1
|
Slager J, Simpson HL, Gacesa R, Chen L, Tan IL, Gelderloos J, Maatman A, Wijmenga C, Zhernakova A, Fu J, Weersma RK, Gonera G, Jonkers IH, Withoff S. High-resolution analysis of the treated coeliac disease microbiome reveals strain-level variation. Gut Microbes 2025; 17:2489071. [PMID: 40289251 PMCID: PMC12036492 DOI: 10.1080/19490976.2025.2489071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/05/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Coeliac disease (CeD) is an immune-mediated disorder primarily affecting the small intestine, characterized by an inflammatory immune reaction to dietary gluten. CeD onset results from a multifaceted interplay of genetic and environmental factors. While recent data show that alterations in gut microbiome composition could play an important role, many current studies are constrained by small sample sizes and limited resolution. METHODS To address these limitations, we analyzed fecal gut microbiota from two Dutch cohorts, CeDNN (128 treated CeD patients (tCeD), 106 controls) and the Lifelines Dutch Microbiome Project (24 self-reported tCeD, 654 controls), using shotgun metagenomic sequencing. Self-reported IBS (570 cases, 1710 controls) and IBD (93 cases, 465 controls) were used as comparative conditions of the gastrointestinal tract. Interindividual variation within the case and control groups was calculated at whole microbiome and strain level. Finally, species-specific gene repertoires were analyzed in tCeD patients and controls. RESULTS Within-individual microbiome diversity was decreased in patients with self-reported IBS and IBD but not in tCeD patients. Each condition displayed a unique microbial pattern and, in addition to confirming previously reported microbiome associations, we identify an increase in the levels of Clostridium sp. CAG:253, Roseburia hominis, and Eggerthella lenta, amongst others. We further show that the observed changes can partially be explained by gluten-free diet adherence. We also observe increased interindividual variation of gut microbiome composition among tCeD patients and a higher bacterial mutation frequency in tCeD that contributes to higher interindividual variation at strain level. In addition, the immotile European subspecies of Eubacterium rectale, which has a distinct carbohydrate metabolism potential, was nearly absent in tCeD patients. CONCLUSION Our study sheds light on the complex interplay between the gut microbiome and CeD, revealing increased interindividual variation and strain-level variation in tCeD patients. These findings expand our understanding of the microbiome's role in intestinal health and disease.
Collapse
Affiliation(s)
- Jelle Slager
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hanna L. Simpson
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ranko Gacesa
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Lianmin Chen
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Cardiology, Nanjing Medical University, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Cardiovascular Research Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Ineke L. Tan
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jody Gelderloos
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Astrid Maatman
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Alexandra Zhernakova
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jingyuan Fu
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Rinse K. Weersma
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gieneke Gonera
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Pediatrics, Wilhelmina Hospital Assen, Assen, The Netherlands
| | - Iris H. Jonkers
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Sebo Withoff
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
2
|
Wang N, Pei Z, Wang H, Zhao J, Lu W. Bifidobacterium longum Ameliorates Intestinal Inflammation and Metabolic Biomarkers in Mice Fed a High-Fat Diet with Gliadin by Indoleacrylic Acid. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10486-6. [PMID: 39982644 DOI: 10.1007/s12602-025-10486-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2025] [Indexed: 02/22/2025]
Abstract
Gliadin, abundant in flour-based foods and processed foods, has been widely researched for allergies. However, the impact of gliadin on the intestinal barrier of healthy individuals and the intervention effect of Bifidobacterium longum (B. longum) are rarely explored. Three strains (JCM1217, CCFM1216, CCFM1218) of B. longum with strong gliadin hydrolysis were screened from 18 strains. This study explored the effects of B. longum on mice with a 10-week high-fat diet and 6% gliadin (HFD + 6%G), assessing duodenal health, lipid metabolism, metabolomics, and gut microbiota in the duodenum and colon changes. Three B. longum strains were screened for gliadin hydrolysis to produce minimal R5 immunopeptide production. All three B. longum strains improved duodenal morphology, reduced intestinal permeability, reduced inflammation (IL-15), and activated tryptophan metabolism. Additionally, alterations in the microbiota of the duodenum and colon were also observed. Linear discriminant analysis (LDA) showed that the HFD + 6% G group significantly increased the abundance of Ileibacterium, Alistipes, Bacteroides, Candidatus, Saccharimonas, Streptococcus, Sediminibacterium, and Odoribacterium in the duodenum. The abundance of Blautia, Butyricimonas, Ruminococcaceae UCG-010, Parabacterioids, and Eubacterium nodatum in the colon was also increased. The B. longum CCFM1216 and B. longum CCFM1218 reversed the abundance of these strains. Specifically, B. longum CCFM1216 enhanced the duodenal barrier with indoleacrylic acid, beneficial for blood lipids and glucose. These strains may be used as probiotics for gliadin-related diseases.
Collapse
Affiliation(s)
- Ning Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhangming Pei
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hongchao Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, China.
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.
| |
Collapse
|
3
|
Urganci Ü. Celiac Disease and Gut Microbiota: Herbal Treatment and Gluten-Free Diet. HERBAL MEDICINE FOR AUTOIMMUNE DISEASES 2024:159-184. [DOI: 10.2174/9789815305005124010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Celiac disease (CD) manifests as a targeted autoimmune response that
adversely affects the small intestine, primarily affecting individuals with a particular
genetic predisposition. Diagnosis centers on identifying this gluten-sensitive
enteropathy, which can be ameliorated through the implementation of a gluten-free diet
(GFD), correlating with mucosal healing and symptom alleviation. The human
microbiota, a vast symbiotic community within the gastrointestinal tract, profoundly
impacts human health. Advances in genome sequencing have elucidated the intricate
relationship between gut microbiota and autoimmune diseases, including CD,
emphasizing the significant role of dietary patterns in shaping the gut microbiota. The
influence of GFD on microbiota composition, the only clinically validated treatment
for CD, leads to a nutritional shift and potential macronutrient imbalance. Emerging
research also highlights the therapeutic potential of various herbs with antioxidant,
anti-inflammatory, antimicrobial, gastroprotective, and immunomodulatory properties
as complementary approaches to manage CD. This chapter synthesizes the complex
interactions between genetics, diet, gut microbiota, and potential herbal interventions in
CD, paving the way for more comprehensive understanding and management
strategies.
Collapse
Affiliation(s)
- Ünkan Urganci
- Department of Food Engineering, Faculty of Engineering, Pamukkale University, Denizli 20160,
Türkiye
| |
Collapse
|
4
|
Catassi G, Lener E, Grattagliano MM, Motuz S, Zavarella MA, Bibbò S, Cammarota G, Gasbarrini A, Ianiro G, Catassi C. The role of microbiome in the development of gluten-related disorders. Best Pract Res Clin Gastroenterol 2024; 72:101951. [PMID: 39645285 DOI: 10.1016/j.bpg.2024.101951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/07/2024] [Accepted: 09/03/2024] [Indexed: 12/09/2024]
Abstract
Gluten-related disorders (GRD) include celiac disease (CD), non celiac gluten sensitivity (NCGS) and wheat allergy (WA), conditions that are associated with the ingestion of gluten-containing food. Gut microbiota composition and function may be involved in the pathogenesis of GRD. In untreated CD the microbiota is characterized by a reduction in beneficial microbes like Lactobacillus and Bifidobacterium and an increase in pathogenic ones such as Bacteroides and E. coli. Dysbiosis is a hallmark of CD, persists across various disease stages and is only partially corrected by a gluten-free diet. NCGS patients show a different microbial profile, with a notable decrease in microbial richness, and an increase of Ruminococcaceae and decrease of Bacteroidetes and Fusobacteria. The increase of certain bacterial groups such as Clostridium and Anaerobacter, in contrast with the decline of Bacteroides and Clostridium XVIII, marks a distinctive microbial signature associated with allergic responses to food. Mechanisms linking the gut microbiota to the development of GRD include effects on the gut barrier function, microbiota-mediated immune response to gluten, and an impact of microbial metabolites on gluten digestion and tolerance. Although the gluten-free diet is the primary therapy of GRDs, treatment with probiotics may contribute to improve the natural history of these disorders, for instance by minimizing the damaging effects of gluten contamination and accelerating the catch-up growth at the beginning of the dietary treatment of CD. Additional high-quality trials are still needed to identify and standardize the use of probiotics/prebiotics in GRDs.
Collapse
Affiliation(s)
- Giulia Catassi
- Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy; Pediatric Gastroenterology and Liver Unit, Sapienza University of Rome - Umberto I Hospital, Rome, Italy
| | - Elena Lener
- Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Maria Maddalena Grattagliano
- Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Sofya Motuz
- Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Maria Antonietta Zavarella
- Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Stefano Bibbò
- Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Giovanni Cammarota
- Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Gianluca Ianiro
- Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Carlo Catassi
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, USA.
| |
Collapse
|
5
|
Jebastin T, Syed Abuthakir M, Santhoshi I, Gnanaraj M, Gatasheh MK, Ahamed A, Sharmila V. Unveiling the mysteries: Functional insights into hypothetical proteins from Bacteroides fragilis 638R. Heliyon 2024; 10:e31713. [PMID: 38832264 PMCID: PMC11145332 DOI: 10.1016/j.heliyon.2024.e31713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
Humans benefit from a vast community of microorganisms in their gastrointestinal tract, known as the gut microbiota, numbering in the tens of trillions. An imbalance in the gut microbiota known as dysbiosis, can lead to changes in the metabolite profile, elevating the levels of toxins like Bacteroides fragilis toxin (BFT), colibactin, and cytolethal distending toxin. These toxins are implicated in the process of oncogenesis. However, a significant portion of the Bacteroides fragilis genome consists of functionally uncharacterized and hypothetical proteins. This study delves into the functional characterization of hypothetical proteins (HPs) encoded by the Bacteroides fragilis genome, employing a systematic in silico approach. A total of 379 HPs were subjected to a BlastP homology search against the NCBI non-redundant protein sequence database, resulting in 162 HPs devoid of identity to known proteins. CDD-Blast identified 106 HPs with functional domains, which were then annotated using Pfam, InterPro, SUPERFAMILY, SCANPROSITE, SMART, and CATH. Physicochemical properties, such as molecular weight, isoelectric point, and stability indices, were assessed for 60 HPs whose functional domains were identified by at least three of the aforementioned bioinformatic tools. Subsequently, subcellular localization analysis was examined and the gene ontology analysis revealed diverse biological processes, cellular components, and molecular functions. Remarkably, E1WPR3 was identified as a virulent and essential gene among the HPs. This study presents a comprehensive exploration of B. fragilis HPs, shedding light on their potential roles and contributing to a deeper understanding of this organism's functional landscape.
Collapse
Affiliation(s)
- Thomas Jebastin
- Computer Aided Drug Designing Lab, Department of Bioinformatics, Bishop Heber College (Autonomous), Tiruchirappalli, 620017, Tamil Nadu, India
| | - M.H. Syed Abuthakir
- Department of Bioinformatics, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| | - Ilangovan Santhoshi
- Computer Aided Drug Designing Lab, Department of Bioinformatics, Bishop Heber College (Autonomous), Tiruchirappalli, 620017, Tamil Nadu, India
| | - Muniraj Gnanaraj
- Department of Biotechnology, School of Life Sciences, St Joseph's University, 36 Lalbagh Road, Bengaluru, 560027, Karnataka, India
| | - Mansour K. Gatasheh
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Anis Ahamed
- Department of Botany and Microbiology, College of Science, King Saud University, Saudi Arabia
| | - Velusamy Sharmila
- Department of Biotechnology, Nehru Arts and Science College (NASC), Thirumalayampalayam, Coimbatore, 641 105, Tamil Nadu, India
| |
Collapse
|
6
|
Annunziato A, Vacca M, Cristofori F, Dargenio VN, Celano G, Francavilla R, De Angelis M. Celiac Disease: The Importance of Studying the Duodenal Mucosa-Associated Microbiota. Nutrients 2024; 16:1649. [PMID: 38892582 PMCID: PMC11174386 DOI: 10.3390/nu16111649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
There is increasing evidence indicating that changes in both the composition and functionality of the intestinal microbiome are closely associated with the development of several chronic inflammatory diseases, with celiac disease (CeD) being particularly noteworthy. Thanks to the advent of culture-independent methodologies, the ability to identify and quantify the diverse microbial communities residing within the human body has been significantly improved. However, in the context of CeD, a notable challenge lies in characterizing the specific microbiota present on the mucosal surfaces of the intestine, rather than relying solely on fecal samples, which may not fully represent the relevant microbial populations. Currently, our comprehension of the composition and functional importance of mucosa-associated microbiota (MAM) in CeD remains an ongoing field of research because the limited number of available studies have reported few and sometimes contradictory results. MAM plays a crucial role in the development and progression of CeD, potentially acting as both a trigger and modulator of the immune response within the intestinal mucosa, given its proximity to the epithelial cells and direct interaction. According to this background, this review aims to consolidate the existing literature specifically focused on MAM in CeD. By elucidating the complex interplay between the host immune system and the gut microbiota, we aim to pave the way for new interventions based on novel therapeutic targets and diagnostic biomarkers for MAM in CeD.
