1
|
Guzman Ruiz L, Zollner AM, Hoxie I, Küchler J, Hausjell C, Mesurado T, Krammer F, Jungbauer A, Pereira Aguilar P, Klausberger M, Grabherr R. Enhancing NA immunogenicity through novel VLP designs. Vaccine 2024; 42:126270. [PMID: 39197219 DOI: 10.1016/j.vaccine.2024.126270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024]
Abstract
Current influenza virus vaccines poorly display key neuraminidase (NA) epitopes and do not robustly induce NA-reactive antibodies; instead, they focus on the induction of hemagglutinin (HA)-reactive antibodies. Next-generation influenza vaccines should be optimized in order to activate NA-reactive B cells and to induce a broadly cross-reactive and protective antibody response. We aimed at enhancing the immunogenicity of the NA on vaccines by two strategies: (i) modifying the HA:NA ratio of the vaccine preparation and (ii) exposing epitopes on the lateral surface or beneath the head of the NA by extending the NA stalk. The H1N1 glycoproteins from the influenza virus A/California/04/2009 strain were displayed on human immunodeficiency virus 1 (HIV-1) gag-based virus-like particles (VLP). Using the baculovirus insect cell expression system, we biased the quantity of surface glycoproteins employing two different promoters, the very late baculovirus p10 promoter and the early and late gp64 promoter. This led to a 1:1 to 2:1 HA:NA ratio, which was approximately double or triple the amount of NA as present on the wild-type influenza A virus (HA:NA ratio 3:1 to 5:1). Furthermore, by insertion of 15 amino acids from the A-New York/61/2012 strain (NY12) which prolongates the NA stalk (NA long stalk; NA-LS), we intended to improve the accessibility of the NA. Six different types of VLPs were produced and purified using a platform downstream process based on Capto-Core 700™ followed by Capto-Heparin™ affinity chromatography combined with ultracentrifugation. These VLPs were then tested in a mouse model. Robust titers of antibodies that inhibit the neuraminidase activity were elicited even after vaccination with two low doses (0.3 μg) of the H1N1 VLPs without compromising the anti-HA responses. In conclusion, our results demonstrate the feasibility of the two developed strategies to retain HA immunogenicity and improve NA immunogenicity as a future influenza vaccine candidate.
Collapse
Affiliation(s)
- Leticia Guzman Ruiz
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Biotechnology, Institute of Molecular Biotechnology (IMBT), Muthgasse 18, 1190 Vienna, Austria; University of Natural Resources and Life Sciences Vienna (BOKU), Department of Biotechnology, Institute of Bioprocess Science and Engineering (IBSE), Muthgasse 18, 1190 Vienna, Austria
| | - Alexander M Zollner
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Biotechnology, Institute of Bioprocess Science and Engineering (IBSE), Muthgasse 18, 1190 Vienna, Austria
| | - Irene Hoxie
- Icahn School of Medicine at Mount Sinai, Department of Microbiology, Gustave L. Levy Place, 10029-5674 New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jan Küchler
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Christina Hausjell
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Biotechnology, Institute of Molecular Biotechnology (IMBT), Muthgasse 18, 1190 Vienna, Austria
| | - Tomas Mesurado
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Biotechnology, Institute of Bioprocess Science and Engineering (IBSE), Muthgasse 18, 1190 Vienna, Austria
| | - Florian Krammer
- Icahn School of Medicine at Mount Sinai, Department of Microbiology, Gustave L. Levy Place, 10029-5674 New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Medical University of Vienna, Vienna, Austria
| | - Alois Jungbauer
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Biotechnology, Institute of Bioprocess Science and Engineering (IBSE), Muthgasse 18, 1190 Vienna, Austria; acib - Austrian Centre of Industrial Biotechnology, Muthgasse 11, 1190 Vienna, Austria
| | - Patricia Pereira Aguilar
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Biotechnology, Institute of Bioprocess Science and Engineering (IBSE), Muthgasse 18, 1190 Vienna, Austria; acib - Austrian Centre of Industrial Biotechnology, Muthgasse 11, 1190 Vienna, Austria
| | - Miriam Klausberger
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Biotechnology, Institute of Molecular Biotechnology (IMBT), Muthgasse 18, 1190 Vienna, Austria
| | - Reingard Grabherr
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Biotechnology, Institute of Molecular Biotechnology (IMBT), Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
2
|
Leonard RA, Burke KN, Spreng RL, Macintyre AN, Tam Y, Alameh MG, Weissman D, Heaton NS. Improved influenza vaccine responses after expression of multiple viral glycoproteins from a single mRNA. Nat Commun 2024; 15:8712. [PMID: 39379405 PMCID: PMC11461824 DOI: 10.1038/s41467-024-52940-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024] Open
Abstract
Influenza viruses cause substantial morbidity and mortality every year despite seasonal vaccination. mRNA-based vaccines have the potential to elicit more protective immune responses, but for maximal breadth and durability, it is desirable to deliver both the viral hemagglutinin and neuraminidase glycoproteins. Delivering multiple antigens individually, however, complicates manufacturing and increases cost, thus it would be beneficial to express both proteins from a single mRNA. Here, we develop an mRNA genetic configuration that allows the simultaneous expression of unmodified, full-length NA and HA proteins from a single open reading frame. We apply this approach to glycoproteins from contemporary influenza A and B viruses and, after vaccination, observe high levels of functional antibodies and protection from disease in female mouse and male ferret challenge models. This approach may further efforts to utilize mRNA technology to improve seasonal vaccine efficacy by efficiently delivering multiple viral antigens simultaneously and in their native state.
Collapse
MESH Headings
- Animals
- Ferrets
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Female
- Mice
- Male
- Neuraminidase/immunology
- Neuraminidase/genetics
- Antibodies, Viral/immunology
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/virology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Messenger/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Humans
- Mice, Inbred BALB C
- Influenza B virus/immunology
- Influenza B virus/genetics
- Influenza A virus/immunology
- Influenza A virus/genetics
- Influenza, Human/prevention & control
- Influenza, Human/immunology
- Influenza, Human/virology
- Glycoproteins/immunology
- Glycoproteins/genetics
- Viral Proteins/immunology
- Viral Proteins/genetics
- Antigens, Viral/immunology
- Antigens, Viral/genetics
- Vaccination/methods
Collapse
Affiliation(s)
- Rebecca A Leonard
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine Durham, Durham, NC, USA
| | - Kaitlyn N Burke
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine Durham, Durham, NC, USA
| | - Rachel L Spreng
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Andrew N Macintyre
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Ying Tam
- Acuitas Theraputics, Vancouver, BC, Canada
| | - Mohamad-Gabriel Alameh
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Children's Hospital of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Institute for RNA Innovation, Perelman School of Medicine, Philadelphia, PA, USA
| | - Drew Weissman
- Department of Medicine, Institute for RNA Innovation, Perelman School of Medicine, Philadelphia, PA, USA
| | - Nicholas S Heaton
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine Durham, Durham, NC, USA.
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
3
|
Wu NC, Ellebedy AH. Targeting neuraminidase: the next frontier for broadly protective influenza vaccines. Trends Immunol 2024; 45:11-19. [PMID: 38103991 PMCID: PMC10841738 DOI: 10.1016/j.it.2023.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 12/19/2023]
Abstract
Current seasonal influenza vaccines, which mainly target hemagglutinin (HA), require annual updates due to the continuous antigenic drift of the influenza virus. Developing an influenza vaccine with increased breadth of protection will have significant public health benefits. The recent discovery of broadly protective antibodies to neuraminidase (NA) has provided important insights into developing a universal influenza vaccine, either by improving seasonal influenza vaccines or designing novel immunogens. However, further in-depth molecular characterizations of NA antibody responses are warranted to fully leverage broadly protective NA antibodies for influenza vaccine designs. Overall, we posit that focusing on NA for influenza vaccine development is synergistic with existing efforts targeting HA, and may represent a cost-effective approach to generating a broadly protective influenza vaccine.
Collapse
Affiliation(s)
- Nicholas C Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Ali H Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
4
|
Sergeeva MV, Romanovskaya-Romanko EA, Krivitskaya VZ, Kudar PA, Petkova NN, Kudria KS, Lioznov DA, Stukova MA, Desheva YA. Longitudinal Analysis of Neuraminidase and Hemagglutinin Antibodies to Influenza A Viruses after Immunization with Seasonal Inactivated Influenza Vaccines. Vaccines (Basel) 2023; 11:1731. [PMID: 38006063 PMCID: PMC10675551 DOI: 10.3390/vaccines11111731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Neuraminidase (NA)-based immunity could reduce the harmful impact of novel antigenic variants of influenza viruses. The detection of neuraminidase-inhibiting (NI) antibodies in parallel with anti-hemagglutinin (HA) antibodies may enhance research on the immunogenicity and duration of antibody responses to influenza vaccines. To assess anti-NA antibodies after vaccination with seasonal inactivated influenza vaccines, we used the enzyme-linked lectin assay, and anti-HA antibodies were detected in the hemagglutination inhibition assay. The dynamics of the anti-NA antibody response differed depending on the virus subtype: antibodies to A/H3N2 virus neuraminidase increased later than antibodies to A/H1N1pdm09 subtype neuraminidase and persisted longer. In contrast to HA antibodies, the fold increase in antibody titers to NA after vaccination poorly depended on the preexisting level. At the same time, NA antibody levels after vaccination directly correlated with titers before vaccination. A difference was found in response to NA antigen between split and subunit-adjuvanted vaccines and in NA functional activity in the vaccine formulations.
Collapse
Affiliation(s)
- Mariia V. Sergeeva
- Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation, 197022 Saint Petersburg, Russia; (M.V.S.); (E.A.R.-R.); (V.Z.K.); (K.S.K.); (D.A.L.); (M.A.S.)
| | - Ekaterina A. Romanovskaya-Romanko
- Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation, 197022 Saint Petersburg, Russia; (M.V.S.); (E.A.R.-R.); (V.Z.K.); (K.S.K.); (D.A.L.); (M.A.S.)
| | - Vera Z. Krivitskaya
- Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation, 197022 Saint Petersburg, Russia; (M.V.S.); (E.A.R.-R.); (V.Z.K.); (K.S.K.); (D.A.L.); (M.A.S.)
| | - Polina A. Kudar
- ‘Institute of Experimental Medicine’, 197022 Saint Petersburg, Russia; (P.A.K.); (N.N.P.)
| | - Nadezhda N. Petkova
- ‘Institute of Experimental Medicine’, 197022 Saint Petersburg, Russia; (P.A.K.); (N.N.P.)
| | - Kira S. Kudria
- Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation, 197022 Saint Petersburg, Russia; (M.V.S.); (E.A.R.-R.); (V.Z.K.); (K.S.K.); (D.A.L.); (M.A.S.)
| | - Dmitry A. Lioznov
- Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation, 197022 Saint Petersburg, Russia; (M.V.S.); (E.A.R.-R.); (V.Z.K.); (K.S.K.); (D.A.L.); (M.A.S.)
| | - Marina A. Stukova
- Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation, 197022 Saint Petersburg, Russia; (M.V.S.); (E.A.R.-R.); (V.Z.K.); (K.S.K.); (D.A.L.); (M.A.S.)
| | - Yulia A. Desheva
- ‘Institute of Experimental Medicine’, 197022 Saint Petersburg, Russia; (P.A.K.); (N.N.P.)
| |
Collapse
|
5
|
Influenza A (N1-N9) and Influenza B (B/Victoria and B/Yamagata) Neuraminidase Pseudotypes as Tools for Pandemic Preparedness and Improved Influenza Vaccine Design. Vaccines (Basel) 2022; 10:vaccines10091520. [PMID: 36146598 PMCID: PMC9571397 DOI: 10.3390/vaccines10091520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
To better understand how inhibition of the influenza neuraminidase (NA) protein contributes to protection against influenza, we produced lentiviral vectors pseudotyped with an avian H11 hemagglutinin (HA) and the NA of all influenza A (N1–N9) subtypes and influenza B (B/Victoria and B/Yamagata). These NA viral pseudotypes (PV) possess stable NA activity and can be utilized as target antigens in in vitro assays to assess vaccine immunogenicity. Employing these NA PV, we developed an enzyme-linked lectin assay (pELLA) for routine serology to measure neuraminidase inhibition (NI) titers of reference antisera, monoclonal antibodies and post-vaccination sera with various influenza antigens. We also show that the pELLA is more sensitive than the commercially available NA-Fluor™ in detecting NA inhibition in these samples. Our studies may lead to establishing the protective NA titer that contributes to NA-based immunity. This will aid in the design of superior, longer lasting and more broadly protective vaccines that can be employed together with HA-targeted vaccines in a pre-pandemic approach.
