1
|
Crisler WJ, Rowley R, Oke O, Steuart SJ, Modi MM, Davis DL, Chen C, Gray L, Teague JE, Zhan Q, Merola JF, Vleugels RA, Clark RA, LaChance A. Eosinophilic Fasciitis and Morphea Share Gene Signatures of Inflammatory Cell Death, Self-DNA Recognition, and Enhanced Jak/Signal Transducer and Activator of Transcription Signaling. J Invest Dermatol 2025:S0022-202X(25)00544-5. [PMID: 40451539 DOI: 10.1016/j.jid.2025.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 04/17/2025] [Accepted: 05/09/2025] [Indexed: 06/28/2025]
Abstract
The pathogenesis of eosinophilic fasciitis (EF) and morphea is poorly understood. We analyzed skin biopsies from patients with EF and morphea compared with those from adult healthy skin using gene expression profiling, Ingenuity Pathway Analysis, and immunostaining. EF gene expression showed significant overlap with morphea. Fifty-one of 61 differentially expressed genes, 80 of 99 canonical pathways, and 40 of 51 upstream regulators were shared in EF and morphea. Both conditions exhibited robust T-cell activation and cytotoxic signatures despite their pauci-inflammatory histological appearance, suggesting that small numbers of T cells may drive injury, inflammation, and fibrosis. EF and morphea shared signatures of necroptosis; self-DNA recognition; cyclic GMP-AMP synthase/stimulator of IFN genes activation; induction of types I, II, and III IFN signaling; and fibrosis. Seven Janus kinase (JAK)/signal transducer and activator of transcription (STAT) molecules were significantly upregulated in EF, and 9 were upregulated in morphea. Compared with that in healthy skin, TYK2 was the most significant JAK molecule upregulated in EF (P = .0007) and morphea (P = .0002). Immunostaining demonstrated activated IFN-related molecules JAK1 and STAT 1 in T cells, dendritic cells, and macrophages in both diseases. This study identifies shared molecular mechanisms of EF and morphea and demonstrates strong pathophysiologic similarities between the 2 diseases. Our findings indicate that targeted inhibition of JAK/STAT molecules and mediators of necroptosis may be beneficial in treating these fibrotic diseases.
Collapse
Affiliation(s)
- William J Crisler
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Rachael Rowley
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Oluwadamilola Oke
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Samuel J Steuart
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Maitri M Modi
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Dale L Davis
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Cynthia Chen
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lindsey Gray
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jessica E Teague
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Qian Zhan
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph F Merola
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ruth Ann Vleugels
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Rachael A Clark
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| | - Avery LaChance
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
2
|
Zhang H, Jiang H, Xie W, Qian B, Long Q, Qi Z, Huang S, Zhong Y, Zhang Y, Chang L, Zhang J, Zhao Q, Wang X, Ye X. LNPs-mediated VEGF-C mRNA delivery promotes heart repair and attenuates inflammation by stimulating lymphangiogenesis post-myocardial infarction. Biomaterials 2025; 322:123410. [PMID: 40393374 DOI: 10.1016/j.biomaterials.2025.123410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 05/05/2025] [Accepted: 05/11/2025] [Indexed: 05/22/2025]
Abstract
Myocardial infarction (MI) initiates a strong inflammatory response, leading to adverse ventricular remodeling. The reconstruction of functional lymphatic networks is indispensable for relieving myocardial edema and regulating post-infarction inflammation. However, conventional protein-based therapies and viral delivery systems aimed at promoting lymphangiogenesis in the heart have shown limited therapeutic efficacy due to their inherent limitations. In this study, a lipid nanoparticle (LNP) platform encapsulating VEGF-C mRNA was developed as a novel approach to regulate gene expression and stimulate sustained lymphatic neogenesis after MI. Intramyocardial delivery of VEGF-C mRNA-loaded LNPs significantly promoted lymphangiogenesis, reduced the infiltration of inflammatory cells, and inhibited pro-inflammatory and fibrosis-associated signaling pathways. This ultimately resulted in a substantial reduction in the fibrotic area and improved functional recovery. Our findings demonstrated that VEGF-C mRNA@LNPs repair myocardial ischemic injury by facilitating immune modulation through lymphatic neogenesis, offering a promising new therapeutic strategy with strong translational potential for treating myocardial infarction.
Collapse
Affiliation(s)
- Haonan Zhang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Huaiyu Jiang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weichang Xie
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bei Qian
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qiang Long
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhaoxi Qi
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shixing Huang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yiming Zhong
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yecen Zhang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lan Chang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Junjie Zhang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qiang Zhao
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Xinming Wang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Xiaofeng Ye
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Martin-Garrido A, Heineke J. Cardiomyocyte-derived fibrosis as driver of cardiomyopathy. Cardiovasc Res 2025; 121:528-529. [PMID: 40036731 DOI: 10.1093/cvr/cvaf025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/06/2025] Open
Affiliation(s)
- Abel Martin-Garrido
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Straße 7-11, Mannheim 68167, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg 69120, Germany
| | - Joerg Heineke
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Straße 7-11, Mannheim 68167, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg 69120, Germany
| |
Collapse
|
4
|
Le Maître M, Guerrier T, Sanges S, Chepy A, Collet A, Launay D. Beyond circulating B cells: Characteristics and role of tissue-infiltrating B cells in systemic sclerosis. Autoimmun Rev 2025; 24:103782. [PMID: 40010623 DOI: 10.1016/j.autrev.2025.103782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/21/2025] [Accepted: 02/22/2025] [Indexed: 02/28/2025]
Abstract
B cells play a key role in the pathophysiology of systemic sclerosis (SSc). While they are less characterized than their circulating counterparts, tissue-infiltrating B cells may have a more direct pathological role in tissues. In this review, we decipher the multiple evidence of B cells infiltration in the skin and lungs of SSc patients and animal models of SSc but also of other chronic fibrotic diseases with similar pathological mechanisms such as chronic graft versus host disease, idiopathic pulmonary fibrosis or morphea. We also recapitulate the current knowledge about mechanisms of B cells infiltration and their functions in tissues. Finally, we discuss B cell targeted therapies, and their specific impact on infiltrated B cells. Understanding the local consequences of infiltrating B cells is an important step for a better management of patients and the improvement of therapies in SSc.
Collapse
Affiliation(s)
- Mathilde Le Maître
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France.
| | - Thomas Guerrier
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
| | - Sébastien Sanges
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France; CHU Lille, Département de Médecine Interne et Immunologie Clinique, F-59000 Lille, France; Centre National de Référence Maladies Auto-immunes Systémiques Rares du Nord, Nord-Ouest, Méditerranée et Guadeloupe (CeRAINOM), F-59000 Lille, France; Health Care Provider of the European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases (ReCONNET), France
| | - Aurélien Chepy
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France; CHU Lille, Département de Médecine Interne et Immunologie Clinique, F-59000 Lille, France; Centre National de Référence Maladies Auto-immunes Systémiques Rares du Nord, Nord-Ouest, Méditerranée et Guadeloupe (CeRAINOM), F-59000 Lille, France; Health Care Provider of the European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases (ReCONNET), France
| | - Aurore Collet
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France; CHU Lille, Institut d'Immunologie, Pôle de Biologie Pathologie Génétique, Lille, France
| | - David Launay
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France; CHU Lille, Département de Médecine Interne et Immunologie Clinique, F-59000 Lille, France; Centre National de Référence Maladies Auto-immunes Systémiques Rares du Nord, Nord-Ouest, Méditerranée et Guadeloupe (CeRAINOM), F-59000 Lille, France; Health Care Provider of the European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases (ReCONNET), France
| |
Collapse
|
5
|
Bagheri L, Javanbakht M, Malekian S, Ghahderijani BH, Taghipour S, Tanha FD, Ranjkesh M, Cegolon L, Zhao S. Antifibrotic therapeutic strategies in systemic sclerosis: Critical role of the Wnt/β-catenin and TGF-β signal transduction pathways as potential targets. Eur J Pharmacol 2025; 999:177607. [PMID: 40209848 DOI: 10.1016/j.ejphar.2025.177607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/25/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
Systemic sclerosis (SSc) is a prototypic fibrosing disorder characterized by widespread fibrosis and immune dysregulation. Current evidence highlights the intricate cross-talk between the canonical Wnt/β-catenin signaling pathway and transforming growth factor-beta (TGF-β) signaling, both of which play fundamental roles in the pathogenesis of fibrosis. This review aims to elucidate the central role of the Wnt/β-catenin-TGF-β pathway and TGF-β signal transduction pathway in fibrotic diseases, focusing on SSc. We summarized evidence from cellular biology studies, animal model investigations and clinical observations to provide a comprehensive view of the mechanisms causing pathological fibrosis. In addition, we explore the possibilities of antifibrotic therapeutic strategies against Wnt/β-catenin-TGF-β signaling to counteract fibrosis, delineating approaches for treatment of SSc patients by targeting these interconnected signaling pathways.
Collapse
Affiliation(s)
- Leyla Bagheri
- Department of Internal Medicine, Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Javanbakht
- Nephrology and Urology Research Center, Clinical Science Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sheida Malekian
- Department of Internal Medicine, Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Sadra Taghipour
- Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Fatemeh Davari Tanha
- Department of Infertility, Yas Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Luca Cegolon
- Department of Medical, Surgical & Health Sciences, University of Trieste, 34128, Trieste, Italy; Public Health Unit, University Health Agency Giuliano-Isontina (ASUGI), 34148, Trieste, Italy
| | - Shi Zhao
- School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| |
Collapse
|
6
|
Xiong H, Guo J. Targeting Hepatic Stellate Cells for the Prevention and Treatment of Liver Cirrhosis and Hepatocellular Carcinoma: Strategies and Clinical Translation. Pharmaceuticals (Basel) 2025; 18:507. [PMID: 40283943 PMCID: PMC12030350 DOI: 10.3390/ph18040507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/24/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
Hepatic stellate cells (HSC) are the major source of myofibroblasts (MFB) in fibrosis and cancer- associated fibroblasts (CAF) in both primary and metastatic liver cancer. Over the past few decades, there has been significant progress in understanding the cellular and molecular mechanisms by which liver fibrosis and HCC occur, as well as the key roles of HSC in their pathogenesis. HSC-targeted approaches using specific surface markers and receptors may enable the selective delivery of drugs, oligonucleotides, and therapeutic peptides that exert optimized anti-fibrotic and anti-HCC effects. Recent advances in omics, particularly single-cell sequencing and spatial transcriptomics, hold promise for identifying new HSC targets for diagnosing and treating liver fibrosis/cirrhosis and liver cancer.
Collapse
Affiliation(s)
- Hao Xiong
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Shanghai Institute of Liver Diseases, Fudan University, Shanghai 200032, China;
- Department of Internal Medicine, Shanghai Medical College, Fu Dan University, Shanghai 200032, China
| | - Jinsheng Guo
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Shanghai Institute of Liver Diseases, Fudan University, Shanghai 200032, China;
- Department of Internal Medicine, Shanghai Medical College, Fu Dan University, Shanghai 200032, China
| |
Collapse
|
7
|
Kamatani T, Kimura R, Ikeda S, Inoue M, Seino KI. iPSCs engrafted in allogeneic hosts without immunosuppression induce donor-specific tolerance to secondary allografts. Proc Natl Acad Sci U S A 2025; 122:e2413398122. [PMID: 40073064 PMCID: PMC11929385 DOI: 10.1073/pnas.2413398122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 02/07/2025] [Indexed: 03/14/2025] Open
Abstract
Currently, most cell or tissue transplantations using induced pluripotent stem cells (iPSCs) are anticipated to involve allogeneic iPSCs. However, the immunological properties of iPSCs in an allogeneic setting are not well understood. We previously established a mouse transplantation model of MHC-compatible/minor antigen-mismatched combinations, assuming a hypoimmunogenic iPSC-setting. Here, we found that iPSCs subcutaneously inoculated into MHC-compatible allogeneic host mice resisted rejection and formed teratomas without immunosuppressant administration. Notably, when skin grafts were transplanted onto hosts more than 40 d after the initial iPSCs inoculation, only the skin of the same strain as the initial iPSCs was engrafted. Therefore, donor-specific immune tolerance was induced by a single iPSC inoculation. Diverse analyses, including single-cell RNA-sequencing after transplantation, revealed an increase in regulatory T cell (Treg) population, particularly CD25+ CD103+ effector Tregs within the teratoma and skin grafts. The removal of CD25+ or Foxp3+ cells suppressed the increase in effector Tregs and disrupted graft acceptance, indicating the importance of these cells in the establishment of immune tolerance. Within the teratoma, we observed an increase in TGF-β2 levels, suggesting an association with the increase in effector Tregs. Our results provide important insights for future applications of allogeneic iPSC-based cell or tissue transplantation.
Collapse
Affiliation(s)
- Tomoki Kamatani
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido060-0815, Japan
| | - Reiko Kimura
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido060-0815, Japan
| | | | - Makoto Inoue
- Sumitomo Pharma, Co., Ltd., Osaka541-0045, Japan
| | - Ken-ichiro Seino
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido060-0815, Japan
| |
Collapse
|
8
|
Bao Y, Wu W, Lin J, Yang Y, Lin S, Su J, Qin Y, Wang B, Duan S. Increased HA/CD44/TGFβ signaling implicates in renal fibrosis of a Col4a5 mutant Alport mice. Mol Med 2025; 31:96. [PMID: 40075271 PMCID: PMC11905560 DOI: 10.1186/s10020-025-01146-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
X-linked Alport syndrome (XLAS) caused by X-linked COL4A5 gene mutation is a hereditary disease that affects mainly the kidney. XLAS patients, especially males whose single copy of the COL4A5 gene is disrupted, suffer from a life-threatening renal disease, the mechanism of which remains unclear. Renal fibrosis is a characteristic pathology observed in XLAS kidney tissue. However, the molecular path from COL4A5 loss-of-function to fibrotic pathology is largely unknown. On the basis of a previously established XLAS mouse model, our study revealed an activated CD44-TGFβ signaling known to strongly promote fibrosis, along with an increased level of low molecular weight hyaluronan (LMW-HA) instead of high molecular weight hyaluronan (HMW-HA), to activate CD44-dependent TGFβ signaling in XLAS renal tissues. Additionally, hyaluronan synthase 2 (HAS2), an enzyme primarily responsible for HA production, was found to be upregulated in XLAS. In particular, in vitro studies revealed that COL4A5 knockdown in human kidney-derived HEK-293 cells can upregulate HAS2 at both the RNA and protein levels. The novel contribution of our study is finding that COL4A5 deficiency may lead to HAS2 overexpression and HA accumulation to activate CD44-TGFβ signaling, thereby promoting fibrosis, possibly suggesting that HAS2 and CD44 are potential therapeutic targets for impeding renal fibrosis in XLAS.
Collapse
Affiliation(s)
- Yantao Bao
- Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, 518000, Guangdong, China
- Shenzhen Key Laboratory of Maternal and Child Health and Diseases, Shenzhen, 518000, Guangdong, China
| | - Weiqing Wu
- Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, 518000, Guangdong, China
| | - Jiyun Lin
- Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, 518000, Guangdong, China
- Shenzhen Key Laboratory of Maternal and Child Health and Diseases, Shenzhen, 518000, Guangdong, China
| | - Yuankai Yang
- Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, 518000, Guangdong, China
- Shenzhen Key Laboratory of Maternal and Child Health and Diseases, Shenzhen, 518000, Guangdong, China
| | - Sheng Lin
- Shenzhen Health Development Research and Data Management Center, Shenzhen, 518028, Guangdong, China
| | - Jindi Su
- Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, 518000, Guangdong, China
- Shenzhen Key Laboratory of Maternal and Child Health and Diseases, Shenzhen, 518000, Guangdong, China
| | - Yueyuan Qin
- Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, 518000, Guangdong, China
- Shenzhen Key Laboratory of Maternal and Child Health and Diseases, Shenzhen, 518000, Guangdong, China
| | - Baojiang Wang
- Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, 518000, Guangdong, China
- Shenzhen Key Laboratory of Maternal and Child Health and Diseases, Shenzhen, 518000, Guangdong, China
| | - Shan Duan
- Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, 518000, Guangdong, China.
- Shenzhen Key Laboratory of Maternal and Child Health and Diseases, Shenzhen, 518000, Guangdong, China.