Collapse
Affiliation(s)
- Alessandro Annunziato
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (A.A.); (G.C.); (M.D.A.)
| | - Mirco Vacca
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (A.A.); (G.C.); (M.D.A.)
| | - Fernanda Cristofori
- Interdisciplinary Department of Medicine, Pediatric Section, Children’s Hospital ‘Giovanni XXIII’, University of Bari Aldo Moro, 70126 Bari, Italy; (F.C.); (V.N.D.); (R.F.)
| | - Vanessa Nadia Dargenio
- Interdisciplinary Department of Medicine, Pediatric Section, Children’s Hospital ‘Giovanni XXIII’, University of Bari Aldo Moro, 70126 Bari, Italy; (F.C.); (V.N.D.); (R.F.)
| | - Giuseppe Celano
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (A.A.); (G.C.); (M.D.A.)
| | - Ruggiero Francavilla
- Interdisciplinary Department of Medicine, Pediatric Section, Children’s Hospital ‘Giovanni XXIII’, University of Bari Aldo Moro, 70126 Bari, Italy; (F.C.); (V.N.D.); (R.F.)
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (A.A.); (G.C.); (M.D.A.)
| |
Collapse
|
7
|
Carnicero-Mayo Y, Sáenz de Miera LE, Ferrero MÁ, Navasa N, Casqueiro J. Modeling Dynamics of Human Gut Microbiota Derived from Gluten Metabolism: Obtention, Maintenance and Characterization of Complex Microbial Communities. Int J Mol Sci 2024; 25:4013. [PMID: 38612823 PMCID: PMC11012253 DOI: 10.3390/ijms25074013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Western diets are rich in gluten-containing products, which are frequently poorly digested. The human large intestine harbors microorganisms able to metabolize undigested gluten fragments that have escaped digestion by human enzymatic activities. The aim of this work was obtaining and culturing complex human gut microbial communities derived from gluten metabolism to model the dynamics of healthy human large intestine microbiota associated with different gluten forms. For this purpose, stool samples from six healthy volunteers were inoculated in media containing predigested gluten or predigested gluten plus non-digested gluten. Passages were carried out every 24 h for 15 days in the same medium and community composition along time was studied via V3-V4 16S rDNA sequencing. Diverse microbial communities were successfully obtained. Moreover, communities were shown to be maintained in culture with stable composition for 14 days. Under non-digested gluten presence, communities were enriched in members of Bacillota, such as Lachnospiraceae, Clostridiaceae, Streptococcaceae, Peptoniphilaceae, Selenomonadaceae or Erysipelotrichaceae, and members of Actinomycetota, such as Bifidobacteriaceae and Eggerthellaceae. Contrarily, communities exposed to digested gluten were enriched in Pseudomonadota. Hence, this study shows a method for culture and stable maintenance of gut communities derived from gluten metabolism. This method enables the analysis of microbial metabolism of gluten in the gut from a community perspective.
Collapse
Affiliation(s)
- Yaiza Carnicero-Mayo
- Área de Microbiología, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24007 León, Spain;
| | - Luis E. Sáenz de Miera
- Área de Genética, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24007 León, Spain;
| | - Miguel Ángel Ferrero
- Área de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad de León, 24007 León, Spain; (M.Á.F.); (N.N.)
| | - Nicolás Navasa
- Área de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad de León, 24007 León, Spain; (M.Á.F.); (N.N.)
| | - Javier Casqueiro
- Área de Microbiología, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24007 León, Spain;
| |
Collapse
|
8
|
Roque A, Pereira SG. Bacteria: Potential Make-or-Break Determinants of Celiac Disease. Int J Mol Sci 2024; 25:2090. [PMID: 38396767 PMCID: PMC10889687 DOI: 10.3390/ijms25042090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 02/25/2024] Open
Abstract
Celiac disease is an autoimmune disease triggered by dietary gluten in genetically susceptible individuals that primarily affects the small intestinal mucosa. The sole treatment is a gluten-free diet that places a social and economic burden on patients and fails, in some, to lead to symptomatic or mucosal healing. Thus, an alternative treatment has long been sought after. Clinical studies on celiac disease have shown an association between the presence of certain microbes and disease outcomes. However, the mechanisms that underlie the effects of microbes in celiac disease remain unclear. Recent studies have employed disease models that have provided insights into disease mechanisms possibly mediated by bacteria in celiac disease. Here, we have reviewed the bacteria and related mechanisms identified so far that might protect from or incite the development of celiac disease. Evidence indicates bacteria play a role in celiac disease and it is worth continuing to explore this, particularly since few studies, to the best of our knowledge, have focused on establishing a mechanistic link between bacteria and celiac disease. Uncovering host-microbe interactions and their influence on host responses to gluten may enable the discovery of pathogenic targets and development of new therapeutic or preventive approaches.
Collapse
Affiliation(s)
| | - Sónia Gonçalves Pereira
- Center for Innovative Care and Health Technology (ciTechCare), School of Health Sciences, Polytechnic of Leiria, 2410-541 Leiria, Portugal;
| |
Collapse
|
9
|
Belei O, Jugănaru I, Basaca DG, Munteanu AI, Mărginean O. The Role of Intestinal Microbiota in Celiac Disease and Further Therapeutic Perspectives. Life (Basel) 2023; 13:2039. [PMID: 37895421 PMCID: PMC10608277 DOI: 10.3390/life13102039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
Celiac disease (CD) is an immune-mediated enteropathy caused by exposure to gluten and related prolamins in genetically susceptible individuals. It is a complex genetic disorder with multiple contributing genes. Linkage studies have identified several genomic regions that probably contain CD susceptibility genes. The most important genetic factors are HLA-DQ2 and DQ8. Several known environmental triggers promote the onset of CD at any age after gluten introduction in individuals with a genetic background, such as viral infections and intestinal dysbiosis. Recent publications have described the interference of the intestinal microbiome in gluten metabolism, modulation of local immune reactions, and in maintaining normal gut permeability. These results have promoted further lines of research on the benefit of probiotic administration to prevent disease onset or alleviate clinical symptoms along with a gluten-free diet (GFD). The relationship between gut microbiome changes and the onset of CD is incompletely understood, still being the subject of current research. This narrative review analyzes the interplay between environmental factors, intestinal microbiome alterations, and the course of CD. Furthermore, this review sets out to discuss if modulation of intestinal microflora with pre- and probiotics along with a GFD could represent a reliable therapeutic target for celiac patients.
Collapse
Affiliation(s)
- Oana Belei
- First Pediatric Clinic, Disturbances of Growth and Development on Children Research Center, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (O.B.); (D.-G.B.); (A.I.M.); (O.M.)
- First Pediatric Clinic, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Iulius Jugănaru
- First Pediatric Clinic, Disturbances of Growth and Development on Children Research Center, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (O.B.); (D.-G.B.); (A.I.M.); (O.M.)
- First Pediatric Clinic, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Diana-Georgiana Basaca
- First Pediatric Clinic, Disturbances of Growth and Development on Children Research Center, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (O.B.); (D.-G.B.); (A.I.M.); (O.M.)
- First Pediatric Clinic, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Andrei Ioan Munteanu
- First Pediatric Clinic, Disturbances of Growth and Development on Children Research Center, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (O.B.); (D.-G.B.); (A.I.M.); (O.M.)
- First Pediatric Clinic, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Otilia Mărginean
- First Pediatric Clinic, Disturbances of Growth and Development on Children Research Center, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (O.B.); (D.-G.B.); (A.I.M.); (O.M.)
- First Pediatric Clinic, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| |
Collapse
|
10
|
Porras AM, Zhou H, Shi Q, Xiao X, Longman R, Brito IL. Inflammatory Bowel Disease-Associated Gut Commensals Degrade Components of the Extracellular Matrix. mBio 2022; 13:e0220122. [PMID: 36445085 PMCID: PMC9765649 DOI: 10.1128/mbio.02201-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/02/2022] [Indexed: 12/03/2022] Open
Abstract
Extracellular matrix (ECM) remodeling has emerged as a key feature of inflammatory bowel disease (IBD), and ECM fragments have been proposed as markers of clinical disease severity. Recent studies report increased protease activity in the gut microbiota of IBD patients. Nonetheless, the relationship between gut microbiota and ECM remodeling has remained unexplored. We hypothesized that members of the human gut microbiome could degrade the host ECM and that bacteria-driven remodeling, in turn, could enhance colonic inflammation. Through a variety of in vitro assays, we first confirmed that multiple bacterial species found in the human gut are capable of degrading specific ECM components. Clinical stool samples obtained from ulcerative colitis patients also exhibited higher levels of proteolytic activity in vitro, compared to those of their healthy counterparts. Furthermore, culture supernatants from bacteria species that are capable of degrading human ECM accelerated inflammation in dextran sodium sulfate (DSS)-induced colitis. Finally, we identified several of the bacterial proteases and carbohydrate degrading enzymes (CAZymes) that are potentially responsible for ECM degradation in vitro. Some of these protease families and CAZymes were also found in increased abundance in a metagenomic cohort of IBD. These results demonstrate that some commensal bacteria in the gut are indeed capable of degrading components of human ECM in vitro and suggest that this proteolytic activity may be involved in the progression of IBD. A better understanding of the relationship between nonpathogenic gut microbes, host ECM, and inflammation could be crucial to elucidating some of the mechanisms underlying host-bacteria interactions in IBD and beyond. IMPORTANCE Healthy gut epithelial cells form a barrier that keeps bacteria and other substances from entering the blood or tissues of the body. Those cells sit on scaffolding that maintains the structure of the gut and informs our immune system about the integrity of this barrier. In patients with inflammatory bowel disease (IBD), breaks are formed in this cellular barrier, and bacteria gain access to the underlying tissue and scaffolding. In our study, we discovered that bacteria that normally reside in the gut can modify and disassemble the underlying scaffolding. Additionally, we discovered that changes to this scaffolding affect the onset of IBD in mouse models of colitis as well as the abilities of these mice to recover. We propose that this new information will reveal how breaks in the gut wall lead to IBD and will open up new avenues by which to treat patients with IBD.
