1
|
Bodenstein C, Bourquain D, Nitsche A, Grossegesse M. Xmas-NT: A Novel Two-Color Fluorescence Micro Neutralization Test for the Detection of Neutralizing Antibodies Against Monkeypox Virus. J Med Virol 2025; 97:e70246. [PMID: 39977402 PMCID: PMC11841928 DOI: 10.1002/jmv.70246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/03/2025] [Accepted: 02/05/2025] [Indexed: 02/22/2025]
Abstract
Since the global outbreak of Mpox in 2022, interest in seroepidemiological and vaccine studies has grown rapidly. One aspect of interest in these studies is the detection of neutralizing antibodies to the causative agent, monkeypox virus (MPXV). Determination of neutralizing antibodies using a (micro)-neutralization test (NT) is the gold standard method, which is time consuming and labor intensive. Here, we present the comparison of different methods to facilitate MPXV NT analysis resulting in the establishment of an optimized MPXV NT protocol. The optimized protocol is based on a recombinant eGFP-expressing MPXV and a recombinant mCherry-expressing VeroE6 cell line. Using the so-called Xmas-NT, the incubation time can be reduced by 60%. In addition, compared to the conventional NT, the documentation time of the Xmas-NT is significantly reduced by 80%, making it suitable for serological high throughput screening studies.
Collapse
Affiliation(s)
- Clemens Bodenstein
- Highly Pathogenic Viruses (ZBS 1), Centre for Biological Threats and Special PathogensWHO Collaboration Center for Emerging Threats and Special Pathogens, Robert Koch InstituteBerlinGermany
| | - Daniel Bourquain
- Highly Pathogenic Viruses (ZBS 1), Centre for Biological Threats and Special PathogensWHO Collaboration Center for Emerging Threats and Special Pathogens, Robert Koch InstituteBerlinGermany
| | - Andreas Nitsche
- Highly Pathogenic Viruses (ZBS 1), Centre for Biological Threats and Special PathogensWHO Collaboration Center for Emerging Threats and Special Pathogens, Robert Koch InstituteBerlinGermany
| | - Marica Grossegesse
- Highly Pathogenic Viruses (ZBS 1), Centre for Biological Threats and Special PathogensWHO Collaboration Center for Emerging Threats and Special Pathogens, Robert Koch InstituteBerlinGermany
| |
Collapse
|
2
|
Liu Z, Tian X, Liu W, Xian Y, Chen W, Zhou R. A Sensitive and High-Throughput Flow Cytometry-Based Assay for Measuring Antibody Neutralization of Human Adenovirus Type 3. Virol Sin 2021; 36:537-544. [PMID: 32990935 PMCID: PMC8257853 DOI: 10.1007/s12250-020-00295-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 08/24/2020] [Indexed: 11/28/2022] Open
Abstract
The assessment of neutralization activity is an important step in the evaluation of neutralizing antibodies (NAbs). The traditional methods for measuring the antibody neutralization of human adenovirus type 3 (HAdV-3) are the microneutralization (MN) assay, which has insufficient sensitivity, and the plaque reduction neutralization test (PRNT), which is not suitable for high-throughput screening. Herein, we describe the development of a flow cytometry-based neutralization (FCN) assay for measuring the neutralization of sera, cell culture supernatants, and chimeric antibodies against HAdV-3 on the basis of a recombinant HAdV-3 (rHAdV-3) construct expressing the enhanced green fluorescent protein (EGFP). For flow cytometry-based assays, the optimal cell confluence was determined as 90%, and the virus was titrated using the assay. The established FCN assay follows the percentage law and an optimal MOI of not less than 5 × 10-4 was determined by using a purified chimeric antibody. In addition, comparison of the anti-HAdV-3 NAb titers of 72 human serum samples by the MN and FCN assays, showed that both assays correlated strongly with each other. Our FCN assay was an improvement over the MN assay because the observation period was reduced from 3 to 1 days and data analysis could be performed objectively and robotically. Importantly, the newly established FCN assay allows measurement of the neutralization activity of chimeric antibodies expressed in cell culture supernatants. Thus, this sensitive and high-throughput FCN assay is a useful alternative to the MN assay for measuring the antibody neutralization of HAdV-3 and for screening anti-HAdV-3 NAbs in cell culture supernatants.
Collapse
Affiliation(s)
- Zhenwei Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510000, China
| | - Xingui Tian
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510000, China
| | - Wenkuan Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510000, China
| | - Yuting Xian
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510000, China
| | - Weilue Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510000, China
| | - Rong Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510000, China.
| |
Collapse
|
3
|
Gonçalves E, Guillén Y, Lama JR, Sanchez J, Brander C, Paredes R, Combadière B. Host Transcriptome and Microbiota Signatures Prior to Immunization Profile Vaccine Humoral Responsiveness. Front Immunol 2021; 12:657162. [PMID: 34040607 PMCID: PMC8141841 DOI: 10.3389/fimmu.2021.657162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/16/2021] [Indexed: 11/28/2022] Open
Abstract
The identification of new biomarkers is essential to predict responsiveness to vaccines. We investigated the whole-blood transcriptome and microbiome prior to immunization, in order to assess their involvement in induction of humoral responses two months later. We based our analyses on stool and skin microbiota, and blood transcriptome prior to immunization, in a randomized clinical study in which participants were vaccinated with the MVA-HIV clade B vaccine (MVA-B). We found that the levels of neutralizing antibody responses were correlated with abundance of Eubacterium in stool and Prevotella in skin. In addition, genus diversity and bacterial species abundance were also correlated with the expression of genes involved in B cell development prior to immunization and forecast strong responders to MVA-B. To our knowledge, this is the first study integrating host blood gene expression and microbiota that might open an avenue of research in this field and to optimize vaccination strategies and predict responsiveness to vaccines.
