3 ± 6.6 years, female = 59%, Aβ+ = 60%), greater tau was associated with greater self-CFI (MTL: β = 0.28 [0.12, 0.44], p < 0.001, and NEO: β = 0.26 [0.09, 0.42], p = 0.002) and study partner CFI (MTL: β = 0.28 [0.14, 0.41], p < 0.001, and NEO: β = 0.31 [0.17, 0.44], p < 0.001). Significant associations between both CFI measures and MTL/NEO tau PET were driven by Aβ+. Continuous Aβ showed an independent effect on CFI in addition to MTL and NEO tau for both self-CFI and study partner CFI. Self-CFI (β = 0.01 [0.001, 0.02], p = 0.03), study partner CFI (β = 0.01 [0.003, 0.02], p = 0.01), and the PACC (β = -0.02 [-0.03, -0.01], p < 0.001) were independently associated with MTL tau, but for NEO tau, PACC (β = -0.02 [-0.03, -0.01], p < 0.001) and study partner report (β = 0.01 [0.004, 0.02], p = 0.002) were associated, but not self-CFI (β = 0.01 [-0.001, 0.02], p = 0.10). DISCUSSION Both self-report and study partner report showed associations with tau in addition to Aβ. Additionally, self-report and study partner report were associated with tau above and beyond performance on a neuropsychological composite. Stratification analyses by Aβ status indicate that associations between self-reported and study partner-reported cognitive concerns with regional tau are driven by those at the preclinical stage of AD, suggesting that both are useful to collect on the early AD continuum.
Collapse
Affiliation(s)
- Michalina F Jadick
- From the Department of Neurology (M.F.J., H.K., R.F.B., G.A.M., P.V., D.M.R., K.A.J., R.A.S., R.E.A.), and Department of Radiology (M.F.J., K.A.J.), Massachusetts General Hospital, and Center for Alzheimer Research and Treatment (T.R., M.E.F., R.F.B., G.A.M., P.V., D.M.R., K.A.J., R.A.S., R.E.A.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Talia Robinson
- From the Department of Neurology (M.F.J., H.K., R.F.B., G.A.M., P.V., D.M.R., K.A.J., R.A.S., R.E.A.), and Department of Radiology (M.F.J., K.A.J.), Massachusetts General Hospital, and Center for Alzheimer Research and Treatment (T.R., M.E.F., R.F.B., G.A.M., P.V., D.M.R., K.A.J., R.A.S., R.E.A.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Michelle E Farrell
- From the Department of Neurology (M.F.J., H.K., R.F.B., G.A.M., P.V., D.M.R., K.A.J., R.A.S., R.E.A.), and Department of Radiology (M.F.J., K.A.J.), Massachusetts General Hospital, and Center for Alzheimer Research and Treatment (T.R., M.E.F., R.F.B., G.A.M., P.V., D.M.R., K.A.J., R.A.S., R.E.A.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Hannah Klinger
- From the Department of Neurology (M.F.J., H.K., R.F.B., G.A.M., P.V., D.M.R., K.A.J., R.A.S., R.E.A.), and Department of Radiology (M.F.J., K.A.J.), Massachusetts General Hospital, and Center for Alzheimer Research and Treatment (T.R., M.E.F., R.F.B., G.A.M., P.V., D.M.R., K.A.J., R.A.S., R.E.A.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Rachel F Buckley
- From the Department of Neurology (M.F.J., H.K., R.F.B., G.A.M., P.V., D.M.R., K.A.J., R.A.S., R.E.A.), and Department of Radiology (M.F.J., K.A.J.), Massachusetts General Hospital, and Center for Alzheimer Research and Treatment (T.R., M.E.F., R.F.B., G.A.M., P.V., D.M.R., K.A.J., R.A.S., R.E.A.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Gad A Marshall
- From the Department of Neurology (M.F.J., H.K., R.F.B., G.A.M., P.V., D.M.R., K.A.J., R.A.S., R.E.A.), and Department of Radiology (M.F.J., K.A.J.), Massachusetts General Hospital, and Center for Alzheimer Research and Treatment (T.R., M.E.F., R.F.B., G.A.M., P.V., D.M.R., K.A.J., R.A.S., R.E.A.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Patrizia Vannini
- From the Department of Neurology (M.F.J., H.K., R.F.B., G.A.M., P.V., D.M.R., K.A.J., R.A.S., R.E.A.), and Department of Radiology (M.F.J., K.A.J.), Massachusetts General Hospital, and Center for Alzheimer Research and Treatment (T.R., M.E.F., R.F.B., G.A.M., P.V., D.M.R., K.A.J., R.A.S., R.E.A.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Dorene M Rentz