- Laboratory of Molecular Medicine, Institute of Maternal and Child Medicine, Shenzhen Maternity & Child Healthcare Hospital, Shenzhen, 518040, Guandong, China.
| |
Collapse
|
9
|
Schwartze TA, Morosky SA, Rosato TL, Henrickson A, Lin G, Hinck CS, Taylor AB, Olsen SK, Calero G, Demeler B, Roman BL, Hinck AP. Molecular Basis of Interchain Disulfide Bond Formation in BMP-9 and BMP-10. J Mol Biol 2025; 437:168935. [PMID: 39793884 PMCID: PMC12148503 DOI: 10.1016/j.jmb.2025.168935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/29/2024] [Accepted: 01/04/2025] [Indexed: 01/13/2025]
Abstract
BMP-9 and BMP-10 are TGF-β family signaling ligands naturally secreted into blood. They act on endothelial cells and are required for proper development and maintenance of the vasculature. In hereditary hemorrhagic telangiectasia, regulation is disrupted due to mutations in the BMP-9/10 pathway, namely in the type I receptor ALK1 or the co-receptor endoglin. It has been demonstrated that BMP-9/10 heterodimers are the most abundant signaling species in the blood, but it is unclear how they form. Unlike other ligands of the TGF-β family, BMP-9 and -10 are secreted as a mixture of disulfide-linked dimers and monomers, in which the interchain cysteine (Cys-392) remains either paired or unpaired. Here, we show that the monomers are secreted in a cysteinylated form that crystallizes as a non-covalent dimer. Despite this, monomers do not self-associate at micromolar or lower concentrations and have reduced signaling potency compared to disulfide-linked dimers. We further show using protein crystallography that the interchain disulfide of the BMP-9 homodimer adopts a highly strained syn-periplanar conformation. Hence, geometric strain across the interchain disulfide is responsible for infrequent interchain disulfide bond formation, not the cysteinylation. Additionally, we show that interchain disulfide bond formation occurs less in BMP-9 than BMP-10 and these frequencies can be reversed by swapping residues near the interchain disulfide that form attractive interactions with the opposing protomer. Finally, we discuss the implications of these observations on BMP-9/10 heterodimer formation.
Collapse
Affiliation(s)
- Tristin A Schwartze
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Stefanie A Morosky
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Teresa L Rosato
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Amy Henrickson
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Guowu Lin
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Cynthia S Hinck
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Alexander B Taylor
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, TX 78229, USA
| | - Shaun K Olsen
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, TX 78229, USA
| | - Guillermo Calero
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Borries Demeler
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Beth L Roman
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA; Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Andrew P Hinck
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
10
|
Guo C, Sun H, Du Y, Dai X, Pang Y, Han Z, Xiong X, Li S, Zhang J, Zheng Q, Gui X. Specifically blocking αvβ8-mediated TGF-β signaling to reverse immunosuppression by modulating macrophage polarization. J Exp Clin Cancer Res 2025; 44:1. [PMID: 39743547 PMCID: PMC11697059 DOI: 10.1186/s13046-024-03250-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 12/05/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Targeting the TGF-β pathway in tumor therapy has proven challenging due to the highly context-dependent functions of TGF-β. Integrin αvβ8, a pivotal activator of TGF-β, has been implicated in TGF-β signaling within tumors, as demonstrated by the significant anti-tumor effects of anti-αvβ8 antibodies. Nevertheless, the expression profile of αvβ8 remains a subject of debate, and the precise mechanisms underlying the anti-tumor effects of anti-αvβ8 antibodies are not yet fully elucidated. METHODS We utilized single-cell RNA sequencing to assess αvβ8 expression across various human tumors. An anti-αvβ8 antibody was developed and characterized for its binding and blocking properties in vitro. Cryo-EM single-particle analysis was employed to study the detailed interaction between αvβ8 and the antibody Fab fragment. The anti-tumor efficacy of the antibody was evaluated in syngeneic mouse models with varying levels of αvβ8 expression, both as a monotherapy and in combination with PD-1 antibodies. Human PBMCs were isolated to investigate αvβ8 expression in myeloid cells, and macrophages were exposed to the antibody to study its impact on macrophage polarization. Pharmacokinetic studies of the αvβ8 antibody were conducted in cynomolgus monkeys. RESULTS Integrin αvβ8 is notably expressed in certain tumor types and tumor-infiltrating macrophages. The specific αvβ8 antibody 130H2 demonstrated high affinity, specificity, and blocking potency in vitro. Cryo-EM analysis further revealed that 130H2 interacts exclusively with the β8 subunit, without binding to the αv subunit. In vivo studies showed that this antibody significantly inhibited tumor growth and alleviated immunosuppression by promoting immune cell infiltration. Furthermore, combining the antibody with PD-1 inhibition produced a synergistic anti-tumor effect. In human PBMCs, monocytes exhibited high αvβ8 expression, and the antibody directly modulated macrophage polarization. Tumors with elevated αvβ8 expression were particularly responsive to 130H2 treatment. Additionally, favorable pharmacokinetic properties were observed in cynomolgus monkeys. CONCLUSIONS In summary, integrin αvβ8 is highly expressed in certain tumors and tumor-infiltrating macrophages. Targeting αvβ8 with a blocking antibody significantly inhibits tumor growth by modulating macrophage polarization and enhancing immune cell infiltration. Combining αvβ8 targeting with PD-1 treatment markedly increases the sensitivity of immune-excluded tumors. These results support further clinical evaluation of αvβ8 antibodies.
Collapse
Affiliation(s)
- Cuicui Guo
- Mabwell (Shanghai) Bioscience Co., Ltd, Shanghai, 201210, China
| | - Hui Sun
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, China
| | - Yulei Du
- Mabwell (Shanghai) Bioscience Co., Ltd, Shanghai, 201210, China
| | - Xiaodong Dai
- Mabwell (Shanghai) Bioscience Co., Ltd, Shanghai, 201210, China
| | - Yu Pang
- Mabwell (Shanghai) Bioscience Co., Ltd, Shanghai, 201210, China
| | - Zhen Han
- Mabwell (Shanghai) Bioscience Co., Ltd, Shanghai, 201210, China
| | - Xinhui Xiong
- Nanjing Novoacine Biotechnology Co., Ltd, Nanjing, 210032, China
| | - Shaowei Li
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, China
| | - Junhua Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| | - Qingbing Zheng
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, China.
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen, China.
| | - Xun Gui
- Mabwell (Shanghai) Bioscience Co., Ltd, Shanghai, 201210, China.
| |
Collapse
|
11
|
Pu H, Lei J, Du G, Huang Q, Qiu P, Liu J, Li C, Ying X, Liu K, Xu Z, Lu X, Wang R. Antiproliferative agent attenuates postthrombotic vein wall remodeling in murine and human subjects. J Thromb Haemost 2025; 23:325-340. [PMID: 39357567 DOI: 10.1016/j.jtha.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/21/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Despite appropriate treatment, up to 50% of patients with proximal deep vein thrombosis will develop postthrombotic syndrome (PTS). Once PTS occurs, there is no specific treatment, and some patients constantly experience intolerable symptoms. Hence, prevention of PTS is important. OBJECTIVES To characterize vein wall remodeling after thrombus and investigate the effects of antiproliferative agent on postthrombotic vein wall remodeling in murine and human subjects. METHODS Features of postthrombotic vein wall remodeling in murine and human subjects were characterized using imaging and histologic examinations. Paclitaxel-loaded hydrogels were used to assess the effects of antiproliferative agent on the remodeling in murine model. Based on the abovementioned results, a pilot study was conducted to assess the effects of paclitaxel-coated balloon dilation in patients with severe PTS experiencing intolerable symptoms. The control cohort was obtained by 1:1 propensity score matching from a prospective database. RESULTS Structural and functional alterations in postthrombotic vein wall were verified by imaging and histologic examinations, and predominant active α-smooth muscle actin-positive cells and fibroblast-specific protein 1-positive cells proliferation was observed. In the murine model, the application of paclitaxel-loaded hydrogels inhibited the remodeling. In the pilot clinical study, patients receiving drug-coated balloon demonstrated benefits in Villalta scores and venous clinical severity scores compared with those not receiving drug-coated balloon, and no severe adverse events were reported except for thrombosis recurrence. CONCLUSION Cell proliferation plays an important role in postthrombotic vein wall remodeling. Inhibition of cell proliferation inhibits the remodeling in murine model and may reduce signs and symptoms in patients with severe PTS.
Collapse
Affiliation(s)
- Hongji Pu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jiahao Lei
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Guodong Du
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Qun Huang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Peng Qiu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Junchao Liu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Chenshu Li
- Chuzhou First People's Hospital, the Affiliated Chuzhou Hospital of Anhui Medical University, Hefei, China
| | - Xiaoliang Ying
- Chuzhou First People's Hospital, the Affiliated Chuzhou Hospital of Anhui Medical University, Hefei, China
| | - Kailang Liu
- Chuzhou First People's Hospital, the Affiliated Chuzhou Hospital of Anhui Medical University, Hefei, China
| | - Zhijue Xu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China; Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Xinwu Lu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| | - Ruihua Wang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| |
Collapse
|
12
|
Gill SK, Gomer RH. New therapeutic approaches for fibrosis: harnessing translational regulation. Trends Mol Med 2024:S1471-4914(24)00312-5. [PMID: 39690057 DOI: 10.1016/j.molmed.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/19/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and debilitating lung disease characterized by excessive extracellular matrix deposition and tissue scarring. The median survival of patients with IPF is only 4.5 years following diagnosis, and effective treatment options are scarce. Recent studies found aberrant translation of specific mRNAs in various fibrosing diseases, highlighting the role of key translational regulators, including RNA binding proteins (RBPs), microRNAs, long noncoding RNAs, and transcript modifications. Notably, when inhibited, 10 profibrotic RBPs cause a significant attenuation of fibrosis, illuminating potential therapeutic targets. In this review, we describe translational regulation in fibrosis and highlight a model where a conserved evolutionary mechanism may explain this regulation.
Collapse
Affiliation(s)
- Sumeen Kaur Gill
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Richard H Gomer
- Department of Biology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
13
|
Wang S, Gao J, Yang M, Zhang G, Yin L, Tong X. OPN-Mediated Crosstalk Between Hepatocyte E4BP4 and Hepatic Stellate Cells Promotes MASH-Associated Liver Fibrosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405678. [PMID: 39473081 PMCID: PMC11653607 DOI: 10.1002/advs.202405678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/06/2024] [Indexed: 12/19/2024]
Abstract
Stressed hepatocytes promote liver fibrosis through communications with hepatic stellate cells (HSCs) during chronic liver injury. However, intra-hepatocyte players that facilitate such cell-to-cell communications are largely undefined. It is previously reported that hepatocyte E4BP4 is potently induced by ER stress and hepatocyte deletion of E4bp4 protects mice from high-fat diet-induced liver steatosis. Here how hepatocyte E4bp4 deficiency impacts the activation of HSCs and the progression toward MASH-associated liver fibrosis is examined. Hepatic E4BP4 is increased in mouse models of NASH diet- or CCl4-induced liver fibrosis. Hepatocyte-specific E4bp4 deletion protected mice against NASH diet-induced liver injury, inflammation, and fibrosis without impacting liver steatosis. Hepatocyte E4BP4 overexpression activated HSCs in a medium transfer experiment, whereas hepatocyte E4bp4 depletion did the opposite. RNA-Seq analysis identified the pro-fibrogenic factor OPN as a critical target of E4BP4 within hepatocytes. Antibody neutralization or shRNA depletion of Opn abrogated hepatocyte E4BP4-induced HSC activation. E4BP4 interacted with and stabilized YAP, an established activator of OPN. Loss of hepatic Yap blocked OPN induction in the liver of Ad-E4bp4-injected mice. Hepatocyte E4BP4 induces OPN via YAP to activate HSCs and promote liver fibrosis during diet-induced MASH. Inhibition of the hepatocyte E4BP4-OPN pathway could offer a novel therapeutic avenue for treating MASLD/MASH.
Collapse
Affiliation(s)
- Sujuan Wang
- Department of Infectious DiseasesThe Second Xiangya HospitalCentral South University139 Renmin Middle Rd, Furong DistrictChangshaHunan410011P. R. China
| | - Jiashi Gao
- Department of Infectious DiseasesThe Second Xiangya HospitalCentral South University139 Renmin Middle Rd, Furong DistrictChangshaHunan410011P. R. China
- Department of Molecular & Integrative PhysiologyUniversity of Michigan Medical SchoolNCRC 20–3843, 2800 Plymouth RoadAnn ArborMI48105USA
- Caswell Diabetes InstituteUniversity of Michigan Medical SchoolNCRC 20–3843, 2800 Plymouth RoadAnn ArborMI48105USA
| | - Meichan Yang
- Department of RadiologyGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical University106 Zhongshan 2nd RoadGuangzhouGuangdong51008P. R. China
- Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and ApplicationGuangzhouGuangdong51008P. R. China
| | - Gary Zhang
- Department of Molecular & Integrative PhysiologyUniversity of Michigan Medical SchoolNCRC 20–3843, 2800 Plymouth RoadAnn ArborMI48105USA
- Caswell Diabetes InstituteUniversity of Michigan Medical SchoolNCRC 20–3843, 2800 Plymouth RoadAnn ArborMI48105USA
| | - Lei Yin
- Department of Molecular & Integrative PhysiologyUniversity of Michigan Medical SchoolNCRC 20–3843, 2800 Plymouth RoadAnn ArborMI48105USA
- Caswell Diabetes InstituteUniversity of Michigan Medical SchoolNCRC 20–3843, 2800 Plymouth RoadAnn ArborMI48105USA
| | - Xin Tong
- Department of Molecular & Integrative PhysiologyUniversity of Michigan Medical SchoolNCRC 20–3843, 2800 Plymouth RoadAnn ArborMI48105USA
- Caswell Diabetes InstituteUniversity of Michigan Medical SchoolNCRC 20–3843, 2800 Plymouth RoadAnn ArborMI48105USA
| |
Collapse
|
14
|
Jacobs I, Deleu S, Ke BJ, Cremer J, Dilissen E, De Hertogh G, Martens T, Vanden Berghe P, Matteoli G, Vermeire S, Breynaert C, Vanuytsel T, Verstockt B. Eosinophils mitigate intestinal fibrosis while promoting inflammation in a chronic DSS colitis model and co-culture model with fibroblasts. Sci Rep 2024; 14:27133. [PMID: 39511371 PMCID: PMC11543987 DOI: 10.1038/s41598-024-78602-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 11/01/2024] [Indexed: 11/15/2024] Open
Abstract
Eosinophils were previously reported to play a role in intestinal inflammation and fibrosis. Whether this is as a bystander or as an active participant is still up for debate. Moreover, data describing a causal relationship between eosinophils and intestinal fibrosis are scarce. We here aimed to elucidate the role of eosinophils in the pathogenesis of intestinal inflammation and fibrosis. Therefore, we stimulated fibroblasts with (active) eosinophils or with Eosinophil Cationic Protein (ECP), and assessed fibroblast activation via flow cytometry and immunocytochemistry. We observed decreased fibroblast activation when fibroblasts were co-cultured with active eosinophils or after stimulation with ECP in comparison to monoculture conditions, but not in case of co-culturing with inactivated eosinophils. Furthermore, eosinophil depletion in a RAG-/- chronic DSS colitis model resulted in decreased inflammation, but increased development of fibrosis. In this model, we could show increased expression of the anti-inflammatory protein IL-10 and the pro-fibrotic factors IL-1β, FGF-21 and TGF-β3 in the eosinophil-depleted mice compared to the control mice. In conclusion, our in vitro data revealed an anti-fibrotic role for eosinophils. In line, in a chronic murine colitis model, we observed a pro-inflammatory, but an anti-fibrotic, role for eosinophils. Furthermore, we identified an increased presence of anti-inflammatory and pro-fibrotic cytokines in the eosinophil depleted group.
Collapse
Affiliation(s)
- Inge Jacobs
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
- Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Sara Deleu
- Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Bo-Jun Ke
- Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Jonathan Cremer
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
| | - Ellen Dilissen
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
| | - Gert De Hertogh
- Department of Imaging and Pathology, Translational Cell & Tissue Research, KU Leuven, Leuven, Belgium
| | - Tobie Martens
- Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Cell and tissue Imaging Cluster (CIC), KU Leuven, Leuven, Belgium
| | - Pieter Vanden Berghe
- Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Cell and tissue Imaging Cluster (CIC), KU Leuven, Leuven, Belgium
| | - Gianluca Matteoli
- Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Séverine Vermeire
- Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Herestraat 49, Belgium
| | - Christine Breynaert
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
- Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Tim Vanuytsel
- Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Herestraat 49, Belgium
| | - Bram Verstockt
- Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium.
