1
|
Kumar V, Singh K, Sharma S, Singh D, Malakar CC, Singh V. SnCl 2-mediated heterocyclization approach for the synthesis of benzisoxazole/quinoline-embedded β-carboline scaffolds. Org Biomol Chem 2025; 23:4782-4793. [PMID: 40278839 DOI: 10.1039/d5ob00299k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
A Sn(II)-mediated facile entry towards construction of C-C/C-O and C-C/C-N bonds was devised. The developed reductive heterocyclization method is described for the synthesis of a diverse range of novel β-carboline C-1- and C-3-linked vinyl benzisoxazole analogues from the corresponding 2-nitro chalcones. In addition, the synthesis of β-carboline C-1-substituted quinolines (Nitramarine analogues) was achieved. The protocol was extended towards the formation of quinoline C-3-substituted benzisoxazole derivatives in good yields utilizing 2-alkynyl-3-formyl quinolines and 2-nitroacetophenone as templates. The scope of our strategy was demonstrated with the synthesis of a library of 56 novel molecules. The synthesized benzisoxazole derivatives had light-emitting properties to deliver a fluorescence quantum yield up to 33%.
Collapse
Affiliation(s)
- Vipin Kumar
- Department of Chemistry, Dr B R Ambsedkar National Institute of Technology (NIT) Jalandhar, 144008, Punjab, India
- Piramal Discovery Solution, Taluka Sanand, Ahmedabad, 382213, Gujarat, India.
| | - Kuldeep Singh
- Department of Chemistry, Dr B R Ambsedkar National Institute of Technology (NIT) Jalandhar, 144008, Punjab, India
| | - Shubham Sharma
- Department of Chemistry, Dr B R Ambsedkar National Institute of Technology (NIT) Jalandhar, 144008, Punjab, India
- Department of Chemistry, GLA University, 17km Stone, NH-19, Mathura-Delhi Road, Chaumuhan, Bharthia, Uttar Pradesh 281406, India
| | - Dharmender Singh
- Department of Chemistry, Dr B R Ambsedkar National Institute of Technology (NIT) Jalandhar, 144008, Punjab, India
- Central Revnue Control Laboratory, New Delhi, 110001, India
| | - Chandi C Malakar
- Department of Chemistry, National Institute of Technology (NIT) Manipur, Imphal, 795004, Manipur, India
| | - Virender Singh
- Department of Chemistry, Dr B R Ambsedkar National Institute of Technology (NIT) Jalandhar, 144008, Punjab, India
- Department of Chemistry, Central University of Bathinda, 151401, Punjab, India
| |
Collapse
|
2
|
Fan F, Wang Z, Luo Q, Liu Z, Xiao Y, Ren Y. Medical Potential of Insect Symbionts. INSECTS 2025; 16:457. [PMID: 40429170 PMCID: PMC12111880 DOI: 10.3390/insects16050457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/18/2025] [Accepted: 04/24/2025] [Indexed: 05/29/2025]
Abstract
Insect symbionts and their metabolites are complex and diverse and are gradually becoming an important source of new medical materials. Some culturable symbionts from insects produce a variety of active compounds with medical potential. Among them, fatty acids, antibacterial peptides, polyene macrolides, alkaloids, and roseoflavin can inhibit the growth of human pathogenic bacteria and fungi; lipases, yeast killer toxins, reactive oxygen species, pyridines, polyethers, macrotetrolide nactins, and macrolides can kill human parasites; and peptides and polyketides can inhibit human tumors. However, due to difficulty in the culture of symbionts in vitro, difficulty in targeting bacteria to specific sites in the human body, the limited capability of symbionts to produce active metabolites in vitro, inconsistent clinical research results, adverse reactions on humans, and the development of antibiotic resistance, the application of insect symbionts and their metabolites in the medical field remains in its infancy. This paper summarizes the medical potential of insect symbionts and their metabolites and analyzes the status quo and existing problems with their medical application. Possible solutions to these problems are also proposed, with the aim of hastening the utilization of insect symbionts and their metabolites in the medical field.
Collapse
Affiliation(s)
- Fanglei Fan
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China; (F.F.); (Q.L.); (Z.L.)
| | - Zhengyan Wang
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China; (F.F.); (Q.L.); (Z.L.)
| | - Qiong Luo
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China; (F.F.); (Q.L.); (Z.L.)
| | - Zhiyuan Liu
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China; (F.F.); (Q.L.); (Z.L.)
| | - Yu Xiao
- College of Environmental and Life Sciences, Murdoch University, Perth, WA 6150, Australia;
| | - Yonglin Ren
- College of Environmental and Life Sciences, Murdoch University, Perth, WA 6150, Australia;
| |
Collapse
|
3
|
Ahmadpour M, Valashani HT, Naddaf SR, Mohebali M, Hajjaran H, Ghazineghad B, Khosravi R, Mousavi P, Kazemirad E. Upregulation of antioxidant genes in antimony-resistant Leishmania tropica clinical isolates. Mol Biol Rep 2025; 52:418. [PMID: 40266361 DOI: 10.1007/s11033-025-10464-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 03/21/2025] [Indexed: 04/24/2025]
Abstract
BACKGROUND Increasing resistance to antimonial drugs has become a significant challenge in effective treatment in endemic regions of leishmaniasis. Antioxidant defense plays a crucial role in antimony resistance by combating antimonial-induced oxidative stress. Accordingly, we investigated the transcript levels of some antioxidant genes in antimony-sensitive and resistant clinical Leishmania tropica isolates. METHODS In the current study, 22 Leishmania tropica isolates from ACL patients who presented responsive or unresponsive to antimony were examined. The susceptibility of parasites against SbV and hydrogen peroxide (H2O2) was analyzed. We evaluated the transcript levels of five genes, including cytosolic and mitochondrial tryparedoxin (cTXN, mTXN), cytosolic and mitochondrial tryparedoxin peroxidase (cTXNPx, mTXNPx), and ascorbate peroxidase (APX) in antimony-sensitive and resistant L. tropica clinical isolates. RESULTS The in-vitro susceptibility to SbV in intracellular amastigotes revealed 3.82 times higher IC50 in resistant isolates compared to sensitive ones. The IC50 toward H2O2 in resistant isolates was 1.6 times higher than in sensitive ones, positively correlated with SbV IC50 values. The average transcript expression level of cTXNPx, mTXNPx, cTXN, and APX genes significantly increased in resistant isolates by 2.51, 1.69, 2.41, and 2.12-fold compared to sensitive ones. The highest correlation coefficient between the gene expression and SbV IC50 values belonged to the cTXNPx, cTXN, APX, mTXN, and mTXNPx genes, respectively. The average transcript expression level of cytosolic TXN and TXNPx in resistant L. tropica isolates was higher than its mitochondrial counterpart. CONCLUSIONS The data presented here revealed a phenotypic heterogeneity in antioxidant gene expression among L. tropica clinical isolates. Overall, the upregulation of genes involved in antioxidant defense could probably contribute to natural antimony resistance in L. tropica clinical isolates.
Collapse
Affiliation(s)
- Maryam Ahmadpour
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Hakimeh Torkian Valashani
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | - Mehdi Mohebali
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Homa Hajjaran
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Romana Khosravi
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Mousavi
- Skin Diseases and Leishmaniasis Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Kazemirad
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran.