- From the Department of Neurology (M.F.J., H.K., R.F.B., G.A.M., P.V., D.M.R., K.A.J., R.A.S., R.E.A.), and Department of Radiology (M.F.J., K.A.J.), Massachusetts General Hospital, and Center for Alzheimer Research and Treatment (T.R., M.E.F., R.F.B., G.A.M., P.V., D.M.R., K.A.J., R.A.S., R.E.A.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Keith A Johnson
- From the Department of Neurology (M.F.J., H.K., R.F.B., G.A.M., P.V., D.M.R., K.A.J., R.A.S., R.E.A.), and Department of Radiology (M.F.J., K.A.J.), Massachusetts General Hospital, and Center for Alzheimer Research and Treatment (T.R., M.E.F., R.F.B., G.A.M., P.V., D.M.R., K.A.J., R.A.S., R.E.A.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Reisa A Sperling
- From the Department of Neurology (M.F.J., H.K., R.F.B., G.A.M., P.V., D.M.R., K.A.J., R.A.S., R.E.A.), and Department of Radiology (M.F.J., K.A.J.), Massachusetts General Hospital, and Center for Alzheimer Research and Treatment (T.R., M.E.F., R.F.B., G.A.M., P.V., D.M.R., K.A.J., R.A.S., R.E.A.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Rebecca E Amariglio
- From the Department of Neurology (M.F.J., H.K., R.F.B., G.A.M., P.V., D.M.R., K.A.J., R.A.S., R.E.A.), and Department of Radiology (M.F.J., K.A.J.), Massachusetts General Hospital, and Center for Alzheimer Research and Treatment (T.R., M.E.F., R.F.B., G.A.M., P.V., D.M.R., K.A.J., R.A.S., R.E.A.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
44
|
Ye R, Goodheart AE, Locascio JJ, Peterec E, Properzi M, Thibault EG, Chuba E, Johnson KA, Brickhouse MJ, Touroutoglou A, Growdon JH, Dickerson BC, Gomperts SN. Differential Vulnerability of Hippocampal Subfields to Amyloid and Tau Deposition in the Lewy Body Diseases. Neurology 2024; 102:e209460. [PMID: 38815233 PMCID: PMC11244748 DOI: 10.1212/wnl.0000000000209460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/11/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Alzheimer disease (AD) copathologies of β-amyloid and tau are common in the Lewy body diseases (LBD), dementia with Lewy bodies (DLB) and Parkinson disease (PD), and target distinct hippocampal subfields compared with Lewy pathology, including subiculum and CA1. We investigated the hypothesis that AD copathologies impact the pattern of hippocampal subregion volume loss and cognitive function in LBD. METHODS This was a cross-sectional and longitudinal, single-center, observational cohort study. Participants underwent neuropsychological testing and 3T-MRI with hippocampal segmentation using FreeSurferV7. PiB-PET and flortaucipir-PET imaging of comorbid β-amyloid (A) and tau (T) were acquired. The association of functional cognition, β-amyloid, and tau loads with hippocampal subregion volume was assessed. The contribution of subregion volumes to the relationship of AD-related deposits on functional cognition was examined with mediation analysis. The effects of AD-related deposits on the rate of subregion atrophy were evaluated with mixed-effects models. RESULTS Of 103 participants (mean age: 70.3 years; 37.3% female), 52 had LBD with impaired cognition (LBD-I), 26 had normal cognition (LBD-N), and 25 were A- healthy controls (HCs). Volumes of hippocampal subregions prone to AD copathologies, including subiculum (F = 6.9, p = 0.002), presubiculum (F = 7.3, p = 0.001), and parasubiculum (F = 5.9, p = 0.004), were reduced in LBD-I compared with LBD-N and HC. Volume was preserved in CA2/3, Lewy pathology susceptible subregions. In LBD-I, reduced CA1, subiculum, and presubiculum volumes were associated with greater functional cognitive impairment (all p < 0.05). Compared with HC, subiculum volume was reduced in A+T+ but not A-T- participants (F = 2.62, p = 0.043). Reduced subiculum volume mediated the effect of amyloid on functional cognition (0.12, 95% CI: 0.005 to 0.26, p = 0.040). In 26 longitudinally-evaluated participants, baseline tau deposition was associated with faster CA1 (p = 0.021) and subiculum (p = 0.002) atrophy. DISCUSSION In LBD, volume loss in hippocampal output subregions-particularly the subiculum-is associated with functional cognition and AD-related deposits. Tau deposition appears to accelerate subiculum and CA1 atrophy, whereas Aβ does not. Subiculum volume may have value as a biomarker of AD copathology-mediated neurodegeneration and disease progression.