Collapse
|
6
|
Contribution of neuraminidase to the efficacy of seasonal split influenza vaccines in the ferret model. J Virol 2022; 96:e0195921. [PMID: 35107371 PMCID: PMC8941921 DOI: 10.1128/jvi.01959-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Seasonal influenza vaccination takes into account primarily hemagglutinin (HA)-specific neutralizing antibody responses. However, the accumulation of substitutions in the antigenic regions of HA (i.e., antigenic drift) occasionally results in a mismatch between the vaccine and circulating strains. To prevent poor vaccine performance, we investigated whether an antigenically matched neuraminidase (NA) may compensate for reduced vaccine efficacy due to a mismatched HA. Ferrets were vaccinated twice with adjuvanted split inactivated influenza vaccines containing homologous HA and NA (vacH3N2), only homologous HA (vacH3N1), only homologous NA (vacH1N2), heterologous HA and NA (vacH1N1), or phosphate-buffered saline (vacPBS), followed by challenge with H3N2 virus (A/Netherlands/16190/1968). Ferrets vaccinated with homologous HA (vacH3N2 and vacH3N1) displayed minimum fever and weight loss compared to vacH1N1 and vacPBS ferrets, while ferrets vaccinated with NA-matched vacH1N2 displayed intermediate fever and weight loss. Vaccination with vacH1N2 further led to a reduction in virus shedding from the nose and undetectable virus titers in the lower respiratory tract, similarly to when the homologous vacH3N2 was used. Some protection was observed upon vacH1N1 vaccination, but this was not comparable to that observed for vacH1N2, again highlighting the important role of NA in vaccine-induced protection. These results illustrate that NA antibodies can prevent severe disease caused by influenza virus infection and that an antigenically matched NA in seasonal vaccines might prevent lower respiratory tract complications. This underlines the importance of considering NA during the yearly vaccine strain selection process, which may be particularly beneficial in seasons when the HA component of the vaccine is mismatched. IMPORTANCE Despite the availability of vaccines, influenza virus infections continue to cause substantial morbidity and mortality in humans. Currently available influenza vaccines take primarily the hemagglutinin (HA) into account, but the highly variable nature of this protein as a result of antigenic drift has led to a recurrent decline in vaccine effectiveness. While the protective effect of neuraminidase (NA) antibodies has been highlighted by several studies, there are no requirements with regard to quantity or quality of NA in licensed vaccines, and NA immunity remains largely unexploited. Since antigenic changes in HA and NA are thought to occur asynchronously, NA immunity could compensate for reduced vaccine efficacy when drift in HA occurs. By matching and mismatching the HA and NA components of monovalent split inactivated vaccines, we demonstrated the potential of NA immunity to protect against disease, virus replication in the lower respiratory tract, and virus shedding in the ferret model.
Collapse
|
7
|
Creytens S, Pascha MN, Ballegeer M, Saelens X, de Haan CAM. Influenza Neuraminidase Characteristics and Potential as a Vaccine Target. Front Immunol 2021; 12:786617. [PMID: 34868073 PMCID: PMC8635103 DOI: 10.3389/fimmu.2021.786617] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/29/2021] [Indexed: 12/28/2022] Open
Abstract
Neuraminidase of influenza A and B viruses plays a critical role in the virus life cycle and is an important target of the host immune system. Here, we highlight the current understanding of influenza neuraminidase structure, function, antigenicity, immunogenicity, and immune protective potential. Neuraminidase inhibiting antibodies have been recognized as correlates of protection against disease caused by natural or experimental influenza A virus infection in humans. In the past years, we have witnessed an increasing interest in the use of influenza neuraminidase to improve the protective potential of currently used influenza vaccines. A number of well-characterized influenza neuraminidase-specific monoclonal antibodies have been described recently, most of which can protect in experimental challenge models by inhibiting the neuraminidase activity or by Fc receptor-dependent mechanisms. The relative instability of the neuraminidase poses a challenge for protein-based antigen design. We critically review the different solutions that have been proposed to solve this problem, ranging from the inclusion of stabilizing heterologous tetramerizing zippers to the introduction of inter-protomer stabilizing mutations. Computationally engineered neuraminidase antigens have been generated that offer broad, within subtype protection in animal challenge models. We also provide an overview of modern vaccine technology platforms that are compatible with the induction of robust neuraminidase-specific immune responses. In the near future, we will likely see the implementation of influenza vaccines that confront the influenza virus with a double punch: targeting both the hemagglutinin and the neuraminidase.
Collapse
MESH Headings
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Antigenic Drift and Shift
- Antigens, Viral/immunology
- Antigens, Viral/ultrastructure
- Catalytic Domain/genetics
- Catalytic Domain/immunology
- Cross Protection
- Evolution, Molecular
- Humans
- Immunogenicity, Vaccine
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Alphainfluenzavirus/enzymology
- Alphainfluenzavirus/genetics
- Alphainfluenzavirus/immunology
- Betainfluenzavirus/enzymology
- Betainfluenzavirus/genetics
- Betainfluenzavirus/immunology
- Mutation
- Nanoparticles
- Neuraminidase/administration & dosage
- Neuraminidase/genetics
- Neuraminidase/immunology
- Neuraminidase/ultrastructure
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/ultrastructure
- Viral Proteins/administration & dosage
- Viral Proteins/genetics
- Viral Proteins/immunology
- Viral Proteins/ultrastructure
Collapse
Affiliation(s)
- Sarah Creytens
- Vlaams Instituut voor Biotechnologie (VIB)-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Mirte N. Pascha
- Section Virology, Division Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Utrecht University, Utrecht, Netherlands
| | - Marlies Ballegeer
- Vlaams Instituut voor Biotechnologie (VIB)-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Xavier Saelens
- Vlaams Instituut voor Biotechnologie (VIB)-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Cornelis A. M. de Haan
- Section Virology, Division Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
8
|
Menne Z, Pliasas VC, Compans RW, Glover S, Kyriakis CS, Skountzou I. Bivalent vaccination with NA1 and NA2 neuraminidase virus-like particles is protective against challenge with H1N1 and H3N2 influenza A viruses in a murine model. Virology 2021; 562:197-208. [PMID: 34375782 PMCID: PMC8479372 DOI: 10.1016/j.virol.2021.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/25/2021] [Accepted: 08/04/2021] [Indexed: 11/29/2022]
Abstract
Neuraminidase (NA) is the second most abundant glycoprotein on the surface of influenza A viruses (IAV). Neuraminidase type 1 (NA1) based virus-like particles (VLPs) have previously been shown to protect against challenge with H1N1 and H3N2 IAV. In this study, we produced neuraminidase type 2 (NA2) VLPs derived from the sequence of the seasonal IAV A/Perth/16/2009. Intramuscular vaccination of mice with NA2 VLPs induced high anti-NA serum IgG levels capable of inhibiting NA activity. NA2 VLP vaccination protected against mortality in a lethal A/Hong Kong/1/1968 (H3N2) virus challenge model, but not against lethal challenge with A/California/04/2009 (H1N1) virus. However, bivalent vaccination with NA1 and NA2 VLPs demonstrated no antigenic competition in anti-NA IgG responses and protected against lethal challenge with H1N1 and H3N2 viruses. Here we demonstrate that vaccination with NA VLPs is protective against influenza challenge and supports focusing on anti-NA responses in the development of future vaccination strategies.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Dose-Response Relationship, Immunologic
- Immunity, Heterologous
- Immunoglobulin G/immunology
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/immunology
- Injections, Intramuscular
- Mice
- Neuraminidase/immunology
- Orthomyxoviridae Infections/prevention & control
- Vaccination/methods
- Vaccines, Combined/administration & dosage
- Vaccines, Combined/immunology
- Vaccines, Virus-Like Particle/administration & dosage
- Vaccines, Virus-Like Particle/immunology
- Viral Proteins/immunology
Collapse
Affiliation(s)
- Zach Menne
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, 30322, USA; Centers for Excellence in Influenza Research and Surveillance, Emory-UGA Center, Atlanta, GA, USA
| | - Vasilis C Pliasas
- Centers for Excellence in Influenza Research and Surveillance, Emory-UGA Center, Atlanta, GA, USA; Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, 36849, USA
| | - Richard W Compans
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, 30322, USA; Centers for Excellence in Influenza Research and Surveillance, Emory-UGA Center, Atlanta, GA, USA
| | - Sheniqua Glover
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, 36849, USA
| | - Constantinos S Kyriakis
- Centers for Excellence in Influenza Research and Surveillance, Emory-UGA Center, Atlanta, GA, USA; Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, 36849, USA
| | - Ioanna Skountzou
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, 30322, USA; Centers for Excellence in Influenza Research and Surveillance, Emory-UGA Center, Atlanta, GA, USA.
| |
Collapse
|
9
|
Targeting Antigens for Universal Influenza Vaccine Development. Viruses 2021; 13:v13060973. [PMID: 34073996 PMCID: PMC8225176 DOI: 10.3390/v13060973] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 02/06/2023] Open
Abstract
Traditional influenza vaccines generate strain-specific antibodies which cannot provide protection against divergent influenza virus strains. Further, due to frequent antigenic shifts and drift of influenza viruses, annual reformulation and revaccination are required in order to match circulating strains. Thus, the development of a universal influenza vaccine (UIV) is critical for long-term protection against all seasonal influenza virus strains, as well as to provide protection against a potential pandemic virus. One of the most important strategies in the development of UIVs is the selection of optimal targeting antigens to generate broadly cross-reactive neutralizing antibodies or cross-reactive T cell responses against divergent influenza virus strains. However, each type of target antigen for UIVs has advantages and limitations for the generation of sufficient immune responses against divergent influenza viruses. Herein, we review current strategies and perspectives regarding the use of antigens, including hemagglutinin, neuraminidase, matrix proteins, and internal proteins, for universal influenza vaccine development.
Collapse
|
10
|
Forgacs D, Abreu RB, Sautto GA, Kirchenbaum GA, Drabek E, Williamson KS, Kim D, Emerling DE, Ross TM. Convergent antibody evolution and clonotype expansion following influenza virus vaccination. PLoS One 2021; 16:e0247253. [PMID: 33617543 PMCID: PMC7899375 DOI: 10.1371/journal.pone.0247253] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/03/2021] [Indexed: 12/14/2022] Open
Abstract
Recent advances in high-throughput single cell sequencing have opened up new avenues into the investigation of B cell receptor (BCR) repertoires. In this study, PBMCs were collected from 17 human participants vaccinated with the split-inactivated influenza virus vaccine during the 2016-2017 influenza season. A combination of Immune Repertoire Capture (IRCTM) technology and IgG sequencing was performed on ~7,800 plasmablast (PB) cells and preferential IgG heavy-light chain pairings were investigated. In some participants, a single expanded clonotype accounted for ~22% of their PB BCR repertoire. Approximately 60% (10/17) of participants experienced convergent evolution, possessing public PBs that were elicited independently in multiple participants. Binding profiles of one private and three public PBs confirmed they were all subtype-specific, cross-reactive hemagglutinin (HA) head-directed antibodies. Collectively, this high-resolution antibody repertoire analysis demonstrated the impact evolution can have on BCRs in response to influenza virus vaccination, which can guide future universal influenza prophylactic approaches.
