1
|
Xiao Z, Sun H, Wei A, Zhao W, Jiang X. A Novel Framework for Predicting Phage-Host Interactions via Host Specificity-Aware Graph Autoencoder. IEEE J Biomed Health Inform 2025; 29:3069-3078. [PMID: 40030240 DOI: 10.1109/jbhi.2024.3500137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Due to the abuse of antibiotics, some pathogenic bacteria have developed resistance to most antibiotics, leading to the emergence of antibiotic-resistant superbugs. Therefore, researchers resort to phage therapy for bacterial infections. For phage therapy, the fundamental step is to accurately identify phage-host interactions. Although various methods have been proposed, the existing methods suffer from the following two shortcomings: 1) they fail to make full use of genetic information including both genome and protein sequence of phages; 2) host specificity of phages is not explicitly utilized when learning representations of phages and bacteria. In this paper, we present an efficient computational method called PHISGAE for predicting phage-host interactions, in which the host specificity is explicitly employed. Firstly, initial phage-phage connections are efficiently constructed via utilizing phage genome and protein sequence. Then, the refined heterogeneous network is derived by applying K-nearest neighbor strategy, keeping relatively more meaningful local semantics among phages and bacteria. Finally, a host specificity-aware graph autoencoder is proposed to learn high-quality representations of phages and bacteria for predicting phage-host interactions. Experimental results show that PHISGAE outperforms the state-of-the-art methods on predicting phage-host interactions at both species level and genus level (AUC values of 94.73% and 96.32%, respectively). Moreover, results of case study demonstrate that PHISGAE is able to identify candidate hosts with high probability for previously unseen phages identified from metagenomics, effectively predicting potential phage-host interactions in real-world applications.
Collapse
|
2
|
Jiang Z, Yaqoob MU, Xu Y, Siddique A, Lin S, Hu S, Ed-Dra A, Yue M. Isolation, characterization, and genome sequencing analysis of a novel phage HBW-1 of Salmonella. Microb Pathog 2025; 200:107327. [PMID: 39863088 DOI: 10.1016/j.micpath.2025.107327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/29/2024] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Salmonella presents a significant threat to the health of animals and humans, especially with the rise of strains resistant to multiple drugs. This highlights the necessity for creating sustainable and efficient practical approaches to managing salmonellosis. The most recent and safest approach to combat antimicrobial resistance-associated infections is lytic bacteriophages. This study recovered a Salmonella-specific phage HBW-1 from sewage and faecal samples from commercial chicken farms in Henan, China. Transmission electron microscopy showed that the phage possesses a polyhedral head and a tailed structure characteristic of bacteriophages. The phage HBW-1 exhibited favorable stability when subjected to elevated temperatures between 30 °C and 60 °C and pH levels between 3 and 12 for 1 h. The phage genome consists of double-stranded, circular DNA with a size of 43,095 bp and a GC content of 49.54 %. Notably, phage HBW-1 contains 62 genes encoding proteins and does not contain virulence or resistance genes commonly found in bacteria. Phage spectrum analysis indicates that the phage HBW-1 is strictly a lytic, exhibiting antibacterial activity against Salmonella Pullorum (100 %, n = 11), Salmonella Typhimurium (92.86 %, n = 42) and Salmonella Enteritidis (58.97 %, n = 39). Therefore, this study suggests that phage HBW-1 holds promise as a potential alternative for prevention and control of Pullorum Disease.
Collapse
Affiliation(s)
- Zenghai Jiang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Muhammad Umar Yaqoob
- Laboratory of Molecular Microbiology and Food Safety, Zhejiang University College of Animal Sciences, Hangzhou, 310058, China; Provincial Key Agricultural Enterprise Research Institute of King Techina, Hangzhou King Techina Feed Co., Ltd., Hangzhou, 311107, China
| | - Yaohui Xu
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Abubakar Siddique
- Laboratory of Molecular Microbiology and Food Safety, Zhejiang University College of Animal Sciences, Hangzhou, 310058, China
| | - Shuqi Lin
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Siyu Hu
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Abdelaziz Ed-Dra
- Laboratory of Engineering and Applied Technologies, Higher School of Technology, M'ghila Campus, Sultan Moulay Slimane University, BP: 591, Beni Mellal, 23000, Morocco
| | - Min Yue
- Laboratory of Molecular Microbiology and Food Safety, Zhejiang University College of Animal Sciences, Hangzhou, 310058, China; Hainan Institute of Zhejiang University, Sanya, 572025, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
3
|
Yesil M, Huang E, Yang X, Yousef AE. Genomic analysis, culturing optimization, and characterization of Escherichia bacteriophage OSYSP, previously studied as effective pathogen control on fresh produce. Front Microbiol 2024; 15:1486333. [PMID: 39717272 PMCID: PMC11664485 DOI: 10.3389/fmicb.2024.1486333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
Advances in bacteriophage genome sequencing and regulatory approvals of some bacteriophages in various applications have renewed interest in these antibacterial viruses as a potential solution to persistent food safety challenges. Here, we analyzed in depth the genome of the previously studied Escherichia bacteriophage OSYSP (phage OSYSP), revealed its application-related characteristics, and optimized its enumeration techniques for facilitating industrial implementation. We previously sequenced phage OSYSP genome completely by combining results from Illumina Miseq and Ion Torrent sequencing platforms and completing the remaining sequence gaps using PCR. Based on the genomics analysis completed herein, phage OSYSP was confirmed as an obligate lytic phage of the Caudoviricetes class. The genome encodes 81 proteins of identifiable functions, including two endolysins and 45 proteins that support host-independent DNA replication, transcription, and repair. Despite its similarities to T5-like phages, unique genome arrangements confirm phage OSYSP's novelty. The genomic analysis also confirmed the absence of DNA sequences encoding virulence or antibiotic resistance factors. For optimizing phage detection and quantification in the conventional plaque assay, it was observed that decreasing the concentration of agar or agarose, when used as a medium gelling agent, increased phage recovery (p < 0.05), but using agarose resulted in smaller plaque diameters (p < 0.05). Phage OSYSP inactivated pathogenic and non-pathogenic strains of E. coli and some Salmonella enterica serovars, with more pronounced effect against E. coli O157:H7. Phage titers remained fairly unchanged throughout a 24-month storage at 4°C. Incubation for 30 min at 4°C-47°C or pH 4-11 had no significant detrimental effect (p > 0.05) on phage infectivity. In vitro application of phage OSYSP against E. coli O157:H7 EDL933 decreased the pathogen's viable population by >5.7-log CFU/mL within 80 min, at a multiplicity of infection as low as 0.01. The favorable genome characteristics, combined with improved enumeration methodology, and the proven infectivity stability, make phage OSYSP a promising biocontrol agent against pathogenic E. coli for food or therapeutic applications.
Collapse
Affiliation(s)
- Mustafa Yesil
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States
| | - En Huang
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States
- Department of Environmental Health Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Xu Yang
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States
- Nutrition and Food Science Department, California State Polytechnic University, Pomona, CA, United States
| | - Ahmed E. Yousef
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
4
|
Rajab AAH, Fahmy EK, Esmaeel SE, Yousef N, Askoura M. In vitro and in vivo assessment of the competence of a novel lytic phage vB_EcoS_UTEC10 targeting multidrug resistant Escherichia coli with a robust biofilm eradication activity. Microb Pathog 2024; 197:107058. [PMID: 39447656 DOI: 10.1016/j.micpath.2024.107058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/29/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
Escherichia coli (E. coli) is a leading cause of human infections worldwide and is considered a major cause of nosocomial infections, sepsis, meningitis and diarrhea. Lately, there has been an alarming increase in the incidence of antimicrobial resistance among clinical E. coli isolates. In the current study, a novel bacteriophage (phage) vB_EcoS_UTEC10 was isolated and characterized. The isolated phage showed high stability over wide temperature and pH ranges beside its promising bacteriolytic activity against multidrug resistant (MDR) E. coli isolates. In addition, vB_EcoS_UTEC10 showed a marked antibiofilm capability against mature E. coli biofilms. Genomic investigation revealed that vB_EcoS_UTEC10 has a double stranded DNA genome that consists of 44,772 bp comprising a total of 73 open reading frames (ORFs), out of which 35 ORFs were annotated as structural or functional proteins, and none were related to antimicrobial resistance or lysogeny. In vivo investigations revealed a promising bacteriolytic activity of vB_EcoS_UTEC10 against MDR E. coli which was further supported by a significant reduction in bacterial load in specimens collected from the phage-treated mice. Histopathology examination demonstrated minimal signs of inflammation and necrosis in the tissues of phage-treated mice compared to the degenerative tissue damage observed in untreated mice. In summary, the present findings suggest that vB_EcoS_UTEC10 has a remarkable ability to eradicate MDR E. coli infections and biofilms. These findings could be further invested for the development of targeted phage therapies that offer a viable alternative to traditional antibiotics against resistant E. coli.
Collapse
Affiliation(s)
- Azza A H Rajab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Eslam K Fahmy
- Department of Physiology, College of Medicine, Northern Border University, Arar, Saudi Arabia; Department of Physiology, College of Medicine, Zagazig University, Egypt.
| | - Safya E Esmaeel
- Department of Physiology, College of Medicine, Northern Border University, Arar, Saudi Arabia; Department of Physiology, College of Medicine, Zagazig University, Egypt.
| | - Nehal Yousef
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Momen Askoura
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
5
|
Kim M, Kim M, Ryu S. Identification of amino acid residue in the Cronobacter sakazakii LamB responsible for the receptor compatibility of polyvalent coliphage CSP1. J Virol 2024; 98:e0067624. [PMID: 39248490 PMCID: PMC11494877 DOI: 10.1128/jvi.00676-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024] Open
Abstract
Polyvalent bacteriophages show the feature of infecting bacteria across multiple species or even orders. Infectivity of a polyvalent phage is variable depending on the host bacteria, which can disclose differential inhibition of bacteria by the phage. In this study, a polyvalent phage CSP1 infecting both Cronobacter sakazakii ATCC 29544 and Escherichia coli MG1655 was isolated. CSP1 showed higher growth inhibition and adsorption rate in E. coli compared to C. sakazakii, and identification of host receptors revealed that CSP1 uses E. coli LamB (LamBE) as a receptor but that CSP1 requires both C. sakazakii LamB (LamBC) and lipopolysaccharide (LPS) core for C. sakazakii infection. The substitution of LamBC with LamBE in C. sakazakii enhanced CSP1 susceptibility and made C. sakazakii LPS core no more essential for CSP1 infection. Comparative analysis of LamBC and LamBE disclosed that the extra proline at amino acid residue 284 in LamBC made a structural distinction by forming a longer loop and that the deletion of 284P in LamBC aligns its structure and makes LamBC function like LamBE, enhancing CSP1 adsorption and growth inhibition of C. sakazakii. These results suggest that 284P of LamBC plays a critical role in determining the CSP1-host bacteria interaction. These findings could provide insight into the elucidation of molecular determinants in the interaction between polyvalent phages and host bacteria and help us to understand the phage infectivity for efficient phage application. IMPORTANCE Polyvalent phages have the advantage of a broader host range, overcoming the limitation of the narrow host range of phages. However, the limited molecular biological understanding on the host bacteria-polyvalent phage interaction hinders its effective application. Here, we revealed that the ability of the polyvalent phage CSP1 to infect Cronobacter sakazakii ATCC 29544 is disturbed by a single proline residue in the LamB protein and that lipopolysaccharide is used as an auxiliary receptor for CSP1 to support the adsorption and the subsequent infection of C. sakazakii. These results can contribute to a better understanding of the interaction between polyvalent phages and host bacteria for efficient phage application.
Collapse
Affiliation(s)
- Moosung Kim
- Department of Food and Animal Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Minsik Kim
- Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, Republic of Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Jiang L, Wen J, Tan D, Xie J, Li J, Li C. Growth stage-related capsular polysaccharide translocon Wza in Vibrio splendidus modifies phage vB_VspM_VS2 susceptibility. Commun Biol 2024; 7:1338. [PMID: 39414953 PMCID: PMC11484964 DOI: 10.1038/s42003-024-07038-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024] Open
Abstract
Bacteria at different growth stages usually coordinate capsular polysaccharide (CPS) formation and may affect their susceptibility to phage. In this study, we evaluated the infection efficacy of phage vB_VspM_VS2 in V. splendidus AJ01 at different growth stages and explored the role of growth stage-related CPS translocon Wza in the susceptibility of V. splendidus to phage vB_VspM_VS2. The results showed that V. splendidus locked in the stationary growth stage (SGS) or early exponential stage (EES) infected with phage (EES-P) has a low susceptibility to phage vB_VspM_VS and exhibit a pronounced reduction in phage adsorption rate as compared to the EES bacteria. The expression of wza of CPS transport gene was significantly increased in EES bacteria compared to that bacteria locked in the SGS or EES-P. Bacteria with deleted wza (Δwza mutant) escaped phage adsorption due to absence of Wza mediated down-regulation of CPS expression, otherwise. Our results reveal that the Wza of V. splendidus can promotes phage to infect these bacteria via increasing the phage absorption, which provides important implications for using phages therapeutically target pathogenic bacteria in dynamics communities.