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Carvalho-Gondim F, Suzuki ÉY, Rossi-Bergmann B, Sousa-Batista ADJ. Local necrosis induced by intralesional treatment with amphotericin B- deoxycholate. Acta Trop 2025; 264:107581. [PMID: 40068730 DOI: 10.1016/j.actatropica.2025.107581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/08/2025] [Indexed: 03/17/2025]
Abstract
Intralesional (IL) treatment of cutaneous leishmaniasis with pentavalent antimonials has greatly reduced the systemic toxicity imposed by the conventional intramuscular and intravenous injections. Nevertheless, therapeutic failure with antimonials can occur due to drug resistance and/or short retention in the inflamed skin. Here we evaluated the safety and efficacy of IL treatment with injectable amphotericin B (AmB), a powerful antileishmanial drug that is less prone to drug resistance, but due to its amphiphilic nature is formulated with the ionic detergent sodium deoxycholate (Deox). Thus, Deox-AmB reconstituted with injectable water as directed was evaluated in vivo in L. amazonensis - infected mice in comparison with equivalent Deox or AmB alone. On days 7, 10, 14 and 17 of infection, the infected ears were injected with 10, 50 or 150 μg of AmB/dose. After 34 days of infection, AmB was most effective in killing the parasites at 150 μg/dose. However, at that effective dose Deox-AmB produced severe skin necrosis due to Deox. Our findings indicate that the necrotizing effect of Deox should be considered before using commercial Deox-AmB formulations containing this stabilizing agent for intralesional treatment.
Collapse
Affiliation(s)
- Felipe Carvalho-Gondim
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Érika Yoko Suzuki
- Department of Pharmaceutical Sciences, Federal University Rural of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bartira Rossi-Bergmann
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ariane de Jesus Sousa-Batista
- Post-graduation Program in Nanotechnology Engineering - PENt, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
5
|
Arenas Velásquez AM, Patino Linares IA, Gaspers LD, Bartlett PJ, Velasques JM, Netto AVG, Thomas AP, Graminha MAS. The binuclear cyclopalladated complex CP2 is targeting ubiquinol-cytochrome c reductase (complex III) of Leishmania amazonensis. Int J Parasitol Drugs Drug Resist 2025; 27:100574. [PMID: 39746288 PMCID: PMC11748178 DOI: 10.1016/j.ijpddr.2024.100574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/29/2024] [Accepted: 12/13/2024] [Indexed: 01/04/2025]
Abstract
Leishmaniasis is a neglected disease that remains with a limited number of drugs available for chemotherapy and has an increased drug resistance that affects treatment outcomes. Metal-based drugs such as cyclopalladated complex [Pd(dmba)(μ-N3)]2 (CP2), a Leishmania topoisomerase IB inhibitor involved in calcium dysregulation and mitochondrial dysfunction of the parasite, had been an alternative to outline the appearance of chemoresistance. To identify new molecular targets and point out possible resistance mechanisms, a CP2-resistant Leishmania amazonensis (LaR) was selected by stepwise exposure to increasing drug pressure until a line capable of growth in 13.3 μM CP2. LaR IC50 value was 52.4 μM (4-fold higher than L. amazonensis-wild type, La). LaR promastigotes were cross-resistant to other DNA topoisomerase I inhibitors (camptothecin) and more susceptible to anti-leishmanial drugs pentamidine and miltefosine. A protective effect on cell viability was observed by pretreating the parasite with Ca2+ channel blockers followed by CP2 in La but not in LaR. Analyses of the cell viability of La and LaR using electron transport chain (ETC) inhibitors demonstrated that La is more sensitive than LaR. The studies of mitochondrial oxygen consumption demonstrated that LaR is less susceptible to complex III (ubiquinol-cytochrome c reductase - CcR) inhibitor, antimycin A (AA). CcR activities of La and LaR were equal for both strains in the absence of CP2 and significantly decreased, 69 % for La and 51 % for LaR, in the presence of CP2. This resistance is attributed to overexpression of CcR, confirmed by the RT-qPCR. CcR inhibition by CP2 leads the parasite to increase the reactive oxygen species (ROS) production, principally in La. Therefore, in this work, we suggested that CcR is the main target of CP2 in the mitochondria, acting to inhibit mitochondria respiratory, and the LaR mutant has increased activity of CcR, which reduces the formation of ROS.
Collapse
Affiliation(s)
- Angela Maria Arenas Velásquez
- São Paulo State University (Unesp), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil; Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Irwin Alexander Patino Linares
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Lawrence D Gaspers
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Paula J Bartlett
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Jecika M Velasques
- São Paulo State University (Unesp), Institute of Chemistry, Araraquara, São Paulo, Brazil
| | - Adelino V G Netto
- São Paulo State University (Unesp), Institute of Chemistry, Araraquara, São Paulo, Brazil
| | - Andrew P Thomas
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA.
| | - Marcia A S Graminha
- São Paulo State University (Unesp), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil.
| |
Collapse
|
6
|
Correa E, Robledo SM, Echeverri F, Quiñones W, Arbeláez N, Murillo J, Pineda T, Torres F. In vitro and in vivo leishmanicidal and trypanocidal activities of isoflavans from Tabebuia chrysantha (Jacq.) G. Nicholson timber by-products. Exp Parasitol 2025; 270:108899. [PMID: 39863039 DOI: 10.1016/j.exppara.2025.108899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/27/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025]
Abstract
Cutaneous Leishmaniasis and Chagas disease are neglected tropical diseases that affect millions worldwide. Despite the high morbidity associated with these infections, current treatments are often highly toxic and are showing diminishing efficacy. Thus, new therapeutic options are urgently needed. In this study, bio-guided assays were conducted on the sawdust of Tabebuia chrysantha ("guayacán") to identify promising bioactive compounds. The ethanolic crude extract, five chromatography fractions, pure isoflavans sativan and vestitol, and a mixture were evaluated in vitro against Leishmania braziliensis and Trypanosoma cruzi. High leishmanicidal and trypanocidal activities were observed in the crude extract, fraction F2 (rich in sativan and vestitol), and the two pure isoflavans. Given the abundance and ease of obtaining the isoflavan mixture, its therapeutic potential was further evaluated in vivo in hamsters infected with L. braziliensis and mice infected with T. cruzi. Remarkably, topical and intraperitoneal administration of the chromatography fraction achieved a 67% clinical cure in hamsters with L. braziliensis infection and a 75% reduction in parasitemia in T. cruzi-infected mice. While the antiparasitic effects of certain flavonoids have been documented, this study is the first to demonstrate the efficacy of isoflavans in animal models for both diseases. The potential efficacy observed against T. cruzi and L. braziliensis, two pathogens with limited treatment options and a significant drawback of the available treatments, highlights the therapeutic potential of this combination of sativan and vestitol, which can be derived from timber industry waste, presenting an abundant and accessible source for further development.