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Herestraat 49, Belgium.
| |
Collapse
|
15
|
Schwartze TA, Morosky SA, Rosato TL, Henrickson A, Lin G, Hinck CS, Taylor AB, Olsen SK, Calero G, Demeler B, Roman BL, Hinck AP. Molecular basis of interchain disulfide-bond formation in BMP-9 and BMP-10. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618187. [PMID: 39464140 PMCID: PMC11507788 DOI: 10.1101/2024.10.14.618187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
BMP-9 and BMP-10 are TGF-β family signaling ligands naturally secreted into blood. They act on endothelial cells and are required for proper development and maintenance of the vasculature. In hereditary hemorrhagic telangiectasia, regulation is disrupted due to mutations in the BMP-9/10 pathway, namely in the type I receptor ALK1 or the co-receptor endoglin. It has been demonstrated that BMP-9/10 heterodimers are the most abundant signaling species in the blood, but it is unclear how they form. Unlike other ligands of the TGF-β family, BMP-9 and -10 are secreted as a mixture of monomers and disulfide-linked dimers. Here, we show that the monomers are secreted in a cysteinylated form that crystallizes as a noncovalent dimer. Despite this, monomers do not self-associate at micromolar or lower concentrations and have reduced signaling potency compared to dimers. We further show using protein crystallography that the interchain disulfide of the BMP-9 homodimer adopts a highly strained syn-periplanar conformation. Hence, geometric strain across the interchain disulfide is responsible for the reduced propensity to dimerize, not the cysteinylation. Additionally, we show that the dimerization propensity of BMP-9 is lower than BMP-10 and these propensities can be reversed by swapping residues near the interchain disulfide that form attractive interactions with the opposing monomer. Finally, we discuss the implications of these observations on BMP-9/10 heterodimer formation.
Collapse
Affiliation(s)
- Tristin A. Schwartze
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Stefanie A. Morosky
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Teresa L. Rosato
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Amy Henrickson
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Guowu Lin
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Cynthia S. Hinck
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Alexander B. Taylor
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, TX 78229, USA
| | - Shaun K. Olsen
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, TX 78229, USA
| | - Guillermo Calero
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Borries Demeler
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Beth L. Roman
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Andrew P. Hinck
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
16
|
Liu Z, Liu Y, Xing T, Li J, Zhang L, Zhao L, Jiang Y, Gao F. Unraveling the role of long non-coding RNAs in chronic heat stress-induced muscle injury in broilers. J Anim Sci Biotechnol 2024; 15:135. [PMID: 39375773 PMCID: PMC11459952 DOI: 10.1186/s40104-024-01093-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/19/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Chronic heat stress (CHS) is a detrimental environmental stressor with a negative impact on the meat quality of broilers. However, the underlying mechanisms are not fully understood. This study investigates the effects of CHS on long non-coding RNA (lncRNA) expression and muscle injury in broilers, with a focus on its implications for meat quality. RESULTS The results showed that CHS diminished breast muscle yield, elevated abdominal fat deposition, induced cellular apoptosis (P < 0.05), and caused myofibrosis. Transcriptomic analysis revealed 151 differentially expressed (DE) lncRNAs when comparing the normal control (NC) and HS groups, 214 DE lncRNAs when comparing the HS and PF groups, and 79 DE lncRNAs when comparing the NC and pair-fed (PF) groups. After eliminating the confounding effect of feed intake, 68 lncRNAs were identified, primarily associated with cellular growth and death, signal transduction, and metabolic regulation. Notably, the apoptosis-related pathway P53, lysosomes, and the fibrosis-related gene TGF-β2 were significantly upregulated by lncRNAs. CONCLUSIONS These findings indicate that chronic heat stress induces cellular apoptosis and muscle injury through lncRNA, leading to connective tissue accumulation, which likely contributes to reduced breast muscle yield and meat quality in broilers.
Collapse
Affiliation(s)
- Zhen Liu
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- Anhui Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Yingsen Liu
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Tong Xing
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jiaolong Li
- Institute of Agro-Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Lin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Liang Zhao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yun Jiang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Feng Gao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
17
|
Zargar AM, Ali Z, Fallah A, Mohagheghi S. TGF-β/Smad signaling pathway in fatty liver disease: a case-control study. Mol Biol Rep 2024; 51:1031. [PMID: 39352573 DOI: 10.1007/s11033-024-09973-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 09/24/2024] [Indexed: 02/06/2025]
Abstract
BACKGROUND Fatty liver disease is a metabolic disorder that recently has been classified into two categories: metabolic dysfunction-associated fatty liver disease (MAFLD) and non-MAFLD. TGF-β signaling pathway is likely a significant factor in the pathogenesis of this condition, exerting its effects through its downstream signaling proteins, Smad2/3. Accordingly, this study aimed to investigate the TGF-β signaling pathway in the white blood cells (WBCs) of patients with MAFLD compared to those with non-MAFLD and control groups. METHODS AND RESULTS In this study, 41 patients with fatty liver were evaluated, comprising 22 patients with MAFLD and 19 patients with non-MAFLD, and compared to 22 healthy controls. Gene expression of TGF-β1, TGF-β3, and CTGF were quantified using qRT-PCR, and the protein expressions of Smad2/3 and P-Smad2/3 were analyzed using western blotting. Gene expression analysis revealed a significant decrease in the gene expressions of the TGF-β1 and TGF-β3 and an increase in CTGF gene expression in patients with MAFLD and non-MAFLD compared to the control group. Notably, the Smad2/3 protein expression was significantly higher in the non-MAFLD group compared to the control group (P < 0.05). On the other hand, the P-smad2/3 protein expression was significantly elevated in the MAFLD group compared to the control group (P < 0.001). CONCLUSIONS TGF-β signaling pathway in WBCs of patients with fatty liver are affected by a complex signaling pathway. However, metabolic factors most probably affect TGF-β1 gene expression and its downstream signaling proteins more than TGF-β3.
Collapse
Affiliation(s)
- Amir Mohammad Zargar
- Department of Clinical Biochemistry, Faculty of Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Hamadan, Iran
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Ali
- Department of Clinical Biochemistry, Faculty of Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Hamadan, Iran
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Aida Fallah
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sina Mohagheghi
- Department of Clinical Biochemistry, Faculty of Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Hamadan, Iran.
| |
Collapse
|
18
|
Wei J, Xu S, Liu Y, Zhang L, Chen H, Li J, Duan M, Niu Z, Huang M, Zhang D, Zhou X, Xie J. TGF-β2 enhances glycolysis in chondrocytes via TβRI/p-Smad3 signaling pathway. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119788. [PMID: 38879132 DOI: 10.1016/j.bbamcr.2024.119788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/22/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024]
Abstract
Chondrocytes rely heavily on glycolysis to maintain the metabolic homeostasis and cartilage matrix turnover. Glycolysis in chondrocytes is remodeled by diverse biochemical and biomechanical factors due to the sporty joint microenvironment. Transforming growth factor-β2 (TGF-β2), one of the most abundant TGF-β superfamily members in chondrocytes, has increasingly attracted attention in cartilage physiology and pathology. Although previous studies have emphasized the importance of TGF-β superfamily members on cell metabolism, whether and how TGF-β2 modulates glycolysis in chondrocytes remains elusive. In the current study, we investigated the effects of TGF-β2 on glycolysis in chondrocytes and explored the underlying biomechanisms. The results showed that TGF-β2 could enhance glycolysis in chondrocytes by increasing glucose consumption, up-regulating liver-type ATP-dependent 6-phosphofructokinase (Pfkl) expression, and boosting lactate production. The TGF-β2 signal entered chondrocytes via TGF-β receptor type I (TβRI), and activated p-Smad3 signaling to regulate the glycolytic pathway. Subsequent experiments employing specific inhibitors of TβRI and p-Smad3 further substantiated the role of TGF-β2 in enhancement of glycolysis via TβRI/p-Smad3 axis in chondrocytes. The results provide new understanding of the metabolic homeostasis in chondrocytes induced by TGF-β superfamily and might shed light on the prevention and treatment of related osteoarticular diseases.
Collapse
Affiliation(s)
- Jieya Wei
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Siqun Xu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yang Liu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Li Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hao Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jiazhou Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Mengmeng Duan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zhixing Niu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Minglei Huang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Jing Xie
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
19
|
Ding X, Li X, Fang R, Yue P, Jia Y, Li E, Hu Y, Zhou H, Song X. Targeting PYK2, entrectinib allays anterior subcapsular cataracts in mice by regulating TGFβ2 signaling pathway. Mol Med 2024; 30:163. [PMID: 39333897 PMCID: PMC11430177 DOI: 10.1186/s10020-024-00921-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Fibrosis cataract occurs in patients receiving cataract extraction. Still, no medication that can cure the disease exists in clinical. This study aims to investigate the effects and mechanisms of Entrectinib on fibrotic cataract in vitro and in vivo. METHODS The human lens cells line SRA 01/04 and C57BL/6J mice were applied in the study. Entrectinib was used in animals and cells. Cataract severity was assessed by slit lamp and Hematoxylin and Eosin staining. Expression of alpha-smooth muscle actin, fibronectin, and collagen I were examined by real-time quantitative PCR, western blotting, and immunofluorescence. Cell proliferation was evaluated by Cell Counting Kit-8. Cell migration was measured by wound healing and transwell assays. Molecular docking, Drug Affinity Responsive Target Stability, and Cellular Thermal Shift Assay were applied to seek and certify the target of Entrectinib treating fibrosis cataract. RESULTS Entrectinib can ameliorate fibrotic cataract in vitro and in vivo. At the RNA and the protein levels, the expression of alpha-smooth muscle actin, collagen I, and fibronectin can be downgraded by Entrectinib, while E-cadherin can be upregulated. The migration and proliferation of cells were inhibited by Entrectinib. Mechanistically, Entrectinib obstructs TGFβ2/Smad and TGFβ2/non-Smad signaling pathways to hinder the fibrosis cataract by targeting PYK2 protein. CONCLUSIONS Targeting with PYK2, Entrectinib can block TGF-β2/Smad and TGF-β2/non-Smad signaling pathways, lessen the activation of EMT, and alleviate fibrosis cataract. Entrectinib may be a potential treatment for fibrosis cataract in clinic.
Collapse
Affiliation(s)
- Xuefei Ding
- Beijing Tongren Hospital, Beijing, 100730, China
- Capital Medical University, Beijing, 100730, China
| | - Xiaohe Li
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nan Kai University, Tianjin, China
| | - Rui Fang
- Beijing Tongren Hospital, Beijing, 100730, China
- Capital Medical University, Beijing, 100730, China
| | - Peilin Yue
- Beijing Tongren Hospital, Beijing, 100730, China
- Capital Medical University, Beijing, 100730, China
| | - Yuxuan Jia
- Beijing Tongren Hospital, Beijing, 100730, China
- Capital Medical University, Beijing, 100730, China
| | - Enjie Li
- Beijing Tongren Hospital, Beijing, 100730, China
- Capital Medical University, Beijing, 100730, China
| | - Yayue Hu
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nan Kai University, Tianjin, China
| | - Honggang Zhou
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nan Kai University, Tianjin, China.
| | - Xudong Song
- Beijing Tongren Hospital, Beijing, 100730, China.
- Capital Medical University, Beijing, 100730, China.
- Beijing Tongren Eye Center, Beijing, 100730, China.
- Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, 100730, China.
| |
Collapse
|
20
|
Levitte S, Khan I, Iyahen V, Ziai J, Gubatan J, Sheng R, Glickstein SB, Sun T, Park KT, McBride J, Keir M. Differential expression of small bowel TGFβ1 and TGFβ3 characterizes intestinal strictures in patients with fibrostenotic Crohn's disease. Histochem Cell Biol 2024; 162:225-230. [PMID: 38705911 DOI: 10.1007/s00418-024-02290-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2024] [Indexed: 05/07/2024]
Abstract
Small bowel strictures remain a debilitating consequence of Crohn's disease and contribute to poor outcomes for patients. Recently, TGFβ has been identified as an important driver of intestinal fibrosis. We studied the localization of TGFβ isoforms in ileal strictures of patients with Crohn's disease using in situ hybridization to understand TGFβ's role in stricture formation. The mucosa of strictures was characterized by higher TGFβ1 while the stricture submucosa showed higher TGFβ3 compared to normal ileum from patients without Crohn's disease (p = 0.02 and p = 0.044, respectively). We correlated these findings with single-cell transcriptomics which demonstrated that TGFβ3 transcripts overall are very rare, which may partially explain why its role in intestinal fibrosis has remained unclear to date. There were no significant differences in fibroblast or B cell TGFβ1 and/or TGFβ3 expression in inflamed vs. noninflamed ileum. We discuss the implications of these findings for therapeutic development strategies to treat patients with fibrostenotic Crohn's disease.
Collapse
Affiliation(s)
- Steven Levitte
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Stanford University, 750 Welch Rd Ste 116, Palo Alto, CA, 94304, USA.
| | - Ibaad Khan
- Morehouse School of Medicine, Atlanta, GA, USA
| | | | - James Ziai
- Genentech, Inc, South San Francisco, CA, USA
| | - John Gubatan
- Division of Gastroenterology and Hepatology, Stanford University, Palo Alto, CA, USA
| | | | | | - Tianhe Sun
- Genentech, Inc, South San Francisco, CA, USA
| | - K T Park
- Genentech, Inc, South San Francisco, CA, USA
| | | | - Mary Keir
- Genentech, Inc, South San Francisco, CA, USA
| |
Collapse
|
21
|
Geng J, Zhang X, Zhang Y, Meng X, Sun J, Zhou B, Ma J. TGFβ2 mediates oxidative stress-induced epithelial-to-mesenchymal transition of bladder smooth muscle. In Vitro Cell Dev Biol Anim 2024; 60:793-804. [PMID: 38409639 PMCID: PMC11297077 DOI: 10.1007/s11626-024-00864-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 02/05/2024] [Indexed: 02/28/2024]
Abstract
Bladder outlet obstruction (BOO) is the primary clinical manifestation of benign prostatic hyperplasia, the most common urinary system disease in elderly men, and leads to associated lower urinary tract symptoms. Although BOO is reportedly associated with increased systemic oxidative stress (OS), the underlying mechanism remains unclear. The elucidation of this mechanism is the primary aim of this study. A Sprague-Dawley rat model of BOO was constructed and used for urodynamic monitoring. The bladder tissue of rats was collected and subjected to real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR), histological examination, and immunohistochemical staining. Through bioinformatics prediction, we found that transforming growth factor β2 (TGFβ2) expression was upregulated in rats with BOO compared with normal bladder tissue. In vitro analyses using primary bladder smooth muscle cells (BSMCs) revealed that hydrogen peroxide (H2O2) induced TGFβ2 expression. Moreover, H2O2 induced epithelial-to-mesenchymal transition (EMT) by reducing E-cadherin, an endothelial marker and CK-18, a cytokeratin maker, and increasing mesenchymal markers, including N-cadherin, vimentin, and α-smooth muscle actin (α-SMA) levels. The downregulation of TGFβ2 expression in BSMCs using siRNA technology alleviated H2O2-induced changes in EMT marker expression. The findings of the study indicate that TGFβ2 plays a crucial role in BOO by participating in OS-induced EMT in BSMCs.
Collapse
Affiliation(s)
- Jingwen Geng
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, Henan, China
| | - Xiaofan Zhang
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, Henan, China
| | - Yansong Zhang
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, Henan, China
| | - Xiaojia Meng
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, Henan, China
| | - Jinqi Sun
- Clinical Laboratory, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, Henan, China
| | - Bo Zhou
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, Henan, China
| | - Jun Ma
- Clinical Laboratory, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, Henan, China.
| |
Collapse
|
22
|
Snyder Y, Mann FAT, Middleton J, Murashita T, Carney J, Bianco RW, Jana S. Non-immune factors cause prolonged myofibroblast phenotype in implanted synthetic heart valve scaffolds. APPLIED MATERIALS TODAY 2024; 39:102323. [PMID: 39131741 PMCID: PMC11308761 DOI: 10.1016/j.apmt.2024.102323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The clinical application of heart valve scaffolds is hindered by complications associated with the activation of valvular interstitial cell-like (VIC-like) cells and their transdifferentiation into myofibroblasts. This study aimed to examine several molecular pathway(s) that may trigger the overactive myofibroblast phenotypes in the implanted scaffolds. So, we investigated the influence of three molecular pathways - macrophage-induced inflammation, the TGF-β1-SMAD2, and WNT/β-catenin β on VIC-like cells during tissue engineering of heart valve scaffolds. We implanted electrospun heart valve scaffolds in adult sheep for up to 6 months in the right ventricular outflow tract (RVOT) and analyzed biomolecular (gene and protein) expression associated with the above three pathways by the scaffold infiltrating cells. The results showed a gradual increase in gene and protein expression of markers related to the activation of VIC-like cells and the myofibroblast phenotypes over 6 months of scaffold implantation. Conversely, there was a gradual increase in macrophage activity for the first three months after scaffold implantation. However, a decrease in macrophage activity from three to six months of scaffold tissue engineering suggested that immunological signal factors were not the primary cause of myofibroblast phenotype. Similarly, the gene and protein expression of factors associated with the TGF-β1-SMAD2 pathway in the cells increased in the first three months but declined in the next three months. Contrastingly, the gene and protein expression of factors associated with the WNT/β-catenin pathway increased significantly over the six-month study. Thus, the WNT/β-catenin pathway could be the predominant mechanism in activating VIC-like cells and subsequent myofibroblast phenotype.
