1
|
Kalizang'oma A, Richard D, Kwambana-Adams B, Coelho J, Broughton K, Pichon B, Hopkins KL, Chalker V, Beleza S, Bentley SD, Chaguza C, Heyderman RS. Population genomics of Streptococcus mitis in UK and Ireland bloodstream infection and infective endocarditis cases. Nat Commun 2024; 15:7812. [PMID: 39242612 PMCID: PMC11379897 DOI: 10.1038/s41467-024-52120-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 08/27/2024] [Indexed: 09/09/2024] Open
Abstract
Streptococcus mitis is a leading cause of infective endocarditis (IE). However, our understanding of the genomic epidemiology and pathogenicity of IE-associated S. mitis is hampered by low IE incidence. Here we use whole genome sequencing of 129 S. mitis bloodstream infection (BSI) isolates collected between 2001-2016 from clinically diagnosed IE cases in the UK to investigate genetic diversity, antimicrobial resistance, and pathogenicity. We show high genetic diversity of IE-associated S. mitis with virtually all isolates belonging to distinct lineages indicating no predominance of specific lineages. Additionally, we find a highly variable distribution of known pneumococcal virulence genes among the isolates, some of which are overrepresented in disease when compared to carriage strains. Our findings suggest that S. mitis in patients with clinically diagnosed IE is not primarily caused by specific hypervirulent or antimicrobial resistant lineages, highlighting the accidental pathogenic nature of S. mitis in patients with clinically diagnosed IE.
Collapse
Affiliation(s)
- Akuzike Kalizang'oma
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection & Immunity, University College London, London, UK. akuzike.kalizang'
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi. akuzike.kalizang'
- Department of Pathology, School of Medicine and Oral Health, Kamuzu University of Health Sciences, Blantyre, Malawi. akuzike.kalizang'
| | - Damien Richard
- UCL Genetics Institute, University College London, London, UK
| | - Brenda Kwambana-Adams
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection & Immunity, University College London, London, UK
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi
- Department of Pathology, School of Medicine and Oral Health, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Juliana Coelho
- Public Health Microbiology Division, UK Health Security Agency, Colindale, London, UK
| | - Karen Broughton
- Public Health Microbiology Division, UK Health Security Agency, Colindale, London, UK
| | - Bruno Pichon
- Public Health Microbiology Division, UK Health Security Agency, Colindale, London, UK
| | - Katie L Hopkins
- Public Health Microbiology Division, UK Health Security Agency, Colindale, London, UK
| | | | - Sandra Beleza
- University of Leicester, Department of Genetics and Genome Biology, Leicester, UK
| | | | - Chrispin Chaguza
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection & Immunity, University College London, London, UK
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, UK
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT, USA
- Yale Institute for Global Health, Yale University, New Haven, CT, USA
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK
| | - Robert S Heyderman
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection & Immunity, University College London, London, UK.
| |
Collapse
|
2
|
Novel Multilocus Sequence Typing and Global Sequence Clustering Schemes for Characterizing the Population Diversity of Streptococcus mitis. J Clin Microbiol 2023; 61:e0080222. [PMID: 36515506 PMCID: PMC9879099 DOI: 10.1128/jcm.00802-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Streptococcus mitis is a common oral commensal and an opportunistic pathogen that causes bacteremia and infective endocarditis; however, the species has received little attention compared to other pathogenic streptococcal species. Effective and easy-to-use molecular typing tools are essential for understanding bacterial population diversity and biology, but schemes specific for S. mitis are not currently available. We therefore developed a multilocus sequence typing (MLST) scheme and defined sequence clusters or lineages of S. mitis using a comprehensive global data set of 322 genomes (148 publicly available and 174 newly sequenced). We used internal 450-bp sequence fragments of seven housekeeping genes (accA, gki, hom, oppC, patB, rlmN, and tsf) to define the MLST scheme and derived the global S. mitis sequence clusters using the PopPUNK clustering algorithm. We identified an initial set of 259 sequence types (STs) and 258 global sequence clusters. The schemes showed high concordance (100%), capturing extensive S. mitis diversity with strains assigned to multiple unique STs and global sequence clusters. The tools also identified extensive within- and between-host S. mitis genetic diversity among isolates sampled from a cohort of healthy individuals, together with potential transmission events, supported by both phylogeny and pairwise single nucleotide polymorphism (SNP) distances. Our novel molecular typing and strain clustering schemes for S. mitis allow for the integration of new strain data, are electronically portable at the PubMLST database (https://pubmlst.org/smitis), and offer a standardized approach to understanding the population structure of S. mitis. These robust tools will enable new insights into the epidemiology of S. mitis colonization, disease and transmission.
Collapse
|
3
|
Abstract
The microbiome and the human body constitute an integrated superorganism, which is the result of millions of years of coevolution with mutual adaptation and functional integration, and confers significant benefits for both parties. This evolutionary process has resulted in a highly diverse oral microbiome, which covers the full spectrum of acidogenic, aciduric, inflammatory, and anti-inflammatory properties. The relative proportions of members of the microbiome are affected by factors associated with modern life, such as general diet patterns, sugar consumption, tobacco smoking, oral hygiene, use of antibiotics and other antimicrobials, and vaccines. A perturbed balance in the oral microbiome may result in caries, periodontal disease, or candidiasis, and oral bacteria passively transferred to normally sterile parts of the body may cause extra-oral infections. Nevertheless, it should never be our goal to eliminate the oral microbiome, but rather we have to develop ways to re-establish a harmonious coexistence that is lost because of the modern lifestyle. With regard to oral diseases, this goal can normally be achieved by optimal oral hygiene, exposure to fluoride, reduction of sucrose consumption, stimulation of our innate immune defense, smoking cessation, and control of diabetes.
Collapse
Affiliation(s)
- Mogens Kilian
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Nakanishi Y, Yamamoto T, Obana N, Toyofuku M, Nomura N, Kaneko A. Spatial Distribution and Chemical Tolerance of Streptococcus mutans within Dual-Species Cariogenic Biofilms. Microbes Environ 2018; 33:455-458. [PMID: 30531153 PMCID: PMC6308008 DOI: 10.1264/jsme2.me18113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Bacterial interspecies interactions in the oral cavity influence the structural development of cariogenic biofilms and dental caries. Visualization of the biofilm architecture and bacterial localization within biofilms is essential for understanding bacterial interactions. We herein demonstrated that the spatial localization of Streptococcus mutans within dual-species biofilms was altered in a manner that depended on the partner. Furthermore, we found that these biofilms influenced the survival of S. mutans against disinfectants. The present results provide information on how S. mutans interact with other bacteria in multi-species cariogenic biofilms.