Collapse
Affiliation(s)
- Edwin Correa
- Grupo de Química Orgánica de Productos Naturales, Instituto de Química, Universidad de Antioquia-UdeA. Calle 70 # 52-21, Medellín, Colombia
| | - Sara M Robledo
- PECET- Facultad de Medicina, Universidad de Antioquia-UdeA. Calle 70 # 52-21, Medellín, Colombia.
| | - Fernando Echeverri
- Grupo de Química Orgánica de Productos Naturales, Instituto de Química, Universidad de Antioquia-UdeA. Calle 70 # 52-21, Medellín, Colombia
| | - Wiston Quiñones
- Grupo de Química Orgánica de Productos Naturales, Instituto de Química, Universidad de Antioquia-UdeA. Calle 70 # 52-21, Medellín, Colombia
| | - Natalia Arbeláez
- Grupo Estudios Preclínicos, Corporación de Innovación para El desarrollo de productos - CIDEPRO. Carrera 51A #62-42, P2, T7. Medellín, Colombia
| | - Javier Murillo
- Grupo Estudios Preclínicos, Corporación de Innovación para El desarrollo de productos - CIDEPRO. Carrera 51A #62-42, P2, T7. Medellín, Colombia
| | - Tatiana Pineda
- Grupo Estudios Preclínicos, Corporación de Innovación para El desarrollo de productos - CIDEPRO. Carrera 51A #62-42, P2, T7. Medellín, Colombia
| | - Fernando Torres
- Grupo de Química Orgánica de Productos Naturales, Instituto de Química, Universidad de Antioquia-UdeA. Calle 70 # 52-21, Medellín, Colombia.
| |
Collapse
|
7
|
Zarrinkar F, Sharifi I, Tavakoli Oliaee R, Afgar A, Molaakbari E, Bamorovat M, Babaei Z, Eskandari E, Salarkia E, Asadi M. Identification of CβS and ODC antimony resistance markers in anthroponotic cutaneous leishmaniasis field isolates by gene expression profiling. Parasite Epidemiol Control 2025; 28:e00413. [PMID: 39959455 PMCID: PMC11830360 DOI: 10.1016/j.parepi.2025.e00413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/17/2024] [Accepted: 01/22/2025] [Indexed: 02/18/2025] Open
Abstract
Antiparasitic resistance represents a serious global public health concern with tremendous economic and safety implications. This study intended to investigate the expression of the two major resistant markers: cystathionine β synthase (CβS) and ornithine decarboxylase (ODC) in antimony unresponsive Leishmania tropica isolates compared to responsive ones. Twenty-six patients were randomly selected from widely known foci of anthroponotic cutaneous leishmaniasis in southeastern Iran. Written informed consent of the patients was obtained. Two smears were prepared from the edge of each active lesion; one for microscopic direct smear preparation and the other for inoculation into monophasic NNN media, then for mass production of promastigotes into RPMI-1640 monophasic culture for performing nested PCR and gene expression quantification by real-time PCR. Twenty-six patients consisting of 13 unresponsive and 13 responsive equally distributed among female and male groups. All cases were identified to be L. tropica. Both resistant gene markers were significantly up-regulated in unresponsive and responsive isolates. The findings showed that CβS and ODC are directly linked with the resistance to L. tropica. Alternative drugs or combination therapy and monitoring drug resistance to prevent the spread of resistant isolates are proper strategies to control the disease.
Collapse
Affiliation(s)
- Farzaneh Zarrinkar
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Ali Afgar
- Center for Hydatid Disease, Kerman University of Medical Sciences, Kerman, Iran
| | - Elaheh Molaakbari
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Bamorovat
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Babaei
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ebrahim Eskandari
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Salarkia
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Marzieh Asadi
- Toxoplasmosis Research Center, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
8
|
Pazmiño FA, Parra-Muñoz M, Saavedra CH, Muvdi-Arenas S, Ovalle-Bracho C, Echeverry MC. Mucosal leishmaniasis is associated with the Leishmania RNA virus and inappropriate cutaneous leishmaniasis treatment. PLoS One 2025; 20:e0317221. [PMID: 39854299 PMCID: PMC11759362 DOI: 10.1371/journal.pone.0317221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/23/2024] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND Mucosal leishmaniasis (ML) is a severe clinical form of leishmaniasis that is characterized by the destruction of the nasal and/or the oral mucosae and appears as a late complication in 5% to 10% of cutaneous leishmaniasis (CL) cases produced by species belonging to Leishmania (Viannia) subgenus. Some strains of Leishmania spp. carry an RNA virus known as Leishmania RNA virus (LRV) that may contribute to the appearance of ML. METHODS To examine the role of LRV type 1 (LRV1) as a risk factor associated with ML, a retrospective case-control study involving 103 patients was conducted. Cases were defined as patients with ML (n = 33), and controls corresponded to patients with CL and without mucosal lesions (n = 70). Clinical data were recorded from the patient's medical records. Cryopreserved biopsies were used to detect LRV1 and identify Leishmania species. RESULTS The frequency of LRV1 in the 103 patients was 16.5% (95% CI,10.4-25.12) being higher in samples from cases [33.33% (95% CI,18.89-51.76) than from controls [8.57% (95% CI, 3.82-18.10)]. L. (V.) braziliensis was identified in 63.6% of cases and 55.7% of the controls. Multivariate logistic regression indicated that infection with Leishmania spp. carrying LRV1 (OR = 6.30; 95% CI,1.52-26.10, p = 0.011) acts as risk factors for ML occurrence, while the completed treatment for the cutaneous event decreases the risk of ML (OR = 0.039; 95% CI, 0.01-0.12, p < 0.0001). CONCLUSIONS Our data support the association between LRV1 and ML occurrence and emphasize the effect of completed treatment for CL in preventing ML.
Collapse
Affiliation(s)
- Fredy A. Pazmiño
- Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Marcela Parra-Muñoz
- Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Carlos H. Saavedra
- Departamento de Medicina, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Sandra Muvdi-Arenas
- Hospital Universitario Centro Dermatológico Federico Lleras Acosta, Bogotá, Colombia
| | | | - María C. Echeverry
- Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
9
|
Goyzueta-Mamani LD, Pagliara Lage D, Barazorda-Ccahuana HL, Paco-Chipana M, Candia-Puma MA, Davila-Del-Carpio G, Galdino AS, Machado-de-Avila RA, Cordeiro Giunchetti R, D’Antonio EL, Ferraz Coelho EA, Chávez-Fumagalli MA. Exploring the Potential of Malvidin and Echiodinin as Probable Antileishmanial Agents Through In Silico Analysis and In Vitro Efficacy. Molecules 2025; 30:173. [PMID: 39795229 PMCID: PMC11722285 DOI: 10.3390/molecules30010173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Leishmaniasis, a neglected tropical disease caused by Leishmania species, presents serious public health challenges due to limited treatment options, toxicity, high costs, and drug resistance. In this study, the in vitro potential of malvidin and echioidinin is examined as antileishmanial agents against L. amazonensis, L. braziliensis, and L. infantum, comparing their effects to amphotericin B (AmpB), a standard drug. Malvidin demonstrated greater potency than echioidinin across all parasite stages and species. Against L. amazonensis, malvidin's IC50 values were 197.71 ± 17.20 µM (stationary amastigotes) and 258.07 ± 17 µM (axenic amastigotes), compared to echioidinin's 272.99 ± 29.90 μM and 335.96 ± 19.35 μM. AmpB was more potent, with IC50 values of 0.06 ± 0.01 µM and 0.10 ± 0.03 µM. Malvidin exhibited lower cytotoxicity (CC50: 2920.31 ± 80.29 µM) than AmpB (1.06 ± 0.12 µM) and a favorable selectivity index. It reduced infection rates by 35.75% in L. amazonensis-infected macrophages. The in silico analysis revealed strong binding between malvidin and Leishmania arginase, with the residues HIS139 and PRO258 playing key roles. Gene expression analysis indicated malvidin's modulation of oxidative stress and DNA repair pathways, involving genes like GLO1 and APEX1. These findings suggest malvidin's potential as a safe, natural antileishmanial compound, warranting further in vivo studies to confirm its therapeutic efficacy and pharmacokinetics in animal models.