Collapse
Affiliation(s)
- David Forgacs
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States of America
| | - Rodrigo B. Abreu
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States of America
| | - Giuseppe A. Sautto
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States of America
| | - Greg A. Kirchenbaum
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States of America
| | - Elliott Drabek
- Atreca, Inc., South San Francisco, CA, United States of America
| | | | - Dongkyoon Kim
- Atreca, Inc., South San Francisco, CA, United States of America
| | | | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States of America
- Department of Infectious Diseases, University of Georgia, Athens, GA, United States of America
- * E-mail:
| |
Collapse
|
11
|
Powell H, Pekosz A. Neuraminidase antigenic drift of H3N2 clade 3c.2a viruses alters virus replication, enzymatic activity and inhibitory antibody binding. PLoS Pathog 2020; 16:e1008411. [PMID: 32598381 PMCID: PMC7351227 DOI: 10.1371/journal.ppat.1008411] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 07/10/2020] [Accepted: 05/11/2020] [Indexed: 11/19/2022] Open
Abstract
In the 2014-2015 influenza season a novel neuraminidase (NA) genotype was detected in global human influenza A surveillance. This novel genotype encoded an N-linked glycosylation site at position 245-247 in the NA protein from clade 3c.2a H3N2 viruses. In the years following the 2014-2015 season, this novel NA glycosylation genotype quickly dominated the human H3N2 population of viruses. To assess the effect this novel N-linked glycan has on virus fitness and antibody binding, recombinant viruses with (NA Gly+) or without (NA Gly-) the 245 NA glycan were created. Viruses with the 245 NA Gly+ genotype grew to a significantly lower infectious virus titer on primary, differentiated human nasal epithelial cells (hNEC) compared to viruses with the 245 NA Gly- genotype, but growth was similar on immortalized cells. The 245 NA Gly+ blocked human and rabbit monoclonal antibodies that target the enzymatic site from binding to their epitope. Additionally, viruses with the 245 NA Gly+ genotype had significantly lower enzymatic activity compared to viruses with the 245 NA Gly- genotype. Human monoclonal antibodies that target residues near the 245 NA glycan were less effective at inhibiting NA enzymatic activity and virus replication of viruses encoding an NA Gly+ protein compared to ones encoding NA Gly- protein. Additionally, a recombinant H6N2 virus with the 245 NA Gly+ protein was more resistant to enzymatic inhibition from convalescent serum from H3N2-infected humans compared to viruses with the 245 NA Gly- genotype. Finally, the 245 NA Gly+ protected from NA antibody mediated virus neutralization. These results suggest that while the 245 NA Gly+ decreases virus replication in hNECs and decreases enzymatic activity, the 245 NA glycan blocks the binding of monoclonal and human serum NA specific antibodies that would otherwise inhibit enzymatic activity and virus replication.
Collapse
Affiliation(s)
- Harrison Powell
- Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Andrew Pekosz
- Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| |
Collapse
|
12
|
Wong SS, Waite B, Ralston J, Wood T, Reynolds GE, Seeds R, Newbern EC, Thompson MG, Huang QS, Webby RJ. Hemagglutinin and Neuraminidase Antibodies Are Induced in an Age- and Subtype-Dependent Manner after Influenza Virus Infection. J Virol 2020; 94:e01385-19. [PMID: 31941786 PMCID: PMC7081922 DOI: 10.1128/jvi.01385-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/19/2019] [Indexed: 12/26/2022] Open
Abstract
Despite evidence that antibodies targeting the influenza virus neuraminidase (NA) protein can be protective and are broadly cross-reactive, the immune response to NA during infection is poorly understood compared to the response to hemagglutinin (HA) protein. As such, we compared the antibody profile to HA and NA in two naturally infected human cohorts in Auckland, New Zealand: (i) a serosurvey cohort, consisting of pre- and post-influenza season sera from PCR-confirmed influenza cases (n = 50), and (ii) an immunology cohort, consisting of paired sera collected after PCR-confirmation of infection (n = 94). The induction of both HA and NA antibodies in these cohorts was influenced by age and subtype. Seroconversion to HA was more frequent in those <20 years old (yo) for influenza A (serosurvey, P = 0.01; immunology, P = 0.02) but not influenza B virus infection. Seroconversion to NA was not influenced by age or virus type. Adults ≥20 yo infected with influenza A viruses were more likely to show NA-only seroconversion compared to children (56% versus 14% [5 to 19 yo] and 0% [0 to 4 yo], respectively). Conversely, children infected with influenza B viruses were more likely than adults to show NA-only seroconversion (88% [0 to 4 yo] and 75% [5 to 19 yo] versus 40% [≥20 yo]). These data indicate a potential role for immunological memory in the dynamics of HA and NA antibody responses. A better mechanistic understanding of this phenomenon will be critical for any future vaccines aimed at eliciting NA immunity.IMPORTANCE Data on the immunologic responses to neuraminidase (NA) is lacking compared to what is available on hemagglutinin (HA) responses, despite growing evidence that NA immunity can be protective and broadly cross-reactive. Understanding these NA responses during natural infection is key to exploiting these properties for improving influenza vaccines. Using two community-acquired influenza cohorts, we showed that the induction of both HA and NA antibodies after infection is influenced by age and subtypes. Such response dynamics suggest the influence of immunological memory, and understanding how this process is regulated will be critical to any vaccine effort targeting NA immunity.
Collapse
Affiliation(s)
- Sook-San Wong
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, People’s Republic of China
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, People’s Republic of China
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Ben Waite
- Institute of Environmental Science and Research, Ltd., NCBID–Wallaceville, Wallaceville, New Zealand
| | - Jacqui Ralston
- Institute of Environmental Science and Research, Ltd., NCBID–Wallaceville, Wallaceville, New Zealand
| | - Tim Wood
- Institute of Environmental Science and Research, Ltd., NCBID–Wallaceville, Wallaceville, New Zealand
| | - G. Edwin Reynolds
- Immunisation Advisory Centre (IMAC), University Services, University of Auckland, Auckland, New Zealand
| | - Ruth Seeds
- Institute of Environmental Science and Research, Ltd., NCBID–Wallaceville, Wallaceville, New Zealand
| | - E. Claire Newbern
- Institute of Environmental Science and Research, Ltd., NCBID–Wallaceville, Wallaceville, New Zealand
| | - Mark G. Thompson
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Q. Sue Huang
- Institute of Environmental Science and Research, Ltd., NCBID–Wallaceville, Wallaceville, New Zealand
| | - Richard J. Webby
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
13
|
Extending the Stalk Enhances Immunogenicity of the Influenza Virus Neuraminidase. J Virol 2019; 93:JVI.00840-19. [PMID: 31375573 DOI: 10.1128/jvi.00840-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 06/28/2019] [Indexed: 12/17/2022] Open
Abstract
Influenza viruses express two surface glycoproteins, the hemagglutinin (HA) and the neuraminidase (NA). Anti-NA antibodies protect from lethal influenza virus challenge in the mouse model and correlate inversely with virus shedding and symptoms in humans. Consequently, the NA is a promising target for influenza virus vaccine design. Current seasonal vaccines, however, poorly induce anti-NA antibodies, partly because of the immunodominance of the HA over the NA when the two glycoproteins are closely associated. To address this issue, here we investigated whether extending the stalk domain of the NA could render it more immunogenic on virus particles. Two recombinant influenza viruses based on the H1N1 strain A/Puerto Rico/8/1934 (PR8) were rescued with NA stalk domains extended by 15 or 30 amino acids. Formalin-inactivated viruses expressing wild-type NA or the stalk-extended NA variants were used to vaccinate mice. The virus with the 30-amino-acid stalk extension induced significantly higher anti-NA IgG responses (characterized by increased in vitro antibody-dependent cellular cytotoxicity [ADCC] activity) than the wild-type PR8 virus, while anti-HA IgG levels were unaffected. Similarly, extending the stalk domain of the NA of a recent H3N2 virus enhanced the induction of anti-NA IgGs in mice. On the basis of these results, we hypothesize that the subdominance of the NA can be modulated if the protein is modified such that its height surpasses that of the HA on the viral membrane. Extending the stalk domain of NA may help to enhance its immunogenicity in influenza virus vaccines without compromising antibody responses to HA.IMPORTANCE The efficacy of influenza virus vaccines could be improved by enhancing the immunogenicity of the NA protein. One of the reasons for its poor immunogenicity is the immunodominance of the HA over the NA in many seasonal influenza virus vaccines. Here we demonstrate that, in the mouse model, extending the stalk domain of the NA protein can enhance its immunogenicity on virus particles and overcome the immunodominance of the HA without affecting antibody responses to the HA. The antibody repertoire is broadened by the extended NA and includes additional ADCC-active antibodies. Our findings may assist in the efforts toward more effective influenza virus vaccines.
Collapse
|
14
|
Mendez-Legaza JM, Ortiz de Lejarazu R, Sanz I. Heterotypic Neuraminidase Antibodies Against Different A(H1N1) Strains are Elicited after Seasonal Influenza Vaccination. Vaccines (Basel) 2019; 7:E30. [PMID: 30871198 PMCID: PMC6466453 DOI: 10.3390/vaccines7010030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/01/2019] [Accepted: 03/09/2019] [Indexed: 02/01/2023] Open
Abstract
Neuraminidase (NA) content is not standardized in current seasonal influenza vaccines; neither anti-NA antibodies (anti-NA Abs) are measured nor is it well-defined as a correlate of humoral protection. In this work, the presence of NA1 antibodies against classical A(H1N1) and A(H1N1) pdm09 subtypes was studied before and after vaccination with seasonal vaccines containing A/California/07/2009 strain (A(H1N1) pdm09 subtype). By Enzyme-Linked Lectin Assay (ELLA; Consortium for the Standardization of Influenza Seroepidemiology), we analyzed serum samples from two different cohorts (adults and elderly). The presence of anti-NA Abs at titers ≥1/40 against classical A(H1N1) and A(H1N1) pdm09 subtypes were frequently found in both age groups, in 81.3% and 96.3% of adults and elderly, respectively. The higher titers of anti-NA Abs (NAI titers) were detected more frequently against classical A(H1N1) strains according to the expected age when the first flu infection takes place. In this way, an Original Antigenic Sin phenomenon related to NA seems to be part of the immune response against flu. Seasonal-vaccination induced homologous seroconversion against NA of A(H1N1) pdm09 subtype in 52.5% and 55.0%, and increased the Geometric Mean Titers (GMTs) in 70.0% and 78.8% of adults and elderly, respectively. Seasonal vaccination also induced a heterotypic anti-NA Abs response against classical A(H1N1) strains (seroconversion at least in 8.8% and 11.3% of adults and elderly, respectively, and an increase in GMTs of at least 28.0% in both age groups). These anti-NA Abs responses occur even though the seasonal vaccine does not contain a standardized amount of NA. This work demonstrates that seasonal vaccines containing the A(H1N1) pdm09 subtype induce a broad antibody response against NA1, that may be a target for future influenza vaccines. Our study is one of the first to analyze the presence of Abs against NA and the response mediated by NAI titers after seasonal influenza vaccination.
Collapse
Affiliation(s)
- Jose Manuel Mendez-Legaza
- Microbiology Service, Hospital Clínico Universitario de Valladolid, Avenida Ramón y Cajal s/n, 47005 Valladolid, Spain.
| | - Raúl Ortiz de Lejarazu
- Microbiology Service, Hospital Clínico Universitario de Valladolid, Avenida Ramón y Cajal s/n, 47005 Valladolid, Spain.
- Valladolid National Influenza Centre, Avenida Ramón y Cajal s/n, 47005 Valladolid, Spain.
| | - Ivan Sanz
- Microbiology Service, Hospital Clínico Universitario de Valladolid, Avenida Ramón y Cajal s/n, 47005 Valladolid, Spain.