Collapse
Affiliation(s)
| | - Tatsuya Yamamoto
- Faculty of Life and Environmental Sciences, University of Tsukuba
| | - Nozomu Obana
- Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba
| | | | - Nobuhiko Nomura
- Faculty of Life and Environmental Sciences, University of Tsukuba
| | | |
Collapse
|
5
|
Xie E, Kotha A, Biaco T, Sedani N, Zou J, Stashenko P, Duncan MJ, Campos-Neto A, Cayabyab MJ. Oral Delivery of a Novel Recombinant Streptococcus mitis Vector Elicits Robust Vaccine Antigen-Specific Oral Mucosal and Systemic Antibody Responses and T Cell Tolerance. PLoS One 2015; 10:e0143422. [PMID: 26618634 PMCID: PMC4664415 DOI: 10.1371/journal.pone.0143422] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 11/04/2015] [Indexed: 12/22/2022] Open
Abstract
The pioneer human oral commensal bacterium Streptococcus mitis has unique biologic features that make it an attractive mucosal vaccine or therapeutic delivery vector. S. mitis is safe as a natural persistent colonizer of the mouth, throat and nasopharynx and the oral commensal bacterium is capable of inducing mucosal antibody responses. A recombinant S. mitis (rS. mitis) that stably expresses HIV envelope protein was generated and tested in the germ-free mouse model to evaluate the potential usefulness of this vector as a mucosal vaccine against HIV. Oral vaccination led to the efficient and persistent bacterial colonization of the mouth and the induction of both salivary and systemic antibody responses. Interestingly, persistently colonized animals developed antigen-specific systemic T cell tolerance. Based on these findings we propose the use of rS. mitis vaccine vector for the induction of mucosal antibodies that will prevent the penetration of the mucosa by pathogens such as HIV. Moreover, the first demonstration of rS. mitis having the ability to elicit T cell tolerance suggest the potential use of rS. mitis as an immunotherapeutic vector to treat inflammatory, allergic and autoimmune diseases.
Collapse
Affiliation(s)
- Emily Xie
- Global Infectious Disease Research Center and the Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, Massachusetts, United States of America
| | - Abhiroop Kotha
- Global Infectious Disease Research Center and the Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, Massachusetts, United States of America
| | - Tracy Biaco
- Global Infectious Disease Research Center and the Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, Massachusetts, United States of America
| | - Nikita Sedani
- Global Infectious Disease Research Center and the Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, Massachusetts, United States of America
| | - Jonathan Zou
- Global Infectious Disease Research Center and the Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, Massachusetts, United States of America
| | - Phillip Stashenko
- Global Infectious Disease Research Center and the Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, Massachusetts, United States of America
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Margaret J. Duncan
- Department of Microbiology, The Forsyth Institute, 245 First Street, Cambridge, Massachusetts, United States of America
| | - Antonio Campos-Neto
- Global Infectious Disease Research Center and the Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, Massachusetts, United States of America
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Mark J. Cayabyab
- Global Infectious Disease Research Center and the Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, Massachusetts, United States of America
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
6
|
Daifalla N, Cayabyab MJ, Xie E, Kim HB, Tzipori S, Stashenko P, Duncan M, Campos-Neto A. Commensal Streptococcus mitis is a unique vector for oral mucosal vaccination. Microbes Infect 2015; 17:237-42. [PMID: 25522856 PMCID: PMC4346494 DOI: 10.1016/j.micinf.2014.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/21/2014] [Accepted: 11/10/2014] [Indexed: 02/08/2023]
Abstract
The development of vaccine approaches that induce mucosal and systemic immune responses is critical for the effective prevention of several infections. Here, we report on the use of the abundant human oral commensal bacterium Streptococcus mitis as a delivery vehicle for mucosal immunization. Using homologous recombination we generated a stable rS. mitis expressing a Mycobacterium tuberculosis protein (Ag85b). Oral administration of rS. mitis in gnotobiotic piglets resulted in efficient oral colonization and production of oral and systemic anti-Ag85b specific IgA and IgG antibodies. These results support that the commensal S. mitis is potentially a useful vector for mucosal vaccination.
Collapse
Affiliation(s)
| | | | - Emily Xie
- The Forsyth Institute, Cambridge, MA, United states
| | - Hyeun Bum Kim
- Cummings School of Veterinary Medicine at Tufts, Grafton, MA, United states; Department of Animal Resources Science at Dankook University, Cheonan, South Korea
| | - Saul Tzipori
- Cummings School of Veterinary Medicine at Tufts, Grafton, MA, United states
| | | | | | | |
Collapse
|
7
|
Kilian M, Riley DR, Jensen A, Brüggemann H, Tettelin H. Parallel evolution of Streptococcus pneumoniae and Streptococcus mitis to pathogenic and mutualistic lifestyles. mBio 2014; 5:e01490-14. [PMID: 25053789 PMCID: PMC4120201 DOI: 10.1128/mbio.01490-14] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 06/27/2014] [Indexed: 11/20/2022] Open
Abstract
The bacterium Streptococcus pneumoniae is one of the leading causes of fatal infections affecting humans. Intriguingly, phylogenetic analysis shows that the species constitutes one evolutionary lineage in a cluster of the otherwise commensal Streptococcus mitis strains, with which humans live in harmony. In a comparative analysis of 35 genomes, including phylogenetic analyses of all predicted genes, we have shown that the pathogenic pneumococcus has evolved into a master of genomic flexibility while lineages that evolved into the nonpathogenic S. mitis secured harmonious coexistence with their host by stabilizing an approximately 15%-reduced genome devoid of many virulence genes. Our data further provide evidence that interspecies gene transfer between S. pneumoniae and S. mitis occurs in a unidirectional manner, i.e., from S. mitis to S. pneumoniae. Import of genes from S. mitis and other mitis, anginosus, and salivarius group streptococci ensured allelic replacements and antigenic diversification and has been driving the evolution of the remarkable structural diversity of capsular polysaccharides of S. pneumoniae. Our study explains how the unique structural diversity of the pneumococcal capsule emerged and conceivably will continue to increase and reveals a striking example of the fragile border between the commensal and pathogenic lifestyles. While genomic plasticity enabling quick adaptation to environmental stress is a necessity for the pathogenic streptococci, the commensal lifestyle benefits from stability. Importance: One of the leading causes of fatal infections affecting humans, Streptococcus pneumoniae, and the commensal Streptococcus mitis are closely related obligate symbionts associated with hominids. Faced with a shortage of accessible hosts, the two opposing lifestyles evolved in parallel. We have shown that the nonpathogenic S. mitis secured harmonious coexistence with its host by stabilizing a reduced genome devoid of many virulence genes. Meanwhile, the pathogenic pneumococcus evolved into a master of genomic flexibility and imports genes from S. mitis and other related streptococci. This process ensured antigenic diversification and has been driving the evolution of the remarkable structural diversity of capsular polysaccharides of S. pneumoniae, which conceivably will continue to increase and present a challenge to disease prevention.