Collapse
Affiliation(s)
- Rong Ye
- From the Department of Neurology (R.Y., A.E.G., J.J.L., E.P., M.P., E.G.T., E.C., K.A.J., M.J.B., A.T., J.G., B.C.D., S.N.G.), Massachusetts General Hospital, Boston; Mass General Institute of Neurodegenerative Disease (R.Y., A.E.G., E.P., S.N.G.), Charlestown; Lewy Body Dementia Unit (R.Y., A.E.G., E.P., S.N.G.) and Frontotemporal Disorders Unit (M.J.B., A.T., B.C.D.), Massachusetts General Hospital, Boston
| | - Anna E Goodheart
- From the Department of Neurology (R.Y., A.E.G., J.J.L., E.P., M.P., E.G.T., E.C., K.A.J., M.J.B., A.T., J.G., B.C.D., S.N.G.), Massachusetts General Hospital, Boston; Mass General Institute of Neurodegenerative Disease (R.Y., A.E.G., E.P., S.N.G.), Charlestown; Lewy Body Dementia Unit (R.Y., A.E.G., E.P., S.N.G.) and Frontotemporal Disorders Unit (M.J.B., A.T., B.C.D.), Massachusetts General Hospital, Boston
| | - Joseph J Locascio
- From the Department of Neurology (R.Y., A.E.G., J.J.L., E.P., M.P., E.G.T., E.C., K.A.J., M.J.B., A.T., J.G., B.C.D., S.N.G.), Massachusetts General Hospital, Boston; Mass General Institute of Neurodegenerative Disease (R.Y., A.E.G., E.P., S.N.G.), Charlestown; Lewy Body Dementia Unit (R.Y., A.E.G., E.P., S.N.G.) and Frontotemporal Disorders Unit (M.J.B., A.T., B.C.D.), Massachusetts General Hospital, Boston
| | - Erin Peterec
- From the Department of Neurology (R.Y., A.E.G., J.J.L., E.P., M.P., E.G.T., E.C., K.A.J., M.J.B., A.T., J.G., B.C.D., S.N.G.), Massachusetts General Hospital, Boston; Mass General Institute of Neurodegenerative Disease (R.Y., A.E.G., E.P., S.N.G.), Charlestown; Lewy Body Dementia Unit (R.Y., A.E.G., E.P., S.N.G.) and Frontotemporal Disorders Unit (M.J.B., A.T., B.C.D.), Massachusetts General Hospital, Boston
| | - Michael Properzi
- From the Department of Neurology (R.Y., A.E.G., J.J.L., E.P., M.P., E.G.T., E.C., K.A.J., M.J.B., A.T., J.G., B.C.D., S.N.G.), Massachusetts General Hospital, Boston; Mass General Institute of Neurodegenerative Disease (R.Y., A.E.G., E.P., S.N.G.), Charlestown; Lewy Body Dementia Unit (R.Y., A.E.G., E.P., S.N.G.) and Frontotemporal Disorders Unit (M.J.B., A.T., B.C.D.), Massachusetts General Hospital, Boston
| | - Emma G Thibault
- From the Department of Neurology (R.Y., A.E.G., J.J.L., E.P., M.P., E.G.T., E.C., K.A.J., M.J.B., A.T., J.G., B.C.D., S.N.G.), Massachusetts General Hospital, Boston; Mass General Institute of Neurodegenerative Disease (R.Y., A.E.G., E.P., S.N.G.), Charlestown; Lewy Body Dementia Unit (R.Y., A.E.G., E.P., S.N.G.) and Frontotemporal Disorders Unit (M.J.B., A.T., B.C.D.), Massachusetts General Hospital, Boston
| | - Erin Chuba
- From the Department of Neurology (R.Y., A.E.G., J.J.L., E.P., M.P., E.G.T., E.C., K.A.J., M.J.B., A.T., J.G., B.C.D., S.N.G.), Massachusetts General Hospital, Boston; Mass General Institute of Neurodegenerative Disease (R.Y., A.E.G., E.P., S.N.G.), Charlestown; Lewy Body Dementia Unit (R.Y., A.E.G., E.P., S.N.G.) and Frontotemporal Disorders Unit (M.J.B., A.T., B.C.D.), Massachusetts General Hospital, Boston
| | - Keith A Johnson
- From the Department of Neurology (R.Y., A.E.G., J.J.L., E.P., M.P., E.G.T., E.C., K.A.J., M.J.B., A.T., J.G., B.C.D., S.N.G.), Massachusetts General Hospital, Boston; Mass General Institute of Neurodegenerative Disease (R.Y., A.E.G., E.P., S.N.G.), Charlestown; Lewy Body Dementia Unit (R.Y., A.E.G., E.P., S.N.G.) and Frontotemporal Disorders Unit (M.J.B., A.T., B.C.D.), Massachusetts General Hospital, Boston
| | - Michael J Brickhouse
- From the Department of Neurology (R.Y., A.E.G., J.J.L., E.P., M.P., E.G.T., E.C., K.A.J., M.J.B., A.T., J.G., B.C.D., S.N.G.), Massachusetts General Hospital, Boston; Mass General Institute of Neurodegenerative Disease (R.Y., A.E.G., E.P., S.N.G.), Charlestown; Lewy Body Dementia Unit (R.Y., A.E.G., E.P., S.N.G.) and Frontotemporal Disorders Unit (M.J.B., A.T., B.C.D.), Massachusetts General Hospital, Boston
| | - Alexandra Touroutoglou