- Valladolid National Influenza Centre, Avenida Ramón y Cajal s/n, 47005 Valladolid, Spain.
| |
Collapse
|
15
|
Krammer F, Fouchier RAM, Eichelberger MC, Webby RJ, Shaw-Saliba K, Wan H, Wilson PC, Compans RW, Skountzou I, Monto AS. NAction! How Can Neuraminidase-Based Immunity Contribute to Better Influenza Virus Vaccines? mBio 2018; 9:e02332-17. [PMID: 29615508 PMCID: PMC5885027 DOI: 10.1128/mbio.02332-17] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Neuraminidase is one of the two surface glycoproteins of influenza A and B viruses. It has enzymatic activity that cleaves terminal sialic acid from glycans, and that activity is essential at several points in the virus life cycle. While neuraminidase is a major target for influenza antivirals, it is largely ignored in vaccine development. Current inactivated influenza virus vaccines might contain neuraminidase, but the antigen quantity and quality are varied and not standardized. While there are data that show a protective role of anti-neuraminidase immunity, many questions remain unanswered. These questions, among others, concern the targeted epitopes or antigenic sites, the potential for antigenic drift, and, connected to that, the breadth of protection, differences in induction of immune responses by vaccination versus infection, mechanisms of protection, the role of mucosal antineuraminidase antibodies, stability, and the immunogenicity of neuraminidase in vaccine formulations. Reagents for analysis of neuraminidase-based immunity are scarce, and assays are not widely used for clinical studies evaluating vaccines. However, efforts to better understand neuraminidase-based immunity have been made recently. A neuraminidase focus group, NAction!, was formed at a Centers of Excellence for Influenza Research and Surveillance meeting at the National Institutes of Health in Bethesda, MD, to promote research that helps to understand neuraminidase-based immunity and how it can contribute to the design of better and broadly protective influenza virus vaccines. Here, we review open questions and knowledge gaps that have been identified by this group and discuss how the gaps can be addressed, with the ultimate goal of designing better influenza virus vaccines.
Collapse
Affiliation(s)
- Florian Krammer
- Center for Research on Influenza Pathogenesis (CRIP), New York, New York, USA
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Centers of Excellence for Influenza Research and Surveillance (CEIRS)‡
| | - Ron A M Fouchier
- Center for Research on Influenza Pathogenesis (CRIP), New York, New York, USA
- Centers of Excellence for Influenza Research and Surveillance (CEIRS)‡
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Maryna C Eichelberger
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Richard J Webby
- Centers of Excellence for Influenza Research and Surveillance (CEIRS)‡
- St. Jude Center of Excellence for Influenza Research and Surveillance, Memphis, Tennessee, USA
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Kathryn Shaw-Saliba
- Centers of Excellence for Influenza Research and Surveillance (CEIRS)‡
- Johns Hopkins Center of Excellence for Influenza Research and Surveillance, Baltimore, Maryland, USA
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Hongquan Wan
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Patrick C Wilson
- Centers of Excellence for Influenza Research and Surveillance (CEIRS)‡
- New York Influenza Center of Excellence (NYICE), New York, New York, USA
- Department of Medicine, the Knapp Center for Lupus and Immunology Research, Section of Rheumatology, the University of Chicago, Chicago, Illinois, USA
| | - Richard W Compans
- Centers of Excellence for Influenza Research and Surveillance (CEIRS)‡
- Emory-UGA Center of Excellence for Influenza Research and Surveillance, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ioanna Skountzou
- Centers of Excellence for Influenza Research and Surveillance (CEIRS)‡
- Emory-UGA Center of Excellence for Influenza Research and Surveillance, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Arnold S Monto
- Centers of Excellence for Influenza Research and Surveillance (CEIRS)‡
- New York Influenza Center of Excellence (NYICE), New York, New York, USA
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| |
Collapse
|
16
|
Antibodies Directed toward Neuraminidase N1 Control Disease in a Mouse Model of Influenza. J Virol 2018; 92:JVI.01584-17. [PMID: 29167342 DOI: 10.1128/jvi.01584-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/15/2017] [Indexed: 12/21/2022] Open
Abstract
There is increasing evidence to suggest that antibodies directed toward influenza A virus (IAV) neuraminidase (NA) are an important correlate of protection against influenza in humans. Moreover, the potential of NA-specific antibodies to provide broader protection than conventional hemagglutinin (HA) antibodies has been recognized. Here, we describe the isolation of two monoclonal antibodies, N1-7D3 and N1-C4, directed toward the N1 NA. N1-7D3 binds to a conserved linear epitope in the membrane-distal, carboxy-terminal part of the NA and reacted with the NA of seasonal H1N1 isolates ranging from 1977 to 2007 and the 2009 H1N1pdm virus, as well as A/Vietnam/1194/04 (H5N1). However, N1-7D3 lacked NA inhibition (NI) activity and the ability to protect BALB/c mice against a lethal challenge with a range of H1N1 viruses. Conversely, N1-C4 bound to a conformational epitope that is conserved between two influenza virus subtypes, 2009 H1N1pdm and H5N1 IAV, and displayed potent in vitro antiviral activity mediating both NI and plaque size reduction. Moreover, N1-C4 could provide heterosubtypic protection in BALB/c mice against a lethal challenge with 2009 H1N1pdm or H5N1 virus. Glutamic acid residue 311 in the NA was found to be critical for the NA binding and antiviral activity of monoclonal antibody N1-C4. Our data provide further evidence for cross-protective epitopes within the N1 subtype and highlight the potential of NA as an important target for vaccine and therapeutic approaches.IMPORTANCE Influenza remains a worldwide burden on public health. As such, the development of novel vaccines and therapeutics against influenza virus is crucial. Human challenge studies have recently highlighted the importance of antibodies directed toward the viral neuraminidase (NA) as an important correlate of reduced influenza-associated disease severity. Furthermore, there is evidence that anti-NA antibodies can provide broader protection than antibodies toward the viral hemagglutinin. Here, we describe the isolation and detailed characterization of two N1 NA-specific monoclonal antibodies. One of these monoclonal antibodies broadly binds N1-type NAs, and the second displays NA inhibition and in vitro and in vivo antiviral activity against 2009 H1N1pdm and H5N1 influenza viruses. These two new anti-NA antibodies contribute to our understanding of the antigenic properties and protective potential of the influenza virus NA antigen.
Collapse
|
17
|
Vaccination with Recombinant Parainfluenza Virus 5 Expressing Neuraminidase Protects against Homologous and Heterologous Influenza Virus Challenge. J Virol 2017; 91:JVI.01579-17. [PMID: 28931689 DOI: 10.1128/jvi.01579-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 12/26/2022] Open
Abstract
Seasonal human influenza virus continues to cause morbidity and mortality annually, and highly pathogenic avian influenza (HPAI) viruses along with other emerging influenza viruses continue to pose pandemic threats. Vaccination is considered the most effective measure for controlling influenza; however, current strategies rely on a precise vaccine match with currently circulating virus strains for efficacy, requiring constant surveillance and regular development of matched vaccines. Current vaccines focus on eliciting specific antibody responses against the hemagglutinin (HA) surface glycoprotein; however, the diversity of HAs across species and antigenic drift of circulating strains enable the evasion of virus-inhibiting antibody responses, resulting in vaccine failure. The neuraminidase (NA) surface glycoprotein, while diverse, has a conserved enzymatic site and presents an appealing target for priming broadly effective antibody responses. Here we show that vaccination with parainfluenza virus 5 (PIV5), a promising live viral vector expressing NA from avian (H5N1) or pandemic (H1N1) influenza virus, elicited NA-specific antibody and T cell responses, which conferred protection against homologous and heterologous influenza virus challenges. Vaccination with PIV5-N1 NA provided cross-protection against challenge with a heterosubtypic (H3N2) virus. Experiments using antibody transfer indicate that antibodies to NA have an important role in protection. These findings indicate that PIV5 expressing NA may be effective as a broadly protective vaccine against seasonal influenza and emerging pandemic threats.IMPORTANCE Seasonal influenza viruses cause considerable morbidity and mortality annually, while emerging viruses pose potential pandemic threats. Currently licensed influenza virus vaccines rely on the antigenic match of hemagglutinin (HA) for vaccine strain selection, and most vaccines rely on HA inhibition titers to determine efficacy, despite the growing awareness of the contribution of neuraminidase (NA) to influenza virus vaccine efficacy. Although NA is immunologically subdominant to HA, and clinical studies have shown variable NA responses to vaccination, in this study, we show that vaccination with a parainfluenza virus 5 recombinant vaccine candidate expressing NA (PIV5-NA) from a pandemic influenza (pdmH1N1) virus or highly pathogenic avian influenza (H5N1) virus elicits robust, cross-reactive protection from influenza virus infection in two animal models. New vaccination strategies incorporating NA, including PIV5-NA, could improve seasonal influenza virus vaccine efficacy and provide protection against emerging influenza viruses.
Collapse
|
18
|
Kinetics, Longevity, and Cross-Reactivity of Antineuraminidase Antibody after Natural Infection with Influenza A Viruses. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00248-17. [PMID: 29021304 DOI: 10.1128/cvi.00248-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/05/2017] [Indexed: 01/09/2023]
Abstract
The kinetics, longevity, and breadth of antibodies to influenza virus neuraminidase (NA) in archival, sequential serum/plasma samples from influenza A virus (IAV) H5N1 infection survivors and from patients infected with the 2009 pandemic IAV (H1N1) virus were determined using an enzyme-linked lectin-based assay. The reverse-genetics-derived H4N1 viruses harboring a hemagglutinin (HA) segment from A/duck/Shan Tou/461/2000 (H4N9) and an NA segment derived from either IAV H5N1 clade 1, IAV H5N1 clade 2.3.4, the 2009 pandemic IAV (H1N1) (H1N1pdm), or A/Puerto Rico/8/1934 (H1N1) virus were used as the test antigens. These serum/plasma samples were also investigated by microneutralization (MN) and/or hemagglutination inhibition (HI) assays. Neuraminidase-inhibiting (NI) antibodies against N1 NA of both homologous and heterologous viruses were observed in H5N1 survivors and H1N1pdm patients. H5N1 survivors who were never exposed to H1N1pdm virus developed NI antibodies to H1N1pdm NA. Seroconversion of NI antibodies was observed in 65% of the H1N1pdm patients at day 7 after disease onset, but an increase in titer was not observed in serum samples obtained late in infection. On the other hand, an increase in seroconversion rate with the HI assay was observed in the follow-up series of sera obtained on days 7, 14, 28, and 90 after infection. The study also showed that NI antibodies are broadly reactive, while MN and HI antibodies are more strain specific.
Collapse
|
19
|
Huang KYA, Chang SC, Huang YC, Chiu CH, Lin TY. Antibody Responses to Trivalent Inactivated Influenza Vaccine in Health Care Personnel Previously Vaccinated and Vaccinated for The First Time. Sci Rep 2017; 7:40027. [PMID: 28098157 PMCID: PMC5241813 DOI: 10.1038/srep40027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 11/30/2016] [Indexed: 11/30/2022] Open
Abstract
Inactivated influenza vaccination induces a hemagglutinin-specific antibody response to the strain used for immunization. Annual vaccination is strongly recommended for health care personnel. However, it is debatable if repeated vaccination would affect the antibody response to inactivated influenza vaccine through the time. We enrolled health care personnel who had repeated and first trivalent inactivated influenza vaccination in 2005–2008. Serological antibody responses were measured by hemagglutination-inhibition (HI) test. Subjects with repeated vaccination had higher pre-vaccination and lower post-vaccination HI titer than those with first vaccination, although serological responses between groups might vary with different antigen types and while the drifted strain was introduced in the vaccine. Higher fold rise in the HI titer was observed in the group with first than repeated vaccination and the fold increase in the HI titer was inversely correlated with pre-vaccination titer in 2007 and 2008. Nevertheless, no significant difference in the day 28 seroprotection rate was observed between groups with repeated and first vaccination in most circumstances. Further studies are needed to understand the long-term effect of repeated vaccination on the antibody response both at the serological and repertoire levels among health care personnel.