Collapse
Affiliation(s)
- Luis Daniel Goyzueta-Mamani
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru; (L.D.G.-M.); (H.L.B.-C.); (M.P.-C.); (M.A.C.-P.)
| | - Daniela Pagliara Lage
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (D.P.L.); (E.A.F.C.)
| | - Haruna Luz Barazorda-Ccahuana
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru; (L.D.G.-M.); (H.L.B.-C.); (M.P.-C.); (M.A.C.-P.)
| | - Margot Paco-Chipana
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru; (L.D.G.-M.); (H.L.B.-C.); (M.P.-C.); (M.A.C.-P.)
| | - Mayron Antonio Candia-Puma
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru; (L.D.G.-M.); (H.L.B.-C.); (M.P.-C.); (M.A.C.-P.)
- Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, Arequipa 04000, Peru;
| | - Gonzalo Davila-Del-Carpio
- Facultad de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, Arequipa 04000, Peru;
| | - Alexsandro Sobreira Galdino
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal São João Del-Rei, Divinópolis 35501-296, Brazil;
- Instituto Nacional de Ciência e Tecnologia em Biotecnologia Industrial (INCT-BI), Distrito Federal, Brasilia 70070-010, Brazil
| | | | - Rodolfo Cordeiro Giunchetti
- Laboratório de Biologia das Interações Celulares, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
- Instituto Nacional de Ciência e Tecnologia de Doenças Tropicais (INCT-DT), Salvador 40110-160, Brazil
| | - Edward L. D’Antonio
- Department of Natural Sciences, University of South Carolina Beaufort, 1 University Boulevard, Bluffton, SC 29909, USA;
| | - Eduardo Antonio Ferraz Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (D.P.L.); (E.A.F.C.)
| | - Miguel Angel Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru; (L.D.G.-M.); (H.L.B.-C.); (M.P.-C.); (M.A.C.-P.)
| |
Collapse
|
10
|
Gupta J, Menon Y, Kumar S, Jain CK. Vaccine Designing Technology against Leishmaniasis: Current Challenges and Implication. Curr Drug Discov Technol 2025; 22:e240524230315. [PMID: 38798212 DOI: 10.2174/0115701638291767240513113400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/29/2024] [Accepted: 03/20/2024] [Indexed: 05/29/2024]
Abstract
Leishmaniasis, a debilitating disease caused by protozoan parasites of the genus Leishmania and transmitted by the bite of a female sandfly, continues to present significant challenges despite ongoing research and collaboration in vaccine development. The intricate interaction between the parasite's life cycle stages and the host's immunological response, namely the promastigote and amastigote forms, adds complexity to vaccine design. The quest for a potent vaccine against Leishmaniasis demands a comprehensive understanding of the immune mechanisms that confer long-lasting protection, which necessitates extensive research efforts. In this pursuit, innovative approaches such as reverse vaccinology and computer-aided design offer promising avenues for unraveling the intricacies of host-pathogen interactions and identifying effective vaccine candidates. However, numerous obstacles, including limited treatment options, the need for sustained antigenic presence, and the prevalence of co-infections, particularly with HIV, impede progress. Nevertheless, through persistent research endeavours and collaborative initiatives, the goal of developing a highly efficacious vaccine against Leishmaniasis can be achieved, offering hope through the latest Omics data development with immunoinformatics approaches for effective vaccine design for the prevention of this disease.
Collapse
Affiliation(s)
- Jyoti Gupta
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, 201309, India
| | - Yukta Menon
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, 201309, India
| | - Subodh Kumar
- Department of Medical Laboratory Technology, School of Allied Health Science, Delhi Pharmaceutical Sciences and Research University, Sector-3, Pushp Vihar, MB Road, Saket, New Delhi, 110017, India
| | - Chakresh Kumar Jain
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, 201309, India
| |
Collapse
|
11
|
Vaishali, Sharma S, Sharma P, Das D, K Vashistha V, Dhiman J, Sharma R, Kumar R, Singh MV, Kumar Y. Magnetic nanoparticle-catalysed synthesis of quinoline derivatives: A green and sustainable method. Heliyon 2024; 10:e40451. [PMID: 39654797 PMCID: PMC11625306 DOI: 10.1016/j.heliyon.2024.e40451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/03/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024] Open
Abstract
Greener and sustainable synthetic strategies have been evolving as the demanding domain of organic synthesis during the last decade. Green synthesis involves the development of method that decrease or eliminate the use of hazardous chemicals, and make use of renewable or recyclable resources. By incorporating the fundamentals and methodologies of green synthesis, organic chemists have the ability to develop valuable organic molecular frameworks which also demonstrate a strong commitment to environmental sustainability. In this context, the nanoparticle has garnered significant interest due to its various features, adhering to the principles of green synthesis. Specifically, magnetic nanoparticles have been trending extensive uses in green synthesis throughout the past decade. The role of magnetic nanoparticle has an irreplaceable place in the synthesis of biologically valuable frameworks named as quinoline. Quinoline are considered a privileged structure among organic compounds and offer a promising avenue for identifying lead structures in the search of new synthetic molecules (Saquinavir, Imiquimod and Reabamipide) having potential medicinal values and other important prospects. So, it's always indeed to the organic and medicinal chemist to develop biologically active frameworks by the green synthesis. The current manuscript consolidates the existing research on properties of environment-friendly magnetic nanoparticles for generating an extended range of valuable quinoline derivatives.
Collapse
Affiliation(s)
- Vaishali
- Department of Chemistry, Birla Institute of Higher Education, Pilani, Rajasthan, 333031, India
| | - Shubham Sharma
- Department of Chemistry, GLA University, Mathura, UP, 281406, India
| | - Pooja Sharma
- Department of Chemistry, Lovely Professional University, Jalandhar, Phagwara, Punjab, 144001, India
| | - D.K. Das
- Department of Chemistry, GLA University, Mathura, UP, 281406, India
| | | | - Jitender Dhiman
- Central Instrumentation laboratory, Central Pulp and Paper Research Institute, Saharanpur, Uttar Pradesh, India
| | - Rachna Sharma
- Department of Applied Science, TULA’S Institute Dehradun, Uttarakhand, 248197, India
| | - Rajesh Kumar
- Department of Chemistry, S.S.J. University Campus Almora, Uttarakhand, 263601, India
| | - Man vir Singh
- Department of Chemistry, Dev Bhoomi Uttarakhand University, Dehradun, Uttarakhand, 248007, India
| | - Yogendra Kumar
- Department of Chemistry, University of Zululand, Corner Guldengracht &, 2 Cent Cir, Road, Richards Bay, 3900, South Africa
| |
Collapse
|
12
|
Glans H, Matos GM, Bradley M, Downing T, Andersson B. Genetic coping mechanisms observed in Leishmania tropica, from the Middle East region, enhance the survival of the parasite after drug exposure. PLoS One 2024; 19:e0310821. [PMID: 39625894 PMCID: PMC11614225 DOI: 10.1371/journal.pone.0310821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/07/2024] [Indexed: 12/06/2024] Open
Abstract
INTRODUCTION Cutaneous leishmaniasis caused by L. tropica is common in the Middle East and treatment failure and drug resistance are known to occur. Several genetic mechanisms: aneuploidy, recombination and loss of heterozygosity, single nucleotide polymorphism (SNP) changes, copy number variation (CNV), and mutation of the H locus associated with drug resistance have been described. MATERIALS AND METHODS We studied SNP and CNV patterns in 22 isolates of L. tropica from Afghanistan, Iran and Syria in a geographic, phylogenetic and antimony exposure context. RESULTS A high SNP frequency was observed in isolates from Syria on chromosome 23, including the H locus, linked to different ancestry at that chromosome segment. Among the isolates from Afghanistan and Iran, an elevated frequency of nonsynonymous SNPs was observed on several chromosomes. Changes in CNV patterns were seen in isolates exposed to drug pressure, especially for the ferric iron reductase gene. Expanded genes were categorised into five functional categories: translational elongation, mitochondrial transmembrane transport, positive regulation of cellular component organisation, response to stimulus and response to hypoxia. No CNV was identified at the H locus, the MAPK1 gene, the APQ1 gene, nor chromosomes 23, 31 or 36 regardless of previous antimonial exposure. DISCUSSION In our study, Leishmania tropica had a jump in the nonsynonymous SNP rates at chromosome 23, including the H locus. CNV was observed among isolates exposed to antimonials, especially involving the gene encoding a ferric iron reductase. Several essential genetic coping mechanisms in the cell were enhanced when exposed to antimony, possibly for the survival of the parasite. Our work supports the perspective that Leishmania uses several mechanisms to adapt to environmental changes and drug exposure.