Collapse
Affiliation(s)
- Mogens Kilian
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - David R Riley
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Anders Jensen
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Holger Brüggemann
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Hervé Tettelin
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Kennedy DM, Stanton JAL, García JA, Mason C, Rand CJ, Kieser JA, Tompkins GR. Microbial analysis of bite marks by sequence comparison of streptococcal DNA. PLoS One 2012; 7:e51757. [PMID: 23284761 PMCID: PMC3526645 DOI: 10.1371/journal.pone.0051757] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 11/05/2012] [Indexed: 12/25/2022] Open
Abstract
Bite mark injuries often feature in violent crimes. Conventional morphometric methods for the forensic analysis of bite marks involve elements of subjective interpretation that threaten the credibility of this field. Human DNA recovered from bite marks has the highest evidentiary value, however recovery can be compromised by salivary components. This study assessed the feasibility of matching bacterial DNA sequences amplified from experimental bite marks to those obtained from the teeth responsible, with the aim of evaluating the capability of three genomic regions of streptococcal DNA to discriminate between participant samples. Bite mark and teeth swabs were collected from 16 participants. Bacterial DNA was extracted to provide the template for PCR primers specific for streptococcal 16S ribosomal RNA (16S rRNA) gene, 16S–23S intergenic spacer (ITS) and RNA polymerase beta subunit (rpoB). High throughput sequencing (GS FLX 454), followed by stringent quality filtering, generated reads from bite marks for comparison to those generated from teeth samples. For all three regions, the greatest overlaps of identical reads were between bite mark samples and the corresponding teeth samples. The average proportions of reads identical between bite mark and corresponding teeth samples were 0.31, 0.41 and 0.31, and for non-corresponding samples were 0.11, 0.20 and 0.016, for 16S rRNA, ITS and rpoB, respectively. The probabilities of correctly distinguishing matching and non-matching teeth samples were 0.92 for ITS, 0.99 for 16S rRNA and 1.0 for rpoB. These findings strongly support the tenet that bacterial DNA amplified from bite marks and teeth can provide corroborating information in the identification of assailants.
Collapse
Affiliation(s)
- Darnell M. Kennedy
- Sir John Walsh Research Institute, School of Dentistry, University of Otago, Dunedin, New Zealand
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | | | - José A. García
- Department of Preventative and Social Medicine, University of Otago, Dunedin, New Zealand
| | - Chris Mason
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Christy J. Rand
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Jules A. Kieser
- Sir John Walsh Research Institute, School of Dentistry, University of Otago, Dunedin, New Zealand
| | - Geoffrey R. Tompkins
- Sir John Walsh Research Institute, School of Dentistry, University of Otago, Dunedin, New Zealand
- * E-mail:
| |
Collapse
|
9
|
|
10
|
Isolation and identification of bifidobacteriaceae from human saliva. Appl Environ Microbiol 2008; 74:6457-60. [PMID: 18723652 DOI: 10.1128/aem.00895-08] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Bifidobacteriaceae were isolated from saliva and infected dentine by using a mupirocin-based selective medium. Of the saliva samples, 94% harbored bifids. The mean concentration (+/- the standard error) was 4.46 (+/-0.12) log(10)(CFU per ml + 1), and the predominant isolates were Bifidobacterium dentium, B. longum, Scardovia inopinata, Parascardovia denticolens, and Alloscardovia omnicolens.
Collapse
|
11
|
Wirth KA, Bowden GH, Kirchherr JL, Richmond DA, Sheridan MJ, Cole MF. Humoral immunity to commensal oral bacteria in human infants: evidence that Streptococcus mitis biovar 1 colonization induces strain-specific salivary immunoglobulin A antibodies. ISME JOURNAL 2008; 2:728-38. [DOI: 10.1038/ismej.2008.26] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Population diversity and dynamics of Streptococcus mitis, Streptococcus oralis, and Streptococcus infantis in the upper respiratory tracts of adults, determined by a nonculture strategy. Infect Immun 2008; 76:1889-96. [PMID: 18316382 DOI: 10.1128/iai.01511-07] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We reinvestigated the clonal diversity and dynamics of Streptococcus mitis and two other abundant members of the commensal microbiota of the upper respiratory tract, Streptococcus oralis and Streptococcus infantis, to obtain information about the origin of frequently emerging clones in this habitat. A culture-independent method was used, based on cloning and sequencing of PCR amplicons of the housekeeping gene gdh, which shows remarkable, yet species-specific, genetic polymorphism. Samples were collected from all potential ecological niches in the oral cavity and pharynx of two adults on two occasions separated by 2 years. Based on analysis of close to 10,000 sequences, significant diversity was observed in populations of all three species. Fluctuations in the relative proportions of individual clones and species were observed over time. While a few clones dominated, the proportions of most clones were very small. The results show that the frequent turnover of S. mitis, S. oralis, and S. infantis clones observed by cultivation can be explained by fluctuations in the relative proportions of clones, most of which are below the level of detection by the traditional culture technique, possibly combined with loss and acquisition from contacts. These findings provide a platform for understanding the mechanisms that govern the balance within the complex microbiota at mucosal sites and between the microbiota and the mucosal immune system of the host.
Collapse
|
13
|
Wirth KA, Bowden GH, Richmond DA, Sheridan MJ, Cole MF. Antibody binding to Streptococcus mitis and Streptococcus oralis cell fractions. Arch Oral Biol 2007; 53:141-9. [PMID: 17904095 PMCID: PMC2519026 DOI: 10.1016/j.archoralbio.2007.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 08/08/2007] [Accepted: 08/09/2007] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To determine which cell fraction(s) of Streptococcus mitis biovar 1 serve as the best source of antigens recognized by salivary SIgA antibodies in infants. DESIGN Whole cells of 38 reference and wild-type isolates of S. mitis, Streptococcus oralis, Streptococcus gordonii, Enterococcus casseliflavus, and Enterococcus faecalis were fractionated into cell walls (CW), protease-treated cell walls (PTCW), cell membranes (CM) and cell protein (CP). Whole cells and these fractions were tested for binding by rabbit anti-S. mitis SK145 and anti-S. oralis SK100 sera, and also by salivary SIgA antibodies from infants and adults. RESULTS Anti-SK145 and anti-SK100 sera bound whole cells and fractions of all strains of S. mitis and S. oralis variably. Cluster analysis of antibody binding data placed the strains into S. mitis, S. oralis and 'non-S. mitis/non-S. oralis' clusters. Antigens from CW and CM best discriminated S. mitis from S. oralis. CM bound the most infant salivary SIgA antibody and PTCW bound the least. In contrast, adult salivary SIgA antibody bound all of the cell fractions and at higher levels. CONCLUSIONS Presumably the relatively short period of immune stimulation and immunological immaturity in infants, in contrast to adults, result in low levels of salivary SIgA antibody that preferentially bind CM of S. mitis but not PTCW. By utilizing isolated cell walls and membranes as sources of antigens for proteomics it may be possible to identify antigens common to oral streptococci and dissect the fine specificity of salivary SIgA antibodies induced by oral colonization by S. mitis.