Collapse
Affiliation(s)
- Kuan-Ying A Huang
- Division of Infectious Diseases, Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Molecular Infectious Disease Research Centre, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shih-Cheng Chang
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yhu-Chering Huang
- Division of Infectious Diseases, Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Cheng-Hsun Chiu
- Division of Infectious Diseases, Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Molecular Infectious Disease Research Centre, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Tzou-Yien Lin
- Division of Infectious Diseases, Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Ministry of Health and Welfare, Taipei, Taiwan
| |
Collapse
|
20
|
Neuraminidase inhibiting antibody responses in pigs differ between influenza A virus N2 lineages and by vaccine type. Vaccine 2016; 34:3773-9. [PMID: 27325350 DOI: 10.1016/j.vaccine.2016.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 05/16/2016] [Accepted: 06/01/2016] [Indexed: 11/22/2022]
Abstract
The neuraminidase (NA) protein of influenza A viruses (IAV) has important functional roles in the viral replication cycle. Antibodies specific to NA can reduce viral replication and limit disease severity, but are not routinely measured. We analyzed NA inhibiting (NI) antibody titers in serum and respiratory specimens of pigs vaccinated with intramuscular whole-inactivated virus (WIV), intranasal live-attenuated influenza virus (LAIV), and intranasal wild type (WT) IAV. NI titers were also analyzed in sera from an investigation of piglet vaccination in the presence of passive maternally-derived antibodies. Test antigens contained genetically divergent swine-lineage NA genes homologous or heterologous to the vaccines with mismatched hemagglutinin genes (HA). Naïve piglets responded to WIV and LAIV vaccines and WT infection with strong homologous serum NI titers. Cross-reactivity to heterologous NAs depended on the degree of genetic divergence between the NA genes. Bronchoalveolar lavage specimens of LAIV and WT-immunized groups also had significant NI titers against the homologous antigen whereas the WIV group did not. Piglets of vaccinated sows received high levels of passive NI antibody, but their NI responses to homologous LAIV vaccination were impeded. These data demonstrate the utility of the enzyme-linked lectin assay for efficient NI antibody titration of serum as well as respiratory tract secretions. Swine IAV vaccines that induce robust NI responses are likely to provide broader protection against the diverse and rapidly evolving IAV strains that circulate in pig populations. Mucosal antibodies to NA may be one of the protective immune mechanisms induced by LAIV vaccines.
Collapse
|
21
|
Trombetta CM, Montomoli E. Influenza immunology evaluation and correlates of protection: a focus on vaccines. Expert Rev Vaccines 2016; 15:967-76. [PMID: 26954563 DOI: 10.1586/14760584.2016.1164046] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Vaccination is the most effective method of controlling seasonal influenza infections and preventing possible pandemic events. Although influenza vaccines have been licensed and used for decades, the potential correlates of protection induced by these vaccines are still a matter of discussion. Currently, inactivated vaccines are the most common and the haemagglutination inhibition antibody titer is regarded as an immunological correlate of protection and the best available parameter for predicting protection from influenza infection. However, the assay shows some limitations, such as its low sensitivity to B and avian strains and inter-laboratory variability. Additional assays and next-generation vaccines have been evaluated to overcome the limitations of the traditional serological techniques and to elicit broad immune responses, underlining the need to revise the current correlates of protection. The aim of this review is to provide an overview of the current scenario regarding the immunological evaluation and correlates of protection of influenza vaccines.
Collapse
Affiliation(s)
| | - Emanuele Montomoli
- a Department of Molecular and Developmental Medicine , University of Siena , Siena , Italy.,b VisMederi srl , Enterprise of services in Life Sciences , Siena , Italy
| |
Collapse
|
22
|
Choi EH, Song MS, Park SJ, Pascua PNQ, Baek YH, Kwon HI, Kim EH, Kim S, Jang HK, Poo H, Kim CJ, Choi YK. Development of a dual-protective live attenuated vaccine against H5N1 and H9N2 avian influenza viruses by modifying the NS1 gene. Arch Virol 2015; 160:1729-40. [PMID: 25959557 DOI: 10.1007/s00705-015-2442-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 04/26/2015] [Indexed: 11/26/2022]
Abstract
An increasing number of outbreaks of avian influenza H5N1 and H9N2 viruses in poultry have caused serious economic losses and raised concerns for human health due to the risk of zoonotic transmission. However, licensed H5N1 and H9N2 vaccines for animals and humans have not been developed. Thus, to develop a dual H5N1 and H9N2 live-attenuated influenza vaccine (LAIV), the HA and NA genes from a virulent mouse-adapted avian H5N2 (A/WB/Korea/ma81/06) virus and a recently isolated chicken H9N2 (A/CK/Korea/116/06) virus, respectively, were introduced into the A/Puerto Rico/8/34 backbone expressing truncated NS1 proteins (NS1-73, NS1-86, NS1-101, NS1-122) but still possessing a full-length NS gene. Two H5N2/NS1-LAIV viruses (H5N2/NS1-86 and H5N2/NS1-101) were highly attenuated compared with the full-length and remaining H5N2/NS-LAIV viruses in a mouse model. Furthermore, viruses containing NS1 modifications were found to induce more IFN-β activation than viruses with full-length NS1 proteins and were correspondingly attenuated in mice. Intranasal vaccination with a single dose (10(4.0) PFU/ml) of these viruses completely protected mice from a lethal challenge with the homologous A/WB/Korea/ma81/06 (H5N2), heterologous highly pathogenic A/EM/Korea/W149/06 (H5N1), and heterosubtypic highly virulent mouse-adapted H9N2 viruses. This study clearly demonstrates that the modified H5N2/NS1-LAIV viruses attenuated through the introduction of mutations in the NS1 coding region display characteristics that are desirable for live attenuated vaccines and hold potential as vaccine candidates for mammalian hosts.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/immunology
- Chickens
- Female
- Humans
- Influenza A Virus, H5N1 Subtype/genetics
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza A Virus, H9N2 Subtype/genetics
- Influenza A Virus, H9N2 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Influenza in Birds/immunology
- Influenza in Birds/prevention & control
- Influenza in Birds/virology
- Influenza, Human/virology
- Mice
- Mice, Inbred BALB C
- Poultry Diseases/immunology
- Poultry Diseases/prevention & control
- Poultry Diseases/virology
- Vaccination
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- Viral Nonstructural Proteins/administration & dosage
- Viral Nonstructural Proteins/genetics
- Viral Nonstructural Proteins/immunology
Collapse
Affiliation(s)
- Eun-hye Choi
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, 12 Gaeshin-Dong Heungduk-Ku, Cheongju, 361-763, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Trombetta CM, Perini D, Mather S, Temperton N, Montomoli E. Overview of Serological Techniques for Influenza Vaccine Evaluation: Past, Present and Future. Vaccines (Basel) 2014; 2:707-34. [PMID: 26344888 PMCID: PMC4494249 DOI: 10.3390/vaccines2040707] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/25/2014] [Accepted: 09/22/2014] [Indexed: 12/12/2022] Open
Abstract
Serological techniques commonly used to quantify influenza-specific antibodies include the Haemagglutination Inhibition (HI), Single Radial Haemolysis (SRH) and Virus Neutralization (VN) assays. HI and SRH are established and reproducible techniques, whereas VN is more demanding. Every new influenza vaccine needs to fulfil the strict criteria issued by the European Medicines Agency (EMA) in order to be licensed. These criteria currently apply exclusively to SRH and HI assays and refer to two different target groups-healthy adults and the elderly, but other vaccine recipient age groups have not been considered (i.e., children). The purpose of this timely review is to highlight the current scenario on correlates of protection concerning influenza vaccines and underline the need to revise the criteria and assays currently in use. In addition to SRH and HI assays, the technical advantages provided by other techniques such as the VN assay, pseudotype-based neutralization assay, neuraminidase and cell-mediated immunity assays need to be considered and regulated via EMA criteria, considering the many significant advantages that they could offer for the development of effective vaccines.
Collapse
Affiliation(s)
- Claudia Maria Trombetta
- Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro, 53100 Siena, Italy.
| | - Daniele Perini
- VisMederi srl, Enterprise in Life Sciences, Via Fiorentina 1, 53100 Siena, Italy.
| | - Stuart Mather
- Viral Pseudotype Unit, School of Pharmacy, University of Kent, Chatham Maritime, Kent ME4 4TB, UK.
| | - Nigel Temperton
- Viral Pseudotype Unit, School of Pharmacy, University of Kent, Chatham Maritime, Kent ME4 4TB, UK.
| | - Emanuele Montomoli
- Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro, 53100 Siena, Italy.
- VisMederi srl, Enterprise in Life Sciences, Via Fiorentina 1, 53100 Siena, Italy.
| |
Collapse
|
24
|
Wohlbold TJ, Krammer F. In the shadow of hemagglutinin: a growing interest in influenza viral neuraminidase and its role as a vaccine antigen. Viruses 2014; 6:2465-94. [PMID: 24960271 PMCID: PMC4074938 DOI: 10.3390/v6062465] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/06/2014] [Accepted: 06/13/2014] [Indexed: 01/03/2023] Open
Abstract
Despite the availability of vaccine prophylaxis and antiviral therapeutics, the influenza virus continues to have a significant, annual impact on the morbidity and mortality of human beings, highlighting the continued need for research in the field. Current vaccine strategies predominantly focus on raising a humoral response against hemagglutinin (HA)—the more abundant, immunodominant glycoprotein on the surface of the influenza virus. In fact, anti-HA antibodies are often neutralizing, and are used routinely to assess vaccine immunogenicity. Neuraminidase (NA), the other major glycoprotein on the surface of the influenza virus, has historically served as the target for antiviral drug therapy and is much less studied in the context of humoral immunity. Yet, the quest to discern the exact importance of NA-based protection is decades old. Also, while antibodies against the NA glycoprotein fail to prevent infection of the influenza virus, anti-NA immunity has been shown to lessen the severity of disease, decrease viral lung titers in animal models, and reduce viral shedding. Growing evidence is intimating the possible gains of including the NA antigen in vaccine design, such as expanded strain coverage and increased overall immunogenicity of the vaccine. After giving a tour of general influenza virology, this review aims to discuss the influenza A virus neuraminidase while focusing on both the historical and present literature on the use of NA as a possible vaccine antigen.
Collapse
Affiliation(s)
- Teddy John Wohlbold
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, USA.
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1124, New York, NY 10029, USA.
| |
Collapse
|
25
|
Reperant LA, Rimmelzwaan GF, Osterhaus AD. Advances in influenza vaccination. F1000PRIME REPORTS 2014; 6:47. [PMID: 24991424 PMCID: PMC4047948 DOI: 10.12703/p6-47] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Influenza virus infections yearly cause high morbidity and mortality burdens in humans, and the development of a new influenza pandemic continues to threaten mankind as a Damoclean sword. Influenza vaccines have been produced by using egg-based virus growth and passaging techniques that were developed more than 60 years ago, following the identification of influenza A virus as an etiological agent of seasonal influenza. These vaccines aimed mainly at eliciting neutralizing antibodies targeting antigenically variable regions of the hemagglutinin (HA) protein, which requires regular updates to match circulating seasonal influenza A and B virus strains. Given the relatively limited protection induced by current seasonal influenza vaccines, a more universal influenza vaccine that would protect against more—if not all—influenza viruses is among the largest unmet medical needs of the 21st century. New insights into correlates of protection from influenza and into broad B- and T-cell protective anti-influenza immune responses offer promising avenues for innovative vaccine development as well as manufacturing strategies or platforms, leading to the development of a new generation of vaccines. These aim at the rapid and massive production of influenza vaccines that provide broad protective and long-lasting immunity. Recent advances in influenza vaccine research demonstrate the feasibility of a wide range of approaches and call for the initiation of preclinical proof-of-principle studies followed by clinical trials in humans.