- From the Department of Neurology (R.Y., A.E.G., J.J.L., E.P., M.P., E.G.T., E.C., K.A.J., M.J.B., A.T., J.G., B.C.D., S.N.G.), Massachusetts General Hospital, Boston; Mass General Institute of Neurodegenerative Disease (R.Y., A.E.G., E.P., S.N.G.), Charlestown; Lewy Body Dementia Unit (R.Y., A.E.G., E.P., S.N.G.) and Frontotemporal Disorders Unit (M.J.B., A.T., B.C.D.), Massachusetts General Hospital, Boston
| | - John H Growdon
- From the Department of Neurology (R.Y., A.E.G., J.J.L., E.P., M.P., E.G.T., E.C., K.A.J., M.J.B., A.T., J.G., B.C.D., S.N.G.), Massachusetts General Hospital, Boston; Mass General Institute of Neurodegenerative Disease (R.Y., A.E.G., E.P., S.N.G.), Charlestown; Lewy Body Dementia Unit (R.Y., A.E.G., E.P., S.N.G.) and Frontotemporal Disorders Unit (M.J.B., A.T., B.C.D.), Massachusetts General Hospital, Boston
| | - Bradford C Dickerson
- From the Department of Neurology (R.Y., A.E.G., J.J.L., E.P., M.P., E.G.T., E.C., K.A.J., M.J.B., A.T., J.G., B.C.D., S.N.G.), Massachusetts General Hospital, Boston; Mass General Institute of Neurodegenerative Disease (R.Y., A.E.G., E.P., S.N.G.), Charlestown; Lewy Body Dementia Unit (R.Y., A.E.G., E.P., S.N.G.) and Frontotemporal Disorders Unit (M.J.B., A.T., B.C.D.), Massachusetts General Hospital, Boston
| | - Stephen N Gomperts
- From the Department of Neurology (R.Y., A.E.G., J.J.L., E.P., M.P., E.G.T., E.C., K.A.J., M.J.B., A.T., J.G., B.C.D., S.N.G.), Massachusetts General Hospital, Boston; Mass General Institute of Neurodegenerative Disease (R.Y., A.E.G., E.P., S.N.G.), Charlestown; Lewy Body Dementia Unit (R.Y., A.E.G., E.P., S.N.G.) and Frontotemporal Disorders Unit (M.J.B., A.T., B.C.D.), Massachusetts General Hospital, Boston
| |
Collapse
|
45
|
Denkinger M, Baker S, Inglis B, Kobayashi S, Juarez A, Mason S, Jagust W. Associations between regional blood-brain barrier permeability, aging, and Alzheimer's disease biomarkers in cognitively normal older adults. PLoS One 2024; 19:e0299764. [PMID: 38837947 PMCID: PMC11152304 DOI: 10.1371/journal.pone.0299764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/05/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Increased blood-brain barrier permeability (BBBp) has been hypothesized as a feature of aging that may lead to the development of Alzheimer's disease (AD). We sought to identify the brain regions most vulnerable to greater BBBp during aging and examine their regional relationship with neuroimaging biomarkers of AD. METHODS We studied 31 cognitively normal older adults (OA) and 10 young adults (YA) from the Berkeley Aging Cohort Study (BACS). Both OA and YA received dynamic contrast-enhanced MRI (DCE-MRI) to quantify Ktrans values, as a measure of BBBp, in 37 brain regions across the cortex. The OA also received Pittsburgh compound B (PiB)-PET to create distribution volume ratios (DVR) images and flortaucipir (FTP)- PET to create partial volume corrected standardized uptake volume ratios (SUVR) images. Repeated measures ANOVA assessed the brain regions where OA showed greater BBBp than YA. In OA, Ktrans values were compared based on sex, Aβ positivity status, and APOE4 carrier status within a composite region across the areas susceptible to aging. We used linear models and sparse canonical correlation analysis (SCCA) to examine the relationship between Ktrans and AD biomarkers. RESULTS OA showed greater BBBp than YA predominately in the temporal lobe, with some involvement of parietal, occipital and frontal lobes. Within an averaged ROI of affected regions, there was no difference in Ktrans values based on sex or Aβ positivity, but OA who were APOE4 carriers had significantly higher Ktrans values. There was no direct relationship between averaged Ktrans and global Aβ pathology, but there was a trend for an Ab status by tau interaction on Ktrans in this region. SCCA showed increased Ktrans was associated with increased PiB DVR, mainly in temporal and parietal brain regions. There was not a significant relationship between Ktrans and FTP SUVR. DISCUSSION Our findings indicate that the BBB shows regional vulnerability during normal aging that overlaps considerably with the pattern of AD pathology. Greater BBBp in brain regions affected in aging is related to APOE genotype and may also be related to the pathological accumulation of Aβ.
