1
|
Sormunen JJ, Kylänpää S, Sippola E, Elo R, Kiran N, Pakanen V, Kallio ER, Vesterinen EJ, Klemola T. There Goes the Neighbourhood-A Multi-City Study Reveals Ticks and Tick-Borne Pathogens Commonly Occupy Urban Green Spaces. Zoonoses Public Health 2025; 72:313-323. [PMID: 39821965 PMCID: PMC11967321 DOI: 10.1111/zph.13208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/27/2024] [Accepted: 12/30/2024] [Indexed: 01/19/2025]
Abstract
INTRODUCTION Humans acquire tick-borne pathogens (TBPs) from infected ticks contacted during outdoor activities. Outdoor activity is at its highest in urban green spaces, where the presence of tick populations has increasingly been observed. Consequently, more insight into factors influencing the presence of ticks therein is needed. Here, we assess the occurrence of ticks and several TBPs in urban green spaces in Finland, estimate related human hazard and assess how landscape features influence tick and TBP occurrence therein. METHODS Ticks collected from five cities during 2019-2020 were utilised. Borrelia, Rickettsia, Neoehrlichia mikurensis, Anaplasma phagocytophilum , Babesia and TBEV were screened from ticks using qPCR. Various landscape features were calculated and utilised in generalised linear mixed models to assess their contribution towards tick and TBP occurrence in green spaces. Finally, human population density proximate to each study site was calculated and used to create population-weighted risk indices. RESULTS Borrelia were the most common pathogens detected, with 22% of nymphs and 43% of adults infected. Increasing forest cover had a positive effect on the densities of nymphs and adults, whereas forest size had a negative effect. Middling percentages of artificial surfaces predicted higher nymph densities than low or high values. Human population-weighted risk estimates were highly varied, even within cities. A positive correlation was observed between total city population and risk indices. CONCLUSIONS Ticks and TBPs are commonplace in urban green spaces in Finland. Enzootic cycles for Borrelia and Rickettsia appear to be well maintained within cities, leading to widespread risk of infection therein. Our results suggest that nymph densities are highest in urban forests of medium size, whereas small or large forests show reduced densities. Green spaces of roughly similar risk can be found in cities of different sizes, emphasising that the identification of areas of particularly high hazard is important for effective mitigation actions.
Collapse
Affiliation(s)
- Jani J. Sormunen
- Department of BiologyUniversity of TurkuTurkuFinland
- Biodiversity UnitUniversity of TurkuTurkuFinland
| | - Satu Kylänpää
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| | - Ella Sippola
- Finnish Museum of Natural History (LUOMUS)University of HelsinkiHelsinkiFinland
| | - Riikka Elo
- Biodiversity UnitUniversity of TurkuTurkuFinland
- Tampere Museum of Natural History, Museum Center VapriikkiTampereFinland
| | - Nosheen Kiran
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | | | - Eva R. Kallio
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | | | - Tero Klemola
- Department of BiologyUniversity of TurkuTurkuFinland
| |
Collapse
|
2
|
Rollins RE, Dierschke J, Obiegala A, von Buttlar H, Chitimia-Dobler L, Liedvogel M. Analysis of ticks (Acari: Ixodida) and associated microorganisms collected on the North Sea Island of Heligoland. Parasitol Res 2025; 124:34. [PMID: 40095135 PMCID: PMC11914315 DOI: 10.1007/s00436-025-08478-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/04/2025] [Indexed: 03/19/2025]
Abstract
Heligoland is an island located in the North Sea, where vegetation was almost destroyed as a result of heavy bombardment during and after the Second World War. However, over the past 70 years, the vegetation has developed from scrub towards bushy or even forested environments. This change has most likely altered habitat suitability for various organisms, including many species of ticks. Ticks can act as major vectors for various pathogens of humans and animals; thus, characterizing the occurrence of a tick population and associated microorganism on the island is of great importance in relation to public and animal health. For this characterization on Heligoland, we flagged ticks at four different locations during June 2023 and 2024. In 2024, ticks were opportunistically sampled from house pets living on the island and during the annual ringing of common murre (Uria aalge) fledglings. In total, 267 ticks were collected over the 2 years which were identified morphologically, and confirmed molecularly if needed, to four species: Ixodes ricinus (n = 132), Haemaphysalis punctata (n = 47), Ixodes uriae (n = 3), and Alectorobius maritimus (n = 85), which for the latter represents the first report in Germany. Questing tick samples positive for Borrelia burgdorferi sensu lato, Rickettsia spp., Anaplasma phagocytophilum, and Babesia spp. were found in one or both years. Subsequent sequencing showed the presence of two Rickettsia species (R. helvetica, R. aeschlimannii), multiple Borrelia species (B. garinii, B. valaisiana, B. bavariensis, B. afzelii), and two Babesia species (Ba. venatorum, Ba. capreoli). Our research highlights a diverse tick and associated microorganism population on the island, which could pose public and animal health risks that will need to be monitored in the future.
Collapse
Affiliation(s)
- Robert E Rollins
- Institute of Avian Research "Vogelwarte Helgoland", An der Vogelwarte 21, 26386, Wilhelmshaven, Germany.
| | - Jochen Dierschke
- Institute of Avian Research "Vogelwarte Helgoland", An der Vogelwarte 21, 26386, Wilhelmshaven, Germany
| | - Anna Obiegala
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, Leipzig, Germany
- Institute of Ecology and Environmental Sciences of Paris, Sorbonne Universitée, Campus Pierre et Marie Curie - Paris 5e, Tour 44-34, Paris, France
| | | | - Lidia Chitimia-Dobler
- Bundeswehr Institute of Microbiology, Munich, Germany
- Fraunhofer Institute of Immunology, Infection and Pandemic Research, Penzberg, Germany
- Experimental Parasitology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität, LMU, Munich, Germany
| | - Miriam Liedvogel
- Institute of Avian Research "Vogelwarte Helgoland", An der Vogelwarte 21, 26386, Wilhelmshaven, Germany
| |
Collapse
|
3
|
Ikeda S, Sato M, Arai R, Aoki J, Watanabe K, Hirokawa C, Watanabe K, Regilme MAF, Sato MO, Tamura T. Distribution pattern and diversity of Borrelia spp. detected from ticks in Niigata prefecture, Japan. BMC Res Notes 2025; 18:96. [PMID: 40038761 DOI: 10.1186/s13104-025-07170-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/27/2025] [Indexed: 03/06/2025] Open
Abstract
OBJECTIVE Borreliosis is a tickborne disease caused by several species of Borrelia spirochete. In Japan, autochthonous cases are increasing in Hokkaido, and in the central Honshu, where Niigata is located. This study aimed to reckon the presence of Borrelia spp. in ticks and its epidemiological significance in Niigata prefecture. RESULTS From 41 sites of Niigata, 1,939 DNA samples from ticks were tested for the presence of Borrelia spp. by PCR. The spirochete was detected in 55 samples, resulting in a prevalence of 2.83% (55/1,939) overall. The DNA sequencing analysis revealed 3 species of Borrelia in Niigata prefecture, B. japonica 76.4% (42/55), B. miyamotoi 3.6% (2/55) and an unidentified Borrelia sp. 20% (11/55). Borrelia japonica was detected from adults of Ixodes ovatus, predominantly in females. Higher prevalence of B. japonica was found in Joetsu area, border with Nagano and Toyama prefectures. B. miyamotoi was detected in Chuetsu region, the central area of Niigata in adult females of I. ovatus. One type of Borrelia, identified to genus level, was detected in larvae, nymph and adult stages of Haemaphysalis spp. ticks mainly in Kaetsu, the northern region of the prefecture.
Collapse
Affiliation(s)
- Sumire Ikeda
- Graduate School of Health Sciences, Niigata University, Niigata, 951-8518, Japan
- Earth Corporation, Ako, 678-0207, Japan
| | - Megumi Sato
- Graduate School of Health Sciences, Niigata University, Niigata, 951-8518, Japan.
| | - Reiko Arai
- Niigata Prefectural Institute of Public Health and Environmental Sciences, Niigata, 950-2144, Japan
- Division of Global Environment Parasitology, Faculty of Medical Technology, Niigata University of Pharmacy and Medical and Life Sciences, Niigata, 956-8603, Japan
| | - Junko Aoki
- Niigata Prefectural Institute of Public Health and Environmental Sciences, Niigata, 950-2144, Japan
| | - Kaori Watanabe
- Niigata Prefectural Institute of Public Health and Environmental Sciences, Niigata, 950-2144, Japan
| | - Chika Hirokawa
- Niigata Prefectural Institute of Public Health and Environmental Sciences, Niigata, 950-2144, Japan
| | - Kozo Watanabe
- Faculty of Engineering, Department of Civil and Environmental Engineering, Ehime University, Matsuyama, 790-8577, Japan
| | - Maria Angenica F Regilme
- Faculty of Engineering, Department of Civil and Environmental Engineering, Ehime University, Matsuyama, 790-8577, Japan
| | - Marcello Otake Sato
- Division of Global Environment Parasitology, Faculty of Medical Technology, Niigata University of Pharmacy and Medical and Life Sciences, Niigata, 956-8603, Japan.
| | - Tsutomu Tamura
- Niigata Prefectural Institute of Public Health and Environmental Sciences, Niigata, 950-2144, Japan
| |
Collapse
|
4
|
Greiter BM, Sidorov S, Osuna E, Seiler M, Relly C, Hackenberg A, Luchsinger I, Cannizzaro E, Martin R, Marchesi M, von Felten S, Egli A, Berger C, Meyer Sauteur PM. Clinical characteristics and serological profiles of Lyme disease in children: a 15-year retrospective cohort study in Switzerland. THE LANCET REGIONAL HEALTH. EUROPE 2025; 48:101143. [PMID: 39736882 PMCID: PMC11683244 DOI: 10.1016/j.lanepe.2024.101143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 01/01/2025]
Abstract
Background Lyme disease (LD) is caused by Borrelia burgdorferi and is the most common tickborne disease in the northern hemisphere. Although classical characteristics of LD are well-known, the diagnosis and treatment are often delayed. Laboratory diagnosis by serological testing is recommended for most LD manifestations. The objective of this study was to describe clinical characteristics and associated serological profiles in children with LD. Methods This retrospective cohort study included children aged 0-18 years, diagnosed with LD according to current guidelines at University Children's Hospital Zurich between January 1, 2006 and December 31, 2020. Two-tier serological testing with the recomWell enzyme-linked immunosorbent assay and recomLine Western blot (MIKROGEN Diagnostik, MIKROGEN GmbH, Neuried, Germany) was performed at the Institute of Medical Microbiology, University of Zurich. Findings In total, 469 children diagnosed with LD were included (median age, 7.9 years); 190 patients (40.5%) with Lyme neuroborreliosis (LNB), 171 (36.5%) patients with skin manifestations (erythema migrans, n = 121; multiple erythema migrans, n = 11; borrelial lymphocytoma, n = 37; and acrodermatitis chronica atrophicans, n = 2), and 108 (23.0%) patients with Lyme arthritis. We observed seasonal variations for patients with skin manifestations and LNB, with high prevalence in May-October, but not for patients with Lyme arthritis. Significant differences between LD manifestation groups were found for age, inflammatory parameters, and specificity and concentration of B. burgdorferi-specific serum antibody responses. We observed distinct patterns of pronounced serum antibody responses against B. burgdorferi antigens in LNB (IgM against VlsE, p41, and OspC) and Lyme arthritis (IgG against p100, VlsE, p58, p41, p39, and p18). Interpretation Our study is one of the largest and most detailed for children with LD. We present unique findings regarding the differences in clinical characteristics and immune responses between various manifestations of LD in children. Funding No specific funding to disclose for this study.
Collapse
Affiliation(s)
- Beat M. Greiter
- Division of Infectious Diseases and Hospital Epidemiology, Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Semjon Sidorov
- Division of Infectious Diseases and Hospital Epidemiology, Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ester Osuna
- Division of Infectious Diseases and Hospital Epidemiology, Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Michelle Seiler
- Emergency Department, University Children's Hospital Zurich, Zurich, Switzerland
| | - Christa Relly
- Division of Infectious Diseases and Hospital Epidemiology, Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Annette Hackenberg
- Department of Pediatric Neurology, University Children's Hospital Zurich, Zurich, Switzerland
| | - Isabelle Luchsinger
- Department of Dermatology, Pediatric Skin Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Elvira Cannizzaro
- Department of Rheumatology, University Children's Hospital Zurich, Zurich, Switzerland
| | - Roland Martin
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Martina Marchesi
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
- Medica-Medical Laboratories, Zurich, Switzerland
| | - Stefanie von Felten
- Department of Biostatistics at Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Adrian Egli
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Christoph Berger
- Division of Infectious Diseases and Hospital Epidemiology, Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Patrick M. Meyer Sauteur
- Division of Infectious Diseases and Hospital Epidemiology, Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Gajda-Sawicka E, Kowalec M, Sieńko A, Ochab A, Żuk M, Bielat U, Krzowski Ł, Dwużnik-Szarek D, Bajer A. Assessment of occupational exposure of soldiers to Lyme disease and Borrelia miyamotoi disease in selected military training areas from northern Poland. EXPERIMENTAL & APPLIED ACAROLOGY 2024; 94:15. [PMID: 39688650 DOI: 10.1007/s10493-024-00980-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024]
Abstract
Ixodes ricinus tick is a vector of bacteria of Borreliella genus and Borrelia miyamotoi. Exposure to ticks constitutes occupational risk to soldiers, but the current knowledge on this subject is still limited. Therefore, the aim of this study was to evaluate tick abundance and prevalence of infection with Borreliella spp. and/or B. miyamotoi. Ticks were collected from vegetation on Drawsko, Ustka and Orzysz military training areas. Additionally, ticks infesting soldiers were also obtained. Ticks were examined by nested PCR and sequencing of flaB gene fragment. General Linear Models of One Variable was used for analysis of mean tick abundance and Maximum Likelihood technique based on log-linear analysis of contingency tables was used for analysis of prevalence of pathogens in ticks. Molecular phylogenetic analyses were also performed. 852 I. ricinus were collected from vegetation from three military areas. The overall mean abundance of ticks was almost 4 ticks/100 m2. Season of study had a significant effect on density of total ticks, infected nymphs and females and infected nymphs, which were higher in spring-early summer. Total prevalence of pathogens was 25.7% in 711 questing ticks, and 16.0% in 282 I. ricinus collected from soldiers. Six species of Borreliella and Borrelia were identified with predominance of B. afzelii. It should be assumed that there is a risk for soldiers of acquiring infection after tick bite. The awareness of presence of pathogens in ticks should be raised in military.