Collapse
Affiliation(s)
- Katherine A. Wirth
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, USA
| | - George H. Bowden
- Department of Oral Biology, Faculty of Dentistry, University of Manitoba, Winnipeg, Canada
| | - Dorothy A. Richmond
- Department of Pediatrics, Georgetown University Medical Center, Washington, DC, USA
| | | | - Michael F. Cole
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, USA
- * Corresponding author. Tel.: 202-687-1817; fax: 202-687-1800, E-mail address:
| |
Collapse
|
14
|
Delorme C, Poyart C, Ehrlich SD, Renault P. Extent of horizontal gene transfer in evolution of Streptococci of the salivarius group. J Bacteriol 2007; 189:1330-41. [PMID: 17085557 PMCID: PMC1797340 DOI: 10.1128/jb.01058-06] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Accepted: 10/19/2006] [Indexed: 11/20/2022] Open
Abstract
The phylogenetically closely related species Streptococcus salivarius and Streptococcus vestibularis are oral bacteria that are considered commensals, although they can also be found in human infections. The relationship between these two species and the relationship between strains isolated from carriers and strains responsible for invasive infections were investigated by multilocus sequence typing and additional sequence analysis. The clustering of several S. vestibularis alleles and the extent of genomic divergence at certain loci support the conclusion that S. salivarius and S. vestibularis are separate species. The level of sequence diversity in S. salivarius alleles is generally high, whereas that in S. vestibularis alleles is low at certain loci, indicating that the latter species might have evolved recently. Cluster analysis indicated that there has been genetic exchange between S. salivarius and S. vestibularis at three of the nine loci investigated. Horizontal gene transfer between streptococci belonging to the S. salivarius group and other oral streptococci was also detected at several loci. A high level of recombination in S. salivarius was revealed by allele index association and split decomposition sequence analyses. Commensal and infection-associated S. salivarius strains could not be distinguished by cluster analysis, suggesting that the pathogen isolates are opportunistic. Taken together, our results indicate that there is a high level of gene exchange that contributes to the evolution of two streptococcal species from the human oral cavity.
Collapse
Affiliation(s)
- Christine Delorme
- Laboratoire de Génétique Microbienne, Institut National de Recherche Agronomique, 78352 Jouy-en-Josas Cedex, France.
| | | | | | | |
Collapse
|
15
|
Kirchherr JL, Bowden GH, Cole MF, Kawamura Y, Richmond DA, Sheridan MJ, Wirth KA. Physiological and serological variation in Streptococcus mitis biovar 1 from the human oral cavity during the first year of life. Arch Oral Biol 2006; 52:90-9. [PMID: 17045561 PMCID: PMC1861816 DOI: 10.1016/j.archoralbio.2006.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 06/30/2006] [Accepted: 07/11/2006] [Indexed: 11/18/2022]
Abstract
OBJECTIVE The purpose of the study was to explore the physiological and antigenic diversity of a large number of Streptococcus mitis biovar 1 isolates in order to begin to determine whether these properties contribute to species persistence. DESIGN S. mitis biovar 1 was collected from four infants from birth to the first year of age. At each of eight to nine visits, 60 isolates each were obtained from the cheeks, tongue and incisors (once erupted) yielding 4440 in total. These were tested for production of neuraminidase, beta1-N-acetylglucosaminidase, beta1-N-acetylgalactosaminidase, IgA1 protease and amylase-binding. Antigenic diversity was examined by ELISA and Western immunoblotting using antisera raised against S. mitis biovar 1 NCTC 12261(T) and SK145. RESULTS Three thousand three hundred and thirty (75%) of the isolates were identified as S. mitis biovar 1 and 3144 (94.4%) could be divided into four large phenotypic groups based on glycosidase production. Fifty-four percent of the isolates produced IgA1 protease, but production was disproportionate among the phenotypes. Between one-third and one-half of the strains of each phenotype bound salivary alpha-amylase. Antisera against strains NCTC 12261(T) and SK145 displayed different patterns of reactivity with randomly selected representatives of the four phenotypes. CONCLUSIONS S. mitis biovar 1 is physiologically and antigenically diverse, properties which could aid strains in avoiding host immunity and promote re-colonization of a habitat or transfer to a new habitat.
Collapse
Affiliation(s)
- Jennifer L. Kirchherr
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, D.C., U.S.A
| | - George H. Bowden
- Department of Oral Biology, Faculty of Dentistry, University of Manitoba, Winnipeg, Canada
| | - Michael F. Cole
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, D.C., U.S.A
| | | | - Dorothy A. Richmond
- Department of Pediatrics, Georgetown University Medical Center, Washington, D.C., U.S.A
| | | | - Katherine A. Wirth
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, D.C., U.S.A
| |
Collapse
|
16
|
Kilian M, Frandsen EVG, Haubek D, Poulsen K. The etiology of periodontal disease revisited by population genetic analysis. Periodontol 2000 2006; 42:158-79. [PMID: 16930310 DOI: 10.1111/j.1600-0757.2006.00159.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Mogens Kilian
- Department of Bacteriology, Institute of Medical Microbiology and Immunology, University of Aarhus, Aarhus, Denmark
| | | | | | | |
Collapse
|
17
|
Kirchherr JL, Bowden GH, Richmond DA, Sheridan MJ, Wirth KA, Cole MF. Clonal diversity and turnover of Streptococcus mitis bv. 1 on shedding and nonshedding oral surfaces of human infants during the first year of life. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2005; 12:1184-90. [PMID: 16210481 PMCID: PMC1247832 DOI: 10.1128/cdli.12.10.1184-1190.2005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Streptococcus mitis bv. 1 is a pioneer colonizer of the human oral cavity. Studies of its population dynamics within parents and their infants and within neonates have shown extensive diversity within and between subjects. We examined the genetic diversity and clonal turnover of S. mitis bv. 1 isolated from the cheeks, tongue, and primary incisors of four infants from birth to 1 year of age. In addition, we compared the clonotypes of S. mitis bv. 1 isolated from their mothers' saliva collected in parallel to determine whether the mother was the origin of the clones colonizing her infant. Of 859 isolates obtained from the infants, 568 were unique clones. Each of the surfaces examined, whether shedding or nonshedding, displayed the same degree of diversity. Among the four infants it was rare to detect the same clone colonizing more than one surface at a given visit. There was little evidence for persistence of clones, but when clones were isolated on multiple visits they were not always found on the same surface. A similar degree of clonal diversity of S. mitis bv. 1 was observed in the mothers' saliva as in their infants' mouths. Clones common to both infant and mothers' saliva were found infrequently suggesting that this is not the origin of the infants' clones. It is unclear whether mucosal immunity exerts the environmental pressure driving the genetic diversity and clonal turnover of S. mitis bv. 1, which may be mechanisms employed by this bacterium to evade immune elimination.