Collapse
Affiliation(s)
- Ana Maria Porras
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Hao Zhou
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Qiaojuan Shi
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Xieyue Xiao
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - JRI Live Cell Bank
- Jill Roberts Institute for IBD Research, Weill Cornell Medicine, New York, New York, USA
| | - Randy Longman
- Jill Roberts Institute for IBD Research, Weill Cornell Medicine, New York, New York, USA
| | - Ilana Lauren Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
11
|
Gut Microbiota Disruption in COVID-19 or Post-COVID Illness Association with severity biomarkers: A Possible Role of Pre / Pro-biotics in manipulating microflora. Chem Biol Interact 2022; 358:109898. [PMID: 35331679 PMCID: PMC8934739 DOI: 10.1016/j.cbi.2022.109898] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/28/2022] [Accepted: 03/14/2022] [Indexed: 01/08/2023]
Abstract
Coronavirus disease (COVID-19), a coronavirus-induced illness attributed to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission, is thought to have first emerged on November 17, 2019. According to World Health Organization (WHO). COVID-19 has been linked to 379,223,560 documented occurrences and 5,693,245 fatalities globally as of 1st Feb 2022. Influenza A virus that has also been discovered diarrhea and gastrointestinal discomfort was found in the infected person, highlighting the need of monitoring them for gastro intestinal tract (GIT) symptoms regardless of whether the sickness is respiration related. The majority of the microbiome in the intestines is Firmicutes and Bacteroidetes, while Bacteroidetes, Proteobacteria, and Firmicutes are found in the lungs. Although most people overcome SARS-CoV-2 infections, many people continue to have symptoms months after the original sickness, called Long-COVID or Post COVID. The term "post-COVID-19 symptoms" refers to those that occur with or after COVID-19 and last for more than 12 weeks (long-COVID-19). The possible understanding of biological components such as inflammatory, immunological, metabolic activity biomarkers in peripheral blood is needed to evaluate the study. Therefore, this article aims to review the informative data that supports the idea underlying the disruption mechanisms of the microbiome of the gastrointestinal tract in the acute COVID-19 or post-COVID-mediated elevation of severity biomarkers.
Collapse
|
12
|
Hartmann P. Editorial: The Microbiome in Hepatobiliary and Intestinal Disease. Front Physiol 2022; 13:893074. [PMID: 35492588 PMCID: PMC9044070 DOI: 10.3389/fphys.2022.893074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Affiliation(s)
- Phillipp Hartmann
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
- Division of Gastroenterology, Hepatology and Nutrition, Rady Children’s Hospital San Diego, San Diego, CA, United States
- *Correspondence: Phillipp Hartmann,
| |
Collapse
|
13
|
Kociszewska D, Vlajkovic SM. The Association of Inflammatory Gut Diseases with Neuroinflammatory and Auditory Disorders. Front Biosci (Elite Ed) 2022; 14:8. [PMID: 35730449 DOI: 10.31083/j.fbe1402008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/11/2022] [Accepted: 02/24/2022] [Indexed: 11/06/2022]
Abstract
Disorders such as inflammatory bowel disease (IBD) and celiac disease (CeD) result in intestinal hyperpermeability or 'leaky' gut. The increased permeability of the intestinal barrier allows microbial metabolites, toxins, and pathogens to infiltrate the bloodstream and extraintestinal tissues, causing systemic inflammation. Despite differences in aetiology and pathophysiology, IBD and CeD share several extraintestinal manifestations such as neuroinflammation, neurological and psychiatric manifestations, and sensorineural hearing loss (SNHL). This narrative review focuses on the association between intestinal hyperpermeability with the brain and inner ear diseases. We postulate that the microbial metabolites and pathogens released from the gut increase the permeability of natural barriers, such as the blood-brain barrier (BBB) and blood-labyrinth barrier (BLB). The barrier breakdown allows the spreading of inflammatory processes to the brain and inner ear, leading to disease.
Collapse
Affiliation(s)
- Dagmara Kociszewska
- Department of Physiology and The Eisdell Moore Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 1142 Auckland, New Zealand
| | - Srdjan M Vlajkovic
- Department of Physiology and The Eisdell Moore Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 1142 Auckland, New Zealand
| |
Collapse
|
14
|
Treppiccione L, Luongo D, Maurano F, Rossi M. Next generation strategies to recover immunological tolerance in celiac disease. Int Rev Immunol 2022; 42:237-245. [PMID: 35225129 DOI: 10.1080/08830185.2022.2044807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Celiac disease (CD) is an autoimmune disease that occurs in genetically predisposed individuals following the ingestion of gluten. Its prevalence is rising worldwide. A gluten-free (GF) diet is mandatory for the management of CD. However, several issues persist regarding the nutritional quality of GF products. Importantly, deep knowledge about the pathogenic mechanisms in CD highlights the central role of CD4+ T cell-mediated immunity in CD. Furthermore, intestinal T regulatory cells are functional in CD, but cytokines such as IL-15, produced under inflammatory conditions, hamper their activity. This paves the way for the development of immunomodulatory strategies to the GF diet. From this perspective, microbiological approaches were considered able to modulate the gluten-specific immune response. Interestingly, gliadin peptide-based immunotherapy to abolish the inflammatory CD4+T cell-mediated response has been explored in CD patients. Furthermore, different biotechnological approaches based on the use of chemically/enzymatically modified gluten molecules have been proved effective in different models of CD. However, the choice of the right age in infants to introduce the antigen and thus induce tolerance still remains an important issue to solve. Addressing all these points should help to design an effective intervention strategy for preventing CD.
Collapse
Affiliation(s)
| | | | | | - Mauro Rossi
- Institute of Food Sciences, CNR, Avellino, Italy
| |
Collapse
|
15
|
Yan Z, Zhang K, Zhang K, Wang G, Wang L, Zhang J, Qiu Z, Guo Z, Song X, Li J. Integrated 16S rDNA Gene Sequencing and Untargeted Metabolomics Analyses to Investigate the Gut Microbial Composition and Plasma Metabolic Phenotype in Calves With Dampness-Heat Diarrhea. Front Vet Sci 2022; 9:703051. [PMID: 35242833 PMCID: PMC8885629 DOI: 10.3389/fvets.2022.703051] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/10/2022] [Indexed: 12/26/2022] Open
Abstract
Dampness-heat diarrhea (DHD), a common syndrome in Chinese dairy farms, is mainly resulted from digestive system disorders, and accompanied with metabolic disorders in some cases. However, the underlying mechanisms in the intestinal microbiome and plasma metabolome in calves with DHD remain unclear. In order to investigate the pathogenesis of DHD in calves, multi-omics techniques including the 16S rDNA gene sequencing and metabolomics were used to analyze gut microbial compositions and plasma metabolic changes in calves. The results indicated that DHD had a significant effect on the intestinal microbial compositions in calves, which was confirmed by changes in microbial population and distribution. A total of 14 genera were changed, including Escherichia-Shigella, Bacteroides, and Fournierella, in calves with DHD (P < 0.05). Functional analysis based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations indicated that 11 metabolic functions (level 2) were significantly enriched in DHD cases. The untargeted metabolomics analysis showed that 440 metabolites including bilineurin, phosphatidylcholine, and glutamate were significantly different between two groups (VIP > 1 and P < 0.05), and they were related to 67 signal pathways. Eight signal pathways including alpha-linolenic acid, linoleic acid, and glycerophospholipid metabolism were significantly enriched (P < 0.05), which may be potential biomarkers of plasma in calves with DHD. Further, 107 pairs of intestinal microbiota-plasma metabolite correlations were determined, e.g., Escherichia-Shigella was significantly associated with changes of sulfamethazine, butyrylcarnitine, and 14 other metabolites, which reflected that metabolic activity was influenced by the microbiome. These microbiota-metabolite pairs might have a relationship with DHD in calves. In conclusion, the findings revealed that DHD had effect on intestinal microbial compositions and plasma metabolome in calves, and the altered metabolic pathways and microorganisms might serve as diagnostic markers and potential therapeutic targets for DHD in calves.
Collapse
Affiliation(s)
- Zunxiang Yan
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Kang Zhang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Kai Zhang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Guibo Wang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Lei Wang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Jingyan Zhang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Zhengying Qiu
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Zhiting Guo
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
| | - Xiaoping Song
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Xiaoping Song
| | - Jianxi Li
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, China
- *Correspondence: Jianxi Li
| |
Collapse
|
16
|
Krupa-Kozak U, Drabińska N. Gut Microbiota and A Gluten-Free Diet. COMPREHENSIVE GUT MICROBIOTA 2022:243-255. [DOI: 10.1016/b978-0-12-819265-8.00036-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
17
|
Kozioł-Kozakowska A, Salamon D, Grzenda-Adamek Z, Krawczyk A, Duplaga M, Gosiewski T, Kowalska-Duplaga K. Changes in Diet and Anthropometric Parameters in Children and Adolescents with Celiac Disease-One Year of Follow-Up. Nutrients 2021; 13:4306. [PMID: 34959858 PMCID: PMC8703461 DOI: 10.3390/nu13124306] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/15/2021] [Accepted: 11/28/2021] [Indexed: 12/12/2022] Open
Abstract
Celiac disease (CD) may cause numerous nutrient deficiencies that a proper gluten-free diet (GFD) should compensate for. The study group consists of 40 children, aged 8.43 years (SD 3.5), on average, in whom CD was diagnosed on the basis of clinical symptoms, immunological and histopathological results. The patients' height, weight, diet and biochemical tests were assessed three times: before diagnosis, after six months, and following one year of GFD. After one year, the patients' weight and height increased but nutritional status (body mass index, BMI percentile) did not change significantly. The children's diet before diagnosis was similar to that of the general Polish population: insufficient implementation of the dietary norm for energy, fiber, calcium, iodine, iron as well as folic acid, vitamins D, K, and E was observed. Over the year, the GFD of the children with CD did not change significantly for most of the above nutrients, or the changes were not significant for the overall assessment of the diet. Celiac patients following GFD may have a higher risk of iron, calcium and folate deficiencies. These results confirm the need for personalized nutritional education aimed at excluding gluten from the diet, as well as balancing the diet properly, in patients with CD.
Collapse
Affiliation(s)
- Agnieszka Kozioł-Kozakowska
- Department of Pediatrics, Institute of Pediatrics, Gastroenterology and Nutrition, Jagiellonian University Medical College, 30-663 Krakow, Poland
| | - Dominika Salamon
- Department of Molecular Medical Microbiology, Chair of Microbiology, Jagiellonian University Medical College, 31-121 Krakow, Poland
| | - Zofia Grzenda-Adamek
- Department of Pediatrics, Gastroenterology and Nutrition, University Children's Hospital, 30-663 Krakow, Poland
| | - Agnieszka Krawczyk
- Department of Molecular Medical Microbiology, Chair of Microbiology, Jagiellonian University Medical College, 31-121 Krakow, Poland
| | - Mariusz Duplaga
- Department of Health Promotion and e-Health, Institute of Public Health, Faculty of Health Sciences, Jagiellonian University Medical College, 31-066 Krakow, Poland
| | - Tomasz Gosiewski
- Department of Molecular Medical Microbiology, Chair of Microbiology, Jagiellonian University Medical College, 31-121 Krakow, Poland
| | - Kinga Kowalska-Duplaga
- Department of Pediatrics, Institute of Pediatrics, Gastroenterology and Nutrition, Jagiellonian University Medical College, 30-663 Krakow, Poland
| |
Collapse
|
18
|
Verdu EF, Schuppan D. Co-factors, Microbes, and Immunogenetics in Celiac Disease to Guide Novel Approaches for Diagnosis and Treatment. Gastroenterology 2021; 161:1395-1411.e4. [PMID: 34416277 DOI: 10.1053/j.gastro.2021.08.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 12/14/2022]
Abstract
Celiac disease (CeD) is a frequent immune-mediated disease that affects not only the small intestine but also many extraintestinal sites. The role of gluten proteins as dietary triggers, HLA-DQ2 or -DQ8 as major necessary genetic predisposition, and tissue transglutaminase (TG2) as mechanistically involved autoantigen, are unique features of CeD. Recent research implicates many cofactors working in synergism with these key triggers, including the intestinal microbiota and their metabolites, nongluten dietary triggers, intestinal barrier defects, novel immune cell phenotypes, and mediators and cytokines. In addition, apart from HLA-DQ2 and -DQ8, multiple and complex predisposing genetic factors and interactions have been defined, most of which overlap with predispositions in other, usually autoimmune, diseases that are linked to CeD. The resultant better understanding of CeD pathogenesis, and its manifold manifestations has already paved the way for novel therapeutic approaches beyond the lifelong strict gluten-free diet, which poses a burden to patients and often does not lead to complete mucosal healing. Thus, supported by improved mouse models for CeD and in vitro organoid cultures, several targeted therapies are in phase 2-3 clinical studies, such as highly effective gluten-degrading oral enzymes, inhibition of TG2, cytokine therapies, induction of tolerance to gluten ingestion, along with adjunctive and preventive approaches using beneficial probiotics and micronutrients. These developments are supported by novel noninvasive markers of CeD severity and activity that may be used as companion diagnostics, allow easy-to perform and reliable monitoring of patients, and finally support personalized therapy for CeD.