Collapse
Affiliation(s)
- Marisa Denkinger
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, United States of America
| | - Suzanne Baker
- Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Ben Inglis
- Henry H. Wheeler Jr. Brain Imaging Center, University of California, Berkeley, Berkeley, California, United States of America
| | - Sarah Kobayashi
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, United States of America
| | - Alexis Juarez
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, United States of America
| | - Suzanne Mason
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, United States of America
| | - William Jagust
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, United States of America
- Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| |
Collapse
|
46
|
Earnest T, Bani A, Ha SM, Hobbs DA, Kothapalli D, Yang B, Lee JJ, Benzinger TLS, Gordon BA, Sotiras A, for the Alzheimer's Disease Neuroimaging Initiative. Data-driven decomposition and staging of flortaucipir uptake in Alzheimer's disease. Alzheimers Dement 2024; 20:4002-4019. [PMID: 38683905 PMCID: PMC11180875 DOI: 10.1002/alz.13769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 05/02/2024]
Abstract
INTRODUCTION Previous approaches pursuing in vivo staging of tau pathology in Alzheimer's disease (AD) have typically relied on neuropathologically defined criteria. In using predefined systems, these studies may miss spatial deposition patterns which are informative of disease progression. METHODS We selected discovery (n = 418) and replication (n = 132) cohorts with flortaucipir imaging. Non-negative matrix factorization (NMF) was applied to learn tau covariance patterns and develop a tau staging system. Flortaucipir components were also validated by comparison with amyloid burden, gray matter loss, and the expression of AD-related genes. RESULTS We found eight flortaucipir covariance patterns which were reproducible and overlapped with relevant gene expression maps. Tau stages were associated with AD severity as indexed by dementia status and neuropsychological performance. Comparisons of flortaucipir uptake with amyloid and atrophy also supported our model of tau progression. DISCUSSION Data-driven decomposition of flortaucipir uptake provides a novel framework for tau staging which complements existing systems. HIGHLIGHTS NMF reveals patterns of tau deposition in AD. Data-driven staging of flortaucipir tracks AD severity. Learned flortaucipir patterns overlap with AD-related gene expression.
Collapse
Affiliation(s)
- Tom Earnest
- Mallinckrodt Institute of RadiologyWashington University School of Medicine in St LouisSaint LouisMissouriUSA
| | - Abdalla Bani
- Mallinckrodt Institute of RadiologyWashington University School of Medicine in St LouisSaint LouisMissouriUSA
| | - Sung Min Ha
- Mallinckrodt Institute of RadiologyWashington University School of Medicine in St LouisSaint LouisMissouriUSA
| | - Diana A. Hobbs
- Mallinckrodt Institute of RadiologyWashington University School of Medicine in St LouisSaint LouisMissouriUSA
| | - Deydeep Kothapalli
- Mallinckrodt Institute of RadiologyWashington University School of Medicine in St LouisSaint LouisMissouriUSA
| | - Braden Yang
- Mallinckrodt Institute of RadiologyWashington University School of Medicine in St LouisSaint LouisMissouriUSA
| | - John J. Lee
- Mallinckrodt Institute of RadiologyWashington University School of Medicine in St LouisSaint LouisMissouriUSA
| | - Tammie L. S. Benzinger
- Mallinckrodt Institute of RadiologyWashington University School of Medicine in St LouisSaint LouisMissouriUSA
| | - Brian A. Gordon
- Mallinckrodt Institute of RadiologyWashington University School of Medicine in St LouisSaint LouisMissouriUSA
| | - Aristeidis Sotiras
- Mallinckrodt Institute of RadiologyWashington University School of Medicine in St LouisSaint LouisMissouriUSA
- Institute for Informatics, Data Science & BiostatisticsWashington University School of Medicine in St LouisSaint LouisMissouriUSA
| | | |
Collapse
|
47
|
Schneider C, Prokopiou PC, Papp KV, Engels‐Domínguez N, Hsieh S, Juneau TA, Schultz AP, Rentz DM, Sperling RA, Johnson KA, Jacobs HIL. Atrophy links lower novelty-related locus coeruleus connectivity to cognitive decline in preclinical AD. Alzheimers Dement 2024; 20:3958-3971. [PMID: 38676563 PMCID: PMC11180940 DOI: 10.1002/alz.13839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 04/29/2024]
Abstract
INTRODUCTION Animal research has shown that tau pathology in the locus coeruleus (LC) is associated with reduced norepinephrine signaling, lower projection density to the medial temporal lobe (MTL), atrophy, and cognitive impairment. We investigated the contribution of LC-MTL functional connectivity (FCLC-MTL) on cortical atrophy across Braak stage regions and its impact on cognition. METHODS We analyzed functional magnetic resonance imaging and amyloid beta (Aβ) positron emission tomography data from 128 cognitively normal participants, associating novelty-related FCLC-MTL with longitudinal atrophy and cognition with and without Aβ moderation. RESULTS Cross-sectionally, lower FCLC-MTL was associated with atrophy in Braak stage II regions. Longitudinally, atrophy in Braak stage 2 to 4 regions related to lower baseline FCLC-MTL at elevated levels of Aβ, but not to other regions. Atrophy in Braak stage 2 regions mediated the relation between FCLC-MTL and subsequent cognitive decline. DISCUSSION FCLC-MTL is implicated in Aβ-related cortical atrophy, suggesting that LC-MTL connectivity could confer neuroprotective effects in preclinical AD. HIGHLIGHTS Novelty-related functional magnetic resonance imaging (fMRI) LC-medial temporal lobe (MTL) connectivity links to longitudinal Aβ-dependent atrophy. This relationship extended to higher Braak stage regions with increasing Aβ burden. Longitudinal MTL atrophy mediated the LC-MTL connectivity-cognition relationship. Our findings mirror the animal data on MTL atrophy following NE signal dysfunction.
