1
|
Friedman SD, Cooper E, Blackwell A, Elliott MA, Weinstein M, Cara J, Wan Y. A multi-tiered approach to assess fecal pollution in an urban watershed: Bacterial and viral indicators and sediment microbial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174141. [PMID: 38901597 PMCID: PMC11247622 DOI: 10.1016/j.scitotenv.2024.174141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Development of effective pollution mitigation strategies require an understanding of the pollution sources and factors influencing fecal pollution loading. Fecal contamination of Turkey Creek in Gulfport, Mississippi, one of the nation's most endangered creeks, was studied through a multi-tiered approach. Over a period of approximately two years, four stations across the watershed were analyzed for nutrients, enumeration of E. coli, male-specific coliphages and bioinformatic analysis of sediment microbial communities. The results demonstrated that two stations, one adjacent to a lift station and one just upstream from the wastewater-treatment plant, were the most impacted. The station adjacent to land containing a few livestock was the least impaired. While genotyping of male-specific coliphage viruses generally revealed a mixed viral signature (human and other animals), fecal contamination at the station near the wastewater treatment plant exhibited predominant impact by municipal sewage. Fecal indicator loadings were positively associated with antecedent rainfall for three of four stations. No associations were noted between fecal indicator loadings and any of the nutrients. Taxonomic signatures of creek sediment were unique to each sample station, but the sediment microbial community did overlap somewhat following major rain events. No presence of Escherichia coli (E. coli) or enterococci were found in the sediment. At some of the stations it was evident that rainfall was not always the primary driver of fecal transport. Repeated monitoring and analysis of a variety of parameters presented in this study determined that point and non-point sources of fecal pollution varied spatially in association with treated and/or untreated sewage.
Collapse
Affiliation(s)
- Stephanie D Friedman
- US Environmental Protection Agency, Center for Environmental Measurement and Modeling, Gulf Breeze, FL, USA.
| | - Emilie Cooper
- US Environmental Protection Agency, Center for Environmental Measurement and Modeling, Gulf Breeze, FL, USA
| | - Aaron Blackwell
- Department of Civil Construction and Environmental Engineering, University of Alabama, Tuscaloosa, AL, USA
| | - Mark A Elliott
- Department of Civil Construction and Environmental Engineering, University of Alabama, Tuscaloosa, AL, USA
| | | | - Jared Cara
- Zymo Research Corporation, Irvine, CA, USA
| | - Yongshan Wan
- US Environmental Protection Agency, Center for Environmental Measurement and Modeling, Gulf Breeze, FL, USA
| |
Collapse
|
2
|
Lortholarie M, Do Nascimento J, Bonnard I, Catteau A, Le Guernic A, Boudaud N, Gantzer C, Guérin S, Geffard A, Palos-Ladeiro M. Assessment of the viral contamination of fecal origin over a wide geographical area using an active approach with Dreissena polymorpha. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122122. [PMID: 39168003 DOI: 10.1016/j.jenvman.2024.122122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/14/2024] [Accepted: 08/04/2024] [Indexed: 08/23/2024]
Abstract
Biomonitoring appears to be a key approach to assess chemical or microbiological contaminations. The freshwater mussel, Dreissena polymorpha (D. polymorpha), is a suitable tool already used to monitor chemical and, more recently, microbiological pollution. In the present study, we used this sentinel species to monitor viral contamination of fecal origin over a wide geographical distribution. An active approach was implemented based on caging of calibrated and pathogen-free organisms with the same exposure conditions, allowing spatio-temporal comparisons between different water bodies. In addition, different types of sites were selected to investigate the range of environmental concentrations that D. polymorpha are able to translate. Different viral genome targets were measured: norovirus genogroup I and II (NoV GI and GII) and F-specific RNA bacteriophages belonging to the genogroup -I and -II (FRNAPH-I and -II). Total infectious FRNAPH were also monitored. D. polymorpha was able to translate a wide range of concentrations for all the viral targets studied, meaning that this sentinel species can be used for both low and highly anthropised sites. Moreover, D. polymorpha caging proved effective in achieving gradients of viral contamination of fecal origin pressure and to highlight the contribution of tributaries to the main rivers. D. polymorpha provided spatial and temporal variations of the viral contamination. It allowed to highlight the prevalence of the FRNAPH-I and -II genogroups according to the caging site. FRNAPH-II was found to be dominant in urban areas and FRNAPH-I in rural areas. This strategy uses the caging of the sentinel species D. polymorpha on selected sites with standardised analysis methods has proven to be a promising tool for characterizing viral contamination at both large and very fine scales.
Collapse
Affiliation(s)
- Marjorie Lortholarie
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO Unité Stress Environnementaux et, BIOsurveillance des milieux aquatiques, UFR Sciences Exactes et Naturelles, Campus du Moulin de la Housse, BP 1039 51687, Reims, CEDEX, France
| | - Julie Do Nascimento
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO Unité Stress Environnementaux et, BIOsurveillance des milieux aquatiques, UFR Sciences Exactes et Naturelles, Campus du Moulin de la Housse, BP 1039 51687, Reims, CEDEX, France
| | - Isabelle Bonnard
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO Unité Stress Environnementaux et, BIOsurveillance des milieux aquatiques, UFR Sciences Exactes et Naturelles, Campus du Moulin de la Housse, BP 1039 51687, Reims, CEDEX, France
| | - Audrey Catteau
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO Unité Stress Environnementaux et, BIOsurveillance des milieux aquatiques, UFR Sciences Exactes et Naturelles, Campus du Moulin de la Housse, BP 1039 51687, Reims, CEDEX, France
| | - Antoine Le Guernic
- Université catholique de l'ouest, Biology of Organisms Stress Health Environment (BIOSSE), Angers, France
| | | | - Christophe Gantzer
- LCPME UMR 7564, Université de Lorraine - CNRS, 405 rue de Vandoeuvre, 54600, Villers-lès-Nancy, France
| | - Sabrina Guérin
- Service public de l'assainissement francilien (SIAAP), Direction Innovation, Colombes, France
| | - Alain Geffard
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO Unité Stress Environnementaux et, BIOsurveillance des milieux aquatiques, UFR Sciences Exactes et Naturelles, Campus du Moulin de la Housse, BP 1039 51687, Reims, CEDEX, France
| | - Mélissa Palos-Ladeiro
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO Unité Stress Environnementaux et, BIOsurveillance des milieux aquatiques, UFR Sciences Exactes et Naturelles, Campus du Moulin de la Housse, BP 1039 51687, Reims, CEDEX, France.
| |
Collapse
|
3
|
Tang Y, Sasaki K, Ihara M, Sugita D, Yamashita N, Takeuchi H, Tanaka H. Evaluation of virus removal in membrane bioreactor (MBR) and conventional activated sludge (CAS) processes based on long-term monitoring at two wastewater treatment plants. WATER RESEARCH 2024; 253:121197. [PMID: 38341968 DOI: 10.1016/j.watres.2024.121197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 02/13/2024]
Abstract
The membrane bioreactor (MBR) process always offers better wastewater treatment than conventional activated sludge (CAS) treatment. However, the difference in their efficacy of virus reduction remains unknown. To investigate this, we monitored virus concentrations before and after MBR and CAS processes over 2 years. Concentrations of norovirus genotypes I and II (NoV GI and GII), aichivirus (AiV), F-specific RNA phage genotypes I, II, and III (GI-, GII-, and GIII-FRNAPHs), and pepper mild mottle virus (PMMoV) were measured by a quantitative polymerase chain reaction (qPCR) method at two municipal wastewater treatment plants (WWTPs A and B) in Japan. Virus concentration datasets containing left-censored data were estimated by using both maximum likelihood estimation (MLE) and robust regression on order statistics (rROS) approaches. PMMoV was the most prevalent at both WWTPs, with median concentrations of 7.5 to 8.8 log10 copies/L before treatment. Log10 removal values (LRVs) of all viruses based on means and standard deviations of concentrations before and after treatment were consistently higher following MBR than following CAS. We used NoV GII as a model pathogen in a quantitative microbial risk assessment of the treated water, and we estimated the additional reductions required following MBR and CAS processes to meet the guideline of 10-6 DALYs pppy for safe wastewater reuse.
Collapse
Affiliation(s)
- Yu Tang
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, Shiga 520-0811, Japan.
| | - Kenta Sasaki
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, Shiga 520-0811, Japan
| | - Masaru Ihara
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, Shiga 520-0811, Japan; Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi 783-8502, Japan.
| | - Daichi Sugita
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, Shiga 520-0811, Japan
| | - Naoyuki Yamashita
- Course of Rural Engineering, Department of Science and Technology for Biological Resources and Environment, Faculty of Agriculture, Graduate School of Agriculture, Ehime University, 3-5-7, Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Haruka Takeuchi
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, Shiga 520-0811, Japan
| | - Hiroaki Tanaka
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, Shiga 520-0811, Japan
| |
Collapse
|
4
|
Menon S, Wani H, Desai D, Bhathena Z, Desai N, Shrivastava S. Occurrence of F-Specific Bacteriophages in Untreated and Treated Wastewaters in Mumbai. Indian J Microbiol 2024; 64:254-259. [PMID: 38468726 PMCID: PMC10924809 DOI: 10.1007/s12088-023-01181-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/11/2023] [Indexed: 03/13/2024] Open
Abstract
F + coliphages are considered as potential enteric viral indicators in water systems as a tool for on-site validation of wastewater treatment processes. The present study evaluated the occurrence of F + coliphages in wastewaters collected from three wastewater treatment plants (WWTPs) in Mumbai city, to assess this potential. The detection and enumeration of F + coliphages was carried out from WWTPs Z1, Z3 and Z5 using the ISO 10705-1 and U.S EPA 1601 methods. F + coliphages were majorly detected in untreated wastewater samples followed by a few secondary treated samples in WWTP-Z1 and Z3 and one tertiary treated sample from Z1, these differences were found to be statistically significant. The difference in F + coliphage levels between the treatment stages highlight their potential as indicators for monitoring the efficiency of wastewater treatment. The overall positivity of F + coliphage was 35.09% for Salmonella. typhimurium WG49 host (as per ISO 10705-1), was higher by 10.52% for Escherichia coli Famp HS host (as per U.S EPA 1601) (45.61%), highlighting the efficiency of the latter host over the former in F + coliphage detection. Significant difference in F + coliphage counts using the two bacterial hosts were observed in WWTP-Z3 (p = 0.001) and WWTP-Z1 (p = 0.047) but not in WWTP-Z5 (p = 0.332). Supplementary Information The online version contains supplementary material available at 10.1007/s12088-023-01181-7.
Collapse
Affiliation(s)
- Smita Menon
- Dept. of Microbiology, Bhavan’s College, Andheri West, Mumbai, 400058 Maharashtra India
| | - Hima Wani
- Bhavan’s Research Center, Bhavan’s College Campus, Andheri West, Mumbai, 400058 Maharashtra India
| | - Dipen Desai
- Bhavan’s Research Center, Bhavan’s College Campus, Andheri West, Mumbai, 400058 Maharashtra India
| | - Zarine Bhathena
- Dept. of Microbiology, Bhavan’s College, Andheri West, Mumbai, 400058 Maharashtra India
| | - Nishith Desai
- Bhavan’s Research Center, Bhavan’s College Campus, Andheri West, Mumbai, 400058 Maharashtra India
| | - Sandhya Shrivastava
- Bhavan’s Research Center, Bhavan’s College Campus, Andheri West, Mumbai, 400058 Maharashtra India
| |
Collapse
|
5
|
Bichet MC, Gardette M, Das Neves B, Challant J, Erbs A, Roman V, Robin M, La Carbona S, Gantzer C, Boudaud N, Bertrand I. A new understanding of somatic coliphages belonging to the Microviridae family in urban wastewater. WATER RESEARCH 2024; 249:120916. [PMID: 38043350 DOI: 10.1016/j.watres.2023.120916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/08/2023] [Accepted: 11/22/2023] [Indexed: 12/05/2023]
Abstract
Somatic coliphages (SC) and F-specific RNA coliphages (FRNAPH) have been included in regulations or guidelines by several developed countries as a way of monitoring water safety and the microbiological quality of shellfish harvesting waters. SC are highly diverse in their morphology, size and genome. The Microviridae family contains three genera of phages (Alphatrevirus, Gequatrovirus, and Sinsheimervirus), all having a capsid of similar morphology (icosahedral) and size (25-30 nm in diameter) to that of common pathogenic enteric viruses. Three PCR assays specific for each genus of Microviridae were designed to study these phages in raw and treated wastewater (WW) in order to gain knowledge about the diversity and prevalence of Microviridae among SC, as well as their inactivation and removal during WW treatments. Among the four wastewater treatment plants (WWTPs) monitored here, two WWTPs applied disinfection by UV light as tertiary treatment. First, we noticed that Microviridae represented 10 to 30 % of infectious SC in both raw and treated WW. Microviridae appeared to behave in the same way as all SC during these WW treatments. As expected, the highest inactivation, at least 4 log10, was achieved for infectious Microviridae and SC in both WWTPs using UV disinfection. PCR assays showed that the highest removal of Microviridae reached about 4 log10, but the phage removal can vary greatly between WWTPs using similar treatments. This work forms the basis for a broader evaluation of Microviridae as a viral indicator of water treatment efficiency and WW reuse.
Collapse
Affiliation(s)
- Marion C Bichet
- Food Safety Department, ACTALIA, Saint-Lô F-50000, France; Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France
| | - Marion Gardette
- Food Safety Department, ACTALIA, Saint-Lô F-50000, France; Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France
| | | | - Julie Challant
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France
| | - Anaïs Erbs
- Food Safety Department, ACTALIA, Saint-Lô F-50000, France; Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France
| | - Véronica Roman
- Université de Lorraine, CNRS, LCPME, F-54000 Nancy, France
| | - Maëlle Robin
- Food Safety Department, ACTALIA, Saint-Lô F-50000, France
| | | | | | | | | |
Collapse
|
6
|
Do Nascimento J, Bichet M, Challant J, Loutreul J, Petinay S, Perrotte D, Roman V, Cauvin E, Robin M, Ladeiro MP, La Carbona S, Blin JL, Gantzer C, Geffard A, Bertrand I, Boudaud N. Toward better monitoring of human noroviruses and F-specific RNA bacteriophages in aquatic environments using bivalve mollusks and passive samplers: A case study. WATER RESEARCH 2023; 243:120357. [PMID: 37549447 DOI: 10.1016/j.watres.2023.120357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/09/2023]
Abstract
Monitoring pathogenic enteric viruses in continental and marine water bodies is essential to control the viral contamination of human populations. Human Noroviruses (NoV) are the main enteric viruses present in surface waters and foodstuff. In a context of global change, it is currently a challenge to improve the management of viral pollutions in aquatic environments and thereby limit the contamination of vulnerable water bodies or foodstuffs. The aim of this study is to evaluate the potential of specific accumulation systems for improving the detection of NoV in water bodies, compared to direct water analyses. Passive samplers (Zetapor filters) and three species of bivalve molluscan shellfish (BMS) (Dreissena polymorpha, Mytilus edulis and Crassostreas gigas) were used as accumulation systems to determine their performance in monitoring continental and marine waters for viruses. F-specific RNA bacteriophages (FRNAPH) were also analyzed since they are described as indicators of NoV hazard in many studies. During a one-year study in a specific area frequently affected by fecal pollution, twelve campaigns of exposure of passive samplers and BMS in continental and coastal waters were conducted. Using suitable methods, NoV (genome) and FRNAPH (infectious and genome) were detected in these accumulation systems and in water at the same time points to determine the frequency of detection but also to gain a better understanding of viral pollution in this area. The reliability of FRNAPH as a NoV indicator was also investigated. Our results clearly showed that BMS were significantly better than passive samplers and direct water analyses for monitoring NoV and FRNAPH contamination in water bodies. A dilution of viral pollution between the continental and the coastal area was observed and can be explained by the distance from the source of the pollution. Viral pollution is clearly greater during the winter period, and stakeholders should take this into consideration in their attempts to limit the contamination of food and water. A significant correlation was once again shown between NoV and FRNAPH genomes in BMS, confirming the reliability of FRNAPH as a NoV indicator. Moreover, a strong correlation was observed between NoV genomes and infectious FRNAPH, suggesting recent viral pollution since infectious particles had not been inactivated at sufficient levels in the environment. More generally, this study shows the value of using BMS as an active method for improving knowledge on the behavior of viral contamination in water bodies, the ranking of the contamination sources, and the vulnerability of downstream water bodies.