Collapse
Affiliation(s)
- Elena Gonçalves
- Sorbonne Université, INSERM, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Yolanda Guillén
- IrsiCaixa AIDS Research Institute-HIVACAT, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain
| | - Javier R Lama
- Asociacion Civil Impacta Salud y Educacion, Lima, Peru
| | - Jorge Sanchez
- Centro de Investigaciones Tecnológicas, Biomedicas y Medioambientales, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Christian Brander
- IrsiCaixa AIDS Research Institute-HIVACAT, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain.,Faculty of Medicine, Universitat de Vic-Central de Catalunya (UVic-UCC), Vic, Spain.,Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| | - Roger Paredes
- Infectious Diseases Department, Hospital Universitari Germans Trias, Barcelona, Spain
| | - Behazine Combadière
- Sorbonne Université, INSERM, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| |
Collapse
|
4
|
Sanchez J, Gonçalves E, Llano A, Gonzáles P, Fernández-Maldonado M, Vogt A, Soria A, Perez S, Cedeño S, Fernández MA, Nourikyan J, de Bernard S, Ganoza C, Pedruzzi E, Bonduelle O, Mothe B, Gòmez CE, Esteban M, Garcia F, Lama JR, Brander C, Combadiere B. Immune Profiles Identification by Vaccinomics After MVA Immunization in Randomized Clinical Study. Front Immunol 2020; 11:586124. [PMID: 33244316 PMCID: PMC7683801 DOI: 10.3389/fimmu.2020.586124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/12/2020] [Indexed: 12/04/2022] Open
Abstract
Background Our previous work has demonstrated the benefits of transcutaneous immunization in targeting Langerhans cells and preferentially inducing CD8 T-cell responses. Methods In this randomized phase Ib clinical trial including 20 HIV uninfected volunteers, we compared the safety and immunogenicity of the MVA recombinant vaccine expressing HIV-B antigen (MVA-B) by transcutaneous and intramuscular routes. We hypothesized that the quality of innate and adaptive immunity differs according to the route of immunization and explored the quality of the vector vaccine-induced immune responses. We also investigated the early blood transcriptome and serum cytokine levels to identify innate events correlated with the strength and quality of adaptive immunity. Results We demonstrate that MVA-B vaccine is safe by both routes, but that the quality and intensity of both innate and adaptive immunity differ significantly. Transcutaneous vaccination promoted CD8 responses in the absence of antibodies and slightly affected gene expression, involving mainly genes associated with metabolic pathways. Intramuscular vaccination, on the other hand, drove robust changes in the expression of genes involved in IL-6 and interferon signalling pathways, mainly those associated with humoral responses, and also some levels of CD8 response. Conclusion Thus, vaccine delivery route perturbs early innate responses that shape the quality of adaptive immunity. Clinical Trial Registration http://ClinicalTrials.gov, identifier PER-073-13.
Collapse
Affiliation(s)
- Jorge Sanchez
- Centro de Investigaciones Tecnológicas, Biomedicas y Medioambientales, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Elena Gonçalves
- Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses (CIMIParis), Paris, France
| | - Anuska Llano
- IrsiCaixa AIDS Research Institute-HIVACAT, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain
| | | | | | - Annika Vogt
- Clinical Research Center for Hair and Skin Science, Department of Dermatology, Venerology and Allergy, Charité-Universitatsmedizin Berlin, corporate member of Freie Universitaet Berlin, Humboldt-Universitaet zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | | | - Susana Perez
- Centro de Investigaciones Tecnológicas, Biomedicas y Medioambientales, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Samandhy Cedeño
- IrsiCaixa AIDS Research Institute-HIVACAT, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain
| | - Marco Antonio Fernández
- Flow Cytometry Facility, Germans Trias i Pujol Research Institute (IGTP), Hospital Universitari Germans Trias i Pujol, Barcelona, Spain
| | | | | | | | - Eric Pedruzzi
- Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses (CIMIParis), Paris, France
| | - Olivia Bonduelle
- Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses (CIMIParis), Paris, France
| | - Beatriz Mothe
- IrsiCaixa AIDS Research Institute-HIVACAT, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain.,Fundació Lluita contra la Sida, Infectious Diseases Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Carmen E Gòmez
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Mariano Esteban
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Felipe Garcia
- Infectious Diseases Department, Hospital Clínic, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Javier R Lama
- Asociacion Civil Impacta Salud y Educacion, Lima, Peru
| | - Christian Brander
- IrsiCaixa AIDS Research Institute-HIVACAT, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain.,Faculty of Medicine, Universitat de Vic-Central de Catalunya (UVic-UCC), Vic, Spain.,Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| | - Behazine Combadiere
- Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses (CIMIParis), Paris, France
| |
Collapse
|
5
|
Hepatitis B Virus DNA is a Substrate for the cGAS/STING Pathway but is not Sensed in Infected Hepatocytes. Viruses 2020; 12:v12060592. [PMID: 32485908 PMCID: PMC7354540 DOI: 10.3390/v12060592] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/24/2020] [Accepted: 05/28/2020] [Indexed: 12/18/2022] Open
Abstract
Hepatitis B virus (HBV) chronic infection is a critical risk factor for hepatocellular carcinoma. The innate immune response to HBV infection is a matter of debate. In particular, viral escape mechanisms are poorly understood. Our study reveals that HBV RNAs are not immunostimulatory in immunocompetent myeloid cells. In contrast, HBV DNA from viral particles and DNA replication intermediates are immunostimulatory and sensed by cyclic GMP-AMP Synthase (cGAS) and Stimulator of Interferon Genes (STING). We show that primary human hepatocytes express DNA sensors to reduced levels compared to myeloid cells. Nevertheless, hepatocytes can respond to HBV relaxed-circular DNA (rcDNA), when transfected in sufficient amounts, but not to HBV infection. Finally, our data suggest that HBV infection does not actively inhibit the DNA-sensing pathway. In conclusion, in infected hepatocytes, HBV passively evades recognition by cellular sensors of nucleic acids by (i) producing non-immunostimulatory RNAs, (ii) avoiding sensing of its DNAs by cGAS/STING without active inhibition of the pathway.