Collapse
Affiliation(s)
- Jennifer L Kirchherr
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | | | | | | | |
Collapse
|
18
|
Suzuki N, Seki M, Nakano Y, Kiyoura Y, Maeno M, Yamashita Y. Discrimination of Streptococcus pneumoniae from viridans group streptococci by genomic subtractive hybridization. J Clin Microbiol 2005; 43:4528-34. [PMID: 16145102 PMCID: PMC1234109 DOI: 10.1128/jcm.43.9.4528-4534.2005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two oligonucleotide primer sets for the discrimination of Streptococcus pneumoniae from "pneumococcus-like" oral streptococcal isolates by PCR were developed. Genomic subtractive hybridization was performed to search for differences between Streptococcus pneumoniae strain WU2 and the most closely related oral streptococcus, Streptococcus mitis strain 903. We identified 19 clones that contained S. pneumoniae-specific nucleotide fragments that were absent from the chromosomal DNA of typical laboratory strains of S. mitis and other oral bacteria. Subsequently, oligonucleotide PCR primers for the detection of S. pneumoniae were designed from the sequences of the subtracted DNA fragments, and the specificities of the 19 primer sets were evaluated by PCR using chromosomal DNAs extracted from four S. pneumoniae clinical isolates and from 20 atypical organisms classified as S. mitis or S. oralis, which harbored genes encoding the pneumococcal virulence factors autolysin (lytA) or pneumolysin (ply), as templates. Of the 19 primer sets, two (Spn9802 and Spn9828) did not amplify PCR products from any of the pneumococcus-like streptococcal strains that we examined. The genes containing the Spn9802 and Spn9828 sequences encoded proteins of unknown function that did not correspond to any previously described proteins in other bacteria. These new oligonucleotide primers may be very useful for early and correct diagnosis of S. pneumoniae infections.
Collapse
Affiliation(s)
- Nao Suzuki
- Department of Oral Medical Science, School of Dentistry, Tomitamachi, Koriyama, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Kotloff KL, Wasserman SS, Jones KF, Livio S, Hruby DE, Franke CA, Fischetti VA. Clinical and microbiological responses of volunteers to combined intranasal and oral inoculation with a Streptococcus gordonii carrier strain intended for future use as a group A streptococcus vaccine. Infect Immun 2005; 73:2360-6. [PMID: 15784582 PMCID: PMC1087407 DOI: 10.1128/iai.73.4.2360-2366.2005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Streptococcus gordonii shows promise as a live mucosal vaccine vector for immunization against respiratory pathogens. In preparation for clinical trials to evaluate S. gordonii engineered to express group A streptococcal M protein antigens, we characterized the responses of 150 healthy volunteers to combined nasal and oral inoculation with approximately 1.5 x 10(9) CFU of SP204(1-1), an S. gordonii strain not bearing vaccine antigens. SP204(1-1) was selected for resistance to streptomycin and 5-fluoro-2-deoxyuridine to distinguish it from indigenous flora. In two antibiotic treatment studies, we performed serial culturing of nose, mouth, and saliva samples from 120 subjects treated with azithromycin beginning 5 days after inoculation to determine whether SP204(1-1) could be rapidly eliminated should safety concerns arise. A natural history study was performed to assess the time until spontaneous eradication in the remaining 30 subjects, who did not receive the antibiotic and who were monitored with repeated culturing for 14 weeks after inoculation. SP204(1-1) was generally well tolerated. Symptoms reported most often within 5 days of inoculation were nasal congestion (36%), headache (30%), and sore throat (19%). The strain was detected by culturing in 98% of subjects. A single dose of azithromycin eliminated colonization in 95% of subjects; all subjects receiving a 5-day course of an antibiotic showed clearance by day 11. Without the antibiotic, 82% of subjects showed spontaneous eradication of the implanted strain within 7 days, and all showed clearance by 35 days. The results of these clinical trials provide encouragement that the use of S. gordonii as a live mucosal vaccine vector is a feasible strategy.
Collapse
Affiliation(s)
- Karen L Kotloff
- Department of Pediatrics, School of Medicine, University of Maryland, 685 West Baltimore St., HSF 480, Baltimore, MD 21201, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Cole MF, Evans MK, Kirchherr JL, Sheridan MJ, Bowden GHW. Study of humoral immunity to commensal oral bacteria in human infants demonstrates the presence of secretory immunoglobulin A antibodies reactive with Actinomyces naeslundii genospecies 1 and 2 ribotypes. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2005; 11:473-82. [PMID: 15138172 PMCID: PMC404577 DOI: 10.1128/cdli.11.3.473-482.2004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mouths of three human infants were examined from birth to age 2 years to detect colonization of Actinomyces naeslundii genospecies 1 and 2. These bacteria did not colonize until after tooth eruption. The diversity of posteruption isolates was determined by ribotyping. Using immunoblotting and enzyme-linked immunosorbent assay, we determined the reactivity of secretory immunoglobulin A (SIgA) antibodies in saliva samples collected from each infant before and after colonization against cell wall proteins from their own A. naeslundii strains and carbohydrates from standard A. naeslundii genospecies 1 and 2 strains. A. naeslundii genospecies 1 and 2 carbohydrate-reactive SIgA antibodies were not detected in any saliva sample. However, SIgA antibodies reactive with cell wall proteins were present in saliva before these bacteria colonized the mouth. These antibodies could be almost completely removed by absorption with A. odontolyticus, a species known to colonize the human mouth shortly after birth. However, after colonization by A. naeslundii genospecies 1 and 2, specific antibodies were induced that could not be removed by absorption with A. odontolyticus. Cluster analysis of the patterns of reactivity of postcolonization salivary antibodies from each infant with antigens from their own strains showed that not only could these antibodies discriminate among strains but antibodies in saliva samples collected at different times showed different reactivity patterns. Overall, these data suggest that, although much of the salivary SIgA antibodies reactive with A. naeslundii genospecies 1 and 2 are directed against genus-specific or more broadly cross-reactive antigens, species, genospecies, and possibly strain-specific antibodies are induced in response to colonization.
Collapse
Affiliation(s)
- Michael F Cole
- Georgetown University Medical Center, Department of Microbiology and Immunology, Med-Dent Bldg., Rm. S.E. 308A, 3900 Reservoir Rd., N.W., Washington, DC 20057, USA.
| | | | | | | | | |
Collapse
|
21
|
Paddick JS, Brailsford SR, Kidd EAM, Gilbert SC, Clark DT, Alam S, Killick ZJ, Beighton D. Effect of the environment on genotypic diversity of Actinomyces naeslundii and Streptococcus oralis in the oral biofilm. Appl Environ Microbiol 2004; 69:6475-80. [PMID: 14602602 PMCID: PMC262309 DOI: 10.1128/aem.69.11.6475-6480.2003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genotypic diversity of Actinomyces naeslundii genospecies 2 (424 isolates) and Streptococcus oralis (446 isolates) strains isolated from two sound approximal sites in all subjects who were either caries active (seven subjects) or caries free (seven subjects) was investigated by using the repetitive extragenic palindromic PCR. The plaque from the caries-active subjects harbored significantly greater proportions of mutans streptococci and lactobacilli and a smaller proportion of A. naeslundii organisms than the plaque sampled from the caries-free subjects. These data confirmed that the sites of the two groups of subjects were subjected to different environmental stresses, probably determined by the prevailing or fluctuating acidic pH values. We tested the hypothesis that the microfloras of the sites subjected to greater stresses (the plaque samples from the caries-active subjects) would exhibit reduced genotypic diversity since the sites would be less favorable. We found that the diversity of A. naeslundii strains did not change (chi2 = 0.68; P = 0.41) although the proportional representation of A. naeslundii was significantly reduced (P < 0.05). Conversely, the diversity of the S. oralis strains increased (chi2 = 11.71; P = 0.0006) and the proportional representation of S. oralis did not change. We propose that under these environmental conditions the diversity and number of niches within the oral biofilm that could be exploited by S. oralis increased, resulting in the increased genotypic diversity of this species. Apparently, A. naeslundii was not able to exploit the new niches since the prevailing conditions within the niches may have been deleterious and not supportive of its proliferation. These results suggest that environmental stress may modify a biofilm such that the diversity of the niches is increased and that these niches may be successfully exploited by some, but not necessarily all, members of the microbial community.