Collapse
Affiliation(s)
- Julie Do Nascimento
- Université de Reims Champagne-Ardenne, UMR-I 02 SEBIO, F-51687 Reims, France
| | - Marion Bichet
- Actalia, Food Safety Department, F-50000 Saint-Lô, France; LCPME, UMR 7564, CNRS, Université de Lorraine, F-54000 Nancy, France
| | - Julie Challant
- LCPME, UMR 7564, CNRS, Université de Lorraine, F-54000 Nancy, France
| | - Julie Loutreul
- Actalia, Food Safety Department, F-50000 Saint-Lô, France
| | | | | | - Véronica Roman
- LCPME, UMR 7564, CNRS, Université de Lorraine, F-54000 Nancy, France
| | - Elodie Cauvin
- LABEO Manche, Virology Department, F-50000 Saint-Lô, France
| | - Maëlle Robin
- Actalia, Food Safety Department, F-50000 Saint-Lô, France
| | | | | | | | | | - Alain Geffard
- Université de Reims Champagne-Ardenne, UMR-I 02 SEBIO, F-51687 Reims, France
| | - Isabelle Bertrand
- LCPME, UMR 7564, CNRS, Université de Lorraine, F-54000 Nancy, France
| | | |
Collapse
|
7
|
Potapov S, Gorshkova A, Krasnopeev A, Podlesnaya G, Tikhonova I, Suslova M, Kwon D, Patrushev M, Drucker V, Belykh O. RNA-Seq Virus Fraction in Lake Baikal and Treated Wastewaters. Int J Mol Sci 2023; 24:12049. [PMID: 37569424 PMCID: PMC10418309 DOI: 10.3390/ijms241512049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
In this study, we analyzed the transcriptomes of RNA and DNA viruses from the oligotrophic water of Lake Baikal and the effluent from wastewater treatment plants (WWTPs) discharged into the lake from the towns of Severobaikalsk and Slyudyanka located on the lake shores. Given the uniqueness and importance of Lake Baikal, the issues of biodiversity conservation and the monitoring of potential virological hazards to hydrobionts and humans are important. Wastewater treatment plants discharge treated effluent directly into the lake. In this context, the identification and monitoring of allochthonous microorganisms entering the lake play an important role. Using high-throughput sequencing methods, we found that dsDNA-containing viruses of the class Caudoviricetes were the most abundant in all samples, while Leviviricetes (ssRNA(+) viruses) dominated the treated water samples. RNA viruses of the families Nodaviridae, Tombusviridae, Dicitroviridae, Picobirnaviridae, Botourmiaviridae, Marnaviridae, Solemoviridae, and Endornavirida were found in the pelagic zone of three lake basins. Complete or nearly complete genomes of RNA viruses belonging to such families as Dicistroviridae, Marnaviridae, Blumeviridae, Virgaviridae, Solspiviridae, Nodaviridae, and Fiersviridae and the unassigned genus Chimpavirus, as well as unclassified picorna-like viruses, were identified. In general, the data of sanitary/microbiological and genetic analyses showed that WWTPs inadequately purify the discharged water, but, at the same time, we did not observe viruses pathogenic to humans in the pelagic zone of the lake.
Collapse
Affiliation(s)
- Sergey Potapov
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia (O.B.)
| | - Anna Gorshkova
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia (O.B.)
| | - Andrey Krasnopeev
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia (O.B.)
| | - Galina Podlesnaya
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia (O.B.)
| | - Irina Tikhonova
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia (O.B.)
| | - Maria Suslova
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia (O.B.)
| | - Dmitry Kwon
- National Research Center Kurchatov Institute, Academician Kurchatov Square 1, 123098 Moscow, Russia
| | - Maxim Patrushev
- National Research Center Kurchatov Institute, Academician Kurchatov Square 1, 123098 Moscow, Russia
| | - Valentin Drucker
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia (O.B.)
| | - Olga Belykh
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya 3, 664033 Irkutsk, Russia (O.B.)
| |
Collapse
|
8
|
Meuchi Y, Nakada M, Kuroda K, Hanamoto S, Hata A. Applicability of F-specific bacteriophage subgroups, PMMoV and crAssphage as indicators of source specific fecal contamination and viral inactivation in rivers in Japan. PLoS One 2023; 18:e0288454. [PMID: 37450468 PMCID: PMC10348522 DOI: 10.1371/journal.pone.0288454] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023] Open
Abstract
To date, several microbes have been proposed as potential source-specific indicators of fecal pollution. 16S ribosomal RNA gene markers of the Bacteroidales species are the most widely applied due to their predominance in the water environment and source specificity. F-specific bacteriophage (FPH) subgroups, especially FRNA phage genogroups, are also known as potential source-specific viral indicators. Since they can be quantified by both culture-based and molecular assays, they may also be useful as indicators for estimating viral inactivation in the environment. Pepper mild mottle virus (PMMoV) and crAssphage, which are frequently present in human feces, are also potentially useful as human-specific indicators of viral pollution. This study aimed to evaluate the applicability of FPH subgroups, PMMoV, and crAssphage as indicators of source-specific fecal contamination and viral inactivation using 108 surface water samples collected at five sites affected by municipal and pig farm wastewater. The host specificity of the FPH subgroups, PMMoV, and crAssphage was evaluated by principal component analysis (PCA) along with other microbial indicators, such as 16S ribosomal RNA gene markers of the Bacteroidales species. The viabilities (infectivity indices) of FRNA phage genogroups were estimated by comparing their numbers determined by infectivity-based and molecular assays. The PCA explained 58.2% of the total information and classified microbes into three groups: those considered to be associated with pig and human fecal contamination and others. Infective and gene of genogroup IV (GIV)-FRNA phage were assumed to be specific to pig fecal contamination, while the genes of GII-FRNA phage and crAssphage were identified to be specific to human fecal contamination. However, PMMoV, infective GI-FRNA phage, and FDNA phage were suggested to not be specific to human or pig fecal contamination. FRNA phage genogroups, especially the GIV-FRNA phage, were highly inactivated in the warm months in Japan (i.e., July to November). Comparing the infectivity index of several FRNA phage genogroups or other viruses may provide further insight into viral inactivation in the natural environment and by water treatments.
Collapse
Affiliation(s)
- Yuno Meuchi
- Graduate School of Engineering, Toyama Prefectural University, Imizu, Toyama, Japan
| | - Miu Nakada
- Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama, Japan
| | - Keisuke Kuroda
- Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama, Japan
| | - Seiya Hanamoto
- Environment Preservation Center, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Akihiko Hata
- Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama, Japan
| |
Collapse
|
9
|
He Z, Parra B, Nesme J, Smets BF, Dechesne A. Quantification and fate of plasmid-specific bacteriophages in wastewater: Beyond the F-coliphages. WATER RESEARCH 2022; 227:119320. [PMID: 36395568 DOI: 10.1016/j.watres.2022.119320] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Plasmid-specific bacteriophages specifically infect bacteria carrying conjugal plasmids. While wastewater has been used as isolation source for such phages, to date, only the distribution and ecology of RNA phages specific to the F plasmid have been described, because they serve as a water quality indicator. Yet, several other plasmid classes have higher clinical and ecological relevance, and the distribution, fate, and ecology of the phages that target them remain uncharacterized. We aimed to (i) provide an experimental platform to quantify the abundance of plasmid-specific phages applicable to several different conjugal plasmid classes, (ii) describe the distribution of such phages in wastewater systems, and (iii) relate their abundance to plasmid abundance and to municipal wastewater treatment processes. We introduced four model conjugal plasmids, belonging to incompatibility groups IncP-1, IncN, IncHI1, or IncF into an avirulent Salmonella enterica strain, for which somatic phages are at low abundance in wastewater. These strains were used in double layer agar assays with waters from contrasting sources. Plasmid-specific phages were common in wastewater but rare in river water. Hospital wastewater contained significantly more IncP-1-, but fewer IncF- and IncN- specific phages than domestic wastewater. This pattern did not match that of plasmid abundance estimated by Inc group targeting high-throughput quantitative PCR. The comparison between influent and effluent of wastewater treatment plants revealed a reduction in phage concentration by ca. 2 log, without significant contribution of primary settling. Overall, the ubiquity of these phages hints at their importance for plasmid ecology, and can provide opportunities in water quality monitoring and in ecological management of mobile resistance genes.
Collapse
Affiliation(s)
- Zhiming He
- Technical University of Denmark, Department of Environmental and Resource Engineering, Bygningstorvet Bygning 115, 2800 Kgs. Lyngby, Denmark
| | - Boris Parra
- Technical University of Denmark, Department of Environmental and Resource Engineering, Bygningstorvet Bygning 115, 2800 Kgs. Lyngby, Denmark
| | - Joseph Nesme
- University of Copenhagen, Department of Biology, Section of Microbiology, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark
| | - Barth F Smets
- Technical University of Denmark, Department of Environmental and Resource Engineering, Bygningstorvet Bygning 115, 2800 Kgs. Lyngby, Denmark
| | - Arnaud Dechesne
- Technical University of Denmark, Department of Environmental and Resource Engineering, Bygningstorvet Bygning 115, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
10
|
Sakarovitch C, Schlosser O, Courtois S, Proust-Lima C, Couallier J, Pétrau A, Litrico X, Loret JF. Monitoring of SARS-CoV-2 in wastewater: what normalisation for improved understanding of epidemic trends? JOURNAL OF WATER AND HEALTH 2022; 20:712-726. [PMID: 35482387 DOI: 10.2166/wh.2022.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
SARS-CoV-2 RNA quantification in wastewater has emerged as a relevant additional means to monitor the COVID-19 pandemic. However, the concentration can be affected by black water dilution factors or movements of the sewer shed population, leading to misinterpretation of measurement results. The aim of this study was to evaluate the performance of different indicators to accurately interpret SARS-CoV-2 in wastewater. Weekly/bi-weekly measurements from three cities in France were analysed from February to September 2021. The concentrations of SARS-CoV-2 gene copies were normalised to the faecal-contributing population using simple sewage component indicators. To reduce the measurement error, a composite index was created to combine simultaneously the information carried by the simple indicators. The results showed that the regularity (mean absolute difference between observation and the smoothed curve) of the simple indicators substantially varied across sampling points. The composite index consistently showed better regularity compared to the other indicators and was associated to the lowest variation in correlation coefficient across sampling points. These findings suggest the recommendation for the use of a composite index in wastewater-based epidemiology to compensate for variability in measurement results.
Collapse
Affiliation(s)
| | | | - Sophie Courtois
- SUEZ, CIRSEE, 38 rue du Président Wilson, 78230 Le Pecq, France
| | - Cécile Proust-Lima
- Université de Bordeaux, INSERM, Bordeaux Population Health Center, UMR1219, F-33000 Bordeaux, France
| | - Joanne Couallier
- SUEZ, LYRE, 15 av Léonard de Vinci, 33600 Pessac, France E-mail:
| | - Agnès Pétrau
- SUEZ Rivages Pro Tech, Technopôle Izarbel, 2 Allée Théodore Monod, 64210 Bidart, France
| | - Xavier Litrico
- SUEZ, CB21, 16 Place de l'Iris, 92040 Paris La Défense, France
| | | |
Collapse
|
11
|
Kim G, Park G, Kang S, Lee S, Park J, Ha J, Park K, Kang M, Cho M, Shin H. Applicability Evaluation of Male-Specific Coliphage-Based Detection Methods for Microbial Contamination Tracking. J Microbiol Biotechnol 2021; 31:1709-1715. [PMID: 34675140 PMCID: PMC9705999 DOI: 10.4014/jmb.2110.10003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/15/2022]
Abstract
Outbreaks of food poisoning due to the consumption of norovirus-contaminated shellfish continue to occur. Male-specific (F+) coliphage has been suggested as an indicator of viral species due to the association with animal and human wastes. Here, we compared two methods, the double agar overlay and the quantitative real-time PCR (RT-PCR)-based method, for evaluating the applicability of F+ coliphage-based detection technique in microbial contamination tracking of shellfish samples. The RT-PCR-based method showed 1.6-39 times higher coliphage PFU values from spiked shellfish samples, in relation to the double agar overlay method. These differences indicated that the RT-PCR-based technique can detect both intact viruses and non-particle-protected viral DNA/RNA, suggesting that the RT-PCR based method could be a more efficient tool for tracking microbial contamination in shellfish. However, the virome information on F+ coliphage-contaminated oyster samples revealed that the high specificity of the RT-PCR- based method has a limitation in microbial contamination tracking due to the genomic diversity of F+ coliphages. Further research on the development of appropriate primer sets for microbial contamination tracking is therefore necessary. This study provides preliminary insight that should be examined in the search for suitable microbial contamination tracking methods to control the sanitation of shellfish and related seawater.
Collapse
Affiliation(s)
- Gyungcheon Kim
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul 05006, Republic of Korea
| | - Gwoncheol Park
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul 05006, Republic of Korea
| | - Seohyun Kang
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul 05006, Republic of Korea
| | - Sanghee Lee
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul 05006, Republic of Korea
| | - Jiyoung Park
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul 05006, Republic of Korea
| | - Jina Ha
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul 05006, Republic of Korea
| | - Kunbawui Park
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Minseok Kang
- Division of Biotechnology, SELS Center, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Min Cho
- Division of Biotechnology, SELS Center, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan 54596, Republic of Korea,Corresponding authors M. Cho Phone: +82-63-850-0845 Fax: +82-63-850-0834 E-mail:
| | - Hakdong Shin
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul 05006, Republic of Korea,
H. Shin Phone: +82-2-6935-2525 Fax: +82-2-3408-4319 E-mail:
| |
Collapse
|
12
|
Goh SG, Liang L, Gin KYH. Assessment of Human Health Risks in Tropical Environmental Waters with Microbial Source Tracking Markers. WATER RESEARCH 2021; 207:117748. [PMID: 34837748 DOI: 10.1016/j.watres.2021.117748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Human specific microbial source tracking (MST) markers which are highly specific to human waste contamination offer the advantage of better association with human pathogens than traditional microbial indicators. However, the performance of these MST markers may vary across different geographical regions. The magnitude of MST markers also plays an important role in interpreting the health risks. This study aims to (i) validate the specificity and sensitivity of human markers for tropical urban catchments; (ii) identify the threshold concentrations of MST markers, i.e. human polyomaviruses (HPyVs), Bacteroides thetaiotaomicron (B. theta) and Methanobrevibacter smithii (M. smithii), that correspond to the acceptable gastrointestinal (GI) illness risks associated with swimming using the QMRA approach; and (iii) validate the threshold concentrations of MST markers using the surveillance data obtained from the tropical urban environment. Among the three MST markers, HPyVs showed the highest specificity (100%) to sewage samples, followed by M. smithii (97%) and B. theta (90%). All MST markers showed 100% sensitivity towards sewage contamination, with B. theta present in highest abundance in sewage, followed by HPyVs and M. smithii. This study demonstrates a risk-based framework to identify the threshold concentrations of MST markers associated with GI illness risks in environmental waters by considering two main influencing factors (i.e. decay and dilution factors). This study successfully validated the B. theta threshold concentration range (581 to 8073 GC/100 mL) with field data (370 to 6500 GC/100 mL) in estimating GI illness risks with an Enterococcus model. Field data showed that the MST markers at threshold concentrations were able to classify the safe level in more than 83% of the samples, according to GI illness risks from Enterococcus and adenovirus. The study also highlighted the lack of associations between MST markers and GI illness risks from norovirus. With comprehensive information on specificity, sensitivity and threshold concentrations of MST markers, increasing confidence can be placed on identifying human source contamination and evaluating the health risks posed in environmental waters in Singapore.