Collapse
Affiliation(s)
- Ewa Gajda-Sawicka
- Epidemiological Response Centre of the Polish Armed Forces, 7 Leskiego Street, 01-495, Warsaw, Poland.
| | - Maciej Kowalec
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland
| | - Aleksandra Sieńko
- Epidemiological Response Centre of the Polish Armed Forces, 7 Leskiego Street, 01-495, Warsaw, Poland
| | - Agnieszka Ochab
- Military Institute of Medicine, 128 Szaserów Street, 04-141, Warsaw, Poland
| | - Monika Żuk
- The Military Center of Preventive Medicine-Gdynia, 4 Grudzińskiego Street, 81-103, Gdynia, Poland
| | - Urszula Bielat
- Epidemiological Response Centre of the Polish Armed Forces, 7 Leskiego Street, 01-495, Warsaw, Poland
| | - Łukasz Krzowski
- Biodefense Laboratory, Biomedical Engineering Centre, Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego Street, 00-908, Warsaw, Poland
| | - Dorota Dwużnik-Szarek
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland
| | - Anna Bajer
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland
| |
Collapse
|
6
|
Rusňáková Tarageľová V, Derdáková M, Selyemová D, Chvostáč M, Mangová B, Didyk YM, Koči J, Kolenčík S, Víchová B, Peťko B, Stanko M, Kazimírová M. Two decades of research on Borrelia burgdorferi sensu lato in questing Ixodes ricinus ticks in Slovakia. Front Cell Infect Microbiol 2024; 14:1496925. [PMID: 39735261 PMCID: PMC11673768 DOI: 10.3389/fcimb.2024.1496925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/20/2024] [Indexed: 12/31/2024] Open
Abstract
Introduction In Europe, Borrelia burgdorferi sensu lato (s.l.), the causative agent of Lyme borreliosis is transmitted by the castor bean tick, Ixodes ricinus. In the last decades, global changes affect the spread of ticks and also their bionomics. The aim of this study was summarization of a large dataset obtained during 20 years of research. Methods The research was carried out in 1999-2019 at 16 localities in Slovakia that were continuously monitored. In total, 17,249 questing I. ricinus ticks were tested for the presence of B. burgdorferi s.l. Results The total prevalence of infected ticks was 18.8% (3,248/17,249), with 15.1% (1,557/10,302) infected nymphs and 24.3% (1,691/6,947) infected adults. Nine species of B. burgdorferi s.l. were identified. Borrelia afzelii (37.1%), B. garinii/bavariensis (24.7%), and B. valaisiana (15.4%) were the most frequent and were present at all study sites, followed by B. lusitaniae (12.6%), B. burgdorferi sensu stricto (4.1%) and B. spielmanii (1.6%). Borrelia bavariensis was confirmed only in four samples (0.1%), however, detection of this species has been performed only since 2017. Borrelia bissettii and B. kurtenbachii were both recorded in one case. The total prevalence differed significantly among four habitat types (urban, suburban, natural, agricultural). The highest infection prevalence was confirmed in natural habitat (22.0%), the lowest in urban habitat (13.2%). In addition, molecular analysis was carried out on part of the collected ticks previously morphologically identified as I. ricinus. The analysis did not confirm the occurrence of Ixodes inopinatus in Slovakia. Conclusion Long-term monitoring of the abundance and spread of ticks as well as the prevalence and genetic variability of tick-borne pathogens can reveal the impact of global climatic and socio-economic changes on different habitats, including natural foci of tick-borne pathogens.
Collapse
Affiliation(s)
| | - Markéta Derdáková
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Diana Selyemová
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Michal Chvostáč
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Barbara Mangová
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Yuliya M. Didyk
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
- Schmalhausen Institute of Zoology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Juraj Koči
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Stanislav Kolenčík
- Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | | | - Branislav Peťko
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - Michal Stanko
- Institute of Parasitology, Slovak Academy of Sciences, Košice, Slovakia
| | - Mária Kazimírová
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
7
|
Pérot P, Tondeur L, Moutailler S, Chrétien D, Corre-Catelin N, Vayssier-Taussat M, Eloit M, Chirouze C, Cazorla C. Broad range molecular detection methods identify only Borrelia spp. in erythema migrans biopsies and blood of tick-bitten patients. One Health 2024; 19:100886. [PMID: 39287136 PMCID: PMC11403503 DOI: 10.1016/j.onehlt.2024.100886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
In this multicenter study conducted in France, we challenged the hypothesis of the transmission of pathogens other than Borrelia spp. in 22 patients developing erythema migrans following a tick bite. Using a combination of high-throughput microfluidic PCRs and agnostic metagenomics on skin biopsies and blood samples, no microorganisms other than Borrelia spp. was found.
Collapse
Affiliation(s)
- Philippe Pérot
- Pathogen Discovery Laboratory, Institut Pasteur, Université Paris Cité, F-75015 Paris, France
- Institut Pasteur, Université Paris Cité, The WOAH (OIE) Collaborating Center for the Detection and Identification in Humans of Emerging Animal Pathogens, F-75015 Paris, France
| | - Laura Tondeur
- Emerging Infectious Diseases Unit, Institut Pasteur, Paris, France
| | - Sara Moutailler
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
| | - Delphine Chrétien
- Pathogen Discovery Laboratory, Institut Pasteur, Université Paris Cité, F-75015 Paris, France
- Institut Pasteur, Université Paris Cité, The WOAH (OIE) Collaborating Center for the Detection and Identification in Humans of Emerging Animal Pathogens, F-75015 Paris, France
| | - Nicole Corre-Catelin
- Institut Pasteur, Université Paris Cité, Clinical Investigation and Access to Research Bioresources (ICAReB) Platform, Paris, France
| | | | - Marc Eloit
- Pathogen Discovery Laboratory, Institut Pasteur, Université Paris Cité, F-75015 Paris, France
- Institut Pasteur, Université Paris Cité, The WOAH (OIE) Collaborating Center for the Detection and Identification in Humans of Emerging Animal Pathogens, F-75015 Paris, France
- Ecole Nationale Vétérinaire d'Alfort, F-94700 Maisons-Alfort, France
| | - Catherine Chirouze
- Chrono-Environnement UMR6249, CNRS, Université Bourgogne Franche-Comté, F-25000 Besançon, France
- Infectious Disease Department, University Hospital of Besançon, F-25000, France
| | - Céline Cazorla
- Infectious Disease department, University Hospital of Saint Etienne, Avenue Albert-Raimond, 42055, Saint Etienne Cedex 02, France
| |
Collapse
|
8
|
Rosso F, Ferrari G, Weil T, Tagliapietra V, Marini G, Dagostin F, Arnoldi D, Girardi M, Rizzoli A. Temporal Changes in Tick-Borne Pathogen Prevalence in Questing Ixodes ricinus Across Different Habitats in the North-Eastern Italian Alps. Microbiologyopen 2024; 13:e010. [PMID: 39659165 PMCID: PMC11632159 DOI: 10.1002/mbo3.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024] Open
Abstract
Changes in land use, climate, and host community are leading to increased complexity in eco-epidemiological relationships and the emergence of zoonoses. This study investigates the changes in the prevalence of several Ixodes ricinus-transmitted pathogens in questing ticks over a 10-year interval (2011-2013, 2020) in natural and agricultural habitats of the Autonomous Province of Trento (North-eastern Alps), finding an average prevalence of infection of 27.1%. Analysis of 2652 ticks, investigating four infectious agents (Borrelia burgdorferi sensu lato, Anaplasma spp., Rickettsia spp., and Babesia spp.), revealed the circulation of 11 different zoonotic pathogens, with varying infection rates across different years and habitats. In 2020, we found a decrease in Anaplasma phagocytophilum, associated with agricultural habitats, and Rickettsia spp., found in all habitats. In the same year, Babesia spp. increased in both habitats, similar to Borrelia burgdorferi sensu stricto, which was related to natural habitats. Co-infections were identified in 8% of positive-tested ticks with different spatiotemporal associations, primarily in natural settings. Our results provide new evidence that the risk of infection with tick-borne pathogens in the Alpine region varies over time and in different environments, broadening the current information on co-infection rates and the circulation of zoonotic pathogens, previously not reported in this area.
Collapse
Grants
- This study has received funding from the European Union Next-Generation EU (PIANO NAZIONALE DI RIPRESA E RESILIENZA (PNRR)-Mission 4 Component 2, Investment 1.4-D.D. 1034 17/06/2022, CN00000033, CUPD43C22001280006). The authors acknowledge the support of NBFC to Fondazione Edmund Mach, funded by the Italian Ministry of University and Research, PNRR, Mission 4 Component 2, "Dalla ricerca all'impresa," Investment 1.4, Project CN00000033, CUPD43C22001280006.
Collapse
Affiliation(s)
- Fausta Rosso
- Fondazione Edmund Mach, Research and Innovation CentreTrentoItaly
| | - Giulia Ferrari
- Fondazione Edmund Mach, Research and Innovation CentreTrentoItaly
- NBFC, National Biodiversity Future CenterPalermoItaly
| | - Tobias Weil
- Fondazione Edmund Mach, Research and Innovation CentreTrentoItaly
| | - Valentina Tagliapietra
- Fondazione Edmund Mach, Research and Innovation CentreTrentoItaly
- NBFC, National Biodiversity Future CenterPalermoItaly
| | - Giovanni Marini
- Fondazione Edmund Mach, Research and Innovation CentreTrentoItaly
| | | | - Daniele Arnoldi
- Fondazione Edmund Mach, Research and Innovation CentreTrentoItaly
| | - Matteo Girardi
- Fondazione Edmund Mach, Research and Innovation CentreTrentoItaly
| | - Annapaola Rizzoli
- Fondazione Edmund Mach, Research and Innovation CentreTrentoItaly
- NBFC, National Biodiversity Future CenterPalermoItaly
| |
Collapse
|
9
|
Melicherčík P, Mazura M, Hodík M, Dundrová K, Landor I, Jahoda D, Horváth R, Barták V, Kizek R, Klapková E. Synovial fluid alpha-defensins in Lyme arthritis-a useful marker. Folia Microbiol (Praha) 2024; 69:1355-1362. [PMID: 38869776 DOI: 10.1007/s12223-024-01173-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/15/2024] [Indexed: 06/14/2024]
Abstract
Lyme arthritis, one of the possible late manifestations of Lyme borreliosis, predominantly affects the supporting joints and in adults most often occurs in the form of monoarthritis of the knee. Early diagnosis is based on clinical findings and serology. PCR detection of Borrelia in synovial fluid has become an integral part of the laboratory testing algorithm. The clinical presentation and inflammatory markers in Lyme arthritis can resemble septic arthritis. Determining the levels of alpha-defensins (human neutrophil peptide (HNP 1-3)) in synovial fluid by liquid chromatography is a highly sensitive method revealing the presence of inflammatory process. Between 2020 and 2022, we examined eleven patients with Lyme arthritis of the knee. We measured levels of HNP 1-3 from synovial fluid by HPLC in patients, and we compared it with the corresponding C-reactive protein (CRP) levels in paired serum samples. In patients diagnosed with Lyme arthritis, HNP 1-3 levels in synovial fluid ranged from 2.5 to 261 mg/L, with a median of 46.5 mg/L. Average serum CRP was 43 mg/L. The results show that elevated HNP 1-3 can be consistent with not only septic arthritis or systemic disease, but also with Lyme arthritis, especially in patients with negative culture and 16S PCR from synovial fluid. Final diagnosis must be verified by examination for anti-Borrelia antibodies from serum and synovial fluid. The aim of this work is to introduce an HPLC method for the determination of alpha-defensins as one of the possible diagnostic markers.
Collapse
Affiliation(s)
- Pavel Melicherčík
- Department of Orthopedics, Charles University, First Faculty of Medicine and Motol University Hospital, V Úvalu 84, 150 06, Prague 5, Czech Republic
| | - Matěj Mazura
- Department of Orthopedics, Charles University, First Faculty of Medicine and Motol University Hospital, V Úvalu 84, 150 06, Prague 5, Czech Republic
| | - Martin Hodík
- Department of Medical Chemistry and Clinical Biochemistry, Charles University, Second Faculty of Medicine and Motol University Hospital, V Úvalu 84, 150 06, Prague, Czech Republic
| | - Kamila Dundrová
- Department of Medical Microbiology, Charles University, Second Faculty of Medicine and Motol University Hospital, V Úvalu 84, 150 06, Prague, Czech Republic
| | - Ivan Landor
- Department of Orthopedics, Charles University, First Faculty of Medicine and Motol University Hospital, V Úvalu 84, 150 06, Prague 5, Czech Republic
| | - David Jahoda
- Department of Orthopedics, Charles University, First Faculty of Medicine and Motol University Hospital, V Úvalu 84, 150 06, Prague 5, Czech Republic
| | - Rudolf Horváth
- Department of Rheumatology of Children and Adults, Charles University, Second Faculty of Medicine and Motol University Hospital, V Úvalu 84, 150 06, Prague, Czech Republic
| | - Vladislav Barták
- Department of Orthopedics, Charles University, First Faculty of Medicine and Motol University Hospital, V Úvalu 84, 150 06, Prague 5, Czech Republic
| | - René Kizek
- Department of Medical Chemistry and Clinical Biochemistry, Charles University, Second Faculty of Medicine and Motol University Hospital, V Úvalu 84, 150 06, Prague, Czech Republic
| | - Eva Klapková
- Department of Medical Chemistry and Clinical Biochemistry, Charles University, Second Faculty of Medicine and Motol University Hospital, V Úvalu 84, 150 06, Prague, Czech Republic.
| |
Collapse
|
10
|
Szczotko M, Antunes S, Domingos A, Kubiak K, Dmitryjuk M. Tick-Borne pathogens and defensin genes expression: A closer look at Ixodes ricinus and Dermacentor reticulatus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 160:105231. [PMID: 39043336 DOI: 10.1016/j.dci.2024.105231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024]
Abstract
The immune system of ticks, along with that of other invertebrates, is comparatively simpler than that of vertebrates, relying solely on innate immune responses. Direct antimicrobial defence is provided by the synthesis of antimicrobial peptides (AMPs), including defensins. The aim of this study was to investigate the differences in defensin genes expression between questing and engorged Ixodes ricinus (def1 and def2) and Dermacentor reticulatus (defDr) ticks, in the presence of selected pathogens: Borrelia spp., Rickettsia spp., Babesia spp., Anaplasma phagocytophilum, and Neoehrlichia mikurensis in the natural environment. After pathogen screening by PCR/qPCR, the expression of defensin genes in pathogen positive ticks and ticks without any of the tested pathogens, was analysed by reverse transcription qPCR. The results showed an increased expression of defensin genes in I. ricinus ticks after blood feeding and I. ricinus and D. reticulatus ticks during in cases of co-infection. In particular, the expression of defensins genes was higher in questing D. reticulatus than in questing and engorged I. ricinus ticks, when borreliae were detected. This study contributes to uncovering the expression patterns of defensin genes in the presence of several known tick pathogens, the occurrence of these pathogens and possible regulatory mechanisms of defensins in tick vector competence.