Collapse
Affiliation(s)
- James S Paddick
- Department of Microbiology, Guy's, King's, and St. Thomas' Dental Institute, King's College London, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Ruby JD, Li Y, Luo Y, Caufield PW. Genetic diversity of Actinomyces naeslundii genospecies 2 in mother–child pairs. Arch Oral Biol 2003; 48:851-5. [PMID: 14596875 DOI: 10.1016/s0003-9969(03)00179-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Actinomyces naeslundii genospecies 2 (gsp-2) are members of the autochthonous oral flora. Chromosomal DNA fingerprinting (CDF) with SmaI revealed extensive genetic diversity among A. naeslundii gsp-2 strains within individual mothers and children. There was a low prevalence of genotype match among A. naeslundii gsp-2 strains between all mother and child pairs.
Collapse
Affiliation(s)
- J D Ruby
- Department of Oral Biology, School of Dentistry, The University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | | | | |
Collapse
|
23
|
Abstract
OBJECTIVE In a previous study, we screened 149 subjects and established four groups high or low for salivary killing of oral bacteria, and for aggregation and live and dead adherence of oral bacteria (as a combined factor). Caries scores were significantly lower in both High Aggregation-Adherence groups. In this study we looked at the effects of those differences in salivary function on the quantity and diversity of oral biofilm streptococci. DESIGN Subjects from those four groups were recalled for collection of overnight oral biofilm from buccal upper central incisors, lingual lower central incisors, buccal upper and lower first molars, and lingual upper and lower first molars. At each site, groups were compared for total biofilm (by DNA concentration), total streptococci (by quantitative PCR), and streptococcal diversity (by Streptococcus-specific denaturing gradient gel electrophoresis). RESULTS Total biofilm DNA and total streptococci were correlated. Both were highest on buccal molar surfaces and lowest on lingual lower central incisors, and both were significantly lower in the High Aggregation-Adherence groups (particularly at the buccal molar site). Fifty distinct bands were observed in denaturing gradient gels. There was great diversity within and between sites. Three major bands were present in almost every person at every site. Densities for two of those bands were significantly lower in both High Aggregation-Adherence groups. Other less-prevalent bands also showed the same pattern. CONCLUSION These findings are consistent with our caries results in suggesting that differences in salivary function can influence the quantity and composition of streptococci in oral biofilms.
Collapse
Affiliation(s)
- J D Rudney
- Department of Oral Science, School of Dentistry, University of Minnesota, 17-252 Moos Tower, 515 Delaware Street SE, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
24
|
Abstract
The purpose of this study was to examine the genetic structure of the typical commensal Streptococcus mitis biovar 1 in its natural habitat in the human oral cavity and pharynx and to investigate the role that selected microbial properties and host, spatial, and temporal factors play in determining the structure of the bacterial population. Consecutive samples were collected from buccal and pharyngeal mucosal surfaces of two infants, their four parents, and two elderly individuals over a period of approximately 1 year. A total of 751 isolates identified as S. mitis biovar 1 were typed by restriction endonuclease analysis (REA) and representative clones were typed by multilocus enzyme electrophoresis (MLEE). The genetic diversity of the S. mitis biovar 1 isolates collected from single infant hosts over a period of 9 to 10 months was found to be between 0.69 and 0.76, which is considerably higher than that previously observed for intestinal populations of Escherichia coli. The study provides evidence of the existence of both transient and persistent clones in adult individuals. In the two infants, however, none of 42 demonstrated clones were detected on more than a single occasion. Statistical calculations showed that the ability to persist was not distributed at random in the S. mitis biovar 1 population. However, neither immunoglobulin A1 protease activity nor the ability to bind alpha-amylase from saliva was a preferential characteristic of persistent genotypes. In contrast to current concepts of climax ecosystems, the species niche in the habitat appears to be maintained predominantly by a succession of clones rather than by stable strains. Several lines of evidence suggest that the major origin of "new" clones is the many other habitats in the respiratory tract that are occupied by this species.
Collapse
Affiliation(s)
- J Hohwy
- Department of Medical Microbiology and Immunology, Faculty of Health Sciences, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | | | |
Collapse
|
25
|
Pan YP, Li Y, Caufield PW. Phenotypic and genotypic diversity of Streptococcus sanguis in infants. ORAL MICROBIOLOGY AND IMMUNOLOGY 2001; 16:235-42. [PMID: 11442849 DOI: 10.1034/j.1399-302x.2001.160407.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Streptococcus sanguis comprises a heterogeneous group of oral streptococci indigenous to the oral cavity of humans. A total of 289 isolates from an infant population (n=37) were tentatively identified as S. sanguis on the basis of the distinctive colony morphology as shown on MM10-sucrose non-selective medium. These isolates were divided into four biovars of S. sanguis as determined by an extended panel of biochemical attributes. Chromosomal DNA was extracted from each isolate, and an AP-PCR fingerprint profile was obtained to allow study of the diversity within and among the infants. In this study, all four biovars of S. sanguis were detected in the infants. A wide genotypic diversity of S. sanguis was observed among these isolates; on average, each infant harbored 2.7 unique amplitypes as shown by the AP-PCR fingerprints. To explore the phylogenic relationship among these S. sanguis isolates, 20 strains representing the four biovars were selected at random for sequencing of their 16S rDNA and 16S-23S rDNA intergenic spacer chromosomal loci. Two major sequence patterns were identified within the 16S rDNA sequences. A phylogenic analysis showed that members from each of the four biovars of S. sanguis bore close relationship with the type-strain ATCC 10556 sequence, and that all of the isolates representing the four biovars could be clustered into two main phylotypes. The biovars were distributed throughout the phylotypes, indicating no correlation between the genetic and phenotypic groupings.