Collapse
Affiliation(s)
- Elena F Verdu
- Division of Gastroenterology, Department of Internal Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Detlef Schuppan
- Institute of Translational Immunology,Research Center for Immune Therapy and Celiac Center, University Medical Center, Johannes Gutenberg University, Mainz, Germany; Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
19
|
Ribeiro M, de Sousa T, Sabença C, Poeta P, Bagulho AS, Igrejas G. Advances in quantification and analysis of the celiac-related immunogenic potential of gluten. Compr Rev Food Sci Food Saf 2021; 20:4278-4298. [PMID: 34402581 DOI: 10.1111/1541-4337.12828] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 05/18/2021] [Accepted: 07/21/2021] [Indexed: 12/21/2022]
Abstract
Gluten-free products have emerged in response to the increasing prevalence of gluten-related disorders, namely celiac disease. Therefore, the quantification of gluten in products intended for consumption by individuals who may suffer from these pathologies must be accurate and reproducible, in a way that allows their proper labeling and protects the health of consumers. Immunochemical methods have been the methods of choice for quantifying gluten, and several kits are commercially available. Nevertheless, they still face problems such as the initial extraction of gluten in complex matrices or the use of a standardized reference material to validate the results. Lately, other methodologies relying mostly on mass spectrometry-based techniques have been explored, and that may allow, in addition to quantitative analysis, the characterizationof gluten proteins. On the other hand, although the level of 20 mg/kg of gluten detected by these methods is sufficient for a product to be considered gluten-free, its immunogenic potential for celiac patients has not been clinically validated. In this sense, in vitro and in vivo models, such as the organoid technology applied in gut-on-chip devices and the transgenic humanized mouse models, respectively, are being developed for investigating both the gluten-induced pathogenesis and the treatment of celiac disease. Due to the ubiquitous nature of gluten in the food industry, as well as the increased prevalence of gluten-related disorders, here we intend to summarize the available methods for gluten quantification in food matrices and for the evaluation of its immunogenic potential concerning the development of novel therapies for celiac disease to highlight active research and discuss knowledge gaps and current challenges in this field.
Collapse
Affiliation(s)
- Miguel Ribeiro
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Functional Genomics and Proteomics Unity, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, Caparica, Lisbon, Portugal
| | - Telma de Sousa
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Functional Genomics and Proteomics Unity, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, Caparica, Lisbon, Portugal
| | - Carolina Sabença
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Functional Genomics and Proteomics Unity, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, Caparica, Lisbon, Portugal
| | - Patrícia Poeta
- LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, Caparica, Lisbon, Portugal.,Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Ana Sofia Bagulho
- National Institute for Agrarian and Veterinarian Research, Elvas, Portugal
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Functional Genomics and Proteomics Unity, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, Caparica, Lisbon, Portugal
| |
Collapse
|
20
|
The role of the microbiome in gastrointestinal inflammation. Biosci Rep 2021; 41:228872. [PMID: 34076695 PMCID: PMC8201460 DOI: 10.1042/bsr20203850] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
The microbiome plays an important role in maintaining human health. Despite multiple factors being attributed to the shaping of the human microbiome, extrinsic factors such diet and use of medications including antibiotics appear to dominate. Mucosal surfaces, particularly in the gut, are highly adapted to be able to tolerate a large population of microorganisms whilst still being able to produce a rapid and effective immune response against infection. The intestinal microbiome is not functionally independent from the host mucosa and can, through presentation of microbe-associated molecular patterns (MAMPs) and generation of microbe-derived metabolites, fundamentally influence mucosal barrier integrity and modulate host immunity. In a healthy gut there is an abundance of beneficial bacteria that help to preserve intestinal homoeostasis, promote protective immune responses, and limit excessive inflammation. The importance of the microbiome is further highlighted during dysbiosis where a loss of this finely balanced microbial population can lead to mucosal barrier dysfunction, aberrant immune responses, and chronic inflammation that increases the risk of disease development. Improvements in our understanding of the microbiome are providing opportunities to harness members of a healthy microbiota to help reverse dysbiosis, reduce inflammation, and ultimately prevent disease progression.
Collapse
|
21
|
Torun A, Hupalowska A, Trzonkowski P, Kierkus J, Pyrzynska B. Intestinal Microbiota in Common Chronic Inflammatory Disorders Affecting Children. Front Immunol 2021; 12:642166. [PMID: 34163468 PMCID: PMC8215716 DOI: 10.3389/fimmu.2021.642166] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
The incidence and prevalence rate of chronic inflammatory disorders is on the rise in the pediatric population. Recent research indicates the crucial role of interactions between the altered intestinal microbiome and the immune system in the pathogenesis of several chronic inflammatory disorders in children, such as inflammatory bowel disease (IBD) and autoimmune diseases, such as type 1 diabetes mellitus (T1DM) and celiac disease (CeD). Here, we review recent knowledge concerning the pathogenic mechanisms underlying these disorders, and summarize the facts suggesting that the initiation and progression of IBD, T1DM, and CeD can be partially attributed to disturbances in the patterns of composition and abundance of the gut microbiota. The standard available therapies for chronic inflammatory disorders in children largely aim to treat symptoms. Although constant efforts are being made to maximize the quality of life for children in the long-term, sustained improvements are still difficult to achieve. Additional challenges are the changing physiology associated with growth and development of children, a population that is particularly susceptible to medication-related adverse effects. In this review, we explore new promising therapeutic approaches aimed at modulation of either gut microbiota or the activity of the immune system to induce a long-lasting remission of chronic inflammatory disorders. Recent preclinical studies and clinical trials have evaluated new approaches, for instance the adoptive transfer of immune cells, with genetically engineered regulatory T cells expressing antigen-specific chimeric antigen receptors. These approaches have revolutionized cancer treatments and have the potential for the protection of high-risk children from developing autoimmune diseases and effective management of inflammatory disorders. The review also focuses on the findings of studies that indicate that the responses to a variety of immunotherapies can be enhanced by strategic manipulation of gut microbiota, thus emphasizing on the importance of proper interaction between the gut microbiota and immune system for sustained health benefits and improvement of the quality of life of pediatric patients.
Collapse
Affiliation(s)
- Anna Torun
- Chair and Department of Biochemistry, Medical University of Warsaw, Warsaw, Poland
| | - Anna Hupalowska
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Piotr Trzonkowski
- Department of Medical Immunology, Medical University of Gdansk, Gdansk, Poland
| | - Jaroslaw Kierkus
- Department of Gastroenterology, Hepatology, Feeding Disorders and Pediatrics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Beata Pyrzynska
- Chair and Department of Biochemistry, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
22
|
Sitkin SI, Avalueva EB, Oreshko LS, Khavkin AI. Intestinal microbiota and dysbiosis in celiac disease. ROSSIYSKIY VESTNIK PERINATOLOGII I PEDIATRII (RUSSIAN BULLETIN OF PERINATOLOGY AND PEDIATRICS) 2021; 66:116-122. [DOI: 10.21508/1027-4065-2021-66-2-116-122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Affiliation(s)
- S. I. Sitkin
- Mechnikov North-Western State Medical University; Almazov National Medical Research Centre; State Research Institute of Highly Pure Biopreparations
| | | | | | - A. I. Khavkin
- Veltischev Research and Clinical Institute for Pediatrics at the Pirogov Russian National Research Medical University
| |
Collapse
|
23
|
Arya R, Gunashree BS. Screening of gluten hydrolyzing strains for food applications. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Raj Arya
- Department of Studies and Research in Microbiology Mangalore University Post Graduate Centre Kodagu India
| | - B. Shivanna Gunashree
- Department of Studies and Research in Microbiology Mangalore University Post Graduate Centre Kodagu India
| |
Collapse
|
24
|
Sacchetti L, Nardelli C. Gut microbiome investigation in celiac disease: from methods to its pathogenetic role. Clin Chem Lab Med 2021; 58:340-349. [PMID: 31494628 DOI: 10.1515/cclm-2019-0657] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/06/2019] [Indexed: 12/12/2022]
Abstract
Our body is inhabited by a variety of microbes (microbiota), mainly bacteria, that outnumber our own cells. Until recently, most of what we knew about the human microbiota was based on culture methods, whereas a large part of the microbiota is uncultivable, and consequently previous information was limited. The advent of culture-independent methods and, particularly, of next-generation sequencing (NGS) methodology, marked a turning point in studies of the microbiota in terms of its composition and of the genes encoded by these microbes (microbiome). The microbiome is influenced predominantly by environmental factors that cause a large inter-individual variability (~20%) being its heritability only 1.9%. The gut microbiome plays a relevant role in human physiology, and its alteration ("dysbiosis") has been linked to a variety of inflammatory gut diseases, including celiac disease (CD). CD is a chronic, immune-mediated disorder that is triggered by both genetic (mainly HLA-DQ2/DQ8 haplotypes) and environmental factors (gluten), but, in recent years, a large body of experimental evidence suggested that the gut microbiome is an additional contributing factor to the pathogenesis of CD. In this review, we summarize the literature that has investigated the gut microbiome associated with CD, the methods and biological samples usually employed in CD microbiome investigations and the putative pathogenetic role of specific microbial alterations in CD. In conclusion, both gluten-microbe and host-microbe interactions drive the gluten-mediated immune response. However, it remains to be established whether the CD-associated dysbiosis is the consequence of the disease, a simple concomitant association or a concurring causative factor.
Collapse
Affiliation(s)
- Lucia Sacchetti
- CEINGE-Biotecnologie Avanzate SCarl, Naples, Italy.,Task Force on Microbiome Studies, Università degli Studi di Napoli Federico II and CEINGE-Biotecnologie Avanzate SCarl, Naples, Italy
| | - Carmela Nardelli
- CEINGE-Biotecnologie Avanzate SCarl, Naples, Italy.,Task Force on Microbiome Studies, Università degli Studi di Napoli Federico II and CEINGE-Biotecnologie Avanzate SCarl, Naples, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy
| |
Collapse
|
25
|
Contribution of Infectious Agents to the Development of Celiac Disease. Microorganisms 2021; 9:microorganisms9030547. [PMID: 33800833 PMCID: PMC8001938 DOI: 10.3390/microorganisms9030547] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
The ingestion of wheat gliadin (alcohol-soluble proteins, an integral part of wheat gluten) and related proteins induce, in genetically predisposed individuals, celiac disease (CD), which is characterized by immune-mediated impairment of the small intestinal mucosa. The lifelong omission of gluten and related grain proteins, i.e., a gluten-free diet (GFD), is at present the only therapy for CD. Although a GFD usually reduces CD symptoms, it does not entirely restore the small intestinal mucosa to a fully healthy state. Recently, the participation of microbial components in pathogenetic mechanisms of celiac disease was suggested. The present review provides information on infectious diseases associated with CD and the putative role of infections in CD development. Moreover, the involvement of the microbiota as a factor contributing to pathological changes in the intestine is discussed. Attention is paid to the mechanisms by which microbes and their components affect mucosal immunity, including tolerance to food antigens. Modulation of microbiota composition and function and the potential beneficial effects of probiotics in celiac disease are discussed.