Collapse
Affiliation(s)
- Magdalena Szczotko
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland.
| | - Sandra Antunes
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008, Lisboa, Portugal
| | - Ana Domingos
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008, Lisboa, Portugal
| | - Katarzyna Kubiak
- Department of Medical Biology, School of Public Health, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Zolnierska 14c, 10-561, Olsztyn, Poland
| | - Małgorzata Dmitryjuk
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland
| |
Collapse
|
11
|
Gray J, Kahl O, Zintl A. Pathogens transmitted by Ixodes ricinus. Ticks Tick Borne Dis 2024; 15:102402. [PMID: 39368217 DOI: 10.1016/j.ttbdis.2024.102402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/07/2024]
Abstract
Ixodes ricinus is the most important tick vector in central and western Europe and one of the most researched parasites. However, in the published literature on the tick and the pathogens it transmits, conjecture about specific transmission cycles and the clinical significance of certain microbes is not always clearly separated from confirmed facts. This article aims to present up-to-date, evidence-based information about the well-researched human pathogens tick-borne encephalitis virus, louping-ill virus, Anaplasma phagocytophilum, Borrelia burgdorferi sensu lato and several Babesia species, with a focus on their development in the tick, transmission dynamics and the reservoir hosts that support their circulation in the environment. Borrelia miyamotoi, Neoehrlichia mikurensis, Rickettsia helvetica and Rickettsia monacensis, which are much less common causes of disease but may affect immunocompromised patients, are also briefly discussed. Finally, the possible role of I. ricinus in the transmission of Coxiella burnetii, Francisella tularensis, Bartonella spp. and Spiroplasma ixodetis is reviewed.
Collapse
Affiliation(s)
- Jeremy Gray
- UCD School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | - Annetta Zintl
- UCD School of Veterinary Sciences, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
12
|
Kiewra D, Dyczko D, Žákovská A, Nejezchlebova H. Prevalence of Borrelia and Rickettsia in Ixodes ricinus from Chosen Urban and Protected Areas in Poland and the Czech Republic. INSECTS 2024; 15:785. [PMID: 39452361 PMCID: PMC11508308 DOI: 10.3390/insects15100785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024]
Abstract
(1) Background: Ixodes ricinus is responsible for the spreading of medically important pathogens. Monitoring the level of tick infection in various areas is essential for determining the potential tick-born risk. This study aimed to detect Borrelia spp. and Rickettsia spp. in I. ricinus ticks collected in urban and protected areas both in Poland and the Czech Republic. (2) Methods: Ticks were collected by flagging in the years 2016-2017. Borrelia spp. was detected using nested PCR targeting the flaB gene and Rickettsia spp. using nested PCR targeting gltA. (3) Results: In total, DNA of Borrelia spp. was detected in 25.9% of samples. Ticks collected in Poland were more infected compared to the Czech Republic and ticks collected in protected areas were more infected with Borrelia spp. than ticks collected in urban areas. The RFLP analysis showed the occurrence of B. afzelii and B. garinii in both countries, and additionally B. valaisiana, B. burgdorferi s.s., and B. miyamotoi in Poland. Rickettsia spp. was detected in 17.4% of I. ricinus, with comparable infection level in both countries; however, regional differences were observed. (4) Conclusion: The regional differences in Borrelia spp. and Rickettsia spp. prevalence in I. ricinus indicate the complexity of factors influencing the level of infection and underline the need for adaptation public health surveillance strategies in each region.
Collapse
Affiliation(s)
- Dorota Kiewra
- Department of Microbial Ecology and Acaroentomology, University of Wrocław, 51-148 Wrocław, Poland;
| | - Dagmara Dyczko
- Department of Microbial Ecology and Acaroentomology, University of Wrocław, 51-148 Wrocław, Poland;
| | - Alena Žákovská
- Institute of Experimental Biology, Faculty of Science, Masaryk University, 60200 Brno, Czech Republic; (A.Ž.); (H.N.)
- Department of Biology, Faculty of Education, Masaryk University, 60200 Brno, Czech Republic
| | - Helena Nejezchlebova
- Institute of Experimental Biology, Faculty of Science, Masaryk University, 60200 Brno, Czech Republic; (A.Ž.); (H.N.)
| |
Collapse
|
13
|
Vikentjeva M, Geller J, Bragina O. Ticks and Tick-Borne Pathogens in Popular Recreational Areas in Tallinn, Estonia: The Underestimated Risk of Tick-Borne Diseases. Microorganisms 2024; 12:1918. [PMID: 39338592 PMCID: PMC11434170 DOI: 10.3390/microorganisms12091918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
This study reveals a significant presence of ticks and tick-borne pathogens in urban recreational areas of Tallinn, Estonia. During the period of May-June 2018, 815 Ixodes ticks were collected from an area of 11,200 m2 using the flagging method. Tick density reached up to 18.8 ticks per 100 m2, indicating a high concentration of ticks in these urban green spaces. Pathogen analysis demonstrated that 34% of the collected ticks were infected with at least one pathogen. Specifically, Borrelia burgdorferi s.l., the causative agent of Lyme borreliosis, was detected in 17.4% of the ticks; Rickettsia spp. was detected in 13.5%; Neoehrlichia mikurensis was detected in 5.5%; Borrelia miyamotoi was detected in 2.6%; and Anaplasma phagocytophilum and tick-borne encephalitis virus were detected in 0.5% each. These findings indicate that the prevalence and abundance of ticks and tick-borne pathogens in these urban environments are comparable to or even exceed those observed in natural endemic areas. Given the increasing incidence of Lyme borreliosis in Central and Northern Europe, the risk of tick bites and subsequent infection in urban recreational sites should not be underestimated. Public health measures, including enhanced awareness and precautionary information, are essential to mitigate the risk of tick-borne diseases in these urban settings.
Collapse
Affiliation(s)
- Maria Vikentjeva
- Department of Communicable Diseases, Health Board, Paldiski mnt 81, 10614 Tallinn, Estonia
| | - Julia Geller
- Influenza Centre, Health Board, Paldiski mnt 81, 10614 Tallinn, Estonia
| | - Olga Bragina
- Division of Chemistry, Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| |
Collapse
|
14
|
Grąźlewska W, Chmielewski T, Fiecek B, Holec-Gąsior L. New BB0108, BB0126, BB0298, BB0323, and BB0689 Chromosomally Encoded Recombinant Proteins of Borrelia burgdorferi sensu lato for Serodiagnosis of Lyme Disease. Pathogens 2024; 13:767. [PMID: 39338958 PMCID: PMC11434722 DOI: 10.3390/pathogens13090767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/11/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Five chromosomally encoded proteins, BB0108, BB0126, BB0298, BB0323, and BB0689, from Borrelia burgdorferi sensu lato (s.l.), were obtained in three variants each, representing the most common genospecies found in Europe (Borrelia afzelii, Borrelia burgdorferi sensu stricto (s.s.), and Borrelia garinii). The reactivity of these recombinant proteins with the IgM and IgG antibodies present in human serum was assessed using Western blot (WB) and the ELISA. In IgG-WB, the proteins exhibited varying reactivity, peaking at approximately 40-50% for BB0108 and BB0689. However, none of these proteins were recognized by specific antibodies in the IgM-WB. The sensitivity of IgG-ELISA based on three variants of BB0108 and BB0323 ranged from 71% to 82% and from 62% to 72%, respectively. Conversely, the specificity of both tested proteins was consistently above 82%. Tests utilizing single variants of BB0323 did not yield any diagnostic value in detecting IgM antibodies. However, BB0108 demonstrated recognition by antibodies present in 52% to 63% of the tested sera. These antigens appear advantageous due to the consistent reactivity observed across their variants. This observation suggests that appropriate selection of antigens conserved within B. burgdorferi s.l. could offer a solution to the issue of variable sensitivity encountered in serodiagnostic tests across Europe.
Collapse
Affiliation(s)
- Weronika Grąźlewska
- Department of Biotechnology and Microbiology, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland;
| | - Tomasz Chmielewski
- Department of Parasitology and Diseases Transmitted by Vectors, National Institute of Public Health NIH—National Research Institute, 00-791 Warsaw, Poland; (T.C.); (B.F.)
| | - Beata Fiecek
- Department of Parasitology and Diseases Transmitted by Vectors, National Institute of Public Health NIH—National Research Institute, 00-791 Warsaw, Poland; (T.C.); (B.F.)
| | - Lucyna Holec-Gąsior
- Department of Biotechnology and Microbiology, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland;
| |
Collapse
|
15
|
Lundberg U, Hochreiter R, Timofoyeva Y, Kanevsky I, Meinke A, Anderson AS, Simon R. Preclinical Evidence for the Protective Capacity of Antibodies Induced by Lyme Vaccine Candidate VLA15 in People. Open Forum Infect Dis 2024; 11:ofae467. [PMID: 39233712 PMCID: PMC11372474 DOI: 10.1093/ofid/ofae467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/15/2024] [Indexed: 09/06/2024] Open
Abstract
Background Vaccine candidate VLA15 is designed to protect against the dominant Borrelia genospecies-causing Lyme disease in North America and Europe. Active immunization with VLA15 has protected in the mouse model of tick challenge. VLA15 is currently under evaluation in clinical studies for the prevention of Lyme borreliosis. Methods Mice were passively administered sera from clinical trial participants vaccinated with VLA15, or normal human serum from unvaccinated individuals as control. Posttransfer serum anti-outer surface protein A (OspA) immunoglobulin G titers were assessed by enzyme-linked immunosorbent assay. Following passive transfer, mice were challenged with Ixodes ticks colonized with Borrelia burgdorferi (OspA serotype 1) or Borrelia afzelii (OspA serotype 2) and infection was determined by serology for VlsE C6 or by polymerase chain reaction and culture to assess the presence of Borrelia bacteria. Results Passive transfer of immune sera prevented transmission of Borrelia from the tick vector and protected mice against challenge. Posttransfer protective threshold immunoglobulin G antibody titers were observed in this animal model of 131 U/mL for B burgdorferi (OspA serotype 1) and 352 U/mL for B afzelii (serotype 2). Conclusions Passive transfer of sera from trial participants immunized with VLA15 protected mice from borreliosis in a tick challenge model. This indicates that VLA15 induces functional immune responses in people that can be linked to efficacy in a stringent preclinical model.
Collapse
Affiliation(s)
| | | | | | - Isis Kanevsky
- Vaccine Research and Development, Pfizer Inc., Pearl River, New York, USA
| | | | | | - Raphael Simon
- Vaccine Research and Development, Pfizer Inc., Pearl River, New York, USA
| |
Collapse
|
16
|
Ušanović L, Lasić L, Pojskić N, Destanović D, Hanjalić Kurtović J, Kalamujić Stroil B. The first molecular record of Borrelia afzelii, B. garinii, B. valaisiana, B. burgdorferi s.s. and B. bavariensis in Bosnia and Herzegovina. Pathog Glob Health 2024; 118:519-525. [PMID: 39255421 PMCID: PMC11441065 DOI: 10.1080/20477724.2024.2399380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] Open
Abstract
Borrelia burgdorferi sensu lato complex comprises 20 species, from which B. afzelii, B. garinii, B. burgdorferi sensu stricto, B. bavariensis, and B. spielmanii are directly associated with Lyme borreliosis, while B. bissettiae, B. lusitaniae, and B. valaisiana were detected in individual cases. Their main vector in Europe is the hard tick species Ixodes ricinus. To date, two species, B. spielmanii and B. lusitaniae, have been molecularly detected in Bosnia and Herzegovina. To test for the presence of other Borrelia species, we performed nested PCR targeting intergenic region rrf (5S) - rrl (23S) on DNA isolates from 49 ticks collected from vegetation by flagging method and 43 removed from humans in The Center for Emergency Medical Assistance of the Sarajevo Canton and The Healthcare Centers of the Sarajevo Canton. Borrelia species were detected by one-directional Sanger sequencing of the amplified region using the same forward primer as in PCR. Out of six Borrelia species detected in the present study, this is the first record of B. afzelii, B. garinii, B. burgdorferi s.s. B. bavariensis, and B. valaisiana in Bosnia and Herzegovina.
Collapse
Affiliation(s)
- Lejla Ušanović
- Laboratory for molecular genetics of natural resources, University of Sarajevo-Institute for Genetic Engineering and Biotechnology, Sarajevo, Bosnia and Herzegovina
| | - Lejla Lasić
- Laboratory for molecular genetics of natural resources, University of Sarajevo-Institute for Genetic Engineering and Biotechnology, Sarajevo, Bosnia and Herzegovina
| | - Naris Pojskić
- Laboratory for bioinformatics and biostatistics, University of Sarajevo-Institute for Genetic Engineering and Biotechnology, Sarajevo, Bosnia and Herzegovina
| | - Dalila Destanović
- Laboratory for molecular genetics of natural resources, University of Sarajevo-Institute for Genetic Engineering and Biotechnology, Sarajevo, Bosnia and Herzegovina
| | - Jasna Hanjalić Kurtović
- Laboratory for molecular genetics of natural resources, University of Sarajevo-Institute for Genetic Engineering and Biotechnology, Sarajevo, Bosnia and Herzegovina
| | - Belma Kalamujić Stroil
- Laboratory for molecular genetics of natural resources, University of Sarajevo-Institute for Genetic Engineering and Biotechnology, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
17
|
Ciebiera O, Grochowalska R, Łopińska A, Zduniak P, Strzała T, Jerzak L. Ticks and spirochetes of the genus Borrelia in urban areas of Central-Western Poland. EXPERIMENTAL & APPLIED ACAROLOGY 2024; 93:421-437. [PMID: 38940943 PMCID: PMC11269503 DOI: 10.1007/s10493-024-00932-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/22/2024] [Indexed: 06/29/2024]
Abstract
Due to the extensive use of green urban areas as recreation places, city residents are exposed to tick-borne pathogens. The objectives of our study were (i) to determine the occurrence of ticks in urban green areas, focussing on areas used by humans such as parks, schools and kindergartens, and urban forests, and (ii) to assess the prevalence of Borrelia infections in ticks in Zielona Góra, a medium-sized city in western Poland. A total of 161 ticks representing the two species Ixodes ricinus (34 males, 51 females, 30 nymphs) and Dermacentor reticulatus (20 males, 26 females) were collected from 29 of 72 (40.3%) study sites. In total, 26.1% of the ticks (85.7% of I. ricinus and 14.3% of D. reticulatus) yielded DNA of Borrelia. The difference in the infection rate between I. ricinus and D. reticulatus was significant. Among infected ticks, the most frequent spirochete species were B. lusitaniae (50.0%) and B. afzelii (26.2%), followed by B. spielmanii (9.5%), B. valaisiana (7.1%), B. burgdorferi sensu stricto, (4.8%) and B. miyamotoi (2.4%). No co-infections were found. We did not observe a correlation in the occurrence of Borrelia spirochetes in ticks found in individual study sites that differed in terms of habitat type and height of vegetation. Our findings demonstrate that the Borrelia transmission cycles are active within urban habitats, pointing the need for monitoring of tick-borne pathogens in public green areas. They could serve as guidelines for authorities for the proper management of urban green spaces in a way that may limit tick populations and the potential health risks posed by tick-borne pathogens.