Collapse
Affiliation(s)
- Yuriy Snyder
- Department of Chemical and Biomedical Engineering, University of Missouri, 1406 Rollins Street, Columbia, MO 65211, USA
| | - FA Tony Mann
- Veterinary Health Center, University of Missouri, 900 East Campus Drive, Columbia, MO 65211-0001
| | - John Middleton
- Veterinary Health Center, University of Missouri, 900 East Campus Drive, Columbia, MO 65211-0001
| | - Takashi Murashita
- Department of Surgery, School of Medicine, University of Missouri, One Hospital Drive, Columbia, MO 65212
| | - John Carney
- Experimental Surgical Services, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN 55455
| | - Richard W. Bianco
- Experimental Surgical Services, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN 55455
| | - Soumen Jana
- Department of Chemical and Biomedical Engineering, University of Missouri, 1406 Rollins Street, Columbia, MO 65211, USA
| |
Collapse
|
23
|
Jackson JW, Frederick C Streich, Pal A, Coricor G, Boston C, Brueckner CT, Canonico K, Chapron C, Cote S, Dagbay KB, Danehy FT, Kavosi M, Kumar S, Lin S, Littlefield C, Looby K, Manohar R, Martin CJ, Wood M, Zawadzka A, Wawersik S, Nicholls SB, Datta A, Buckler A, Schürpf T, Carven GJ, Qatanani M, Fogel AI. An antibody that inhibits TGF-β1 release from latent extracellular matrix complexes attenuates the progression of renal fibrosis. Sci Signal 2024; 17:eadn6052. [PMID: 38980922 DOI: 10.1126/scisignal.adn6052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/11/2024] [Indexed: 07/11/2024]
Abstract
Inhibitors of the transforming growth factor-β (TGF-β) pathway are potentially promising antifibrotic therapies, but nonselective simultaneous inhibition of all three TGF-β homologs has safety liabilities. TGF-β1 is noncovalently bound to a latency-associated peptide that is, in turn, covalently bound to different presenting molecules within large latent complexes. The latent TGF-β-binding proteins (LTBPs) present TGF-β1 in the extracellular matrix, and TGF-β1 is presented on immune cells by two transmembrane proteins, glycoprotein A repetitions predominant (GARP) and leucine-rich repeat protein 33 (LRRC33). Here, we describe LTBP-49247, an antibody that selectively bound to and inhibited the activation of TGF-β1 presented by LTBPs but did not bind to TGF-β1 presented by GARP or LRRC33. Structural studies demonstrated that LTBP-49247 recognized an epitope on LTBP-presented TGF-β1 that is not accessible on GARP- or LRRC33-presented TGF-β1, explaining the antibody's selectivity for LTBP-complexed TGF-β1. In two rodent models of kidney fibrosis of different etiologies, LTBP-49247 attenuated fibrotic progression, indicating the central role of LTBP-presented TGF-β1 in renal fibrosis. In mice, LTBP-49247 did not have the toxic effects associated with less selective TGF-β inhibitors. These results establish the feasibility of selectively targeting LTBP-bound TGF-β1 as an approach for treating fibrosis.
Collapse
Affiliation(s)
| | | | - Ajai Pal
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | - George Coricor
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | - Chris Boston
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | | | | | | | - Shaun Cote
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | - Kevin B Dagbay
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | | | - Mania Kavosi
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | - Sandeep Kumar
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | - Susan Lin
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | | | - Kailyn Looby
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | - Rohan Manohar
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | | | - Marcie Wood
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
- ToxStrategies LLC, 23501 Cinco Ranch Boulevard, Katy, TX 77494, USA
| | - Agatha Zawadzka
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | - Stefan Wawersik
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | | | - Abhishek Datta
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | - Alan Buckler
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | - Thomas Schürpf
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | | | | | - Adam I Fogel
- Scholar Rock Inc., 301 Binney Street, Cambridge, MA 02142, USA
| |
Collapse
|
24
|
Zhang W, Peng Q, Huang X, Huang Q, Zhang Z, Li F, Zheng N, Shi B, Fan Z, Maj T, Chen R. Commensal microbiome dysbiosis elicits interleukin-8 signaling to drive fibrotic skin disease. PNAS NEXUS 2024; 3:pgae273. [PMID: 39081787 PMCID: PMC11287872 DOI: 10.1093/pnasnexus/pgae273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/22/2024] [Indexed: 08/02/2024]
Abstract
Wound healing is an intensely studied topic involved in many relevant pathophysiological processes, including fibrosis. Despite the large interest in fibrosis, the network that is related to commensal microbiota and skin fibrosis remains mysterious. Here, we pay attention to keloid, a classical yet intractable skin fibrotic disease to establish the association between commensal microbiota to scaring tissue. Our histological data reveal the presence of microbiota in the keloids. 16S rRNA sequencing characterizes microbial composition and divergence between the pathological and normal skin tissues. Moreover, the data show elevation of interleukin-8 (IL-8) in both the circulation and keloid tissue, which elicited the collagen accumulation and migratory program of dermal fibroblasts via CXCR1/2 receptor. Our research provides insights into the pathology of human fibrotic diseases, advocating commensal bacteria and IL-8 signaling as useful targets in future interventions of recurrent keloid disease.
Collapse
Affiliation(s)
- Wenyu Zhang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pujian Road 160, Shanghai 200240, China
| | - Qili Peng
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pujian Road 160, Shanghai 200240, China
| | - Xian Huang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pujian Road 160, Shanghai 200240, China
| | - Qing Huang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pujian Road 160, Shanghai 200240, China
| | - Zhiliang Zhang
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pujian Road 160, Shanghai 200240, China
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Renji Ningbo Hangzhou Bay Hospital, School of Medicine, Shanghai Jiao Tong University, Binhai Second Road 1155, Ningbo 315600, China
| | - Fuli Li
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pujian Road 160, Shanghai 200240, China
| | - Naisheng Zheng
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pujian Road 160, Shanghai 200240, China
| | - Binsheng Shi
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pujian Road 160, Shanghai 200240, China
| | - Zhihong Fan
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pujian Road 160, Shanghai 200240, China
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Renji Ningbo Hangzhou Bay Hospital, School of Medicine, Shanghai Jiao Tong University, Binhai Second Road 1155, Ningbo 315600, China
| | - Tomasz Maj
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pujian Road 160, Shanghai 200240, China
| | - Rui Chen
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pujian Road 160, Shanghai 200240, China
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pujian Road 160, Shanghai 200240, China
| |
Collapse
|
25
|
Han LW, Jamalian S, Hsu JC, Sheng XR, Yang X, Yang X, Monemi S, Hassan S, Yadav R, Tuckwell K, Kunder R, Pan L, Glickstein S. A Phase 1a Study to Evaluate Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of RO7303509, an Anti-TGFβ3 Antibody, in Healthy Volunteers. Rheumatol Ther 2024; 11:755-771. [PMID: 38662148 PMCID: PMC11111615 DOI: 10.1007/s40744-024-00670-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/22/2024] [Indexed: 04/26/2024] Open
Abstract
INTRODUCTION Transforming growth factor beta (TGFβ) cytokines (TGFβ1, TGFβ2, and TGFβ3) play critical roles in tissue fibrosis. However, treatment with systemic pan-TGFβ inhibitors have demonstrated unacceptable toxicities. In this study, we evaluated the safety, tolerability, pharmacokinetics, and pharmacodynamics of RO7303509, a high-affinity, TGFβ3-specific, humanized immunoglobulin G1 monoclonal antibody, in healthy adult volunteers (HVs). METHODS This phase 1a, randomized, double-blind trial included six cohorts for evaluation, with each cohort receiving single doses of placebo or RO7303509, administered intravenously (IV; 50 mg, 150 mg, 240 mg) or subcutaneously (SC; 240 mg, 675 mg, 1200 mg). The frequency and severity of adverse events (AEs) and RO7303509 serum concentrations were monitored throughout the study. We also measured serum periostin and cartilage oligomeric matrix protein (COMP) by immunoassay and developed a population pharmacokinetics model to characterize RO7303509 serum concentrations. RESULTS The study enrolled 49 HVs, with a median age of 39 (range 18-73) years. Ten (27.8%) RO7303509-treated subjects reported 24 AEs, and six (30.8%) placebo-treated subjects reported six AEs. The most frequent AEs related to the study drug were injection site reactions and infusion-related reactions. Maximum serum concentrations (Cmax) and area under the concentration-time curve from time 0 to infinity (AUC0-inf) values for RO7303509 appeared to increase dose-proportionally across all doses tested. Serum concentrations across cohorts were best characterized by a two-compartment model plus a depot compartment with first-order SC absorption kinetics. No subjects tested positive for anti-drug antibodies (ADAs) at baseline; one subject (2.8%; 50 mg IV) tested positive for ADAs at a single time point (day 15). No clear pharmacodynamic effects were observed for periostin or COMP upon TGFβ3 inhibition. CONCLUSION RO7303509 was well tolerated at single SC doses up to 1200 mg in HVs with favorable pharmacokinetic data that appeared to increase dose-proportionally. TGFβ3-specific inhibition may be suitable for development as a chronic antifibrotic therapy. TRIAL REGISTRATION ISRCTN13175485.
Collapse
Affiliation(s)
- Lyrialle W Han
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Samira Jamalian
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Joy C Hsu
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - X Rebecca Sheng
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Xiaoyun Yang
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Xiaoying Yang
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Sharareh Monemi
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Sharmeen Hassan
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Rajbharan Yadav
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Katie Tuckwell
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Rebecca Kunder
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Lin Pan
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.
| | - Sara Glickstein
- Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| |
Collapse
|
26
|
Tamiato A, Tombor LS, Fischer A, Muhly-Reinholz M, Vanicek LR, Toğru BN, Neitz J, Glaser SF, Merten M, Rodriguez Morales D, Kwon J, Klatt S, Schumacher B, Günther S, Abplanalp WT, John D, Fleming I, Wettschureck N, Dimmeler S, Luxán G. Age-Dependent RGS5 Loss in Pericytes Induces Cardiac Dysfunction and Fibrosis. Circ Res 2024; 134:1240-1255. [PMID: 38563133 PMCID: PMC11081481 DOI: 10.1161/circresaha.123.324183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Pericytes are capillary-associated mural cells involved in the maintenance and stability of the vascular network. Although aging is one of the main risk factors for cardiovascular disease, the consequences of aging on cardiac pericytes are unknown. METHODS In this study, we have combined single-nucleus RNA sequencing and histological analysis to determine the effects of aging on cardiac pericytes. Furthermore, we have conducted in vivo and in vitro analysis of RGS5 (regulator of G-protein signaling 5) loss of function and finally have performed pericytes-fibroblasts coculture studies to understand the effect of RGS5 deletion in pericytes on the neighboring fibroblasts. RESULTS Aging reduced the pericyte area and capillary coverage in the murine heart. Single-nucleus RNA sequencing analysis further revealed that the expression of Rgs5 was reduced in cardiac pericytes from aged mice. In vivo and in vitro studies showed that the deletion of RGS5 impaired cardiac function, induced fibrosis, and morphological changes in pericytes characterized by a profibrotic gene expression signature and the expression of different ECM (extracellular matrix) components and growth factors, for example, TGFB2 and PDGFB. Indeed, culturing fibroblasts with the supernatant of RGS5-deficient pericytes induced their activation as evidenced by the increased expression of αSMA (alpha smooth muscle actin) in a TGFβ (transforming growth factor beta)2-dependent mechanism. CONCLUSIONS Our results have identified RGS5 as a crucial regulator of pericyte function during cardiac aging. The deletion of RGS5 causes cardiac dysfunction and induces myocardial fibrosis, one of the hallmarks of cardiac aging.
Collapse
Affiliation(s)
- Anita Tamiato
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine (A.T., L.S.T., A.F., M.M.-R., L.R.V., B.N.T., J.N., S.F.G., M.M., D.R.M., B.S., W.T.A., D.J., S.D., G.L.), Goethe University Frankfurt, Germany
- Cardiopulmonary Institute (A.T., L.S.T., S.F.G., M.M., S.K., B.S., S.G., W.T.A., D.J., I.F., N.W., S.D., G.L.), Goethe University Frankfurt, Germany
- German Center for Cardiovascular Research Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), Frankfurt am Main, Germany (A.T., L.S.T., S.F.G., M.M., B.S., S.G., W.T.A., D.J., I.F., N.W., S.D., G.L.)
| | - Lukas S. Tombor
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine (A.T., L.S.T., A.F., M.M.-R., L.R.V., B.N.T., J.N., S.F.G., M.M., D.R.M., B.S., W.T.A., D.J., S.D., G.L.), Goethe University Frankfurt, Germany
- Cardiopulmonary Institute (A.T., L.S.T., S.F.G., M.M., S.K., B.S., S.G., W.T.A., D.J., I.F., N.W., S.D., G.L.), Goethe University Frankfurt, Germany
- German Center for Cardiovascular Research Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), Frankfurt am Main, Germany (A.T., L.S.T., S.F.G., M.M., B.S., S.G., W.T.A., D.J., I.F., N.W., S.D., G.L.)
| | - Ariane Fischer
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine (A.T., L.S.T., A.F., M.M.-R., L.R.V., B.N.T., J.N., S.F.G., M.M., D.R.M., B.S., W.T.A., D.J., S.D., G.L.), Goethe University Frankfurt, Germany
| | - Marion Muhly-Reinholz
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine (A.T., L.S.T., A.F., M.M.-R., L.R.V., B.N.T., J.N., S.F.G., M.M., D.R.M., B.S., W.T.A., D.J., S.D., G.L.), Goethe University Frankfurt, Germany
| | - Leah Rebecca Vanicek
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine (A.T., L.S.T., A.F., M.M.-R., L.R.V., B.N.T., J.N., S.F.G., M.M., D.R.M., B.S., W.T.A., D.J., S.D., G.L.), Goethe University Frankfurt, Germany
| | - Büşra Nur Toğru
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine (A.T., L.S.T., A.F., M.M.-R., L.R.V., B.N.T., J.N., S.F.G., M.M., D.R.M., B.S., W.T.A., D.J., S.D., G.L.), Goethe University Frankfurt, Germany
| | - Jessica Neitz
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine (A.T., L.S.T., A.F., M.M.-R., L.R.V., B.N.T., J.N., S.F.G., M.M., D.R.M., B.S., W.T.A., D.J., S.D., G.L.), Goethe University Frankfurt, Germany
| | - Simone Franziska Glaser
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine (A.T., L.S.T., A.F., M.M.-R., L.R.V., B.N.T., J.N., S.F.G., M.M., D.R.M., B.S., W.T.A., D.J., S.D., G.L.), Goethe University Frankfurt, Germany
- German Center for Cardiovascular Research Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), Frankfurt am Main, Germany (A.T., L.S.T., S.F.G., M.M., B.S., S.G., W.T.A., D.J., I.F., N.W., S.D., G.L.)
| | - Maximilian Merten
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine (A.T., L.S.T., A.F., M.M.-R., L.R.V., B.N.T., J.N., S.F.G., M.M., D.R.M., B.S., W.T.A., D.J., S.D., G.L.), Goethe University Frankfurt, Germany
- Cardiopulmonary Institute (A.T., L.S.T., S.F.G., M.M., S.K., B.S., S.G., W.T.A., D.J., I.F., N.W., S.D., G.L.), Goethe University Frankfurt, Germany
- German Center for Cardiovascular Research Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), Frankfurt am Main, Germany (A.T., L.S.T., S.F.G., M.M., B.S., S.G., W.T.A., D.J., I.F., N.W., S.D., G.L.)
| | - David Rodriguez Morales
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine (A.T., L.S.T., A.F., M.M.-R., L.R.V., B.N.T., J.N., S.F.G., M.M., D.R.M., B.S., W.T.A., D.J., S.D., G.L.), Goethe University Frankfurt, Germany
| | - Jeonghyeon Kwon
- Department of Pharmacology (J.K., N.W.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stephan Klatt
- Cardiopulmonary Institute (A.T., L.S.T., S.F.G., M.M., S.K., B.S., S.G., W.T.A., D.J., I.F., N.W., S.D., G.L.), Goethe University Frankfurt, Germany
- Institute for Vascular Signalling, Center of Molecular Medicine (S.K., I.F.), Goethe University Frankfurt, Germany
| | - Bianca Schumacher
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine (A.T., L.S.T., A.F., M.M.-R., L.R.V., B.N.T., J.N., S.F.G., M.M., D.R.M., B.S., W.T.A., D.J., S.D., G.L.), Goethe University Frankfurt, Germany
- Cardiopulmonary Institute (A.T., L.S.T., S.F.G., M.M., S.K., B.S., S.G., W.T.A., D.J., I.F., N.W., S.D., G.L.), Goethe University Frankfurt, Germany
- German Center for Cardiovascular Research Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), Frankfurt am Main, Germany (A.T., L.S.T., S.F.G., M.M., B.S., S.G., W.T.A., D.J., I.F., N.W., S.D., G.L.)
| | - Stefan Günther
- Cardiopulmonary Institute (A.T., L.S.T., S.F.G., M.M., S.K., B.S., S.G., W.T.A., D.J., I.F., N.W., S.D., G.L.), Goethe University Frankfurt, Germany
- German Center for Cardiovascular Research Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), Frankfurt am Main, Germany (A.T., L.S.T., S.F.G., M.M., B.S., S.G., W.T.A., D.J., I.F., N.W., S.D., G.L.)