Collapse
Affiliation(s)
- Leslie A. Reperant
- Department of Viroscience, Erasmus Medical CentrePO Box 2040, 3000 CA RotterdamThe Netherlands
- Artemis Research Institute for One Health in EuropeYalelaan 1, 3584 CL UtrechtThe Netherlands
| | - Guus F. Rimmelzwaan
- Department of Viroscience, Erasmus Medical CentrePO Box 2040, 3000 CA RotterdamThe Netherlands
| | - Albert D.M.E. Osterhaus
- Department of Viroscience, Erasmus Medical CentrePO Box 2040, 3000 CA RotterdamThe Netherlands
- Artemis Research Institute for One Health in EuropeYalelaan 1, 3584 CL UtrechtThe Netherlands
- Center for Infection Medicine and Zoonoses Research, University of Veterinary MedicineBünteweg 17, 30559 HannoverGermany
| |
Collapse
|
26
|
Lu X, Liu F, Zeng H, Sheu T, Achenbach JE, Veguilla V, Gubareva LV, Garten R, Smith C, Yang H, Stevens J, Xu X, Katz JM, Tumpey TM. Evaluation of the antigenic relatedness and cross-protective immunity of the neuraminidase between human influenza A (H1N1) virus and highly pathogenic avian influenza A (H5N1) virus. Virology 2014; 454-455:169-75. [PMID: 24725943 DOI: 10.1016/j.virol.2014.02.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 01/29/2014] [Accepted: 02/10/2014] [Indexed: 10/25/2022]
Abstract
To determine the genetic and antigenic relatedness as well as the cross-protective immunity of human H1N1 and avian H5N1 influenza virus neuraminidase (NA), we immunized rabbits with either a baculovirus-expressed recombinant NA from A/Beijing/262/95 (BJ/262) H1N1 or A/Hong Kong/483/97 (HK/483) H5N1 virus. Cross-reactive antibody responses were evaluated by multiple serological assays and cross-protection against H5N1 virus challenge was evaluated in mice. In a neuraminidase inhibition (NI) test, the antisera exhibited substantial inhibition of NA activity of the homologous virus, but failed to inhibit the NA activity of heterologous virus. However, these antisera exhibited low levels of cross-reactivity measured by plaque size reduction, replication inhibition, single radial hemolysis, and ELISA assays. Passive immunization with HK/483 NA-specific antisera significantly reduced virus replication and disease, and afforded almost complete protection against lethal homologous virus challenge in mice. However, passive immunization with BJ/262 (H1N1) NA-specific antisera was ineffective at providing cross-protection against lethal H5N1 virus challenge and only slightly reduced weight loss. Substantial amino acid variation among the NA antigenic sites was observed between BJ/262 and HK/483 virus, which was consistent with the lack of cross-reactive NI activity by the antibody and limited cross-protective immunity in mice. These results show a strong correlation between the lack of cross-protective immunity and low structural similarities of NA from a human seasonal H1N1 virus and an avian H5N1 influenza virus.
Collapse
Affiliation(s)
- Xiuhua Lu
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Feng Liu
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Hui Zeng
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Tiffany Sheu
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Jenna E Achenbach
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Vic Veguilla
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Larisa V Gubareva
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Rebecca Garten
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Catherine Smith
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Hua Yang
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - James Stevens
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Xiyan Xu
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Jacqueline M Katz
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Terrence M Tumpey
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| |
Collapse
|
27
|
Sandbulte MR, Eichelberger MC. Analyzing swine sera for functional antibody titers against influenza A neuraminidase proteins using an enzyme-linked lectin assay (ELLA). Methods Mol Biol 2014; 1161:337-345. [PMID: 24899442 DOI: 10.1007/978-1-4939-0758-8_28] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Neuraminidase (NA) is an envelope glycoprotein of influenza viruses, including swine-lineage influenza A viruses. NA possesses sialidase activity, which is functionally important at multiple points in viral replication, counter-balancing the sialic acid receptor binding activity of the hemagglutinin (HA), the other major envelope glycoprotein. The NA proteins of influenza A viruses have been classified into nine serological subtypes, and they undergo antigenic drift variation similar to that of HA. Antibodies to NA are analyzed much less often than antibodies to HA. The conventional assay for NA inhibition (NI) antibody titration, established decades ago, is widely considered unwieldy and inefficient for routine use. In recent years, a few new formats have been developed which still measure inhibition of NA enzymatic function, but more efficiently and with less chemical waste produced. Described here is the enzyme-linked lectin assay (ELLA), which is performed in 96-well plates and analyzed on a spectrophotometric plate reader. An important factor in adoption of the ELLA technique for animal studies, such as swine, is the choice of NA antigen, which may be purified protein or whole virus containing an antigenically irrelevant HA protein. This NI assay, in conjunction with the hemagglutination inhibiting (HI) antibody assay, offers a practical way to characterize viral isolates more fully and to quantify antibodies induced by infection or vaccination.
Collapse
Affiliation(s)
- Matthew R Sandbulte
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, 2160 Vet Med, Ames, IA, 50011-1250, USA,
| | | |
Collapse
|
28
|
Reber A, Katz J. Immunological assessment of influenza vaccines and immune correlates of protection. Expert Rev Vaccines 2013; 12:519-36. [PMID: 23659300 DOI: 10.1586/erv.13.35] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Influenza vaccines remain the primary public health tool in reducing the ever-present burden of influenza and its complications. In seeking more immunogenic, more effective and more broadly cross-protective influenza vaccines, the landscape of influenza vaccines is rapidly expanding, both in near-term advances and next-generation vaccine design. Although the first influenza vaccines were licensed over 60 years ago, the hemagglutination-inhibition antibody titer is currently the only universally accepted immune correlate of protection against influenza. However, hemagglutination-inhibition titers appear to be less effective at predicting protection in populations at high risk for severe influenza disease; older adults, young children and those with certain medical conditions. The lack of knowledge and validated methods to measure alternate immune markers of protection against influenza remain a substantial barrier to the development of more immunogenic, broadly cross-reactive and effective influenza vaccines. Here, the authors review the knowledge of immune effectors of protection against influenza and discuss assessment methods for a broader range of immunological parameters that could be considered in the evaluation of traditional or new-generation influenza vaccines.
Collapse
Affiliation(s)
- Adrian Reber
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road Atlanta, GA 30333, USA
| | | |
Collapse
|
29
|
Li CKF, Rappuoli R, Xu XN. Correlates of protection against influenza infection in humans--on the path to a universal vaccine? Curr Opin Immunol 2013; 25:470-6. [PMID: 23948572 DOI: 10.1016/j.coi.2013.07.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 06/25/2013] [Accepted: 07/04/2013] [Indexed: 11/27/2022]
Abstract
Influenza is an acute respiratory viral infection with high mutation rate and pandemic potential. Vaccination is an effective means of prevention and control of influenza, but the challenges of vaccine mismatches for the next influenza seasons and adequate global supply of influenza vaccines limit its effectiveness. Protective immunity in vaccination or natural infection is primarily mediated by antibody responses against surface proteins of influenza including haemagglutinin (HA) as the major neutralizing target, whereas strong T cell responses to internal viral proteins are associated with reduced disease severity. Recently, identification of broadly neutralizing antibodies against the conserved stem region of HA from influenza infected individuals has invigorated interest in development of a universal vaccine against different subtypes of influenza. Moreover, because of the cross-reactive nature of T cell recognition and more conserved internal antigens of influenza, strategies that boost memory T cell responses to these internal antigens may provide not only help for antibody-mediated protection but also limit the cell damage caused by viral infection directly. This is particularly important in acute infection with new pandemic viruses or antibody-escape variants where there are no pre-existing neutralizing antibodies. Here, we review the protective immune correlates against human influenza infection and discuss current status of universal influenza vaccine development.
Collapse
Affiliation(s)
- Chris Ka-fai Li
- Novartis Vaccines and Diagnostics, 1 via Fiorentina, Siena, Italy
| | | | | |
Collapse
|
30
|
Couch RB, Atmar RL, Keitel WA, Quarles JM, Wells J, Arden N, Niño D. Randomized comparative study of the serum antihemagglutinin and antineuraminidase antibody responses to six licensed trivalent influenza vaccines. Vaccine 2012; 31:190-5. [PMID: 23107591 PMCID: PMC3520601 DOI: 10.1016/j.vaccine.2012.10.065] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 10/08/2012] [Accepted: 10/19/2012] [Indexed: 11/23/2022]
Abstract
BACKGROUND Serum antibody to the hemagglutinin (HA) surface protein of influenza virus induced by influenza vaccination is a correlate of protection against influenza. The neuraminidase (NA) protein is also on the surface of the virus; antibody to it has been shown to impair virus release from infected cells and to reduce the intensity of influenza infections in animal models and in humans challenged with infectious virus. Recently we have shown that NA inhibiting antibody can independently contribute to immunity to naturally-occurring influenza immunity in the presence of antibody to the HA. PURPOSE The present study was conducted to evaluate induction of antibody to the NA and the HA by commercially available influenza vaccines. METHODS Healthy young adults were vaccinated with one of five commercially available trivalent inactivated vaccines or live influenza vaccine. Frequencies of serum antibody and fold geometric mean titer (GMT) increases four weeks later were measured to each of the three vaccine viruses (A/H1N1, A/H3N2, B) in hemagglutination-inhibition (HAI) and neutralization (neut) assays. Frequency and fold GMT increase in neuraminidase-inhibition (NI) antibody titers were measured to the influenza A viruses (A/H1N1, A/H3N2). RESULTS No significant reactogenicity occurred among the vaccinated subjects. The Fluvirin inactivated vaccine induced more anti-HA antibody responses and a higher fold GMT increase than the other inactivated vaccines but there were no major differences in response frequencies or fold GMT increase among the inactivated vaccines. Both the frequency of antibody increase and fold GMT increase were significantly lower for live vaccine than for any inactivated vaccine in HAI and neut assays for all three vaccine viruses. Afluria inactivated vaccine induced more N1 antibody and Fluarix induced more N2 antibody than the other vaccines but all inactivated vaccines induced serum NI antibody. The live vaccine failed to elicit any NI responses for the N2 NA of A/H3N2 virus and frequencies were low for the N1 of A/H1N1 virus. CONCLUSIONS Trivalent inactivated influenza vaccines with similar HA dosage induce similar serum anti-HA antibody responses in healthy adults. Current inactivated vaccines all induce serum anti-NA antibody to the N1 and N2 NA proteins but some are better than others for N1 or N2. The live vaccine, Flumist, was a poor inducer of either anti-HA or anti-NA serum antibody compared to inactivated vaccine in the healthy adults. In view of the capacity for contributing to immunity to influenza in humans, developing guidelines for NA content and induction of NA antibody is desirable.
Collapse
Affiliation(s)
- Robert B Couch
- Departments of Molecular Virology & Microbiology and Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Seasonal trivalent inactivated influenza vaccine does not protect against newly emerging variants of influenza A (H3N2v) virus in ferrets. J Virol 2012; 87:1261-3. [PMID: 23115290 DOI: 10.1128/jvi.02625-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The recent increase in human cases of influenza A H3N2 variant virus [A(H3N2)v] highlights the need to assess whether seasonal influenza vaccination provides cross-protection against A(H3N2)v virus. Our data demonstrate that the 2011-2012 trivalent inactivated influenza vaccine (TIV) protected ferrets against homologous H3N2 virus challenge but provided minimal to no protection against A(H3N2)v virus. The complete absence of specific hemagglutination inhibition antibody response to A(H3N2)v is consistent with the poor cross-protection observed among TIV-immune animals.
Collapse
|
32
|
Hayakawa M, Toda N, Carrillo N, Thornburg NJ, Crowe JE, Barbas CF. A chemically programmed antibody is a long-lasting and potent inhibitor of influenza neuraminidase. Chembiochem 2012; 13:2191-5. [PMID: 22965667 PMCID: PMC3517015 DOI: 10.1002/cbic.201200439] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Indexed: 11/10/2022]
Abstract
Programming an anti-flu strategy: A new and potent neuraminidase inhibitor that maintains long-term systemic exposure of an antibody and the therapeutic activity of the neuraminadase inhibitor zanamivir has been created. This strategy could provide a promising new class of influenza A drugs for therapy and prophylaxis, and validates enzyme inhibitors as programming agents in synthetic immunology.