Collapse
Affiliation(s)
- Olaf Ciebiera
- Institute of Biological Sciences, University of Zielona Góra, Prof. Z. Szafrana 1, Zielona Góra, 65-516, Poland.
| | - Renata Grochowalska
- Institute of Biological Sciences, University of Zielona Góra, Prof. Z. Szafrana 1, Zielona Góra, 65-516, Poland
| | - Andżelina Łopińska
- Institute of Biological Sciences, University of Zielona Góra, Prof. Z. Szafrana 1, Zielona Góra, 65-516, Poland
| | - Piotr Zduniak
- Department of Avian Biology and Ecology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, Poznań, 61-614, Poland
| | - Tomasz Strzała
- Department of Genetics, Wroclaw University of Environmental and Life Sciences, Kożuchowska 7, Wrocław, 51-631, Poland
| | - Leszek Jerzak
- Institute of Biological Sciences, University of Zielona Góra, Prof. Z. Szafrana 1, Zielona Góra, 65-516, Poland
| |
Collapse
|
18
|
Mertens-Scholz K, Hoffmann B, Gethmann JM, Brangsch H, Pletz MW, Klaus C. Prevalence of tick-borne bacterial pathogens in Germany-has the situation changed after a decade? Front Cell Infect Microbiol 2024; 14:1429667. [PMID: 39091677 PMCID: PMC11291221 DOI: 10.3389/fcimb.2024.1429667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
Introduction Tick-borne pathogens, such as Borreliella spp., Rickettsia spp., and Anaplasma spp., are frequently detected in Germany. They circulate between animals and tick vectors and can cause mild to severe diseases in humans. Knowledge about distribution and prevalence of these pathogens over time is important for risk assessment of human and animal health. Methods Ixodes ricinus nymphs were collected at different locations in 2009/2010 and 2019 in Germany and analyzed for tick-borne pathogens by real-time PCR and sequencing. Results Borreliella spp. were detected with a prevalence of 11.96% in 2009/2010 and 13.10% in 2019 with B. afzelii and B. garinii as dominant species. Borrelia miyamotoi was detected in seven ticks and in coinfection with B. afzelii or B. garinii. Rickettsia spp. showed a prevalence of 8.82% in 2009/2010 and 1.68% in 2019 with the exclusive detection of R. helvetica. The prevalence of Anaplasma spp. was 1.00% in 2009/2010 and 7.01% in 2019. A. phagocytophilum was detected in seven tick samples. None of the nymphs were positive for C. burnetii. Discussion Here, observed changes in prevalence were not significant after a decade but require longitudinal observations including parameters like host species and density, climatic factors to improve our understanding of tick-borne diseases.
Collapse
Affiliation(s)
- Katja Mertens-Scholz
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut – Federal Research Institute for Animal Health (FLI), Jena, Germany
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut – Federal Research Institute for Animal Health (FLI), Greifswald-Insel Riems, Germany
| | - Jörn M. Gethmann
- Institute of Epidemiology, Friedrich-Loeffler-Institut – Federal Research Institute for Animal Health (FLI), Greifswald-Insel Riems, Germany
| | - Hanka Brangsch
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut – Federal Research Institute for Animal Health (FLI), Jena, Germany
| | - Mathias W. Pletz
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
| | - Christine Klaus
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut – Federal Research Institute for Animal Health (FLI), Jena, Germany
| |
Collapse
|
19
|
Pustijanac E, Buršić M, Millotti G, Paliaga P, Iveša N, Cvek M. Tick-Borne Bacterial Diseases in Europe: Threats to public health. Eur J Clin Microbiol Infect Dis 2024; 43:1261-1295. [PMID: 38676855 DOI: 10.1007/s10096-024-04836-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Tick-borne diseases, caused by bacterial pathogens, pose a growing threat to public health in Europe. This paper provides an overview of the historical context of the discovery of the most impactful pathogens transmitted by ticks, including Borrelia burgdorferi sensu lato, Rickettsia spp., Anaplasma spp., Francisella spp., Ehrlichia spp., and Neoehrlichia mikurensis. Understanding the historical context of their discovery provides insight into the evolution of our understanding of these pathogens. METHODS AND RESULTS Systematic investigation of the prevalence and transmission dynamics of these bacterial pathogens is provided, highlighting the intricate relationships among ticks, host organisms, and the environment. Epidemiology is explored, providing an in-depth analysis of clinical features associated with infections. Diagnostic methodologies undergo critical examination, with a spotlight on technological advancements that enhance detection capabilities. Additionally, the paper discusses available treatment options, addressing existing therapeutic strategies and considering future aspects. CONCLUSIONS By integrating various pieces of information on these bacterial species, the paper aims to provide a comprehensive resource for researchers and healthcare professionals addressing the impact of bacterial tick-borne diseases in Europe. This review underscores the importance of understanding the complex details influencing bacterial prevalence and transmission dynamics to better combat these emerging public health threats.
Collapse
Affiliation(s)
- Emina Pustijanac
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, Zagrebačka 30, 52100, Pula, Croatia.
| | - Moira Buršić
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, Zagrebačka 30, 52100, Pula, Croatia
| | - Gioconda Millotti
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, Zagrebačka 30, 52100, Pula, Croatia
| | - Paolo Paliaga
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, Zagrebačka 30, 52100, Pula, Croatia
| | - Neven Iveša
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, Zagrebačka 30, 52100, Pula, Croatia
| | - Maja Cvek
- Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000, Rijeka, Croatia
- Teaching Institute of Public Health of the Region of Istria, Nazorova 23, 52100, Pula, Croatia
| |
Collapse
|
20
|
Busi A, Martínez-Sánchez ET, Alvarez-Londoño J, Rivera-Páez FA, Ramírez-Chaves HE, Fontúrbel FE, Castaño-Villa GJ. Environmental and ecological factors affecting tick infestation in wild birds of the Americas. Parasitol Res 2024; 123:254. [PMID: 38922478 PMCID: PMC11208200 DOI: 10.1007/s00436-024-08246-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024]
Abstract
The Americas hold the greatest bird diversity worldwide. Likewise, ectoparasite diversity is remarkable, including ticks of the Argasidae and Ixodidae families - commonly associated with birds. Considering that ticks have potential health implications for humans, animals, and ecosystems, we conducted a systematic review to evaluate the effects of bioclimatic, geographic variables, and bird species richness on tick infestation on wild birds across the Americas. We identified 72 articles that met our inclusion criteria and provided data on tick prevalence in wild birds. Using Generalized Additive Models, we assessed the effect of environmental factors, such as habitat type, climatic conditions, bird species richness, and geographic location, on tick infestation. Our findings show that most bird infestation case studies involved immature ticks, such as larvae or nymphs, while adult ticks represented only 13% of case studies. We found birds infested by ticks of the genera Amblyomma (68%), Ixodes (22%), Haemaphysalis (5%), Dermacentor (1%), and Rhipicephalus (0.8%) in twelve countries across the Americas. Our findings revealed that temperature variation and bird species richness were negatively associated with tick infestation, which also varied with geographic location, increasing in mid-latitudes but declining in extreme latitudes. Our results highlight the importance of understanding how environmental and bird community factors influence tick infestation in wild birds across the Americas and the dynamics of tick-borne diseases and their impact on biodiversity.
Collapse
Affiliation(s)
- Ana Busi
- Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, 170004, Manizales, Caldas, Colombia
- Grupo de Investigación en Ecosistemas Tropicales, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, 170004, Manizales, Caldas, Colombia
- Doctorado en Ciencias-Agrarias, Facultad de Ciencias Agropecuarias, Universidad de Caldas, Calle 64B No. 25-65, 170004, Manizales, Caldas, Colombia
| | - Estefani T Martínez-Sánchez
- Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, 170004, Manizales, Caldas, Colombia
- Doctorado en Ciencias-Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, 170004, Manizales, Caldas, Colombia
| | - Johnathan Alvarez-Londoño
- Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, 170004, Manizales, Caldas, Colombia
- Facultad de Ciencias Exactas y Naturales, Maestría en Ciencias Biológicas, Universidad de Caldas, Calle 65 No. 26-10, 170004, Manizales, Caldas, Colombia
| | - Fredy A Rivera-Páez
- Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, 170004, Manizales, Caldas, Colombia
| | - Héctor E Ramírez-Chaves
- Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, 170004, Manizales, Caldas, Colombia
- Centro de Museos, Museo de Historia Natural, Universidad de Caldas, Calle 58 No. 21-50, 170004, Manizales, Caldas, Colombia
| | - Francisco E Fontúrbel
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, 2373223, Valparaíso, Chile
| | - Gabriel J Castaño-Villa
- Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Facultad de Ciencias Agropecuarias, Universidad de Caldas, Calle 64B No. 25-65, 170004, Manizales, Caldas, Colombia.
| |
Collapse
|
21
|
Rousseau R, Mori M, Kabamba B, Vanwambeke SO. Tick abundance and infection with three zoonotic bacteria are heterogeneous in a Belgian peri-urban forest. EXPERIMENTAL & APPLIED ACAROLOGY 2024; 93:49-69. [PMID: 38869724 DOI: 10.1007/s10493-024-00919-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/29/2024] [Indexed: 06/14/2024]
Abstract
Ixodes ricinus is a vector of several pathogens of public health interest. While forests are the primary habitat for I. ricinus, its abundance and infection prevalence are expected to vary within forest stands. This study assesses the spatio-temporal variations in tick abundance and infection prevalence with three pathogens in and around a peri-urban forest where human exposure is high. Ticks were sampled multiple times in 2016 and 2018 in multiple locations with a diversity of undergrowth, using the consecutive drags method. Three zoonotic pathogens were screened for, Borrelia burgdorferi s.l., Coxiella burnetii, and Francisella tularensis. The influence of season, type of site and micro-environmental factors on tick abundance were assessed with negative binomial generalized linear mixed-effects models. We collected 1642 nymphs and 181 adult ticks. Ticks were most abundant in the spring, in warmer temperatures, and where undergrowth was higher. Sites with vegetation unaffected by human presence had higher abundance of ticks. Forest undergrowth type and height were significant predictors of the level of tick abundance in a forest. The consecutive drags method is expected to provide more precise estimates of tick abundance, presumably through more varied contacts with foliage. Borrelia burgdorferi s.l. prevalence was estimated from pooled ticks at 5.33%, C. burnetii was detected in six pools and F. tularensis was not detected. Borrelia afzelii was the dominant B. burgdorferi genospecies. Tick abundance and B. burgdorferi s.l. infection prevalence were lower than other estimates in Belgian forests.
Collapse
Affiliation(s)
- Raphaël Rousseau
- Earth and Life Institute (ELI), Earth and Climate pole (ELIC), Université catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| | - Marcella Mori
- Bacterial zoonoses unit, Veterinary bacteriology, Sciensano, Ukkel/Uccle, Belgium
| | - Benoît Kabamba
- Institute of Clinical and Experimental Research (IREC), Pôle de Microbiologie Médicale, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Sophie O Vanwambeke
- Earth and Life Institute (ELI), Earth and Climate pole (ELIC), Université catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium.
| |
Collapse
|
22
|
Liberska J, Michalik JF, Olechnowicz J, Dabert M. Co-Occurrence of Borrelia burgdorferi Sensu Lato and Babesia spp. DNA in Ixodes ricinus Ticks Collected from Vegetation and Pets in the City of Poznań, Poland. Pathogens 2024; 13:307. [PMID: 38668262 PMCID: PMC11054194 DOI: 10.3390/pathogens13040307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 04/29/2024] Open
Abstract
Here, we described the prevalence of Borrelia burgdorferi s.l. and Babesia species found in mono- and double infections among Ixodes ricinus ticks occurring in urban areas of the city of Poznań, Poland. We tested 1029 host-seeking ticks and 1268 engorged ticks removed from pet animals. Borrelia afzelii and B. garinii prevailed both in ticks from vegetation (3.7% and 3.7%, respectively) and from pets (3.7% and 0.6%, respectively). Babesia canis and Ba. microti were the most prevalent in host-seeking (2.6% and 1.4%, respectively) and feeding ticks (2.8% and 2.2%, respectively). Babesia microti sequences proved to be identical to the human pathogenic Ba. microti genotype "Jena/Germany". Sequences of the rarest piroplasm Ba. venatorum (0.7%) were identical with those isolated from European patients. About 1.0% of tested ticks yielded dual infections; in host-seeking ticks, Ba. canis prevailed in co-infections with B. afzelii and B. garinii, whereas Ba. microti and B. afzelii dominated in double-infected feeding ticks. Dual infections, even with a low prevalence, pose a challenge for differential diagnosis in patients with acute febrile disease after a tick bite. The finding of Ba. canis in both tick groups suggests that I. ricinus could be involved in the circulation of this piroplasm.
Collapse
Affiliation(s)
- Justyna Liberska
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland; (J.O.); (M.D.)
| | - Jerzy Franciszek Michalik
- Department of Animal Morphology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland;
| | - Julia Olechnowicz
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland; (J.O.); (M.D.)
| | - Miroslawa Dabert
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland; (J.O.); (M.D.)
| |
Collapse
|
23
|
Selmi R, Abdi K, Belkahia H, Abdallah MB, Mamlouk A, Kratou M, Said MB, Messadi L. Detection and genetic identification of Borrelia lusitaniae in questing Ixodes inopinatus tick from Tunisia. INFECTIOUS MEDICINE 2024; 3:100093. [PMID: 38586546 PMCID: PMC10998273 DOI: 10.1016/j.imj.2024.100093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/17/2023] [Accepted: 01/03/2024] [Indexed: 04/09/2024]
Abstract
Background Until now, there has been limited information on the prevalence and the phylogeny of Borrelia burgdorferi sensu lato in Ixodes ticks in Tunisia, particularly in Ixodes inopinatus. Methods The present study aimed to determine the prevalence and the phylogeny of B. burgdorferi s.l., in coexisted I. ricinus and I. inopinatus ticks collected from Northern Tunisia. One hundred questig ticks were collected during winter 2020 by tick-dragging method in Beja gouvernorate located in the north of Tunisia. Real-time PCR panel targeting B. burgdorferi s.l. 23S rRNA gene were performed. Positive DNA samples were subjected to conventional PCRs targeting 457 bp fragment of the Borrelia sp. flagellin (fla) gene using primers FlaF/FlaR. The identified Borrelia sp. isolate underwent partial sequence analysis to determine genospecies and evaluate their phylogenetic position. Results The study revealed a prevalence rate of 28% (28/100) for B. burgdorferi sensu lato in the Ixodes ticks. The prevalence rates across tick species and genders did not show significant variations (p > 0.05). Interestingly, the study underlines the coexistence of I. inopinatus and I. ricinus sharing the same geographic areas in Northern Tunisia. Furthermore, DNA of B. lusitaniae was detected in I. inopinatus ticks for the first time in Tunisia. Revealed B. lusitaniae bacterium is similar to previously identified strains in Mediterranean region, but distinct from those isolated exclusively from countries of Eastern and Central Europe, such as Serbia, Romania, and Poland. This study highlights the prevalence of B. burgdorferi s.l. in I. ricinus/I. inopinatus ticks, and reveals B. lusitaniae in I. inopinatus ticks for the first time in Tunisia. Conclusion These findings suggest the involvement of I. inopinatus as a potential vector of this pathogenic genospeciess in Tunisia. This may help understanding the ecology of Ixodes ticks, the natural infection and the transmission dynamics of Borrelia species in this country.