Collapse
|
26
|
Nanoparticles in the Food Industry and Their Impact on Human Gut Microbiome and Diseases. Int J Mol Sci 2021; 22:ijms22041942. [PMID: 33669290 PMCID: PMC7920074 DOI: 10.3390/ijms22041942] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/02/2021] [Accepted: 02/10/2021] [Indexed: 12/11/2022] Open
Abstract
The use of inorganic nanoparticles (NPs) has expanded into various industries including food manufacturing, agriculture, cosmetics, and construction. This has allowed NPs access to the human gastrointestinal tract, yet little is known about how they may impact human health. As the gut microbiome continues to be increasingly implicated in various diseases of unknown etiology, researchers have begun studying the potentially toxic effects of these NPs on the gut microbiome. Unfortunately, conflicting results have limited researcher’s ability to evaluate the true impact of NPs on the gut microbiome in relation to health. This review focuses on the impact of five inorganic NPs (silver, iron oxide, zinc oxide, titanium dioxide, and silicon dioxide) on the gut microbiome and gastrointestinal tract with consideration for various methodological differences within the literature. This is important as NP-induced changes to the gut could lead to various gut-related diseases. These include irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), celiac disease, and colorectal cancer. Research in this area is necessary as the use of NPs in various industries continues to grow along with the number of people suffering from chronic gastrointestinal diseases.
Collapse
|
27
|
Olshan KL, Leonard MM, Serena G, Zomorrodi AR, Fasano A. Gut microbiota in Celiac Disease: microbes, metabolites, pathways and therapeutics. Expert Rev Clin Immunol 2020; 16:1075-1092. [PMID: 33103934 DOI: 10.1080/1744666x.2021.1840354] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Current evidence supports a vital role of the microbiota on health outcomes, with alterations in an otherwise healthy balance linked to chronic medical conditions like celiac disease (CD). Recent advances in microbiome analysis allow for unparalleled profiling of the microbes and metabolites. With the growing volume of data available, trends are emerging that support a role for the gut microbiota in CD pathogenesis. AREAS COVERED In this article, the authors review the relationship between factors such as genes and antibiotic exposure on CD onset and the intestinal microbiota. The authors also review other microbiota within the human body (like the oropharynx) that may play a role in CD pathogenesis. Finally, the authors discuss implications for disease modification and the ultimate goal of prevention. The authors reviewed literature from PubMed, EMBASE, and Web of Science. EXPERT OPINION CD serves as a unique opportunity to explore the role of the intestinal microbiota on the development of chronic autoimmune disease. While research to date provides a solid foundation, most studies have been case-control and thus do not have capacity to explore the mechanistic role of the microbiota in CD onset. Further longitudinal studies and integrated multi-omics are necessary for investigating CD pathogenesis.
Collapse
Affiliation(s)
- Katherine L Olshan
- Division of Pediatric Gastroenterology and Nutrition, MassGeneral Hospital for Children, Harvard Medical School , Boston, MA, USA.,Mucosal Immunology and Biology Research Center, MassGeneral Hospital for Children, Harvard Medical School , Boston, MA, USA.,Celiac Research Program, Harvard Medical School , Boston, MA, USA
| | - Maureen M Leonard
- Division of Pediatric Gastroenterology and Nutrition, MassGeneral Hospital for Children, Harvard Medical School , Boston, MA, USA.,Mucosal Immunology and Biology Research Center, MassGeneral Hospital for Children, Harvard Medical School , Boston, MA, USA.,Celiac Research Program, Harvard Medical School , Boston, MA, USA
| | - Gloria Serena
- Division of Pediatric Gastroenterology and Nutrition, MassGeneral Hospital for Children, Harvard Medical School , Boston, MA, USA.,Mucosal Immunology and Biology Research Center, MassGeneral Hospital for Children, Harvard Medical School , Boston, MA, USA.,Celiac Research Program, Harvard Medical School , Boston, MA, USA
| | - Ali R Zomorrodi
- Division of Pediatric Gastroenterology and Nutrition, MassGeneral Hospital for Children, Harvard Medical School , Boston, MA, USA.,Mucosal Immunology and Biology Research Center, MassGeneral Hospital for Children, Harvard Medical School , Boston, MA, USA.,Celiac Research Program, Harvard Medical School , Boston, MA, USA
| | - Alessio Fasano
- Division of Pediatric Gastroenterology and Nutrition, MassGeneral Hospital for Children, Harvard Medical School , Boston, MA, USA.,Mucosal Immunology and Biology Research Center, MassGeneral Hospital for Children, Harvard Medical School , Boston, MA, USA.,European Biomedical Research Institute of Salerno (EBRIS) , Salerno, Italy
| |
Collapse
|
28
|
Cristofori F, Francavilla R, Capobianco D, Dargenio VN, Filardo S, Mastromarino P. Bacterial-Based Strategies to Hydrolyze Gluten Peptides and Protect Intestinal Mucosa. Front Immunol 2020; 11:567801. [PMID: 33224137 PMCID: PMC7669986 DOI: 10.3389/fimmu.2020.567801] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/29/2020] [Indexed: 12/23/2022] Open
Abstract
Gluten is a mixture of proteins highly resistant to hydrolysis, resulting in the emergence of toxic peptides responsible for gluten-related disorders. Currently, a gluten-free diet (GFD) is the unique proven therapy for celiac disease (CD). Several research groups and pharmaceutical companies are developing new nondietetic therapeutic strategies for CD. Probiotics are viable microorganisms thought to have a healthy effect on the host. The proteolytic mechanism of lactic acid bacteria comprises an extracellular serine protease, di- and oligopeptide-specific transport systems, and several intracellular peptidases that might affect gluten degradation. Therefore, probiotic supplementation is an attractive therapy because of its possible anti-inflammatory and immunomodulatory properties. Several studies have been performed to assess the effectiveness of various specific probiotic strains, showing positive effects on immune-modulation (inhibition of pro-inflammatory cytokine TNF-α) restoring gut microbiota and decrease of immunogenic peptides. The present review aims to summarize the current knowledge on the ability of probiotic strain (single or mixtures) to digest gliadin peptides in vitro and to modulate the inflammatory response in the gut.
Collapse
Affiliation(s)
- Fernanda Cristofori
- Interdisciplinary Department of Medicine—Pediatric Section, Università di Bari Aldo Moro, Bari, Italy
| | - Ruggiero Francavilla
- Interdisciplinary Department of Medicine—Pediatric Section, Università di Bari Aldo Moro, Bari, Italy
| | - Daniela Capobianco
- Department of Public Health and Infectious Disease, Università La Sapienza di Roma, Rome, Italy
| | - Vanessa Nadia Dargenio
- Interdisciplinary Department of Medicine—Pediatric Section, Università di Bari Aldo Moro, Bari, Italy
| | - Simone Filardo
- Department of Public Health and Infectious Disease, Università La Sapienza di Roma, Rome, Italy
| | - Paola Mastromarino
- Department of Public Health and Infectious Disease, Università La Sapienza di Roma, Rome, Italy
| |
Collapse
|
29
|
|
30
|
Bodkhe R, Marietta EV, Balakrishnan B, Luckey DH, Horwath IE, Shouche YS, Taneja V, Murray JA. Human gut-derived commensal suppresses generation of T-cell response to gliadin in humanized mice by modulating gut microbiota. Anaerobe 2020; 68:102237. [PMID: 32721554 DOI: 10.1016/j.anaerobe.2020.102237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/20/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022]
Abstract
The human intestinal tract is colonized by a large number of diverse microorganisms that play various important physiologic functions. In inflammatory gut diseases including celiac disease (CeD), a dysbiotic state of microbiome has been observed. Interestingly, this perturbed microbiome is normalized towards eubiosis in patients showing recovery after treatment. The treatment has been observed to increase the abundance of beneficial microbes in comparison to non-treated patients. In this study, we investigated the effect of Prevotella histicola or Prevotella melaninogenica, isolated from the duodenum of a treated CeD patient, on the induction and maintenance of oral tolerance to gliadin, a CeD associated subgroup of gluten proteins, in NOD.DQ8.ABo transgenic mice. Conventionally raised mice on a gluten free diet were orally gavaged with bacteria before and after injection with pepsin trypsin digested gliadin (PTD-gliadin). P. histicola suppressed the cellular response to gliadin, whereas P. melaninogenica failed to suppress an immune response against gliadin. Interestingly, tolerance to gliadin in NOD.DQ8.ABo mice may be associated with gut microbiota as mice gavaged with P melaninogenica harbored a different microbial diversity as compared to P. histicola treated mice. This study provides experimental evidence that gut microbes like P. histicola from treated patients can suppress the immune response against gliadin epitopes.
Collapse
Affiliation(s)
- Rahul Bodkhe
- Department of Immunology, Mayo Clinic, Rochester, MN, USA; The YSS Lab, National Centre for Microbial Resource, National Centre for Cell Science, Pune, India
| | - Eric V Marietta
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | | | - David H Luckey
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | - Irina E Horwath
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Yogesh S Shouche
- The YSS Lab, National Centre for Microbial Resource, National Centre for Cell Science, Pune, India
| | - Veena Taneja
- Department of Immunology, Mayo Clinic, Rochester, MN, USA.
| | - Joseph A Murray
- Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN, USA.
| |
Collapse
|
31
|
Azimi T, Nasser A, Shariati A, Shiadeh SMJ, Safari H, Alizade-Sani M, Taghipour A, Dehghan A. The Possible Role of Pathogenic and Non-Pathogenic Bacteria in Initiation and Exacerbation of Celiac Disease; A Comprehensive Review. Curr Pharm Biotechnol 2020; 21:452-466. [PMID: 31858910 DOI: 10.2174/1389201021666191219160729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/29/2019] [Accepted: 11/22/2019] [Indexed: 02/08/2023]
Abstract
Celiac Disease (CD) is an immune-mediated enteropathy, generally of the proximal intestine, that occurs in genetically susceptible individuals triggered by the ingestion of gluten. The incidence and frequency of CD are increasing, and it is predicted that CD affects approximately 1% of the people worldwide. The common clinical manifestations of CD are divided in two sections, including classic and non-classic symptoms that can be created in childhood and adulthood. The relationship between pathogenic and non-pathogenic bacteria with CD is complex and multidirectional. In previous published studies, results demonstrated the triggering impact of bacteria, viruses, and parasites on initiation and development of Inflammatory Bowel Disease (IBD) and Irritable Bowel Syndrome (IBS). Different studies revealed the inducing effect of pathogenic and non-pathogenic bacteria on CD. However, increasing evidence proposes that some of these microorganisms can also play several positive roles in CD process. Although information of the pathogenesis of the CD is quickly expanding, the possible role of bacteria needs further examination. In conclusion, with respect to the possible correlation between different bacteria in CD, the current review-based study aims to discuss the possible relationship between CD and pathogenic and non-pathogenic bacteria and to show various and significant aspects of mechanisms involved in the CD process.
Collapse
Affiliation(s)
- Taher Azimi
- Pediatric Infections Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Students Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Nasser
- Clinical Microbiology Research Center, Ilam University of Medical Science, Ilam, Iran.,Department of Medical Microbiology, School of Medicine, Ilam University of Medical Science, Ilam, Iran
| | - Aref Shariati
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Seyedeh M J Shiadeh
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Safari
- Health Promotion Research Center, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmood Alizade-Sani
- Students Research Committee, Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Taghipour
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amin Dehghan
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Pecora F, Persico F, Gismondi P, Fornaroli F, Iuliano S, de'Angelis GL, Esposito S. Gut Microbiota in Celiac Disease: Is There Any Role for Probiotics? Front Immunol 2020; 11:957. [PMID: 32499787 PMCID: PMC7243837 DOI: 10.3389/fimmu.2020.00957] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/23/2020] [Indexed: 12/15/2022] Open
Abstract
Celiac disease (CD) is an immune-mediated disorder initiated by the ingestion of gluten in genetically predisposed individuals. Recent data shows that changes in the gut microbiome composition and function are linked with chronic inflammatory diseases; this might also be the case for CD. The main aim of this manuscript is to discuss our present knowledge of the relationships between gut microbiota alterations and CD and to understand if there is any role for probiotics in CD therapy. PubMed was used to search for all of the studies published from November 2009 to November 2019 using key words such as "Celiac Disease" and "Microbiota" (306 articles), "Celiac Disease" and "Gastrointestinal Microbiome" (139), and "Probiotics" and "Celiac Disease" (97 articles). The search was limited to articles published in English that provided evidence-based data. Literature analysis showed that the gut microbiota has a well-established role in gluten metabolism, in modulating the immune response and in regulating the permeability of the intestinal barrier. Promising studies suggest a possible role of probiotics in treating and/or preventing CD. Nevertheless, human trials on the subject are still scarce and lack homogeneity. A possible role was documented for probiotics in improving CD-related symptoms, modulating the peripheral immune response and altering the fecal microbiota, although the results were not consistent in all of the studies. No evidence was found that probiotic administration might prevent CD onset. Knowledge of the role of intestinal bacteria in the development of CD opens new possibilities for its treatment through probiotic administration, even though further studies are needed to better clarify whether probiotics can help treat or prevent the disease and to define which probiotics to use, at what dose and for how long.