Collapse
Affiliation(s)
- S G Goh
- NUS Environmental Research Institute, National University of Singapore, T-Lab Building, #02-01, 5A Engineering Drive 1 117411, Singapore
| | - L Liang
- Department of Civil & Environmental Engineering, Faculty of Engineering, National University of Singapore, Block E1A, #07-03,1 Engineering Drive 2 117576, Singapore
| | - K Y H Gin
- NUS Environmental Research Institute, National University of Singapore, T-Lab Building, #02-01, 5A Engineering Drive 1 117411, Singapore; Department of Civil & Environmental Engineering, Faculty of Engineering, National University of Singapore, Block E1A, #07-03,1 Engineering Drive 2 117576, Singapore.
| |
Collapse
|
13
|
Reeves K, Liebig J, Feula A, Saldi T, Lasda E, Johnson W, Lilienfeld J, Maggi J, Pulley K, Wilkerson PJ, Real B, Zak G, Davis J, Fink M, Gonzales P, Hager C, Ozeroff C, Tat K, Alkire M, Butler C, Coe E, Darby J, Freeman N, Heuer H, Jones JR, Karr M, Key S, Maxwell K, Nelson L, Saldana E, Shea R, Salveson L, Tomlinson K, Vargas-Barriga J, Vigil B, Brisson G, Parker R, Leinwand LA, Bjorkman K, Mansfeldt C. High-resolution within-sewer SARS-CoV-2 surveillance facilitates informed intervention. WATER RESEARCH 2021; 204:117613. [PMID: 34500183 PMCID: PMC8402945 DOI: 10.1016/j.watres.2021.117613] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 05/22/2023]
Abstract
To assist in the COVID-19 public health guidance on a college campus, daily composite wastewater samples were withdrawn at 20 manhole locations across the University of Colorado Boulder campus. Low-cost autosamplers were fabricated in-house to enable an economical approach to this distributed study. These sample stations operated from August 25th until November 23rd during the fall 2020 semester, with 1512 samples collected. The concentration of SARS-CoV-2 in each sample was quantified through two comparative reverse transcription quantitative polymerase chain reactions (RT-qPCRs). These methods were distinct in the utilization of technical replicates and normalization to an endogenous control. (1) Higher temporal resolution compensates for supply chain or other constraints that prevent technical or biological replicates. (2) The data normalized by an endogenous control agreed with the raw concentration data, minimizing the utility of normalization. The raw wastewater concentration values reflected SARS-CoV-2 prevalence on campus as detected by clinical services. Overall, combining the low-cost composite sampler with a method that quantifies the SARS-CoV-2 signal within six hours enabled actionable and time-responsive data delivered to key stakeholders. With daily reporting of the findings, wastewater surveillance assisted in decision making during critical phases of the pandemic on campus, from detecting individual cases within populations ranging from 109 to 2048 individuals to monitoring the success of on-campus interventions.
Collapse
Affiliation(s)
- Katelyn Reeves
- University of Colorado Boulder, Department of Civil, Environmental, and Architectural Engineering, 1111 Engineering Drive, Boulder, CO 80309, United States; University of Colorado Boulder, Environmental Engineering Program, 4001 Discovery Dr, Boulder, CO 80303, United States
| | - Jennifer Liebig
- University of Colorado Boulder, BioFrontiers Institute, 3415 Colorado Avenue, Boulder, CO 80303, United States
| | - Antonio Feula
- University of Colorado Boulder, BioFrontiers Institute, 3415 Colorado Avenue, Boulder, CO 80303, United States
| | - Tassa Saldi
- University of Colorado Boulder, BioFrontiers Institute, 3415 Colorado Avenue, Boulder, CO 80303, United States
| | - Erika Lasda
- University of Colorado Boulder, BioFrontiers Institute, 3415 Colorado Avenue, Boulder, CO 80303, United States
| | - William Johnson
- University of Colorado Boulder, Department of Civil, Environmental, and Architectural Engineering, 1111 Engineering Drive, Boulder, CO 80309, United States; University of Colorado Boulder, Environmental Engineering Program, 4001 Discovery Dr, Boulder, CO 80303, United States
| | - Jacob Lilienfeld
- University of Colorado Boulder, Department of Civil, Environmental, and Architectural Engineering, 1111 Engineering Drive, Boulder, CO 80309, United States
| | - Juniper Maggi
- University of Colorado Boulder, Department of Civil, Environmental, and Architectural Engineering, 1111 Engineering Drive, Boulder, CO 80309, United States; University of Colorado Boulder, Environmental Engineering Program, 4001 Discovery Dr, Boulder, CO 80303, United States
| | - Kevin Pulley
- University of Colorado Boulder, Department of Civil, Environmental, and Architectural Engineering, 1111 Engineering Drive, Boulder, CO 80309, United States; University of Colorado Boulder, Environmental Engineering Program, 4001 Discovery Dr, Boulder, CO 80303, United States
| | - Paul J Wilkerson
- University of Colorado Boulder, Department of Civil, Environmental, and Architectural Engineering, 1111 Engineering Drive, Boulder, CO 80309, United States; University of Colorado Boulder, Environmental Engineering Program, 4001 Discovery Dr, Boulder, CO 80303, United States
| | - Breanna Real
- University of Colorado Boulder, Department of Civil, Environmental, and Architectural Engineering, 1111 Engineering Drive, Boulder, CO 80309, United States; University of Colorado Boulder, Environmental Engineering Program, 4001 Discovery Dr, Boulder, CO 80303, United States
| | - Gordon Zak
- University of Colorado Boulder, Department of Civil, Environmental, and Architectural Engineering, 1111 Engineering Drive, Boulder, CO 80309, United States; University of Colorado Boulder, Environmental Engineering Program, 4001 Discovery Dr, Boulder, CO 80303, United States
| | - Jack Davis
- University of Colorado Boulder, BioFrontiers Institute, 3415 Colorado Avenue, Boulder, CO 80303, United States
| | - Morgan Fink
- University of Colorado Boulder, BioFrontiers Institute, 3415 Colorado Avenue, Boulder, CO 80303, United States
| | - Patrick Gonzales
- University of Colorado Boulder, BioFrontiers Institute, 3415 Colorado Avenue, Boulder, CO 80303, United States
| | - Cole Hager
- University of Colorado Boulder, BioFrontiers Institute, 3415 Colorado Avenue, Boulder, CO 80303, United States
| | - Christopher Ozeroff
- University of Colorado Boulder, BioFrontiers Institute, 3415 Colorado Avenue, Boulder, CO 80303, United States
| | - Kimngan Tat
- University of Colorado Boulder, BioFrontiers Institute, 3415 Colorado Avenue, Boulder, CO 80303, United States
| | - Michaela Alkire
- University of Colorado Boulder, Department of Civil, Environmental, and Architectural Engineering, 1111 Engineering Drive, Boulder, CO 80309, United States; University of Colorado Boulder, Environmental Engineering Program, 4001 Discovery Dr, Boulder, CO 80303, United States
| | - Claire Butler
- University of Colorado Boulder, Department of Civil, Environmental, and Architectural Engineering, 1111 Engineering Drive, Boulder, CO 80309, United States; University of Colorado Boulder, Environmental Engineering Program, 4001 Discovery Dr, Boulder, CO 80303, United States
| | - Elle Coe
- University of Colorado Boulder, Department of Civil, Environmental, and Architectural Engineering, 1111 Engineering Drive, Boulder, CO 80309, United States; University of Colorado Boulder, Environmental Engineering Program, 4001 Discovery Dr, Boulder, CO 80303, United States
| | - Jessica Darby
- University of Colorado Boulder, Department of Civil, Environmental, and Architectural Engineering, 1111 Engineering Drive, Boulder, CO 80309, United States; University of Colorado Boulder, Environmental Engineering Program, 4001 Discovery Dr, Boulder, CO 80303, United States
| | - Nicholas Freeman
- University of Colorado Boulder, Department of Civil, Environmental, and Architectural Engineering, 1111 Engineering Drive, Boulder, CO 80309, United States; University of Colorado Boulder, Environmental Engineering Program, 4001 Discovery Dr, Boulder, CO 80303, United States
| | - Heidi Heuer
- University of Colorado Boulder, Department of Civil, Environmental, and Architectural Engineering, 1111 Engineering Drive, Boulder, CO 80309, United States; University of Colorado Boulder, Environmental Engineering Program, 4001 Discovery Dr, Boulder, CO 80303, United States
| | - Jeffery R Jones
- University of Colorado Boulder, Department of Civil, Environmental, and Architectural Engineering, 1111 Engineering Drive, Boulder, CO 80309, United States; University of Colorado Boulder, Environmental Engineering Program, 4001 Discovery Dr, Boulder, CO 80303, United States
| | - Madeline Karr
- University of Colorado Boulder, Department of Civil, Environmental, and Architectural Engineering, 1111 Engineering Drive, Boulder, CO 80309, United States; University of Colorado Boulder, Environmental Engineering Program, 4001 Discovery Dr, Boulder, CO 80303, United States
| | - Sara Key
- University of Colorado Boulder, Department of Civil, Environmental, and Architectural Engineering, 1111 Engineering Drive, Boulder, CO 80309, United States; University of Colorado Boulder, Environmental Engineering Program, 4001 Discovery Dr, Boulder, CO 80303, United States
| | - Kiersten Maxwell
- University of Colorado Boulder, Department of Civil, Environmental, and Architectural Engineering, 1111 Engineering Drive, Boulder, CO 80309, United States; University of Colorado Boulder, Environmental Engineering Program, 4001 Discovery Dr, Boulder, CO 80303, United States
| | - Lauren Nelson
- University of Colorado Boulder, Department of Civil, Environmental, and Architectural Engineering, 1111 Engineering Drive, Boulder, CO 80309, United States; University of Colorado Boulder, Environmental Engineering Program, 4001 Discovery Dr, Boulder, CO 80303, United States
| | - Emily Saldana
- University of Colorado Boulder, Department of Civil, Environmental, and Architectural Engineering, 1111 Engineering Drive, Boulder, CO 80309, United States; University of Colorado Boulder, Environmental Engineering Program, 4001 Discovery Dr, Boulder, CO 80303, United States
| | - Rachel Shea
- University of Colorado Boulder, Department of Civil, Environmental, and Architectural Engineering, 1111 Engineering Drive, Boulder, CO 80309, United States; University of Colorado Boulder, Environmental Engineering Program, 4001 Discovery Dr, Boulder, CO 80303, United States
| | - Lewis Salveson
- University of Colorado Boulder, Department of Civil, Environmental, and Architectural Engineering, 1111 Engineering Drive, Boulder, CO 80309, United States; University of Colorado Boulder, Environmental Engineering Program, 4001 Discovery Dr, Boulder, CO 80303, United States
| | - Kate Tomlinson
- University of Colorado Boulder, Department of Civil, Environmental, and Architectural Engineering, 1111 Engineering Drive, Boulder, CO 80309, United States; University of Colorado Boulder, Environmental Engineering Program, 4001 Discovery Dr, Boulder, CO 80303, United States
| | - Jorge Vargas-Barriga
- University of Colorado Boulder, Department of Civil, Environmental, and Architectural Engineering, 1111 Engineering Drive, Boulder, CO 80309, United States; University of Colorado Boulder, Environmental Engineering Program, 4001 Discovery Dr, Boulder, CO 80303, United States
| | - Bailey Vigil
- University of Colorado Boulder, Department of Civil, Environmental, and Architectural Engineering, 1111 Engineering Drive, Boulder, CO 80309, United States; University of Colorado Boulder, Environmental Engineering Program, 4001 Discovery Dr, Boulder, CO 80303, United States
| | - Gloria Brisson
- University of Colorado Boulder, Medical Services, 1900 Wardenburg Drive, Boulder, CO 80309, United States
| | - Roy Parker
- University of Colorado Boulder, BioFrontiers Institute, 3415 Colorado Avenue, Boulder, CO 80303, United States
| | - Leslie A Leinwand
- University of Colorado Boulder, BioFrontiers Institute, 3415 Colorado Avenue, Boulder, CO 80303, United States; University of Colorado Boulder, Department of Molecular, Cellular, and Developmental Biology, 1945 Colorado Avenue, Boulder, CO 80309, United States
| | - Kristen Bjorkman
- University of Colorado Boulder, BioFrontiers Institute, 3415 Colorado Avenue, Boulder, CO 80303, United States
| | - Cresten Mansfeldt
- University of Colorado Boulder, Department of Civil, Environmental, and Architectural Engineering, 1111 Engineering Drive, Boulder, CO 80309, United States; University of Colorado Boulder, Environmental Engineering Program, 4001 Discovery Dr, Boulder, CO 80303, United States.
| |
Collapse
|
14
|
Truchado P, Garre A, Gil MI, Simón-Andreu PJ, Sánchez G, Allende A. Monitoring of human enteric virus and coliphages throughout water reuse system of wastewater treatment plants to irrigation endpoint of leafy greens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 782:146837. [PMID: 33839667 DOI: 10.1016/j.scitotenv.2021.146837] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
One solution to current water scarcity is the reuse of treated wastewater. Water reuse systems have to be examined as a whole, including the efficacy of water-reclamation treatments and the operation steps from the wastewater inlet into the WWTP to the irrigation endpoint, including the irrigated crop. In this study, the monitoring of human enteric viruses and coliphages were assessed in two water reused systems. The presence of hepatitis A virus (HAV) and human noroviruses genogroups I and II (GI and GII) were analyzed by real-time RT-PCR (RT-qPCR) in water (n = 475) and leafy green samples (n = 95). Total coliphages were analyzed by the double-layer agar plaque technique. The prevalence of HAV in water samples was very low (c.a. 2%), mostly linked to raw sewage, while for leafy green samples, none was positive for HAV. In leafy greens, prevalence of norovirus was low (less than 5-6%). The highest reductions for norovirus were observed in samples taken from the water reservoirs used by the growers near the growing field. The virus die-off during water storage due to solar radiation could be considered as an additional improvement. Reclamation treatments significantly reduced the prevalence and the counts of noroviruses GI and GII and coliphages in reclaimed water. However, the coliphage reductions (c.a. 5 log) do not comply with the specifications included in the new European regulation on reclaimed water (≥6.0 log). Correlations between noroviruses GI and GII and coliphages were found only in positive samples with high concentrations (>4.5 log PFU/100 mL). A high percentage of samples (20-25%) negative for total coliphages showed moderate norovirus counts (1-3 logs), indicating that coliphages are not the most suitable indicator for the possible presence of human enteric viruses.
Collapse
Affiliation(s)
- Pilar Truchado
- Research Group on Quality and Safety of Fruits and Vegetables, Department of Food Science and Technology, CEBAS-CSIC, Campus Universitario de Espinardo, 25, 30100 Murcia, Spain.
| | - Alberto Garre
- Food Microbiology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - Maria I Gil
- Research Group on Quality and Safety of Fruits and Vegetables, Department of Food Science and Technology, CEBAS-CSIC, Campus Universitario de Espinardo, 25, 30100 Murcia, Spain
| | - Pedro J Simón-Andreu
- Entidad Regional de Saneamiento y Depuración de Murcia (ESAMUR), Avda. Juan Carlos I, s/n. Ed. Torre Jemeca, 30009 Murcia, Spain
| | - Gloria Sánchez
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna 46980, Valencia, Spain
| | - Ana Allende
- Research Group on Quality and Safety of Fruits and Vegetables, Department of Food Science and Technology, CEBAS-CSIC, Campus Universitario de Espinardo, 25, 30100 Murcia, Spain
| |
Collapse
|
15
|
Hata A, Shirasaka Y, Ihara M, Yamashita N, Tanaka H. Spatial and temporal distributions of enteric viruses and indicators in a lake receiving municipal wastewater treatment plant discharge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146607. [PMID: 33773350 DOI: 10.1016/j.scitotenv.2021.146607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Although lake water can be used as a source of drinking water and recreational activities, there is a dearth of research on the occurrence and fate of enteric viruses. Over a period of 14 months at six points in 2014-2015, we conducted monthly monitoring of the virological water quality of a Japanese lake. The lake receives effluent from three surrounding wastewater treatment plants and retains water for about two weeks. These features allowed us to investigate the occurrence and fate of viruses in the lake environment. Human enteric viruses such as noroviruses and their indicators (pepper mild mottle virus and F-specific RNA bacteriophage [FRNAPH] genogroups) were quantified by PCR-based assays. Additionally, FRNAPH genogroups were quantified by infectivity-based assays to estimate the degree of virus inactivation. Pepper mild mottle virus, genogroup II (GII) norovirus, and GI-FRNAPH were identified in relatively high frequencies (positive in >40% out of 64 samples), with concentrations ranging from 1.3 × 101 to 2.9 × 104 copies/L. Human enteric viruses and some indicators were not detected and less prevalent, respectively, after April 2015. Principal component analysis revealed that the virological water quality changed gradually over time, but its differences between the sampling points were not apparent. FRNAPH genogroups were inactivated during the warm season (averaged water temperature of >20 °C) compared to the cool season (averaged water temperature of <20 °C), which may have been due to the more severe environmental stresses such as sunlight and water temperature. This suggests that the infection risk associated with the use of the lake water may have been overestimated by the gene quantification assay during the warm season.