- Bioinformatics and Deep Sequencing Platform (S.G.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Wesley T. Abplanalp
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine (A.T., L.S.T., A.F., M.M.-R., L.R.V., B.N.T., J.N., S.F.G., M.M., D.R.M., B.S., W.T.A., D.J., S.D., G.L.), Goethe University Frankfurt, Germany
- Cardiopulmonary Institute (A.T., L.S.T., S.F.G., M.M., S.K., B.S., S.G., W.T.A., D.J., I.F., N.W., S.D., G.L.), Goethe University Frankfurt, Germany
- German Center for Cardiovascular Research Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), Frankfurt am Main, Germany (A.T., L.S.T., S.F.G., M.M., B.S., S.G., W.T.A., D.J., I.F., N.W., S.D., G.L.)
| | - David John
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine (A.T., L.S.T., A.F., M.M.-R., L.R.V., B.N.T., J.N., S.F.G., M.M., D.R.M., B.S., W.T.A., D.J., S.D., G.L.), Goethe University Frankfurt, Germany
- Cardiopulmonary Institute (A.T., L.S.T., S.F.G., M.M., S.K., B.S., S.G., W.T.A., D.J., I.F., N.W., S.D., G.L.), Goethe University Frankfurt, Germany
- German Center for Cardiovascular Research Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), Frankfurt am Main, Germany (A.T., L.S.T., S.F.G., M.M., B.S., S.G., W.T.A., D.J., I.F., N.W., S.D., G.L.)
| | - Ingrid Fleming
- Cardiopulmonary Institute (A.T., L.S.T., S.F.G., M.M., S.K., B.S., S.G., W.T.A., D.J., I.F., N.W., S.D., G.L.), Goethe University Frankfurt, Germany
- Institute for Vascular Signalling, Center of Molecular Medicine (S.K., I.F.), Goethe University Frankfurt, Germany
- German Center for Cardiovascular Research Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), Frankfurt am Main, Germany (A.T., L.S.T., S.F.G., M.M., B.S., S.G., W.T.A., D.J., I.F., N.W., S.D., G.L.)
| | - Nina Wettschureck
- Cardiopulmonary Institute (A.T., L.S.T., S.F.G., M.M., S.K., B.S., S.G., W.T.A., D.J., I.F., N.W., S.D., G.L.), Goethe University Frankfurt, Germany
- German Center for Cardiovascular Research Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), Frankfurt am Main, Germany (A.T., L.S.T., S.F.G., M.M., B.S., S.G., W.T.A., D.J., I.F., N.W., S.D., G.L.)
- Department of Pharmacology (J.K., N.W.), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine (A.T., L.S.T., A.F., M.M.-R., L.R.V., B.N.T., J.N., S.F.G., M.M., D.R.M., B.S., W.T.A., D.J., S.D., G.L.), Goethe University Frankfurt, Germany
- Cardiopulmonary Institute (A.T., L.S.T., S.F.G., M.M., S.K., B.S., S.G., W.T.A., D.J., I.F., N.W., S.D., G.L.), Goethe University Frankfurt, Germany
- German Center for Cardiovascular Research Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), Frankfurt am Main, Germany (A.T., L.S.T., S.F.G., M.M., B.S., S.G., W.T.A., D.J., I.F., N.W., S.D., G.L.)
| | - Guillermo Luxán
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine (A.T., L.S.T., A.F., M.M.-R., L.R.V., B.N.T., J.N., S.F.G., M.M., D.R.M., B.S., W.T.A., D.J., S.D., G.L.), Goethe University Frankfurt, Germany
- Cardiopulmonary Institute (A.T., L.S.T., S.F.G., M.M., S.K., B.S., S.G., W.T.A., D.J., I.F., N.W., S.D., G.L.), Goethe University Frankfurt, Germany
- German Center for Cardiovascular Research Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), Frankfurt am Main, Germany (A.T., L.S.T., S.F.G., M.M., B.S., S.G., W.T.A., D.J., I.F., N.W., S.D., G.L.)
| |
Collapse
|
27
|
Danielpour D. Advances and Challenges in Targeting TGF-β Isoforms for Therapeutic Intervention of Cancer: A Mechanism-Based Perspective. Pharmaceuticals (Basel) 2024; 17:533. [PMID: 38675493 PMCID: PMC11054419 DOI: 10.3390/ph17040533] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The TGF-β family is a group of 25 kDa secretory cytokines, in mammals consisting of three dimeric isoforms (TGF-βs 1, 2, and 3), each encoded on a separate gene with unique regulatory elements. Each isoform plays unique, diverse, and pivotal roles in cell growth, survival, immune response, and differentiation. However, many researchers in the TGF-β field often mistakenly assume a uniform functionality among all three isoforms. Although TGF-βs are essential for normal development and many cellular and physiological processes, their dysregulated expression contributes significantly to various diseases. Notably, they drive conditions like fibrosis and tumor metastasis/progression. To counter these pathologies, extensive efforts have been directed towards targeting TGF-βs, resulting in the development of a range of TGF-β inhibitors. Despite some clinical success, these agents have yet to reach their full potential in the treatment of cancers. A significant challenge rests in effectively targeting TGF-βs' pathological functions while preserving their physiological roles. Many existing approaches collectively target all three isoforms, failing to target just the specific deregulated ones. Additionally, most strategies tackle the entire TGF-β signaling pathway instead of focusing on disease-specific components or preferentially targeting tumors. This review gives a unique historical overview of the TGF-β field often missed in other reviews and provides a current landscape of TGF-β research, emphasizing isoform-specific functions and disease implications. The review then delves into ongoing therapeutic strategies in cancer, stressing the need for more tools that target specific isoforms and disease-related pathway components, advocating mechanism-based and refined approaches to enhance the effectiveness of TGF-β-targeted cancer therapies.
Collapse
Affiliation(s)
- David Danielpour
- Case Comprehensive Cancer Center Research Laboratories, The Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, OH 44106, USA; ; Tel.: +1-216-368-5670; Fax: +1-216-368-8919
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
- Institute of Urology, University Hospitals, Cleveland, OH 44106, USA
| |
Collapse
|
28
|
Trogisch FA, Abouissa A, Keles M, Birke A, Fuhrmann M, Dittrich GM, Weinzierl N, Wink E, Cordero J, Elsherbiny A, Martin-Garrido A, Grein S, Hemanna S, Hofmann E, Nicin L, Bibli SI, Airik R, Kispert A, Kist R, Quanchao S, Kürschner SW, Winkler M, Gretz N, Mogler C, Korff T, Koch PS, Dimmeler S, Dobreva G, Heineke J. Endothelial cells drive organ fibrosis in mice by inducing expression of the transcription factor SOX9. Sci Transl Med 2024; 16:eabq4581. [PMID: 38416842 DOI: 10.1126/scitranslmed.abq4581] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 01/24/2024] [Indexed: 03/01/2024]
Abstract
Fibrosis is a hallmark of chronic disease. Although fibroblasts are involved, it is unclear to what extent endothelial cells also might contribute. We detected increased expression of the transcription factor Sox9 in endothelial cells in several different mouse fibrosis models. These models included systolic heart failure induced by pressure overload, diastolic heart failure induced by high-fat diet and nitric oxide synthase inhibition, pulmonary fibrosis induced by bleomycin treatment, and liver fibrosis due to a choline-deficient diet. We also observed up-regulation of endothelial SOX9 in cardiac tissue from patients with heart failure. To test whether SOX9 induction was sufficient to cause disease, we generated mice with endothelial cell-specific overexpression of Sox9, which promoted fibrosis in multiple organs and resulted in signs of heart failure. Endothelial Sox9 deletion prevented fibrosis and organ dysfunction in the two mouse models of heart failure as well as in the lung and liver fibrosis mouse models. Bulk and single-cell RNA sequencing of mouse endothelial cells across multiple vascular beds revealed that SOX9 induced extracellular matrix, growth factor, and inflammatory gene expression, leading to matrix deposition by endothelial cells. Moreover, mouse endothelial cells activated neighboring fibroblasts that then migrated and deposited matrix in response to SOX9, a process partly mediated by the secreted growth factor CCN2, a direct SOX9 target; endothelial cell-specific Sox9 deletion reversed these changes. These findings suggest a role for endothelial SOX9 as a fibrosis-promoting factor in different mouse organs during disease and imply that endothelial cells are an important regulator of fibrosis.
Collapse
Affiliation(s)
- Felix A Trogisch
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 68167 Mannheim, Germany
- CFPM (Core Facility Platform Mannheim), Cardiac Imaging Center, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Aya Abouissa
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 68167 Mannheim, Germany
- CFPM (Core Facility Platform Mannheim), Cardiac Imaging Center, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Merve Keles
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 68167 Mannheim, Germany
- CFPM (Core Facility Platform Mannheim), Cardiac Imaging Center, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Anne Birke
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Manuela Fuhrmann
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Gesine M Dittrich
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 68167 Mannheim, Germany
| | - Nina Weinzierl
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Elvira Wink
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Julio Cordero
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 68167 Mannheim, Germany
- ECAS, Department of Cardiovascular Genomics and Epigenomics, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Adel Elsherbiny
- ECAS, Department of Cardiovascular Genomics and Epigenomics, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Abel Martin-Garrido
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Steve Grein
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 68167 Mannheim, Germany
| | - Shruthi Hemanna
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 68167 Mannheim, Germany
| | - Ellen Hofmann
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Luka Nicin
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
- Cardiopulmonary Institute, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
- DZHK, partner site Frankfurt Rhine-Main, Frankfurt, 60590 Frankfurt am Main, Germany
| | - Sofia-Iris Bibli
- Cardiopulmonary Institute, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
- DZHK, partner site Frankfurt Rhine-Main, Frankfurt, 60590 Frankfurt am Main, Germany
- Institute of Vascular Signaling, Centre for Molecular Medicine, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Rannar Airik
- Institute of Molecular Biology, Hannover Medical School, 30625 Hannover, Germany
| | - Andreas Kispert
- Institute of Molecular Biology, Hannover Medical School, 30625 Hannover, Germany
| | - Ralf Kist
- School of Dental Sciences, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4BW, UK
| | - Sun Quanchao
- Medical Research Center, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Sina W Kürschner
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, 68167 Mannheim, Germany
- ECAS, Adjunct Faculty, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Manuel Winkler
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, 68167 Mannheim, Germany
- ECAS, Adjunct Faculty, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Norbert Gretz
- Medical Research Center, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Carolin Mogler
- Institute of Pathology, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Thomas Korff
- ECAS, Adjunct Faculty, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
- Department of Cardiovascular Physiology, Heidelberg University, 69120 Heidelberg, Germany
| | - Philipp-Sebastian Koch
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, 68167 Mannheim, Germany
- ECAS, Adjunct Faculty, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
- Cardiopulmonary Institute, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
- DZHK, partner site Frankfurt Rhine-Main, Frankfurt, 60590 Frankfurt am Main, Germany
| | - Gergana Dobreva
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 68167 Mannheim, Germany
- ECAS, Department of Cardiovascular Genomics and Epigenomics, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| | - Joerg Heineke
- ECAS (European Center for Angioscience), Department of Cardiovascular Physiology, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/Mannheim, 68167 Mannheim, Germany
- CFPM (Core Facility Platform Mannheim), Cardiac Imaging Center, Mannheim Faculty of Medicine, Heidelberg University, 68167 Mannheim, Germany
| |
Collapse
|
29
|
Sun T, Vander Heiden JA, Gao X, Yin J, Uttarwar S, Liang WC, Jia G, Yadav R, Huang Z, Mitra M, Halpern W, Bender HS, Brightbill HD, Wu Y, Lupardus P, Ramalingam T, Arron JR. Isoform-selective TGF-β3 inhibition for systemic sclerosis. MED 2024; 5:132-147.e7. [PMID: 38272035 DOI: 10.1016/j.medj.2023.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/03/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024]
Abstract
BACKGROUND Transforming growth factor β (TGF-β) is implicated as a key mediator of pathological fibrosis, but its pleiotropic activity in a range of homeostatic functions presents challenges to its safe and effective therapeutic targeting. There are three isoforms of TGF-β, TGF-β1, TGF-β2, and TGF-β3, which bind to a common receptor complex composed of TGF-βR1 and TGF-βR2 to induce similar intracellular signals in vitro. We have recently shown that the cellular expression patterns and activation thresholds of TGF-β2 and TGF-β3 are distinct from those of TGF-β1 and that selective short-term TGF-β2 and TGF-β3 inhibition can attenuate fibrosis in vivo without promoting excessive inflammation. Isoform-selective inhibition of TGF-β may therefore provide a therapeutic opportunity for patients with chronic fibrotic disorders. METHODS Transcriptomic profiling of skin biopsies from patients with systemic sclerosis (SSc) from multiple clinical trials was performed to evaluate the role of TGF-β3 in this disease. Antibody humanization, biochemical characterization, crystallization, and pre-clinical experiments were performed to further characterize an anti-TGF-β3 antibody. FINDINGS In the skin of patients with SSc, TGF-β3 expression is uniquely correlated with biomarkers of TGF-β signaling and disease severity. Crystallographic studies establish a structural basis for selective TGF-β3 inhibition with a potent and selective monoclonal antibody that attenuates fibrosis effectively in vivo at clinically translatable exposures. Toxicology studies suggest that, as opposed to pan-TGF-β inhibitors, this anti-TGF-β3 antibody has a favorable safety profile for chronic administration. CONCLUSION We establish a rationale for targeting TGF-β3 in SSc with a favorable therapeutic index. FUNDING This study was funded by Genentech, Inc.
Collapse
Affiliation(s)
- Tianhe Sun
- Department of Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Jason A Vander Heiden
- Department of OMNI Bioinformatics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Xia Gao
- Department of Biomarker Discovery OMNI, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jianping Yin
- Department of Structural Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Salil Uttarwar
- Department of OMNI Bioinformatics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Wei-Ching Liang
- Department of Antibody Engineering, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Guiquan Jia
- Department of Biomarker Discovery OMNI, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Rajbharan Yadav
- Department of Preclinical and Translational Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Zhiyu Huang
- Department of Translational Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Mayurranjan Mitra
- Department of DevSci Safety Assessment, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Wendy Halpern
- Department of DevSci SA Pathology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Hannah S Bender
- Department of Pathology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Hans D Brightbill
- Department of Translational Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Yan Wu
- Department of Antibody Engineering, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Patrick Lupardus
- Department of Structural Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Thirumalai Ramalingam
- Department of Biomarker Discovery OMNI, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Joseph R Arron
- Department of Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
30
|
Gu YY, Liu XS, Lan HY. Therapeutic potential for renal fibrosis by targeting Smad3-dependent noncoding RNAs. Mol Ther 2024; 32:313-324. [PMID: 38093516 PMCID: PMC10861968 DOI: 10.1016/j.ymthe.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/13/2023] [Accepted: 12/11/2023] [Indexed: 01/26/2024] Open
Abstract
Renal fibrosis is a characteristic hallmark of chronic kidney disease (CKD) that ultimately results in renal failure, leaving patients with few therapeutic options. TGF-β is a master regulator of renal fibrosis and mediates progressive renal fibrosis via both canonical and noncanonical signaling pathways. In the canonical Smad signaling, Smad3 is a key mediator in tissue fibrosis and mediates renal fibrosis via a number of noncoding RNAs (ncRNAs). In this regard, targeting Smad3-dependent ncRNAs may offer a specific therapy for renal fibrosis. This review highlights the significance and innovation of TGF-β/Smad3-associated ncRNAs as biomarkers and therapeutic targets in renal fibrogenesis. In addition, the underlying mechanisms of these ncRNAs and their future perspectives in the treatment of renal fibrosis are discussed.
Collapse
Affiliation(s)
- Yue-Yu Gu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Departments of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong; Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China; Departments of Nephrology and Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xu-Sheng Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Hui-Yao Lan
- Departments of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong; Departments of Nephrology and Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
31
|
Wang L, Xu Z, Hong Y, Liu Y, Zhang X, Feng Q, Zhang D, Chen K, Yiming GH, Li X, Liu A, Dong L. Low expression of TGF-β2 and matrilin2 in human aqueous humour with acute primary angle closure. J Cell Mol Med 2024; 28:e18111. [PMID: 38235996 PMCID: PMC10844682 DOI: 10.1111/jcmm.18111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 11/26/2023] [Accepted: 12/10/2023] [Indexed: 01/19/2024] Open
Abstract
Primary angle-closure glaucoma (PACG) is the leading cause of irreversible blindness in the world. Angle closure induced by pupil block and secondary iris synechia is the fundamental pathology of the PACG. The molecular mechanisms of angle closure have not yet been clearly illustrated. This study was designed to investigate the protein difference in the aqueous humour and explore new biomarker of the PACG. Aqueous humour (AH) was collected from patients with acute primary angle closure (APAC) and cataract (n = 10 in APAC group) and patients with cataract only (n = 10 in control group). Samples were pooled and measured using label-free proteome technology. Then, the differentially expressed proteins (DEPs) were verified by ELISA using independent AH samples (n = 20 each group). More than 400 proteins were revealed in both groups through proteomics. Comparing the two groups, there were 91DEPs. These proteins participate in biological activities such as inflammation, fibrosis, nerve growth and degeneration and metabolism. We found that the expression of transforming growth factor-β2 and matrilin2 was downregulated in the APAC group. The two proteins are related to inflammation and extracellular matrix formation, which might be involved in angle closure. This study characterized DEPs in AH of the APAC and found a downregulated protein matrilin2.