Collapse
Affiliation(s)
- Rachid Selmi
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, LR16AGR01, University of Manouba, Manouba 2010, Tunisia
- Ministry of National Defense, General Directorate of Military Health, Military Center of Veterinary Medicine, Tunis 1030, Tunisia
| | - Khaoula Abdi
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, LR16AGR01, University of Manouba, Manouba 2010, Tunisia
| | - Hanène Belkahia
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, LR16AGR01, University of Manouba, Manouba 2010, Tunisia
| | - Meriem Ben Abdallah
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, LR16AGR01, University of Manouba, Manouba 2010, Tunisia
| | - Aymen Mamlouk
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, LR16AGR01, University of Manouba, Manouba 2010, Tunisia
| | - Myriam Kratou
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, LR16AGR01, University of Manouba, Manouba 2010, Tunisia
| | - Mourad Ben Said
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, LR16AGR01, University of Manouba, Manouba 2010, Tunisia
- Department of Basic Sciences, Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, Manouba 2010, Tunisia
| | - Lilia Messadi
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, LR16AGR01, University of Manouba, Manouba 2010, Tunisia
| |
Collapse
|
24
|
Pańczuk A, Tokarska-Rodak M, Andrzejuk P. Prevalence of Borrelia burgdorferi and Anaplasma phagocytophilum in Ixodes ricinus collected from dogs in eastern Poland. J Vet Res 2024; 68:109-114. [PMID: 38525235 PMCID: PMC10960333 DOI: 10.2478/jvetres-2024-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/06/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction Ixodes ricinus ticks are an important vector and reservoir of pathogenic microorganisms causing dangerous infectious diseases in humans and animals. The presence of ticks in urban greenery is a particularly important public health concern due to the potential for humans and companion animals to be exposed to tick-borne diseases there. The study assessed the prevalence of Borrelia burgdorferi and Anaplasma phagocytophilum infection in I. ricinus ticks feeding on dogs. Material and Methods The study consisted in analyses of I. ricinus ticks collected in 2018-2020 from owned and stray dogs in the north-eastern part of Lubelskie province (eastern Poland). An AmpliSens PCR kit was used for qualitative detection and differentiation of tick-borne infections. Results Infections of B. burgdorferi and A. phagocytophilum were detected in 10.9% and 12.9% of the examined ticks, respectively. One tick (0.7%) was co-infected by both pathogens. Infection with B. burgdorferi was significantly more highly prevalent in ticks collected from the owned dogs than from the strays (18.7% and 2.8%, respectively), whereas the prevalence of A. phagocytophilum was similar in both groups (12.0% and 13.9%, respectively). Conclusion The co-infection observed in the study suggests the possibility of simultaneous infection by both pathogens from a single tick bite. The presence of pathogens in ticks collected from dogs is a factor in assessing infection risk not only to companion animals but also to their owners, who are in close contact with their dogs and visit the same green areas recreationally.
Collapse
Affiliation(s)
| | | | - Patrycja Andrzejuk
- Innovation Research Centre, John Paul II University in Biała Podlaska, 21-500Biała Podlaska, Poland
| |
Collapse
|
25
|
Probst J, Springer A, Fingerle V, Strube C. Frequency of Anaplasma phagocytophilum, Borrelia spp., and coinfections in Ixodes ricinus ticks collected from dogs and cats in Germany. Parasit Vectors 2024; 17:87. [PMID: 38395915 PMCID: PMC10893606 DOI: 10.1186/s13071-024-06193-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Changing geographical and seasonal activity patterns of ticks may increase the risk of tick infestation and tick-borne pathogen (TBP) transmission for both humans and animals. METHODS To estimate TBP exposure of dogs and cats, 3000 female I. ricinus from these hosts were investigated for Anaplasma phagocytophilum and Borrelia species. RESULTS qPCR inhibition, which was observed for ticks of all engorgement stages but not questing ticks, was eliminated at a template volume of 2 µl. In ticks from dogs, A. phagocytophilum and Borrelia spp. prevalence amounted to 19.0% (285/1500) and 28.5% (427/1500), respectively, while ticks from cats showed significantly higher values of 30.9% (464/1500) and 55.1% (827/1500). Accordingly, the coinfection rate with both A. phagocytophilum and Borrelia spp. was significantly higher in ticks from cats (17.5%, 262/1500) than dogs (6.9%, 104/1500). Borrelia prevalence significantly decreased with increasing engorgement duration in ticks from both host species, whereas A. phagocytophilum prevalence decreased only in ticks from dogs. While A. phagocytophilum copy numbers in positive ticks did not change significantly over the time of engorgement, those of Borrelia decreased initially in dog ticks. In ticks from cats, copy numbers of neither A. phagocytophilum nor Borrelia spp. were affected by engorgement. Borrelia species differentiation was successful in 29.1% (365/1254) of qPCR-positive ticks. The most frequently detected species in ticks from dogs were B. afzelii (39.3% of successfully differentiated infections; 70/178), B. miyamotoi (16.3%; 29/178), and B. valaisiana (15.7%; 28/178), while B. afzelii (40.1%; 91/227), B. spielmanii (21.6%; 49/227), and B. miyamotoi (14.1%; 32/227) occurred most frequently in ticks from cats. CONCLUSIONS The differences in pathogen prevalence and Borrelia species distribution between ticks collected from dogs and cats may result from differences in habitat overlap with TBP reservoir hosts. The declining prevalence of A. phagocytophilum with increasing engorgement duration, without a decrease in copy numbers, could indicate transmission to dogs over the time of attachment. The fact that this was not observed in ticks from cats may indicate less efficient transmission. In conclusion, the high prevalence of A. phagocytophilum and Borrelia spp. in ticks collected from dogs and cats underlines the need for effective acaricide tick control to protect both animals and humans from associated health risks.
Collapse
Affiliation(s)
- Julia Probst
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany
| | - Andrea Springer
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany
| | - Volker Fingerle
- National Reference Centre for Borrelia, Bavarian Health and Food Safety Authority, Veterinärstraße 2, 85764, Oberschleissheim, Germany
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hanover, Germany.
| |
Collapse
|
26
|
Melis S, Batisti Biffignandi G, Olivieri E, Galon C, Vicari N, Prati P, Moutailler S, Sassera D, Castelli M. High-throughput screening of pathogens in Ixodes ricinus removed from hosts in Lombardy, northern Italy. Ticks Tick Borne Dis 2024; 15:102285. [PMID: 38035456 DOI: 10.1016/j.ttbdis.2023.102285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023]
Abstract
Ticks are important vectors of many pathogens in Europe, where the most impactful species is Ixodes ricinus. Recently, the geographical distribution of this tick species has been expanding, resulting in an increased risk of human exposure to tick bites. With the present study, we aimed to screen 350 I. ricinus specimens collected from humans and wild animals (mainly ungulates), to have a broader understanding of the tick-borne pathogens circulating in the Lombardy region, in northern Italy. To do so, we took advantage of a high-throughput real-time microfluidic PCR approach to screen ticks in a cost-effective and time-saving manner. Molecular analysis of the dataset revealed the presence of four genera of bacteria and two genera of protozoa: in ungulates, 77 % of collected ticks carried Anaplasma phagocytophilum, while the most common pathogen species in ticks removed from humans were those belonging to Borrelia burgdorferi sensu lato group (7.6 %). We also detected other pathogenic microorganisms, such as Rickettisa monacensis, Rickettsia helvetica, Neoehrlichia mikurensis, Babesia venatorum, and Hepatozoon martis. Besides, we also reported the presence of the pathogenic agent Borrelia miyamotoi in the area (1.4 % overall). The most common dual co-infection detected in the same tick individual involved A. phagocytophilum and Rickettsia spp. Our study provided evidence of the circulation of different tick-borne pathogens in a densely populated region in Italy.
Collapse
Affiliation(s)
- Sophie Melis
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | - Emanuela Olivieri
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Pavia, Italy
| | - Clémence Galon
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
| | - Nadia Vicari
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Pavia, Italy
| | - Paola Prati
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Pavia, Italy
| | - Sara Moutailler
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
| | - Davide Sassera
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy; Fondazione IRCCS Policlinico San Matteo Pavia Italy
| | - Michele Castelli
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
| |
Collapse
|
27
|
Strnad M, Rudenko N, Rego RO. Pathogenicity and virulence of Borrelia burgdorferi. Virulence 2023; 14:2265015. [PMID: 37814488 PMCID: PMC10566445 DOI: 10.1080/21505594.2023.2265015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 09/25/2023] [Indexed: 10/11/2023] Open
Abstract
Infection with Borrelia burgdorferi often triggers pathophysiologic perturbations that are further augmented by the inflammatory responses of the host, resulting in the severe clinical conditions of Lyme disease. While our apprehension of the spatial and temporal integration of the virulence determinants during the enzootic cycle of B. burgdorferi is constantly being improved, there is still much to be discovered. Many of the novel virulence strategies discussed in this review are undetermined. Lyme disease spirochaetes must surmount numerous molecular and mechanical obstacles in order to establish a disseminated infection in a vertebrate host. These barriers include borrelial relocation from the midgut of the feeding tick to its body cavity and further to the salivary glands, deposition to the skin, haematogenous dissemination, extravasation from blood circulation system, evasion of the host immune responses, localization to protective niches, and establishment of local as well as distal infection in multiple tissues and organs. Here, the various well-defined but also possible novel strategies and virulence mechanisms used by B. burgdorferi to evade obstacles laid out by the tick vector and usually the mammalian host during colonization and infection are reviewed.
Collapse
Affiliation(s)
- Martin Strnad
- Biology Centre CAS, Institute of Parasitology, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská, Czech Republic
| | - Natalie Rudenko
- Biology Centre CAS, Institute of Parasitology, České Budějovice, Czech Republic
| | - Ryan O.M. Rego
- Biology Centre CAS, Institute of Parasitology, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská, Czech Republic
| |
Collapse
|
28
|
Grąźlewska W, Holec-Gąsior L, Sołowińska K, Chmielewski T, Fiecek B, Contreras M. Epitope Mapping of BmpA and BBK32 Borrelia burgdorferi Sensu Stricto Antigens for the Design of Chimeric Proteins with Potential Diagnostic Value. ACS Infect Dis 2023; 9:2160-2172. [PMID: 37803965 PMCID: PMC10722512 DOI: 10.1021/acsinfecdis.3c00258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Indexed: 10/08/2023]
Abstract
Lyme disease is a tick-borne zoonosis caused by Gram-negative bacteria belonging to the Borrelia burgdorferi sensu lato (s.l.) group. In this study, IgM- and IgG-specific linear epitopes of two B. burgdorferi sensu stricto (s.s.) antigens BmpA and BBK32 were mapped using a polypeptide array. Subsequently, two chimeric proteins BmpA-BBK32-M and BmpA-BBK32-G were designed to validate the construction of chimeras using the identified epitopes for the detection of IgM and IgG, respectively, by ELISA. IgG-ELISA based on the BmpA-BBK32-G antigen showed 71% sensitivity and 95% specificity, whereas a slightly lower diagnostic utility was obtained for IgM-ELISA based on BmpA-BBK32-M, where the sensitivity was also 71% but the specificity decreased to 89%. The reactivity of chimeric proteins with nondedicated antibodies was much lower. These results suggest that the identified epitopes may be useful in the design of new forms of antigens to increase the effectiveness of Lyme disease serodiagnosis. It has also been proven that appropriate selection of epitopes enables the construction of chimeric proteins exhibiting reactivity with a specific antibody isotype.
Collapse
Affiliation(s)
- Weronika Grąźlewska
- Department
of Molecular Biotechnology and Microbiology, Faculty of Chemistry, University of Gdańsk Technology, 80-233 Gdańsk, Poland
- SaBio,
Instituto de Investigación en Recursos Cinegéticos IREC−CSIC-UCLM-JCCM, 13005 Ciudad Real, Spain
| | - Lucyna Holec-Gąsior
- Department
of Molecular Biotechnology and Microbiology, Faculty of Chemistry, University of Gdańsk Technology, 80-233 Gdańsk, Poland
| | - Karolina Sołowińska
- Department
of Molecular Biotechnology and Microbiology, Faculty of Chemistry, University of Gdańsk Technology, 80-233 Gdańsk, Poland
| | - Tomasz Chmielewski
- Department
of Parasitology and Diseases Transmitted by Vectors, National Institute of Public Health NIH - National Research Institute, 00-791 Warsaw, Poland
| | - Beata Fiecek
- Department
of Parasitology and Diseases Transmitted by Vectors, National Institute of Public Health NIH - National Research Institute, 00-791 Warsaw, Poland
| | - Marinela Contreras
- SaBio,
Instituto de Investigación en Recursos Cinegéticos IREC−CSIC-UCLM-JCCM, 13005 Ciudad Real, Spain
| |
Collapse
|
29
|
Grąźlewska W, Holec-Gąsior L. Antibody Cross-Reactivity in Serodiagnosis of Lyme Disease. Antibodies (Basel) 2023; 12:63. [PMID: 37873860 PMCID: PMC10594444 DOI: 10.3390/antib12040063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/25/2023] Open
Abstract
Lyme disease is a tick-borne disease caused by spirochetes belonging to the Borrelia burgdorferi sensu lato complex. The disease is characterized by a varied course; therefore, the basis for diagnosis is laboratory methods. Currently, a two-tiered serological test is recommended, using an ELISA as a screening test and a Western blot as a confirmatory test. This approach was introduced due to the relatively high number of false-positive results obtained when using an ELISA alone. However, even this approach has not entirely solved the problem of false-positive results caused by cross-reactive antibodies. Many highly immunogenic B. burgdorferi s.l. proteins are recognized nonspecifically by antibodies directed against other pathogens. This also applies to antigens, such as OspC, BmpA, VlsE, and FlaB, i.e., those commonly used in serodiagnostic assays. Cross-reactions can be caused by both bacterial (relapsing fever Borrelia, Treponema pallidum) and viral (Epstein-Baar virus, Cytomegalovirus) infections. Additionally, a rheumatoid factor has also been shown to nonspecifically recognize B. burgdorferi s.l. proteins, resulting in false-positive results. Therefore, it is necessary to carefully interpret the results of serodiagnostic tests so as to avoid overdiagnosis of Lyme disease, which causes unnecessary implementations of strong antibiotic therapies and delays in the correct diagnosis.
Collapse
Affiliation(s)
| | - Lucyna Holec-Gąsior
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland;
| |
Collapse
|
30
|
Plahe G, Hall JL, Johnson D, Gilbert L, Birtles RJ. Borrelia bavariensis in Questing Ixodes ricinus Ticks, United Kingdom. Emerg Infect Dis 2023; 29:2173-2175. [PMID: 37735806 PMCID: PMC10521598 DOI: 10.3201/eid2910.230907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023] Open
Abstract
We detected Borrelia bavariensis in Ixodes ricinus ticks collected near 2 towns in the United Kingdom. Human B. bavariensis infections have not been reported previously in the country, underscoring the value of tick surveillance to warn of emerging human disease. B. bavariensis should be considered in patients with suspected neuroborreliosis.