Collapse
Affiliation(s)
- Liming Jiang
- State Key Laboratory for Quality and Safety of Agroproducts, Ningbo University, Ningbo, China
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Jinsheng Wen
- State Key Laboratory for Quality and Safety of Agroproducts, Ningbo University, Ningbo, China
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Demeng Tan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jiasong Xie
- State Key Laboratory for Quality and Safety of Agroproducts, Ningbo University, Ningbo, China
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Jinquan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chenghua Li
- State Key Laboratory for Quality and Safety of Agroproducts, Ningbo University, Ningbo, China.
| |
Collapse
|
7
|
Sun Kim B, Ko EJ, Choi J, Chang Y, Bai J. Isolation, characterization, and application of a lytic bacteriophage SSP49 to control Staphylococcus aureus contamination on baby spinach leaves. Food Res Int 2024; 192:114848. [PMID: 39147476 DOI: 10.1016/j.foodres.2024.114848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024]
Abstract
Staphylococcus aureus, a major foodborne pathogen, is frequently detected in fresh produce. It often causes food poisoning accompanied by abdominal pain, diarrhea, and vomiting. Additionally, the abuse of antibiotics to control S. aureus has resulted in the emergence of antibiotics-resistant bacteria, such as methicillin resistant S. aureus. Therefore, bacteriophage, a natural antimicrobial agent, has been suggested as an alternative to antibiotics. In this study, a lytic phage SSP49 that specifically infects S. aureus was isolated from a sewage sample, and its morphological, biological, and genetic characteristics were determined. We found that phage SSP49 belongs to the Straboviridae family (Caudoviricetes class) and maintained host growth inhibition for 30 h in vitro. In addition, it showed high host specificity and a broad host range against various S. aureus strains. Receptor analysis revealed that phage SSP49 utilized cell wall teichoic acid as a host receptor. Whole genome sequencing revealed that the genome size of SSP49 was 137,283 bp and it contained 191 open reading frames. The genome of phage SSP49 did not contain genes related to lysogen formation, bacterial toxicity, and antibiotic resistance, suggesting its safety in food application. The activity of phage SSP49 was considerably stable under various high temperature and pH conditions. Furthermore, phage SSP49 effectively inhibited S. aureus growth on baby spinach leaves both at 4 °C and 25 °C while maintaining the numbers of active phage during treatments (reductions of 1.2 and 2.1 log CFU/cm2, respectively). Thus, this study demonstrated the potential of phage SSP49 as an alternative natural biocontrol agent against S. aureus contamination in fresh produce.
Collapse
Affiliation(s)
- Bong Sun Kim
- Department of Food Science and Technology, Seoul Women's University, 621, Hwarangro, Nowon-gu, Seoul 01797, Republic of Korea
| | - Eun-Jin Ko
- Department of Food Science and Technology, Seoul Women's University, 621, Hwarangro, Nowon-gu, Seoul 01797, Republic of Korea
| | - Jieun Choi
- Department of Food and Nutrition, College of Science and Technology, Kookmin University, Seoul 02707, Republic of Korea
| | - Yoonjee Chang
- Department of Food and Nutrition, College of Science and Technology, Kookmin University, Seoul 02707, Republic of Korea
| | - Jaewoo Bai
- Department of Food Science and Technology, Seoul Women's University, 621, Hwarangro, Nowon-gu, Seoul 01797, Republic of Korea.
| |
Collapse
|
8
|
Nagar V, Godambe LP, Newase SK, Tyagi A. Characterization and Genome Analyses of the Novel Phages P2 and vB_AhydM-H1 Targeting Aeromonas hydrophila. PHAGE (NEW ROCHELLE, N.Y.) 2024; 5:162-172. [PMID: 39372357 PMCID: PMC11447392 DOI: 10.1089/phage.2024.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Background The emergence of antibiotic-resistant Aeromonas hydrophila strains presents a global health and aquaculture challenge. Bacteriophages offer promise as an alternative to antibiotics for treating drug-resistant Aeromonas infections. Methods Two new phages, P2 and vB_AhydM-H1, targeting pathogenic A. hydrophila were isolated from sewage water. Their morphology, growth characteristics, lytic activity, stability, and genomes were analyzed. Results Phage P2, a member of genus Ahphunavirus, and vB_AhydM-H1, a novel member of genus Pahsextavirus, exhibited narrow host ranges, extended latent periods, and typical burst sizes. Both phages remained stable at 40°C for 1 h and within a pH range of 4 to 10 for 3 h. The genomes of P2 and vB_AhydM-H1 spanned 42,660 bp with 49 open reading frames (ORFs) and 52,614 bp with 72 ORFs, respectively. Proteomic (ViPTree) and phylogenetic (VICTOR) analyses confirmed that both phages aligned with their respective families. DeepTMHMM predictions suggested that P2 and vB_AhydM-H1 encode three and four ORFs with transmembrane domains, respectively. Conclusions Safe for environmental and clinical use because of their lytic nature, and lack of virulence and resistance genes, these newly isolated phages expand the arsenal against antibiotic-resistant Aeromonas infections.
Collapse
Affiliation(s)
- Vandan Nagar
- Food Technology Division, Bhabha Atomic Research Center, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | | | - Sandeep K. Newase
- Food Technology Division, Bhabha Atomic Research Center, Mumbai, India
| | - Anuj Tyagi
- College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| |
Collapse
|
9
|
Sørensen AN, Brøndsted L. Renewed insights into Ackermannviridae phage biology and applications. NPJ VIRUSES 2024; 2:37. [PMID: 40295767 PMCID: PMC11721090 DOI: 10.1038/s44298-024-00046-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/10/2024] [Indexed: 04/30/2025]
Abstract
The Ackermannviridae family was established in 2017, containing phages previously classified within the Myoviridae family under the Viunalikevirus genus. Ackermannviridae phages have been increasingly studied due to their broad range of hosts among Enterobacteriaceae, and currently, 174 complete genomes are available on NCBI. Instrumental for their wide host infectivity, Ackermannviridae phages display a branched complex of multiple Tail Spike Proteins (TSPs). These TSPs recognize diverse surface polysaccharide receptors, allowing the phages to target strains with distinct lipopolysaccharides or capsular polysaccharides. This review gives an updated overview of the taxonomy and hosts of the expanding Ackermannviridae family with significant emphasis on recent advances in structural and computational biology for elucidating TSP diversity, structural domains, and assembly of the branched TSP complex. Furthermore, we explore the potential of engineering Ackermannviridae phages and discuss the challenges of using transducing wildtype phages for biocontrol. Finally, this review identifies bottlenecks hindering further advances in understanding Ackermannviridae phage biology and applications.
Collapse
Affiliation(s)
- Anders Nørgaard Sørensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Lone Brøndsted
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| |
Collapse
|
10
|
Liu W, Wu Y, Wang H, Wang H, Zhou M. Isolation and Biological Characteristics of a Novel Phage and Its Application to Control Vibrio Parahaemolyticus in Shellfish Meat. Foodborne Pathog Dis 2024; 21:467-477. [PMID: 38757692 DOI: 10.1089/fpd.2023.0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024] Open
Abstract
Vibrio parahaemolyticus is a common foodborne pathogenic bacterium. With the overuse of antibiotics, an increasing proportion of drug-resistant strains are emerging, which puts enormous pressure on public health. In this study, a V. parahaemolyticus-specific phage, VP41s3, was isolated. The head length, width, and tail length of the phage were 77.7 nm, 72.2 nm, and 17.5 nm, respectively. It remained active in the temperature range of 30-50°C and pH range of 4-11. The lytic curve of phage VP41s3 showed that the host bacteria did not grow until 11 h under phage treatment at MOI of 1000, indicating that the phage had good bacteriostatic ability. When it was added to shellfish contaminated with V. parahaemolyticus (15°C, 48 h), the number of bacteria in the experimental group was 2.11 log10 CFU/mL lower than that in the control group at 24 h. Furthermore, genomic characterization and phylogenetic analysis indicated that phage VP41s3 was a new member of the Podoviridae family. The genome contained 50 open reading frames (ORFs), in which the ORF19 (thymidine kinase) was an enzyme involved in the pyrimidine salvage pathway, which might lead to the accelerated DNA synthesis efficiency after phage entered into host cells. This study not only contributed to the improvement of phage database and the development of beneficial phage resources but also revealed the potential application of phage VP41s3 in food hygiene and safety.
Collapse
Affiliation(s)
- Wenting Liu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan, China
| | - Yiming Wu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan, China
| | - Huajuan Wang
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan, China
| | - Hongxun Wang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Min Zhou
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan, China
| |
Collapse
|
11
|
Han NS, Harada M, Pham-Khanh NH, Kamei K. Isolation, Characterization, and Complete Genome Sequence of Escherichia Phage KIT06 Which Infects Nalidixic Acid-Resistant Escherichia coli. Antibiotics (Basel) 2024; 13:581. [PMID: 39061264 PMCID: PMC11274021 DOI: 10.3390/antibiotics13070581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Escherichia coli (E. coli) is one of the most common sources of infection in humans and animals. The emergence of E. coli which acquires resistance to various antibiotics has made treatment difficult. Bacteriophages can be considered promising agents to expand the options for the treatment of antibiotic-resistant bacteria. This study describes the isolation and characterization of Escherichia phage KIT06, which can infect E. coli resistant to the quinolone antibiotic nalidixic acid. Phage virions possess an icosahedral head that is 93 ± 8 nm in diameter and a contractile tail (116 ± 12 nm × 13 ± 5 nm). The phage was found to be stable under various thermal and pH conditions. A one-step growth curve showed that the latent time of the phage was 20 min, with a burst size of 28 particles per infected cell. Phage KIT06 infected 7 of 12 E. coli strains. It inhibited the growth of the host bacterium and nalidixic acid-resistant E. coli. The lipopolysaccharide and outer membrane proteins of E. coli, tsx and btuB, are phage receptors. Phage KIT06 is a new species of the genus Tequatrovirus with a genome of 167,059 bp consisting of 264 open reading frames (ORFs) that encode gene products related to morphogenesis, replication, regulation, and host lysis. The lack of genes encoding integrase or excisionase indicated that this phage was lytic. Thus, KIT06 could potentially be used to treat antibiotic-resistant E. coli using phage therapy. However, further studies are essential to understand its use in combination with other antimicrobial agents and its safe use in such applications.
Collapse
Affiliation(s)
- Nguyen Song Han
- Department of Functional Chemistry, Kyoto Institute of Technology, Kyoto 606-8585, Japan; (N.S.H.); (M.H.)
| | - Mana Harada
- Department of Functional Chemistry, Kyoto Institute of Technology, Kyoto 606-8585, Japan; (N.S.H.); (M.H.)
| | - Nguyen Huan Pham-Khanh
- Department of Biology, College of Natural Sciences, Can Tho University, Can Tho City 900000, Vietnam;
| | - Kaeko Kamei
- Department of Functional Chemistry, Kyoto Institute of Technology, Kyoto 606-8585, Japan; (N.S.H.); (M.H.)
| |
Collapse
|
12
|
Guzel M, Yucefaydali A, Yetiskin S, Deniz A, Yaşar Tel O, Akçelik M, Soyer Y. Genomic analysis of Salmonella bacteriophages revealed multiple endolysin ORFs and importance of ligand-binding site of receptor-binding protein. FEMS Microbiol Ecol 2024; 100:fiae079. [PMID: 38816206 PMCID: PMC11180984 DOI: 10.1093/femsec/fiae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/02/2024] [Accepted: 05/29/2024] [Indexed: 06/01/2024] Open
Abstract
Salmonella is a prevalent foodborne pathogen causing millions of global cases annually. Antimicrobial resistance is a growing public health concern, leading to search for alternatives like bacteriophages. A total of 97 bacteriophages, isolated from cattle farms (n = 48), poultry farms (n = 37), and wastewater (n = 5) samples in Türkiye, were subjected to host-range analysis using 36 Salmonella isolates with 18 different serotypes. The broadest host range belonged to an Infantis phage (MET P1-091), lysing 28 hosts. A total of 10 phages with the widest host range underwent further analysis, revealing seven unique genomes (32-243 kb), including a jumbophage (>200 kb). Except for one with lysogenic properties, none of them harbored virulence or antibiotic resistance genes, making them potential Salmonella reducers in different environments. Examining open reading frames (ORFs) of endolysin enzymes revealed surprising findings: five of seven unique genomes contained multiple endolysin ORFs. Despite sharing same endolysin sequences, phages exhibited significant differences in host range. Detailed analysis unveiled diverse receptor-binding protein sequences, with similar structures but distinct ligand-binding sites. These findings emphasize the importance of ligand-binding sites of receptor-binding proteins. Additionally, bacterial reduction curve and virulence index revealed that Enteritidis phages inhibit bacterial growth even at low concentrations, unlike Infantis and Kentucky phages.