Collapse
Affiliation(s)
- Christoph Schneider
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General HospitalBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | - Prokopis C. Prokopiou
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General HospitalBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | - Kathryn V. Papp
- Harvard Medical SchoolBostonMassachusettsUSA
- Center for Alzheimer Research and TreatmentDepartment of NeurologyBrigham and Women's HospitalBostonMassachusettsUSA
| | - Nina Engels‐Domínguez
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General HospitalBostonMassachusettsUSA
- Faculty of HealthMedicine and Life SciencesSchool for Mental Health and NeuroscienceAlzheimer Centre LimburgMaastricht University, MDMaastrichtThe Netherlands
| | - Stephanie Hsieh
- The Athinoula A. Martinos Center for Biomedical ImagingDepartment of RadiologyMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Truley A. Juneau
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Aaron P. Schultz
- The Athinoula A. Martinos Center for Biomedical ImagingDepartment of RadiologyMassachusetts General HospitalCharlestownMassachusettsUSA
- Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Dorene M. Rentz
- Harvard Medical SchoolBostonMassachusettsUSA
- Center for Alzheimer Research and TreatmentDepartment of NeurologyBrigham and Women's HospitalBostonMassachusettsUSA
- Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Reisa A. Sperling
- Harvard Medical SchoolBostonMassachusettsUSA
- Center for Alzheimer Research and TreatmentDepartment of NeurologyBrigham and Women's HospitalBostonMassachusettsUSA
- Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Keith A. Johnson
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General HospitalBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
- Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Heidi I. L. Jacobs
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General HospitalBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
- Faculty of HealthMedicine and Life SciencesSchool for Mental Health and NeuroscienceAlzheimer Centre LimburgMaastricht University, MDMaastrichtThe Netherlands
- The Athinoula A. Martinos Center for Biomedical ImagingDepartment of RadiologyMassachusetts General HospitalCharlestownMassachusettsUSA
| |
Collapse
|
48
|
Jagust WJ, Mattay VS, Krainak DM, Wang SJ, Weidner LD, Hofling AA, Koo H, Hsieh P, Kuo PH, Farrar G, Marzella L. Quantitative Brain Amyloid PET. J Nucl Med 2024; 65:670-678. [PMID: 38514082 PMCID: PMC11064834 DOI: 10.2967/jnumed.123.265766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/13/2024] [Indexed: 03/23/2024] Open
Abstract
Since the development of amyloid tracers for PET imaging, there has been interest in quantifying amyloid burden in the brains of patients with Alzheimer disease. Quantitative amyloid PET imaging is poised to become a valuable approach in disease staging, theranostics, monitoring, and as an outcome measure for interventional studies. Yet, there are significant challenges and hurdles to overcome before it can be implemented into widespread clinical practice. On November 17, 2022, the U.S. Food and Drug Administration, Society of Nuclear Medicine and Molecular Imaging, and Medical Imaging and Technology Alliance cosponsored a public workshop comprising experts from academia, industry, and government agencies to discuss the role of quantitative brain amyloid PET imaging in staging, prognosis, and longitudinal assessment of Alzheimer disease. The workshop discussed a range of topics, including available radiopharmaceuticals for amyloid imaging; the methodology, metrics, and analytic validity of quantitative amyloid PET imaging; its use in disease staging, prognosis, and monitoring of progression; and challenges facing the field. This report provides a high-level summary of the presentations and the discussion.