Collapse
Affiliation(s)
- Akihiko Hata
- Department of Environmental and Civil Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.
| | - Yuya Shirasaka
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| | - Masaru Ihara
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| | - Naoyuki Yamashita
- Course of Rural Engineering, Department of Science and Technology for Biological Resources and Environment, Faculty of Agriculture, Graduate School of Agriculture Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Hiroaki Tanaka
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| |
Collapse
|
16
|
Stallard MA, Mulhern R, Greenwood E, Franklin T, Engel LS, Fisher MB, Sobsey MD, Zanib H, Noble RT, Stewart JR, Sozzi E. Occurrence of male-specific and somatic coliphages and relationship with rainfall in privately-owned wells from peri‑urban and rural households. WATER RESEARCH X 2021; 12:100102. [PMID: 34027379 PMCID: PMC8131969 DOI: 10.1016/j.wroa.2021.100102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/19/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
Privately-owned drinking water wells serving fewer than 25 people (private wells) are prevalent and understudied across most of the US. Private wells primarily serve rural households located outside of municipal drinking water and sewerage service coverage areas. These wells are not regulated by United States Environmental Protection Agency (EPA) under the Safe Drinking Water Act, are not regularly monitored by any public agency or utility, and generally do not undergo disinfection treatment. Coliphages are a group of viruses that infect coliform bacteria and are useful viral surrogates for fecal contamination in water systems in much the same way that fecal indicator bacteria (FIB), such as E. coli and to a lesser extent total coliforms, are used to quantify fecal contamination. Coliphages are approved by the EPA for regulatory monitoring in groundwater wells in the USA, but are not routinely used for this purpose. The present study characterizes the occurrence of male-specific and somatic coliphages, along with FIB, in private wells (n = 122) across two different counties in North Carolina. While occurrences of E. coli were rare and frequency of total coliform was generally low (~20%), male-specific and somatic coliphages were detectable in 66% and 54% of samples, respectively. Concentrations of male-specific coliphages were higher than somatics at each county and on a monthly basis. Rainfall appears to be partly influencing higher coliphage concentrations in December, January and February. This research underscores the need for increased surveillance in private wells and consideration of using coliphages in order to better characterize occurrence of fecal contamination at the time of sampling, especially during rainier months.
Collapse
Affiliation(s)
- Megan A Stallard
- Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, 135 Dauer Drive, CB #7431, Chapel Hill, NC 27599, USA
| | - Riley Mulhern
- Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, 135 Dauer Drive, CB #7431, Chapel Hill, NC 27599, USA
| | - Emily Greenwood
- Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, 135 Dauer Drive, CB #7431, Chapel Hill, NC 27599, USA
| | - Taylor Franklin
- Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, 135 Dauer Drive, CB #7431, Chapel Hill, NC 27599, USA
| | - Lawrence S Engel
- Gillings School of Global Public Health, Department of Epidemiology, University of North Carolina at Chapel Hill, 135 Dauer Drive, CB #7435, Chapel Hill, NC 27599, USA
| | - Michael B Fisher
- Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, 135 Dauer Drive, CB #7431, Chapel Hill, NC 27599, USA
| | - Mark D Sobsey
- Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, 135 Dauer Drive, CB #7431, Chapel Hill, NC 27599, USA
| | - Hania Zanib
- Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, 135 Dauer Drive, CB #7431, Chapel Hill, NC 27599, USA
| | - Rachel T Noble
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, 3431 Arendell St., Morehead City, NC 28557, USA
| | - Jill R Stewart
- Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, 135 Dauer Drive, CB #7431, Chapel Hill, NC 27599, USA
| | - Emanuele Sozzi
- Gillings School of Global Public Health, Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, 135 Dauer Drive, CB #7431, Chapel Hill, NC 27599, USA
| |
Collapse
|
17
|
Korajkic A, McMinn BR, Herrmann MP, Pemberton AC, Kelleher J, Oshima K, Villegas EN. Performance evaluation of a dead-end hollowfiber ultrafiltration method for enumeration of somatic and F+ coliphage from recreational waters. J Virol Methods 2021; 296:114245. [PMID: 34310974 PMCID: PMC8982549 DOI: 10.1016/j.jviromet.2021.114245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 12/02/2022]
Abstract
Dead-end hollow fiber ultrafiltration combined with a single agar layer assay (D-HFUF-SAL) has potential use in the assessment of sanitary quality of recreational waters through enumeration of coliphage counts as measures of fecal contamination. However, information on applicability across a broad range of sites and water types is limited. Here, we tested the performance of D-HFUF-SAL on 49 marine and freshwater samples. Effect of method used to titer the spiking suspension (SAL versus double agar layer [DAL]) on percent recovery was also evaluated. Average somatic coliphage recovery (72 % ± 27) was significantly higher (p < 0.0001) compared to F+ (53 % ± 19). This was more pronounced for marine (p ≤ 0.0001) compared to freshwaters (p = 0.0134). Neither method affected somatic coliphage, but DAL (28 % ± 12) significantly (p < 0.0001) underestimated F + coliphage recoveries compared to SAL (53 % ± 19). Overall, results indicate that, while D-HFUF-SAL performed well over a wide variety of water types, F + coliphage recoveries were significantly reduced for marine waters suggesting that some components unique to this habitat may interfere with the assay performance. More importantly, our findings indicate that choice of spike titer method merits careful consideration since it may under-estimate method percent recovery.
Collapse
Affiliation(s)
- Asja Korajkic
- United States Environmental Protection Agency, Office of Research and Development, USA.
| | - Brian R McMinn
- United States Environmental Protection Agency, Office of Research and Development, USA
| | - Michael P Herrmann
- United States Environmental Protection Agency, Office of Research and Development, USA
| | - Adin C Pemberton
- United States Environmental Protection Agency, Office of Research and Development, USA
| | - Julie Kelleher
- United States Environmental Protection Agency, Office of Research and Development, USA
| | - Kevin Oshima
- United States Environmental Protection Agency, Office of Research and Development, USA
| | - Eric N Villegas
- United States Environmental Protection Agency, Office of Research and Development, USA
| |
Collapse
|
18
|
Li X, Kelty CA, Sivaganesan M, Shanks OC. Variable fecal source prioritization in recreational waters routinely monitored with viral and bacterial general indicators. WATER RESEARCH 2021; 192:116845. [PMID: 33508720 PMCID: PMC8186395 DOI: 10.1016/j.watres.2021.116845] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 05/03/2023]
Abstract
Somatic and F+ coliphage methods are under consideration as potential routine surface water quality monitoring tools to identify unsafe levels of fecal pollution in recreational waters. However, little is known about the cooccurrence of these virus-based fecal indicators and host-associated genetic markers used to prioritize key pollution sources for remediation. In this study, paired measurements of cultivated coliphage (somatic and F+) and bacterial (E. coli and enterococci) general fecal indicators and genetic markers indicative of human (HF183/BacR287 and HumM2), ruminant (Rum2Bac), canine (DG3), and avian (GFD) fecal pollution sources were assessed in 365 water samples collected from six Great Lakes Basin beach and river sites over a 15-week recreational season. Water samples were organized into groups based on defined viral and bacterial fecal indicator water quality thresholds and average log10 host-associated genetic marker fecal score ratios were estimated to compare pollutant source inferences based on variable routine water quality monitoring practices. Eligible log10 fecal score ratios ranged from -0.051 (F+ coliphage, GFD) to 2.08 (enterococci, Rum2Bac). Using a fecal score ratio approach, findings suggest that general fecal indicator selection for routine water quality monitoring can influence the interpretation of host-associated genetic marker measurements, in some cases, prioritizing different pollutant sources for remediation. Variable trends were also observed between Great Lake beach and river sites suggesting disparate management practices may be useful for each water type.
Collapse
Affiliation(s)
- Xiang Li
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China 518055
| | - Catherine A Kelty
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA
| | - Mano Sivaganesan
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA
| | - Orin C Shanks
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA.
| |
Collapse
|
19
|
Microbial source tracking using metagenomics and other new technologies. J Microbiol 2021; 59:259-269. [DOI: 10.1007/s12275-021-0668-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 12/12/2022]
|
20
|
Prakash S, Panigrahi SK, Dorner RP, Wagner M, Schmidt W, Mishra AK. Understanding the photophysics of stercobilin-Zn(II) and urobilin-Zn(II) complexes towards faecal pigment analysis. CHEMOSPHERE 2021; 265:129189. [PMID: 33307503 DOI: 10.1016/j.chemosphere.2020.129189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 10/12/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
A detailed photophysical study of two faecal pigments (FPs), Urobilin (UB) and Stercobilin (SB), and their zinc complexes [FP-Zn(II)] was carried out. The enhancement of UB and SB fluorescence resulting from the formation of their Zn(II) complexes was attributed to the complexation-induced rigidity of the chromophoric units, and the corresponding decrease of nonradiative decay rate constants of the excited singlet states (knr). The effect of various physicochemical environments was also studied in detail in order to understand the fluorescence behaviour of the Zn(II) complexes. FP-Zn(II) complexes have a lower solubility in water that results in the formation of molecular aggregates. The aggregation-induced loss of fluorescence of FP-Zn(II) complexes could be overcome by using the appropriate mixture of ethanol and water (70:30). Molecular orbital calculations on the FP-Zn(II) complexes provided a good idea of the geometry of the complexes and helped rationalise the enhancement of fluorescence after complexation. This study could pave the way towards developing a convenient non-extraction aqueous phase analytical procedure for detection of FPs using Zn(II) complexation method.
Collapse
Affiliation(s)
| | | | | | | | - Wido Schmidt
- Technologiezentrum Wasser (TZW), Dresden, Germany
| | | |
Collapse
|
21
|
Hubbard LE, Givens CE, Griffin DW, Iwanowicz LR, Meyer MT, Kolpin DW. Poultry litter as potential source of pathogens and other contaminants in groundwater and surface water proximal to large-scale confined poultry feeding operations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 735:139459. [PMID: 32485450 DOI: 10.1016/j.scitotenv.2020.139459] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 05/24/2023]
Abstract
Manure from livestock production has been associated with the contamination of water resources. To date, research has primarily focused on runoff of these contaminants from animal operations into surface water, and the introduction of poultry-derived pathogenic zoonoses and other contaminants into groundwater is under-investigated. We characterized pathogens and other microbial and chemical contaminants in poultry litter, groundwater, and surface water near confined poultry feeding operations (chicken layer, turkey) at 9 locations in Iowa and one in Wisconsin from May and June 2016. Results indicate that poultry litter from large-scale poultry confined feeding operations is a likely source of environmental contamination and that groundwater is also susceptible to such poultry-derived contamination. Poultry litter, groundwater, and surface water samples had detections of viable bacteria growth (Salmonella spp., enterococci, staphylococci, lactobacilli), multi-drug resistant Salmonella DT104 flost and int genes, F+ RNA coliphage (group I and IV), antibiotic resistance genes (ARGs; blaDHA, blaOXA-48, blaTEM, blaCMY-2, tetM), phytoestrogens (biochanin A, daidzein, formononetin), and a progestin (progesterone). In addition, mcr-1 (a colistin ARG), was detected in a groundwater sample and in another groundwater sample, antibiotic resistant isolates were positive for Brevibacterium spp., a potential signature of poultry in the environment. Detectable estrogenicity was not measured in poultry litter, but was observed in 67% of the surface water samples and 22% were above the U.S. Environmental Protection Agency trigger level of 1 ng/L. The transport of microbial pathogens to groundwater was significantly greater (p < 0.001) than the transport of trace organic contaminants to groundwater in this study. In addition to viable pathogens, several clinically important ARGs were detected in litter, groundwater, and surface water, highlighting the need for additional research on sources of these contaminants in livestock dominated areas.
Collapse
Affiliation(s)
- L E Hubbard
- U.S. Geological Survey, Upper Midwest Water Science Center, 8505 Research Way, Middleton, WI 53562, USA.
| | - C E Givens
- U.S. Geological Survey, Upper Midwest Water Science Center, 5840 Enterprise Drive, Lansing, MI 48911, USA
| | - D W Griffin
- U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center, 600 4th Street South, St. Petersburg, FL 33701, USA
| | - L R Iwanowicz
- U.S. Geological Survey, Leetown Science Center, 11649 Leetown Road, Kearneysville, WV 25430, USA
| | - M T Meyer
- U.S. Geological Survey, Kansas Water Science Center, 1217 Biltmore Drive, Lawrence, KS 66049, USA
| | - D W Kolpin
- U.S. Geological Survey, Central Midwest Science Center, 400 South Clinton Street Suite 269, Iowa City, IA 52240, USA
| |
Collapse
|
22
|
Lee J, Park S, Lee C, Cho K, Jeong YS, Kim YM, Park KS, Choi JD, Sin Y, Ko G. Male-Specific and Somatic Coliphage Profiles from Major Aquaculture Areas in Republic of Korea. FOOD AND ENVIRONMENTAL VIROLOGY 2020; 12:240-249. [PMID: 32666472 DOI: 10.1007/s12560-020-09438-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Human and animal feces are important sources of various types of microbial contamination in water. Especially, enteric viruses, the major agents of waterborne infection, can attain long-term survival in water environments due to their strong resistance to various environmental factors including pH, salinity, and temperature. Coliphages are promising viral indicators for fecal contamination in water environments. Here, we investigated the seasonal and spatial distribution of male-specific and somatic coliphages in surface water and seawater at three major aquaculture areas, including Goseong Bay, Aphae Island, and Gomso Bay, in Republic of Korea over a period of 1 year. We selected 6 surface water and 14 seawater sampling sites for each study area and collected a total of 480 water samples from March 2014 to February 2015. Overall, surface water samples contained higher occurrences of coliphages than seawater samples. The high coliphage concentrations were detected in spring (March to May 2014). The differences in geographical features and patterns in land usage of the three aquaculture areas may have affected the coliphage concentration and occurrence. Moreover, environmental factors such as cumulative precipitation were strongly correlated with coliphage concentrations. Therefore, we suggest that further longitudinal studies on coliphage concentrations and distributions should be performed to support the application of coliphages in tracking fecal contamination in water.
Collapse
Affiliation(s)
- JaeYoon Lee
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - SungJun Park
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
- N-Bio, Seoul National University, Seoul, Republic of Korea
| | - Cheonghoon Lee
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea.
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea.
| | - Kyuseon Cho
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Yong Seok Jeong
- Department of Biology, College of Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Young-Mog Kim
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| | - Kwon-Sam Park
- Department of Food Science and Biotechnology, Kunsan National University, Gunsan, Republic of Korea
| | - Jong Duck Choi
- Department of Seafood Science and Technology, Gyeongsang National University, Tongyeong, Republic of Korea
| | - Yongsik Sin
- Department of Environmental Engineering & Biotechnology, Mokpo National Maritime University, Mokpo, Republic of Korea
| | - GwangPyo Ko
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea.
- N-Bio, Seoul National University, Seoul, Republic of Korea.