Collapse
Affiliation(s)
- Mustafa Guzel
- Department of Biotechnology, Middle East Technical University, Ankara 06800, Türkiye
- Department of Food Engineering, Hitit University, Corum 19030, Türkiye
| | - Aysenur Yucefaydali
- Department of Food Engineering, Faculty of Engineering, Middle East Technical University, Ankara 06800, Türkiye
| | - Segah Yetiskin
- Department of Food Engineering, Faculty of Engineering, Middle East Technical University, Ankara 06800, Türkiye
| | - Aysu Deniz
- Department of Food Engineering, Faculty of Engineering, Middle East Technical University, Ankara 06800, Türkiye
| | - Osman Yaşar Tel
- Faculty of Veterinary Medicine, Harran University, Şanlıurfa 63300, Türkiye
| | - Mustafa Akçelik
- Department of Biology, Ankara University, Ankara 06100, Türkiye
| | - Yeşim Soyer
- Department of Biotechnology, Middle East Technical University, Ankara 06800, Türkiye
- Department of Food Engineering, Faculty of Engineering, Middle East Technical University, Ankara 06800, Türkiye
| |
Collapse
|
13
|
Vukovic D, Gostimirovic S, Cvetanovic J, Gavric D, Aleksic Sabo V, Todorovic D, Medic D, Knezevic P. Antibacterial Potential of Non-Tailed Icosahedral Phages Alone and in Combination with Antibiotics. Curr Microbiol 2024; 81:215. [PMID: 38849666 DOI: 10.1007/s00284-024-03705-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/13/2024] [Indexed: 06/09/2024]
Abstract
Non-tailed icosahedral phages belonging to families Fiersviridae (phages MS2 and Qbeta), Tectiviridae (PRD1) and Microviridae (phiX174) have not been considered in detail so far as potential antibacterial agents. The aim of the study was to examine various aspects of the applicability of these phages as antibacterial agents. Antibacterial potential of four phages was investigated via bacterial growth and biofilm formation inhibition, lytic spectra determination, and phage safety examination. The phage phiX174 was combined with different classes of antibiotics to evaluate potential synergistic interactions. In addition, the incidence of phiX174-insensitive mutants was analyzed. The results showed that only phiX174 out of four phages tested against their corresponding hosts inhibited bacterial growth for > 90% at different multiplicity of infection and that only this phage considerably prevented biofilm formation. Although all phages show the absence of potentially undesirable genes, they also have extremely narrow lytic spectra. The synergism was determined between phage phiX174 and ceftazidime, ceftriaxone, ciprofloxacin, macrolides, and chloramphenicol. It was shown that the simultaneous application of agents is more effective than successive treatment, where one agent is applied first. The analysis of the appearance of phiX174 bacteriophage-insensitive mutants showed that mutations occur with a frequency of 10-3. The examined non-tailed phages have a limited potential for use as antibacterial agents, primarily due to a very narrow lytic spectrum and the high frequency of resistant mutants appearance, but Microviridae can be considered in the future as biocontrol agents against susceptible strains of E. coli in combinations with conventional antimicrobial agents.
Collapse
Affiliation(s)
- Darija Vukovic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Sonja Gostimirovic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Jelena Cvetanovic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Damir Gavric
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Verica Aleksic Sabo
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | | | - Deana Medic
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Petar Knezevic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia.
| |
Collapse
|
14
|
Vaz CSL, da Fonseca FN, Voss-Rech D, Morés MAZ, Coldebella A, Cantão ME. Wild-type lytic bacteriophages against Salmonella Heidelberg: Further characterization and effect of prophylactic therapy in broiler chickens. Res Vet Sci 2024; 171:105247. [PMID: 38554611 DOI: 10.1016/j.rvsc.2024.105247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
To characterize wild-type bacteriophages and their effect on Salmonella Heidelberg intestinal colonization in broilers, phages combined in a cocktail were continuously delivered via drinking water since the first day after hatching. After challenge with a field strain, broilers were evaluated at regular intervals for S. Heidelberg and bacteriophages in tissues and cecum, and gross and microscopic lesions in organs. Phages were highly virulent against S. Heidelberg by efficiency of plating. One-step growth curves exhibited eclipse period from 20 to 25 min, whereas the lowest latent period and higher burst size found were 45 min and 54 PFU/cell, respectively. Bacteriophage whole genomic sequencing analyses revealed a lack of genes related to lysogeny, antimicrobial resistance, and virulence factors. Relevant gross or microscopic lesions were absent in tissues analyzed from treated broilers. Although numerically stable bacteriophage concentrations were detected in the cecal contents of treated broilers, no significant difference was found for the S. Heidelberg cecal load in comparison to the untreated group and for the prevalence of positive tissues throughout the evaluated period. The phages produced turbid plaques against some S. Heidelberg re-isolated from treated broilers, suggesting the evolving of a resistant subpopulation. Overall, the results provide new evidence of the safety and in vitro replication of such phages in S. Heidelberg. Nevertheless, continuous administration of the phage suspension most likely induced the development of bacteriophage-resistant mutants, which might have affected the in vivo effect. Therefore, a putative administration protocol should be based on other strategies, such as short-term therapy at pre-harvest age.
Collapse
Affiliation(s)
| | | | - Daiane Voss-Rech
- Embrapa Suínos e Aves, BR 153, Km 110, PO box 321, Concórdia, Santa Catarina 89715899, Brazil
| | | | - Arlei Coldebella
- Embrapa Suínos e Aves, BR 153, Km 110, PO box 321, Concórdia, Santa Catarina 89715899, Brazil
| | - Maurício Egídio Cantão
- Embrapa Suínos e Aves, BR 153, Km 110, PO box 321, Concórdia, Santa Catarina 89715899, Brazil
| |
Collapse
|
15
|
Martinez-Soto CE, McClelland M, Kropinski AM, Lin JT, Khursigara CM, Anany H. Multireceptor phage cocktail against Salmonella enterica to circumvent phage resistance. MICROLIFE 2024; 5:uqae003. [PMID: 38545601 PMCID: PMC10972627 DOI: 10.1093/femsml/uqae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/18/2024] [Accepted: 03/11/2024] [Indexed: 04/14/2024]
Abstract
Non-Typhoidal Salmonella (NTS) is one of the most common food-borne pathogens worldwide, with poultry products being the major vehicle for pathogenesis in humans. The use of bacteriophage (phage) cocktails has recently emerged as a novel approach to enhancing food safety. Here, a multireceptor Salmonella phage cocktail of five phages was developed and characterized. The cocktail targets four receptors: O-antigen, BtuB, OmpC, and rough Salmonella strains. Structural analysis indicated that all five phages belong to unique families or subfamilies. Genome analysis of four of the phages showed they were devoid of known virulence or antimicrobial resistance factors, indicating enhanced safety. The phage cocktail broad antimicrobial spectrum against Salmonella, significantly inhibiting the growth of all 66 strains from 20 serovars tested in vitro. The average bacteriophage insensitive mutant (BIM) frequency against the cocktail was 6.22 × 10-6 in S. Enteritidis, significantly lower than that of each of the individual phages. The phage cocktail reduced the load of Salmonella in inoculated chicken skin by 3.5 log10 CFU/cm2 after 48 h at 25°C and 15°C, and 2.5 log10 CFU/cm2 at 4°C. A genome-wide transduction assay was used to investigate the transduction efficiency of the selected phage in the cocktail. Only one of the four phages tested could transduce the kanamycin resistance cassette at a low frequency comparable to that of phage P22. Overall, the results support the potential of cocktails of phage that each target different host receptors to achieve complementary infection and reduce the emergence of phage resistance during biocontrol applications.
Collapse
Affiliation(s)
- Carlos E Martinez-Soto
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Rd W, N1G 5C9, Guelph, Ontario, Canada
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Rd E, N1G 2W1, Guelph, Ontario, Canada
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, 811 Health Sciences Road, CA 92614, United States
| | - Andrew M Kropinski
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, 419 Gordon St, Guelph, ON N1G 2W1, Canada
| | - Janet T Lin
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Rd W, N1G 5C9, Guelph, Ontario, Canada
| | - Cezar M Khursigara
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Rd E, N1G 2W1, Guelph, Ontario, Canada
| | - Hany Anany
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Rd W, N1G 5C9, Guelph, Ontario, Canada
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Rd E, N1G 2W1, Guelph, Ontario, Canada
| |
Collapse
|
16
|
Andrews K, Landeryou T, Sicheritz-Pontén T, Nale JY. Diverse Prophage Elements of Salmonella enterica Serovars Show Potential Roles in Bacterial Pathogenicity. Cells 2024; 13:514. [PMID: 38534358 PMCID: PMC10969437 DOI: 10.3390/cells13060514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/26/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
Nontyphoidal salmonellosis is an important foodborne and zoonotic infection that causes significant global public health concern. Diverse serovars are multidrug-resistant and encode several virulence indicators; however, little is known on the role prophages play in driving these traits. Here, we extracted prophages from seventy-five Salmonella genomes which represent the fifteen important serovars in the United Kingdom. We analyzed the intact prophages for the presence of virulence genes and established their genomic relationships. We identified 615 prophages from the Salmonella strains, from which 195 prophages are intact, 332 are incomplete, while 88 are questionable. The average prophage carriage was found to be 'extreme' in S. Heidelberg, S. Inverness, and S. Newport (10.2-11.6 prophages/strain), 'high' in S. Infantis, S. Stanley, S. Typhimurium, and S. Virchow (8.2-9.0 prophages/strain), 'moderate' in S. Agona, S. Braenderup, S. Bovismorbificans, S. Choleraesuis, S. Dublin, and S. Java (6.0-7.8 prophages/strain), and 'low' in S. Javiana and S. Enteritidis (5.8 prophages/strain). Cumulatively, 61 virulence genes (1500 gene copies) were detected from representative intact prophages and linked to Salmonella delivery/secretion system (42.62%), adherence (32.7%), magnesium uptake (3.88%), regulation (5%), stress/survival (1.6%), toxins (10%), and antivirulence (1.6%). Diverse clusters were formed among the intact prophages and with bacteriophages of other enterobacteria, suggesting different lineages and associations. Our work provides a strong body of data to support the contributions diverse prophages make to the pathogenicity of Salmonella, including thirteen previously unexplored serovars.
Collapse
Affiliation(s)
- Kirstie Andrews
- Centre for Epidemiology and Planetary Health, School of Veterinary Medicine, Scotland’s Rural College, Inverness IV2 5NA, UK; (K.A.); (T.L.)
| | - Toby Landeryou
- Centre for Epidemiology and Planetary Health, School of Veterinary Medicine, Scotland’s Rural College, Inverness IV2 5NA, UK; (K.A.); (T.L.)
| | - Thomas Sicheritz-Pontén
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, 1353 Copenhagen, Denmark;
| | - Janet Yakubu Nale
- Centre for Epidemiology and Planetary Health, School of Veterinary Medicine, Scotland’s Rural College, Inverness IV2 5NA, UK; (K.A.); (T.L.)
| |
Collapse
|
17
|
Jiang L, Xu Q, Wu Y, Zhou X, Chen Z, Sun Q, Wen J. Characterization of a Straboviridae phage vB_AbaM-SHI and its inhibition effect on biofilms of Acinetobacter baumannii. Front Cell Infect Microbiol 2024; 14:1351993. [PMID: 38524182 PMCID: PMC10958429 DOI: 10.3389/fcimb.2024.1351993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/22/2024] [Indexed: 03/26/2024] Open
Abstract
Acinetobacter baumannii (A. baumannii) is a popular clinical pathogen worldwide. Biofilm-associated antibiotic-resistant A. baumannii infection poses a great threat to human health. Bacteria in biofilms are highly resistant to antibiotics and disinfectants. Furthermore, inhibition or eradication of biofilms in husbandry, the food industry and clinics are almost impossible. Phages can move across the biofilm matrix and promote antibiotic penetration. In the present study, a lytic A. baumannii phage vB_AbaM-SHI, belonging to family Straboviridae, was isolated from sauce chop factory drain outlet in Wuxi, China. The DNA genome consists of 44,180 bp which contain 93 open reading frames, and genes encoding products morphogenesis are located at the end of the genome. The amino acid sequence of vB_AbaM-SHI endolysin is different from those of previously reported A. baumannii phages in NCBI. Phage vB_AbaM-SHI endolysin has two additional β strands due to the replacement of a lysine (K) (in KU510289.1, NC_041857.1, JX976549.1 and MH853786.1) with an arginine (R) (SHI) at position 21 of A. baumannii phage endolysin. Spot test showed that phage vB_AbaM-SHI is able to lyse some antibiotic-resistant bacteria, such as A. baumannii (SL, SL1, and SG strains) and E. coli BL21 strain. Additionally, phage vB_AbaM-SHI independently killed bacteria and inhibited bacterial biofilm formation, and synergistically exerted strong antibacterial effects with antibiotics. This study provided a new perspective into the potential application value of phage vB_AbaM-SHI as an antimicrobial agent.