Collapse
Affiliation(s)
- Y P Pan
- Department of Oral Biology, School of Dentistry, University of Alabama at Birmingham, 35294-0007, USA
| | | | | |
Collapse
|
26
|
Abstract
Dental plaque is being redefined as oral biofilm. Diverse overlapping microbial consortia are present on all oral tissues. Biofilms are structured, displaying features like channels and projections. Constituent species switch back and forth between sessile and planktonic phases. Saliva is the medium for planktonic suspension. Several major functions can be defined for saliva in relation to oral biofilm. It serves as a medium for transporting planktonic bacteria within and between mouths. Bacteria in transit may be vulnerable to negative selection. Salivary agglutinins may prevent reattachment to surfaces. Killing by antimicrobial proteins may lead to attachment of dead cells. Salivary proteins form conditioning films on all oral surfaces. This contributes to positive selection for microbial adherence. Saliva carries chemical messengers which allow live adherent cells to sense a critical density of conspecifics. Growth begins, and thick biofilms may become resistant to antimicrobial substances. Salivary macromolecules may be catabolized, but salivary flow also may clear dietary substrates. Salivary proteins act in ways that benefit both host and microbe. All have multiple functions, and many do the same job. They form heterotypic complexes, which may exist in large micelle-like structures. These issues make it useful to compare subjects whose saliva functions differently. We have developed a simultaneous assay for aggregation, killing, live adherence, and dead adherence of oral species. Screening of 149 subjects has defined high killing/low adherence, low killing/high adherence, high killing/high adherence, and low killing/low adherence groups. These will be evaluated for differences in their flora.
Collapse
Affiliation(s)
- J D Rudney
- Department of Oral Science, School of Dentistry, University of Minnesota, Minneapolis 55455, USA.
| |
Collapse
|
27
|
Alam S, Brailsford SR, Adams S, Allison C, Sheehy E, Zoitopoulos L, Kidd EA, Beighton D. Genotypic heterogeneity of Streptococcus oralis and distinct aciduric subpopulations in human dental plaque. Appl Environ Microbiol 2000; 66:3330-6. [PMID: 10919787 PMCID: PMC92151 DOI: 10.1128/aem.66.8.3330-3336.2000] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genotypic heterogeneity of Streptococcus oralis isolated from the oral cavity was investigated using repetitive extragenic palindromic PCR. Unrelated subjects harbored unique genotypes, with numerous genotypes being isolated from an individual. S. oralis is the predominant aciduric bacterium isolated from noncarious tooth sites. Genotypic comparison of the aciduric populations isolated at pH 5.2 with those isolated from mitis-salivarius agar (MSA) (pH 7.0) indicated that the aciduric populations were genotypically distinct in the majority of subjects (chi(2) = 13.09; P = 0.0031). Neither the aciduric nor the MSA-isolated strains were stable, with no strains isolated at baseline being isolated 4 or 12 weeks later in the majority of subjects. The basis of this instability is unknown but is similar to that reported for Streptococcus mitis. Examination of S. oralis strains isolated from cohabiting couples demonstrated that in three of five couples, genotypically identical strains were isolated from both partners and this was confirmed by using Salmonella enteritidis repetitive element PCR and enterobacterial PCR typing. These data provide further evidence of the physiological and genotypic heterogeneity of non-mutans streptococci. The demonstration of distinct aciduric populations of S. oralis implies that the role of these and other non-mutans streptococci in the caries process requires reevaluation.
Collapse
Affiliation(s)
- S Alam
- Dental Caries Research Group, Guy's, King's, and St. Thomas' Dental Institute, London, England
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Bartie KL, Wilson MJ, Williams DW, Lewis MA. Macrorestriction fingerprinting of "Streptococcus milleri" group bacteria by pulsed-field gel electrophoresis. J Clin Microbiol 2000; 38:2141-9. [PMID: 10834967 PMCID: PMC86748 DOI: 10.1128/jcm.38.6.2141-2149.2000] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although isolates of the "Streptococcus milleri" group (SMG) of bacteria are regarded as members of the commensal microflora of the body, they are frequently encountered in purulent infections from a range of body sites. The genetic diversity of 91 epidemiologically unrelated SMG isolates (including 37 commensal strains and 49 disease-associated strains) was analyzed by macrorestriction fingerprinting (MF). The genomes were digested with SmaI and ApaI independently, and fragments were resolved by pulsed-field gel electrophoresis. Similarities between banding profiles were determined, and strains were clustered on this basis into dendrograms. In common with other commensal species that have been examined by MF, considerable genetic diversity was revealed. In addition, the clustering of strains tended to support the current taxonomic position of this heterogeneous group. The present study has shown that MF is a powerful tool for characterization of SMG strains and that its use is likely to be of great value in epidemiological and population genetic studies of this group of bacteria.
Collapse
Affiliation(s)
- K L Bartie
- Department of Oral Surgery, Medicine and Pathology, University of Wales College of Medicine, Cardiff CF14 4XY, United Kingdom
| | | | | | | |
Collapse
|
29
|
Abstract
The intimate relationship with bacteria is a fundamental factor in the health status of an individual. After birth infants are exposed to continuous person-to-person and environmental contacts with microbes, and the development of the indigenous microflora begins on the surfaces of the human body. In a developing ecosystem microbial colonization may easily occur because of the still inadequate host response. Adhesion is the initial event in the colonization of bacteria. In the mouth, only mucosal surfaces are available during the first months of life. After teeth emerge, the number of attachment sites and potential niches increases significantly. Bacteria adhere not only to oral surfaces but also to each other, forming multigeneric communities where specific partner relationships influence their composition and stability. Viridans streptococci and a strictly anaerobic species, Fusobacterium nucleatum, are of interest in this context. The oral colonization pattern differs between individuals already in infancy; variable bacterial load in saliva of attendants and other close contacts and the frequency of this bacterial exposure may partly account for individual differences. In addition, the exposure of an infant to antibiotics affects the quality of colonizing bacteria. This article presents an overview of the age-related acquisition of oral bacteria and the role of the indigenous oral microflora in health and disease.
Collapse
Affiliation(s)
- E Könönen
- Department of Bacteriology, National Public Health Institute, Helsinki, Finland.
| |
Collapse
|
30
|
Whatmore AM, Efstratiou A, Pickerill AP, Broughton K, Woodard G, Sturgeon D, George R, Dowson CG. Genetic relationships between clinical isolates of Streptococcus pneumoniae, Streptococcus oralis, and Streptococcus mitis: characterization of "Atypical" pneumococci and organisms allied to S. mitis harboring S. pneumoniae virulence factor-encoding genes. Infect Immun 2000; 68:1374-82. [PMID: 10678950 PMCID: PMC97291 DOI: 10.1128/iai.68.3.1374-1382.2000] [Citation(s) in RCA: 207] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/1999] [Accepted: 11/10/1999] [Indexed: 11/20/2022] Open
Abstract
The oral streptococcal group (mitis phylogenetic group) currently consists of nine recognized species, although the group has been traditionally difficult to classify, with frequent changes in nomenclature over the years. The pneumococcus (Streptococcus pneumoniae), an important human pathogen, is traditionally distinguished from the most closely related oral streptococcal species Streptococcus mitis and Streptococcus oralis on the basis of three differentiating characteristics: optochin susceptibility, bile solubility, and agglutination with antipneumococcal polysaccharide capsule antibodies. However, there are many reports in the literature of pneumococci lacking one or more of these defining characteristics. Sometimes called "atypical" pneumococci, these isolates can be the source of considerable confusion in the clinical laboratory. Little is known to date about the genetic relationships of such organisms with classical S. pneumoniae isolates. Here we describe these relationships based on sequence analysis of housekeeping genes in comparison with previously characterized isolates of S. pneumoniae, S. mitis, and S. oralis. While most pneumococci were found to represent a closely related group these studies identified a subgroup of atypical pneumococcal isolates (bile insoluble and/or "acapsular") distinct from, though most closely related to, the "typical" pneumococcal isolates. However, a large proportion of isolates, found to be atypical on the basis of capsule reaction alone, did group with typical pneumococci, suggesting that they have either lost capsule production or represent as-yet-unrecognized capsular types. In contrast to typical S. pneumoniae, isolates phenotypically identified as S. mitis and S. oralis, which included isolates previously characterized in taxonomic studies, were genetically diverse. While most of the S. oralis isolates did fall into a well-separated group, S. mitis isolates did not cluster into a well-separated group. During the course of these studies we also identified a number of potentially important pathogenic isolates, which were frequently associated with respiratory disease, that phenotypically and genetically are most closely related to S. mitis but which harbor genes encoding the virulence determinants pneumolysin and autolysin classically associated with S. pneumoniae.