Collapse
|
31
|
Zając Z, Kulisz J, Woźniak A, Bartosik K, Foucault-Simonin A, Moutailler S, Cabezas-Cruz A. Tick Activity, Host Range, and Tick-Borne Pathogen Prevalence in Mountain Habitats of the Western Carpathians, Poland. Pathogens 2023; 12:1186. [PMID: 37764994 PMCID: PMC10534405 DOI: 10.3390/pathogens12091186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
In mountainous regions, diverse ecosystems provide a habitat for numerous species of organisms. In this study, we focused on ixodid ticks and their presence in the Western Carpathians, Poland. Our objectives were to investigate the impact of environmental factors on tick occurrence and activity, the prevalence of vectored pathogens, and tick hosts, and their role as reservoir organisms for tick-borne pathogens (TBPs). To this end, we collected ticks from the vegetation and from animals (Apodemus agrarius, A. flavicollis, Capreolus capreolus, Microtus spp., Myodes glareolus, Ovis aries). In addition, we collected blood samples from rodents. The collected material underwent molecular analysis, utilizing the high-throughput microfluidic real-time PCR technique, to detect the presence of TBPs. Our findings confirmed the occurrence of only two species of ixodid ticks in the study area: the dominant Ixodes ricinus, and Dermacentor reticulatus with very limited abundance. Temperature significantly influenced tick activity, and the number of I. ricinus nymphs varied with altitude. We also observed a circadian pattern of questing activity in I. ricinus ticks. The main hosts for juvenile tick stages were M. glareolus and A. agrarius, while adult stages were frequently found on C. capreolus. I. ricinus ticks collected from the vegetation were often infected with Rickettsia helvetica (up to 35.71%), Borrelia afzelii (up to 28.57%), and Ehrlichia spp. (up to 9.52%). In contrast, juvenile stages frequently carried Bartonella spp. (up to 10.00%), Mycoplasma spp. (up to 16.67%) and R. helvetica (up to 16.67%). Moreover, we detected genetic material of Mycoplasma spp. (up to 100.00%), Ehrlichia spp. (up to 35.71%), Bartonella spp. (up to 25.00%), and Borrelia spp. (up to 6.25%) in rodent blood samples. The obtained results indicate A. agrarius and M. glareolus as reservoir animals for TBPs in the studied region.
Collapse
Affiliation(s)
- Zbigniew Zając
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland; (J.K.); (A.W.); (K.B.)
| | - Joanna Kulisz
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland; (J.K.); (A.W.); (K.B.)
| | - Aneta Woźniak
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland; (J.K.); (A.W.); (K.B.)
| | - Katarzyna Bartosik
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland; (J.K.); (A.W.); (K.B.)
| | - Angélique Foucault-Simonin
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France; (A.F.-S.); (S.M.)
| | - Sara Moutailler
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France; (A.F.-S.); (S.M.)
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France; (A.F.-S.); (S.M.)
| |
Collapse
|
32
|
Mahajan VK. Lyme Disease: An Overview. Indian Dermatol Online J 2023; 14:594-604. [PMID: 37727539 PMCID: PMC10506804 DOI: 10.4103/idoj.idoj_418_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 09/21/2023] Open
Abstract
Lyme disease, a tick-borne multisystem disease, is caused by spirochete Borrelia burgdorferi (sensu lato). It is a common illness in temperate countries, especially the United States, but the incidence is increasing across continents due to increasing reforestation, travel and adventure tourism, increased intrusion in the vector habitat, and changing habitat of the vector. Transmission primarily occurs via bite of an infected tick (Ixodes spp.). The appearance of an erythema migrans rash following a tick bite is diagnostic of early Lyme disease even without laboratory evidence. Borrelia lymphocytoma and acrodermatitis chronica atrophicans along with multisystem involvement occur in late disseminated and chronic stages. A two-step serologic testing protocol using an enzyme-linked immunosorbent assay (ELISA) followed by confirmation of positive and equivocal results by Western immunoblot is recommended for the diagnosis. Transplacental transmission to infant occurs in the first trimester with possible congenital Lyme disease making treatment imperative during antenatal period. The treatment is most effective in the early stages of the disease, whereas rheumatological, neurological, or other late manifestations remain difficult to treat with antibiotics alone. Treatment with oral doxycycline is preferred for its additional activity against other tick-borne illnesses which may occur concurrently in 10%-15% of cases. New-generation cephalosporins and azithromycin are alternative options in patients with doxycycline contraindications. No vaccine is available and one episode of the disease will not confer life-long immunity; thus, preventive measures remain a priority. The concept of post-Lyme disease syndrome versus chronic Lyme disease remains contested for want of robust evidence favoring benefits of prolonged antibiotic therapy.
Collapse
Affiliation(s)
- Vikram K. Mahajan
- Department of Dermatology, Venereology and Leprosy, Dr. Radhakrishnan Government Medical College, Hamirpur, Himachal Pradesh, India
| |
Collapse
|
33
|
Sawczyn-Domańska A, Zwoliński J, Kloc A, Wójcik-Fatla A. Prevalence of Borrelia, Neoehrlichia mikurensis and Babesia in ticks collected from vegetation in eastern Poland. EXPERIMENTAL & APPLIED ACAROLOGY 2023; 90:409-428. [PMID: 37389691 PMCID: PMC10406691 DOI: 10.1007/s10493-023-00818-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/22/2023] [Indexed: 07/01/2023]
Abstract
In Poland, tick-borne diseases constitute the majority of diseases related to exposure to biological agents with a predominance of Lyme borreliosis; therefore, research on ticks as a reservoir of various pathogens remains crucial in the epidemiology of human diseases after tick bites. This study aimed to identify the occurrence of Borrelia burgdorferi sensu lato, Borrelia miyamotoi, Neoehrlichia mikurensis, and Babesia spp. in ticks collected from vegetation in eastern Poland. Additionally, the prevalence of co-infections in the adult Ixodes ricinus ticks was determined. Among I. ricinus ticks the predominantly detected pathogen was B. burgdorferi s.l. (23%) with B. burgdorferi sensu stricto as the most frequently identified species, followed by B. garinii. In 2013, the double or triple infections of B. burgdorferi s.s., B. afzelii, and B. garinii species did not exceed 9% in adult ticks, whereas in 2016, the prevalence of mixed infections reached 29%. The prevalence of N. mikurensis and B. miyamotoi in I. ricinus was determined at the same level of 2.8%. Four Babesia species were identified in the examined I. ricinus population: B. microti (1.5%), B. venatorum (1.2%), B. divergens (0.2%), and B. capreoli (0.1%). Co-infections were detected in 10.1% of all infected ticks with the highest prevalence of co-infections with B. burgdorferi s.l. and Babesia species. The changes in the prevalence and the distribution of particular pathogens within tick populations indicate the need for monitoring the current situation related to tick-borne pathogens from the aspect of risk to human health.
Collapse
Affiliation(s)
- Anna Sawczyn-Domańska
- Department of Health Biohazards and Parasitology, Institute of Rural Health, Jaczewskiego 2, 20-090, Lublin, Poland.
| | - Jacek Zwoliński
- Department of Health Biohazards and Parasitology, Institute of Rural Health, Jaczewskiego 2, 20-090, Lublin, Poland
| | - Anna Kloc
- Department of Health Biohazards and Parasitology, Institute of Rural Health, Jaczewskiego 2, 20-090, Lublin, Poland
| | - Angelina Wójcik-Fatla
- Department of Health Biohazards and Parasitology, Institute of Rural Health, Jaczewskiego 2, 20-090, Lublin, Poland
| |
Collapse
|
34
|
Zając Z, Obregon D, Foucault-Simonin A, Wu-Chuang A, Moutailler S, Galon C, Kulisz J, Woźniak A, Bartosik K, Cabezas-Cruz A. Disparate dynamics of pathogen prevalence in Ixodes ricinus and Dermacentor reticulatus ticks occurring sympatrically in diverse habitats. Sci Rep 2023; 13:10645. [PMID: 37391552 PMCID: PMC10313804 DOI: 10.1038/s41598-023-37748-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023] Open
Abstract
Ixodes ricinus and Dermacentor reticulatus ticks are important reservoirs and vectors of pathogens. The aim of the present study was to investigate the dynamic of the prevalence and genetic diversity of microorganisms detected in these tick species collected from two ecologically diverse biotopes undergoing disparate long-term climate condition. High-throughput real time PCR confirmed high prevalence of microorganisms detected in sympatrically occurring ticks species. D. reticulatus specimens were the most often infected with Francisella-like endosymbiont (FLE) (up to 100.0%) and Rickettsia spp. (up to 91.7%), while in case of I. ricinus the prevalence of Borreliaceae spirochetes reached up to 25.0%. Moreover, pathogens belonging to genera of Bartonella, Anaplasma, Ehrlichia and Babesia were detected in both tick species regardless the biotope. On the other hand, Neoehrlichia mikurensis was conformed only in I. ricinus in the forest biotope, while genetic material of Theileria spp. was found only in D. reticulatus collected from the meadow. Our study confirmed significant impact of biotope type on prevalence of representatives of Borreliaceae and Rickettsiaceae families. The most common co-infection detected in D. reticulatus was Rickettsia spp. + FLE, while Borreliaceae + R. helvetica was the most common in I. ricinus. Additionally, we found significant genetic diversity of R. raoultii gltA gene across studied years, however such relationship was not observed in ticks from studied biotopes. Our results suggest that ecological type of biotope undergoing disparate long-term climate conditions have an impact on prevalence of tick-borne pathogens in adult D. reticulatus and I. ricinus.
Collapse
Affiliation(s)
- Zbigniew Zając
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11 St, 20-080, Lublin, Poland.
| | - Dasiel Obregon
- School of Environmental Sciences University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Angélique Foucault-Simonin
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Alejandra Wu-Chuang
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Sara Moutailler
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Clemence Galon
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Joanna Kulisz
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11 St, 20-080, Lublin, Poland
| | - Aneta Woźniak
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11 St, 20-080, Lublin, Poland
| | - Katarzyna Bartosik
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11 St, 20-080, Lublin, Poland
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France.
| |
Collapse
|
35
|
Kazimírová M, Mahríková L, Hamšíková Z, Stanko M, Golovchenko M, Rudenko N. Spatial and Temporal Variability in Prevalence Rates of Members of the Borrelia burgdorferi Species Complex in Ixodes ricinus Ticks in Urban, Agricultural and Sylvatic Habitats in Slovakia. Microorganisms 2023; 11:1666. [PMID: 37512839 PMCID: PMC10383148 DOI: 10.3390/microorganisms11071666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Lyme borreliosis (LB) is the most prevalent tick-borne human infection in Europe, with increasing incidence during the latest decades. Abundant populations of Ixodes ricinus, the main vector of the causative agent, spirochetes from the Borrelia burgdorferi sensu lato (Bbsl) complex, have been observed in urban and suburban areas of Europe, in general, and Slovakia, particularly. Understanding the spread of infectious diseases is crucial for implementing effective control measures. Global changes affect contact rates of humans and animals with Borrelia-infected ticks and increase the risk of contracting LB. The aim of this study was to investigate spatial and temporal variation in prevalence of Bbsl and diversity of its species in questing I. ricinus from three sites representing urban/suburban, natural and agricultural habitat types in Slovakia. Ixodes ricinus nymphs and adults were collected by dragging the vegetation in green areas of Bratislava town (urban/suburban habitat), in the Small Carpathians Mountains (natural habitat) (south-western Slovakia) and in an agricultural habitat at Rozhanovce in eastern Slovakia. Borrelia presence in ticks was detected by PCR and Bbsl species were identified by restriction fragment length polymorphism (RFLP). Borrelia burgdorferi s.l. species in coinfected ticks were identified by reverse line blot. Significant spatial and temporal variability in prevalence of infected ticks was revealed in the explored habitats. The lowest total prevalence was detected in the urban/suburban habitat, whereas higher prevalence was found in the natural and agricultural habitat. Six Bbsl species were detected by RFLP in each habitat type -B. burgdorferi sensu stricto (s.s.), B. afzelii, B. garinii, B. valaisiana, B. lusitaniae and B. spielmanii. Coinfections accounted for 3% of the total infections, whereby B. kurtenbachii was identified by RLB and sequencing in mixed infection with B. burgdorferi s.s, B. garinii and B. valaisiana. This finding represents the first record of B. kurtenbachii in questing I. ricinus in Slovakia and Europe. Variations in the proportion of Bbsl species were found between nymphs and adults, between years and between habitat types. Spatial variations in prevalence patterns and proportion of Bbsl species were also confirmed between locations within a relatively short distance in the urban habitat. Habitat-related and spatial variations in Borrelia prevalence and distribution of Bbsl species are probably associated with the local environmental conditions and vertebrate host spectrum. Due to the presence of Borrelia species pathogenic to humans, all explored sites can be ranked as areas with high epidemiological risk.
Collapse
Affiliation(s)
- Mária Kazimírová
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 84506 Bratislava, Slovakia
| | - Lenka Mahríková
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 84506 Bratislava, Slovakia
| | - Zuzana Hamšíková
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 84506 Bratislava, Slovakia
| | - Michal Stanko
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 84506 Bratislava, Slovakia
- Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 04001 Košice, Slovakia
| | - Maryna Golovchenko
- Biology Centre Czech Academy of Sciences, Institute of Parasitology, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Natalie Rudenko
- Biology Centre Czech Academy of Sciences, Institute of Parasitology, Branišovská 31, 37005 České Budějovice, Czech Republic
| |
Collapse
|
36
|
Adkison H, Embers ME. Lyme disease and the pursuit of a clinical cure. Front Med (Lausanne) 2023; 10:1183344. [PMID: 37293310 PMCID: PMC10244525 DOI: 10.3389/fmed.2023.1183344] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/10/2023] [Indexed: 06/10/2023] Open
Abstract
Lyme disease, caused by the spirochete Borrelia burgdorferi, is the most common vector-borne illness in the United States. Many aspects of the disease are still topics of controversy within the scientific and medical communities. One particular point of debate is the etiology behind antibiotic treatment failure of a significant portion (10-30%) of Lyme disease patients. The condition in which patients with Lyme disease continue to experience a variety of symptoms months to years after the recommended antibiotic treatment is most recently referred to in the literature as post treatment Lyme disease syndrome (PTLDS) or just simply post treatment Lyme disease (PTLD). The most commonly proposed mechanisms behind treatment failure include host autoimmune responses, long-term sequelae from the initial Borrelia infection, and persistence of the spirochete. The aims of this review will focus on the in vitro, in vivo, and clinical evidence that either validates or challenges these mechanisms, particularly with regard to the role of the immune response in disease and resolution of the infection. Next generation treatments and research into identifying biomarkers to predict treatment responses and outcomes for Lyme disease patients are also discussed. It is essential that definitions and guidelines for Lyme disease evolve with the research to translate diagnostic and therapeutic advances to patient care.
Collapse
Affiliation(s)
| | - Monica E. Embers
- Division of Immunology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA, United States
| |
Collapse
|
37
|
Hoeve-Bakker BJA, van den Berg OE, Doppenberg HS, van der Klis FRM, van den Wijngaard CC, Kluytmans JAJW, Thijsen SFT, Kerkhof K. Seroprevalence and Risk Factors of Lyme Borreliosis in The Netherlands: A Population-Based Cross-Sectional Study. Microorganisms 2023; 11:microorganisms11041081. [PMID: 37110504 PMCID: PMC10143428 DOI: 10.3390/microorganisms11041081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Lyme borreliosis (LB) is not notifiable in many European countries, and accurate data on the incidence are often lacking. This study aimed to determine the seroprevalence of Borrelia burgdorferi sensu lato (s.l.)-specific antibodies in the general population of The Netherlands, and to determine risk factors associated with seropositivity. Sera and questionnaires were obtained from participants (n = 5592, aged 0-88 years) enrolled in a nationwide serosurveillance study. The sera were tested for B. burgdorferi s.l.-specific IgM and IgG antibodies using ELISA and immunoblot. Seroprevalence was estimated controlling for the survey design. Risk factors for seropositivity were analyzed using a generalized linear mixed-effect model. In 2016/2017, the seroprevalence in The Netherlands was 4.4% (95% CI 3.5-5.2). Estimates were higher in men (5.7% [95% CI 4.4-7.2]) than in women (3.1% [95% CI 2.0-4.0]), and increased with age from 2.6% (95% CI 1.4-4.4) in children to 7.7% (95% CI 5.9-7.9) in 60- to 88-year-olds. The seroprevalence for B. burgdorferi s.l. in the general population in The Netherlands was comparable to rates reported in European countries. The main risk factors for seropositivity were increasing age, being male and the tick bite frequency. The dynamics of LB infection are complex and involve variables from various disciplines. This could be further elucidated using infectious disease modelling.