Collapse
Affiliation(s)
- Francesco Pecora
- Department of Medicine and Surgery, Pediatric Clinic, Pietro Barilla Children's Hospital, University of Parma, Parma, Italy
| | - Federica Persico
- Department of Medicine and Surgery, Pediatric Clinic, Pietro Barilla Children's Hospital, University of Parma, Parma, Italy
| | - Pierpacifico Gismondi
- Department of Medicine and Surgery, Pediatric Clinic, Pietro Barilla Children's Hospital, University of Parma, Parma, Italy
| | - Fabiola Fornaroli
- Unit of Gastroenterology and Digestive Endoscopy, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Silvia Iuliano
- Unit of Gastroenterology and Digestive Endoscopy, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Gian Luigi de'Angelis
- Unit of Gastroenterology and Digestive Endoscopy, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Susanna Esposito
- Department of Medicine and Surgery, Pediatric Clinic, Pietro Barilla Children's Hospital, University of Parma, Parma, Italy
| |
Collapse
|
33
|
Bascuñán KA, Araya M, Roncoroni L, Doneda L, Elli L. Dietary Gluten as a Conditioning Factor of the Gut Microbiota in Celiac Disease. Adv Nutr 2020; 11:160-174. [PMID: 31399743 PMCID: PMC7442381 DOI: 10.1093/advances/nmz080] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/12/2019] [Accepted: 07/01/2019] [Indexed: 12/20/2022] Open
Abstract
The gut microbiota plays a relevant role in determining an individual's health status, and the diet is a major factor in modulating the composition and function of gut microbiota. Gluten constitutes an essential dietary component in Western societies and is the environmental trigger of celiac disease. The presence/absence of gluten in the diet can change the diversity and proportions of the microbial communities constituting the gut microbiota. There is an intimate relation between gluten metabolism and celiac disease pathophysiology and gut microbiota; their interrelation defines intestinal health and homeostasis. Environmental factors modify the intestinal microbiota and, in turn, its changes modulate the mucosal and immune responses. Current evidence from studies of young and adult patients with celiac disease increasingly supports that dysbiosis (i.e., compositional and functional alterations of the gut microbiome) is present in celiac disease, but to what extent this is a cause or consequence of the disease and whether the different intestinal diseases (celiac disease, ulcerative colitis, Crohn disease) have specific change patterns is not yet clear. The use of bacterial-origin enzymes that help completion of gluten digestion is of interest because of the potential application as coadjuvant in the current treatment of celiac disease. In this narrative review, we address the current knowledge on the complex interaction between gluten digestion and metabolism, celiac disease, and the intestinal microbiota.
Collapse
Affiliation(s)
- Karla A Bascuñán
- Department of Nutrition, School of Medicine, University of Chile, Santiago, Chile
- Centre for the Prevention and Diagnosis of Celiac Disease/Gastroenterology II, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, and Università degli Studi di Milano, Milan, Italy
| | - Magdalena Araya
- Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Leda Roncoroni
- Centre for the Prevention and Diagnosis of Celiac Disease/Gastroenterology II, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, and Università degli Studi di Milano, Milan, Italy
- Department of Biomedical, Surgical, and Dental Sciences, University of Milan, Milan, Italy
| | - Luisa Doneda
- Department of Biomedical, Surgical, and Dental Sciences, University of Milan, Milan, Italy
| | - Luca Elli
- Centre for the Prevention and Diagnosis of Celiac Disease/Gastroenterology II, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, and Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
34
|
Celiac Disease and the Microbiome. Nutrients 2019; 11:nu11102403. [PMID: 31597349 PMCID: PMC6835875 DOI: 10.3390/nu11102403] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 02/07/2023] Open
Abstract
Growing evidence supports the hypothesis that changes in both the composition and function of the intestinal microbiome are associated with a number of chronic inflammatory diseases including celiac disease (CD). One of the major advances in the field of microbiome studies over the last few decades has been the development of culture-independent approaches to identify and quantify the components of the human microbiota. The study of nucleic acids DNA and RNA found in feces or other biological samples bypasses the need for tissue cultures and also allows the characterization of non-cultivable microbes. Current evidence on the composition of the intestinal microbiome and its role as a causative trigger for CD is highly heterogeneous and sometimes contradictory. This review is aimed at summarizing both pre-clinical (basic science data) and clinical (cross-sectional and prospective studies) evidence addressing the relationship between the intestinal microbiome and CD.
Collapse
|
35
|
Abstract
The prevalence of many chronic diseases has increased over the last decades. It has been postulated that dysbiosis driven by environmental factors such as antibiotic use is shifting the microbiome in ways that increase inflammation and the onset of chronic disease. Dysbiosis can be defined through the loss or gain of bacteria that either promote health or disease, respectively. Here we use multiple independent datasets to determine the nature of dysbiosis for a cluster of chronic diseases that includes urinary stone disease (USD), obesity, diabetes, cardiovascular disease, and kidney disease, which often exist as co-morbidities. For all disease states, individuals exhibited a statistically significant association with antibiotics in the last year compared to healthy counterparts. There was also a statistically significant association between antibiotic use and gut microbiota composition. Furthermore, each disease state was associated with a loss of microbial diversity in the gut. Three genera, Bacteroides, Prevotella, and Ruminococcus, were the most common dysbiotic taxa in terms of being enriched or depleted in disease populations and was driven in part by the diversity of operational taxonomic units (OTUs) within these genera. Results of the cross-sectional analysis suggest that antibiotic-driven loss of microbial diversity may increase the risk for chronic disease. However, longitudinal studies are needed to confirm the causative effect of diversity loss for chronic disease risk.
Collapse
|
36
|
Kan J, Cheng J, Xu L, Hood M, Zhong D, Cheng M, Liu Y, Chen L, Du J. The combination of wheat peptides and fucoidan protects against chronic superficial gastritis and alters gut microbiota: a double-blinded, placebo-controlled study. Eur J Nutr 2019; 59:1655-1666. [PMID: 31230147 DOI: 10.1007/s00394-019-02020-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/31/2019] [Indexed: 12/18/2022]
Abstract
PURPOSE Chronic gastritis is observed in almost half world population. Traditional medications against chronic gastritis might produce adverse effects, so alternative nutritional strategies are needed to prevent the aggravation of gastric mucosal damage. The aim of this study is to evaluate the protective effect of the combination of wheat peptides and fucoidan (WPF) on adults diagnosed with chronic superficial gastritis in a randomized, double-blind, placebo-controlled clinical trial. METHODS Participants were randomized to receive WPF (N = 53) or placebo (N = 53) once daily for 45 days. Pathological grading of gastric mucosal damage was scored using gastroscopy. Fecal samples were collected for the determination of calprotectin, short chain fatty acids (SCFA) levels and metagenomics analysis. Questionnaires for self-reported gastrointestinal discomforts, life quality and food frequency were collected throughout the study. RESULTS WPF intervention reduced gastric mucosal damage in 70% subjects (P < 0.001). Significantly less stomach pain (P < 0.001), belching (P = 0.028), bloating (P < 0.001), acid reflux (P < 0.001), loss of appetite (P = 0.021), increased food intake (P = 0.020), and promoted life quality (P = 0.014) were reported in the WPF group. WPF intervention significantly decreased fecal calprotectin level (P = 0.003) while slightly increased fecal SCFAs level (P = 0.092). In addition, we found altered microbiota composition post-intervention with increased Bifidobacterium pseudocatenulatum (P = 0.032), Eubacterium siraeum (P = 0.036), Bacteroides intestinalis (P = 0.024) and decreased Prevotella copri (P = 0.055). CONCLUSIONS WPF intervention could be utilized as a nutritional alternative to mitigate the progression of chronic gastritis. Furthermore, WPF played an important role in altering gut microbial profile and SCFA production, which might benefit the lower gastrointestinal tract.
Collapse
Affiliation(s)
- Juntao Kan
- Nutrilite Health Institute, Amway R&D Center, 720 Cailun Road, Shanghai, 201203, China
| | - Junrui Cheng
- Nutrilite Health Institute, Amway R&D Center, 720 Cailun Road, Shanghai, 201203, China
| | - Leiming Xu
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Molly Hood
- Nutrilite Health Institute, Amway R&D Center, Ada, MI, 49355, USA
| | - Dingfu Zhong
- Department of Gastroenterology, Jinhua Wenrong Hospital, Jinhua, 321013, Zhejiang, China
| | | | - Yumin Liu
- Nutrilite Health Institute, Amway R&D Center, 720 Cailun Road, Shanghai, 201203, China
| | - Liang Chen
- Nutrilite Health Institute, Amway R&D Center, 720 Cailun Road, Shanghai, 201203, China
| | - Jun Du
- Nutrilite Health Institute, Amway R&D Center, 720 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
37
|
Bodkhe R, Shetty SA, Dhotre DP, Verma AK, Bhatia K, Mishra A, Kaur G, Pande P, Bangarusamy DK, Santosh BP, Perumal RC, Ahuja V, Shouche YS, Makharia GK. Comparison of Small Gut and Whole Gut Microbiota of First-Degree Relatives With Adult Celiac Disease Patients and Controls. Front Microbiol 2019; 10:164. [PMID: 30800106 PMCID: PMC6376745 DOI: 10.3389/fmicb.2019.00164] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 01/22/2019] [Indexed: 12/12/2022] Open
Abstract
Recent studies on celiac disease (CeD) have reported alterations in the gut microbiome. Whether this alteration in the microbial community is the cause or effect of the disease is not well understood, especially in adult onset of disease. The first-degree relatives (FDRs) of CeD patients may provide an opportunity to study gut microbiome in pre-disease state as FDRs are genetically susceptible to CeD. By using 16S rRNA gene sequencing, we observed that ecosystem level diversity measures were not significantly different between the disease condition (CeD), pre-disease (FDR) and control subjects. However, differences were observed at the level of amplicon sequence variant (ASV), suggesting alterations in specific ASVs between pre-disease and diseased condition. Duodenal biopsies showed higher differences in ASVs compared to fecal samples indicating larger disruption of the microbiota at the disease site. The duodenal microbiota of FDR was characterized by significant abundance of ASVs belonging to Parvimonas, Granulicatella, Gemella, Bifidobacterium, Anaerostipes, and Actinomyces genera. The duodenal microbiota of CeD was characterized by higher abundance of ASVs from genera Megasphaera and Helicobacter compared to the FDR microbiota. The CeD and FDR fecal microbiota had reduced abundance of ASVs classified as Akkermansia and Dorea when compared to control group microbiota. In addition, predicted functional metagenome showed reduced ability of gluten degradation by CeD fecal microbiota in comparison to FDRs and controls. The findings of the present study demonstrate differences in ASVs and predicts reduced ability of CeD fecal microbiota to degrade gluten compared to the FDR fecal microbiota. Further research is required to investigate the strain level and active functional profiles of FDR and CeD microbiota to better understand the role of gut microbiome in pathophysiology of CeD.