Collapse
|
6
|
Investigating the Effect of Encapsulation Processing Parameters on the Viability of Therapeutic Viruses in Electrospraying. Pharmaceutics 2020; 12:pharmaceutics12040388. [PMID: 32344667 PMCID: PMC7238258 DOI: 10.3390/pharmaceutics12040388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022] Open
Abstract
The ability of viruses to introduce genetic material into cells can be usefully exploited in a variety of therapies and also vaccination. Encapsulating viruses to limit inactivation by the immune system before reaching the desired target and allowing for controlled release is a promising strategy of delivery. Conventional encapsulation methods, however, can significantly reduce infectivity. The aim of this study was to investigate electrospraying as an alternative encapsulation technique. Two commonly used therapeutic viruses, adenovirus (Ad) and modified vaccinia Ankara (MVA), were selected. First, solutions containing the viruses were electrosprayed in a single needle configuration at increasing voltages to examine the impact of the electric field. Second, the effect of exposing the viruses to pure organic solvents was investigated and compared to that occurring during coaxial electrospraying. Infectivity was determined by measuring the luminescence produced from lysed A549 cells after incubation with treated virus. Neither Ad nor MVA exhibited any significant loss in infectivity when electrosprayed within the range of electrospraying parameters relevant for encapsulation. A significant decrease in infectivity was only observed when MVA was electrosprayed at the highest voltage, 24 kV, and when MVA and Ad were exposed to selected pure organic solvents. Thus, it was concluded that electrospraying would be a viable method for virus encapsulation.
Collapse
|
7
|
Slike BM, Creegan M, Marovich M, Ngauy V. Humoral Immunity to Primary Smallpox Vaccination: Impact of Childhood versus Adult Immunization on Vaccinia Vector Vaccine Development in Military Populations. PLoS One 2017; 12:e0169247. [PMID: 28046039 PMCID: PMC5207489 DOI: 10.1371/journal.pone.0169247] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 12/14/2016] [Indexed: 11/20/2022] Open
Abstract
Modified Vaccinia virus has been shown to be a safe and immunogenic vector platform for delivery of HIV vaccines. Use of this vector is of particular importance to the military, with the implementation of a large scale smallpox vaccination campaign in 2002 in active duty and key civilian personnel in response to potential bioterrorist activities. Humoral immunity to smallpox vaccination was previously shown to be long lasting (up to 75 years) and protective. However, using vaccinia-vectored vaccine delivery for other diseases on a background of anti-vector antibodies (i.e. pre-existing immunity) may limit their use as a vaccine platform, especially in the military. In this pilot study, we examined the durability of vaccinia antibody responses in adult primary vaccinees in a healthy military population using a standard ELISA assay and a novel dendritic cell neutralization assay. We found binding and neutralizing antibody (NAb) responses to vaccinia waned after 5–10 years in a group of 475 active duty military, born after 1972, who were vaccinated as adults with Dryvax®. These responses decreased from a geometric mean titer (GMT) of 250 to baseline (<20) after 10–20 years post vaccination. This contrasted with a comparator group of adults, ages 35–49, who were vaccinated with Dryvax® as children. In the childhood vaccinees, titers persisted for >30 years with a GMT of 210 (range 112–3234). This data suggests limited durability of antibody responses in adult vaccinees compared to those vaccinated in childhood and further that adult vaccinia recipients may benefit similarly from receipt of a vaccinia based vaccine as those who are vaccinia naïve. Our findings may have implications for the smallpox vaccination schedule and support the ongoing development of this promising viral vector in a military vaccination program.
Collapse
Affiliation(s)
- Bonnie M. Slike
- U.S. Military HIV Research Program, Silver Spring, Maryland, United States of America
- The Henry M. Jackson for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Matthew Creegan
- U.S. Military HIV Research Program, Silver Spring, Maryland, United States of America
- The Henry M. Jackson for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Mary Marovich
- Division of AIDS, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Viseth Ngauy
- Tripler Army Medical Center, Honolulu, Hawaii, United States of America
- * E-mail:
| |
Collapse
|
8
|
Trombetta CM, Perini D, Mather S, Temperton N, Montomoli E. Overview of Serological Techniques for Influenza Vaccine Evaluation: Past, Present and Future. Vaccines (Basel) 2014; 2:707-34. [PMID: 26344888 PMCID: PMC4494249 DOI: 10.3390/vaccines2040707] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/25/2014] [Accepted: 09/22/2014] [Indexed: 12/12/2022] Open
Abstract
Serological techniques commonly used to quantify influenza-specific antibodies include the Haemagglutination Inhibition (HI), Single Radial Haemolysis (SRH) and Virus Neutralization (VN) assays. HI and SRH are established and reproducible techniques, whereas VN is more demanding. Every new influenza vaccine needs to fulfil the strict criteria issued by the European Medicines Agency (EMA) in order to be licensed. These criteria currently apply exclusively to SRH and HI assays and refer to two different target groups-healthy adults and the elderly, but other vaccine recipient age groups have not been considered (i.e., children). The purpose of this timely review is to highlight the current scenario on correlates of protection concerning influenza vaccines and underline the need to revise the criteria and assays currently in use. In addition to SRH and HI assays, the technical advantages provided by other techniques such as the VN assay, pseudotype-based neutralization assay, neuraminidase and cell-mediated immunity assays need to be considered and regulated via EMA criteria, considering the many significant advantages that they could offer for the development of effective vaccines.