Collapse
Affiliation(s)
| | - Venkata S Mattay
- Division of Imaging and Radiation Medicine, Office of Specialty Medicine, Office of New Drugs, Center of Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland;
| | - Daniel M Krainak
- Division of Radiological Imaging and Radiation Therapy Devices, Office of Radiological Health, Office of Product Evaluation and Quality, Centers for Devices and Radiological Health, Food and Drug Administration, Silver Spring, Maryland
| | - Sue-Jane Wang
- Division of Biometrics I, Office of Biostatistics, Office of Translational Sciences, Center of Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Lora D Weidner
- Division of Radiological Imaging and Radiation Therapy Devices, Office of Radiological Health, Office of Product Evaluation and Quality, Centers for Devices and Radiological Health, Food and Drug Administration, Silver Spring, Maryland
| | - A Alex Hofling
- Division of Imaging and Radiation Medicine, Office of Specialty Medicine, Office of New Drugs, Center of Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Hayoung Koo
- Division of Imaging and Radiation Medicine, Office of Specialty Medicine, Office of New Drugs, Center of Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | | | | | | | - Libero Marzella
- Division of Imaging and Radiation Medicine, Office of Specialty Medicine, Office of New Drugs, Center of Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
49
|
Weinstein G, Kojis DJ, Ghosh S, Beiser AS, Seshadri S. Association of Neurotrophic Factors at Midlife With In Vivo Measures of β-Amyloid and Tau Burden 15 Years Later in Dementia-Free Adults. Neurology 2024; 102:e209198. [PMID: 38471064 PMCID: PMC11033983 DOI: 10.1212/wnl.0000000000209198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/13/2023] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Neurotrophic factors (NTFs) play an important role in Alzheimer disease (AD) pathophysiology. Brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) are important NTFs. However, a direct link of BDNF and VEGF circulating levels with in vivo measures of amyloid-β (Aβ) and tau burden remains to be elucidated. We explored the relationship of BDNF and VEGF serum levels with future brain Aβ and tau pathology in a cohort of cognitively healthy, predominantly middle-aged adults and tested for possible effect modifications by sex and menopausal status. METHODS This cross-sectional analysis was conducted using data from the Framingham Heart Study (FHS), a community-based cohort study. The study sample included cognitively healthy participants from the FHS Offspring and Third-generation cohorts. BDNF and VEGF were measured in the third-generation cohort during examination cycles 2 (2005-2008) and 1 (2002-2005), respectively, and in the offspring cohort during examination cycle 7 (1998-2001). Participants underwent 11C-Pittsburgh compound B amyloid and 18F-Flortaucipir tau-PET imaging (2015-2021). Linear regression models were used to assess the relationship of serum BDNF and VEGF levels with regional tau and global Aβ, adjusting for potential confounders. Interactions with sex and menopausal status were additionally tested. RESULTS The sample included 414 individuals (mean age = 41 ± 9 years; 51% female). Continuous measures of BDNF and VEGF were associated with tau signal in the rhinal region after adjustment for potential confounders (β = -0.15 ± 0.06, p = 0.018 and β = -0.19 ± 0.09, p = 0.043, respectively). High BDNF (≥32,450 pg/mL) and VEGF (≥488 pg/mL) levels were significantly related to lower rhinal tau (β = -0.27 ± 0.11, p = 0.016 and β = -0.40 ± 0.14, p = 0.004, respectively) and inferior temporal tau (β = -0.24 ± 0.11, p = 0.028 and β = -0.26 ± 0.13, p = 0.049, respectively). The BDNF-rhinal tau association was observed only among male individuals. Overall, BDNF and VEGF were not associated with global amyloid; however, high VEGF levels were associated with lower amyloid burden in postmenopausal women (β = -1.96 ± 0.70, p = 0.013, per 1 pg/mL). DISCUSSION This study demonstrates a robust association between BDNF and VEGF serum levels with in vivo measures of tau almost 2 decades later. These findings add to mounting evidence from preclinical studies suggesting a role of NTFs as valuable blood biomarkers for AD risk prediction.