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
23
|
Lee S, Suwa M, Shigemura H. Metagenomic Analysis of Infectious F-Specific RNA Bacteriophage Strains in Wastewater Treatment and Disinfection Processes. Pathogens 2019; 8:pathogens8040217. [PMID: 31684172 PMCID: PMC6963950 DOI: 10.3390/pathogens8040217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/15/2019] [Accepted: 11/02/2019] [Indexed: 12/29/2022] Open
Abstract
F-specific RNA bacteriophages (FRNAPHs) can be used to indicate water contamination and the fate of viruses in wastewater treatment plants (WWTPs). However, the occurrence of FRNAPH strains in WWTPs is relatively unknown, whereas FRNAPH genotypes (GI–GIV) are well documented. This study investigated the diversity of infectious FRNAPH strains in wastewater treatment and disinfection processes using cell culture combined with next-generation sequencing (integrated culture–NGS (IC–NGS)). A total of 32 infectious strains belonging to FRNAPH GI (nine strains), GI-JS (two strains), GII (nine strains), GIII (seven strains), and GIV (five strains) were detected in wastewater samples. The strains of FRNAPH GI and GII exhibited greater resistance to wastewater treatment than those of GIII. The IC–NGS results in the disinfected samples successfully reflected the infectivity of FRNAPHs by evaluating the relationship between IC–NGS results and the integrated culture–reverse-transcription polymerase chain reaction combined with the most probable number assay, which can detect infectious FRNAPH genotypes. The diversity of infectious FRNAPH strains in the disinfected samples indicates that certain strains are more resistant to chlorine (DL52, GI-JS; T72, GII) and ultraviolet (T72, GII) disinfection. It is possible that investigating these disinfectant-resistant strains could reveal effective mechanisms of viral disinfection.
Collapse
Affiliation(s)
- Suntae Lee
- Innovative Materials and Resources Research Center, Public Works Research Institute, Ibaraki 305-8516, Japan.
| | - Mamoru Suwa
- Innovative Materials and Resources Research Center, Public Works Research Institute, Ibaraki 305-8516, Japan.
| | - Hiroyuki Shigemura
- Innovative Materials and Resources Research Center, Public Works Research Institute, Ibaraki 305-8516, Japan.
| |
Collapse
|
24
|
Lowther JA, Cross L, Stapleton T, Gustar NE, Walker DI, Sills M, Treagus S, Pollington V, Lees DN. Use of F-Specific RNA Bacteriophage to Estimate Infectious Norovirus Levels in Oysters. FOOD AND ENVIRONMENTAL VIROLOGY 2019; 11:247-258. [PMID: 31115869 DOI: 10.1007/s12560-019-09383-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/25/2019] [Indexed: 06/09/2023]
Abstract
Contamination of bivalve shellfish, particularly oysters, with norovirus is recognised as a significant food safety risk. Methods for quantification of norovirus in oysters using the quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR) are well established, and various studies using RT-qPCR have detected norovirus in a considerable proportion of oyster samples, both in the UK and elsewhere. However, RT-qPCR detects viral genome, and by its nature is unable to discriminate between positive results caused by infectious viruses and those caused by non-infectious remnants including damaged virus particles and naked RNA. As a result, a number of alternative or complementary approaches to RT-qPCR testing have been proposed, including the use of infectious viral indicator organisms, most frequently F-specific RNA bacteriophage (F-RNA phage). In this study, we investigated the relationships between F-RNA phage and norovirus in digestive tissues from two sets of oyster samples, one randomly collected at retail (630 samples), and one linked to suspected norovirus illness outbreaks (nine samples). A positive association and correlation between PCR-detectable levels of genogroup II F-RNA bacteriophage (associated with human faecal contamination) and norovirus was found in both sets of samples, with more samples positive for genogroup II phage, at generally higher levels than norovirus. Levels of both viruses were higher in outbreak-related than retail samples. Infectious F-RNA phage was detected in 47.8% of all retail samples, and for a subset of 224 samples where characterisation of phage was carried out, infectious GII phage was detected in 30.4%. Infectious GII phage was detected in all outbreak-related samples. Determination of infectivity ratios by comparing levels of PCR-detectable (copies/g) and infectious GII phage (pfu/g) revealed that in the majority of cases less than 10% of virus detected by RT-qPCR was infectious. Application of these ratios to estimate infectious norovirus levels indicated that while 77.8% of outbreak-related samples contained > 5 estimated infectious norovirus/g, only 13.7% of retail samples did. Use of a combination of levels of PCR-detectable norovirus and infectious F-RNA phage showed that while only 7.0% of retail samples contained both > 100 copies/g norovirus and > 10 pfu/g F-RNA phage, these combined levels were present in 77.8% of outbreak-related samples, and 75.9% of retail samples with > 5 estimated infectious norovirus/g. We therefore suggest that combining RT-qPCR testing with a test for infectious F-RNA phage has the potential to better estimate health risks, and to better predict the presence of infectious norovirus than RT-qPCR testing alone.
Collapse
Affiliation(s)
- J A Lowther
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, DT4 8UB, UK.
| | - L Cross
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, DT4 8UB, UK
| | - T Stapleton
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, DT4 8UB, UK
| | - N E Gustar
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, DT4 8UB, UK
| | - D I Walker
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, DT4 8UB, UK
| | - M Sills
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, DT4 8UB, UK
| | - S Treagus
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, DT4 8UB, UK
| | - V Pollington
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, DT4 8UB, UK
| | - D N Lees
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, DT4 8UB, UK
| |
Collapse
|
25
|
Kingsley DH, Chen H, Annous BA, Meade GK. Evaluation of a Male-Specific DNA Coliphage Persistence Within Eastern Oysters (Crassostrea virginica). FOOD AND ENVIRONMENTAL VIROLOGY 2019; 11:120-125. [PMID: 30919239 DOI: 10.1007/s12560-019-09376-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
Male-specific coliphages (MSCs) are currently used to assess the virologic quality of shellfish-growing waters and to assess the impact of sewage release or adverse weather events on bivalve shellfish. Since MSC can have either DNA or RNA genomes, and most research has been performed exclusively on RNA MSCs, persistence of M13, a DNA MSC, was evaluated for its persistence as a function of time and temperature within Eastern oysters (Crassostrea virginica). Oysters were individually exposed to seawater containing a total of 1010 to 1012 pfu of M13 for 24 h at 15 °C followed by maintenance in tanks with as many as 21 oysters in continuously UV-sterilized water for up to 6 weeks at either 7, 15, or 22 °C. Two trials for each temperature were performed combining three shucked oysters per time point which were assayed by tenfold serial dilution in triplicate. Initial contamination levels averaged 106.9 and ranged from 106.0 to 107.0 of M13. For oysters held for 3 weeks, log10 reductions were 1.7, 3.8, and 4.2 log10 at 7, 15, and 22 °C, respectively. Oysters held at 7 and 15 °C for 6 weeks showed average reductions of 3.6 and 5.1 log10, respectively, but still retained infectious M13. In total, this work shows that DNA MSC may decline within shellfish in a manner analogous to RNA MSCs.
Collapse
Affiliation(s)
- David H Kingsley
- ARS, Food Safety & Intervention Technologies Research Unit, USDA, Delaware State University, Dover, DE, 19901, USA.
| | - Haiqiang Chen
- Department of Animal & Food Sciences, University of Delaware, Newark, DE, 19716-2150, USA
| | - Bassam A Annous
- ARS, ERRC, Food Safety & Intervention Technologies Research Unit, USDA, Wyndmoor, PA, 19038, USA
| | - Gloria K Meade
- ARS, Food Safety & Intervention Technologies Research Unit, USDA, Delaware State University, Dover, DE, 19901, USA
| |
Collapse
|
26
|
Brié A, Gantzer C, Boudaud N, Bertrand I. The impact of chlorine and heat on the infectivity and physicochemical properties of bacteriophage MS2. FEMS Microbiol Ecol 2019; 94:5033402. [PMID: 29878194 DOI: 10.1093/femsec/fiy106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 05/29/2018] [Indexed: 11/14/2022] Open
Abstract
Enteric viruses and bacteriophages are exposed to various inactivating factors outside their host, and among them chlorine and heat are the most commonly used sanitizer in water industry and treatment in the food industry, respectively. Using MS2 phages as models for enteric viruses, we investigated the impact of free chlorine and heat on their physicochemical properties. Free chlorine was first evaluated alone. No increase in either capsid permeability or hydrophobicity was observed. The negative surface charge slightly increased suggesting molecular changes in the capsid. However, a weakening of the capsid by chlorine was suggested by differential scanning fluorimetry. This phenomenon was confirmed when chlorination was followed by a heat treatment. Indeed, an increase in the inactivation of MS2 phages and the permeability of their capsids to RNases was observed. More interestingly, an increase in the expression of hydrophobic domains at the phage surface was observed, but only for phages remaining infectious. The chlorine-caused weakening of the capsid suggested that, for an optimal use, the oxidant should be followed by heat. The increased permeability to RNases and the expression of hydrophobic domains may contribute to the development or improvement of molecular methods specific for infectious enteric viruses.
Collapse
Affiliation(s)
- Adrien Brié
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564 CNRS Université de Lorraine, Faculté de Pharmacie, 5 rue Albert Lebrun, BP 80403, 54001 Nancy, France.,Food Safety Department, ACTALIA, 310 rue Popielujko, 50000 Saint Lô, France
| | - Christophe Gantzer
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564 CNRS Université de Lorraine, Faculté de Pharmacie, 5 rue Albert Lebrun, BP 80403, 54001 Nancy, France
| | - Nicolas Boudaud
- Food Safety Department, ACTALIA, 310 rue Popielujko, 50000 Saint Lô, France
| | - Isabelle Bertrand
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564 CNRS Université de Lorraine, Faculté de Pharmacie, 5 rue Albert Lebrun, BP 80403, 54001 Nancy, France
| |
Collapse
|
27
|
Charuaud L, Jardé E, Jaffrézic A, Liotaud M, Goyat Q, Mercier F, Le Bot B. Veterinary pharmaceutical residues in water resources and tap water in an intensive husbandry area in France. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 664:605-615. [PMID: 30763841 DOI: 10.1016/j.scitotenv.2019.01.303] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 05/25/2023]
Abstract
In intensive livestock areas, veterinary pharmaceutical residues (VPRs) can occur in water resources, but also in tap water because treatment processes are not designed to remove these contaminants. The main objective of this study is to assess the occurrence of VPRs in water resources and tap waters in Brittany. As several identical compounds are used in both veterinary and human medicine, a toolbox (stanols and pharmaceuticals) is used to help determine the origin of contamination in the case of mixed-use molecules. Water resources samples were collected from 25 sites (23 surface waters and two groundwaters) used for tap water production and located in watersheds considered as sensitive due to intensive husbandry activities. Samples were also taken at 23 corresponding tap water sites. A list of 38 VPRs of interest was analyzed. In water resources, at least one VPR was quantified in 32% of the samples. 17 different VPRs were quantified, including antibiotics, antiparasitic drugs and anti-inflammatory drugs. Concentration levels ranged between 5 ng/L and 2946 ng/L. Mixed-use pharmaceuticals were quantified in twelve samples of water resources and among these samples nine had a mixed overall fecal contamination. In the context of this large-scale study, it appeared difficult to determine precisely the factors impacting the occurrence of VPRs. VPRs were quantified in 20% of the tap water samples. Twelve VPRs were quantified, including ten compounds exclusively used in veterinary medicine and two mixed-use compounds. Concentration levels are inferior to 40 ng/L for all compounds, with the exception of the antibiotic florfenicol which was quantified at 159 ng/L and 211 ng/L. The population of Brittany may therefore be exposed to these contaminants through tap water. These observations should be put into perspective with the detection frequencies per compound which are all below 10% in both water resources and tap water.
Collapse
Affiliation(s)
- Lise Charuaud
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, F-35043 Rennes, France
| | - Emilie Jardé
- Univ Rennes, CNRS, Géosciences Rennes, UMR6118, 35000 Rennes, France
| | | | - Marine Liotaud
- Univ Rennes, CNRS, Géosciences Rennes, UMR6118, 35000 Rennes, France
| | - Quentin Goyat
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, F-35043 Rennes, France
| | - Fabien Mercier
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, F-35043 Rennes, France
| | - Barbara Le Bot
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, F-35043 Rennes, France.
| |
Collapse
|
28
|
Auffret MD, Brassard J, Jones TH, Gagnon N, Gagné MJ, Muehlhauser V, Masse L, Topp E, Talbot G. Impact of seasonal temperature transition, alkalinity and other abiotic factors on the persistence of viruses in swine and dairy manures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 659:640-648. [PMID: 31096393 DOI: 10.1016/j.scitotenv.2018.12.306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 12/20/2018] [Accepted: 12/20/2018] [Indexed: 04/14/2023]
Abstract
Animal manures are a valued source of nutrients for crop production. They frequently do, however, contain zoonotic pathogens including a wide range of viruses. Ideally, manures would be treated prior to land application, reducing the burden of zoonotic viruses, and thus the potential for transmission to adjacent water resources or crops intended for human or animal consumption. In the present study, manure was obtained from four dairy and three swine farms. The manure was incubated anaerobically in the laboratory for 28 weeks at temperatures ranging from 4 to 25 °C, and multiple physical and chemical parameters were monitored. The abundance of various DNA and RNA viruses was measured throughout the incubation by amplifying virus-specific gene targets. A combination of statistical analyses were applied to identify whether the viruses are significantly impacted by temperature transition or affected by other abiotic factors. Temperature had no effect on the persistence of any of the viruses studied. An increase in pH of the manures during the incubation was significantly (P < 0.05) associated with decreased persistence, suggesting that pH manipulation during storage could reduce the abundance of viruses.
Collapse
Affiliation(s)
- Marc D Auffret
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, 2000 College, Sherbrooke, Québec J1M 0C8, Canada.
| | - Julie Brassard
- Agriculture and Agri-Food Canada, Saint-Hyacinthe Research and Development Centre, 3600 Casavant Blvd. West, St-Hyacinthe, Québec J2S 8E3, Canada
| | - Tineke H Jones
- Agriculture and Agri-Food Canada, Lacombe Research and Development Centre, 6000 C & E Trail, Lacombe, Alberta T4L 1W1, Canada
| | - Nathalie Gagnon
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, 2000 College, Sherbrooke, Québec J1M 0C8, Canada
| | - Marie-Josée Gagné
- Agriculture and Agri-Food Canada, Saint-Hyacinthe Research and Development Centre, 3600 Casavant Blvd. West, St-Hyacinthe, Québec J2S 8E3, Canada
| | - Victoria Muehlhauser
- Agriculture and Agri-Food Canada, Lacombe Research and Development Centre, 6000 C & E Trail, Lacombe, Alberta T4L 1W1, Canada
| | - Lucie Masse
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, 2000 College, Sherbrooke, Québec J1M 0C8, Canada
| | - Edward Topp
- Agriculture and Agri-Food Canada, London Research and Development Centre, 1391 Sandford Street, London, Ontario N5V 4T3, Canada
| | - Guylaine Talbot
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, 2000 College, Sherbrooke, Québec J1M 0C8, Canada
| |
Collapse
|
29
|
Goh SG, Saeidi N, Gu X, Vergara GGR, Liang L, Fang H, Kitajima M, Kushmaro A, Gin KYH. Occurrence of microbial indicators, pathogenic bacteria and viruses in tropical surface waters subject to contrasting land use. WATER RESEARCH 2019; 150:200-215. [PMID: 30528917 PMCID: PMC7112093 DOI: 10.1016/j.watres.2018.11.058] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 05/21/2023]
Abstract
Fecal indicator bacteria, such as Escherichia coli (E.coli) and Enterococcus, have been widely used to indicate the presence of pathogens. However, the suitability of fecal indicator bacteria to represent health risks is still being challenged, particularly in tropical aquatic environments. The objective of this study is to understand the occurrence and prevalence of indicators and pathogens in areas with contrasting land use, as well as to identify the major correlations between indicators, pathogens and environmental parameters. The spatial and temporal variation of indicators and pathogens was studied to examine the distribution patterns for areas with different land use, and the impact of seasonal changes on microbial populations. A total of 234 water samples were sampled for two years from reservoirs and their tributaries, and tested for fecal indicator bacteria, coliphages, human specific markers, pathogenic bacteria and viruses. The prevalence of indicators and pathogens in reservoirs were generally low, while relatively high concentrations were observed in tributaries to varying degrees. Of the enteric viruses, norovirus GII was among the most prevalent and had the highest concentration. Although strong correlations were found between indicators, only relatively weak correlations were found between indicators and pathogens. The results in this study showed that none of the bacteria/phage indicators were universal predictors for pathogens. Inclusion of the alternative indicators, Methanobrevibacter smithii, Bacteroides and human polyomaviruses (HPyVs) to monitoring programs could help to determine whether the fecal source was human. The microbial distribution patterns allow the classification of sampling sites to different clusters and thus, help to identify sites which have poor water quality. This approach will be useful for water quality management to pinpoint factors that influence water quality and help to prioritize sites for restoration of water quality.