Collapse
Affiliation(s)
- Liming Jiang
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Qian Xu
- Department of Blood Transfusion, Hubei No. 3 People’s Hospital of Jianghan University, Wuhan, Hubei, China
| | - Ying Wu
- Department of Rheumatology Immunology, The First People’s Hospital of Hefei, Hefei, Anhui, China
| | - Xianglian Zhou
- Department of Rheumatology Immunology, The First People’s Hospital of Hefei, Hefei, Anhui, China
| | - Zhu Chen
- Department of Laboratory, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| | - Qiangming Sun
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Jinsheng Wen
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
18
|
Harris EB, Ewool KKK, Bowden LC, Fierro J, Johnson D, Meinzer M, Tayler S, Grose JH. Genomic and Proteomic Analysis of Six Vi01-like Phages Reveals Wide Host Range and Multiple Tail Spike Proteins. Viruses 2024; 16:289. [PMID: 38400064 PMCID: PMC10892097 DOI: 10.3390/v16020289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Enterobacteriaceae is a large family of Gram-negative bacteria composed of many pathogens, including Salmonella and Shigella. Here, we characterize six bacteriophages that infect Enterobacteriaceae, which were isolated from wastewater plants in the Wasatch front (Utah, United States). These phages are highly similar to the Kuttervirus vB_SenM_Vi01 (Vi01), which was isolated using wastewater from Kiel, Germany. The phages vary little in genome size and are between 157 kb and 164 kb, which is consistent with the sizes of other phages in the Vi01-like phage family. These six phages were characterized through genomic and proteomic comparison, mass spectrometry, and both laboratory and clinical host range studies. While their proteomes are largely unstudied, mass spectrometry analysis confirmed the production of five hypothetical proteins, several of which unveiled a potential operon that suggests a ferritin-mediated entry system on the Vi01-like phage family tail. However, no dependence on this pathway was observed for the single host tested herein. While unable to infect every genus of Enterobacteriaceae tested, these phages are extraordinarily broad ranged, with several demonstrating the ability to infect Salmonella enterica and Citrobacter freundii strains with generally high efficiency, as well as several clinical Salmonella enterica isolates, most likely due to their multiple tail fibers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Julianne H. Grose
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84604, USA; (E.B.H.); (K.K.K.E.)
| |
Collapse
|
19
|
Howell AA, Versoza CJ, Pfeifer SP. Computational host range prediction-The good, the bad, and the ugly. Virus Evol 2023; 10:vead083. [PMID: 38361822 PMCID: PMC10868548 DOI: 10.1093/ve/vead083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/05/2023] [Accepted: 12/19/2023] [Indexed: 02/17/2024] Open
Abstract
The rapid emergence and spread of antimicrobial resistance across the globe have prompted the usage of bacteriophages (i.e. viruses that infect bacteria) in a variety of applications ranging from agriculture to biotechnology and medicine. In order to effectively guide the application of bacteriophages in these multifaceted areas, information about their host ranges-that is the bacterial strains or species that a bacteriophage can successfully infect and kill-is essential. Utilizing sixteen broad-spectrum (polyvalent) bacteriophages with experimentally validated host ranges, we here benchmark the performance of eleven recently developed computational host range prediction tools that provide a promising and highly scalable supplement to traditional, but laborious, experimental procedures. We show that machine- and deep-learning approaches offer the highest levels of accuracy and precision-however, their predominant predictions at the species- or genus-level render them ill-suited for applications outside of an ecosystems metagenomics framework. In contrast, only moderate sensitivity (<80 per cent) could be reached at the strain-level, albeit at low levels of precision (<40 per cent). Taken together, these limitations demonstrate that there remains room for improvement in the active scientific field of in silico host prediction to combat the challenge of guiding experimental designs to identify the most promising bacteriophage candidates for any given application.
Collapse
Affiliation(s)
| | - Cyril J Versoza
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Susanne P Pfeifer
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
20
|
Tayyarcan EK, Boyaci IH. Isolation, characterization, and application of bacteriophage cocktails for the biocontrol of Pseudomonas fluorescens group strains in whole and skimmed milk. Braz J Microbiol 2023; 54:3061-3071. [PMID: 37914971 PMCID: PMC10689657 DOI: 10.1007/s42770-023-01164-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/19/2023] [Indexed: 11/03/2023] Open
Abstract
Pseudomonas fluorescens group strains can lead to spoilage of milk as well as loss of quality in dairy products through their heat-resistant enzymes. Phages are important alternatives for combating spoilage bacteria in food industry and used successfully in many applications. The aim of this study was the isolation and characterization of phages and to assess the efficiency of a phage cocktail in whole and skimmed milk. For this purpose, phages effective against Pseudomonas fluorescens (L23.2), Pseudomonas tolaasii (P22.1), and Pseudomonas rhodesiae (A11.1) were isolated. Their host range was found to be highly specific, and the transmission electron micrographs indicates that they belonged to Tectiviridae family. Their genome sizes were found to be vary between 38.3 and 53.5 kb. The latent periods and burst sizes were determined as 15, 10, 15 min and 91, 20, 80 PFU/infected cell for L23.2, P22.1, and A11.1, respectively. All three phages were found to be sensitive to low pH and high temperature. The effect of the phage cocktail was monitored in milk with different fat contents during storage at 4 °C for 5 days. As a result, bacterial reductions up to 4.09 and 5.29 log-units were observed for the whole and skimmed milk, respectively. Thus, the efficacy of a phage cocktail against a bacterial mixture of different P. fluorescens strains was tested in milk samples with different fat contents in accordance with real-life scenarios for the first time.
Collapse
|
21
|
Kuek M, McLean SK, Palombo EA. Control of Escherichia coli in Fresh-Cut Mixed Vegetables Using a Combination of Bacteriophage and Carvacrol. Antibiotics (Basel) 2023; 12:1579. [PMID: 37998781 PMCID: PMC10668671 DOI: 10.3390/antibiotics12111579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/20/2023] [Accepted: 10/28/2023] [Indexed: 11/25/2023] Open
Abstract
The continual emergence of antibiotic-resistant bacteria and the slow development of new antibiotics has driven the resurgent interest in the potential application of bacteriophages as antimicrobial agents in different medical and industrial sectors. In the present study, the potential of combining phage biocontrol and a natural plant compound (carvacrol) in controlling Escherichia coli on fresh-cut mixed vegetable was evaluated. Four coliphages, designated Escherichia phage SUT_E420, Escherichia phage SUT_E520, Escherichia phage SUT_E1520 and Escherichia phage SUT_E1620, were isolated from raw sewage. Biological characterization revealed that all four phages had a latent period of 20-30 min and a burst size ranging from 116 plaque-forming units (PFU)/colony forming units (CFU) to 441 PFU/CFU. The phages effectively inhibited the growth of respective host bacteria in vitro, especially when used at a high multiplicity of infection (MOI). Based on transmission electron microscopy analysis, all phages were classified as tailed phages in the class of Caudoviricetes. Additionally, next generation sequencing indicated that none of the selected coliphages contained genes encoding virulence or antimicrobial resistance factors, highlighting the suitability of isolated phages as biocontrol agents. When a phage cocktail (~109 PFU/mL) was applied alone onto fresh-cut mixed vegetables artificially contaminated with E. coli, no bacteria were recovered from treated samples on Day 0, followed by a gradual increase in the E. coli population after 24 h of incubation at 8 °C. On the other hand, no significant differences (p < 0.05) were observed between treated and non-treated samples in terms of E. coli viable counts when carvacrol at the minimum inhibitory concentration (MIC) of 6.25 μL/mL was applied alone. When a phage cocktail at an MOI of ~1000 and MIC carvacrol were applied in combination, no E. coli were recovered from treated samples on Day 0 and 1, followed by a slight increase in the E. coli population to approximately 1.2-1.3 log CFU/mL after 48 h of incubation at 8 °C. However, total elimination of E. coli was observed in samples treated with a phage cocktail at a higher MOI of ~2000 and carvacrol at MIC, with a reduction of approximately 4 log CFU/mL observed at the end of Day 3. The results obtained in this study highlight the potential of combined treatment involving phage biocontrol and carvacrol as a new alternative method to reduce E. coli contamination in minimally processed ready-to-eat foods.
Collapse
Affiliation(s)
- Maryanne Kuek
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (S.K.M.); (E.A.P.)
| | | | | |
Collapse
|
22
|
Karaynir A, Bozdoğan B, Salih Doğan H. Environmental DNA transformation resulted in an active phage in Escherichia coli. PLoS One 2023; 18:e0292933. [PMID: 37831666 PMCID: PMC10575539 DOI: 10.1371/journal.pone.0292933] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
The achievement of an active biological entity from environmental DNA is important in the field of phage. In this study, the environmental DNA extracted from hospital wastewater was transferred into Escherichia coli DH10B and Escherichia coli BL21 with chemical transformation and electroporation. After transformation, overnight cultures were filtered and used as phage source. The efficacies of the techniques were evaluated with spot test and double-layer agar assay. The emerged phage, named as ADUt, was purified and host-range analysis was performed. Phage DNA was isolated, sequenced and restriction profile was determined. The genome was assembled. The phylogenetic tree was constructed via VipTree. The extracted DNA resulted in active phage by the transformation of E. coli DH10B, but not E. coli BL21. The chemical transformation was found more successful than electroporation. ADUt phage was found to be polyvalent and effective against limited strains of Shigella and Escherichia genera. The phage genome size and GC ratio are 166904 bp and 35.67%, respectively. ADUt is a member of Straboviridae family and Tequatrovirus genus. This is the first study that uses environmental DNA for acquiring active phage, which may be an important source of new phage discovery. The result showed that DNA transformation yields active bacteriophage with both chemical transformation and electroporation.
Collapse
Affiliation(s)
- Abdulkerim Karaynir
- Recombinant DNA and Recombinant Protein Center (REDPROM), Aydın Adnan Menderes University, Aydın, Türkiye
| | - Bülent Bozdoğan
- Recombinant DNA and Recombinant Protein Center (REDPROM), Aydın Adnan Menderes University, Aydın, Türkiye
- Medical Faculty, Department of Medical Microbiology, Aydın Adnan Menderes University, Aydın, Türkiye
| | - Hanife Salih Doğan
- Recombinant DNA and Recombinant Protein Center (REDPROM), Aydın Adnan Menderes University, Aydın, Türkiye
| |
Collapse
|
23
|
Kim SH, Lee H, Park MK. Isolation, characterization, and application of a novel, lytic phage vB_SalA_KFSST3 with depolymerase for the control of Salmonella and its biofilm on cantaloupe under cold temperature. Food Res Int 2023; 172:113062. [PMID: 37689855 DOI: 10.1016/j.foodres.2023.113062] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 09/11/2023]
Abstract
This study investigated the efficacy of a novel Salmonella phage with depolymerase activity to control S. Typhimurium (ST) and its biofilm on cantaloupes, for the first time, under simulated cold temperature. vB_SalA_KFSST3 forming a halo zone was isolated and purified from a slaughterhouse with a final concentration of 12.1 ± 0.1 log PFU/mL. Based on the morphological and bioinformatics analyses, vB_SalA_KFSST3 was identified as a novel phage belonging to the family Ackermannviridae. Before employing the phage on cantaloupe, its genetic characteristics, specificity, stability, and bactericidal effect were investigated. Genetic analyses confirmed its safety and identified endolysin and two depolymerase domains possessing antibiofilm potential. In addition, the phage exhibited a broad specificity with great efficiencies toward five Salmonella strains at 4 °C, 22 °C, and 37 °C, as well as stable lytic activity over a wide range of pHs (3 to 11) and temperatures (-20 °C to 60 °C). The optimal multiplicity of infection (MOI) and exposure time of phage were determined to be 100 and 2 h, respectively, based on the highest bacterial reduction of ∼2.7 log CFU/mL. Following the formation of ST biofilm on cantaloupe at 4 °C and 22 °C, the cantaloupe was treated with phage at an MOI of 100 for 2 h. The antibiofilm efficacy of phage was evaluated via the plate count method, confocal laser scanning microscopy, and scanning electron microscopy (SEM). The initial biofilm population at 22 °C was significantly greater and more condensed than that at 4 °C. After phage treatment, biofilm population and the percentage of viable ST in biofilm were reduced by ∼4.6 log CFU/cm2 and ∼90% within 2 h, respectively, which were significantly greater than those at 22 °C (∼2.0 log CFU/cm2 and ∼45%) (P < 0.05). SEM images also confirmed more drastic destruction of the cohesive biofilm architecture at 4 °C than at 22 °C. As a result of its cold temperature-robust lytic activity and the contribution of endolysin and two depolymerases, vB_SalA_KFSST3 demonstrated excellent antibiofilm efficacy at cold temperature, highlighting its potential as a promising practical biocontrol agent for the control of ST and its biofilm.