Collapse
Affiliation(s)
- Masahiko Hayakawa
- Departments of Chemistry, Molecular Biology, and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North, Torrey Pines Road, La Jolla, CA 92037 (USA)
| | - Narihiro Toda
- Departments of Chemistry, Molecular Biology, and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North, Torrey Pines Road, La Jolla, CA 92037 (USA)
| | - Nancy Carrillo
- Departments of Chemistry, Molecular Biology, and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North, Torrey Pines Road, La Jolla, CA 92037 (USA)
| | - Natalie J. Thornburg
- Departments of Pediatrics, Pathology, Microbiology and Immunology, and Vanderbilt Vaccine Center, Vanderbilt University Medical Center, 11475 Medical Research Building IV - 2213 Garland Ave. Nashville, TN 37232-0417
| | - James E. Crowe
- Departments of Pediatrics, Pathology, Microbiology and Immunology, and Vanderbilt Vaccine Center, Vanderbilt University Medical Center, 11475 Medical Research Building IV - 2213 Garland Ave. Nashville, TN 37232-0417
| | - Carlos F. Barbas
- Departments of Chemistry, Molecular Biology, and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North, Torrey Pines Road, La Jolla, CA 92037 (USA)
| |
Collapse
|
33
|
Barman S, Krylov PS, Fabrizio TP, Franks J, Turner JC, Seiler P, Wang D, Rehg JE, Erickson GA, Gramer M, Webster RG, Webby RJ. Pathogenicity and transmissibility of North American triple reassortant swine influenza A viruses in ferrets. PLoS Pathog 2012; 8:e1002791. [PMID: 22829764 PMCID: PMC3400563 DOI: 10.1371/journal.ppat.1002791] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 05/22/2012] [Indexed: 01/06/2023] Open
Abstract
North American triple reassortant swine (TRS) influenza A viruses have caused sporadic human infections since 2005, but human-to-human transmission has not been documented. These viruses have six gene segments (PB2, PB1, PA, HA, NP, and NS) closely related to those of the 2009 H1N1 pandemic viruses. Therefore, understanding of these viruses' pathogenicity and transmissibility may help to identify determinants of virulence of the 2009 H1N1 pandemic viruses and to elucidate potential human health threats posed by the TRS viruses. Here we evaluated in a ferret model the pathogenicity and transmissibility of three groups of North American TRS viruses containing swine-like and/or human-like HA and NA gene segments. The study was designed only to detect informative and significant patterns in the transmissibility and pathogenicity of these three groups of viruses. We observed that irrespective of their HA and NA lineages, the TRS viruses were moderately pathogenic in ferrets and grew efficiently in both the upper and lower respiratory tracts. All North American TRS viruses studied were transmitted between ferrets via direct contact. However, their transmissibility by respiratory droplets was related to their HA and NA lineages: TRS viruses with human-like HA and NA were transmitted most efficiently, those with swine-like HA and NA were transmitted minimally or not transmitted, and those with swine-like HA and human-like NA (N2) showed intermediate transmissibility. We conclude that the lineages of HA and NA may play a crucial role in the respiratory droplet transmissibility of these viruses. These findings have important implications for pandemic planning and warrant confirmation.
Collapse
Affiliation(s)
- Subrata Barman
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Petr S. Krylov
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Thomas P. Fabrizio
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - John Franks
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Jasmine C. Turner
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Patrick Seiler
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - David Wang
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Jerold E. Rehg
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Gene A. Erickson
- Veterinary Diagnostic Laboratory (NCVDL) System, North Carolina Department of Agriculture, Raleigh, North Carolina, United States of America
| | - Marie Gramer
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Robert G. Webster
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Richard J. Webby
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| |
Collapse
|
34
|
Marcelin G, Sandbulte MR, Webby RJ. Contribution of antibody production against neuraminidase to the protection afforded by influenza vaccines. Rev Med Virol 2012; 22:267-79. [PMID: 22438243 PMCID: PMC3389592 DOI: 10.1002/rmv.1713] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 01/23/2012] [Accepted: 02/08/2012] [Indexed: 11/08/2022]
Abstract
Vaccines are instrumental in controlling the burden of influenza virus infection in humans and animals. Antibodies raised against both major viral surface glycoproteins, hemagglutinin (HA) and neuraminidase (NA), can contribute to protective immunity. Vaccine-induced HA antibodies have been characterized extensively, and they generally confer protection by blocking the attachment and fusion of a homologous virus onto host cells. Although not as well characterized, some functions of NA antibodies in influenza vaccine-mediated immunity have been recognized for many years. In this review, we summarize the case for NA antibodies in influenza vaccine-mediated immunity. In the absence of well-matched HA antibodies, NA antibodies can provide varying degrees of protection against disease. NA proteins of seasonal influenza vaccines have been shown in some instances to elicit serum antibodies with cross-reactivity to avian-origin and swine-origin influenza strains, in addition to HA drift variants. NA-mediated immunity has been linked to (i) conserved NA epitopes amongst otherwise antigenically distinct strains, partly attributable to the segmented influenza viral genome; (ii) inhibition of NA enzymatic activity; and (iii) the NA content in vaccine formulations. There is a potential to enhance the effectiveness of existing and future influenza vaccines by focusing greater attention on the antigenic characteristics and potency of the NA protein.
Collapse
Affiliation(s)
- Glendie Marcelin
- Department of Infectious Diseases, Division Virology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Matthew R. Sandbulte
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, 2120 Veterinary Medicine, Ames, IA 50011, USA
| | - Richard J. Webby
- Department of Infectious Diseases, Division Virology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| |
Collapse
|
35
|
Ye J, Shao H, Perez DR. Passive immune neutralization strategies for prevention and control of influenza A infections. Immunotherapy 2012; 4:175-86. [PMID: 22339460 DOI: 10.2217/imt.11.167] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although vaccination significantly reduces influenza severity, seasonal human influenza epidemics still cause more than 250,000 deaths annually. Vaccine efficacy is limited in high-risk populations such as infants, the elderly and immunosuppressed individuals. In the event of an influenza pandemic (such as the 2009 H1N1 pandemic), a significant delay in vaccine availability represents a significant public health concern, particularly in high-risk groups. The increasing emergence of strains resistant to the two major anti-influenza drugs, adamantanes and neuraminidase inhibitors, and the continuous circulation of avian influenza viruses with pandemic potential in poultry, strongly calls for alternative prophylactic and treatment options. In this review, we focus on passive virus neutralization strategies for the prevention and control of influenza type A viruses.
Collapse
Affiliation(s)
- Jianqiang Ye
- Department of Veterinary Medicine, University of Maryland, College Park & Virginia - Maryland Regional College of Veterinary Medicine, College Park, MD 20742, USA
| | | | | |
Collapse
|
36
|
Wagner R, Göpfert C, Hammann J, Neumann B, Wood J, Newman R, Wallis C, Alex N, Pfleiderer M. Enhancing the reproducibility of serological methods used to evaluate immunogenicity of pandemic H1N1 influenza vaccines-an effective EU regulatory approach. Vaccine 2012; 30:4113-22. [PMID: 22446639 DOI: 10.1016/j.vaccine.2012.02.077] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 02/06/2012] [Accepted: 02/28/2012] [Indexed: 10/28/2022]
Abstract
Haemagglutination-inhibition (HI) and virus neutralisation (VN) assays are routinely applied to evaluate influenza vaccine immunogenicity for regulatory approval. Despite their frequent use both assays are currently only poorly standardised causing considerable inter-laboratory variation of serological results that is particularly evident for pandemic influenza vaccines. The present study was conducted in association with the European Medicines Agency (EMA) to directly compare assay variability between vaccine manufacturer's and European regulatory agency's laboratories in an influenza pandemic scenario. To this end, a defined subset of H1N1 pdm clinical trial sera from all manufacturers that had applied at EMA for approval of pandemic H1N1 vaccines were re-tested by the National Institute for Biological Standards and Control (for HI) and the Paul Ehrlich Institute (for VN). Comparative analysis of test results determined for almost 2000 serum samples revealed a marked inter-laboratory variation for HI titres (up to 5.8-fold) and even more for neutralisation titres (up to 7.0-fold). When the absolute titres were adjusted relative to the calibrated International Antibody Standard 09/194 variation was drastically reduced and acceptable agreement of results from different laboratories could be achieved. Hence, inclusion of an appropriate calibrated antibody standard for adjustment of original titres is a powerful tool to substantially increase reproducibility of serological results from different laboratories and to significantly improve regulatory evaluation of influenza vaccine efficacy.
Collapse
Affiliation(s)
- Ralf Wagner
- Paul-Ehrlich-Institut, 63225 Langen, Paul-Ehrlich-Straße 51-59, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Chen Z, Kim L, Subbarao K, Jin H. The 2009 pandemic H1N1 virus induces anti-neuraminidase (NA) antibodies that cross-react with the NA of H5N1 viruses in ferrets. Vaccine 2012; 30:2516-22. [PMID: 22330124 DOI: 10.1016/j.vaccine.2012.01.090] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 01/19/2012] [Accepted: 01/31/2012] [Indexed: 11/27/2022]
Abstract
A miniaturized neuraminidase inhibition (NI) assay using HA-mismatched H6 reassortant viruses was performed to examine the neuraminidase (NA)-specific antibody response in ferrets immunized with live-attenuated influenza vaccine (LAIV) strains. The strains tested possessed different NAs derived from seasonal H1N1 and H3N2, 2009 pandemic H1N1, and the highly pathogenic influenza H5N1 virus. The anti-NA antibodies from the 2009 pandemic strain (A/California/7/2009) immunized ferrets cross-reacted with the NA of H5N1 but not with the NA of seasonal H1N1 viruses. The plaque size reduction assay confirmed the cross-reactivity between the NAs of A/California/7/2009 and the H5N1 virus. Sequence and structural analyses of these N1 NA proteins showed that the NA of the 2009 pandemic H1N1 strain shared at least 22 more amino acids in the head domain with the NAs of the avian H5N1 strains than with the NAs of seasonal human H1N1 viruses. Our data demonstrated LAIV-induced NA antibody responses in ferrets and cross-reactive NA antibodies induced by 2009 pandemic H1N1 and H5N1 LAIV viruses.
Collapse
|
38
|
Kaminski DA, Lee FEH. Antibodies against conserved antigens provide opportunities for reform in influenza vaccine design. Front Immunol 2011; 2:76. [PMID: 22566865 PMCID: PMC3342000 DOI: 10.3389/fimmu.2011.00076] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 11/26/2011] [Indexed: 11/13/2022] Open
Abstract
High-performance neutralizing antibody against influenza virus typically recognizes the globular head region of its hemagglutinin (HA) envelope glycoprotein. To-date, approved human vaccination strategies have been designed to induce such antibodies as a sole means of preventing the consequences of this infection. However, frequent amino-acid changes in the HA globular head allow for efficient immune evasion. Consequently, vaccines inducing such neutralizing antibodies need to be annually re-designed and re-administered at a great expense. These vaccines furthermore provide little-to-no immunity against antigenic-shift strains, which arise from complete replacement of HA or of neuraminidase genes, and pose pandemic risks. To address these issues, laboratory research has focused on inducing immunity effective against all strains, regardless of changes in the HA globular head. Despite prior dogma that such cross-protection needs to be induced by cellular immunity alone, several advances in recent years demonstrate that antibodies of other specificities are capable of cross-strain protection in mice. This review discusses the reactivity, induction, efficacy, and mechanisms of antibodies that react with poorly accessible epitopes in the HA stalk, with the matrix 2 membrane ion channel, and even with the internal nucleoprotein. These advances warrant further investigation of the inducibility and efficacy of such revolutionary antibody strategies in humans.
Collapse
Affiliation(s)
- Denise A Kaminski
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, University of Rochester Rochester, NY, USA.
| | | |
Collapse
|
39
|
Fritz R, Sabarth N, Kiermayr S, Hohenadl C, Howard MK, Ilk R, Kistner O, Ehrlich HJ, Barrett PN, Kreil TR. A Vero Cell–Derived Whole-Virus H5N1 Vaccine Effectively Induces Neuraminidase-Inhibiting Antibodies. J Infect Dis 2011; 205:28-34. [DOI: 10.1093/infdis/jir711] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
40
|
Marcelin G, DuBois R, Rubrum A, Russell CJ, McElhaney JE, Webby RJ. A contributing role for anti-neuraminidase antibodies on immunity to pandemic H1N1 2009 influenza A virus. PLoS One 2011; 6:e26335. [PMID: 22039464 PMCID: PMC3200314 DOI: 10.1371/journal.pone.0026335] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 09/25/2011] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Exposure to contemporary seasonal influenza A viruses affords partial immunity to pandemic H1N1 2009 influenza A virus (pH1N1) infection. The impact of antibodies to the neuraminidase (NA) of seasonal influenza A viruses to cross-immunity against pH1N1 infection is unknown. METHODS AND RESULTS Antibodies to the NA of different seasonal H1N1 influenza strains were tested for cross-reactivity against A/California/04/09 (pH1N1). A panel of reverse genetic (rg) recombinant viruses was generated containing 7 genes of the H1N1 influenza strain A/Puerto Rico/08/34 (PR8) and the NA gene of either the pandemic H1N1 2009 strain (pH1N1) or one of the following contemporary seasonal H1N1 strains: A/Solomon/03/06 (rg Solomon) or A/Brisbane/59/07 (rg Brisbane). Convalescent sera collected from mice infected with recombinant viruses were measured for cross-reactive antibodies to pH1N1 via Hemagglutinin Inhibition (HI) or Enzyme-Linked Immunosorbent Assay (ELISA). The ectodomain of a recombinant NA protein from the pH1N1 strain (pNA-ecto) was expressed, purified and used in ELISA to measure cross-reactive antibodies. Analysis of sera from elderly humans immunized with trivalent split-inactivated influenza (TIV) seasonal vaccines prior to 2009 revealed considerable cross-reactivity to pNA-ecto. High titers of cross-reactive antibodies were detected in mice inoculated with either rg Solomon or rg Brisbane. Convalescent sera from mice inoculated with recombinant viruses were used to immunize naïve recipient Balb/c mice by passive transfer prior to challenge with pH1N1. Mice receiving rg California sera were better protected than animals receiving rg Solomon or rg Brisbane sera. CONCLUSIONS The NA of contemporary seasonal H1N1 influenza strains induces a cross-reactive antibody response to pH1N1 that correlates with reduced lethality from pH1N1 challenge, albeit less efficiently than anti-pH1N1 NA antibodies. These findings demonstrate that seasonal NA antibodies contribute to but are not sufficient for cross-reactive immunity to pH1N1.