Collapse
Affiliation(s)
- Shin Giek Goh
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore
| | - Nazanin Saeidi
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore
| | - Xiaoqiong Gu
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore
| | | | - Liang Liang
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore
| | - Haoming Fang
- NUS Environmental Research Institute, National University of Singapore, Singapore
| | - Masaaki Kitajima
- Division of Environmental Engineering, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ariel Kushmaro
- School of Material Science and Engineering, Nanyang Technological University, Singapore
| | - Karina Yew-Hoong Gin
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore; NUS Environmental Research Institute, National University of Singapore, Singapore.
| |
Collapse
|
30
|
Lee S, Suwa M, Shigemura H. Occurrence and reduction of F-specific RNA bacteriophage genotypes as indicators of human norovirus at a wastewater treatment plant. JOURNAL OF WATER AND HEALTH 2019; 17:50-62. [PMID: 30758303 DOI: 10.2166/wh.2018.367] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
F-specific RNA bacteriophages (FRNAPHs) have been suggested as good indicators of the presence of human enteric viruses in water treatment facilities. The occurrence and reduction of norovirus (NoV) and FRNAPH genotypes in wastewater treatment plants (WWTPs) have been well studied; however, the relationship between these genotypes in WWTPs has not been fully elucidated. Thus, we aimed to investigate the occurrence and reduction of FRNAPH genotypes in an attempt to identify NoV indicators in a WWTP via a 1-year survey. All FRNAPH and NoV genotypes were detected in WWTP influents at high rates (71-100%), including the infectious FRNAPH genotype IV (GIV), which has been rarely detected in previous studies. The reductions of FRNAPH GII and NoV GII during wastewater treatment indicated a relationship between the two (r = 0.69, P < 0.01), and the mean values were not significantly different. These results suggested that FRNAPH GII could be used as an appropriate indicator of NoV GII during wastewater treatment. FRNAPH GI was also found to be an appropriate indicator of viral reduction because of its high resistance to wastewater treatment compared with the other FRNAPH and NoV genotypes; therefore, it can be considered as a worst-case scenario organism.
Collapse
Affiliation(s)
- Suntae Lee
- Innovative Materials and Resources Research Center, Public Works Research Institute, 1-6 Minamihara, Tsukuba, Ibaraki 305-8516, Japan E-mail:
| | - Mamoru Suwa
- Innovative Materials and Resources Research Center, Public Works Research Institute, 1-6 Minamihara, Tsukuba, Ibaraki 305-8516, Japan E-mail:
| | - Hiroyuki Shigemura
- Innovative Materials and Resources Research Center, Public Works Research Institute, 1-6 Minamihara, Tsukuba, Ibaraki 305-8516, Japan E-mail:
| |
Collapse
|
31
|
Zepp RG, Cyterski M, Wong K, Georgacopoulos O, Acrey B, Whelan G, Parmar R, Molina M. Biological Weighting Functions for Evaluating the Role of Sunlight-Induced Inactivation of Coliphages at Selected Beaches and Nearby Tributaries. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:13068-13076. [PMID: 30395707 PMCID: PMC7086407 DOI: 10.1021/acs.est.8b02191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Coliphages can indicate contamination of recreational waters and previous studies show that sunlight is important in altering densities of coliphages, other indicator microorganisms, and pathogens in aquatic environments. Here, we report on laboratory studies of light-induced inactivation of two coliphage groups-male-specific (F+) and somatic coliphage-under various conditions in phosphate-buffered water (PBW). Strains isolated from wastewater treatment facilities and laboratory strains (MS2 and phiX174 coliphages) were evaluated. Inactivation rates were determined in a series of irradiations using simulated solar radiation passed through light filters that blocked different parts of the ultraviolet spectral region. Inactivation rates and spectral irradiance from these experiments were then analyzed to develop biological weighting functions (BWFs) for the light-induced inactivation. BWFs were used to model the inactivation of coliphages over a range of conditions in aquatic environments that included two beach sites in Lake Michigan and one in Lake Erie. For example, modeled effects of sunlight attenuation, using UV absorption data from the three Great Lakes beach sites, inferred that direct photoinactivation rate constants, averaged over a one-meter water column in swimmable areas, were reduced 2- to 5-fold, compared to near-surface rate constants.
Collapse
Affiliation(s)
- Richard G Zepp
- U.S. Environmental Protection Agency, National Exposure Research Laboratory , 960 College Station Road , Athens , Georgia 30605 , United States
| | - Michael Cyterski
- U.S. Environmental Protection Agency, National Exposure Research Laboratory , 960 College Station Road , Athens , Georgia 30605 , United States
| | - Kelvin Wong
- U.S. Environmental Protection Agency, National Exposure Research Laboratory , 960 College Station Road , Athens , Georgia 30605 , United States
| | - Ourania Georgacopoulos
- U.S. Environmental Protection Agency, National Exposure Research Laboratory , 960 College Station Road , Athens , Georgia 30605 , United States
| | - Brad Acrey
- U.S. Environmental Protection Agency, National Exposure Research Laboratory , 960 College Station Road , Athens , Georgia 30605 , United States
| | - Gene Whelan
- U.S. Environmental Protection Agency, National Exposure Research Laboratory , 960 College Station Road , Athens , Georgia 30605 , United States
| | - Rajbir Parmar
- U.S. Environmental Protection Agency, National Exposure Research Laboratory , 960 College Station Road , Athens , Georgia 30605 , United States
| | - Marirosa Molina
- U.S. Environmental Protection Agency, National Exposure Research Laboratory , 960 College Station Road , Athens , Georgia 30605 , United States
| |
Collapse
|
32
|
Cho K, Lee C, Park S, Kim JH, Choi YS, Kim MS, Koo ES, Yoon HJ, Kang JH, Jeong YS, Choi JD, Ko G. Use of coliphages to investigate norovirus contamination in a shellfish growing area in Republic of Korea. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:30044-30055. [PMID: 30076551 DOI: 10.1007/s11356-018-2857-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/26/2018] [Indexed: 06/08/2023]
Abstract
A number of severe norovirus outbreaks due to the consumption of contaminated shellfish have been reported recently. In this study, we evaluated the distribution of coliphage densities to determine their efficacy as fecal indicators of enteric viruses, including noroviruses, in water samples collected from a shellfish growing area in Republic of Korea over a period of approximately 1 year. Male-specific and somatic coliphages in water samples were analyzed using the single agar layer method, and norovirus genogroups I and II, which infect mainly humans, were analyzed using duplex reverse transcription quantitative PCR. Male-specific and somatic coliphages were detected widely throughout the study area. Several environmental parameters, including salinity, precipitation, temperature, and wind speed were significantly correlated with coliphage concentrations (P < 0.05). Moreover, the concentrations of male-specific coliphages were positively correlated with the presence of human noroviruses (r = 0.443; P < 0.01). The geospatial analysis with coliphage concentrations using a geographic information system revealed that densely populated residential areas were the major source of fecal contamination. Our results indicate that coliphage monitoring in water could be a useful approach to prevent norovirus contamination in shellfish.
Collapse
Affiliation(s)
- Kyuseon Cho
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Cheonghoon Lee
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
- Institute of Health and Environment, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - SungJun Park
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
- N-Bio, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Jin Hwi Kim
- Department of Civil and Environmental Engineering, Dongguk University, 1 Pildong-ro, Jung-gu, Seoul, Republic of Korea
| | - Yong Seon Choi
- Department of Biology, College of Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, Republic of Korea
| | - Man Su Kim
- Department of Biology, College of Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, Republic of Korea
| | - Eung Seo Koo
- Department of Biology, College of Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, Republic of Korea
| | - Hyun Jin Yoon
- Department of Seafood Science and Technology, Gyeongsang National University, 38 Cheondaegukchi-gil, Tongyeong-si, Gyeongsangnam-do, Republic of Korea
| | - Joo-Hyon Kang
- Department of Civil and Environmental Engineering, Dongguk University, 1 Pildong-ro, Jung-gu, Seoul, Republic of Korea
| | - Yong Seok Jeong
- Department of Biology, College of Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, Republic of Korea
| | - Jong Duck Choi
- Department of Seafood Science and Technology, Gyeongsang National University, 38 Cheondaegukchi-gil, Tongyeong-si, Gyeongsangnam-do, Republic of Korea
| | - GwangPyo Ko
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea.
- N-Bio, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea.
- Center for Human and Environmental Microbiome, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea.
| |
Collapse
|
33
|
Wanjugi P, Sivaganesan M, Korajkic A, McMinn B, Kelty CA, Rhodes E, Cyterski M, Zepp R, Oshima K, Stachler E, Kinzelman J, Kurdas SR, Citriglia M, Hsu FC, Acrey B, Shanks OC. Incidence of somatic and F+ coliphage in Great Lake Basin recreational waters. WATER RESEARCH 2018; 140:200-210. [PMID: 29715644 PMCID: PMC7366341 DOI: 10.1016/j.watres.2018.04.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 05/16/2023]
Abstract
There is a growing interest for the use of coliphage as an alternative indicator to assess fecal pollution in recreational waters. Coliphage are a group of viruses that infect Escherichia coli and are considered as potential surrogates to infer the likely presence of enteric viral pathogens. We report the use of a dead-end hollow fiber ultrafiltration single agar layer method to enumerate F+ and somatic coliphage from surface waters collected from three Great Lake areas. At each location, three sites (two beaches; one river) were sampled five days a week over the 2015 beach season (n = 609 total samples). In addition, culturable E. coli and enterococci concentrations, as well as 16 water quality and recreational area parameters were assessed such as rainfall, turbidity, dissolved oxygen, pH, and ultra violet absorbance. Overall, somatic coliphage levels ranged from non-detectable to 4.39 log10 plaque forming units per liter and were consistently higher compared to F+ (non-detectable to 3.15 log10 PFU/L), regardless of sampling site. Coliphage concentrations weakly correlated with cultivated fecal indicator bacteria levels (E. coli and enterococci) at 75% of beach sites tested in study (r = 0.28 to 0.40). In addition, ultraviolet light absorption and water temperature were closely associated with coliphage concentrations, but not fecal indicator bacteria levels suggesting different persistence trends in Great Lake waters between indicator types (bacteria versus virus). Finally, implications for coliphage water quality management and future research directions are discussed.
Collapse
Affiliation(s)
- Pauline Wanjugi
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA
| | - Mano Sivaganesan
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA
| | - Asja Korajkic
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA
| | - Brian McMinn
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA
| | - Catherine A Kelty
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA
| | - Eric Rhodes
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA
| | - Mike Cyterski
- United States Environmental Protection Agency, Ecosystems Assessment Branch, National Exposure Research Laboratory, Athens, GA 30605, USA
| | - Richard Zepp
- United States Environmental Protection Agency, Ecosystems Assessment Branch, National Exposure Research Laboratory, Athens, GA 30605, USA
| | - Kevin Oshima
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA
| | - Elyse Stachler
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | - Mark Citriglia
- Northeast Ohio Regional Sewer District, Cuyahoga Heights, OH 44115, USA
| | - Fu-Chih Hsu
- Scientific Methods Inc, Granger, IN 46530, USA
| | - Brad Acrey
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
| | - Orin C Shanks
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA.
| |
Collapse
|
34
|
Neumann P, Barriga F, Álvarez C, González Z, Vidal G. Process performance assessment of advanced anaerobic digestion of sewage sludge including sequential ultrasound-thermal (55 °C) pre-treatment. BIORESOURCE TECHNOLOGY 2018; 262:42-51. [PMID: 29689439 DOI: 10.1016/j.biortech.2018.03.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/06/2018] [Accepted: 03/10/2018] [Indexed: 06/08/2023]
Abstract
The aim of this study was to evaluate the performance and digestate quality of advanced anaerobic digestion of sewage sludge including sequential ultrasound-thermal (55 °C) pre-treatment. Both stages of pre-treatment contributed to chemical oxygen demand (COD) solubilization, with an overall factor of 11.4 ± 2.2%. Pre-treatment led to 19.1, 24.0 and 29.9% increased methane yields at 30, 15 and 7.5 days solid retention times (SRT), respectively, without affecting process stability or accumulation of intermediates. Pre-treatment decreased up to 4.2% water recovery from the digestate, but SRT was a more relevant factor controlling dewatering. Advanced digestion showed 2.4-3.1 and 1.5 logarithmic removals of coliforms and coliphages, respectively, and up to a 58% increase in the concentration of inorganics in the digestate solids compared to conventional digestion. The COD balance of the process showed that the observed increase in methane production was proportional to the pre-treatment solubilization efficiency.
Collapse
Affiliation(s)
- Patricio Neumann
- Environmental Engineering and Biotechnology Group, Environmental Sciences Faculty & EULA-Chile Center, University of Concepción, P.O. Box 160-C, Concepción, Chile; Department of Basic Sciences, University of Bío-Bío, Chillán, Chile
| | - Felipe Barriga
- Environmental Engineering and Biotechnology Group, Environmental Sciences Faculty & EULA-Chile Center, University of Concepción, P.O. Box 160-C, Concepción, Chile
| | - Claudia Álvarez
- Environmental Engineering and Biotechnology Group, Environmental Sciences Faculty & EULA-Chile Center, University of Concepción, P.O. Box 160-C, Concepción, Chile
| | | | - Gladys Vidal
- Environmental Engineering and Biotechnology Group, Environmental Sciences Faculty & EULA-Chile Center, University of Concepción, P.O. Box 160-C, Concepción, Chile.
| |
Collapse
|
35
|
Callanan J, Stockdale SR, Shkoporov A, Draper LA, Ross RP, Hill C. RNA Phage Biology in a Metagenomic Era. Viruses 2018; 10:E386. [PMID: 30037084 PMCID: PMC6071253 DOI: 10.3390/v10070386] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/22/2022] Open
Abstract
The number of novel bacteriophage sequences has expanded significantly as a result of many metagenomic studies of phage populations in diverse environments. Most of these novel sequences bear little or no homology to existing databases (referred to as the "viral dark matter"). Also, these sequences are primarily derived from DNA-encoded bacteriophages (phages) with few RNA phages included. Despite the rapid advancements in high-throughput sequencing, few studies enrich for RNA viruses, i.e., target viral rather than cellular fraction and/or RNA rather than DNA via a reverse transcriptase step, in an attempt to capture the RNA viruses present in a microbial communities. It is timely to compile existing and relevant information about RNA phages to provide an insight into many of their important biological features, which should aid in sequence-based discovery and in their subsequent annotation. Without comprehensive studies, the biological significance of RNA phages has been largely ignored. Future bacteriophage studies should be adapted to ensure they are properly represented in phageomic studies.
Collapse
Affiliation(s)
- Julie Callanan
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork, T12 YN60, Ireland.
| | - Stephen R Stockdale
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland.
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, P61 C996, Ireland.
| | - Andrey Shkoporov
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland.
| | - Lorraine A Draper
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork, T12 YN60, Ireland.
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork, T12 YN60, Ireland.
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, P61 C996, Ireland.
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork, T12 YN60, Ireland.
| |
Collapse
|
36
|
Haramoto E, Kitajima M, Hata A, Torrey JR, Masago Y, Sano D, Katayama H. A review on recent progress in the detection methods and prevalence of human enteric viruses in water. WATER RESEARCH 2018; 135:168-186. [PMID: 29471200 DOI: 10.1016/j.watres.2018.02.004] [Citation(s) in RCA: 269] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 05/17/2023]
Abstract
Waterborne human enteric viruses, such as noroviruses and adenoviruses, are excreted in the feces of infected individuals and transmitted via the fecal-oral route including contaminated food and water. Since viruses are normally present at low concentrations in aquatic environments, they should be concentrated into smaller volumes prior to downstream molecular biological applications, such as quantitative polymerase chain reaction (qPCR). This review describes recent progress made in the development of concentration and detection methods of human enteric viruses in water, and discusses their applications for providing a better understanding of the prevalence of the viruses in various types of water worldwide. Maximum concentrations of human enteric viruses in water that have been reported in previous studies are summarized to assess viral abundances in aquatic environments. Some descriptions are also available on recent applications of sequencing analyses used to determine the genetic diversity of viral genomes in water samples, including those of novel viruses. Furthermore, the importance and significance of utilizing appropriate process controls during viral analyses are discussed, and three types of process controls are considered: whole process controls, molecular process controls, and (reverse transcription (RT)-)qPCR controls. Although no standards have been established for acceptable values of virus recovery and/or extraction-(RT-)qPCR efficiency, use of at least one of these appropriate control types is highly recommended for more accurate interpretation of observed data.