Collapse
Affiliation(s)
- Claudia Maria Trombetta
- Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro, 53100 Siena, Italy.
| | - Daniele Perini
- VisMederi srl, Enterprise in Life Sciences, Via Fiorentina 1, 53100 Siena, Italy.
| | - Stuart Mather
- Viral Pseudotype Unit, School of Pharmacy, University of Kent, Chatham Maritime, Kent ME4 4TB, UK.
| | - Nigel Temperton
- Viral Pseudotype Unit, School of Pharmacy, University of Kent, Chatham Maritime, Kent ME4 4TB, UK.
| | - Emanuele Montomoli
- Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro, 53100 Siena, Italy.
- VisMederi srl, Enterprise in Life Sciences, Via Fiorentina 1, 53100 Siena, Italy.
| |
Collapse
|
9
|
Hardwick NR, Carroll M, Kaltcheva T, Qian D, Lim D, Leong L, Chu P, Kim J, Chao J, Fakih M, Yen Y, Espenschied J, Ellenhorn JDI, Diamond DJ, Chung V. p53MVA therapy in patients with refractory gastrointestinal malignancies elevates p53-specific CD8+ T-cell responses. Clin Cancer Res 2014; 20:4459-70. [PMID: 24987057 DOI: 10.1158/1078-0432.ccr-13-3361] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE To conduct a phase I trial of a modified vaccinia Ankara (MVA) vaccine delivering wild-type human p53 (p53MVA) in patients with refractory gastrointestinal cancers. EXPERIMENTAL DESIGN Three patients were vaccinated with 1.0×10(8) plaque-forming unit (pfu) p53MVA followed by nine patients at 5.6×10(8) pfu. Toxicity was classified using the NCI Common Toxicity Criteria and clinical responses were assessed by CT scan. Peripheral blood samples were collected pre- and post-immunization for immunophenotyping, monitoring of p53MVA-induced immune response, and examination of PD1 checkpoint inhibition in vitro. RESULTS p53MVA immunization was well tolerated at both doses, with no adverse events above grade 2. CD4+ and CD8+ T cells showing enhanced recognition of a p53 overlapping peptide library were detectable after the first immunization, particularly in the CD8+ T-cell compartment (P=0.03). However, in most patients, this did not expand further with the second and third immunization. The frequency of PD1+ T cells detectable in patients' peripheral blood mononuclear cells (PBMC) was significantly higher than in healthy controls. Furthermore, the frequency of PD1+ CD8+ T cells showed an inverse correlation with the peak CD8+ p53 response (P=0.02) and antibody blockade of PD1 in vitro increased the p53 immune responses detected after the second or third immunizations. Induction of strong T-cell and antibody responses to the MVA backbone were also apparent. CONCLUSION p53MVA was well tolerated and induced robust CD8+ T-cell responses. Combination of p53MVA with immune checkpoint inhibition could help sustain immune responses and lead to enhanced clinical benefit.
Collapse
Affiliation(s)
- Nicola R Hardwick
- Division of Translational Vaccine Research, Beckman Research Institute, City of Hope National Medical Center, Duarte, California
| | - Mary Carroll
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, California
| | - Teodora Kaltcheva
- Division of Translational Vaccine Research, Beckman Research Institute, City of Hope National Medical Center, Duarte, California
| | - Dajun Qian
- Bioinformatics Core Facility, City of Hope National Medical Center, Duarte, California
| | - Dean Lim
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, California
| | - Lucille Leong
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, California
| | - Peiguo Chu
- Department of Pathology, City of Hope National Medical Center, Duarte, California
| | - Joseph Kim
- Department of Surgical Oncology, City of Hope National Medical Center, Duarte, California
| | - Joseph Chao
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, California
| | - Marwan Fakih
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, California
| | - Yun Yen
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, California
| | - Jonathan Espenschied
- Division of Cancer Etiology and Outcomes Research, City of Hope National Medical Center, Duarte, California
| | | | - Don J Diamond
- Division of Translational Vaccine Research, Beckman Research Institute, City of Hope National Medical Center, Duarte, California.
| | - Vincent Chung
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, California
| |
Collapse
|
10
|
Gebauer M, Behrens M, König M, Behrens SE. A bi-cistronic, reporter-encoding bovine viral diarrhea virus applied in a new, effective diagnostic test. J Gen Virol 2014; 95:1522-1531. [PMID: 24760759 DOI: 10.1099/vir.0.063800-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Infections with bovine viral diarrhea virus (BVDV) have a huge economic impact on cattle production and reproduction worldwide. A key factor for BVDV surveillance and eventual eradication is to efficiently detect infections and to monitor herd immunity. In this study, we generated a stable, bi-cistronic BVDV that encoded EGFP in addition to the viral proteins. Applying this recombinant virus, a new flow-cytometry-based virus neutralization test was established that enabled accurate and reliable detection of field-virus-infected and vaccinated animals. The test, which is simple and fast, is expected to support novel, effective screening procedures in eradication and vaccination programmes.