Collapse
Affiliation(s)
- B J A Hoeve-Bakker
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
- Department of Medical Microbiology and Immunology, Diakonessenhuis Hospital, 3582 KE Utrecht, The Netherlands
| | - Oda E van den Berg
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| | - H S Doppenberg
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| | - Fiona R M van der Klis
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| | - Cees C van den Wijngaard
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| | - Jan A J W Kluytmans
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Steven F T Thijsen
- Department of Medical Microbiology and Immunology, Diakonessenhuis Hospital, 3582 KE Utrecht, The Netherlands
| | - Karen Kerkhof
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| |
Collapse
|
38
|
Wodecka B, Kolomiiets V. Genetic Diversity of Borreliaceae Species Detected in Natural Populations of Ixodes ricinus Ticks in Northern Poland. Life (Basel) 2023; 13:life13040972. [PMID: 37109501 PMCID: PMC10143352 DOI: 10.3390/life13040972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
In Europe, Ixodes ricinus tick is the vector of Lyme disease spirochetes and their relatives (Borreliella genus) and Borrelia miyamotoi. However, a newly described tick I. inopinatus with similar biological features and separated from I. ricinus may act as a vector for different Borrelia species. To date, eleven Borreliella species were detected in the natural populations of I. ricinus. Recently, two North American species have been detected in ticks parasitizing bats and red foxes in Europe, i.e., B. lanei and B. californiensis pointing to the necessity for searching for them in natural tick populations. In this study, using the coxI molecular marker only I. ricinus was identified in field-collected ticks with the exception of individual specimens of Haemaphysalis concinna. Using the flaB gene and mag-trnI intergenic spacer as molecular markers 14 Borreliaceae species have been detected with various frequencies in different parts of northern Poland. Among infected ticks, the most frequent were Borreliella (Bl.) afzelii (29.4%) and Bl. garinii (20.0%), followed by Bl. spielmanii, Bl. valaisiana, Bl. lanei, Bl. californiensis, B. miyamotoi, Bl. burgdorferi, Bl. carolinensis, Bl. americana, B. turcica, Bl. lusitaniae, Bl. bissettiae and Bl. finlandensis. Three of the above-mentioned species, i.e., Bl. lanei, Bl. californiensis and B. turcica were detected in this study for the first time in the natural ixodid tick population in Europe. The existence of the newly detected spirochetes increases their total diversity in Europe and points to the necessity of careful identification and establishment of the actual distribution of all Borreliaceae species transmitted by I. ricinus.
Collapse
Affiliation(s)
- Beata Wodecka
- Department of Genetics and Genomics, Institute of Biology, Szczecin University, 71-415 Szczecin, Poland
| | - Valentyna Kolomiiets
- Department of Genetics and Genomics, Institute of Biology, Szczecin University, 71-415 Szczecin, Poland
| |
Collapse
|
39
|
The Ixodes ricinus salivary gland proteome during feeding and B. Afzelii infection: New avenues for an anti-tick vaccine. Vaccine 2023; 41:1951-1960. [PMID: 36797101 DOI: 10.1016/j.vaccine.2023.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/16/2023]
Abstract
INTRODUCTION Borrelia burgdorferi sensu lato, the causative agents of Lyme borreliosis, are transmitted by Ixodes ticks. Tick saliva proteins are instrumental for survival of both the vector and spirochete and have been investigated as targets for vaccine targeting the vector. In Europe, the main vector for Lyme borreliosis is Ixodes ricinus, which predominantly transmits Borrelia afzelii. We here investigated the differential production of I. ricinus tick saliva proteins in response to feeding and B. afzelii infection. METHOD Label-free Quantitative Proteomics and Progenesis QI software was used to identify, compare, and select tick salivary gland proteins differentially produced during tick feeding and in response to B. afzelii infection. Tick saliva proteins were selected for validation, recombinantly expressed and used in both mouse and guinea pig vaccination and tick-challenge studies. RESULTS We identified 870 I. ricinus proteins from which 68 were overrepresented upon 24-hours of feeding and B. afzelii infection. Selected tick proteins were successfully validated by confirming their expression at the RNA and native protein level in independent tick pools. When used in a recombinant vaccine formulation, these tick proteins significantly reduced the post-engorgement weights of I. ricinus nymphs in two experimental animal models. Despite the reduced ability of ticks to feed on vaccinated animals, we observed efficient transmission of B. afzelii to the murine host. CONCLUSION Using quantitative proteomics, we identified differential protein production in I. ricinus salivary glands in response to B. afzelii infection and different feeding conditions. These results provide novel insights into the process of I. ricinus feeding and B. afzelii transmission and revealed novel candidates for an anti-tick vaccine.
Collapse
|
40
|
Seroexposure to Zoonotic Anaplasma and Borrelia in Dogs and Horses That Are in Contact with Vulnerable People in Italy. Pathogens 2023; 12:pathogens12030470. [PMID: 36986392 PMCID: PMC10054474 DOI: 10.3390/pathogens12030470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Equine and canine anaplasmosis and borreliosis are major tick-borne zoonotic diseases caused by Anaplasma phagocytophilum and various species of Borrelia (the most important being Borrelia burgdorferi s.l.), respectively. This study evaluated the seroexposure to Anaplasma and Borrelia in dogs and horses used in Animal-Assisted Interventions or living in contact with children, elderly people or immunocompromised persons. A total of 150 horses and 150 dogs living in Italy were equally divided into clinically healthy animals and animals with at least one clinical sign compatible with borreliosis and/or anaplasmosis (present at clinical examination or reported in the medical history). Serum samples were tested with ELISA and immunoblot for the presence of antibodies against A. phagocytophilum and B. burgdorferi s.l., and the association between seropositivity and possible risk factors was analyzed using multivariate and univariate tests. Overall, 13 dogs (8.7%) and 19 horses (12.7%) were positive for at least one of the two pathogens. In addition, 1 dog (0.7%) and 12 horses (8%) were positive for antibodies against A. phagocytophilum, while 12 dogs (8.0%) and 10 horses (6.7%) had antibodies against B. burgdorferi s.l. Tick infestation in the medical history of the dogs was significantly associated with seropositivity to at least one pathogen (p = 0.027; OR 7.398). These results indicate that, in Italy, ticks infected with A. phagocytophilum and/or B. burgdorferi circulate in places where horses and dogs are in contact with people at risk of developing severe diseases. Awareness should be increased, and adequate control plans need to be developed to protect human and animal health, especially where vulnerable, at-risk individuals are concerned.
Collapse
|
41
|
Linking human tick bite risk with tick abundance in the environment: A novel approach to quantify tick bite risk using orienteers in Scotland. Ticks Tick Borne Dis 2023; 14:102109. [PMID: 36535202 DOI: 10.1016/j.ttbdis.2022.102109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/22/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
The rate that people are bitten by ticks is critical in determining the risk of tick-borne infections but is rarely quantified accurately. Often tick abundance in the environment is used as a proxy for tick bite risk, but the relationship with risk is poorly understood. We used a novel citizen science approach to measure tick bite rate in orienteers, to assess the relationship between tick abundance and tick bite risk and to identify risk factors for tick bites. Eleven orienteering events were attended in Scotland between August 2018 and September 2019. The number of tick bites in orienteers, and the time and distance of activity were collected using an online questionnaire. Tick abundance in the same areas used for the orienteering events was estimated by surveying ticks on ground vegetation using blanket drags. Among orienteers, mean incidence was 409 tick bites per 1,000 person-hours. Tick abundance and tick bite rate were strongly correlated, indicating that data from questing tick surveys is a useful proxy for the risk of human tick bites. Tick bite rate was better explained by the activity duration than distance covered and was higher in orienteers that ran earlier in the day, exposed to higher temperatures and in woodland habitats. This study highlights the value of the citizen science approach used, which crucially included submission of activity reports both with and without ticks, to generate robust data on tick bite rate. Accurately measuring tick bite rate and understanding environmental factors that influence it are essential in mitigating the risk of tick-borne diseases.
Collapse
|
42
|
Hansford KM, Gillingham EL, Vaux AGC, Cull B, McGinley L, Catton M, Wheeler BW, Tschirren B, Medlock JM. Impact of green space connectivity on urban tick presence, density and Borrelia infected ticks in different habitats and seasons in three cities in southern England. Ticks Tick Borne Dis 2023; 14:102103. [PMID: 36525762 DOI: 10.1016/j.ttbdis.2022.102103] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/23/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022]
Abstract
Understanding the effects of local habitat and wider landscape connectivity factors on tick presence, nymph density and Borrelia species (spp.) prevalence in the tick population is important for identifying the public health risk from Lyme borreliosis. This multi-city study collected data in three southern England cities (Bath, Bristol, and Southampton) during spring, summer, and autumn in 2017. Focusing specifically on urban green space used for recreation which were clearly in urbanised areas, 72 locations were sampled. Additionally, geospatial datasets on urban green space coverage within 250 m and 1 km of sampling points, as well as distance to woodland were incorporated into statistical models. Distance to woodland was negatively associated with tick presence and nymph density, particularly during spring and summer. Furthermore, we observed an interaction effect between habitat and season for tick presence and nymph density, with woodland habitat having greater tick presence and nymph density during spring. Borrelia spp. infected Ixodes ricinus were found in woodland, woodland edge and under canopy habitats in Bath and Southampton. Overall Borrelia spp. prevalence in nymphs was 2.8%, similar to wider UK studies assessing prevalence in Ixodes ricinus in rural areas. Bird-related Borrelia genospecies dominated across sites, suggesting bird reservoir hosts may be important in urban green space settings for feeding and infecting ticks. Whilst overall density of infected nymphs across the three cities was low (0.03 per 100 m2), risk should be further investigated by incorporating data on tick bites acquired in urban settings, and subsequent Lyme borreliosis transmission.
Collapse
Affiliation(s)
- Kayleigh M Hansford
- Medical Entomology & Zoonoses Ecology, UK Health Security Agency, Porton Down, UK; European Centre for Environment & Human Health, University of Exeter Medical School, Truro, UK; Health Protection Research Unit in Environmental Change & Health, UK Health Security Agency, Porton Down, UK.
| | - Emma L Gillingham
- Medical Entomology & Zoonoses Ecology, UK Health Security Agency, Porton Down, UK; Health Protection Research Unit in Environmental Change & Health, UK Health Security Agency, Porton Down, UK
| | - Alexander G C Vaux
- Medical Entomology & Zoonoses Ecology, UK Health Security Agency, Porton Down, UK
| | - Benjamin Cull
- Medical Entomology & Zoonoses Ecology, UK Health Security Agency, Porton Down, UK
| | - Liz McGinley
- Medical Entomology & Zoonoses Ecology, UK Health Security Agency, Porton Down, UK
| | - Matthew Catton
- Medical Entomology & Zoonoses Ecology, UK Health Security Agency, Porton Down, UK
| | - Benedict W Wheeler
- European Centre for Environment & Human Health, University of Exeter Medical School, Truro, UK; Health Protection Research Unit in Environmental Change & Health, UK Health Security Agency, Porton Down, UK
| | | | - Jolyon M Medlock
- Medical Entomology & Zoonoses Ecology, UK Health Security Agency, Porton Down, UK; Health Protection Research Unit in Environmental Change & Health, UK Health Security Agency, Porton Down, UK; Health Protection Research Unit in Emerging & Zoonotic Infections, UK Health Security Agency, Porton Down, UK
| |
Collapse
|
43
|
Lyme Borreliosis in Dogs: Background, Epidemiology, Diagnostics, Treatment and Prevention. FOLIA VETERINARIA 2023. [DOI: 10.2478/fv-2023-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2023] Open
Abstract
Abstract
Lyme borreliosis (LB) is a multisystemic tick-borne disease that can affect many organs and have various clinical manifestations in dogs. We attempted to summarise various aspects of Lyme disease: i. e., pathogenesis, epidemiology, benefits and risks of diagnostic approaches, treatment options, and prevention in dogs. Several diagnostic bottlenecks for LB in dogs and humans are compared. Because the occurrence of LB in both humans and dogs is closely related, monitoring its prevalence in dogs as sentinel animals is an excellent aid in assessing the risk of Lyme disease in a given geographic area. Although clinical symptoms in humans help clinicians diagnose LB, they are ineffective in dogs because canines rarely exhibit LB symptoms. Despite significant differences in sensitivity and specificity, sero-logical two-step detection of antibodies against Borrelia spp. (ELISA and Western blot) is the most commonly used method in humans and dogs. The limitations of the assay highlight the need for further research to develop new clinical markers and more accurate diagnostic tests. Due to the lack of a specific all-encompassing LB test, a definitive diagnosis of LB remains a difficult and time-consuming process in human and veterinary medicine. Understanding the disease prevalence and diagnostics, as well as preventing its spread with effective and timely treatment, are fundamental principles of good disease management.
Collapse
|
44
|
Cleveland DW, Anderson CC, Brissette CA. Borrelia miyamotoi: A Comprehensive Review. Pathogens 2023; 12:267. [PMID: 36839539 PMCID: PMC9967256 DOI: 10.3390/pathogens12020267] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Borrelia miyamotoi is an emerging tick-borne pathogen in the Northern Hemisphere and is the causative agent of Borrelia miyamotoi disease (BMD). Borrelia miyamotoi is vectored by the same hard-bodied ticks as Lyme disease Borrelia, yet phylogenetically groups with relapsing fever Borrelia, and thus, has been uniquely labeled a hard tick-borne relapsing fever Borrelia. Burgeoning research has uncovered new aspects of B. miyamotoi in human patients, nature, and the lab. Of particular interest are novel findings on disease pathology, prevalence, diagnostic methods, ecological maintenance, transmission, and genetic characteristics. Herein, we review recent literature on B. miyamotoi, discuss how findings adapt to current Borrelia doctrines, and briefly consider what remains unknown about B. miyamotoi.