Collapse
Affiliation(s)
- Hedvig Glans
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Division of Dermatology and Venerology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Gabriel M. Matos
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Maria Bradley
- Division of Dermatology and Venerology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Tim Downing
- School of Biotechnology, Dublin City University, Dublin, Ireland
- The Pirbright Institute, Woking, United Kingdom
| | - Björn Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
13
|
Miró G, Segarra S, Cerón JJ, Ferrer L, Solano-Gallego L, Montell L, Costa E, Teichenne J, Mariné-Casadó R, GALILEI trial Group, Roura X. New immunomodulatory treatment protocol for canine leishmaniosis reduces parasitemia and proteinuria. PLoS Negl Trop Dis 2024; 18:e0012712. [PMID: 39700303 PMCID: PMC11698568 DOI: 10.1371/journal.pntd.0012712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 01/03/2025] [Accepted: 11/19/2024] [Indexed: 12/21/2024] Open
Abstract
The current standard treatment for canine leishmaniosis (CanL), N-methylglucamine antimoniate (MGA) given with allopurinol, is not fully effective and may cause adverse effects and drug resistance. In vitro and in vivo studies have shown that nucleotides, administered alone or with AHCC, offer benefits in the treatment of CanL. This study examines the effects of a new immunomodulatory treatment protocol in which dietary nucleotides and AHCC are added to the recommended standard treatment. Out of 160 sick dogs with naturally occurring clinical leishmaniosis recruited, 97 were randomized to a supplement (n = 47) or control (n = 50) group. All dogs received an initial 28-day course of MGA and 365-day course of allopurinol. From day 0 to day 730, dogs in the control group additionally received a placebo, while dogs in the supplement group received Impromune (Bioiberica S.A.U., Esplugues de Llobregat, Spain), an oral supplement providing 32 mg/kg nucleotides and 17 mg/kg AHCC daily. After 2 years, five dogs had relapsed in the supplement group (18.5%) while seven did so in the control group (22.6%). Over time, animals in both groups showed significant improvements in body weight, LeishVet clinical stage, clinical score, and anti-Leishmania antibodies. Adding the supplement to the standard protocol resulted in further significant improvements, namely in reducing the parasite load and urinary protein/creatinine ratio, improving IRIS stage, lowering serum creatinine levels on day 30, deceasing urine turbidity on day 365, and improving weight gain on day 545. The daily intake of the supplement over two years proved safe and well tolerated. Our study confirms the efficacy of the recommended standard treatment for CanL, but also reveals that by adding Impromune additional benefits are obtained, especially reduced parasitemia and improved renal function.
Collapse
Affiliation(s)
- Guadalupe Miró
- Animal Health Department, Veterinary School, Universidad Complutense de Madrid, Madrid Spain
| | - Sergi Segarra
- R&D Bioiberica S.A.U., Esplugues de Llobregat, Spain
| | - José Joaquín Cerón
- Interlab-UMU, Campus de Excelencia “Mare Nostrum”, University of Murcia, Campus Espinardo, Murcia, Spain
| | - Lluís Ferrer
- Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Laia Solano-Gallego
- Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Laia Montell
- R&D Bioiberica S.A.U., Esplugues de Llobregat, Spain
| | - Ester Costa
- R&D Bioiberica S.A.U., Esplugues de Llobregat, Spain
| | - Joan Teichenne
- Eurecat, Technology Centre of Catalonia, Technological Unit of Nutrition and Health, Reus, Spain
| | - Roger Mariné-Casadó
- Eurecat, Technology Centre of Catalonia, Technological Unit of Nutrition and Health, Reus, Spain
| | | | - Xavier Roura
- Hospital Clínic Veterinari, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
14
|
Boudou F, Belakredar A, Berkane A, Keziz A, Alsaeedi H, Cornu D, Bechelany M, Barhoum A. Phytochemical profiling and in silico evaluation of Artemisia absinthium compounds targeting Leishmania N-myristoyltransferase: molecular docking, drug-likeness, and toxicity analyses. Front Chem 2024; 12:1508603. [PMID: 39669181 PMCID: PMC11635459 DOI: 10.3389/fchem.2024.1508603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/13/2024] [Indexed: 12/14/2024] Open
Abstract
Background Artemisia absinthium has long been recognized for its therapeutic properties against various diseases. Among these is leishmaniasis, a parasitic infection that remains a global health challenge. Targeting Leishmania N-myristoyltransferase (NMT), a crucial enzyme for parasite survival, represents a promising therapeutic approach. The bioactive compounds in A. absinthium could potentially inhibit NMT and serve as new treatment options for leishmaniasis. Aim This study aims to investigate the phytochemical composition, drug-likeness, and molecular dynamics of A. absinthium bioactive compounds targeting Leishmania NMT, identifying potent inhibitors that could serve as new drug candidates. Method The extract of A. absinthium was analyzed using High-Performance Liquid Chromatography (HPLC), identifying nine phenolic compounds, with kaempferol (10.72%) and chlorogenic acid (4.43%) being the most abundant. Drug-likeness and toxicity were evaluated using SwissADME and OSIRIS Property Explorer, focusing on adherence to Lipinski's rule of five and Ghose's filter. Molecular docking studies were conducted to evaluate the binding affinity of these compounds to NMT. Molecular dynamics (MD) simulations were performed to assess the stability and flexibility of the NMT-apigenin complex. Results Molecular docking identified apigenin as the most potent NMT inhibitor, with a binding energy of -9.6 kcal/mol, forming significant hydrogen bonds with threonine residues 203 and 189. Drug-likeness analysis revealed that most compounds adhered to Lipinski's rule of five, indicating favorable pharmacokinetic properties. MD simulations confirmed the stability of the NMT-apigenin complex, with root mean square deviation (RMSD) values of 0.04 nm, root mean square fluctuation (RMSF) values between 0.05 and 0.35 nm, and radius of gyration (Rg) values ranging from 2.24 to 2.30 nm. Normal mode analysis further supported the complex's stability and flexibility. Conclusion The findings of this study underscore the potential of Artemisia absinthium compounds, particularly apigenin, as promising candidates for the development of new anti-leishmaniasis drugs. The potent inhibition of Leishmania NMT by apigenin, along with its favorable pharmacokinetic and stability profiles, supports its further exploration in antileishmanial drug development.