Collapse
Affiliation(s)
- Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan.
| | - Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan.
| | - Akihiko Hata
- Integrated Research System for Sustainability Science, Institutes for Advanced Study, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan.
| | - Jason R Torrey
- School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| | - Yoshifumi Masago
- Institute for the Advanced Study of Sustainability, United Nations University, 5-53-70 Jingumae, Shibuya-ku, Tokyo 150-8925, Japan.
| | - Daisuke Sano
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| | - Hiroyuki Katayama
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Vietnam Japan University, Luu Huu Phuoc Road, My Dinh 1 Ward, Nam Tu Liem District, Ha Noi, Vietnam.
| |
Collapse
|
37
|
Fagnant CS, Kossik AL, Zhou NA, Sánchez-Gonzalez L, Falman JC, Keim EK, Linden Y, Scheibe A, Barnes KS, Beck NK, Boyle DS, Meschke JS. Use of Preservative Agents and Antibiotics for Increased Poliovirus Survival on Positively Charged Filters. FOOD AND ENVIRONMENTAL VIROLOGY 2017; 9:383-394. [PMID: 28616833 PMCID: PMC5668339 DOI: 10.1007/s12560-017-9306-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/06/2017] [Indexed: 05/26/2023]
Abstract
Environmental surveillance of poliovirus (PV) and other non-enveloped viruses can help identify silent circulation and is necessary to certify eradication. The bag-mediated filtration system is an efficient method to filter large volumes of environmental waters at field sites for monitoring the presence of viruses. As filters may require long transit times to off-site laboratories for processing, viral inactivation or overgrowth of bacteria and fungi can interfere with virus detection and quantification (Miki and Jacquet in Aquatic Microb Ecol 51(2):195-208, 2008). To evaluate virus survival over time on ViroCap™ filters, the filters were seeded with PV type 1 (PV1) and/or MS2 and then dosed with preservatives or antibiotics prior to storage and elution. These filters were stored at various temperatures and time periods, and then eluted for PV1 and MS2 recovery quantification. Filters dosed with the preservative combination of 2% sodium benzoate and 0.2% calcium propionate had increased virus survival over time when stored at 25 °C, compared to samples stored at 25 °C with no preservatives. While elution within 24 h of filtration is recommended, if storage or shipping is required then this preservative mixture can help preserve sample integrity. Addition of an antibiotic cocktail containing cephapirin, gentamicin, and Proclin™ 300 increased recovery after storage at 4 and 25 °C, when compared to storage with no antibiotics. The antibiotic cocktail can aid sample preservation if access to appropriate antibiotics storage is available and sample cold chain is unreliable. This study demonstrated that the use of preservatives or antibiotics is a simple, cost-effective method to improve virus detection from ViroCap cartridge filters over time.
Collapse
Affiliation(s)
- Christine Susan Fagnant
- Department of Environmental & Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98105, USA
| | - Alexandra Lynn Kossik
- Department of Environmental & Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98105, USA
| | - Nicolette Angela Zhou
- Department of Environmental & Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98105, USA
| | - Liliana Sánchez-Gonzalez
- Department of Environmental & Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98105, USA
| | - Jill Christin Falman
- Department of Environmental & Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98105, USA
| | - Erika Karen Keim
- Department of Environmental & Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98105, USA
| | - Yarrow Linden
- Department of Environmental & Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98105, USA
| | - Alana Scheibe
- Department of Environmental & Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98105, USA
| | - Kilala Sayisha Barnes
- Department of Environmental & Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98105, USA
| | - Nicola Koren Beck
- Department of Environmental & Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98105, USA
| | - David S Boyle
- PATH, 2201 Westlake Avenue, Suite 200, Seattle, WA, 98121, USA
| | - John Scott Meschke
- Department of Environmental & Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98105, USA.
| |
Collapse
|
38
|
McMinn BR, Huff EM, Rhodes ER, Korajkic A. Concentration and quantification of somatic and F+ coliphages from recreational waters. J Virol Methods 2017; 249:58-65. [PMID: 28843788 PMCID: PMC6084438 DOI: 10.1016/j.jviromet.2017.08.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/04/2017] [Accepted: 08/05/2017] [Indexed: 12/14/2022]
Abstract
Somatic and F+ coliphages are promising alternative fecal indicators, but current detection methods are hindered by lower levels of coliphages in surface waters compared to traditional bacterial fecal indicators. We evaluated the ability of dead-end hollow fiber ultrafiltration (D-HFUF) and single agar layer (SAL) procedure to concentrate and enumerate coliphages from 1L and 10L volumes of ambient surface waters (lake, river, marine), river water with varying turbidities (3.74–118.7 NTU), and a simulated combined sewer overflow (CSO) event. Percentage recoveries for surface waters were 40–79% (somatic) and 35–94% (F + ). The method performed equally well in all three matrices at 1L volumes, but percent recoveries were significantly higher in marine waters at 10L volumes when compared to freshwater. Percent recoveries at 1L and 10L were similar, except in river water where recoveries were significantly lower at higher volume. In highly turbid waters, D-HFUF-SAL had a recovery range of 25–77% (somatic) and 21–80% (F + ). The method produced detectable levels of coliphages in diluted wastewater and in unspiked surface waters, emphasizing its applicability to CSO events and highlighting its utility in recovery of low coliphage densities from surface waters. Thus D-HFUF-SAL is a good candidate method for routine water quality monitoring of coliphages.
Collapse
Affiliation(s)
- Brian R McMinn
- National Exposure Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH, 45268, United States
| | - Emma M Huff
- National Exposure Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH, 45268, United States
| | - Eric R Rhodes
- National Exposure Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH, 45268, United States
| | - Asja Korajkic
- National Exposure Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH, 45268, United States.
| |
Collapse
|
39
|
McMinn BR, Ashbolt NJ, Korajkic A. Bacteriophages as indicators of faecal pollution and enteric virus removal. Lett Appl Microbiol 2017; 65:11-26. [PMID: 28304098 PMCID: PMC6089083 DOI: 10.1111/lam.12736] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/10/2017] [Accepted: 03/11/2017] [Indexed: 01/17/2023]
Abstract
Bacteriophages are an attractive alternative to faecal indicator bacteria (FIB), particularly as surrogates of enteric virus fate and transport, due to their closer morphological and biological properties. Based on a review of published data, we summarize densities of coliphages (F+ and somatic), Bacteroides spp. and enterococci bacteriophages (phages) in individual human waste, raw wastewater, ambient fresh and marine waters and removal through wastewater treatment processes utilizing traditional treatments. We also provide comparisons with FIB and enteric viruses whenever possible. Lastly, we examine fate and transport characteristics in the aquatic environment and provide an overview of the environmental factors affecting their survival. In summary, concentrations of bacteriophages in various sources were consistently lower than FIB, but more reflective of infectious enteric virus levels. Overall, our investigation indicates that bacteriophages may be adequate viral surrogates, especially in built systems, such as wastewater treatment plants. SIGNIFICANCE AND IMPACT OF THE STUDY Bacteriophage are alternative fecal indicators that may be better surrogates for viral pathogens than fecal indicator bacteria (FIB). This report offers a summary of the existing literature concerning the utility of bacteriophage as indicators of viral presence (fecal sources and surface waters) and persistence (in built infrastructure and aquatic environments). Our findings indicate that bacteriophage levels in all matrices examined are consistently lower than FIB, but similar to viral pathogens. Furthermore, in built infrastructure (e.g. wastewater treatment systems) bacteriophage closely mimic viral pathogen persistence suggesting they may be adequate sentinels of enteric virus removal.
Collapse
Affiliation(s)
- Brian R. McMinn
- National Exposure Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268 United States
| | - Nicholas J. Ashbolt
- University of Alberta, School of Public Health, 3-57D South Academic Building, Edmonton, AB T6G 2G7, Canada
| | - Asja Korajkic
- National Exposure Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268 United States
| |
Collapse
|
40
|
Arredondo-Hernandez LJR, Diaz-Avalos C, Lopez-Vidal Y, Castillo-Rojas G, Mazari-Hiriart M. FRNA Bacteriophages as Viral Indicators of Faecal Contamination in Mexican Tropical Aquatic Systems. PLoS One 2017; 12:e0170399. [PMID: 28114378 PMCID: PMC5256921 DOI: 10.1371/journal.pone.0170399] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 01/04/2017] [Indexed: 02/01/2023] Open
Abstract
A particular challenge to water safety in populous intertropical regions is the lack of reliable faecal indicators to detect microbiological contamination of water, while the numerical relationships of specific viral indicators remain largely unexplored. The aim of this study was to investigate the numerical relationships of FRNA-bacteriophage genotypes, adenovirus 41, and human adenoviruses (HADV) in Mexican surface water systems to assess sewage contamination. We studied the presence of HADV, HADV41 and FRNA bacteriophage genotypes in water samples and quantified by qPCR and RT-qPCR. Virus and water quality indicator variances, as analyzed by principal component analysis and partial least squared regression, followed along the major percentiles of water faecal enterococci. FRNA bacteriophages adequately deciphered viral and point source water contamination. The strongest correlation for HADV was with FRNA bacteriophage type II, in water samples higher than the 50th percentiles of faecal enterococci, thus indicating urban pollution. FRNA bacteriophage genotypes I and III virus indicator performances were assisted by their associations with electrical conductivity and faecal enterococci. In combination, our methods are useful for inferring water quality degradation caused by sewage contamination. The methods used have potential for determining source contamination in water and, specifically, the presence of enteric viruses where clean and contaminated water have mixed.
Collapse
Affiliation(s)
- Luis Jose Rene Arredondo-Hernandez
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- * E-mail:
| | - Carlos Diaz-Avalos
- Departamento de Probabilidad y Estadística, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Yolanda Lopez-Vidal
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gonzalo Castillo-Rojas
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marisa Mazari-Hiriart
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
41
|
Waterborne Viruses and F-Specific Coliphages in Mixed-Use Watersheds: Microbial Associations, Host Specificities, and Affinities with Environmental/Land Use Factors. Appl Environ Microbiol 2017; 83:AEM.02763-16. [PMID: 27836843 DOI: 10.1128/aem.02763-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/08/2016] [Indexed: 02/06/2023] Open
Abstract
From the years 2008 to 2014, a total of 1,155 water samples were collected (spring to fall) from 24 surface water sampling sites located in a mixed-used but predominantly agricultural (i.e., dairy livestock production) river basin in eastern Ontario, Canada. Water was analyzed for viable F-specific DNA (F-DNA) and F-specific RNA (F-RNA) (genogroup I [GI] to GIV) coliphage and a suite of molecularly detected viruses (norovirus [GI to GIV], torque teno virus [TTV], rotavirus, kobuvirus, adenovirus, astrovirus, hepatitis A, and hepatitis E). F-DNA and F-RNA coliphage were detected in 33 and 28% of the samples at maximum concentrations of 2,000 and 16,300 PFU · 100 ml-1, respectively. Animal TTV, human TTV, kobuvirus, astrovirus, and norovirus GIII were the most prevalent viruses, found in 23, 20, 13, 12, and 11% of samples, respectively. Viable F-DNA coliphage was found to be a modest positive indicator of molecularly detected TTV. F-RNA coliphage, unlike F-DNA coliphage, was a modest positive predictor of norovirus and rotavirus. There were, however, a number of significant negative associations among F-specific coliphage and viruses. F-DNA coliphage densities of >142 PFU · 100 ml-1 delineated conditions when ∼95% of water samples contained some type of virus. Kobuvirus was the virus most strongly related to detection of any other virus. Land use had some associations with virus/F-specific coliphage detection, but season and surface water flow were the variables that were most important for broadly delineating detection. Higher relative levels of detection of human viruses and human F-RNA coliphage were associated with higher relative degrees of upstream human land development in a catchment. IMPORTANCE This study is one of the first, to our knowledge, to evaluate relationships among F-specific coliphages and a large suite of enteric viruses in mixed-use but agriculturally dominated surface waters in Canada. This study suggested that relationships between viable F-specific coliphages and molecularly detected viruses do exist, but they are not always positive. Caution should be employed if viable F-specific coliphages are to be used as indicators of virus presence in surface waters. This study elucidates relative effects of agriculture, wildlife, and human activity on virus and F-specific coliphage detection. Seasonal and meteorological attributes play a strong role in the detection of most virus and F-specific coliphage targets.
Collapse
|
42
|
Rapid and sensitive method to assess human viral pollution in shellfish using infectious F-specific RNA bacteriophages: Application to marketed products. Food Microbiol 2016; 63:248-254. [PMID: 28040176 DOI: 10.1016/j.fm.2016.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/29/2016] [Accepted: 12/07/2016] [Indexed: 11/20/2022]
Abstract
F-specific RNA bacteriophages (FRNAPH) have been used as indicators of environmental fecal pollution for many years. While FRNAPH subgroup I (FRNAPH-I) are not host specific, some FRNAPH-II and -III strains appear specific to human pollution. Because a close relationship has been observed between FRNAPH-II genome and human norovirus (NoV) in shellfish, and because FRNAPH infectivity can easily be investigated unlike that of NoV, the detection of human infectious FRNAPH could therefore provide a valuable tool for assessing viral risk. In this study, an integrated cell culture real-time RT-PCR method has been developed to investigate infectious FRNAPH subgroup prevalence in oysters. This rapid screening method appears more sensitive than E. coli or NoV genome detection, and allows an FRNAPH subgroup present in low concentrations (0.05 PFU/g of oyster) to be detected in the presence of another 1000 times more concentrated, without any dissection step. Its application to marketed oysters (n = 135) over a 1-year period has allowed to identify the winter peak classically described for NoV or FRNAPH accumulation. Infectious FRNAPH were detected in 34% of batches, and 7% were suspected of having a human origin. This approach may be helpful to evaluate oyster's depuration processes, based on an infectious viral parameter.
Collapse
|
43
|
Oliveira SS, Sorgine MHF, Bianco K, Pinto LH, Barreto C, Albano RM, Cardoso AM, Clementino MM. Detection of human fecal contamination by nifH gene quantification of marine waters in the coastal beaches of Rio de Janeiro, Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:25210-25217. [PMID: 27680008 DOI: 10.1007/s11356-016-7737-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 09/15/2016] [Indexed: 06/06/2023]
Abstract
The identification of fecal pollution in aquatic ecosystems is one of the requirements to assess the possible risks to human health. In this report, physicochemical parameters, Escherichia coli enumeration and Methanobrevibacter smithii nifH gene quantification were conducted at 13 marine waters in the coastal beaches of Rio de Janeiro, Brazil. The pH, turbidity, dissolved oxygen, temperature, and conductivity, carried out by mobile equipment, revealed varied levels due to specific conditions of the beaches. The bioindicators' enumerations were done by defined substrate method, conventional, and real-time PCR. Six marine beach sites (46 %) presenting E. coli levels in compliance with Brazilian water quality guidelines (<2500 MPN/100 mL) showed nifH gene between 5.7 × 109 to 9.5 × 1011 copies. L-1 revealing poor correlation between the two approaches. To our knowledge, this is the first inquiry in qPCR using nifH gene as a biomarker of human-specific sources of sewage pollution in marine waters in Brazil. In addition, our data suggests that alternative indicator nifH gene could be used, in combination with other markers, for source tracking studies to measure the quality of marine ecosystems thereby contributing to improved microbial risk assessment.