Collapse
Affiliation(s)
- Mandy Gebauer
- Institute of Biochemistry and Biotechnology, Faculty of Life Sciences (NFI), Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Martina Behrens
- Institute of Biochemistry and Biotechnology, Faculty of Life Sciences (NFI), Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Matthias König
- Institue of Virology, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Giessen, Germany
| | - Sven-Erik Behrens
- Institute of Biochemistry and Biotechnology, Faculty of Life Sciences (NFI), Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
11
|
Eschbaumer M, Law S, Solis C, Chernick A, van der Meer F, Czub M. Rapid detection of neutralizing antibodies against bovine viral diarrhoea virus using quantitative high-content screening. J Virol Methods 2014; 198:56-63. [DOI: 10.1016/j.jviromet.2013.12.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 11/26/2013] [Accepted: 12/17/2013] [Indexed: 11/29/2022]
|
12
|
van Remmerden Y, Xu F, van Eldik M, Heldens JGM, Huisman W, Widjojoatmodjo MN. An improved respiratory syncytial virus neutralization assay based on the detection of green fluorescent protein expression and automated plaque counting. Virol J 2012; 9:253. [PMID: 23114196 PMCID: PMC3514128 DOI: 10.1186/1743-422x-9-253] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 10/17/2012] [Indexed: 12/01/2022] Open
Abstract
Background Virus neutralizing antibodies against respiratory syncytial virus (RSV) are considered important correlates of protection for vaccine evaluation. The established plaque reduction assay is time consuming, labor intensive and highly variable. Methods Here, a neutralization assay based on a modified RSV strain expressing the green fluorescent protein in combination with automated detection and quantification of plaques is described. Results The fluorescence plaque reduction assay in microplate format requires only two days to complete and is simple and reproducible. A good correlation between visual and automated counting methods to determine RSV neutralizing serum antibody titers was observed. Conclusions The developed virus neutralization assay is suitable for high-throughput testing and can be used for both animal studies and (large scale) vaccine clinical trials.
Collapse
Affiliation(s)
- Yvonne van Remmerden
- Department of Vaccine Research, Vaccinology, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | | | | | | | | | | |
Collapse
|
13
|
Liu Q, Huang W, Nie J, Zhu R, Gao D, Song A, Meng S, Xu X, Wang Y. A novel high-throughput vaccinia virus neutralization assay and preexisting immunity in populations from different geographic regions in China. PLoS One 2012; 7:e33392. [PMID: 22438922 PMCID: PMC3306400 DOI: 10.1371/journal.pone.0033392] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 02/08/2012] [Indexed: 11/25/2022] Open
Abstract
Background Pre-existing immunity to Vaccinia Tian Tan virus (VTT) resulting from a large vaccination campaign against smallpox prior to the early 1980s in China, has been a major issue for application of VTT-vector based vaccines. It is essential to establish a sensitive and high-throughput neutralization assay to understand the epidemiology of Vaccinia-specific immunity in current populations in China. Methodology/Principal Findings A new anti-Vaccinia virus (VACV) neutralization assay that used the attenuated replication-competent VTT carrying the firefly luciferase gene of Photinus pyralis (rTV-Fluc) was established and standardized for critical parameters that included the choice of cell line, viral infection dose, and the infection time. The current study evaluated the maintenance of virus-specific immunity after smallpox vaccination by conducting a non-randomized, cross-sectional analysis of antiviral antibody-mediated immune responses in volunteers examined 30–55 years after vaccination. The rTV-Fluc neutralization assay was able to detect neutralizing antibodies (NAbs) against Vaccinia virus without the ability to differentiate strains of Vaccinia virus. We showed that the neutralizing titers measured by our assay were similar to those obtained by the traditional plaque reduction neutralization test (PRNT). Using this assay, we found a low prevalence of NAb to VTT (7.6%) in individuals born before 1980 from Beijing and Anhui provinces in China, and when present, anti-VTT NAb titers were low. No NAbs were detected in all 222 samples from individuals born after 1980. There was no significant difference observed for titer or prevalence by gender, age range and geographic origin. Conclusion A simplified, sensitive, standardized, reproducible, and high-throughput assay was developed for the quantitation of NAbs against different Vaccinia strains. The current study provides useful insights for the future development of VTT-based vaccination in Beijing and Anhui provinces of China.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Cell Biology, National Institutes for Food and Drug Control, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, Beijing, China
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Weijin Huang
- Department of Cell Biology, National Institutes for Food and Drug Control, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, Beijing, China
| | - Jianhui Nie
- Department of Cell Biology, National Institutes for Food and Drug Control, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, Beijing, China
| | - Rong Zhu
- Department of Cell Biology, National Institutes for Food and Drug Control, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, Beijing, China
| | | | - Aijing Song
- Department of Cell Biology, National Institutes for Food and Drug Control, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, Beijing, China
| | - Shufang Meng
- Department of Cell Biology, National Institutes for Food and Drug Control, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, Beijing, China
| | - Xuemei Xu
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Youchun Wang
- Department of Cell Biology, National Institutes for Food and Drug Control, Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, Beijing, China
- * E-mail:
| |
Collapse
|
14
|
Kremer M, Suezer Y, Volz A, Frenz T, Majzoub M, Hanschmann KM, Lehmann MH, Kalinke U, Sutter G. Critical role of perforin-dependent CD8+ T cell immunity for rapid protective vaccination in a murine model for human smallpox. PLoS Pathog 2012; 8:e1002557. [PMID: 22396645 PMCID: PMC3291617 DOI: 10.1371/journal.ppat.1002557] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 01/15/2012] [Indexed: 11/30/2022] Open
Abstract