Collapse
Affiliation(s)
- Su-Hyeon Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Heejeong Lee
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Mi-Kyung Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea; Food and Bio-Industry Institute, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
24
|
Lin Y, Liu Y, Zhang Y, Yuan W, Wang D, Zhu W. Biological and genomic characterization of a polyvalent bacteriophage (S19cd) strongly inhibiting Salmonella enterica serovar Choleraesuis. Vet Microbiol 2023; 284:109822. [PMID: 37437367 DOI: 10.1016/j.vetmic.2023.109822] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/08/2023] [Accepted: 06/26/2023] [Indexed: 07/14/2023]
Abstract
Bacteriophages are a promising alternative for the control of pathogenic bacteria. In this study, we isolated a virulent bacteriophage, S19cd, from pig gut that could infect both a non-pathogenic bacteria Escherichia coli 44 (EC44) and two pathogenic bacterial strains (ATCC 13312 (SC13312) and CICC 21493 (SC21493)) of Salmonella enterica serovar Choleraesuis (SC). S19cd exhibited strong lytic ability in both SC13312 and SC21493 with an optimal multiplicity of infection (MOI) of 10-6 and 10-5, respectively, and inhibited their growth at an MOI of 10-7 within 24 h. Mice pre-treated with S19cd exhibited protection against the SC13312 challenge. Moreover, S19cd has good heat resistance (80 ℃) and pH tolerance (pH 3-12). Genome analysis revealed that S19cd belongs to the Felixounavirus genus and does not contain any virulence or drug-resistance-related genes. Additionally, S19cd encodes an adenine-specific methyltransferase that has no similarity to methyltransferases from other Felixounavirus phages and shares limited similarity with other methyltransferases in the NCBI protein database. Metagenomic analysis of S19cd genomes from 500 pigs revealed that S19cd-like phages may be widespread in Chinese pig gut. In conclusion, S19cd can be a potential phage therapy targeting SC infections.
Collapse
Affiliation(s)
- Yan Lin
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yankun Liu
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuyu Zhang
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenyuan Yuan
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Dongyang Wang
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Weiyun Zhu
- National Center for International Research on Animal Gut Nutrition, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
25
|
Duan X, Jiang L, Guo M, Li C. Isolation, characterization and application of a lytic phage vB_VspM_VS1 against Vibrio splendidus biofilm. PLoS One 2023; 18:e0289895. [PMID: 37656737 PMCID: PMC10473537 DOI: 10.1371/journal.pone.0289895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/27/2023] [Indexed: 09/03/2023] Open
Abstract
Vibrio splendidus is a common pathogen in the ocean that infects Apostichopus japonicus, Atlantic salmon and Crassostrea gigas, leading to a variety of diseases. In this study, a virulent phage vB_VspM_VS1, which infects V. splendidus, was isolated from aquaculture ponds in Dalian, China, and it belongs to the family Straboviridae in the order Caudoviricetes. vB_VspM_VS1 had an adsorption rate of 96% in 15 min, a latent period of 65 min, and a burst size of 140 ± 6 PFU/cell. The complete genome of phage vB_VspM_VS1 consists of a linear double-stranded DNA that is 248,270 bp in length with an average G + C content of 42.5% and 389 putative protein-coding genes; 116 genes have known functions. There are 4 tail fiber genes in the positive and negative strands of the phage vB_VspM_VS1 genome. The protein domain of the phage vB_VspM_VS1 tail fibers was obtained from the Protein Data Bank and the SMART (http://smart.embl.de) database. Bacterial challenge tests revealed that the growth of V. splendidus HS0 was apparently inhibited (OD600 < 0.01) in 12 h at an MOI of 10. In against biofilms, we also showed that the OD570 value of the vB_VspM_VS1-treated group (MOI = 1) decreased significantly to 0.04 ± 0.01 compared with that of the control group (0.48 ± 0.08) at 24 h. This study characterizes the genome of the phage vB_VspM_VS1 that infects the pathogenic bacterium V. splendidus of A. japonicus.
Collapse
Affiliation(s)
- Xuemei Duan
- State Key Laboratory for Quality and Safety of Agroproducts, Ningbo University, Ningbo, China
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| | - Liming Jiang
- State Key Laboratory for Quality and Safety of Agroproducts, Ningbo University, Ningbo, China
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
- School of Medicine, Ningbo University, Ningbo, China
| | - Ming Guo
- State Key Laboratory for Quality and Safety of Agroproducts, Ningbo University, Ningbo, China
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| | - Chenghua Li
- State Key Laboratory for Quality and Safety of Agroproducts, Ningbo University, Ningbo, China
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| |
Collapse
|
26
|
Lopez MES, Gontijo MTP, Cardoso RR, Batalha LS, Eller MR, Bazzolli DMS, Vidigal PMP, Mendonça RCS. Complete genome analysis of Tequatrovirus ufvareg1, a Tequatrovirus species inhibiting Escherichia coli O157:H7. Front Cell Infect Microbiol 2023; 13:1178248. [PMID: 37274318 PMCID: PMC10236363 DOI: 10.3389/fcimb.2023.1178248] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/27/2023] [Indexed: 06/06/2023] Open
Abstract
Introduction Bacteriophages infecting human pathogens have been considered potential biocontrol agents, and studying their genetic content is essential to their safe use in the food industry. Tequatrovirus ufvareg1 is a bacteriophage named UFV-AREG1, isolated from cowshed wastewater and previously tested for its ability to inhibit Escherichia coli O157:H7. Methods T. ufvareg1 was previously isolated using E. coli O157:H7 (ATCC 43895) as a bacterial host. The same strain was used for bacteriophage propagation and the one-step growth curve. The genome of the T. ufvareg1 was sequenced using 305 Illumina HiSeq, and the genome comparison was calculated by VIRIDIC and VIPTree. Results Here, we characterize its genome and compare it to other Tequatrovirus. T. ufvareg1 virions have an icosahedral head (114 x 86 nm) and a contracted tail (117 x 23 nm), with a latent period of 25 min, and an average burst size was 18 phage particles per infected E. coli cell. The genome of the bacteriophage T. ufvareg1 contains 268 coding DNA sequences (CDS) and ten tRNA genes distributed in both negative and positive strains. T. ufvareg1 genome also contains 40 promoters on its regulatory regions and two rho-independent terminators. T. ufvareg1 shares an average intergenomic similarity (VIRIDC) of 88.77% and an average genomic similarity score (VipTree) of 88.91% with eight four reference genomes for Tequatrovirus available in the NCBI RefSeq database. The pan-genomic analysis confirmed the high conservation of Tequatrovirus genomes. Among all CDS annotated in the T. ufvareg1 genome, there are 123 core genes, 38 softcore genes, 94 shell genes, and 13 cloud genes. None of 268 CDS was classified as being exclusive of T. ufvareg1. Conclusion The results in this paper, combined with other previously published findings, indicate that T. ufvareg1 bacteriophage is a potential candidate for food protection against E. coli O157:H7 in foods.
Collapse
Affiliation(s)
- Maryoris Elisa Soto Lopez
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Departamento de Ingeniería de Alimentos, Universidad de Córdoba, Montería, Colombia
| | - Marco Tulio Pardini Gontijo
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Duke University, Durham, NC, United States
| | - Rodrigo Rezende Cardoso
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Laís Silva Batalha
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Monique Renon Eller
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | | |
Collapse
|
27
|
Baskaran V, Karthik L. Phages for treatment of Salmonella spp infection. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 200:241-273. [PMID: 37739557 DOI: 10.1016/bs.pmbts.2023.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Salmonella, is one of the bacterial genera having more than 2500 serogroups is one of the most prominent food borne pathogen that is capable of causing disease out breaks among humans and animals. Recent reports clearly shows that this pathogen is evolved and it developed drug resistant towards most of the commercially available antibiotics. In order to overcome this emerging resistance, Bacteriophage therapy is one of the alternative solutions. It is more pathogen specific, high potency, and thereby highly safe for consumption. This chapter discuss about Rapid screening and Detection Methods Associated with Bacteriophage for Salmonella, commercially available phage products and regulatory status, Salmonella endolysins and future prospects of phage therapy.
Collapse
Affiliation(s)
- V Baskaran
- R and D, Salem Microbes Private Limited, Salem, Tamil Nadu, India
| | - L Karthik
- R and D, Salem Microbes Private Limited, Salem, Tamil Nadu, India.
| |
Collapse
|
28
|
Williams J, Burton N, Dhanoa G, Sagona AP. Host-phage interactions and modeling for therapy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 200:127-158. [PMID: 37739552 DOI: 10.1016/bs.pmbts.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Phage are drivers of numerous ecological processes on the planet and have the potential to be developed into a therapy alternative to antibiotics. Phage at all points of their life cycle, from initiation of infection to their release, interact with their host in some manner. More importantly, to harness their antimicrobial potential it is vital to understand how phage interact with the eukaryotic environment in the context of applying phage for therapy. In this chapter, the various mechanisms of phage interplay with their hosts as part of their natural life cycle are discussed in depth for Gram-positive and negative bacteria. Further, the literature surrounding the various models utilized to develop phage as a therapeutic are examined, and how these models may improve our understanding of phage-host interactions and current progress in utilizing phage for therapy in the clinical environment.
Collapse
Affiliation(s)
- Joshua Williams
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Nathan Burton
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Gurneet Dhanoa
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Antonia P Sagona
- School of Life Sciences, University of Warwick, Coventry, United Kingdom.
| |
Collapse
|
29
|
Kwak H, Kim J, Ryu S, Bai J. Characterization of KMSP1, a newly isolated virulent bacteriophage infecting Staphylococcus aureus, and its application to dairy products. Int J Food Microbiol 2023; 390:110119. [PMID: 36764012 DOI: 10.1016/j.ijfoodmicro.2023.110119] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Staphylococcus aureus is one of the major pathogens causing foodborne outbreaks and severe infections worldwide. Generally, various physical and chemical treatments have been applied to control S. aureus in the food industry. However, conventional treatments usually affected food quality and often produced toxic compounds. Therefore, bacteriophage (phage), a natural antimicrobial agent, has been suggested as an alternative strategy to control foodborne pathogens including S. aureus. In this study, KMSP1, a bacteriophage infecting S. aureus was isolated from a raw milk sample and characterized. Transmission electron microscopy (TEM) analysis revealed that phage KMSP1 belongs to the Myoviridae family. Phage KMSP1 efficiently inhibited bacterial growth for >28 h post-infection. In addition, phage KMSP1 could infect a broad spectrum of S. aureus strains, including methicillin-resistant S. aureus (MRSA) strains. Whole-genome sequence analysis showed that KMSP1 is a lytic phage with the absence of genes related to lysogen formation, toxin production, and antibiotics resistance, respectively. In the genome of KMSP1, the presence of putative tail lysin containing a cysteine/histidine-dependent amidohydrolase/peptidase (CHAP) domain could be one of the reasons for the effective antimicrobial activity of KMSP1. Furthermore, high stability of phage KMSP1 at temperature ranging from 4 to 55 °C and pH ranging from 5 to 11, suggested its potential use in various food systems. Receptor analysis revealed that KMSP1 utilized cell wall teichoic acid (WTA), one of the major virulence factors of S. aureus, as a host receptor. Application of phage KMSP1 at an MOI of 104 achieved a significant reduction of log 8.8 CFU/mL of viable cell number in pasteurized milk and log 4.3 CFU/cm2 in sliced cheddar cheese after 24 h. Taken together, the strong antimicrobial activity of phage KMSP1 suggested that it could be developed as a biocontrol agent in dairy products to control S. aureus contamination.
Collapse
Affiliation(s)
- Hyerim Kwak
- Division of Applied Food System, Major in Food Science & Technology, Seoul Women's University, Seoul 01797, Republic of Korea
| | - Jinshil Kim
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaewoo Bai
- Division of Applied Food System, Major in Food Science & Technology, Seoul Women's University, Seoul 01797, Republic of Korea.
| |
Collapse
|
30
|
Zhang Y, Zou G, Islam MS, Liu K, Xue S, Song Z, Ye Y, Zhou Y, Shi Y, Wei S, Zhou R, Chen H, Li J. Combine thermal processing with polyvalent phage LPEK22 to prevent the Escherichia coli and Salmonella enterica contamination in food. Food Res Int 2023; 165:112454. [PMID: 36869473 DOI: 10.1016/j.foodres.2022.112454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023]
Abstract
Thermal processing is the most frequently used method to destruct bacteria in food processing. However, insufficient thermal processing may lead to the outbreak of foodborne illness. This study combined thermal processing with thermostable phage to prevent food contamination. The thermostable phages were screened which can retain activity at 70 °C for 1 h. Among them, the polyvalent phage LPEK22 was obtained to lyse Escherichia coli and Salmonella enterica, especially several multi-drug resistant bacteria. In milk (liquid food matrix), LPEK22 significantly reduced the E. coli by 5.00 ± 0.18 log10 CFU/mL and S. enterica by 4.20 ± 0.23 log10 CFU/mL after thermal processing at 63 °C for 30 min. For beef sausage (solid food matrix), LPEK22 significantly reduced the E. coli by 2.34 ± 0.17 log10 CFU/cm2 and S. enterica by 1.54 ± 0.13 log10 CFU/cm2 after thermal processing at 66 °C for 90 s. Genome analysis revealed that LPEK22 was a novel phage with a unique tail spike protein belonging to the family of Ackermannviridae. LPEK22 did not contain lysogenic, drug-resistant, and virulent genes that may compromise the safety of food application. These results determined that LPEK22, a novel polyvalent Ackermannviridae phage, could combine with thermal processing to prevent drug-resistant E. coli and S. enterica both in vitro and in foods.