Collapse
Affiliation(s)
- Liming Wang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular DiseaseEye Institute and School of Optometry, Tianjin Medical University Eye HospitalTianjinChina
| | - Zhao Xu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular DiseaseEye Institute and School of Optometry, Tianjin Medical University Eye HospitalTianjinChina
| | - Yaru Hong
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular DiseaseEye Institute and School of Optometry, Tianjin Medical University Eye HospitalTianjinChina
| | - Yan Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular DiseaseEye Institute and School of Optometry, Tianjin Medical University Eye HospitalTianjinChina
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular DiseaseEye Institute and School of Optometry, Tianjin Medical University Eye HospitalTianjinChina
| | - Qiang Feng
- Ophthalmology Department of People's Hospital of Hotan DistrictXinjiangChina
| | - Dandan Zhang
- Ophthalmology Department of People's Hospital of Hotan DistrictXinjiangChina
| | - Kexi Chen
- Ophthalmology Department of People's Hospital of Hotan DistrictXinjiangChina
| | - Guli Humaer Yiming
- Ophthalmology Department of People's Hospital of Hotan DistrictXinjiangChina
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular DiseaseEye Institute and School of Optometry, Tianjin Medical University Eye HospitalTianjinChina
| | - Aihua Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular DiseaseEye Institute and School of Optometry, Tianjin Medical University Eye HospitalTianjinChina
| | - Lijie Dong
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular DiseaseEye Institute and School of Optometry, Tianjin Medical University Eye HospitalTianjinChina
| |
Collapse
|
32
|
Delgado-Arija M, Genovés P, Pérez-Carrillo L, González-Torrent I, Giménez-Escamilla I, Martínez-Dolz L, Portolés M, Tarazón E, Roselló-Lletí E. Plasma fibroblast activation protein is decreased in acute heart failure despite cardiac tissue upregulation. J Transl Med 2024; 22:124. [PMID: 38297310 PMCID: PMC10832198 DOI: 10.1186/s12967-024-04900-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/14/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Cardiac fibroblast activation protein (FAP) has an emerging role in heart failure (HF). A paradoxical reduction in its levels in pathological conditions associated with acute processes has been observed. We aimed to identify FAP cardiac tissue expression and its relationship with the main cardiac fibrosis-related signaling pathways, and to compare plasma FAP levels in acute and chronic HF patients. METHODS Transcriptomic changes were assessed via mRNA/ncRNA-seq in left ventricle tissue from HF patients (n = 57) and controls (n = 10). Western blotting and immunohistochemistry were used to explore FAP protein levels and localization in cardiac tissue. ELISA was performed to examine plasma FAP levels in acute HF (n = 48), chronic HF (n = 15) and control samples (n = 7). RESULTS FAP overexpression in cardiac tissue is related to the expression of molecules directly involved in cardiac fibrosis, such as POSTN, THBS4, MFAP5, COL1A2 and COL3A1 (P < 0.001), and is directly and inversely related to pro- and antifibrotic microRNAs, respectively. The observed FAP overexpression is not reflected in plasma. Circulating FAP levels were lower in acute HF patients than in controls (P < 0.05), while chronic HF patients did not show significant changes. The clinical variables analyzed, such as functional class or etiology, do not affect plasma FAP concentrations. CONCLUSIONS We determined that in HF cardiac tissue, FAP is related to the main cardiac fibrosis signaling pathways as well as to pro- and antifibrotic microRNAs. Additionally, an acute phase of HF decreases plasma FAP levels despite the upregulation observed in cardiac tissue and regardless of other clinical conditions.
Collapse
Affiliation(s)
- Marta Delgado-Arija
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Patricia Genovés
- Department of Physiology, Faculty of Medicine, Universitat de València, Avd. de Blasco Ibañez, 15, 46010, Valencia, Spain
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Lorena Pérez-Carrillo
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell 106, 46026, Valencia, Spain
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Irene González-Torrent
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Isaac Giménez-Escamilla
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell 106, 46026, Valencia, Spain
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Luis Martínez-Dolz
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell 106, 46026, Valencia, Spain
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029, Madrid, Spain
- Heart Failure and Transplantation Unit, Cardiology Department, University and Polytechnic La Fe Hospital, Avd. Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Manuel Portolés
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell 106, 46026, Valencia, Spain
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Estefanía Tarazón
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell 106, 46026, Valencia, Spain.
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029, Madrid, Spain.
| | - Esther Roselló-Lletí
- Clinical and Translational Research in Cardiology Unit, Health Research Institute Hospital La Fe (IIS La Fe), Avd. Fernando Abril Martorell 106, 46026, Valencia, Spain.
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBERCV), Avd. Monforte de Lemos 3-5, 28029, Madrid, Spain.
| |
Collapse
|
33
|
Barron SL, Wyatt O, O'Connor A, Mansfield D, Suzanne Cohen E, Witkos TM, Strickson S, Owens RM. Modelling bronchial epithelial-fibroblast cross-talk in idiopathic pulmonary fibrosis (IPF) using a human-derived in vitro air liquid interface (ALI) culture. Sci Rep 2024; 14:240. [PMID: 38168149 PMCID: PMC10761879 DOI: 10.1038/s41598-023-50618-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a devastating form of respiratory disease with a life expectancy of 3-4 years. Inflammation, epithelial injury and myofibroblast proliferation have been implicated in disease initiation and, recently, epithelial-fibroblastic crosstalk has been identified as a central driver. However, the ability to interrogate this crosstalk is limited due to the absence of in vitro models that mimic physiological conditions. To investigate IPF dysregulated cross-talk, primary normal human bronchial epithelial (NHBE) cells and primary normal human lung fibroblasts (NHLF) or diseased human lung fibroblasts (DHLF) from IPF patients, were co-cultured in direct contact at the air-liquid interface (ALI). Intercellular crosstalk was assessed by comparing cellular phenotypes of co-cultures to respective monocultures, through optical, biomolecular and electrical methods. A co-culture-dependent decrease in epithelium thickness, basal cell mRNA (P63, KRT5) and an increase in transepithelial electrical resistance (TEER) was observed. This effect was significantly enhanced in DHLF co-cultures and lead to the induction of epithelial to mesenchymal transition (EMT) and increased mRNA expression of TGFβ-2, ZO-1 and DN12. When stimulated with exogenous TGFβ, NHBE and NHLF monocultures showed a significant upregulation of EMT (COL1A1, FN1, VIM, ASMA) and senescence (P21) markers, respectively. In contrast, direct NHLF/NHBE co-culture indicated a protective role of epithelial-fibroblastic cross-talk against TGFβ-induced EMT, fibroblast-to-myofibroblast transition (FMT) and inflammatory cytokine release (IL-6, IL-8, IL-13, IL-1β, TNF-α). DHLF co-cultures showed no significant phenotypic transition upon stimulation, likely due to the constitutively high expression of TGFβ isoforms prior to any exogenous stimulation. The model developed provides an alternative method to generate IPF-related bronchial epithelial phenotypes in vitro, through the direct co-culture of human lung fibroblasts with NHBEs. These findings highlight the importance of fibroblast TGFβ signaling in EMT but that monocultures give rise to differential responses compared to co-cultures, when exposed to this pro-inflammatory stimulus. This holds implications for any translation conclusions drawn from monoculture studies and is an important step in development of more biomimetic models of IPF. In summary, we believe this in vitro system to study fibroblast-epithelial crosstalk, within the context of IPF, provides a platform which will aid in the identification and validation of novel targets.
Collapse
Affiliation(s)
- Sarah L Barron
- Chemical Engineering and Biotechnology Department, University of Cambridge, Cambridge, UK.
| | - Owen Wyatt
- Research and Early Development, Respiratory and Immunology, Bioscience Asthma and Skin Immunity, AstraZeneca, Cambridge, UK
| | - Andy O'Connor
- Research and Early Development, Respiratory and Immunology, Bioscience Asthma and Skin Immunity, AstraZeneca, Cambridge, UK
| | - David Mansfield
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, AstraZeneca, Cambridge, UK
| | - E Suzanne Cohen
- Research and Early Development, Respiratory and Immunology, Bioscience Asthma and Skin Immunity, AstraZeneca, Cambridge, UK
| | - Tomasz M Witkos
- Analytical Sciences, Bioassay, Biosafety and Impurities, BioPharmaceutical Development, AstraZeneca, Cambridge, UK
| | - Sam Strickson
- Research and Early Development, Respiratory and Immunology, Bioscience Asthma and Skin Immunity, AstraZeneca, Cambridge, UK
| | - Róisín M Owens
- Chemical Engineering and Biotechnology Department, University of Cambridge, Cambridge, UK.
| |
Collapse
|
34
|
Ma F, Gharaee-Kermani M, Tsoi LC, Plazyo O, Chaskar P, Harms P, Patrick MT, Xing X, Hile G, Piketty C, Lazzari A, Van Delm W, Maverakis E, Nakamura M, Modlin RL, Kahlenberg JM, Billi AC, Julia V, Krishnaswamy JK, Gudjonsson JE. Single-cell profiling of prurigo nodularis demonstrates immune-stromal crosstalk driving profibrotic responses and reversal with nemolizumab. J Allergy Clin Immunol 2024; 153:146-160. [PMID: 37506977 PMCID: PMC11231883 DOI: 10.1016/j.jaci.2023.07.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/14/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND Prurigo nodularis (PN) is a chronic neuroimmune skin disease characterized by bilaterally distributed pruritic hyperkeratotic nodules on extremities and trunk. Neuroimmune dysregulation and chronic scratching are believed to both induce and maintain the characteristic lesions. OBJECTIVES This study sought to provide a comprehensive view of the molecular pathogenesis of PN at the single-cell level to identify and outline key pathologic processes and the cell types involved. Features that distinguish PN skin from the skin of patients with atopic dermatitis were of particular interest. We further aimed to determine the impact of the IL31RA antagonist, nemolizumab, and its specificity at the single-cell level. METHODS Single-cell RNA-sequencing of skin from 15 healthy donors and nonlesional and lesional skin from 6 patients each with PN and atopic dermatitis, combined with spatial-sequencing using the 10x Visium platform. Integration with bulk RNA-sequencing data from patients treated with nemolizumab. RESULTS This study demonstrates that PN is an inflammatory skin disease characterized by both keratinocyte proliferation and activation of profibrotic responses. This study also demonstrates that the COL11A1+ fibroblast subset is a major contributor to fibrosis and is predominantly found in the papillary dermis of PN skin. Activation of fibrotic responses is the main distinguishing feature between PN and atopic dermatitis skin. This study further shows the broad effect of nemolizumab on PN cell types, with a prominent effect driving COL11A1+ fibroblast and keratinocyte responses toward normal. CONCLUSIONS This study provides a high-resolution characterization of the cell types and cellular processes activated in PN skin, establishing PN as a chronic fibrotic inflammatory skin disease. It further demonstrates the broad effect of nemolizumab on pathological processes in PN skin.
Collapse
Affiliation(s)
- Feiyang Ma
- Department of Dermatology, University of Michigan, Ann Arbor, Mich
| | | | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, Mich; Department of Biostatistics, University of Michigan, Ann Arbor, Mich; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Mich
| | - Olesya Plazyo
- Department of Dermatology, University of Michigan, Ann Arbor, Mich
| | | | - Paul Harms
- Department of Dermatology, University of Michigan, Ann Arbor, Mich; Department of Pathology, University of Michigan, Ann Arbor, Mich
| | | | - Xianying Xing
- Department of Dermatology, University of Michigan, Ann Arbor, Mich
| | - Grace Hile
- Department of Dermatology, University of Michigan, Ann Arbor, Mich
| | | | | | | | - Emanual Maverakis
- Department of Dermatology, University of California-Davis, Sacramento, Calif
| | - Mio Nakamura
- Department of Dermatology, University of Michigan, Ann Arbor, Mich
| | - Robert L Modlin
- Department of Dermatology, University of California-Los Angeles, Calif
| | - J Michelle Kahlenberg
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, Mich; Taubman Medical Research Institute, University of Michigan, Ann Arbor, Mich
| | - Allison C Billi
- Department of Dermatology, University of Michigan, Ann Arbor, Mich
| | | | | | - Johann E Gudjonsson
- Department of Dermatology, University of Michigan, Ann Arbor, Mich; Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, Mich; Taubman Medical Research Institute, University of Michigan, Ann Arbor, Mich.
| |
Collapse
|
35
|
Woodward B, Hillyer LM, Monk JM. The Tolerance Model of Non-Inflammatory Immune Competence in Acute Pediatric Malnutrition: Origins, Evidence, Test of Fitness and Growth Potential. Nutrients 2023; 15:4922. [PMID: 38068780 PMCID: PMC10707886 DOI: 10.3390/nu15234922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
The tolerance model rests on the thesis of a physiologically regulated, albeit unsustainable, systemic attempt to adapt to the catabolic challenge posed by acute prepubescent malnutrition even in its severe forms. The model centers on the immunological component of the attempt, positing reorientation toward a non-inflammatory form of competence in place of the classic paradigm of immunological attrition and exhaustion. The foundation of the model was laid in 1990, and sixteen years later it was articulated formally on the basis of a body of evidence centered on T cell cytokines and interventions with cytokine and hormonal mediators. The benefit originally suggested was a reduced risk of autoimmune pathologies consequent to the catabolic release of self-antigens, hence the designation highlighting immune tolerance. Herein, the emergence of the tolerance model is traced from its roots in the recognition that acute malnutrition elicits an endocrine-based systemic adaptive attempt. Thereafter, the growth of the evidence base supporting the model is outlined, and its potential to shed new light on existing information is tested by application to the findings of a published clinical study of acutely malnourished children. Finally, some knowledge gaps pertinent to the model are identified and its potential for growth consonant with evolving perceptions of immunobiology is illustrated.
Collapse
Affiliation(s)
- Bill Woodward
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.M.H.); (J.M.M.)
| | | | | |
Collapse
|
36
|
Zhan T, Wu Y, Deng X, Li Q, Chen Y, Lv J, Wang J, Li S, Wu Z, Liu D, Tang Z. Multi-omics approaches reveal the molecular mechanisms underlying the interaction between Clonorchis sinensis and mouse liver. Front Cell Infect Microbiol 2023; 13:1286977. [PMID: 38076459 PMCID: PMC10710275 DOI: 10.3389/fcimb.2023.1286977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023] Open
Abstract
Introduction Clonorchiasis remains a serious global public health problem, causing various hepatobiliary diseases. However, there is still a lack of overall understanding regarding the molecular events triggered by Clonorchis sinensis (C. sinensis) in the liver. Methods BALB/c mouse models infected with C. sinensis for 5, 10, 15, and 20 weeks were constructed. Liver pathology staining and observation were conducted to evaluate histopathology. The levels of biochemical enzymes, blood routine indices, and cytokines in the blood were determined. Furthermore, alterations in the transcriptome, proteome, and metabolome of mouse livers infected for 5 weeks were analyzed using multi-omics techniques. Results The results of this study indicated that adult C. sinensis can cause hepatosplenomegaly and liver damage, with the most severe symptoms observed at 5 weeks post-infection. However, as the infection persisted, the Th2 immune response increased and symptoms were relieved. Multi-omics analysis of liver infected for 5 weeks identified 191, 402 and 232 differentially expressed genes (DEGs), proteins (DEPs) and metabolites (DEMs), respectively. Both DEGs and DEPs were significantly enriched in liver fibrosis-related pathways such as ECM-receptor interaction and cell adhesion molecules. Key molecules associated with liver fibrosis and inflammation (Cd34, Epcam, S100a6, Fhl2, Itgax, and Retnlg) were up-regulated at both the gene and protein levels. The top three metabolic pathways, namely purine metabolism, arachidonic acid metabolism, and ABC transporters, were associated with liver cirrhosis, fibrosis, and cholestasis, respectively. Furthermore, metabolites that can promote liver inflammation and fibrosis, such as LysoPC(P-16:0/0:0), 20-COOH-leukotriene E4, and 14,15-DiHETrE, were significantly up-regulated. Conclusion Our study revealed that the most severe symptoms in mice infected with C. sinensis occurred at 5 weeks post-infection. Moreover, multi-omics analysis uncovered predominant molecular events related to fibrosis changes in the liver. This study not only enhances our understanding of clonorchiasis progression but also provides valuable insights into the molecular-level interaction mechanism between C. sinensis and its host liver.