Vaccination is highly effective in preventing various infectious diseases, whereas the constant threat of new emerging pathogens necessitates the development of innovative vaccination principles that also confer rapid protection in a case of emergency. Although increasing evidence points to T cell immunity playing a critical role in vaccination against viral diseases, vaccine efficacy is mostly associated with the induction of antibody responses. Here we analyze the immunological mechanism(s) of rapidly protective vaccinia virus immunization using mousepox as surrogate model for human smallpox. We found that fast protection against lethal systemic poxvirus disease solely depended on CD4 and CD8 T cell responses induced by vaccination with highly attenuated modified vaccinia virus Ankara (MVA) or conventional vaccinia virus. Of note, CD4 T cells were critically required to allow for MVA induced CD8 T cell expansion and perforin-mediated cytotoxicity was a key mechanism of MVA induced protection. In contrast, selected components of the innate immune system and B cell-mediated responses were fully dispensable for prevention of fatal disease by immunization given two days before challenge. In conclusion, our data clearly demonstrate that perforin-dependent CD8 T cell immunity plays a key role in MVA conferred short term protection against lethal mousepox. Rapid induction of T cell immunity might serve as a new paradigm for treatments that need to fit into a scenario of protective emergency vaccination. Prophylactic use of vaccinia virus allowed eradication of human smallpox, one of the greatest successes in medicine. However there are concerns that variola virus, the infectious agent of smallpox, may be used as bioterroristic weapon and zoonotic monkeypox or cowpox remain threatening infections in humans. Thus, new developments of safe and rapidly protecting orthopoxvirus-specific vaccines have been initiated. The candidate vaccine modified vaccinia virus Ankara (MVA) was recently shown to protect against lethal systemic poxvirus disease even when applied shortly before or after infection of mice with ectromelia virus, the probably best animal model for human smallpox. Surprisingly, little is known about the protective mechanism of early immune responses elicited against orthopoxvirus infections. Here, we used the mousepox model to analyze the immunological basis of rapidly protective MVA vaccination. In contrast to common understanding of orthopoxvirus vaccine efficacy relying mainly on antibody mediated immunity, we observed unimpaired protection also in absence of B cells. Surprisingly, rapid protection by vaccination with MVA or conventional vaccinia virus was solely dependent on T cells, irrespective of the route of injection. Thus, our study suggests a key role for T cell immunity in rapidly protective immunization against orthopoxviruses and potentially other infectious agents.
Collapse
Affiliation(s)
- Melanie Kremer
- Institute for Infectious Diseases and Zoonoses, University of Munich LMU, Muenchen, Germany
| | | | - Asisa Volz
- Institute for Infectious Diseases and Zoonoses, University of Munich LMU, Muenchen, Germany
| | - Theresa Frenz
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research, Braunschweig, and Hannover Medical School, Hannover, Germany
| | - Monir Majzoub
- Institute of Veterinary Pathology, University of Munich LMU, Muenchen, Germany
| | | | - Michael H. Lehmann
- Institute for Infectious Diseases and Zoonoses, University of Munich LMU, Muenchen, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research, Braunschweig, and Hannover Medical School, Hannover, Germany
| | - Gerd Sutter
- Institute for Infectious Diseases and Zoonoses, University of Munich LMU, Muenchen, Germany
- * E-mail:
| |
Collapse
|
15
|
Physical analysis of virus particles using electrospray differential mobility analysis. Trends Biotechnol 2011; 30:216-24. [PMID: 22172689 DOI: 10.1016/j.tibtech.2011.11.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 11/08/2011] [Accepted: 11/08/2011] [Indexed: 11/22/2022]
Abstract
This review critically examines an emerging tool to measure viral clearance from biomanufacturing streams, monitor assembly of viruses and virus-like particles, rapidly identify viruses from biological milieu, assay virus neutralization, and prepare bionanoconjugates for bacterial detection. Electrospray differential mobility analysis (ES-DMA) is a tool of choice to simultaneously determine viral size and concentration because it provides full multimodal size distributions with subnanometer precision from individual capsid proteins to intact viral particles. The review contrasts ES-DMA to similar tools and highlights expected growth areas including at-line process sensing as a process analytical technology (PAT), bioseparating as a distinct unit operation, monitoring viral reactions, and interrogating virus-host protein interactions.
Collapse
|
16
|
Kramski M, Drozd A, Lichtfuss GF, Dabrowski PW, Ellerbrok H. Rapid detection of anti-Vaccinia virus neutralizing antibodies. Virol J 2011; 8:139. [PMID: 21439060 PMCID: PMC3073888 DOI: 10.1186/1743-422x-8-139] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 03/25/2011] [Indexed: 12/03/2022] Open
Abstract
Increasing infections with Monkeypox and Cowpox viruses pose a continuous and growing threat to human health. The standard method for detecting poxvirus neutralizing antibodies is the plaque-reduction neutralization test that is specific but also time-consuming and laborious. Therefore, a rapid and reliable method was developed to determine neutralizing antibody titers within twelve hours. The new assay measures viral mRNA transcription as a marker for actively replicating virus after incomplete neutralization using real-time PCR.
Collapse
Affiliation(s)
- Marit Kramski
- Robert Koch-Institute, Centre for Biological Safety, Nordufer 20, 13353 Berlin, Germany
| | | | | | | | | |
Collapse
|
17
|
Abadie V, Bonduelle O, Duffy D, Parizot C, Verrier B, Combadière B. Original encounter with antigen determines antigen-presenting cell imprinting of the quality of the immune response in mice. PLoS One 2009; 4:e8159. [PMID: 19997562 PMCID: PMC2785484 DOI: 10.1371/journal.pone.0008159] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2009] [Accepted: 11/02/2009] [Indexed: 01/29/2023] Open
Abstract
Background Obtaining a certain multi-functionality of cellular immunity for the control of infectious diseases is a burning question in immunology and in vaccine design. Early events, including antigen shuttling to secondary lymphoid organs and recruitment of innate immune cells for adaptive immune response, determine host responsiveness to antigens. However, the sequence of these events and their impact on the quality of the immune response remain to be elucidated. Here, we chose to study Modified Vaccinia virus Ankara (MVA) which is now replacing live Smallpox vaccines and is proposed as an attenuated vector for vaccination strategies against infectious diseases. Methodology/Principal findings We analyzed in vivo mechanisms triggered following intradermal (i.d.) and intramuscular (i.m.) Modified Vaccinia virus Ankara (MVA) administration. We demonstrated significant differences in the antigen shuttling to lymphoid organs by macrophages (MΦs), myeloid dendritic cells (DCs), and neutrophils (PMNs). MVA i.d. administration resulted in better antigen distribution and more sustained antigen-presenting cells (APCs) recruitment into draining lymph nodes than with i.m. administration. These APCs, which comprise both DCs and MΦs, were differentially involved in T cell priming and shaped remarkably the quality of cytokine-producing virus-specific T cells according to the entry route of MVA. Conclusions/Significance This study improves our understanding of the mechanisms of antigen delivery and their consequences on the quality of immune responses and provides new insights for vaccine development.