Collapse
Affiliation(s)
- Farouk Boudou
- Department of Biology, Faculty of Sciences, Djillali Liabes University of Sidi-Bel-Abbes, Sidi-Bel-Abbes, Algeria
| | - Amal Belakredar
- Department of Biotechnology, Faculty of Natural Sciences and Life, University of Mostaganem Abdelhamid Ibn Badis, Mostaganem, Algeria
| | - Alaeddine Berkane
- Laboratory of Chemistry, Synthesis, Properties, and Applications (LCSPA), Department of Chemistry, Faculty of Sciences, Dr. Moulay Tahar University of Saida, Saida, Algeria
| | - Ahcen Keziz
- Physics and Chemistry of Materials Lab, Department of Physics, University of M’sila, M’sila, Algeria
| | - Huda Alsaeedi
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - David Cornu
- Institut Européen des Membranes, IEM, UMR-5635, University Montpellier, École Nationale Supérieure de Chimie de Montpellier (ENSCM), Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR-5635, University Montpellier, École Nationale Supérieure de Chimie de Montpellier (ENSCM), Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- Functional Materials Group, Gulf University for Science and Technology (GUST), Mubarak Al-Abdullah, Kuwait
| | - Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
15
|
Castillo-Castañeda A, Patiño LH, Muro A, López J, Manzano R, Ramírez JD. Characterizing Leishmania infantum-induced resistance to trivalent stibogluconate (SbIII) through deep proteomics. J Proteomics 2024; 309:105323. [PMID: 39349167 DOI: 10.1016/j.jprot.2024.105323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 10/02/2024]
Abstract
Leishmania infantum belongs to the L. donovani complex, which includes species associated with visceral leishmaniasis. Traditionally, antimonial compounds have served as the primary antiparasitic treatment for all clinical forms of leishmaniasis. However, the global spread of resistance to these compounds has posed a significant challenge in the treatment in some regions. In this study, we aimed to investigate resistance to trivalent sodium stibogluconate in vitro using promastigotes from a wild strain of L. infantum. We compared the growth rates and proteomic profiles of wild-type and resistant line conducting label-free quantitative mass spectrometry-based proteomic analyses. Statistical and bioinformatics analyses were employed to evaluate the significance of protein concentration changes, protein identity annotation, GO term analysis, biosynthetic pathways, and protein-protein interactions. Our findings revealed that the resistant line displayed a notable reduction in growth rate. Proteomic data unveiled similar protein concentrations per cell in both groups but with differing molecule copy numbers. We identified 165 proteins with increased concentration, these were associated with transcription and translation activities, lipid metabolism, energy metabolism, and peroxisome biogenesis. In the decreased protein groups were 56 proteins linked to metal acquisition and metabolism, particularly iron. These results suggest a novel perspective on antimonial resistance, highlighting the importance of post-transcriptional and post-translational regulation, alongside energy expenditure compensation and alterations in organelle membrane lipid composition in antimonial-resistant parasites. Overall, our study provides insights into the proteomic profile of stibogluconate-resistant strain, contributing to our general understanding of the complex landscape of antiparasitic resistance in L. infantum. SIGNIFICANCE: Species within the Leishmania donovani complex are implicated in cases of visceral leishmaniasis in the world. Leishmania infantum is a species that predominates in regions spanning the Mediterranean Basin, the Middle East, Central Asia, South and Central America. Antimonials were the first treatment for leishmaniasis, however in the last decades, the resistance has emerged in subregions like India, where it is not a therapeutic option. In contrast, sodium stibogluconate (SbIII) remains the first-line treatment in the Americas. Unfortunately, the emergence of resistance has outpaced the development of new therapeutic options, thereby becoming a critical point in the struggle against the disease. In this study we performed an in-depth proteomic analysis with liquid chromatography mass-mass spectrometry (LC-MS/MS) on L. infantum with Sb-induced resistance in vitro. Results showed a complex proteomic adaptation in the resistant line, involving transcriptional and translational proteins, energy compensation, and homeostasis maintenance. These insights contribute to understanding the molecular adaptation in the parasite and provide information to new investigations related to therapeutics development.
Collapse
Affiliation(s)
- Adriana Castillo-Castañeda
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia; Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37008 Salamanca, Spain.
| | - Luz H Patiño
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.
| | - Antonio Muro
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37008 Salamanca, Spain.
| | - Julio López
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37008 Salamanca, Spain.
| | - Raúl Manzano
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37008 Salamanca, Spain.
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia; Department of Pathology, Molecular and Cell-Based Medicine, Molecular Microbiology Laboratory, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
16
|
Chaudhary V, Kumari S, Pal B. Serum Levels of Vitamins and Trace Elements in Patients with Visceral Leishmaniasis: a Systematic Review and Meta-analysis. Biol Trace Elem Res 2024; 202:4345-4356. [PMID: 38109004 DOI: 10.1007/s12011-023-04015-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Visceral leishmaniasis (VL), a fatal disease prevalent in more than 70 countries, poses significant health challenges, particularly in poor communities with limited access to healthcare. Vitamins and trace elements play a crucial role in immune function and may influence susceptibility to VL. This systematic review and meta-analysis aimed to assess the differences in serum vitamin and trace element levels in VL patients compared to healthy individuals. We conducted an extensive search of databases (PubMed, Embase, and Google Scholar) to identify potentially eligible articles published from inception to June 2023. Data extraction and quality assessment were carried out by two reviewers independently. RevMan software (version 5.4) was used for analysis. Standardized mean difference (SMD) with a confidence interval (CI) of 95% was used to summarize the findings. Ten studies comprising 546 VL patients and 535 controls were included in our study. The findings revealed significantly reduced serum retinol levels in VL patients in comparison to controls (SMD: - 0.67; 95% CI: [- 1.05, - 0.28]; p = 0.0008). Serum zinc levels were also substantially lower in VL patients, regardless of controls recruited from endemic (SMD: - 2.65; 95% CI: [- 3.86, - 1.44]; p < 0.0001) or non-endemic regions (SMD: - 1.99; 95% CI: [- 3.02, - 0.96]; p < 0.0002). However, VL patients exhibited significantly increased serum copper levels compared to controls (SMD: 2.51; 95% CI: [0.70, 4.32]; p = 0.007). Patients with VL had lower serum levels of zinc and retinol and higher levels of copper, indicating a possible role of these micronutrients in influencing VL susceptibility and progression.
Collapse
Affiliation(s)
- Vaibhav Chaudhary
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Sweta Kumari
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Biplab Pal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| |
Collapse
|
17
|
Paul R, Chakrabarty A, Samanta S, Dey S, Pandey R, Maji S, Pezacki AT, Chang CJ, Datta R, Gupta A. Leishmania major-induced alteration of host cellular and systemic copper homeostasis drives the fate of infection. Commun Biol 2024; 7:1226. [PMID: 39349621 PMCID: PMC11442737 DOI: 10.1038/s42003-024-06716-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 08/12/2024] [Indexed: 10/04/2024] Open
Abstract
Copper plays a key role in host-pathogen interaction. We find that during Leishmania major infection, the parasite-harboring macrophage regulates its copper homeostasis pathway in a way to facilitate copper-mediated neutralization of the pathogen. Copper-ATPase ATP7A transports copper to amastigote-harboring phagolysosomes to induce stress on parasites. Leishmania in order to evade the copper stress, utilizes a variety of manipulative measures to lower the host-induced copper stress. It induces deglycosylation and degradation of host-ATP7A and downregulation of copper importer, CTR1 by cysteine oxidation. Additionally, Leishmania induces CTR1 endocytosis that arrests copper uptake. In mouse model of infection, we report an increase in systemic bioavailable copper in infected animals. Heart acts as the major organ for diverting its copper reserves to systemic circulation to fight-off infection by downregulating its CTR1. Our study explores reciprocal mechanism of manipulation of host copper homeostasis pathway by macrophage and Leishmania to gain respective advantages in host-pathogen interaction.