Collapse
Affiliation(s)
- Tingzheng Zhan
- Department of Parasitology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Yuhong Wu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Xueling Deng
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Qing Li
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, China
- Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yu Chen
- Schistosomiasis Prevention and Control Department, Hengzhou Center for Disease Control and Prevention, Hengzhou, China
| | - Jiahui Lv
- Department of Parasitology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Jilong Wang
- Department of Parasitology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Shitao Li
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Zhanshuai Wu
- Department of Immunology, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of Translational Medicine for treating High-Incidence Infectious Diseases with Integrative Medicine, Nanning, China
| | - Dengyu Liu
- Department of Parasitology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, China
- Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Zeli Tang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, China
- Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
37
|
Padiadpu J, Garcia‐Jaramillo M, Newman NK, Pederson JW, Rodrigues R, Li Z, Singh S, Monnier P, Trinchieri G, Brown K, Dzutsev AK, Shulzhenko N, Jump DB, Morgun A. Multi-omic network analysis identified betacellulin as a novel target of omega-3 fatty acid attenuation of western diet-induced nonalcoholic steatohepatitis. EMBO Mol Med 2023; 15:e18367. [PMID: 37859621 PMCID: PMC10630881 DOI: 10.15252/emmm.202318367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023] Open
Abstract
Clinical and preclinical studies established that supplementing diets with ω3 polyunsaturated fatty acids (PUFA) can reduce hepatic dysfunction in nonalcoholic steatohepatitis (NASH) but molecular underpinnings of this action were elusive. Herein, we used multi-omic network analysis that unveiled critical molecular pathways involved in ω3 PUFA effects in a preclinical mouse model of western diet induced NASH. Since NASH is a precursor of liver cancer, we also performed meta-analysis of human liver cancer transcriptomes that uncovered betacellulin as a key EGFR-binding protein upregulated in liver cancer and downregulated by ω3 PUFAs in animals and humans with NASH. We then confirmed that betacellulin acts by promoting proliferation of quiescent hepatic stellate cells, inducing transforming growth factor-β2 and increasing collagen production. When used in combination with TLR2/4 agonists, betacellulin upregulated integrins in macrophages thereby potentiating inflammation and fibrosis. Taken together, our results suggest that suppression of betacellulin is one of the key mechanisms associated with anti-inflammatory and anti-fibrotic effects of ω3 PUFA on NASH.
Collapse
Affiliation(s)
| | | | - Nolan K Newman
- College of PharmacyOregon State UniversityCorvallisORUSA
| | - Jacob W Pederson
- Carlson College of Veterinary MedicineOregon State UniversityCorvallisORUSA
| | - Richard Rodrigues
- College of PharmacyOregon State UniversityCorvallisORUSA
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMDUSA
| | - Zhipeng Li
- Carlson College of Veterinary MedicineOregon State UniversityCorvallisORUSA
| | - Sehajvir Singh
- College of PharmacyOregon State UniversityCorvallisORUSA
| | - Philip Monnier
- College of PharmacyOregon State UniversityCorvallisORUSA
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMDUSA
| | - Kevin Brown
- College of PharmacyOregon State UniversityCorvallisORUSA
- School of Chemical, Biological, and Environmental EngineeringOregon State UniversityCorvallisORUSA
| | - Amiran K Dzutsev
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMDUSA
| | - Natalia Shulzhenko
- Carlson College of Veterinary MedicineOregon State UniversityCorvallisORUSA
| | - Donald B Jump
- Nutrition Program, School of Biological and Population Health Sciences, Linus Pauling InstituteOregon State UniversityCorvallisORUSA
| | - Andrey Morgun
- College of PharmacyOregon State UniversityCorvallisORUSA
| |
Collapse
|
38
|
Yadav R, Sukumaran S, Lutman J, Mitra MS, Halpern W, Sun T, Setiadi AF, Neighbors M, Sheng XR, Yip V, Shen BQ, Liu C, Han L, Ovacik AM, Wu Y, Glickstein S, Kunder R, Arron JR, Pan L, Kamath AV, Stefanich EG. Utilizing PK and PD Biomarkers to Guide the First-in-Human Starting Dose Selection of MTBT1466A: A Novel Humanized Monoclonal Anti-TGFβ3 Antibody for the Treatment of Fibrotic Diseases. J Pharm Sci 2023; 112:2910-2920. [PMID: 37429356 DOI: 10.1016/j.xphs.2023.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/12/2023]
Abstract
MTBT1466A is a high-affinity TGFβ3-specific humanized IgG1 monoclonal antibody with reduced Fc effector function, currently under investigation in clinical trials as a potential anti-fibrotic therapy. Here, we characterized the pharmacokinetics (PK) and pharmacodynamics (PD) of MTBT1466A in mice and monkeys and predicted the PK/PD of MTBT1466A in humans to guide the selection of the first-in-human (FIH) starting dose. MTBT1466A demonstrated a typical IgG1-like biphasic PK profile in monkeys, and the predicted human clearance of 2.69 mL/day/kg and t1/2 of 20.4 days are consistent with those expected for a human IgG1 antibody. In a mouse model of bleomycin-induced lung fibrosis, changes in expression of TGFβ3-related genes, serpine1, fibronectin-1, and collagen 1A1 were used as PD biomarkers to determine the minimum pharmacologically active dose of 1 mg/kg. Unlike in the fibrosis mouse model, evidence of target engagement in healthy monkeys was only observed at higher doses. Using a PKPD-guided approach, the recommended FIH dose of 50 mg, IV, provided exposures that were shown to be safe and well tolerated in healthy volunteers. MTBT1466A PK in healthy volunteers was predicted reasonably well using a PK model with allometric scaling of PK parameters from monkey data. Taken together, this work provides insights into the PK/PD behavior of MTBT1466A in preclinical species, and supports the translatability of the preclinical data into the clinic.
Collapse
Affiliation(s)
- Rajbharan Yadav
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc., South San Francisco, CA, USA.
| | - Siddharth Sukumaran
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc., South San Francisco, CA, USA
| | - Jeff Lutman
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc., South San Francisco, CA, USA
| | - Mayur S Mitra
- Safety Assessment, Genentech Inc., South San Francisco, CA, USA
| | - Wendy Halpern
- Safety Assessment, Genentech Inc., South San Francisco, CA, USA
| | - Tianhe Sun
- Immunology Discovery, Genentech Inc., South San Francisco, CA, USA
| | | | | | - X Rebecca Sheng
- Translational Medicine, Genentech Inc., South San Francisco, CA, USA
| | - Victor Yip
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc., South San Francisco, CA, USA
| | - Ben-Quan Shen
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc., South San Francisco, CA, USA
| | - Chang Liu
- BioAnalytical Sciences, Genentech Inc., South San Francisco, CA, USA
| | - Lyrialle Han
- Clinical Pharmacology, Genentech Inc., South San Francisco, CA, USA
| | - Ayse Meric Ovacik
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc., South San Francisco, CA, USA
| | - Yan Wu
- Antibody Engineering, Genentech Inc., South San Francisco, CA, USA
| | - Sara Glickstein
- Early Clinical Development, Genentech Inc, South San Francisco, CA, USA
| | - Rebecca Kunder
- Early Clinical Development, Genentech Inc, South San Francisco, CA, USA
| | - Joseph R Arron
- Immunology Discovery, Genentech Inc., South San Francisco, CA, USA
| | - Lin Pan
- Clinical Pharmacology, Genentech Inc., South San Francisco, CA, USA
| | - Amrita V Kamath
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc., South San Francisco, CA, USA
| | - Eric G Stefanich
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc., South San Francisco, CA, USA.
| |
Collapse
|
39
|
Wang S, Friedman SL. Found in translation-Fibrosis in metabolic dysfunction-associated steatohepatitis (MASH). Sci Transl Med 2023; 15:eadi0759. [PMID: 37792957 PMCID: PMC10671253 DOI: 10.1126/scitranslmed.adi0759] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 09/15/2023] [Indexed: 10/06/2023]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is a severe form of liver disease that poses a global health threat because of its potential to progress to advanced fibrosis, leading to cirrhosis and liver cancer. Recent advances in single-cell methodologies, refined disease models, and genetic and epigenetic insights have provided a nuanced understanding of MASH fibrogenesis, with substantial cellular heterogeneity in MASH livers providing potentially targetable cell-cell interactions and behavior. Unlike fibrogenesis, mechanisms underlying fibrosis regression in MASH are still inadequately understood, although antifibrotic targets have been recently identified. A refined antifibrotic treatment framework could lead to noninvasive assessment and targeted therapies that preserve hepatocellular function and restore the liver's architectural integrity.
Collapse
Affiliation(s)
- Shuang Wang
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Scott L. Friedman
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
40
|
Yoshikawa T, Oguchi A, Toriu N, Sato Y, Kobayashi T, Ogawa O, Haga H, Sakurai S, Yamamoto T, Murakawa Y, Yanagita M. Tertiary Lymphoid Tissues Are Microenvironments with Intensive Interactions between Immune Cells and Proinflammatory Parenchymal Cells in Aged Kidneys. J Am Soc Nephrol 2023; 34:1687-1708. [PMID: 37548710 PMCID: PMC10561819 DOI: 10.1681/asn.0000000000000202] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 07/10/2023] [Indexed: 08/08/2023] Open
Abstract
SIGNIFICANCE STATEMENT Ectopic lymphoid structures called tertiary lymphoid tissues (TLTs) develop in several kidney diseases and are associated with poor renal prognosis. However, the mechanisms underlying TLT expansion and their effect on renal regeneration remain unclear. The authors report that single-nucleus RNA sequencing and validation experiments demonstrate that TLTs potentially amplify inflammation in aged injured kidneys. Lymphocytes within TLTs promote proinflammatory phenotypes of the surrounding proximal tubules and fibroblasts within the TLTs via proinflammatory cytokine production. These proinflammatory parenchymal cells then interact with immune cells by chemokine or cytokine production. Such cell-cell interactions potentially increase inflammation, expand TLTs, and exacerbate kidney injury. These findings help illuminate renal TLT pathology and suggest potential therapeutic targets. BACKGROUND Ectopic lymphoid structures called tertiary lymphoid tissues (TLTs) develop in several kidney diseases and are associated with poor renal prognosis. However, the mechanisms that expand TLTs and underlie exacerbation of kidney injury remain unclear. METHODS We performed single-nucleus RNA sequencing (snRNA-seq) on aged mouse kidneys with TLTs after ischemia-reperfusion injury. The results were validated using immunostaining, in situ hybridization of murine and human kidneys, and in vitro experiments. RESULTS Using snRNA-seq, we identified proinflammatory and profibrotic Vcam1+ injured proximal tubules (PTs) with NF κ B and IFN-inducible transcription factor activation. VCAM1 + PTs were preferentially localized around TLTs and drove inflammation and fibrosis via the production of multiple chemokines or cytokines. Lymphocytes within TLTs expressed Tnf and Ifng at high levels, which synergistically upregulated VCAM1 and chemokine expression in cultured PT cells. In addition, snRNA-seq also identified proinflammatory and profibrotic fibroblasts, which resided within and outside TLTs, respectively. Proinflammatory fibroblasts exhibited STAT1 activation and various chemokine or cytokine production, including CXCL9/CXCL10 and B cell-activating factor, contributing to lymphocyte recruitment and survival. IFN γ upregulated the expression of these molecules in cultured fibroblasts in a STAT1-dependent manner, indicating potential bidirectional interactions between IFN γ -producing CXCR3 + T cells and proinflammatory fibroblasts within TLTs. The cellular and molecular components described in this study were confirmed in human kidneys with TLTs. CONCLUSIONS These findings suggest that TLTs potentially amplify inflammation by providing a microenvironment that allows intense interactions between renal parenchymal and immune cells. These interactions may serve as novel therapeutic targets in kidney diseases involving TLT formation.
Collapse
Affiliation(s)
- Takahisa Yoshikawa
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akiko Oguchi
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Naoya Toriu
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Yuki Sato
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Kobayashi
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Osamu Ogawa
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hironori Haga
- Department of Diagnostic Pathology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Satoko Sakurai
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Takuya Yamamoto
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Yasuhiro Murakawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
- IFOM-ETS, Milan, Italy
| | - Motoko Yanagita
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| |
Collapse
|
41
|
Massagué J, Sheppard D. TGF-β signaling in health and disease. Cell 2023; 186:4007-4037. [PMID: 37714133 PMCID: PMC10772989 DOI: 10.1016/j.cell.2023.07.036] [Citation(s) in RCA: 292] [Impact Index Per Article: 146.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 09/17/2023]
Abstract
The TGF-β regulatory system plays crucial roles in the preservation of organismal integrity. TGF-β signaling controls metazoan embryo development, tissue homeostasis, and injury repair through coordinated effects on cell proliferation, phenotypic plasticity, migration, metabolic adaptation, and immune surveillance of multiple cell types in shared ecosystems. Defects of TGF-β signaling, particularly in epithelial cells, tissue fibroblasts, and immune cells, disrupt immune tolerance, promote inflammation, underlie the pathogenesis of fibrosis and cancer, and contribute to the resistance of these diseases to treatment. Here, we review how TGF-β coordinates multicellular response programs in health and disease and how this knowledge can be leveraged to develop treatments for diseases of the TGF-β system.
Collapse
Affiliation(s)
- Joan Massagué
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Dean Sheppard
- Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
42
|
Cash E, Goodwin AT, Tatler AL. Adenosine receptor signalling as a driver of pulmonary fibrosis. Pharmacol Ther 2023; 249:108504. [PMID: 37482099 DOI: 10.1016/j.pharmthera.2023.108504] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/30/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
Pulmonary fibrosis is a debilitating and life-limiting lung condition in which the damage- response mechanisms of mixed-population cells within the lungs go awry. The tissue microenvironment is drastically remodelled by aberrantly activated fibroblasts which deposit ECM components into the surrounding lung tissue, detrimentally affecting lung function and capacity for gas exchange. Growing evidence suggests a role for adenosine signalling in the pathology of tissue fibrosis in a variety of organs, including the lung, but the molecular pathways through which this occurs remain largely unknown. This review explores the role of adenosine in fibrosis and evaluates the contribution of the different adenosine receptors to fibrogenesis. Therapeutic targeting of the adenosine receptors is also considered, along with clinical observations pointing towards a role for adenosine in fibrosis. In addition, the interaction between adenosine signalling and other profibrotic signalling pathways, such as TGFβ1 signalling, is discussed.
Collapse
Affiliation(s)
- Emily Cash
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, University of Nottingham, UK; NIHR Nottingham Biomedical Research Centre, Nottingham, UK
| | - Amanda T Goodwin
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, University of Nottingham, UK; NIHR Nottingham Biomedical Research Centre, Nottingham, UK
| | - Amanda L Tatler
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, University of Nottingham, UK; NIHR Nottingham Biomedical Research Centre, Nottingham, UK.
| |
Collapse
|
43
|
Enomoto Y, Katsura H, Fujimura T, Ogata A, Baba S, Yamaoka A, Kihara M, Abe T, Nishimura O, Kadota M, Hazama D, Tanaka Y, Maniwa Y, Nagano T, Morimoto M. Autocrine TGF-β-positive feedback in profibrotic AT2-lineage cells plays a crucial role in non-inflammatory lung fibrogenesis. Nat Commun 2023; 14:4956. [PMID: 37653024 PMCID: PMC10471635 DOI: 10.1038/s41467-023-40617-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 07/31/2023] [Indexed: 09/02/2023] Open
Abstract
The molecular etiology of idiopathic pulmonary fibrosis (IPF) has been extensively investigated to identify new therapeutic targets. Although anti-inflammatory treatments are not effective for patients with IPF, damaged alveolar epithelial cells play a critical role in lung fibrogenesis. Here, we establish an organoid-based lung fibrosis model using mouse and human lung tissues to assess the direct communication between damaged alveolar type II (AT2)-lineage cells and lung fibroblasts by excluding immune cells. Using this in vitro model and mouse genetics, we demonstrate that bleomycin causes DNA damage and activates p53 signaling in AT2-lineage cells, leading to AT2-to-AT1 transition-like state with a senescence-associated secretory phenotype (SASP). Among SASP-related factors, TGF-β plays an exclusive role in promoting lung fibroblast-to-myofibroblast differentiation. Moreover, the autocrine TGF-β-positive feedback loop in AT2-lineage cells is a critical cellular system in non-inflammatory lung fibrogenesis. These findings provide insights into the mechanism of IPF and potential therapeutic targets.