Collapse
Affiliation(s)
- Rahul Bodkhe
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India
| | - Sudarshan A. Shetty
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India
| | - Dhiraj P. Dhotre
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India
| | - Anil K. Verma
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - Khushbo Bhatia
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - Asha Mishra
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - Gurvinder Kaur
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi, India
| | - Pranav Pande
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India
| | | | | | | | - Vineet Ahuja
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - Yogesh S. Shouche
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India
| | - Govind K. Makharia
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
38
|
Zafar H, Saier MH. Comparative genomics of transport proteins in seven Bacteroides species. PLoS One 2018; 13:e0208151. [PMID: 30517169 PMCID: PMC6281302 DOI: 10.1371/journal.pone.0208151] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/12/2018] [Indexed: 01/29/2023] Open
Abstract
The communities of beneficial bacteria that live in our intestines, the gut microbiome, are important for the development and function of the immune system. Bacteroides species make up a significant fraction of the human gut microbiome, and can be probiotic and pathogenic, depending upon various genetic and environmental factors. These can cause disease conditions such as intra-abdominal sepsis, appendicitis, bacteremia, endocarditis, pericarditis, skin infections, brain abscesses and meningitis. In this study, we identify the transport systems and predict their substrates within seven Bacteroides species, all shown to be probiotic; however, four of them (B. thetaiotaomicron, B. vulgatus, B. ovatus, B. fragilis) can be pathogenic (probiotic and pathogenic; PAP), while B. cellulosilyticus, B. salanitronis and B. dorei are believed to play only probiotic roles (only probiotic; OP). The transport system characteristics of the four PAP and three OP strains were identified and tabulated, and results were compared among the seven strains, and with E. coli and Salmonella strains. The Bacteroides strains studied contain similarities and differences in the numbers and types of transport proteins tabulated, but both OP and PAP strains contain similar outer membrane carbohydrate receptors, pore-forming toxins and protein secretion systems, the similarities were noteworthy, but these Bacteroides strains showed striking differences with probiotic and pathogenic enteric bacteria, particularly with respect to their high affinity outer membrane receptors and auxiliary proteins involved in complex carbohydrate utilization. The results reveal striking similarities between the PAP and OP species of Bacteroides, and suggest that OP species may possess currently unrecognized pathogenic potential.
Collapse
Affiliation(s)
- Hassan Zafar
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA, United States of America
- Institute of Microbiology, University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Milton H. Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA, United States of America
| |
Collapse
|
39
|
Gibiino G, Lopetuso L, Ricci R, Gasbarrini A, Cammarota G. Coeliac disease under a microscope: Histological diagnostic features and confounding factors. Comput Biol Med 2018; 104:335-338. [PMID: 30409469 DOI: 10.1016/j.compbiomed.2018.10.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 02/07/2023]
Abstract
Coeliac disease (CD) and gluten-related disorders represent an important cornerstone of the daily practice of gastroenterologists, endoscopists and dedicated histopathologists. Despite the knowledge of clinical, serological and histological typical lesions, there are some conditions to consider for differential diagnosis. From the first description of histology of CD, several studies were conducted to define similar findings suggestive for microscopic enteritis. Considering the establishment of early precursor lesions, the imbalance of gut microbiota is another point still requiring a detailed definition. This review assesses the importance of a right overview in case of suspected gluten-related disorders and the several conditions mimicking a similar histology.
Collapse
Affiliation(s)
- Giulia Gibiino
- Internal Medicine and, Gastroenterology and Hepatic Diseases Unit, IRCCS Fondazione Policlinico Universitario A. Gemelli, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Loris Lopetuso
- Internal Medicine and, Gastroenterology and Hepatic Diseases Unit, IRCCS Fondazione Policlinico Universitario A. Gemelli, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Riccardo Ricci
- Institute of Pathology, IRCCS Fondazione Policlinico Universitario A. Gemelli, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Antonio Gasbarrini
- Internal Medicine and, Gastroenterology and Hepatic Diseases Unit, IRCCS Fondazione Policlinico Universitario A. Gemelli, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giovanni Cammarota
- Internal Medicine and, Gastroenterology and Hepatic Diseases Unit, IRCCS Fondazione Policlinico Universitario A. Gemelli, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
40
|
Chander AM, Yadav H, Jain S, Bhadada SK, Dhawan DK. Cross-Talk Between Gluten, Intestinal Microbiota and Intestinal Mucosa in Celiac Disease: Recent Advances and Basis of Autoimmunity. Front Microbiol 2018; 9:2597. [PMID: 30443241 PMCID: PMC6221985 DOI: 10.3389/fmicb.2018.02597] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/11/2018] [Indexed: 12/17/2022] Open
Abstract
Celiac disease (CD) is an autoimmune disorder of the small intestine, caused by gluten induced inflammation in some individuals susceptible to genetic and environmental influences. To date, pathophysiology of CD in relation to intestinal microbiota is not known well. This review relies on contribution of intestinal microbiome and oral microbiome in pathogenesis of CD based on their interactions with gluten, thereby highlighting the role of upper gastrointestinal microbiota. It has been hypothesized that CD might be triggered by additive effects of immunotoxic gluten peptides and intestinal dysbiosis (microbial imbalance) in the people with or without genetic susceptibilities, where antibiotics may be deriving dysbiotic agents. In contrast to the intestinal dysbiosis, genetic factors even seem secondary in disease outcome thus suggesting the importance of interaction between microbes and dietary factors in immune regulation at intestinal mucosa. Moreover, association of imbalanced counts of some commensal microbes in intestine of CD patients suggests the scope for probiotic therapies. Lactobacilli and specific intestinal and oral bacteria are potent source of gluten degrading enzymes (glutenases) that may contribute to commercialization of a novel glutenase therapy. In this review, we shall discuss advantages and disadvantages of food based therapies along with probiotic therapies where probiotic therapies are expected to emerge as the safest biotherapies among other in-process therapies. In addition, this review emphasizes on differential targets of probiotics that make them suitable to manage CD as along with glutenase activity, they also exhibit immunomodulatory and intestinal microbiome modulatory properties.
Collapse
Affiliation(s)
- Atul Munish Chander
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.,Department of Biophysics, Panjab University, Chandigarh, India
| | - Hariom Yadav
- Center for Diabetes, Obesity and Metabolism, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Shalini Jain
- Center for Diabetes, Obesity and Metabolism, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Sanjay Kumar Bhadada
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | |
Collapse
|
41
|
Zhang C, Björkman A, Cai K, Liu G, Wang C, Li Y, Xia H, Sun L, Kristiansen K, Wang J, Han J, Hammarström L, Pan-Hammarström Q. Impact of a 3-Months Vegetarian Diet on the Gut Microbiota and Immune Repertoire. Front Immunol 2018; 9:908. [PMID: 29755475 PMCID: PMC5934425 DOI: 10.3389/fimmu.2018.00908] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/11/2018] [Indexed: 12/18/2022] Open
Abstract
The dietary pattern can influence the immune system directly, but may also modulate it indirectly by regulating the gut microbiota. Here, we investigated the effect of a 3-months lacto-ovo-vegetarian diet on the diversity of gut microbiota and the immune system in healthy omnivorous volunteers, using high-throughput sequencing technologies. The short-term vegetarian diet did not have any major effect on the diversity of the immune system and the overall composition of the metagenome. The prevalence of bacterial genera/species with known beneficial effects on the intestine, including butyrate-producers and probiotic species and the balance of autoimmune-related variable genes/families were, however, altered in the short-term vegetarians. A number of bacterial species that are associated with the expression level of IgA, a key immunoglobulin class that protects the gastrointestinal mucosal system, were also identified. Furthermore, a lower diversity of T-cell repertoire and expression level of IgE, as well as a reduced abundance of inflammation-related genes in the gut microbiota were potentially associated with a control group with long-term vegetarians. Thus, the composition and duration of the diet may have an impact on the balance of pro-/anti-inflammatory factors in the gut microbiota and immune system.
Collapse
Affiliation(s)
| | - Andrea Björkman
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Chunlin Wang
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Yin Li
- BGI-Shenzhen, Shenzhen, China
| | | | | | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jun Wang
- BGI-Shenzhen, Shenzhen, China.,Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,iCarbonX, Shenzhen, China
| | - Jian Han
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | | | | |
Collapse
|
42
|
Tye-Din JA, Galipeau HJ, Agardh D. Celiac Disease: A Review of Current Concepts in Pathogenesis, Prevention, and Novel Therapies. Front Pediatr 2018; 6:350. [PMID: 30519552 PMCID: PMC6258800 DOI: 10.3389/fped.2018.00350] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/29/2018] [Indexed: 12/14/2022] Open
Abstract
Our understanding of celiac disease and how it develops has evolved significantly over the last half century. Although traditionally viewed as a pediatric illness characterized by malabsorption, it is now better seen as an immune illness with systemic manifestations affecting all ages. Population studies reveal this global disease is common and, in many countries, increasing in prevalence. These studies underscore the importance of specific HLA susceptibility genes and gluten consumption in disease development and suggest that other genetic and environmental factors could also play a role. The emerging data on viral and bacterial microbe-host interactions and their alterations in celiac disease provides a plausible mechanism linking environmental risk and disease development. Although the inflammatory lesion of celiac disease is complex, the strong HLA association highlights a central role for pathogenic T cells responding to select gluten peptides that have now been defined for the most common genetic form of celiac disease. What remains less understood is how loss of tolerance to gluten occurs. New insights into celiac disease are now providing opportunities to intervene in its development, course, diagnosis, and treatment.
Collapse
Affiliation(s)
- Jason A Tye-Din
- Immunology Division, The Walter and Eliza Hall Institute, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.,Department of Gastroenterology, The Royal Melbourne Hospital, Parkville, VIC, Australia.,Centre for Food & Allergy Research, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Heather J Galipeau
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Daniel Agardh
- The Diabetes and Celiac Disease Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden.,Unit of Endocrinology and Gastroenterology, Department of Pediatrics, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
43
|
Aguayo-Patrón SV, Calderón de la Barca AM. Old Fashioned vs. Ultra-Processed-Based Current Diets: Possible Implication in the Increased Susceptibility to Type 1 Diabetes and Celiac Disease in Childhood. Foods 2017; 6:foods6110100. [PMID: 29140275 PMCID: PMC5704144 DOI: 10.3390/foods6110100] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/27/2017] [Accepted: 11/08/2017] [Indexed: 01/14/2023] Open
Abstract
Ultra-processed foods are ready-to-heat and ready-to-eat products created to replace traditional homemade meals and dishes due to convenience and accessibility. Because of their low-fiber and high-fat and sugar composition, these foodstuffs could induce a negative impact on health. They are partially responsible for obesity and chronic non-transmissible diseases; additionally, they could impact in the prevalence of autoimmune diseases such as type 1 diabetes and celiac disease. The rationale is that the nutritional composition of ultra-processed foodstuffs can induce gut dysbiosis, promoting a pro-inflammatory response and consequently, a “leaky gut”. These factors have been associated with increased risk of autoimmunity in genetically predisposed children. In addition, food emulsifiers, commonly used in ultra-processed products could modify the gut microbiota and intestinal permeability, which could increase the risk of autoimmunity. In contrast, unprocessed and minimally processed food-based diets have shown the capacity to promote gut microbiota eubiosis, anti-inflammatory response, and epithelial integrity, through bacterial butyrate production. Thus, to decrease the susceptibility to autoimmunity, genetically predisposed children should avoid ultra-processed food products and encourage the consumption of fresh and minimally processed foods.