Collapse
Affiliation(s)
- Valérie Abadie
- Institut National de la Santé et de la Recherche Médicale (INSERM) U945, Paris, France
- University of Pierre and Marie Curie (UPMC)- Univ Paris 06, Paris, France
- Assistance-Publique/Hopitaux-de-Paris, Immunity and Infection, Paris, France
| | - Olivia Bonduelle
- Institut National de la Santé et de la Recherche Médicale (INSERM) U945, Paris, France
- University of Pierre and Marie Curie (UPMC)- Univ Paris 06, Paris, France
- Assistance-Publique/Hopitaux-de-Paris, Immunity and Infection, Paris, France
| | - Darragh Duffy
- Institut National de la Santé et de la Recherche Médicale (INSERM) U945, Paris, France
- University of Pierre and Marie Curie (UPMC)- Univ Paris 06, Paris, France
- Assistance-Publique/Hopitaux-de-Paris, Immunity and Infection, Paris, France
| | - Christophe Parizot
- Institut National de la Santé et de la Recherche Médicale (INSERM) U945, Paris, France
- University of Pierre and Marie Curie (UPMC)- Univ Paris 06, Paris, France
- Assistance-Publique/Hopitaux-de-Paris, Immunity and Infection, Paris, France
| | - Bernard Verrier
- Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS/UCBL, Lyon, France
| | - Béhazine Combadière
- Institut National de la Santé et de la Recherche Médicale (INSERM) U945, Paris, France
- University of Pierre and Marie Curie (UPMC)- Univ Paris 06, Paris, France
- Assistance-Publique/Hopitaux-de-Paris, Immunity and Infection, Paris, France
- * E-mail:
| |
Collapse
|
18
|
Gudmundsdotter L, Nilsson C, Brave A, Hejdeman B, Earl P, Moss B, Robb M, Cox J, Michael N, Marovich M, Biberfeld G, Sandström E, Wahren B. Recombinant Modified Vaccinia Ankara (MVA) effectively boosts DNA-primed HIV-specific immune responses in humans despite pre-existing vaccinia immunity. Vaccine 2009; 27:4468-74. [PMID: 19450644 PMCID: PMC4788966 DOI: 10.1016/j.vaccine.2009.05.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2009] [Revised: 04/27/2009] [Accepted: 05/10/2009] [Indexed: 10/20/2022]
Abstract
The presence of vector-specific immune responses may hamper the induction of responses to a foreign antigen encoded by the vector. We evaluated the impact of pre-existing immunity to vaccinia virus on the induction of HIV-specific responses after immunization of healthy volunteers with a HIV-1 DNA prime-MVA boost vaccine. Following three priming immunizations with HIV-1 DNA plasmids, the volunteers were boosted with a single injection of recombinant MVA encoding HIV-1 proteins. Pre-existing immunity to vaccinia virus did not reduce the proportion of individuals who responded to HIV-1, but did lower the magnitude of responses. Our results suggest that vaccinia-based vectors can be used to efficiently induce immune responses to vectored HIV-1 antigens, even in individuals with pre-existing immunity to vaccinia virus.
Collapse
Affiliation(s)
- Lindvi Gudmundsdotter
- Karolinska Institutet and Swedish Institute for Infectious Disease Control, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Mahe B, Vogt A, Liard C, Duffy D, Abadie V, Bonduelle O, Boissonnas A, Sterry W, Verrier B, Blume-Peytavi U, Combadiere B. Nanoparticle-Based Targeting of Vaccine Compounds to Skin Antigen-Presenting Cells By Hair Follicles and their Transport in Mice. J Invest Dermatol 2009; 129:1156-64. [DOI: 10.1038/jid.2008.356] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
20
|
Fluorescence-based antiviral assay for the evaluation of compounds against vaccinia virus, varicella zoster virus and human cytomegalovirus. J Virol Methods 2008; 151:66-73. [DOI: 10.1016/j.jviromet.2008.03.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Revised: 03/14/2008] [Accepted: 03/19/2008] [Indexed: 11/23/2022]
|
21
|
Johnson MC, Damon IK, Karem KL. A rapid, high-throughput vaccinia virus neutralization assay for testing smallpox vaccine efficacy based on detection of green fluorescent protein. J Virol Methods 2008; 150:14-20. [PMID: 18387679 DOI: 10.1016/j.jviromet.2008.02.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 02/14/2008] [Accepted: 02/21/2008] [Indexed: 10/22/2022]
Abstract
Virus neutralization remains a vital tool in assessment of vaccine efficacy for smallpox in the absence of animal smallpox models. In this regard, development of a rapid, sensitive, and high-throughput vaccinia neutralization assay has been sought for evaluating alternative smallpox vaccines, use in bridging studies, as well as understanding the effects of anti-viral immunotherapeutic regimes. The most frequently used method of measuring vaccinia virus neutralization by plaque reduction is time, labor, and material intensive, and therefore limiting in its utility for large scale, high-throughput analysis. Recent advances provide alternative methods that are less labor intensive and higher throughput but with limitations in reagents needed and ease of use. An innovative neutralization assay is described based on a modified Western Reserve vaccinia vector expressing green fluorescent protein (WR-GFP) and an adherent cell monolayer in multi-well plate format. The assay is quick, accurate, provides a large dynamic range and is well suited for large-scale vaccination studies using standard adherent cell lines.