Collapse
Affiliation(s)
- Yasunori Enomoto
- Laboratory for Lung Development and Regeneration, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - Hiroaki Katsura
- Laboratory for Lung Development and Regeneration, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Takashi Fujimura
- Laboratory for Lung Development and Regeneration, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
- Department of Drug Modality Development, Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Co., Ltd., 5-1-35 Saitoaokita, Minoh, 562-0029, Japan
| | - Akira Ogata
- Laboratory for Lung Development and Regeneration, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Saori Baba
- Laboratory for Lung Development and Regeneration, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Akira Yamaoka
- Laboratory for Lung Development and Regeneration, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Miho Kihara
- Laboratory for Animal Resources and Genetic Engineering (LARGE), RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering (LARGE), RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Osamu Nishimura
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Mitsutaka Kadota
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Daisuke Hazama
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Yugo Tanaka
- Division of Thoracic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Yoshimasa Maniwa
- Division of Thoracic Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Tatsuya Nagano
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Mitsuru Morimoto
- Laboratory for Lung Development and Regeneration, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan.
| |
Collapse
|
44
|
Ding X, Zhu XL, Xu DH, Li S, Yang Q, Feng X, Wei YG, Li H, Yang L, Zhang YJ, Deng XL, Liu KC, Shi SL. NPM promotes hepatotoxin-induced fibrosis by inhibiting ROS-induced apoptosis of hepatic stellate cells and upregulating lncMIAT-induced TGF-β2. Cell Death Dis 2023; 14:575. [PMID: 37648688 PMCID: PMC10469196 DOI: 10.1038/s41419-023-06043-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/25/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023]
Abstract
Liver fibrosis is caused by a variety of chronic liver injuries and has caused significant morbidity and mortality in the world with increasing tendency. Elucidation of the molecular mechanism of liver fibrosis is the basis for intervention of this pathological process and drug development. Nucleophosmin (NPM) is a widely expressed nucleolar phosphorylated protein, which is particularly important for cell proliferation, differentiation and survival. The biological role of NPM in liver fibrosis remains unknown. Here we show that NPM promotes liver fibrosis through multiple pathways. Our study found that NPM was up-regulated in cirrhosis tissues and activated in hepatic stellate cells (HSCs). NPM inhibition reduced liver fibrosis markers expression in HSCs and inhibited the HSCs proliferation and migration. In mice model, NPM knockdown in HSCs or application of specific NPM inhibitor can remarkably attenuate hepatic fibrosis. Mechanistic analysis showed that NPM promotes hepatic fibrosis by inhibiting HSCs apoptosis through Akt/ROS pathway and by upregulating TGF-β2 through Akt-induced lncMIAT. LncMIAT up-regulated TGF-β2 mRNA by competitively sponging miR-16-5p. In response to liver injury, hepatocytes, Kupffer cells and HSCs up-regulated NPM to increase TGF-β2 secretion to activate HSCs in a paracrine or autocrine manner, leading to increased liver fibrosis. Our study demonstrated that NPM regulated hepatotoxin-induced fibrosis through Akt/ROS-induced apoptosis of HSCs and via the Akt/lncMIAT-up-regulated TGF-β2. Inhibition of NPM or application of NPM inhibitor CIGB300 remarkably attenuated liver fibrosis. NPM serves a potential new drug target for liver fibrosis.
Collapse
Affiliation(s)
- Xue Ding
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, China
| | - Xin-Le Zhu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, China
| | - Dong-Hui Xu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
- Department of Hepatic Biliary Pancreatic Vascular Surgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Shuang Li
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Qiong Yang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Xian Feng
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Yong-Gui Wei
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Huan Li
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Ling Yang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Yu-Jun Zhang
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, China
| | - Xiao-Ling Deng
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Kuan-Can Liu
- Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
| | - Song-Lin Shi
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China.
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
45
|
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic fatty liver disease worldwide, particularly in obese and type 2 diabetic individuals. Currently, there are no therapies for NAFLD that have been approved by the US Food and Drug Administration. Herein, we examine the rationale for using ω3 polyunsaturated fatty acids (PUFAs) in NAFLD therapy. This focus is based on the finding that NAFLD severity is associated with a reduction of hepatic C20-22 ω3 PUFAs. Because C20-22 ω3 PUFAs are pleiotropic regulators of cell function, loss of C20-22 ω3 PUFAs has the potential to significantly impact hepatic function. We describe NAFLD prevalence and pathophysiology as well as current NAFLD therapies. We also present evidence from clinical and preclinical studies that evaluated the capacity of C20-22 ω3 PUFAs to treat NAFLD. Given the clinical and preclinical evidence, dietary C20-22 ω3 PUFA supplementation has the potential to decrease human NAFLD severity by reducing hepatosteatosis and liver injury.
Collapse
Affiliation(s)
- Melinda H Spooner
- Molecular Nutrition and Diabetes Research Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA;
| | - Donald B Jump
- Molecular Nutrition and Diabetes Research Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon, USA;
| |
Collapse
|
46
|
Sun C, Bai M, Jia Y, Tian X, Guo Y, Xu X, Guo Z. mRNA sequencing reveals the distinct gene expression and biological functions in cardiac fibroblasts regulated by recombinant fibroblast growth factor 2. PeerJ 2023; 11:e15736. [PMID: 37483983 PMCID: PMC10362857 DOI: 10.7717/peerj.15736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
After myocardial injury, cardiac fibroblasts (CFs) differentiate into myofibroblasts, which express and secrete extracellular matrix (ECM) components for myocardial repair, but also promote myocardial fibrosis. Recombinant fibroblast growth factor 2 (FGF2) protein drug with low molecular weight can promote cell survival and angiogenesis, and it was found that FGF2 could inhibit the activation of CFs, suggesting FGF2 has great potential in myocardial repair. However, the regulatory role of FGF2 on CFs has not been fully elucidated. Here, we found that recombinant FGF2 significantly suppressed the expression of alpha smooth muscle actin (α-SMA) in CFs. Through RNA sequencing, we analyzed mRNA expression in CFs and the differently expressed genes regulated by FGF2, including 430 up-regulated genes and 391 down-regulated genes. Gene ontology analysis revealed that the differentially expressed genes were strongly enriched in multiple biological functions, including ECM organization, cell adhesion, actin filament organization and axon guidance. The results of gene set enrichment analysis (GSEA) show that ECM organization and actin filament organization are down-regulated, while axon guidance is up-regulated. Further cellular experiments indicate that the regulatory functions of FGF2 are consistent with the findings of the gene enrichment analysis. This study provides valuable insights into the potential therapeutic role of FGF2 in treating cardiac fibrosis and establishes a foundation for further research to uncover the underlying mechanisms of CFs gene expression regulated by FGF2.
Collapse
Affiliation(s)
- Changye Sun
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, China
| | - Mengru Bai
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yangyang Jia
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiangqin Tian
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yonglong Guo
- Department of Cardiology, The First Affiliated Hospital, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xinhui Xu
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhikun Guo
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
47
|
Li T, Wang X, Niu M, Wang M, Zhou J, Wu K, Yi M. Bispecific antibody targeting TGF-β and PD-L1 for synergistic cancer immunotherapy. Front Immunol 2023; 14:1196970. [PMID: 37520520 PMCID: PMC10373067 DOI: 10.3389/fimmu.2023.1196970] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023] Open
Abstract
The PD-1/PD-L1 signaling pathway plays a crucial role in cancer immune evasion, and the use of anti-PD-1/PD-L1 antibodies represents a significant milestone in cancer immunotherapy. However, the low response rate observed in unselected patients and the development of therapeutic resistance remain major obstacles to their clinical application. Accumulating studies showed that overexpressed TGF-β is another immunosuppressive factor apart from traditional immune checkpoints. Actually, the effects of PD-1 and TGF-β pathways are independent and interactive, which work together contributing to the immune evasion of cancer cell. It has been verified that blocking TGF-β and PD-L1 simultaneously could enhance the efficacy of PD-L1 monoclonal antibody and overcome its treatment resistance. Based on the bispecific antibody or fusion protein technology, multiple bispecific and bifunctional antibodies have been developed. In the preclinical and clinical studies, these updated antibodies exhibited potent anti-tumor activity, superior to anti-PD-1/PD-L1 monotherapies. In the review, we summarized the advances of bispecific antibodies targeting TGF-β and PD-L1 in cancer immunotherapy. We believe these next-generation immune checkpoint inhibitors would substantially alter the cancer treatment paradigm, especially in anti-PD-1/PD-L1-resistant patients.
Collapse
Affiliation(s)
- Tianye Li
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Xinrun Wang
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Mengke Niu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Mingli Wang
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Jianwei Zhou
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
48
|
Waldrep KM, Rodgers JI, Garrett SM, Wolf BJ, Feghali-Bostwick CA. The Role of SOX9 in IGF-II-Mediated Pulmonary Fibrosis. Int J Mol Sci 2023; 24:11234. [PMID: 37510994 PMCID: PMC10378869 DOI: 10.3390/ijms241411234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/29/2023] [Accepted: 07/02/2023] [Indexed: 07/30/2023] Open
Abstract
Pulmonary fibrosis (PF) associated with systemic sclerosis (SSc) results in significant morbidity and mortality. We previously reported that insulin-like growth factor-II (IGF-II) is overexpressed in lung tissues and fibroblasts from SSc patients, and IGF-II fosters fibrosis by upregulating collagen type I, fibronectin, and TGFβ. We now show that IGF-II augments mRNA levels of profibrotic signaling molecules TGFβ2 (p ≤ 0.01) and TGFβ3 (p ≤ 0.05), collagen type III (p ≤ 0.01), and the collagen posttranslational modification enzymes P4HA2 (p ≤ 0.05), P3H2 (p ≤ 0.05), LOX (p = 0.065), LOXL2 (p ≤ 0.05), LOXL4 (p ≤ 0.05) in primary human lung fibroblasts. IGF-II increases protein levels of TGFβ2 (p ≤ 0.01), as well as COL3A1, P4HA2, P4Hβ, and LOXL4 (p ≤ 0.05). In contrast, IGF-II decreases mRNA levels of the collagen degradation enzymes cathepsin (CTS) K, CTSB, and CTSL and protein levels of CTSK (p ≤ 0.05). The SRY-box transcription factor 9 (SOX9) is overexpressed in SSc lung tissues at the mRNA (p ≤ 0.05) and protein (p ≤ 0.01) levels compared to healthy controls. IGF-II induces SOX9 in lung fibroblasts (p ≤ 0.05) via the IGF1R/IR hybrid receptor, and SOX9 regulates TGFβ2 (p ≤ 0.05), TGFβ3 (p ≤ 0.05), COL3A1 (p ≤ 0.01), and P4HA2 (p ≤ 0.001) downstream of IGF-II. Our results identify a novel IGF-II signaling axis and downstream targets that are regulated in a SOX9-dependent and -independent manner. Our findings provide novel insights on the role of IGF-II in promoting pulmonary fibrosis.
Collapse
Affiliation(s)
- Kristy M. Waldrep
- Department of Medicine, Rheumatology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.M.W.); (J.I.R.); (S.M.G.)
| | - Jessalyn I. Rodgers
- Department of Medicine, Rheumatology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.M.W.); (J.I.R.); (S.M.G.)
| | - Sara M. Garrett
- Department of Medicine, Rheumatology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.M.W.); (J.I.R.); (S.M.G.)
| | - Bethany J. Wolf
- Department of Public Health Sciences, Biostatistics and Bioinformatics, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Carol A. Feghali-Bostwick
- Department of Medicine, Rheumatology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.M.W.); (J.I.R.); (S.M.G.)
| |
Collapse
|
49
|
Nabhan AN, Webster JD, Adams JJ, Blazer L, Everrett C, Eidenschenk C, Arlantico A, Fleming I, Brightbill HD, Wolters PJ, Modrusan Z, Seshagiri S, Angers S, Sidhu SS, Newton K, Arron JR, Dixit VM. Targeted alveolar regeneration with Frizzled-specific agonists. Cell 2023; 186:2995-3012.e15. [PMID: 37321220 DOI: 10.1016/j.cell.2023.05.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 03/24/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023]
Abstract
Wnt ligands oligomerize Frizzled (Fzd) and Lrp5/6 receptors to control the specification and activity of stem cells in many species. How Wnt signaling is selectively activated in different stem cell populations, often within the same organ, is not understood. In lung alveoli, we show that distinct Wnt receptors are expressed by epithelial (Fzd5/6), endothelial (Fzd4), and stromal (Fzd1) cells. Fzd5 is uniquely required for alveolar epithelial stem cell activity, whereas fibroblasts utilize distinct Fzd receptors. Using an expanded repertoire of Fzd-Lrp agonists, we could activate canonical Wnt signaling in alveolar epithelial stem cells via either Fzd5 or, unexpectedly, non-canonical Fzd6. A Fzd5 agonist (Fzd5ag) or Fzd6ag stimulated alveolar epithelial stem cell activity and promoted survival in mice after lung injury, but only Fzd6ag promoted an alveolar fate in airway-derived progenitors. Therefore, we identify a potential strategy for promoting regeneration without exacerbating fibrosis during lung injury.
Collapse
Affiliation(s)
- Ahmad N Nabhan
- Department of Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Joshua D Webster
- Department of Pathology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jarret J Adams
- AntlerA Therapeutics, 348 Hatch Drive, Foster City, CA 94404, USA
| | - Levi Blazer
- AntlerA Therapeutics, 348 Hatch Drive, Foster City, CA 94404, USA
| | - Christine Everrett
- Department of Molecular Discovery and Cancer Cell Biology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Celine Eidenschenk
- Department of Molecular Discovery and Cancer Cell Biology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Alexander Arlantico
- Department of Translational Immunology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Isabel Fleming
- Department of Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Hans D Brightbill
- Department of Translational Immunology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Paul J Wolters
- Department of Medicine, School of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Zora Modrusan
- Department of Microchemistry, Proteomics, Lipidomics and Next Generation Sequencing, Genentech, South San Francisco, CA 94080, USA
| | | | - Stephane Angers
- AntlerA Therapeutics, 348 Hatch Drive, Foster City, CA 94404, USA; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 1A2, Canada; Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sachdev S Sidhu
- AntlerA Therapeutics, 348 Hatch Drive, Foster City, CA 94404, USA; School of Pharmacy, University of Waterloo, Kitchener, ON N2G 1C5, Canada
| | - Kim Newton
- Department of Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Joseph R Arron
- Department of Immunology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Vishva M Dixit
- Department of Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
50
|
Liu X, Dai K, Zhang X, Huang G, Lynn H, Rabata A, Liang J, Noble PW, Jiang D. Multiple Fibroblast Subtypes Contribute to Matrix Deposition in Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2023; 69:45-56. [PMID: 36927333 PMCID: PMC10324043 DOI: 10.1165/rcmb.2022-0292oc] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 03/16/2023] [Indexed: 03/18/2023] Open
Abstract
Progressive pulmonary fibrosis results from a dysfunctional tissue repair response and is characterized by fibroblast proliferation, activation, and invasion and extracellular matrix accumulation. Lung fibroblast heterogeneity is well recognized. With single-cell RNA sequencing, fibroblast subtypes have been reported by recent studies. However, the roles of fibroblast subtypes in effector functions in lung fibrosis are not well understood. In this study, we incorporated the recently published single-cell RNA-sequencing datasets on murine lung samples of fibrosis models and human lung samples of fibrotic diseases and analyzed fibroblast gene signatures. We identified and confirmed the novel fibroblast subtypes we reported recently across all samples of both mouse models and human lung fibrotic diseases, including idiopathic pulmonary fibrosis, systemic sclerosis-associated interstitial lung disease, and coronavirus disease (COVID-19). Furthermore, we identified specific cell surface proteins for each fibroblast subtype through differential gene expression analysis, which enabled us to isolate primary cells representing distinct fibroblast subtypes by flow cytometry sorting. We compared matrix production, including fibronectin, collagen, and hyaluronan, after profibrotic factor stimulation and assessed the invasive capacity of each fibroblast subtype. Our results suggest that in addition to myofibroblasts, lipofibroblasts and Ebf1+ (Ebf transcription factor 1+) fibroblasts are two important fibroblast subtypes that contribute to matrix deposition and also have enhanced invasive, proliferative, and contraction phenotypes. The histological locations of fibroblast subtypes are identified in healthy and fibrotic lungs by these cell surface proteins. This study provides new insights to inform approaches to targeting lung fibroblast subtypes to promote the development of therapeutics for lung fibrosis.
Collapse
Affiliation(s)
- Xue Liu
- Department of Medicine and Women’s Guild Lung Institute and
| | - Kristy Dai
- Department of Medicine and Women’s Guild Lung Institute and
| | - Xuexi Zhang
- Department of Medicine and Women’s Guild Lung Institute and
| | - Guanling Huang
- Department of Medicine and Women’s Guild Lung Institute and
| | - Heather Lynn
- Department of Medicine and Women’s Guild Lung Institute and
| | - Anas Rabata
- Department of Medicine and Women’s Guild Lung Institute and
| | - Jiurong Liang
- Department of Medicine and Women’s Guild Lung Institute and
| | - Paul W. Noble
- Department of Medicine and Women’s Guild Lung Institute and
| | - Dianhua Jiang
- Department of Medicine and Women’s Guild Lung Institute and
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|