Collapse
Affiliation(s)
- Yue Zhang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Biomedicine and Health, College of Food Science and Technology, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Geng Zou
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Biomedicine and Health, College of Food Science and Technology, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Md Sharifull Islam
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Biomedicine and Health, College of Food Science and Technology, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Kun Liu
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Biomedicine and Health, College of Food Science and Technology, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Suqiang Xue
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Biomedicine and Health, College of Food Science and Technology, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhiyong Song
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Biomedicine and Health, College of Food Science and Technology, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yingwang Ye
- School of Food Science and Bioengineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Yang Zhou
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yuanguo Shi
- Shenzhen Institute of Quality & Safety Inspection and Research, Shenzhen 518000, China
| | - Shaozhong Wei
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Biomedicine and Health, College of Food Science and Technology, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Biomedicine and Health, College of Food Science and Technology, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Biomedicine and Health, College of Food Science and Technology, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jinquan Li
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Biomedicine and Health, College of Food Science and Technology, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China.
| |
Collapse
|
31
|
Yang B, Wang Y, Gao L, Rao SQ, Zhou WY, Yang ZQ, Jiao XA, Mintah BK, Dabbour M. Isolation and genomic characterization of Vmp-1 using Vibrio mimicus as the host: A novel virulent bacteriophage capable of cross-species lysis against three Vibrio spp. Microb Pathog 2023; 174:105948. [PMID: 36526034 DOI: 10.1016/j.micpath.2022.105948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Vibrio mimicus is a zoonotic pathogen that is widely distributed in aquatic habitats/environments (marine coastal water, estuaries, etc). The development of biocontrol agents for V. mimicus is imperative for the prevention and control of aquatic animal diseases and human food-borne infections. In this study, a broad-spectrum bacteriophage Vmp-1 was isolated from dealt aquatic product in a local market by double-layer agar plate method using V. mimicus CICC21613 as the host bacteria. Results indicated that Vmp-1, which belongs to the family Podoviridae, showed good pH tolerance (pH 3.0-12.0) and thermal stability (30-50 °C). The optimal multiplicity of infection (MOI) of Vmp-1 was 0.001 for a 20-min incubation and 100-min lysis period. Vmp-1 effectively controlled V. mimicus CICC21613 in LBS model (MOI = 0.0001, 0.001, 0.01, 0.1, 1) within 8 h. The full length of the Vmp-1 genome was 43,312 bp, with average GC content of 49.5%, and a total of 44 protein-coding regions. This study provides a novel phage strain that has the highest homology with vB_VpP_HA5 (GenBank: OK585159.1, 95.96%) for the development of biocontrol agents for V. mimicus.
Collapse
Affiliation(s)
- Bin Yang
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Yang Wang
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Lu Gao
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Sheng-Qi Rao
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Wen-Yuan Zhou
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Zhen-Quan Yang
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China; Jiangsu Key Laboratory of Zoonoses, Yangzhou, Jiangsu, 225009, PR China.
| | - Xin-An Jiao
- Jiangsu Key Laboratory of Zoonoses, Yangzhou, Jiangsu, 225009, PR China
| | | | - Mokhtar Dabbour
- Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, Benha University, P.O. Box 13736, Moshtohor, Qaluobia, Egypt
| |
Collapse
|
32
|
Zhang HZ, Shu M, Yang WY, Pan H, Tang MX, Zhao YY, Zhong C, Wu GP. Isolation and characterization of a novel Salmonella bacteriophage JNwz02 capable of lysing Escherichia coli O157:H7 and its antibacterial application in foods. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Sultan-Alolama MI, Amin A, El-Tarabily KA, Vijayan R. Characterization and Genomic Analysis of Escherichia coli O157:H7 Phage UAE_MI-01 Isolated from Birds. Int J Mol Sci 2022; 23:ijms232314846. [PMID: 36499178 PMCID: PMC9737526 DOI: 10.3390/ijms232314846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022] Open
Abstract
Verotoxin-producing Escherichia coli O157:H7 is responsible for the majority of foodborne outbreaks worldwide and may lead to death. Bacteriophages are natural killers of bacteria. All previously reported E. coli O157:H7 phages were isolated from ruminants or swine. Here, we report for the first time a phage isolated from bird feces in the United Arab Emirates (UAE), designated as UAE_MI-01, indicating birds as a good source of phages. Thus, phages could be a tool for predicting the presence of the host bacteria in an animal or the environment. UAE_MI-01 was found to be a lytic phage that was stable at wide ranges of pH, temperature, and chemical disinfectants, and with a burst size of almost 100 plaque-forming units per host cell after a latent period of 20 min and an adsorption rate constant (K) of 1.25 × 10-7 mL min-1. The phage genome was found to be 44,281 bp long with an average GC content of 54.7%. The presence of the phage indicates the presence of the host cell E. coli O157:H7 in wild birds. Therefore, other birds, mainly poultry, could be also investigated for the presence of this pathogenic bacterium. To the best of our knowledge, this is the first report of an E. coli O157:H7 bacteriophage isolated from a bird.
Collapse
Affiliation(s)
- Mohamad Ismail Sultan-Alolama
- Zayed Complex for Herbal Research and Traditional Medicine, Research and Innovation Center, Department of Health, Abu Dhabi P.O. Box 5674, United Arab Emirates
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Amr Amin
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
- Correspondence: (K.A.E.-T.); (R.V.)
| | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- The Big Data Analytics Center, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
- Correspondence: (K.A.E.-T.); (R.V.)
| |
Collapse
|
34
|
Lu YT, Ma Y, Wong CW, Wang S. Characterization and application of bacteriophages for the biocontrol of Shiga-toxin producing Escherichia coli in Romaine lettuce. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
35
|
An in vitro fermentation model to study the impact of bacteriophages targeting Shiga toxin-encoding Escherichia coli on the colonic microbiota. NPJ Biofilms Microbiomes 2022; 8:74. [PMID: 36163472 PMCID: PMC9512901 DOI: 10.1038/s41522-022-00334-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Lytic bacteriophages are considered safe for human consumption as biocontrol agents against foodborne pathogens, in particular in ready-to-eat foodstuffs. Phages could, however, evolve to infect different hosts when passing through the gastrointestinal tract (GIT). This underlines the importance of understanding the impact of phages towards colonic microbiota, particularly towards bacterial families usually found in the colon such as the Enterobacteriaceae. Here we propose in vitro batch fermentation as model for initial safety screening of lytic phages targeting Shiga toxin-producing Escherichia coli (STEC). As inoculum we used faecal material of three healthy donors. To assess phage safety, we monitored fermentation parameters, including short chain fatty acid production and gas production/intake by colonic microbiota. We performed shotgun metagenomic analysis to evaluate the outcome of phage interference with colonic microbiota composition and functional potential. During the 24 h incubation, concentrations of phage and its host were also evaluated. We found the phage used in this study, named E. coli phage vB_EcoS_Ace (Ace), to be safe towards human colonic microbiota, independently of the donors’ faecal content used. This suggests that individuality of donor faecal microbiota did not interfere with phage effect on the fermentations. However, the model revealed that the attenuated STEC strain used as phage host perturbed the faecal microbiota as based on metagenomic analysis, with potential differences in metabolic output. We conclude that the in vitro batch fermentation model used in this study is a reliable safety screening for lytic phages intended to be used as biocontrol agents.
Collapse
|
36
|
Zhu W, Ding Y, Huang C, Wang J, Wang J, Wang X. Genomic characterization of a novel bacteriophage STP55 revealed its prominent capacity in disrupting the dual-species biofilm formed by Salmonella Typhimurium and Escherichia coli O157: H7 strains. Arch Microbiol 2022; 204:597. [PMID: 36056994 DOI: 10.1007/s00203-022-03208-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/21/2022] [Accepted: 08/19/2022] [Indexed: 11/02/2022]
Abstract
Salmonella and Escherichia coli are important foodborne pathogens, forming bacterial biofilms that contribute to their virulence, antimicrobial resistance, and survival on surfaces. Broad lytic phages are promising alternatives to conventional technologies for pathogen biocontrol and reducing biofilms. Herein, we isolated and characterized a novel polyvalent phage STP55 that not only lyse some serotypes of Salmonella, but also some E. coli strains. It had a wide range of pH (4-12) and thermal (30-60 °C) tolerances. The latent time was determined to be 10 min in the one-step growth experiment. Morphological observations by transmission electron microscopy and phylogenetic analysis using terminase gene classified STP55 to family Ackermannviridae in the order Caudovirales, with a complex tail structure. The genome was found to comprise 157,708 bp double-stranded DNA, with 44.57% GC content, 207 predicted ORFs and with no genes associated with antibiotic resistance, toxins, lysogeny, and virulence factors. Particularly, phage STP55 was able to inhibit single- and dual-species biofilms formation by S. Typhimurium ATCC 14028 and E. coli O157: H7, with a reduction percentage of 51.0%, 47.8% and 52.8%, respectively. Moreover, more than 65.0%, 72.9% and 46.2% of an established, single- and dual-species biofilms by S. Typhimurium ATCC 14028 and E. coli O157: H7 were removed after 8 h exposure to the phage STP55, respectively. The elimination effect of STP55 on dual-species biofilm formed on lettuce was further observed by SEM. Overall, our results demonstrated that STP55 is a promising antimicrobial against Salmonella and E. coli.
Collapse
Affiliation(s)
- Wenjuan Zhu
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan, 430070, China.,College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yifeng Ding
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chenxi Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ji Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jia Wang
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan, 430070, China.,College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaohong Wang
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan, 430070, China. .,College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
37
|
Yuanyuan N, Xiaobo Y, Shang W, Yutong Y, Hongrui Z, Chenyu L, Bin X, Xi Z, Chen Z, Zhiqiang S, Jingfeng W, Yun L, Pingfeng Y, Zhigang Q. Isolation and characterization of two homolog phages infecting Pseudomonas aeruginosa. Front Microbiol 2022; 13:946251. [PMID: 35935197 PMCID: PMC9348578 DOI: 10.3389/fmicb.2022.946251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/24/2022] [Indexed: 12/02/2022] Open
Abstract
Bacteriophages (phages) are capable of infecting specific bacteria, and therefore can be used as a biological control agent to control bacteria-induced animal, plant, and human diseases. In this study, two homolog phages (named PPAY and PPAT) that infect Pseudomonas aeruginosa PAO1 were isolated and characterized. The results of the phage plaque assay showed that PPAT plaques were transparent dots, while the PPAY plaques were translucent dots with a halo. Transmission electron microscopy results showed that PPAT (65 nm) and PPAY (60 nm) strains are similar in size and have an icosahedral head and a short tail. Therefore, these belong to the short-tailed phage family Podoviridae. One-step growth curves revealed the latent period of 20 min and burst time of 30 min for PPAT and PPAY. The burst size of PPAT (953 PFUs/infected cell) was higher than that of PPAY (457 PFUs/infected cell). Also, the adsorption rate constant of PPAT (5.97 × 10−7 ml/min) was higher than that of PPAY (1.32 × 10−7 ml/min) at 5 min. Whole-genome sequencing of phages was carried out using the Illumina HiSeq platform. The genomes of PPAT and PPAY have 54,888 and 50,154 bp, respectively. Only 17 of the 352 predicted ORFs of PPAT could be matched to homologous genes of known function. Likewise, among the 351 predicted ORFs of PPAY, only 18 ORFs could be matched to genes of established functions. Homology and evolutionary analysis indicated that PPAT and PPAY are closely related to PA11. The presence of tail fiber proteins in PPAY but not in PPAT may have contributed to the halo effect of its plaque spots. In all, PPAT and PPAY, newly discovered P. aeruginosa phages, showed growth inhibitory effects on bacteria and can be used for research and clinical purposes.