Collapse
Affiliation(s)
- Sandra V Aguayo-Patrón
- Departamento de Nutrición y Metabolismo, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera a La Victoria, Km. 0.6, Hermosillo, Sonora 83304, Mexico.
| | - Ana M Calderón de la Barca
- Departamento de Nutrición y Metabolismo, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera a La Victoria, Km. 0.6, Hermosillo, Sonora 83304, Mexico.
| |
Collapse
|
44
|
Cukrowska B, Sowińska A, Bierła JB, Czarnowska E, Rybak A, Grzybowska-Chlebowczyk U. Intestinal epithelium, intraepithelial lymphocytes and the gut microbiota - Key players in the pathogenesis of celiac disease. World J Gastroenterol 2017; 23:7505-7518. [PMID: 29204051 PMCID: PMC5698244 DOI: 10.3748/wjg.v23.i42.7505] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/31/2017] [Accepted: 08/15/2017] [Indexed: 02/06/2023] Open
Abstract
Celiac disease (CD) is a chronic immune-mediated disorder triggered by the ingestion of gluten in genetically predisposed individuals. Before activating the immune system, gluten peptides are transferred by the epithelial barrier to the mucosal lamina propria, where they are deamidated by intestinal tissue transglutaminase 2. As a result, they strongly bind to human leucocyte antigens (HLAs), especially HLA-DQ2 and HLA-DQ8, expressed on antigen-presenting cells. This induces an inflammatory response, which results in small bowel enteropathy. Although gluten is the main external trigger activating both innate and adaptive (specific) immunity, its presence in the intestinal lumen does not fully explain CD pathogenesis. It has been hypothesized that an early disruption of the gut barrier in genetically susceptible individuals, which would result in an increased intestinal permeability, could precede the onset of gluten-induced immune events. The intestinal barrier is a complex functional structure, whose functioning is dependent on intestinal microbiota homeostasis, epithelial layer integrity, and the gut-associated lymphoid tissue with its intraepithelial lymphocytes (IELs). The aim of this paper was to review the current literature and summarize the role of the gut microbiota, epithelial cells and their intercellular junctions, and IELs in CD development.
Collapse
Affiliation(s)
- Bożena Cukrowska
- Department of Pathology, The Children’s Memorial Health Institute, Warsaw 04-730, Poland
| | - Agnieszka Sowińska
- Department of Pathology, The Children’s Memorial Health Institute, Warsaw 04-730, Poland
| | - Joanna Beata Bierła
- Department of Pathology, The Children’s Memorial Health Institute, Warsaw 04-730, Poland
| | - Elżbieta Czarnowska
- Department of Pathology, The Children’s Memorial Health Institute, Warsaw 04-730, Poland
| | - Anna Rybak
- Department of Gastroenterology, Division of Neurogastroenterology and Motility, Great Ormond Street Hospital, London WC1N 3JH, United Kingdom
| | | |
Collapse
|
45
|
Ozuna CV, Barro F. Safety evaluation of transgenic low-gliadin wheat in Sprague Dawley rats: An alternative to the gluten free diet with no subchronic adverse effects. Food Chem Toxicol 2017; 107:176-185. [DOI: 10.1016/j.fct.2017.06.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/21/2017] [Accepted: 06/22/2017] [Indexed: 12/19/2022]
|
46
|
Nardone G, Compare D, Rocco A. A microbiota-centric view of diseases of the upper gastrointestinal tract. Lancet Gastroenterol Hepatol 2017; 2:298-312. [PMID: 28404159 DOI: 10.1016/s2468-1253(16)30108-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/03/2016] [Accepted: 09/07/2016] [Indexed: 12/13/2022]
Abstract
The distinctive anatomy and physiology of the upper gastrointestinal tract and the difficulty of obtaining samples led to the theory that it was bacteria free. However, multiomics studies are indicating otherwise. Although influenced by both oral and gastric bacteria, the resident microbial ecosystem in the oesophagus is dominated by Streptococcus. A shift from Gram-positive to Gram-negative bacteria occurs in oesophagitis and Barrett's oesophagus, and this shift might be involved in the pathogenesis of oesophageal adenocarcinoma. The gastric microenvironment is populated by microbial communities mainly of the Firmicutes, Actinobacteria, Bacteroidetes, and Proteobacteria phyla and species of the Lactobacillus, Streptococcus, and Propionibacterium genera. The composition of gastric microbiota is highly dynamic, and is influenced by acid suppression, gastric inflammation, and Helicobacter pylori. Duodenal microbes are also implicated in the onset and outcome of coeliac disease. Bacteria of the genera Bacteroides, Clostridium, and Staphylococcus dominate the duodenal flora in active coeliac disease whereas lactobacilli and bifidobacteria decrease. Although knowledge of the composition of the microbiota of the upper gastrointestinal tract has advanced substantially, this information is far from being translated to the clinical setting. In this Review, we assess the data related to the potential contribution of microbes to the susceptibility for and pathogenesis of upper gastrointestinal diseases.
Collapse
Affiliation(s)
- Gerardo Nardone
- Department of Clinical Medicine and Surgery, Gastroenterology Unit, University Federico II of Naples, Naples, Italy
| | - Debora Compare
- Department of Clinical Medicine and Surgery, Gastroenterology Unit, University Federico II of Naples, Naples, Italy
| | - Alba Rocco
- Department of Clinical Medicine and Surgery, Gastroenterology Unit, University Federico II of Naples, Naples, Italy
| |
Collapse
|
47
|
Salivary Gluten Degradation and Oral Microbial Profiles in Healthy Individuals and Celiac Disease Patients. Appl Environ Microbiol 2017; 83:AEM.03330-16. [PMID: 28087531 DOI: 10.1128/aem.03330-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 01/09/2017] [Indexed: 12/20/2022] Open
Abstract
Celiac disease (CD) is a chronic immune-mediated enteropathy induced by dietary gluten in genetically predisposed individuals. Saliva harbors the second highest bacterial load of the gastrointestinal (GI) tract after the colon. We hypothesized that enzymes produced by oral bacteria may be involved in gluten processing in the intestine and susceptibility to celiac disease. The aim of this study was to investigate salivary enzymatic activities and oral microbial profiles in healthy subjects versus patients with classical and refractory CD. Stimulated whole saliva was collected from patients with CD in remission (n = 21) and refractory CD (RCD; n = 8) and was compared to healthy controls (HC; n = 20) and subjects with functional GI complaints (n = 12). Salivary gluten-degrading activities were monitored with the tripeptide substrate Z-Tyr-Pro-Gln-pNA and the α-gliadin-derived immunogenic 33-mer peptide. The oral microbiome was profiled by 16S rRNA-based MiSeq analysis. Salivary glutenase activities were higher in CD patients compared to controls, both before and after normalization for protein concentration or bacterial load. The oral microbiomes of CD and RCD patients showed significant differences from that of healthy subjects, e.g., higher salivary levels of lactobacilli (P < 0.05), which may partly explain the observed higher gluten-degrading activities. While the pathophysiological link between the oral and gut microbiomes in CD needs further exploration, the presented data suggest that oral microbe-derived enzyme activities are elevated in subjects with CD, which may impact gluten processing and the presentation of immunogenic gluten epitopes to the immune system in the small intestine.IMPORTANCE Ingested gluten proteins are the triggers of intestinal inflammation in celiac disease (CD). Certain immunogenic gluten domains are resistant to intestinal proteases but can be hydrolyzed by oral microbial enzymes. Very little is known about the endogenous proteolytic processing of gluten proteins in the oral cavity. Given that this occurs prior to gluten reaching the small intestine, such enzymes are likely to contribute to the composition of the gluten digest that ultimately reaches the small intestine and causes CD. We demonstrated that endogenous salivary protease activities are incomplete, likely liberating peptides from larger gluten proteins. The potentially responsible microbes were identified. The study included refractory CD patients, who have been studied less with regard to CD pathogenesis.
Collapse
|
48
|
Escudero-Hernández C, Peña AS, Bernardo D. Immunogenetic Pathogenesis of Celiac Disease and Non-celiac Gluten Sensitivity. Curr Gastroenterol Rep 2017; 18:36. [PMID: 27216895 DOI: 10.1007/s11894-016-0512-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Celiac disease is the most common oral intolerance in Western countries. It results from an immune response towards gluten proteins from certain cereals in genetically predisposed individuals (HLA-DQ2 and/or HLA-DQ8). Its pathogenesis involves the adaptive (HLA molecules, transglutaminase 2, dendritic cells, and CD4(+) T-cells) and the innate immunity with an IL-15-mediated response elicited in the intraepithelial compartment. At present, the only treatment is a permanent strict gluten-free diet (GFD). Multidisciplinary studies have provided a deeper insight of the genetic and immunological factors and their interaction with the microbiota in the pathogenesis of the disease. Similarly, a better understanding of the composition of the toxic gluten peptides has improved the ways to detect them in food and drinks and how to monitor GFD compliance via non-invasive approaches. This review, therefore, addresses the major findings obtained in the last few years including the re-discovery of non-celiac gluten sensitivity.
Collapse
Affiliation(s)
- Celia Escudero-Hernández
- Mucosal Immunology Laboratory, IBGM, Facultad de Medicina, Dpto. Pediatría e Inmunología, University of Valladolid-Consejo Superior de Investigaciones Científicas, (4th floor) Av. Ramón y Cajal 7, 47005, Valladolid, Spain
| | - Amado Salvador Peña
- VU Medical Center Amsterdam, Laboratory of Immunogenetics, Department of Medical Microbiology and Infection Control, VU University Medical Center, De Boelelaan 1108 Room 10E65, 1081 HZ, Amsterdam, The Netherlands
| | - David Bernardo
- Gastroenterology Unit, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, 28006, Spain.
| |
Collapse
|
49
|
De Angelis M, Vannini L, Di Cagno R, Cavallo N, Minervini F, Francavilla R, Ercolini D, Gobbetti M. Salivary and fecal microbiota and metabolome of celiac children under gluten-free diet. Int J Food Microbiol 2016; 239:125-132. [PMID: 27452636 DOI: 10.1016/j.ijfoodmicro.2016.07.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 07/10/2016] [Accepted: 07/18/2016] [Indexed: 02/06/2023]
Abstract
Celiac disease (CD) is an inflammatory autoimmune disorder resulting from the combination of genetic predisposition and gluten ingestion. A life-long gluten free diet (GFD) is the only therapeutic approach. Dysbiosis, which can precede the CD pathogenesis and/or persist when subjects are on GFD, is reviewed and discussed. Salivary microbiota and metabolome differed between healthy and celiac children treated under GFD (T-CD) for at least two years. The type of GFD (African- vs Italian-style) modified the microbiota and metabolome of Saharawi T-CD children. Different studies showed bacterial dysbiosis at duodenal and/or fecal level of patients with active untreated CD (U-CD) and T-CD compared to healthy subjects. The ratio of protective anti-inflammatory bacteria such as Lactobacillus-Bifidobacterium to potentially harmful Bacteroides-Enterobacteriaceae was the lowest in U-CD and T-CD children. In agreement with dysbiosis, serum, fecal and urinary metabolome from U-CD and T-CD patients showed altered levels of free amino acids and volatile organic compounds. However, consensus across studies defining specific bacteria and metabolites in U-CD or T-CD patients is still lacking. Future research efforts are required to determine the relationships between CD and oral and intestinal microbiotas to improve the composition of GFD for restoring the gut dysbiosis as a preventative or therapeutic approach for CD.
Collapse
Affiliation(s)
- Maria De Angelis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Via G. Amendola 165/a, 70126 Bari, Italy.
| | - Lucia Vannini
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Raffaella Di Cagno
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Via G. Amendola 165/a, 70126 Bari, Italy
| | - Noemi Cavallo
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Via G. Amendola 165/a, 70126 Bari, Italy
| | - Fabio Minervini
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Via G. Amendola 165/a, 70126 Bari, Italy
| | - Ruggiero Francavilla
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Danilo Ercolini
- Department of Agricultural Sciences, Division of Microbiology, University of Naples Federico II, Portici, Italy
| | - Marco Gobbetti
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Via G. Amendola 165/a, 70126 Bari, Italy
| |
Collapse
|
50
|
Genome Sequence of Kocuria palustris Strain CD07_3 Isolated from the Duodenal Mucosa of a Celiac Disease Patient. GENOME ANNOUNCEMENTS 2016; 4:4/2/e00210-16. [PMID: 27125478 PMCID: PMC4850849 DOI: 10.1128/genomea.00210-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We report here the 2.8-Mb genome of Kocuria palustris strain CD07_3 isolated from the duodenal mucosa of a celiac disease (CD) patient. The genome of the bacterium consists of specific virulence factor genes and antibiotic resistance genes that depict its pathogenic potential.
Collapse
|