Collapse
Affiliation(s)
- Matthew C Johnson
- Poxvirus Program, Division of Viral and Rickettsial Diseases, US Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, USA
| | | | | |
Collapse
|
22
|
Cosma A, Nagaraj R, Staib C, Diemer C, Wopfner F, Schätzl H, Busch DH, Sutter G, Goebel FD, Erfle V. Evaluation of modified vaccinia virus Ankara as an alternative vaccine against smallpox in chronically HIV type 1-infected individuals undergoing HAART. AIDS Res Hum Retroviruses 2007; 23:782-93. [PMID: 17604541 DOI: 10.1089/aid.2006.0226] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The fear of malevolent use of variola virus by terrorists has led to the implementation of a health care worker vaccination program and to the consideration of vaccination for the general public. However, due to concerns about side effects of the classical smallpox vaccine, especially for immunocompromised individuals, a safer vaccine is urgently needed. We characterized the immunogenicity of modified vaccinia virus Ankara (MVA), one of the more promising alternative smallpox vaccines, in a cohort of 10 chronically HIV-1-infected individuals undergoing highly active antiretroviral therapy (HAART). Nine subjects received smallpox vaccination as children while one subject was never vaccinated against smallpox. All the subjects had CD4 counts >400 cells/mm(3) and 8 out of 10 had undetectable viral loads. MVA was able to elicit humoral and cellular immune responses in the majority of individuals. Vaccinia-specific antibodies were mainly of the IgG class while T cells specific to vaccinia were predominantly CD8(+). The immune responses were maintained over 1 year. Similar vaccinia specific humoral immune responses were observed when our cohort of HIV-1-infected individuals was compared to smallpox-vaccinated healthy subjects. The observed immune responses suggest that the highly attenuated MVA could be used as a substitute vaccine against smallpox in chronically HIV-1-infected individuals undergoing HAART.
Collapse
Affiliation(s)
- Antonio Cosma
- Institute of Molecular Virology, GSF-National Research Centre of Environment and Health, Munich, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Lustig S, Fogg C, Whitbeck JC, Eisenberg RJ, Cohen GH, Moss B. Combinations of polyclonal or monoclonal antibodies to proteins of the outer membranes of the two infectious forms of vaccinia virus protect mice against a lethal respiratory challenge. J Virol 2005; 79:13454-62. [PMID: 16227266 PMCID: PMC1262616 DOI: 10.1128/jvi.79.21.13454-13462.2005] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies demonstrated that antibodies to live vaccinia virus infection are needed for optimal protection against orthopoxvirus infection. The present report is the first to compare the protective abilities of individual and combinations of specific polyclonal and monoclonal antibodies that target proteins of the intracellular (IMV) and extracellular (EV) forms of vaccinia virus. The antibodies were directed to one IMV membrane protein, L1, and to two outer EV membrane proteins, A33 and B5. In vitro studies showed that the antibodies to L1 neutralized IMV and that the antibodies to A33 and B5 prevented the spread of EV in liquid medium. Prophylactic administration of individual antibodies to BALB/c mice partially protected them against disease following intranasal challenge with lethal doses of vaccinia virus. Combinations of antibodies, particularly anti-L1 and -A33 or -L1 and -B5, provided enhanced protection when administered 1 day before or 2 days after challenge. Furthermore, the protection was superior to that achieved with pooled immune gamma globulin from human volunteers inoculated with live vaccinia virus. In addition, single injections of anti-L1 plus anti-A33 antibodies greatly delayed the deaths of severe combined immunodeficiency mice challenged with vaccinia virus. These studies suggest that antibodies to two or three viral membrane proteins optimally derived from the outer membranes of IMV and EV, may be beneficial for prophylaxis or therapy of orthopoxvirus infections.
Collapse
Affiliation(s)
- Shlomo Lustig
- Laboratory of Viral Diseases, National Institutes of Health, 4 Memorial Dr., MSC 0445, Bethesda, MD 20892-0445, USA
| | | | | | | | | | | |
Collapse
|
24
|
Drexler I, Staib C, Sutter G. Modified vaccinia virus Ankara as antigen delivery system: how can we best use its potential? Curr Opin Biotechnol 2005; 15:506-12. [PMID: 15560976 PMCID: PMC7127071 DOI: 10.1016/j.copbio.2004.09.001] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Safety-tested modified vaccinia virus Ankara (MVA) has been established as a potent vector system for the development of candidate recombinant vaccines. The versatility of the vector system was recently demonstrated by the rapid production of experimental MVA vaccines for immunization against severe acute respiratory syndrome associated coronavirus. Promising results were also obtained in the delivery of Epstein-Barr virus or human cytomegalovirus antigens and from the clinical testing of MVA vectors for vaccination against immunodeficiency virus, papilloma virus, Plasmodium falciparum or melanoma. Moreover, MVA is considered to be a prime candidate vaccine for safer protection against orthopoxvirus infections. Thus, vector development to challenge dilemmas in vaccinology or immunization against poxvirus biothreat seems possible, yet the right choice should be made for a most beneficial use.
Collapse
Affiliation(s)
- Ingo Drexler
- GSF - Institute for Molecular Virology, München, Germany
| | - Caroline Staib
- Institute for Virology, Technical University München, Germany
| | - Gerd Sutter
- Paul-Ehrlich-Institute, Department of Virology, 63225 Langen, Germany
| |
Collapse
|