Collapse
Affiliation(s)
- Niu Yuanyuan
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, TianJin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Yang Xiaobo
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, TianJin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Wang Shang
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, TianJin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Yang Yutong
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, TianJin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Zhou Hongrui
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, TianJin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Li Chenyu
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, TianJin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xue Bin
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, TianJin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Zhang Xi
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, TianJin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Zhao Chen
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, TianJin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Shen Zhiqiang
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, TianJin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Wang Jingfeng
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, TianJin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Ling Yun
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
- *Correspondence: Ling Yun,
| | - Yu Pingfeng
- College of Environment and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Qiu Zhigang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Risk Assessment and Control for Environment and Food Safety, TianJin Institute of Environmental and Operational Medicine, Tianjin, China
- Qiu Zhigang,
| |
Collapse
|
38
|
Lu Z, Marchant J, Thompson S, Melgarejo H, Ignatova D, Kopić S, Damaj R, Trejo H, Paramo R, Reed A, Breidt F, Kathariou S. Bacteriophages Isolated From Turkeys Infecting Diverse Salmonella Serovars. Front Microbiol 2022; 13:933751. [PMID: 35865922 PMCID: PMC9294604 DOI: 10.3389/fmicb.2022.933751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Salmonella is one of the leading causes of foodborne illnesses worldwide. The rapid emergence of multidrug-resistant Salmonella strains has increased global concern for salmonellosis. Recent studies have shown that bacteriophages (phages) are novel and the most promising antibacterial agents for biocontrol in foods because phages specifically kill target bacteria without affecting other bacteria, do not alter organoleptic properties or nutritional quality of foods, and are safe and environmentally friendly. Due to the vast variation in Salmonella serotypes, large numbers of different and highly virulent Salmonella phages with broad host ranges are needed. This study isolated 14 Salmonella phages from turkey fecal and cecal samples. Six phages (Φ205, Φ206, Φ207, ΦEnt, ΦMont, and Φ13314) were selected for characterization. These phages were from all three families in the Caudovirales order. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed that each phage had a unique structural protein profile. Each phage had a distinct host range. Φ207 and ΦEnt are both siphophages. They shared eight hosts, including seven different Salmonella serovars and one Shigella sonnei strain. These two phages showed different restriction banding patterns generated through EcoRI or HindIII digestion, but shared three bands from EcoRI digestion. ΦEnt displayed the broadest and very unusual host range infecting 11 Salmonella strains from nine serovars and three Shigella strains from two species, and thus was further characterized. The one-step growth curve revealed that ΦEnt had a short latent period (10 min) and relatively large burst size (100 PFU/infected cell). ΦEnt and its host showed better thermal stabilities in tryptic soy broth than in saline at 63 or 72°C. In the model food system (cucumber juice or beef broth), ΦEnt infection [regardless of the multiplicity of infections (MOIs) of 1, 10, and 100] resulted in more than 5-log10 reduction in Salmonella concentration within 4 or 5 h. Such high lytic activity combined with its remarkably broad and unusual host range and good thermal stability suggested that ΦEnt is a novel Salmonella phage with great potential to be used as an effective biocontrol agent against diverse Salmonella serovars in foods.
Collapse
Affiliation(s)
- Zhongjing Lu
- Department of Molecular and Cellular Biology, College of Science and Mathematics, Kennesaw State University, Kennesaw, GA, United States
| | - John Marchant
- Department of Molecular and Cellular Biology, College of Science and Mathematics, Kennesaw State University, Kennesaw, GA, United States
| | - Samantha Thompson
- Department of Molecular and Cellular Biology, College of Science and Mathematics, Kennesaw State University, Kennesaw, GA, United States
| | - Henry Melgarejo
- Department of Molecular and Cellular Biology, College of Science and Mathematics, Kennesaw State University, Kennesaw, GA, United States
| | - Dzhuliya Ignatova
- Department of Molecular and Cellular Biology, College of Science and Mathematics, Kennesaw State University, Kennesaw, GA, United States
| | - Sandra Kopić
- Department of Molecular and Cellular Biology, College of Science and Mathematics, Kennesaw State University, Kennesaw, GA, United States
| | - Rana Damaj
- Department of Molecular and Cellular Biology, College of Science and Mathematics, Kennesaw State University, Kennesaw, GA, United States
| | - Hedy Trejo
- Department of Molecular and Cellular Biology, College of Science and Mathematics, Kennesaw State University, Kennesaw, GA, United States
| | - Rodrigo Paramo
- Department of Molecular and Cellular Biology, College of Science and Mathematics, Kennesaw State University, Kennesaw, GA, United States
| | - Ashley Reed
- Department of Molecular and Cellular Biology, College of Science and Mathematics, Kennesaw State University, Kennesaw, GA, United States
| | - Fred Breidt
- United States Department of Agriculture, Agricultural Research Service, Washington, DC, United States
- Department of Food, Bioprocessing and Nutrition Sciences, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, United States
| | - Sophia Kathariou
- Department of Food, Bioprocessing and Nutrition Sciences, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
39
|
Jiang L, Jiang Y, Liu W, Zheng R, Li C. Characterization of the Lytic Phage Flora With a Broad Host Range Against Multidrug-Resistant Escherichia coli and Evaluation of Its Efficacy Against E. coli Biofilm Formation. Front Vet Sci 2022; 9:906973. [PMID: 35769322 PMCID: PMC9234663 DOI: 10.3389/fvets.2022.906973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/28/2022] [Indexed: 11/28/2022] Open
Abstract
Escherichia coli is a gram-negative bacterium that is distributed widely throughout the world; it is mainly found in contaminated food, the poultry industry, and animal feces. The emergence of antibiotic-resistant E. coli poses a threat to human and animal health, which has led to renewed interest in phage-based therapy. E. coli biofilm control and prevention are of great importance. In this study, the isolated phages Flora and KM18 were found to belong to the family Myoviridae; the optimal preservation buffer was pH = 6~7, and the phage genome sizes were 168,909 (Flora) and 168,903 (KM18) bp. Phage Flora had a broader lytic spectrum than KM18. Phage Flora had a better antibiofilm effect than kanamycin sulfate in high-concentration E. coli cultures. A combination of the phage Flora and kanamycin sulfate showed better antibiofilm effects than Flora or kanamycin sulfate alone in low-concentration E. coli cultures. These characteristics can serve as a guideline for the selection of effective candidates for phage therapy, in this case antibiotic-resistant E. coli control in the poultry industry.
Collapse
Affiliation(s)
- Liming Jiang
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| | - Yaxian Jiang
- Department of Clinical Laboratory, The First People's Hospital of Yunnan Province, Kunming, China
- Department of Clinical Laboratory, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Wen Liu
- Department of Rheumatology Immunology, The First People's Hospital of Hefei, Hefei, China
| | - Rui Zheng
- Department of Clinical Laboratory, The First People's Hospital of Yunnan Province, Kunming, China
- Department of Clinical Laboratory, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Chenghua Li
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Chenghua Li
| |
Collapse
|
40
|
Application of bacteriophages EP75 and EP335 efficiently reduces viable cell counts of Escherichia coli O157 on beef and vegetables. Food Microbiol 2022; 104:103978. [DOI: 10.1016/j.fm.2022.103978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 11/24/2022]
|
41
|
Yamaki S, Yamazaki K, Kawai Y. Broad host range bacteriophage, EscoHU1, infecting Escherichia coli O157:H7 and Salmonella enterica: Characterization, comparative genomics, and applications in food safety. Int J Food Microbiol 2022; 372:109680. [DOI: 10.1016/j.ijfoodmicro.2022.109680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/18/2022] [Accepted: 04/14/2022] [Indexed: 10/18/2022]
|
42
|
Isolation and characterization of Escherichia coli O157: H7 novel bacteriophage for controlling this food-borne pathogen. Virus Res 2022; 315:198754. [PMID: 35346752 DOI: 10.1016/j.virusres.2022.198754] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 11/20/2022]
Abstract
Escherichia coli O157: H7 is known as a high-risk food-born pathogen, and its removal is vital for maintaining food safety. The increasing trend of food-borne diseases caused by this bacterium and other pathogens indicates the low efficiency of the methods to remove pathogens from foodstuffs. One of the new and effective methods is to use of a bio-control agent called bacteriophage, which has shown good function in eliminating and reducing pathogens. In this study, a novel bacteriophage was isolated and identified from the slaughterhouse wastewater to control E. coli O157: H7. This bacteriophage belonged to the Myoviridae family. Two bacterial genera including E. coli and Salmonella, were allocated to determine the bacteriophage host range; the result showed that the anti- Salmonella effect of phage was low. The phage was stable at high temperature (80°C) and caused an acceptable reduction in the E. coli O157: H7 (4.18 log CFU / mL for 10 hours). The isolated bacteriophage was corroborated to be completely safe based on the whole genome sequencing and lack of any virulence factor from the host bacteria. Considering the characteristics of this phage and its function in vitro, this bacteriophage may be used as an effective bio-control agent in foods with the possible E. coli O157: H7 -induced contamination.
Collapse
|
43
|
Rivera D, Moreno-Switt AI, Denes TG, Hudson LK, Peters TL, Samir R, Aziz RK, Noben JP, Wagemans J, Dueñas F. Novel Salmonella Phage, vB_Sen_STGO-35-1, Characterization and Evaluation in Chicken Meat. Microorganisms 2022; 10:606. [PMID: 35336181 PMCID: PMC8954984 DOI: 10.3390/microorganisms10030606] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/03/2022] [Accepted: 03/10/2022] [Indexed: 02/05/2023] Open
Abstract
Salmonellosis is one of the most frequently reported zoonotic foodborne diseases worldwide, and poultry is the most important reservoir of Salmonella enterica serovar Enteritidis. The use of lytic bacteriophages (phages) to reduce foodborne pathogens has emerged as a promising biocontrol intervention for Salmonella spp. Here, we describe and evaluate the newly isolated Salmonella phage STGO-35-1, including: (i) genomic and phenotypic characterization, (ii) an analysis of the reduction of Salmonella in chicken meat, and (iii) genome plasticity testing. Phage STGO-35-1 represents an unclassified siphovirus, with a length of 47,483 bp, a G + C content of 46.5%, a headful strategy of packaging, and a virulent lifestyle. Phage STGO-35-1 reduced S. Enteritidis counts in chicken meat by 2.5 orders of magnitude at 4 °C. We identified two receptor-binding proteins with affinity to LPS, and their encoding genes showed plasticity during an exposure assay. Phenotypic, proteomic, and genomic characteristics of STGO-35-1, as well as the Salmonella reduction in chicken meat, support the potential use of STGO-35-1 as a targeted biocontrol agent against S. Enteritidis in chicken meat. Additionally, computational analysis and a short exposure time assay allowed us to predict the plasticity of genes encoding putative receptor-binding proteins.
Collapse
Affiliation(s)
- Dácil Rivera
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8320000, Chile;
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago 7550000, Chile;
| | - Andrea I. Moreno-Switt
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago 7550000, Chile;
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile
| | - Thomas G. Denes
- Department of Food Science, University of Tennessee, Knoxville, TN 37996, USA; (T.G.D.); (L.K.H.); (T.L.P.)
| | - Lauren K. Hudson
- Department of Food Science, University of Tennessee, Knoxville, TN 37996, USA; (T.G.D.); (L.K.H.); (T.L.P.)
| | - Tracey L. Peters
- Department of Food Science, University of Tennessee, Knoxville, TN 37996, USA; (T.G.D.); (L.K.H.); (T.L.P.)
| | - Reham Samir
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt; (R.S.); (R.K.A.)
| | - Ramy K. Aziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt; (R.S.); (R.K.A.)
- Microbiology and Immunology Research Program, Children’s Cancer Hospital Egypt 57357, 11617 Cairo, Egypt
| | - Jean-Paul Noben
- Biomedical Research Institute and Transnational University Limburg, Hasselt University, Agoralaan D, 3590 Hasselt, Belgium;
| | | | - Fernando Dueñas
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8320000, Chile;
| |
Collapse
|
44
|
A Polyvalent Broad-Spectrum Escherichia Phage Tequatrovirus EP01 Capable of Controlling Salmonella and Escherichia coli Contamination in Foods. Viruses 2022; 14:v14020286. [PMID: 35215879 PMCID: PMC8877722 DOI: 10.3390/v14020286] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 01/27/2023] Open
Abstract
Salmonella and Escherichia coli (E. coli) food contamination could lead to serious foodborne diseases. The gradual increase in the incidence of foodborne disease invokes new and efficient methods to limit food pathogenic microorganism contamination. In this study, a polyvalent broad-spectrum Escherichia phage named Tequatrovirus EP01 was isolated from pig farm sewage. It could lyse both Salmonella Enteritidis (S. Enteritidis) and E. coli and exhibited broad host range. EP01 possessed a short latent period (10 min), a large burst size (80 PFU/cell), and moderate pH stability (4–10) and appropriate thermal tolerance (30–80 °C). Electron microscopy and genome sequence revealed that EP01 belonged to T4-like viruses genus, Myoviridae family. EP01 harbored 12 CDSs associated with receptor-binding proteins and lacked virulence genes and drug resistance genes. We tested the inhibitory effect of EP01 on S. Enteritidis, E. coli O157:H7, E. coli O114:K90 (B90), and E. coli O142:K86 (B) in liquid broth medium (LB). EP01 could significantly reduce the counts of all tested strains compared with phage-free groups. We further examined the effectiveness of EP01 in controlling bacterial contamination in two kinds of foods (meat and milk) contaminated with S. Enteritidis, E. coli O157:H7, E. coli O114:K90 (B90), and E. coli O142:K86 (B), respectively. EP01 significantly reduced the viable counts of all the tested bacteria (2.18–6.55 log10 CFU/sample, p < 0.05). A significant reduction of 6.55 log10 CFU/cm2 (p < 0.001) in bacterial counts on the surface of meat was observed with EP01 treatment. Addition of EP01 at MOI of 1 decreased the counts of bacteria by 4.3 log10 CFU/mL (p < 0.001) in milk. Generally, the inhibitory effect exhibited more stable at 4 °C than that at 28 °C, whereas the opposite results were observed in milk. The antibacterial effects were better at MOI of 1 than that at MOI of 0.001. These results suggests that phage EP01-based method is a promising strategy of controlling Salmonella and Escherichia coli pathogens to limit microbial food contamination.