Collapse
Affiliation(s)
- Rupam Paul
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India.
| | - Adrija Chakrabarty
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Suman Samanta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Swastika Dey
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Raviranjan Pandey
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Saptarshi Maji
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Aidan T Pezacki
- Department of Chemistry, University of California Berkeley, Berkeley, CA, USA
| | - Christopher J Chang
- Department of Chemistry, University of California Berkeley, Berkeley, CA, USA
| | - Rupak Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Arnab Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India.
| |
Collapse
|
18
|
Tagliazucchi L, Pinetti D, Genovese F, Malpezzi G, Perea Martinez A, Manzano JI, García-Hernández R, Cole AR, Kwon BR, Aiello D, Brooks BW, Thoré ESJ, Bertram MG, Gamarro F, Costi MP. Deciphering Host-Parasite Interplay in Leishmania Infection through a One Health View of Proteomics Studies on Drug Resistance. ACS Infect Dis 2024; 10:3202-3221. [PMID: 39088331 PMCID: PMC11520909 DOI: 10.1021/acsinfecdis.4c00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 08/03/2024]
Abstract
Recent efforts in the study of vector-borne parasitic diseases (VBPDs) have emphasized an increased consideration for preventing drug resistance and promoting the environmental safety of drugs, from the beginning of the drug discovery pipeline. The intensive use of the few available antileishmanial drugs has led to the spreading of hyper-resistant Leishmania infantum strains, resulting in a chronic burden of the disease. In the present work, we have investigated the biochemical mechanisms of resistance to antimonials, paromomycin, and miltefosine in three drug-resistant parasitic strains from human clinical isolates, using a whole-cell mass spectrometry proteomics approach. We identified 14 differentially expressed proteins that were validated with their transcripts. Next, we employed functional association networks to identify parasite-specific proteins as potential targets for novel drug discovery studies. We used SeqAPASS analysis to predict susceptibility based on the evolutionary conservation of protein drug targets across species. MATH-domain-containing protein, adenosine triphosphate (ATP)-binding cassette B2, histone H4, calpain-like cysteine peptidase, and trypanothione reductase emerged as top candidates. Overall, this work identifies new biological targets for designing drugs to prevent the development of Leishmania drug resistance, while aligning with One Health principles that emphasize the interconnected health of people, animals, and ecosystems.
Collapse
Affiliation(s)
- Lorenzo Tagliazucchi
- Department
of Life Sciences, University of Modena and
Reggio Emilia, Via Campi 103, 41125 Modena, Italy
- Clinical
and Experimental Medicine (CEM) PhD Program, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - Diego Pinetti
- Centro
Interdipartimentale Grandi Strumenti (CIGS), University of Modena and Reggio Emilia, Via Campi 213/A, 41125 Modena, Italy
| | - Filippo Genovese
- Centro
Interdipartimentale Grandi Strumenti (CIGS), University of Modena and Reggio Emilia, Via Campi 213/A, 41125 Modena, Italy
| | - Giulia Malpezzi
- Department
of Life Sciences, University of Modena and
Reggio Emilia, Via Campi 103, 41125 Modena, Italy
- Clinical
and Experimental Medicine (CEM) PhD Program, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - Ana Perea Martinez
- Instituto
de Parasitología y Biomedicina “Lopez-Neyra (IPBLN-CSIC)”, Avda. del Conocimiento 17, 18016 Armilla, Granada, Spain
| | - José I. Manzano
- Instituto
de Parasitología y Biomedicina “Lopez-Neyra (IPBLN-CSIC)”, Avda. del Conocimiento 17, 18016 Armilla, Granada, Spain
| | - Raquel García-Hernández
- Instituto
de Parasitología y Biomedicina “Lopez-Neyra (IPBLN-CSIC)”, Avda. del Conocimiento 17, 18016 Armilla, Granada, Spain
| | - Alexander R. Cole
- Environmental
Health Science Program, Department of Environmental Science, Baylor University, One Bear Place, Waco, Texas 97344, United States
| | - Ba Reum Kwon
- Environmental
Health Science Program, Department of Environmental Science, Baylor University, One Bear Place, Waco, Texas 97344, United States
| | - Daniele Aiello
- Department
of Life Sciences, University of Modena and
Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Bryan W. Brooks
- Environmental
Health Science Program, Department of Environmental Science, Baylor University, One Bear Place, Waco, Texas 97344, United States
| | - Eli S. J. Thoré
- Department
of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd 17, 907 36 Umeå, Sweden
- TRANSfarm-Science,
Engineering, & Technology Group, KU
Leuven, Bijzondereweg
12, 3360 Lovenjoel, Belgium
| | - Michael G. Bertram
- Department
of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd 17, 907 36 Umeå, Sweden
- Department
of Zoology, Stockholm University, Svante Arrhenius väg 18b, 114 18 Stockholm, Sweden
- School
of Biological Sciences, Monash University, 25 Rainforest Walk, 3800 Melbourne, Australia
| | - Francisco Gamarro
- Instituto
de Parasitología y Biomedicina “Lopez-Neyra (IPBLN-CSIC)”, Avda. del Conocimiento 17, 18016 Armilla, Granada, Spain
| | - Maria Paola Costi
- Department
of Life Sciences, University of Modena and
Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| |
Collapse
|
19
|
Nery RLA, Santos TMS, Gois LL, Barral A, Khouri R, Feitosa CA, Santos LA. Leishmania spp. genetic factors associated with cutaneous leishmaniasis antimony pentavalent drug resistance: a systematic review. Mem Inst Oswaldo Cruz 2024; 119:e230240. [PMID: 39230137 PMCID: PMC11370656 DOI: 10.1590/0074-02760230240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/26/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Leishmaniasis is a neglected zoonosis caused by parasites of Leishmania spp. The main drug used to treat cutaneous leishmaniasis (CL) is the antimoniate of meglumine. This drug, which has strong adverse and toxic effects, is usually administered intravenously, further complicating the difficult treatment. Factors such as Leishmania gene expression and genomic mutations appear to play a role in the development of drug resistance. OBJECTIVES This systematic review summarises the results of the literature evaluating parasite genetic markers possibly associated with resistance to pentavalent antimony in CL. METHODS This study followed PRISMA guidelines and included articles from PubMed, SciELO, and LILACS databases. Inclusion criteria were studies that (i) investigated mutations in the genome and/or changes in gene expression of Leishmania associated with treatment resistance; (ii) used antimony drugs in the therapy of CL; (iii) used naturally resistant strains isolated from patients. The Joanna Briggs Institute Critical Appraisal Checklist was used to assess article quality and risk of bias. FINDINGS A total of 23 articles were selected, of which 18 investigated gene expression and nine genomic mutations. Of these 23 articles, four examined gene expression and genomic mutations in the same samples. Regarding gene expression, genes from the ABC transporter protein family, AQP1, MRPA, TDR1 and TRYR were most frequently associated with drug resistance. In one of the articles in which mutations were investigated, a mutation was found in HSP70 (T579A) and in three articles mutations were found in AQP1 (A516C, G562A and G700A). A limitation of this review is that in most of the included studies, parasites were isolated from cultured lesion samples and drug resistance was assessed using in vitro drug susceptibility testing. These approaches may not be ideal for accurate genetic evaluation and detection of treatment failure. MAIN CONCLUSIONS The development of further studies to evaluate the genetic resistance factors of Leishmania spp. is necessary to elucidate the mechanisms of the parasite and improve patient treatment and infection control.