Collapse
Affiliation(s)
- Samara Sant'Anna Oliveira
- Fundação Oswaldo Cruz, Instituto Nacional de Controle de Qualidade em Saúde, Avenida Brasil, 4365, Maguinhos, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos Henrique Ferreira Sorgine
- Universidade Federal do Rio de Janeiro, Instituto de Bioquímica Médica, Ilha do Fundão, Cidade Universitária, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kayo Bianco
- Fundação Oswaldo Cruz, Instituto Nacional de Controle de Qualidade em Saúde, Avenida Brasil, 4365, Maguinhos, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo Henriques Pinto
- Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Avenida 28 de setembro, 87, Vila Isabel, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Camila Barreto
- Fundação Oswaldo Cruz, Instituto Nacional de Controle de Qualidade em Saúde, Avenida Brasil, 4365, Maguinhos, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodolpho Mattos Albano
- Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Avenida 28 de setembro, 87, Vila Isabel, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexander Machado Cardoso
- Fundação Centro Universitário Estadual da Zona Oeste, UEZO, Av. Manuel Caldeira de Alvarenga, 1203, Campo Grande, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maysa Mandetta Clementino
- Fundação Oswaldo Cruz, Instituto Nacional de Controle de Qualidade em Saúde, Avenida Brasil, 4365, Maguinhos, Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
44
|
Jones TH, Muehlhauser V. F-coliphages, porcine adenovirus and porcine teschovirus as potential indicator viruses of fecal contamination for pork carcass processing. Int J Food Microbiol 2016; 241:237-243. [PMID: 27810445 DOI: 10.1016/j.ijfoodmicro.2016.10.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 10/22/2016] [Accepted: 10/24/2016] [Indexed: 01/01/2023]
Abstract
There are concerns about the zoonotic transmission of viruses through undercooked pork products. There is a lack of information on suitable indicator viruses for fecal contamination with pathogenic enteric viruses in the meat processing chain. The study compared the incidence and levels of contamination of hog carcasses with F-coliphages, porcine teschovirus (PTV), and porcine adenovirus (PAdV) at different stages of the dressing process to assess their potential as indicator viruses of fecal contamination. One hundred swab samples (200cm2) were collected from random sites on hog carcasses at 4 different stages of the dressing process and from retail pork over the span of a year from 2 pork processing plants (500/plant). Viable F-coliphages, PAdV DNA and PTV RNA were each detected on ≥99% of the incoming carcasses at both plants and were traceable through the pork processing chain. Significant correlations were observed between viable F-coliphages and PAdV DNA and between F-coliphages and PTV RNA but not between PAdV DNA and PTV RNA at the various stages of pork processing. Detection of viable F-coliphages was more sensitive than genomic copies of PAdV and PTV at low levels of contamination, making F-coliphages a preferred indicator in the pork slaughter process as it also provides an indication of infectivity. For plant A, F-RNA coliphages were detected in 25%, 63%, and 21% of carcass swabs after pasteurization, evisceration, and retail pork products, respectively. For plant B, F-coliphages were detected in 33%, 25%, and 13% of carcass swabs after skinning, evisceration, and retail pork samples, respectively. Viable F-RNA coliphages were genotyped. Viable F-RNA GII and GIII were generally not detected at the earlier stages of the slaughter process but they were detected on 13% of carcasses after evisceration and 2% of retail pork samples at plant A, which raises concerns of potential food handler contamination during pork processing. Consumers could be at risk when consuming undercooked meat contaminated with pathogenic enteric viruses.
Collapse
Affiliation(s)
- Tineke H Jones
- Agriculture and Agri-Food Canada, Lacombe Research Centre, 6000 C & E Trail, Lacombe, Alberta T4L 1W1, Canada.
| | - Victoria Muehlhauser
- Agriculture and Agri-Food Canada, Lacombe Research Centre, 6000 C & E Trail, Lacombe, Alberta T4L 1W1, Canada
| |
Collapse
|
45
|
Pornsukarom S, Thakur S. Assessing the Impact of Manure Application in Commercial Swine Farms on the Transmission of Antimicrobial Resistant Salmonella in the Environment. PLoS One 2016; 11:e0164621. [PMID: 27755598 PMCID: PMC5068702 DOI: 10.1371/journal.pone.0164621] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 09/28/2016] [Indexed: 11/18/2022] Open
Abstract
Land application of swine manure in commercial hog farms is an integral part of their waste management system which recycles the nutrients back to the soil. However, manure application can lead to the dissemination of bacterial pathogens in the environment and pose a serious public health threat. The aim of this study was to determine the dissemination of antimicrobial resistant Salmonella in the environment due to manure application in commercial swine farms in North Carolina (n = 6) and Iowa (n = 7), two leading pork producing states in the US. We collected manure and soil samples twice on day 0 (before and after manure application) from four distinct plots of lands (5 soil samples/plot) located at 20 feet away from each other in the field. Subsequent soil samples were collected again on days 7, 14, 21 from the same plots. A total of 1,300 soil samples (NC = 600; IA = 700) and 130 manure samples (NC = 60; IA = 70) were collected and analyzed in this study. The overall Salmonella prevalence was 13.22% (189/1,430), represented by 10.69% and 38.46% prevalence in soil and manure, respectively. The prevalence in NC (25.45%) was significantly higher than in IA (2.73%) (P<0.001) and a consistent decrease in Salmonella prevalence was detected from Day 0-Day 21 in all the farms that tested positive. Salmonella serotypes detected in NC were not detected in IA, thereby highlighting serotype association based on manure storage and soil application method used in the two regions. Antimicrobial susceptibility testing was done by the broth microdilution method to a panel of 15 antimicrobial drugs. A high frequency of isolates (58.73%) were multidrug resistant (resistance to three or more class of antimicrobials) and the most frequent resistance was detected against streptomycin (88.36%), sulfisoxazole (67.2%), and tetracycline (57.67%). Genotypic characterization by pulse field gel electrophoresis revealed clonally related Salmonella in both manure and soil at multiple time points in the positive farms. Our study highlights the potential role of swine manure application in the dissemination and persistence of antimicrobial resistant Salmonella in the environment.
Collapse
Affiliation(s)
- Suchawan Pornsukarom
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, 27607, United States of America
| | - Siddhartha Thakur
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, 27607, United States of America
- * E-mail:
| |
Collapse
|
46
|
Santiago-Rodriguez TM, Toranzos GA, Arce-Nazario JA. Assessing the microbial quality of a tropical watershed with an urbanization gradient using traditional and alternate fecal indicators. JOURNAL OF WATER AND HEALTH 2016; 14:796-807. [PMID: 27740545 DOI: 10.2166/wh.2016.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Urbanization affects the microbial loading into tropical streams, but its impact on water quality varies across watersheds. Rainfall in tropical environments also complicates microbial dynamics due to high seasonal and annual variations. Understanding the dynamics of fecal contamination in tropical surface waters may be further hindered by limitations from the utilization of traditional microbial indicators. We measured traditional (Enterococcus spp. and Escherichia coli), as well as alternate (enterophages and coliphages) indicators of fecal contamination in a tropical watershed in Puerto Rico during a 1-year period, and examined their relationship with rainfall events across an urbanization gradient. Enterococcus spp. and E. coli concentrations were 4 to 5 logs higher in non-urbanized or pristine sites when compared to enterophages and coliphages, suggesting that traditional fecal indicator bacteria may be natural inhabitants of pristine tropical waters. All of the tested indicators were positively correlated with rainfall and urbanization, except in the most urbanized sites, where rainfall may have had a dilution effect. The present study indicates that utilizing novel indicators of microbial water quality may improve the assessment of fecal contamination and pathogen risk for tropical watersheds.
Collapse
Affiliation(s)
- Tasha M Santiago-Rodriguez
- Department of Biology, California Polytechnic State University, San Luis Obispo, CA, 93407, USA and Center for Applications in Biotechnology, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Gary A Toranzos
- Department of Biology, University of Puerto Rico, San Juan PR 00932, Puerto Rico
| | - Javier A Arce-Nazario
- Department of Biology, University of Puerto Rico, Cayey PR 00736, Puerto Rico and Instituto de Investigaciones Interdisciplinarias, University of Puerto Rico, Cayey PR 00736, Puerto Rico E-mail:
| |
Collapse
|
47
|
Relevance of F-Specific RNA Bacteriophages in Assessing Human Norovirus Risk in Shellfish and Environmental Waters. Appl Environ Microbiol 2016; 82:5709-19. [PMID: 27422833 DOI: 10.1128/aem.01528-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/08/2016] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Human noroviruses (HuNoVs) are the main cause of shellfish-borne gastroenteritis outbreaks. In the absence of routine technical approaches allowing infectious particles to be detected, this viral pathogen is currently targeted by genome research, leading to difficult interpretations. In this study, we investigated the potential of F-specific RNA bacteriophages (FRNAPH) as fecal and viral contamination indicators in shellfish and water from a local harvesting area. FRNAPH were also used as microbial source tracking tools. Constraints imposed by detection limits are illustrated here by the detection of infectious FRNAPH in several samples in the absence of FRNAPH genomes. The opposite situation was also observed, likely explained by the persistence of the genomes being greater than infectivity. Similar considerations may be applied to HuNoVs, suggesting that HuNoV genome targeting is of limited relevance in assessing infectious risks. While FRNAPH did not provide any benefits compared to Escherichia coli as fecal pollution indicators in water, novel observations were made in shellfish: contrary to E. coli, a seasonal trend of infectious FRNAPH concentrations was observed. These concentrations were higher than those found in water, confirming bioaccumulation in shellfish. This study also underlines a relationship between the presence of HuNoV genomes and those of human-specific FRNAPH subgroup II (FRNAPH-II) in shellfish collected throughout Europe. Further research should be undertaken to evaluate FRNAPH potential as an indicator of the presence of infectious HuNoVs. To this end, shellfish involved in HuNoV-caused gastroenteritis outbreaks should be analyzed for the presence of infectious FRNAPH-II. IMPORTANCE This work provides new data about the use of F-specific RNA phages (FRNAPH) as a tool for evaluating fecal or viral contamination, especially in shellfish. In our case study, FRNAPH did not provide any benefits compared to E. coli as fecal pollution indicators in water but were found to be very useful in shellfish. Their concentrations in shellfish were higher than those found in the surrounding water, confirming bioaccumulation. This study also underlines a relationship between the presence of human norovirus genomes (HuNoVs) and those of FRNAPH subgroup II (FRNAPH-II). Considering that the two virus types have similar behaviors and since FRNAPH infectivity can be investigated, the specific detection of infectious FRNAPH-II could be regarded as an indication of the presence of infectious HuNoVs. The contribution of infectious human FRNAPH targeting for assessing the viral risk associated with HuNoVs in shellfish should thus be investigated.
Collapse
|
48
|
Uyaguari-Diaz MI, Chan M, Chaban BL, Croxen MA, Finke JF, Hill JE, Peabody MA, Van Rossum T, Suttle CA, Brinkman FSL, Isaac-Renton J, Prystajecky NA, Tang P. A comprehensive method for amplicon-based and metagenomic characterization of viruses, bacteria, and eukaryotes in freshwater samples. MICROBIOME 2016; 4:20. [PMID: 27391119 PMCID: PMC5011856 DOI: 10.1186/s40168-016-0166-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 04/04/2016] [Indexed: 05/16/2023]
Abstract
BACKGROUND Studies of environmental microbiota typically target only specific groups of microorganisms, with most focusing on bacteria through taxonomic classification of 16S rRNA gene sequences. For a more holistic understanding of a microbiome, a strategy to characterize the viral, bacterial, and eukaryotic components is necessary. RESULTS We developed a method for metagenomic and amplicon-based analysis of freshwater samples involving the concentration and size-based separation of eukaryotic, bacterial, and viral fractions. Next-generation sequencing and culture-independent approaches were used to describe and quantify microbial communities in watersheds with different land use in British Columbia. Deep amplicon sequencing was used to investigate the distribution of certain viruses (g23 and RdRp), bacteria (16S rRNA and cpn60), and eukaryotes (18S rRNA and ITS). Metagenomic sequencing was used to further characterize the gene content of the bacterial and viral fractions at both taxonomic and functional levels. CONCLUSION This study provides a systematic approach to separate and characterize eukaryotic-, bacterial-, and viral-sized particles. Methodologies described in this research have been applied in temporal and spatial studies to study the impact of land use on watershed microbiomes in British Columbia.
Collapse
Affiliation(s)
- Miguel I. Uyaguari-Diaz
- British Columbia Public Health Laboratory, British Columbia Centre for Disease Control, Vancouver, BC V5Z 4R4 Canada
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Michael Chan
- British Columbia Public Health Laboratory, British Columbia Centre for Disease Control, Vancouver, BC V5Z 4R4 Canada
| | - Bonnie L. Chaban
- South Kensington Campus, Imperial College London, Sir Ernst Chain Building, London, SW7 2AZ UK
| | - Matthew A. Croxen
- British Columbia Public Health Laboratory, British Columbia Centre for Disease Control, Vancouver, BC V5Z 4R4 Canada
| | - Jan F. Finke
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Janet E. Hill
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4 Canada
| | - Michael A. Peabody
- Department of Molecular Biology and Biochemistry, South Science Building, Simon Fraser University, Burnaby, BC V5A 1S6 Canada
| | - Thea Van Rossum
- Department of Molecular Biology and Biochemistry, South Science Building, Simon Fraser University, Burnaby, BC V5A 1S6 Canada
| | - Curtis A. Suttle
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
- Integrated Microbial Biodiversity Program, Canadian Institute for Advanced Research, Toronto, ON M5G 1Z8 Canada
| | - Fiona S. L. Brinkman
- Department of Molecular Biology and Biochemistry, South Science Building, Simon Fraser University, Burnaby, BC V5A 1S6 Canada
| | - Judith Isaac-Renton
- British Columbia Public Health Laboratory, British Columbia Centre for Disease Control, Vancouver, BC V5Z 4R4 Canada
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Natalie A. Prystajecky
- British Columbia Public Health Laboratory, British Columbia Centre for Disease Control, Vancouver, BC V5Z 4R4 Canada
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Patrick Tang
- Department of Pathology, Sidra Medical and Research Center, PO Box 26999, Doha, Qatar
| |
Collapse
|
49
|
Quantitative Distribution of Infectious F-Specific RNA Phage Genotypes in Surface Waters. Appl Environ Microbiol 2016; 82:4244-4252. [PMID: 27208125 DOI: 10.1128/aem.00621-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/30/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED F-specific RNA phages (FRNAPHs) are considered potential viral indicators of water pollution due to their occurrence and stability in water environments. However, their suitability as viral indicators is not fully elucidated because the characteristics of FRNAPHs are variable depending on the genotype. In this study, for the characterization of infectious FRNAPH genotypes, integrated culture reverse transcription-PCR coupled with the most probable number approach was applied to surface water samples. Further, to recover low concentrations of FRNAPH genotypes, an FRNAPH recovery method was developed. The novel FRNAPH recovery method using a noncharged microfiltration membrane could effectively recover FRNAPH strains without inactivation, while a method using an electronegative microfiltration membrane resulted in the inactivation of some strains. Infectious FRNAPH genotypes in surface water samples were successfully quantified with an efficiency comparable to that of the conventional plaque assay. Genotype I (GI) and GII FRNAPHs tended to be predominant at locations impacted by treated and untreated municipal wastewater, respectively. The numbers and proportions of infectious FRNAPHs tended to be higher during the winter season when water temperature decreased. IMPORTANCE Properties of FRNAPHs are highly variable depending on their genotypes. Previous typing methods for FRNAPHs are not quantitative and/or are based on molecular assays, which cannot differentiate infective strains from inactive strains. Due to the reasons mentioned above, the utility of FRNAPHs as viral indicators of water pollution has not been fully validated. In this study, a quantitative genotyping method for infectious FRNAPHs was developed and applied to surface water samples. The method enabled characterization of infectious FRNAPH genotypes in terms of their occurrence and seasonality. Moreover, comparison of the method to a conventional molecular assay (reverse transcription-quantitative PCR) enabled characterization of their stability. Our approach can provide novel findings for further validation of FRNAPHs as viral indicators of water pollution.
Collapse
|
50
|
Coliphages as Model Organisms in the Characterization and Management of Water Resources. WATER 2016. [DOI: 10.3390/w8050199] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|