Collapse
Affiliation(s)
- Galit Weinstein
- From the School of Public Health (G.W.), University of Haifa, Israel; Department of Biostatistics (D.J.K., A.S.B.), Boston University School of Public Health, Boston; The Framingham Study (D.J.K., S.G., A.S.B., S.S.); Department of Neurology (S.G., A.S.B., S.S.), Boston University Chobanian & Avedisian School of Medicine, MA; and Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (S.S.), University of Texas Health Sciences Center, San Antonio
| | - Daniel J Kojis
- From the School of Public Health (G.W.), University of Haifa, Israel; Department of Biostatistics (D.J.K., A.S.B.), Boston University School of Public Health, Boston; The Framingham Study (D.J.K., S.G., A.S.B., S.S.); Department of Neurology (S.G., A.S.B., S.S.), Boston University Chobanian & Avedisian School of Medicine, MA; and Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (S.S.), University of Texas Health Sciences Center, San Antonio
| | - Saptaparni Ghosh
- From the School of Public Health (G.W.), University of Haifa, Israel; Department of Biostatistics (D.J.K., A.S.B.), Boston University School of Public Health, Boston; The Framingham Study (D.J.K., S.G., A.S.B., S.S.); Department of Neurology (S.G., A.S.B., S.S.), Boston University Chobanian & Avedisian School of Medicine, MA; and Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (S.S.), University of Texas Health Sciences Center, San Antonio
| | - Alexa S Beiser
- From the School of Public Health (G.W.), University of Haifa, Israel; Department of Biostatistics (D.J.K., A.S.B.), Boston University School of Public Health, Boston; The Framingham Study (D.J.K., S.G., A.S.B., S.S.); Department of Neurology (S.G., A.S.B., S.S.), Boston University Chobanian & Avedisian School of Medicine, MA; and Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (S.S.), University of Texas Health Sciences Center, San Antonio
| | - Sudha Seshadri
- From the School of Public Health (G.W.), University of Haifa, Israel; Department of Biostatistics (D.J.K., A.S.B.), Boston University School of Public Health, Boston; The Framingham Study (D.J.K., S.G., A.S.B., S.S.); Department of Neurology (S.G., A.S.B., S.S.), Boston University Chobanian & Avedisian School of Medicine, MA; and Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (S.S.), University of Texas Health Sciences Center, San Antonio
| |
Collapse
|
50
|
Young CB, Smith V, Karjadi C, Grogan S, Ang TFA, Insel PS, Henderson VW, Sumner M, Poston KL, Au R, Mormino EC. Speech patterns during memory recall relates to early tau burden across adulthood. Alzheimers Dement 2024; 20:2552-2563. [PMID: 38348772 PMCID: PMC11032578 DOI: 10.1002/alz.13731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 04/22/2024]
Abstract
INTRODUCTION Early cognitive decline may manifest in subtle differences in speech. METHODS We examined 238 cognitively unimpaired adults from the Framingham Heart Study (32-75 years) who completed amyloid and tau PET imaging. Speech patterns during delayed recall of a story memory task were quantified via five speech markers, and their associations with global amyloid status and regional tau signal were examined. RESULTS Total utterance time, number of between-utterance pauses, speech rate, and percentage of unique words significantly correlated with delayed recall score although the shared variance was low (2%-15%). Delayed recall score was not significantly different between β-amyoid-positive (Aβ+) and -negative (Aβ-) groups and was not associated with regional tau signal. However, longer and more between-utterance pauses, and slower speech rate were associated with increased tau signal across medial temporal and early neocortical regions. DISCUSSION Subtle speech changes during memory recall may reflect cognitive impairment associated with early Alzheimer's disease pathology. HIGHLIGHTS Speech during delayed memory recall relates to tau PET signal across adulthood. Delayed memory recall score was not associated with tau PET signal. Speech shows greater sensitivity to detecting subtle cognitive changes associated with early tau accumulation. Our cohort spans adulthood, while most PET imaging studies focus on older adults.
Collapse
Affiliation(s)
- Christina B. Young
- Department of Neurology and Neurological SciencesStanford University School of MedicineStanfordCaliforniaUSA
| | - Viktorija Smith
- Department of Neurology and Neurological SciencesStanford University School of MedicineStanfordCaliforniaUSA
| | - Cody Karjadi
- Department of Anatomy & Neurobiology and Framingham Heart StudyBoston University Chobanian and Avedisian School of MedicineBostonMassachusettsUSA
| | - Selah‐Marie Grogan
- Department of Neurology and Neurological SciencesStanford University School of MedicineStanfordCaliforniaUSA
| | - Ting Fang Alvin Ang
- Department of Anatomy & Neurobiology and Framingham Heart StudyBoston University Chobanian and Avedisian School of MedicineBostonMassachusettsUSA
| | - Philip S. Insel
- Department of PsychiatryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Victor W. Henderson
- Department of Neurology and Neurological SciencesStanford University School of MedicineStanfordCaliforniaUSA
- Department of Epidemiology and Population HealthStanford UniversityStanfordCaliforniaUSA
| | - Meghan Sumner
- Department of LinguisticsStanford UniversityStanfordCaliforniaUSA
| | - Kathleen L. Poston
- Department of Neurology and Neurological SciencesStanford University School of MedicineStanfordCaliforniaUSA
- Wu Tsai Neuroscience InstituteStanford UniversityStanfordCaliforniaUSA
| | - Rhoda Au
- Department of Anatomy & Neurobiology and Framingham Heart StudyBoston University Chobanian and Avedisian School of MedicineBostonMassachusettsUSA
| | - Elizabeth C. Mormino
- Department of Neurology and Neurological SciencesStanford University School of MedicineStanfordCaliforniaUSA
- Wu Tsai Neuroscience InstituteStanford UniversityStanfordCaliforniaUSA
| |
Collapse
|