Collapse
Affiliation(s)
| | | | - Catherine A. Brissette
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| |
Collapse
|
45
|
15-year Borrelia prevalence and species distribution monitoring in Ixodes ricinus/inopinatus populations in the city of Hanover, Germany. Ticks Tick Borne Dis 2023; 14:102074. [PMID: 36335680 DOI: 10.1016/j.ttbdis.2022.102074] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/16/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Lyme borreliosis, caused by Borrelia burgdorferi sensu lato (s.l.) spirochaetes, is the most common tick-borne disease (TBD) in the Northern Hemisphere. Rising incidences indicate that its epidemiology may be affected by global changes. Therefore, the current study aimed to assess changes in tick infection rates with Borrelia spp. over a 15-year monitoring period in the city of Hanover, Germany, as a follow-up to previous prevalence studies (years 2005, 2010 and 2015). To assess the epidemiological risk, ticks of the Ixodes ricinus/inopinatus-complex were sampled from April to October 2020 by the flagging method at 10 frequently visited recreation areas in Hanover. Analysis by quantitative real-time PCR of 2100 individual ticks revealed an overall Borrelia prevalence of 25.5% (535/2100). Regarding different tick developmental stages, nymphs showed a significantly lower Borrelia prevalence (18.4% [193/1050]) than adult ticks (32.6% [342/1050]). Comparison with previous years revealed a stable total Borrelia prevalence along with consistent infection rates in the different developmental stages over the 15-year monitoring period. Borrelia species differentiation by Reverse Line Blot was successful in 67.3% of positive ticks collected in 2020, with B. afzelii being the dominating species (59.2% of the differentiated infections), besides B. burgdorferi sensu stricto (s.s.), B. garinii, B. valaisiana, B. spielmanii, B. bavariensis and B. bissettiae and the relapsing fever spirochaete B. miyamotoi. Additionally, the proportion of infections attributed to B. afzelii showed a significant increase in 2020 compared to 2005 and 2015 (59.2% vs. 37.6% and 32.0% of successfully differentiated infections, respectively). Coinfections with Anaplasma phagocytophilum and Rickettsia spp. stayed stable comparing 2020 with previous years. Therefore, although changes in the Borrelia prevalence in questing ticks were not observed throughout the 15-year monitoring period, shifts in Borrelia species distribution may alter the epidemiological risk.
Collapse
|
46
|
Mancilla-Agrono LY, Banguero-Micolta LF, Ossa-López PA, Ramírez-Chaves HE, Castaño-Villa GJ, Rivera-Páez FA. Is Borrelia burgdorferi Sensu Stricto in South America? First Molecular Evidence of Its Presence in Colombia. Trop Med Infect Dis 2022; 7:428. [PMID: 36548683 PMCID: PMC9788524 DOI: 10.3390/tropicalmed7120428] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/24/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
The genus Borrelia encompasses spirochetal species that are part of three well-defined groups. Two of these groups contain pathogens that affect humans: the group causing Lyme disease (LDG) and the relapsing fever group (RFG). Lyme disease is caused by Borrelia burgdorferi s.l., which is distributed in the Northern Hemisphere, and relapsing fevers are caused by Borrelia spp., which are found in temperate and tropical countries and are an emerging but neglected pathogens. In some departments of Colombia, there are records of the presence of Borrelia sp. in humans and bats. However, little is known about the impact and circulation of Borrelia spp. in the country, especially in wildlife, which can act as a reservoir and/or amplifying host. In this context, the objective of our research was to detect and identify the Borrelia species present in wild mammals in the departments of Caldas and Risaralda in Colombia. For morphological detection, blood smears and organ imprints were performed, and molecular identification was carried out through a nested PCR directed on the flagellin B (flaB) gene. A total of 105 mammals belonging to three orders (Chiroptera, Didelphimorphia and Rodentia) were analyzed, of which 15.24% (n = 16) were positive for Borrelia. Molecularly, the presence of Borrelia burgdorferi s.s. in lung tissues of Thomasomys aureus and blood of Mus musculus (Rodentia) was detected, with 99.64 and 100% identity, respectively. Borrelia sp. genospecies from a clade branch of a bat-associated LDG sister group were identified in seven individuals of bat species, such as Artibeus lituratus, Carollia brevicauda, Sturnira erythromos, and Glossophaga soricina. Furthermore, two Borrelia genospecies from the RFG in seven individuals of bats (A. lituratus, Artibeus jamaicensis, Platyrrhinus helleri, Mesophylla macconnelli, Rhynchonycteris naso) and rodents (Coendou rufescens, Microryzomys altissimus) were documented. Additionally, the presence of a spirochete was detected by microscopy in the liver of a Sturnira erythromos bat specimen. These results contain the first molecular evidence of the presence of B. burgdorferi s.s. in South America, which merits the need for comprehensive studies involving arthropods and vertebrates (including humans) in other departments of Colombia, as well as neighboring countries, to understand the current status of the circulation of Borrelia spp. in South America.
Collapse
Affiliation(s)
- Lorys Y. Mancilla-Agrono
- Programa de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, Manizales 170004, Colombia
- Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, Manizales 170004, Colombia
| | - Lizeth F. Banguero-Micolta
- Programa de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, Manizales 170004, Colombia
- Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, Manizales 170004, Colombia
| | - Paula A. Ossa-López
- Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, Manizales 170004, Colombia
- Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, Manizales 170004, Colombia
| | - Héctor E. Ramírez-Chaves
- Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, Manizales 170004, Colombia
- Centro de Museos, Museo de Historia Natural, Universidad de Caldas, Calle 58 No. 21-50, Manizales 170004, Colombia
| | - Gabriel J. Castaño-Villa
- Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Desarrollo Rural y Recursos Naturales, Facultad de Ciencias Agropecuarias, Universidad de Caldas, Calle 65 No. 30-65, Manizales 17004, Colombia
| | - Fredy A. Rivera-Páez
- Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, Manizales 170004, Colombia
| |
Collapse
|
47
|
Hassenstein MJ, Janzen I, Krause G, Harries M, Melhorn V, Kerrinnes T, Kemmling Y, Castell S. Seroepidemiology of Borrelia burgdorferi s.l. among German National Cohort (NAKO) Participants, Hanover. Microorganisms 2022; 10:2286. [PMID: 36422355 PMCID: PMC9694946 DOI: 10.3390/microorganisms10112286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 12/02/2023] Open
Abstract
Lyme borreliosis is the leading tick-related illness in Europe, caused by Borrelia Burgdorferi s.l. Lower Saxony, Germany, including its capital, Hanover, has a higher proportion of infected ticks than central European countries, justifying a research focus on the potential human consequences. The current knowledge gap on human incident infections, particularly in Western Germany, demands serological insights, especially regarding a potentially changing climate-related tick abundance and activity. We determined the immunoglobulin G (IgG) and immunoglobulin M (IgM) serostatuses for 8009 German National Cohort (NAKO) participants from Hanover, examined in 2014-2018. We used an enzyme-linked immunosorbent assay (ELISA) as the screening and a line immunoblot as confirmation for the Borrelia Burgdorferi s.l. antibodies. We weighted the seropositivity proportions to estimate general population seropositivity and estimated the force of infection (FOI). Using logistic regression, we investigated risk factors for seropositivity. Seropositivity was 3.0% (IgG) and 2.1% (IgM). The FOI varied with age, sharply increasing in participants aged ≥40 years. We confirmed advancing age and male sex as risk factors. We reported reduced odds for seropositivity with increasing body mass index and depressive symptomatology, respectively, pointing to an impact of lifestyle-related behaviors. The local proportion of seropositive individuals is comparable to previous estimates for northern Germany, indicating a steady seroprevalence.
Collapse
Affiliation(s)
- Max J. Hassenstein
- Department of Epidemiology, Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany
- PhD Programme “Epidemiology” Braunschweig-Hannover, Germany
| | - Irina Janzen
- Department of Epidemiology, Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany
| | - Gérard Krause
- Department of Epidemiology, Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
- Hanover Medical School (MHH), 30625 Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture of the Hannover Medical School and Helmholtz Centre for Infection Research, 30625 Hannover, Germany
| | - Manuela Harries
- Department of Epidemiology, Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany
| | - Vanessa Melhorn
- Department of Epidemiology, Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Tobias Kerrinnes
- Department of RNA-Biology of Bacterial Infections, Helmholtz Institute for RNA-Based Infection Research, 97080 Würzburg, Germany
| | - Yvonne Kemmling
- Department of Epidemiology, Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Stefanie Castell
- Department of Epidemiology, Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture of the Hannover Medical School and Helmholtz Centre for Infection Research, 30625 Hannover, Germany
| |
Collapse
|
48
|
Hodosi R, Kazimirova M, Soltys K. What do we know about the microbiome of I. ricinus? Front Cell Infect Microbiol 2022; 12:990889. [PMID: 36467722 PMCID: PMC9709289 DOI: 10.3389/fcimb.2022.990889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/17/2022] [Indexed: 10/07/2023] Open
Abstract
I. ricinus is an obligate hematophagous parasitic arthropod that is responsible for the transmission of a wide range of zoonotic pathogens including spirochetes of the genus Borrelia, Rickettsia spp., C. burnetii, Anaplasma phagocytophilum and Francisella tularensis, which are part the tick´s microbiome. Most of the studies focus on "pathogens" and only very few elucidate the role of "non-pathogenic" symbiotic microorganisms in I. ricinus. While most of the members of the microbiome are leading an intracellular lifestyle, they are able to complement tick´s nutrition and stress response having a great impact on tick´s survival and transmission of pathogens. The composition of the tick´s microbiome is not consistent and can be tied to the environment, tick species, developmental stage, or specific organ or tissue. Ovarian tissue harbors a stable microbiome consisting mainly but not exclusively of endosymbiotic bacteria, while the microbiome of the digestive system is rather unstable, and together with salivary glands, is mostly comprised of pathogens. The most prevalent endosymbionts found in ticks are Rickettsia spp., Ricketsiella spp., Coxiella-like and Francisella-like endosymbionts, Spiroplasma spp. and Candidatus Midichloria spp. Since microorganisms can modify ticks' behavior, such as mobility, feeding or saliva production, which results in increased survival rates, we aimed to elucidate the potential, tight relationship, and interaction between bacteria of the I. ricinus microbiome. Here we show that endosymbionts including Coxiella-like spp., can provide I. ricinus with different types of vitamin B (B2, B6, B7, B9) essential for eukaryotic organisms. Furthermore, we hypothesize that survival of Wolbachia spp., or the bacterial pathogen A. phagocytophilum can be supported by the tick itself since coinfection with symbiotic Spiroplasma ixodetis provides I. ricinus with complete metabolic pathway of folate biosynthesis necessary for DNA synthesis and cell division. Manipulation of tick´s endosymbiotic microbiome could present a perspective way of I. ricinus control and regulation of spread of emerging bacterial pathogens.
Collapse
Affiliation(s)
- Richard Hodosi
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Maria Kazimirova
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Katarina Soltys
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
- Comenius University Science Park, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
49
|
Medlock JM, Vaux AGC, Gandy S, Cull B, McGinley L, Gillingham E, Catton M, Pullan ST, Hansford KM. Spatial and temporal heterogeneity of the density of Borrelia burgdorferi-infected Ixodes ricinus ticks across a landscape: A 5-year study in southern England. MEDICAL AND VETERINARY ENTOMOLOGY 2022; 36:356-370. [PMID: 35521893 PMCID: PMC9545817 DOI: 10.1111/mve.12574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
The density of Borrelia burgdorferi-infected Ixodes ricinus nymphs (DIN) was investigated during 2013-2017 across a Lyme disease-endemic landscape in southern England. The density of nymphs (DON), nymph infection prevalence (NIP), and DIN varied across five different natural habitats, with the highest DIN in woodland edge and high biodiversity woodlands. DIN was significantly lower in scrub grassland compared to the woodland edge, with low DON and no evidence of infection in ticks in non-scrub grassland. Over the 5 years, DON, NIP and DIN were comparable within habitats, except in 2014, with NIP varying three-fold and DIN significantly lower compared to 2015-2017. Borrelia garinii was most common, with bird-associated Borrelia (B. garinii/valaisiana) accounting for ~70% of all typed sequences. Borrelia burgdorferi sensu stricto was more common than B. afzelii. Borrelia afzelii was more common in scrub grassland than woodland and absent in some years. The possible impact of scrub on grazed grassland, management of ecotonal woodland margins with public access, and the possible role of birds/gamebirds impacting NIP are discussed. Mean NIP was 7.6%, highlighting the potential risk posed by B. burgdorferi in this endemic area. There is a need for continued research to understand its complex ecology and identify strategies for minimizing risk to public health, through habitat/game management and public awareness.
Collapse
Affiliation(s)
- Jolyon M. Medlock
- Medical Entomology & Zoonoses Ecology GroupUK Health Security AgencySalisburyWiltshireUK
| | - Alexander G. C. Vaux
- Medical Entomology & Zoonoses Ecology GroupUK Health Security AgencySalisburyWiltshireUK
| | - Sara Gandy
- Medical Entomology & Zoonoses Ecology GroupUK Health Security AgencySalisburyWiltshireUK
| | - Benjamin Cull
- Medical Entomology & Zoonoses Ecology GroupUK Health Security AgencySalisburyWiltshireUK
| | - Liz McGinley
- Medical Entomology & Zoonoses Ecology GroupUK Health Security AgencySalisburyWiltshireUK
| | - Emma Gillingham
- Medical Entomology & Zoonoses Ecology GroupUK Health Security AgencySalisburyWiltshireUK
| | - Matthew Catton
- Medical Entomology & Zoonoses Ecology GroupUK Health Security AgencySalisburyWiltshireUK
| | - Steven T. Pullan
- Diagnostic & Genomic TechnologiesUK Health Security AgencySalisburyWiltshireUK
| | - Kayleigh M. Hansford
- Medical Entomology & Zoonoses Ecology GroupUK Health Security AgencySalisburyWiltshireUK
| |
Collapse
|
50
|
Meta-analysis: A useful tool to assess infection prevalence and disease ecology of Borrelia burgdorferi sensu lato in nymphal ticks in North-Western Europe with recommendations for a standardised approach to future studies. Parasite Epidemiol Control 2022; 18:e00254. [PMID: 35677189 PMCID: PMC9167692 DOI: 10.1016/j.parepi.2022.e00254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/13/2022] [Accepted: 05/22/2022] [Indexed: 12/30/2022] Open
Abstract
Lyme borreliosis is a vector-borne disease of concern in Europe. While neuroborreliosis data are reportable at EU level, it can nevertheless be difficult to make comparisons of disease risk between neighbouring countries. This study used proportion meta-analyses to compare environmental markers of disease risk between woodland sites in two countries in North-Western Europe (Ireland, Scotland). 73 site-visits from 12 publications were analysed, resulting in a significantly higher pooled nymphal infection prevalence (NIP) in Ireland (8.2% (95% CI: 5.9–11.4%)) than Scotland (1.7%(95% CI 1.1–2.5%)). All other analysed parameters of disease risk were also higher in Ireland than Scotland. Subgroup-meta-analyses and meta-regressions were used to assess the influence of environmental variables on NIP. NIP increased significantly with increasing woodland size in Ireland, but not Scotland, which may be accounted for by Ireland's highly fragmented landscape. Assuming the application of strict inclusion/exclusion criteria and control of variables, proportion meta-analysis can provide useful insights in disease ecology, as it allows for the achievement of high study powers incorporating samples collected across multiple sites, which is otherwise often a prohibitively difficult and resource-heavy feat in environmental studies in disease ecology. A standardised approach to data collection is recommended to achieve more robust meta-analyses in future in conjunction with additional research on environmental factors affecting Lyme borreliosis risk in Europe, particularly pertaining to the impact of host species on NIP.
Collapse
|