Collapse
Affiliation(s)
- A M Whatmore
- Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Anaerobes constitute a significant part of bacterial communities in human mouths. Their ability to colonize and survive in the environment, where remarkable changes occur during early childhood, is fundamental for oral homeostasis. However, relatively little is known of the time of colonization and succession of anaerobic species in the oral cavity. This article presents an up-to-date review on the development of the oral anaerobic microflora in respect to age, and in addition, considers some aspects of the role of oral anaerobes in health and disease.
Collapse
Affiliation(s)
- E Könönen
- Anaerobe Reference Laboratory, National Public Health Institute, Helsinki, Finland
| |
Collapse
|
32
|
Alam S, Brailsford SR, Whiley RA, Beighton D. PCR-Based methods for genotyping viridans group streptococci. J Clin Microbiol 1999; 37:2772-6. [PMID: 10449450 PMCID: PMC85375 DOI: 10.1128/jcm.37.9.2772-2776.1999] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/1999] [Accepted: 06/07/1999] [Indexed: 11/20/2022] Open
Abstract
Standard repetitive extragenic palindromic (REP)-PCR, enterobacterial repetitive intergenic consensus-PCR, and Salmonella enteritidis repetitive element-PCR methods for bacterial strain typing were performed with DNA extracted by boiling members of each of the currently recognized species of human viridans group streptococci. Each of the methods was reproducible. The unique isolates (n = 72) from 15 species of viridans group streptococci were readily distinguishable, with no two isolates showing greater than 90% per cent similarity. The majority of strains exhibited much less than 90% similarity. Isolates identical by REP-PCR were also identical by the other two methods. These PCR-based typing methods, although they do not permit determination of the species of the isolates, are simple to perform and are suitable for clinical and ecological investigations of viridans group streptococci.
Collapse
Affiliation(s)
- S Alam
- Joint Microbiology Research Unit, Guy's, King's and St. Thomas' Dental Institute, London SE5 9RW, England
| | | | | | | |
Collapse
|
33
|
Rudney JD, Larson CJ. Identification of oral mitis group streptococci by arbitrarily primed polymerase chain reaction. ORAL MICROBIOLOGY AND IMMUNOLOGY 1999; 14:33-42. [PMID: 10204478 DOI: 10.1034/j.1399-302x.1999.140104.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
"Mitis group" streptococci are commensal but may play some role in dental caries, septicemia or endocarditis. Rapid genotypic identification would aid studies of dental plaque ecology, or diagnostic use. AP-PCR with 58 unpaired arbitrary primers was used to characterize 7 Streptococcus gordonii, 11 Streptococcus sanguis, 2 Streptococcus crista, 5 Streptococcus parasanguis, 18 Streptococcus oralis, and 36 Streptococcus mitis (22 biovar 1 and 14 biovar 2). S. parasanguis 16S rRNA variable region primer RR2 produced species-specific bands with all S. gordonii and S. sanguis. Human V beta 1 T-cell receptor primer 434 yielded concordant genotypic identification of all phenotypically defined S. crista and S. parasanguis, 83% of S. oralis, and 74% of S. mitis biovar 1. Amplicon patterns for S. mitis biovar 2 were heterogeneous. Findings suggest that primers RR2 and 434 in succession will allow rapid identification of genotypic groups corresponding closely to mitis group species established by phenotype.
Collapse
Affiliation(s)
- J D Rudney
- Department of Oral Science, School of Dentistry, University of Minnesota, Minneapolis 55455, USA
| | | |
Collapse
|
34
|
Pearce CL, Evans MK, Peters SM, Cole MF. Clonal diversity of vancomycin-resistant enterococci from an outbreak in a tertiary care university hospital. Am J Infect Control 1998; 26:563-8. [PMID: 9836839 DOI: 10.1053/ic.1998.v26.a91614] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Enterococci have become important nosocomial pathogens and now account for approximately 12% of nosocomial infections. Enterococci can be transferred from patient to patient and from health care personnel to patient. We investigated the clonal diversity of vancomycinresistant enterococci (VRE) causing an outbreak of infections and attempted to determine the patterns of spread of these bacteria in a university hospital. METHODS Ribotyping was used to examine the clonal diversity of 50 VRE isolates, including 23 from wounds, 14 from urine, 8 from blood, 3 from the rectum, 1 from drainage, and 1 from the cornea. RESULTS Nine patients were infected with Enterococcus faecalis, 10 with Enterococcus faecium, 3 with both E faecalis and E faecium, and 1 with Enterococcus avium. The results suggest that the sources of the VRE infections included endogenous strains and strains acquired by transmission from attending staff or from the environment. Three patients were infected by both nosocomial and endogenous strains. CONCLUSIONS These data suggest that the collection and analysis of several isolates from repeated specimens is necessary to obtain a fuller understanding of the epidemiology and population structure of antibiotic-resistant enterococci.
Collapse
Affiliation(s)
- C L Pearce
- Department of Microbiology and Immunology and the Department of Laboratory Medicine, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | | | |
Collapse
|
35
|
Bowden GH, Hamilton IR. Survival of oral bacteria. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 1998; 9:54-85. [PMID: 9488248 DOI: 10.1177/10454411980090010401] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The global distribution of individual species of oral bacteria demonstrates their ability to survive among their human hosts. Such an ubiquitous existence is the result of efficient transmission of strains and their persistence in the oral environment. Genetic analysis has identified specific clones of pathogenic bacteria causing infection. Presumably, these express virulence-associated characteristics enhancing colonization and survival in their hosts. A similar situation may occur with the oral resident flora, where genetic variants may express specific phenotypic characteristics related to survival. Survival in the mouth is enhanced by dental plaque formation, where persistence is associated with the bacteria's capacity not only to adhere and grow, but also to withstand oxygen, wide fluctuations in pH and carbohydrate concentration, and a diverse array of microbial interactions. Streptococcus mutans has been discussed as a 'model' organism possessing the biochemical flexibility that permits it to persist and dominate the indigenous microflora under conditions of stress.
Collapse
Affiliation(s)
- G H Bowden
- Department of Oral Biology, Faculty of Dentistry, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|