Collapse
Affiliation(s)
- Glendie Marcelin
- Department of Infectious Diseases, Division of Virology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Rebecca DuBois
- Department of Infectious Diseases, Division of Virology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Adam Rubrum
- Department of Infectious Diseases, Division of Virology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Charles J. Russell
- Department of Infectious Diseases, Division of Virology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Janet E. McElhaney
- Center for Immunotherapy of Cancer and Infectious Diseases, Department of Immunology, University of Connecticut School of Medicine, Farmington, Connecticut, United States of America
| | - Richard J. Webby
- Department of Infectious Diseases, Division of Virology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| |
Collapse
|
41
|
Sambhara V. Inactivated seasonal influenza vaccines increase serum antibodies to the neuraminidase of pandemic influenza A(H1N1) 2009 virus in an age-dependent manner. J Infect Dis 2011; 203:1697-8. [PMID: 21593002 DOI: 10.1093/infdis/jir169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
42
|
Chen WH, Cross AS, Edelman R, Sztein MB, Blackwelder WC, Pasetti MF. Antibody and Th1-type cell-mediated immune responses in elderly and young adults immunized with the standard or a high dose influenza vaccine. Vaccine 2011; 29:2865-73. [PMID: 21352939 PMCID: PMC3070775 DOI: 10.1016/j.vaccine.2011.02.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 12/21/2010] [Accepted: 02/07/2011] [Indexed: 11/25/2022]
Abstract
A comparative analysis of antibody and cell-mediated immune responses was performed in ambulatory medically stable elderly and young adults who received the standard-dose of trivalent inactivated influenza vaccine, containing 15 μg of hemagglutinin (HA) per virus strain, or a high-dose vaccine containing 60 μg HA per virus strain. Among the elderly, the high dose vaccine induced greater HAI (hemagglutination inhibition) and virus neutralization antibody titers than the standard dose vaccine. These responses, however, did not achieve the magnitude of those induced by the standard dose vaccine in young adults. Vaccine-specific circulating T cells producing IFN-γ were detected in the elderly and young adults following immunization. However, there were no significant differences in the IFN-γ responses among groups. On the other hand, the standard dose vaccine in the elderly resulted in the highest proportion of complete non-responders who failed to elicit either an HAI or an IFN-γ response. This study provides further evidence that a higher dose vaccine for the elderly may result in enhanced immune responses which are predicted to improve protection although still of lower magnitude than those induced in younger healthier individuals.
Collapse
Affiliation(s)
- Wilbur H. Chen
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore MD 21201
- Division of Geographic Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore MD 21201
| | - Alan S. Cross
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore MD 21201
- Division of Geographic Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore MD 21201
| | - Robert Edelman
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore MD 21201
- Division of Geographic Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore MD 21201
| | - Marcelo B. Sztein
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore MD 21201
- Division of Infectious Diseases and Tropical Pediatrics, Department of Pediatrics, University of Maryland School of Medicine, Baltimore MD 21201
| | - William C. Blackwelder
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore MD 21201
- Division of Geographic Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore MD 21201
| | - Marcela F. Pasetti
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore MD 21201
- Division of Infectious Diseases and Tropical Pediatrics, Department of Pediatrics, University of Maryland School of Medicine, Baltimore MD 21201
| |
Collapse
|
43
|
Abstract
Influenza is responsible for the infection of approximately 20% of the population every season and for an annual death toll of approximately half a million people. The most effective means for controlling infection and thereby reducing morbidity and mortality is vaccination by injection with an inactivated vaccine, or by intranasal administration of a live-attenuated vaccine. Protection is not always optimal and there is a need for the development of new vaccines with improved efficacy and for the expansion of enrollment into vaccination programs. An overview of old and new vaccines is presented. Methods of monitoring immune responses such as hemagglutination-inhibition, ELISA and neutralization tests are evaluated for their accuracy in the assessment of current and new-generation vaccines.
Collapse
Affiliation(s)
- Zichria Zakay-Rones
- Chanock Center of Virology, The Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel Canada (IMRIC), Hebrew University Hadassah Medical School, Jerusalem, Israel.
| |
Collapse
|
44
|
Sultana I, Gao J, Markoff L, Eichelberger MC. Influenza neuraminidase-inhibiting antibodies are induced in the presence of zanamivir. Vaccine 2011; 29:2601-6. [DOI: 10.1016/j.vaccine.2011.01.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 12/31/2010] [Accepted: 01/18/2011] [Indexed: 10/18/2022]
|
45
|
Abstract
Although seasonal influenza vaccines play a valuable role in reducing the spread of virus at the population level, ongoing viral evolution to evade immune responses remains problematic. No current vaccines elicit enduring protection in the face of emerging and re-emerging influenza viruses that are rapidly undergoing antigenic drift. Eliciting broadly cross-neutralizing antibody (nAb) responses against influenza virus is a crucial goal for seasonal and pandemic influenza vaccine preparation. Recent three-dimensional structure information obtained from crystallization of influenza antigens in complex with nAbs has provided a framework for interpreting antibody-based viral neutralization that should aid in the design of vaccine immunogens. Here, we will review current knowledge of the structure-based mechanisms contributing to the neutralization and neutralization escape of influenza viruses. We will also explore the potential for this structure-based approach to overcome the obstacles in developing the highly desired "universal" influenza vaccine.
Collapse
Affiliation(s)
- Thomas Han
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
46
|
Plummer EM, Manchester M. Viral nanoparticles and virus-like particles: platforms for contemporary vaccine design. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2010; 3:174-196. [PMID: 20872839 PMCID: PMC7169818 DOI: 10.1002/wnan.119] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Current vaccines that provide protection against infectious diseases have primarily relied on attenuated or inactivated pathogens. Virus‐like particles (VLPs), comprised of capsid proteins that can initiate an immune response but do not include the genetic material required for replication, promote immunogenicity and have been developed and approved as vaccines in some cases. In addition, many of these VLPs can be used as molecular platforms for genetic fusion or chemical attachment of heterologous antigenic epitopes. This approach has been shown to provide protective immunity against the foreign epitopes in many cases. A variety of VLPs and virus‐based nanoparticles are being developed for use as vaccines and epitope platforms. These particles have the potential to increase efficacy of current vaccines as well as treat diseases for which no effective vaccines are available. WIREs Nanomed Nanobiotechnol 2011 3 174–196 DOI: 10.1002/wnan.119 This article is categorized under:
Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease
Collapse
Affiliation(s)
- Emily M Plummer
- Cell Biology Department, The Scripps Research Institute, La Jolla, CA, USA.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Marianne Manchester
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
47
|
Recombinant soluble, multimeric HA and NA exhibit distinctive types of protection against pandemic swine-origin 2009 A(H1N1) influenza virus infection in ferrets. J Virol 2010; 84:10366-74. [PMID: 20686020 DOI: 10.1128/jvi.01035-10] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The emergence and subsequent swift and global spread of the swine-origin influenza virus A(H1N1) in 2009 once again emphasizes the strong need for effective vaccines that can be developed rapidly and applied safely. With this aim, we produced soluble, multimeric forms of the 2009 A(H1N1) HA (sHA(3)) and NA (sNA(4)) surface glycoproteins using a virus-free mammalian expression system and evaluated their efficacy as vaccines in ferrets. Immunization twice with 3.75-microg doses of these antigens elicited strong antibody responses, which were adjuvant dependent. Interestingly, coadministration of both antigens strongly enhanced the HA-specific but not the NA-specific responses. Distinct patterns of protection were observed upon challenge inoculation with the homologous H1N1 virus. Whereas vaccination with sHA(3) dramatically reduced virus replication (e.g., by lowering pulmonary titers by about 5 log(10) units), immunization with sNA(4) markedly decreased the clinical effects of infection, such as body weight loss and lung pathology. Clearly, optimal protection was achieved by the combination of the two antigens. Our observations demonstrate the great vaccine potential of multimeric HA and NA ectodomains, as these can be easily, rapidly, flexibly, and safely produced in high quantities. In particular, our study underscores the underrated importance of NA in influenza vaccination, which we found to profoundly and specifically contribute to protection by HA. Its inclusion in a vaccine is likely to reduce the HA dose required and to broaden the protective immunity.
Collapse
|
48
|
Abstract
Influenza is an important contributor to population and individual morbidity and mortality. The current influenza pandemic with novel H1N1 has highlighted the need for health care professionals to better understand the processes involved in creating influenza vaccines, both for pandemic as well as for seasonal influenza. This review presents an overview of influenza-related topics to help meet this need and includes a discussion of the burden of disease, virology, epidemiology, viral surveillance, and vaccine strain selection. We then present an overview of influenza vaccine-related topics, including vaccine production, vaccine efficacy and effectiveness, influenza vaccine misperceptions, and populations that are recommended to receive vaccination. English-language articles in PubMed published between January 1, 1970, and October 7, 2009, were searched using key words human influenza, influenza vaccines, influenza A, and influenza B.
Collapse
Affiliation(s)
| | | | - Gregory A. Poland
- Individual reprints of this article are not available. Address correspondence to Gregory A. Poland, MD, Mayo Vaccine Research Group, Mayo Clinic, 200 First St SW, Rochester MN, 55905 ()
| |
Collapse
|
49
|
Contribution of vaccine-induced immunity toward either the HA or the NA component of influenza viruses limits secondary bacterial complications. J Virol 2010; 84:4105-8. [PMID: 20130054 DOI: 10.1128/jvi.02621-09] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Secondary bacterial infections contribute to morbidity and mortality from influenza. Vaccine effectiveness is typically assessed using prevention of influenza, not secondary infections, as an endpoint. We vaccinated mice with formalin-inactivated influenza virus vaccine preparations containing disparate HA and NA proteins and demonstrated an ability to induce the appropriate anti-HA and anti-NA immune profiles. Protection from both primary viral and secondary bacterial infection was demonstrated with vaccine-induced immunity directed toward either the HA or the NA. This finding suggests that immunity toward the NA component of the virion is desirable and should be considered in generation of influenza vaccines.
Collapse
|
50
|
Targets for the induction of protective immunity against influenza a viruses. Viruses 2010; 2:166-188. [PMID: 21994606 PMCID: PMC3185556 DOI: 10.3390/v2010166] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 01/04/2010] [Accepted: 01/13/2010] [Indexed: 01/09/2023] Open
Abstract
The current pandemic caused by the new influenza A(H1N1) virus of swine origin and the current pandemic threat caused by the highly pathogenic avian influenza A viruses of the H5N1 subtype have renewed the interest in the development of vaccines that can induce broad protective immunity. Preferably, vaccines not only provide protection against the homologous strains, but also against heterologous strains, even of another subtype. Here we describe viral targets and the arms of the immune response involved in protection against influenza virus infections such as antibodies directed against the hemagglutinin, neuraminidase and the M2 protein and cellular immune responses directed against the internal viral proteins.
Collapse
|