Collapse
|
45
|
Li L, Yu M, Yang C, Deng C, Ma L, Liu Y. Effects of abiotic factors on the stability and infectivity of polyvalent coliphage. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:141-151. [PMID: 35050872 DOI: 10.2166/wst.2021.505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bacteriophage has attracted growing interest as a promising therapeutic agent for pathogenic bacteria, especially for antibiotic-resistant bacteria. However, the various abiotic conditions could impact the stability of phages and further threat host-virus interactions. Here, we investigated the stability and lytic activity of virulent polyvalent coliphage (named PE1) by double-layer plaque assay. PE1 can efficiently infect both the drug-sensitive Escherichia coli K12 and multidrug-resistant E. coli NDM-1 even after prolonged storage at 4 °C for up to two months. Results showed that PE1 exhibits an outstanding stability to infect E. coli strains under a wide range of thermal (4 °C-60 °C) and pH (4-11) conditions, which covers the thermal and pH variations of most wastewater treatment plants. Moreover, PE1 exhibited high resistibility to heavy metals exposure including Cu2+, Cd2+, Co2+, and Cr3+ at the concentrations below 0.5 mM, and an excellent resistant ability to the variation of ionic strength, which still retained strong infectious ability even treated with saturated sodium chloride solution (350 g/L). This work shows that polyvalent phage PE1 has a strong adaptive capacity to various abiotic factors and should be a good candidate of being an antibacterial agent, especially for antibiotic-resistant bacteria control in sewage.
Collapse
Affiliation(s)
- Lingli Li
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China E-mail: ; Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China
| | - Ming Yu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China E-mail:
| | - Chao Yang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China E-mail:
| | - Chunping Deng
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China E-mail:
| | - Lili Ma
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China E-mail:
| | - Yucheng Liu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China E-mail: ; Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China
| |
Collapse
|
46
|
Tackling Vibrio parahaemolyticus in ready-to-eat raw fish flesh slices using lytic phage VPT02 isolated from market oyster. Food Res Int 2021; 150:110779. [PMID: 34865794 DOI: 10.1016/j.foodres.2021.110779] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 09/19/2021] [Accepted: 10/18/2021] [Indexed: 01/21/2023]
Abstract
The opportunistic pathogen V. parahaemolyticus is a major causative agent for seafood-borne illness worldwide. It also causes severe vibriosis in aquaculture animals, affecting seafood production with huge economic loss. These issues are getting worse due to the current global warming in oceans, spread of antibiotic resistance, and changes in consumer preference toward ready-to-eat (RTE) food items including seafood. To answer the urgent need for sustainable biocontrol agents against V. parahaemolyticus, we isolated and characterized a novel lytic bacteriophage VPT02 from market oyster. VPT02 lysed antibiotic resistant V. parahaemolyticus strains including FORC_023. Moreover, it exhibited notable properties as a biocontrol agent suitable for seafood-related settings, like short eclipse/latent periods, high burst size, broad thermal and pH stability, and no toxin/antibiotic resistance genes in the genome. Further comparative genomic analysis with the previously reported homologue phage pVp-1 revealed that VPT02 additionally possesses genes related to the nucleotide scavenging pathway, presumably enabling the phage to propagate quickly. Consistent with its strong in vitro bacteriolytic activity, treatment of only a small quantity of VPT02 (multiplicity of infection of 10) significantly increased the survival rate of V. parahaemolyticus-infected brine shrimp (from 16.7% to 46.7%). When applied to RTE raw fish flesh slices, the same quantity of VPT02 achieved up to 3.9 log reduction of spiked V. parahaemolyticus compared with the phage untreated control. Taken together, these results suggest that VPT02 may be a sustainable anti-V. parahaemolyticus agent useful in seafood-related settings including for RTE items.
Collapse
|
47
|
Improved bactericidal efficacy and thermostability of Staphylococcus aureus-specific bacteriophage SA3821 by repeated sodium pyrophosphate challenges. Sci Rep 2021; 11:22951. [PMID: 34824363 PMCID: PMC8616913 DOI: 10.1038/s41598-021-02446-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/16/2021] [Indexed: 12/23/2022] Open
Abstract
As antibiotic resistance is being a threat to public health worldwide, bacteriophages are re-highlighted as alternative antimicrobials to fight with pathogens. Various wild-type phages isolated from diverse sources have been tested, but potential mutant phages generated by genome engineering or random mutagenesis are drawing increasing attention. Here, we applied a chelating agent, sodium pyrophosphate, to the staphylococcal temperate Siphoviridae phage SA3821 to introduce random mutations. Through 30 sequential sodium pyrophosphate challenges and random selections, the suspected mutant phage SA3821M was isolated. SA3821M maintained an intact virion morphology, but exhibited better bactericidal activity against its host Staphylococcous aureus CCARM 3821 for up to 17 h and thermostability than its parent, SA3821. Sodium pyrophosphate-mediated mutations in SA3821M were absent in lysogenic development genes but concentrated (83.9%) in genes related to the phage tail, particularly in the tail tape measure protein, indicating that changes in the tail module might have been responsible for the altered traits. This intentional random mutagenesis through controlled treatments with sodium pyrophosphate could be applied to other phages as a simple but potent method to improve their traits as alternative antimicrobials.
Collapse
|
48
|
Characterization of a New and Efficient Polyvalent Phage Infecting E. coli O157:H7, Salmonella spp., and Shigella sonnei. Microorganisms 2021; 9:microorganisms9102105. [PMID: 34683426 PMCID: PMC8540833 DOI: 10.3390/microorganisms9102105] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/27/2021] [Accepted: 10/05/2021] [Indexed: 11/17/2022] Open
Abstract
Ongoing outbreaks of foodborne diseases remain a significant public health concern. Lytic phages provide promising attributes as biocontrol agents. This study characterized KFS-EC3, a polyvalent and lytic phage, which was isolated from slaughterhouse sewage and purified by cesium chloride density centrifugation. Host range and efficiency of plating analyses revealed that KFS-EC3 is polyvalent and can efficiently infect E. coli O157:H7, Salmonella spp., and Shigella sonnei. KFS-EC3 had a latent time of 20 min and burst size of ~71 phages/infected cell. KFS-EC3 was stable and infectious following storage at a pH range of 3 to 11 and a temperature range of -70 °C to 60 °C. KFS-EC3 could inhibit E. coli O157:H7 growth by 2 logs up to 52 h even at the lowest MOI of 0.001. Genomic analysis of KFS-EC3 revealed that it consisted of 167,440 bp and 273 ORFs identified as functional genes, without any genes associated with antibiotic resistance, virulence, allergenicity, and lysogenicity. This phage was finally classified into the Tequatrovirus genus of the Myoviridae family. In conclusion, KFS-EC3 could simultaneously infect E. coli O157:H7, S. sonnei, and Salmonella spp. with the lowest MOI values over long periods, suggesting its suitability for simultaneous pathogen control in foods.
Collapse
|
49
|
The lytic siphophage vB_StyS-LmqsSP1 reduces Salmonella Typhimurium isolates on chicken skin. Appl Environ Microbiol 2021; 87:e0142421. [PMID: 34586906 DOI: 10.1128/aem.01424-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Phage-based biocontrol of bacteria is considered as a natural approach to combat food-borne pathogens. Salmonella spp. are notifiable and highly prevalent pathogens that cause foodborne diseases globally. In this study, six bacteriophages were isolated and further characterized that infect food-derived Salmonella isolates from different meat sources. The siphovirus VB_StyS-LmqsSP1, which was isolated from a cow´s nasal swab, was further subjected to in-depth characterization. Phage-host interaction investigations in liquid medium showed that vB_StyS-LmqsSP1 can suppress the growth of Salmonella spp. isolates at 37°C for ten hours and reduce the bacterial titer at 4°C significantly. A reduction of 1.4 to 3 log units was observed in investigations with two food-derived Salmonella isolates and one reference strain under cooling conditions using MOIs of 104 and 105. Phage application on chicken skin resulted in a reduction of about 2 log units in the tested Salmonella isolates from the first three hours throughout a one-week experiment at cooling temperature and an MOI of 105. The one-step growth curve analysis using vB_StyS-LmqsSP1 demonstrated a 60-min latent period and a burst size of 50-61 PFU/infected cell for all tested hosts. Furthermore, the genome of the phage was determined to be free from genes causing undesired effects. Based on the phenotypic and genotypic properties, LmqsSP1 was assigned as a promising candidate for biocontrol of Salmonella Typhimurium in food. Importance: Salmonella enterica is one of the major global causes of foodborne enteritis in humans. The use of chemical sanitizers for reducing bacterial pathogens in the food chain can result in the spread of bacterial resistance. Targeted and clean label intervention strategies can reduce Salmonella contamination in food. The significance of our research demonstrates the suitability of a bacteriophage (vB_StyS-LmqsSP1) for biocontrol of Salmonella enterica serovar Typhimurium on poultry due to its lytic efficacy under conditions prevailing in food production environments.
Collapse
|
50
|
Sørensen AN, Woudstra C, Sørensen MCH, Brøndsted L. Subtypes of tail spike proteins predicts the host range of Ackermannviridae phages. Comput Struct Biotechnol J 2021; 19:4854-4867. [PMID: 34527194 PMCID: PMC8432352 DOI: 10.1016/j.csbj.2021.08.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 12/01/2022] Open
Abstract
Phages belonging to the Ackermannviridae family encode up to four tail spike proteins (TSPs), each recognizing a specific receptor of their bacterial hosts. Here, we determined the TSPs diversity of 99 Ackermannviridae phages by performing a comprehensive in silico analysis. Based on sequence diversity, we assigned all TSPs into distinctive subtypes of TSP1, TSP2, TSP3 and TSP4, and found each TSP subtype to be specifically associated with the genera (Kuttervirus, Agtrevirus, Limestonevirus, Taipeivirus) of the Ackermannviridae family. Further analysis showed that the N-terminal XD1 and XD2 domains in TSP2 and TSP4, hinging the four TSPs together, are preserved. In contrast, the C-terminal receptor binding modules were only conserved within TSP subtypes, except for some Kuttervirus TSP1s and TSP3s that were similar to specific TSP4s. A conserved motif in TSP1, TSP3 and TSP4 of Kuttervirus phages may allow recombination between receptor binding modules, thus altering host recognition. The receptors for numerous uncharacterized phages expressing TSPs in the same subtypes were predicted using previous host range data. To validate our predictions, we experimentally determined the host recognition of three of the four TSPs expressed by kuttervirus S117. We confirmed that S117 TSP1 and TSP2 bind to their predicted host receptors, and identified the receptor for TSP3, which is shared by 51 other Kuttervirus phages. Kuttervirus phages were thus shown encode a vast genetic diversity of potentially exchangeable TSPs influencing host recognition. Overall, our study demonstrates that comprehensive in silico and host range analysis of TSPs can predict host recognition of Ackermannviridae phages.
Collapse
Key Words
- ANI, Average nucleotide identity
- Ackermannviridae family
- Bacteriophage
- CPS, Capsular polysaccharide
- EOP, Efficiency of plating
- Escherichia coli O:157
- Host range
- LB, Luria-Bertani
- LPS, Lipopolysaccharide
- NCBI, National Center for Biotechnology Information
- O-antigen
- ORF, Open reading frame
- PFU, Plaque formation unit
- RBP, Receptor binding protein
- Receptor-binding proteins
- Salmonella
- TSP, Tail spike protein
- Tail spike proteins
- VriC, Virulence-associated protein
Collapse
Affiliation(s)
- Anders Nørgaard Sørensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | - Cedric Woudstra
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | - Martine C Holst Sørensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | - Lone Brøndsted
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| |
Collapse
|