Collapse
Affiliation(s)
- Raphaela Lisboa Andrade Nery
- Fundação Oswaldo Cruz-Fiocruz, Instituto Gonçalo Moniz, Salvador, BA, Brasil
- Universidade Federal da Bahia, Faculdade de Medicina, Programa de Pós-Graduação em Ciências da Saúde, Salvador, BA, Brasil
| | | | - Luana Leandro Gois
- Escola Bahiana de Medicina e Saúde Pública, Salvador, BA, Brasil
- Universidade Federal da Bahia, Instituto de Ciências da Saúde, Departamento de Ciências da Biointeração, Salvador, BA, Brasil
| | - Aldina Barral
- Fundação Oswaldo Cruz-Fiocruz, Instituto Gonçalo Moniz, Salvador, BA, Brasil
- Universidade Federal da Bahia, Faculdade de Medicina, Programa de Pós-Graduação em Ciências da Saúde, Salvador, BA, Brasil
| | - Ricardo Khouri
- Fundação Oswaldo Cruz-Fiocruz, Instituto Gonçalo Moniz, Salvador, BA, Brasil
- Universidade Federal da Bahia, Faculdade de Medicina, Programa de Pós-Graduação em Ciências da Saúde, Salvador, BA, Brasil
| | | | - Luciane Amorim Santos
- Fundação Oswaldo Cruz-Fiocruz, Instituto Gonçalo Moniz, Salvador, BA, Brasil
- Universidade Federal da Bahia, Faculdade de Medicina, Programa de Pós-Graduação em Ciências da Saúde, Salvador, BA, Brasil
- Escola Bahiana de Medicina e Saúde Pública, Salvador, BA, Brasil
| |
Collapse
|
20
|
Bazmani A, Moshaverinia A, Razmi G. Simultaneous Application of Thymoquinone and Hydroxychloroquine Suppresses Autophagy and Disrupts the Autophagosomal Trench Engulfed Leishmania major. IRANIAN BIOMEDICAL JOURNAL 2024; 28:255-64. [PMID: 39891468 PMCID: PMC11829157 DOI: 10.61186/ibj.4481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 10/28/2024] [Indexed: 02/10/2025]
Abstract
Background Leishmaniasis is a vector-borne disease prevalent in 98 countries worldwide. The current treatment has shortcomings, including drug resistance and adverse effects, highlighting the need for novel medications and treatment strategies. This study aimed to investigate the anti-leishmanial effect of thymoquinone (TQ) during the regulation of autophagy in the macrophage cell line (RAW 264.7). Methods After culturing the macrophage cell line, an MTT assay was performed to assess the cytotoxicity effects of the agents at different concentrations of TQ, HCQ (hydroxychloroquine), MET (metformin), and GLU (glucantime). The study groups included PBS, GLU, TQ, TQ + MET, GLU + MET, TQ + HCQ, GLU + HCQ, HCQ, and MET. The cells were then infected with L. major and treated with TQ, while autophagy was regulated using HCQ and MET. Subsequently, the infection index, the number of amastigote loads, and the fold change in the expression of specific autophagy-related genes (LC3, P62, and Beclin) in the treatment groups were evaluated. Results There was a significant decrease in the percentage of the infected macrophages treated with TQ and also the autophagy inhibitor HCQ compared to the control group. Macrophages treated with HCQ + TQ showed a significant reduction in the infection index and amastigote load compared to the TQ-treated group. Additionally, using HCQ as an autophagy inhibitor, along with TQ or GLU, enhanced the clearance of parasites and reduced the infection index of macrophages. Conclusion Downregulating autophagy could be a promising approach for Leishmania therapy, by which the leishmanicidal effect of TQ and GLU will be enhanced.
Collapse
Affiliation(s)
| | - Ali Moshaverinia
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Gholamreza Razmi
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
21
|
Nawattanapaibool N, Ruang-areerate T, Piyaraj P, Leelayoova S, Mungthin M, Siripattanapipong S. Development of nucleic acid lateral flow immunoassay for duplex detection of Leishmania martiniquensis and Leishmania orientalis in asymptomatic patients with HIV. PLoS One 2024; 19:e0307601. [PMID: 39186742 PMCID: PMC11346928 DOI: 10.1371/journal.pone.0307601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/09/2024] [Indexed: 08/28/2024] Open
Abstract
Leishmaniasis, a neglected tropical disease caused by parasitic protozoa of the Leishmania genus, remains a global health concern with significant morbidity and mortality. In Thailand, the rising incidence of autochthonous leishmaniasis cases involving Leishmania (Mundinia) martiniquensis and novel Leishmania (Mundinia) orientalis underscores the critical need for accurate diagnosis and effective control strategies. This study presents a sensitive and specific nucleic acid lateral flow immunoassay (NALFIA) that integrates a duplex PCR assay with a lateral flow device (LFD) strip format. Targeting the internal transcribed spacer 1 (ITS1) region, known for its unique combination of conserved and variable sequences, this assay employs primers labeled with biotin, digoxigenin, and fluorescein isothiocyanate (FITC) markers, enabling precise species identification and differentiation of these two Leishmania species. Remarkably, the assay achieves a sensitivity that surpasses agarose gel electrophoresis, detecting as few as 10-2 parasite/μL for L. martiniquensis and 10-4 parasite/μL for L. orientalis. Notably, the assay exhibited reliable specificity, revealing no cross-amplification with other major viscerotropic Leishmania species or reference organisms. Evaluation using 62 clinical samples further confirms the effectiveness of the PCR-LFD assay, with a sensitivity of 100% for L. martiniquensis and 83.3% for L. orientalis, and an excellent agreement (κ value = 0.948) with nested PCR. This integrated assay represents a promising advancement in diagnostic tools, offering rapid and accurate results that can significantly contribute to effective disease management and control. Given the increasing relevance of these Leishmania species in current public health scenarios, this assay serves as a valuable tool for both diagnostic and research applications.
Collapse
Affiliation(s)
| | - Toon Ruang-areerate
- Department of Parasitology, Phramongkutklao College of Medicine, Bangkok, Thailand
| | - Phunlerd Piyaraj
- Department of Parasitology, Phramongkutklao College of Medicine, Bangkok, Thailand
| | - Saovanee Leelayoova
- Department of Parasitology, Phramongkutklao College of Medicine, Bangkok, Thailand
| | - Mathirut Mungthin
- Department of Parasitology, Phramongkutklao College of Medicine, Bangkok, Thailand
| | | |
Collapse
|
22
|
Andrés-Rodríguez J, González-Montero MC, García-Fernández N, Calvo-Álvarez E, Pérez-Pertejo MY, Reguera-Torres RM, Balaña-Fouce R, García-Estrada C. Free Radical Production Induced by Nitroimidazole Compounds Lead to Cell Death in Leishmania infantum Amastigotes. Molecules 2024; 29:4041. [PMID: 39274889 PMCID: PMC11396368 DOI: 10.3390/molecules29174041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
Leishmania infantum is the vector-borne trypanosomatid parasite causing visceral leishmaniasis in the Mediterranean basin. This neglected tropical disease is treated with a limited number of obsolete drugs that are not exempt from adverse effects and whose overuse has promoted the emergence of resistant pathogens. In the search for novel antitrypanosomatid molecules that help overcome these drawbacks, drug repurposing has emerged as a good strategy. Nitroaromatic compounds have been found in drug discovery campaigns as promising antileishmanial molecules. Fexinidazole (recently introduced for the treatment of stages 1 and 2 of African trypanosomiasis), and pretomanid, which share the nitroimidazole nitroaromatic structure, have provided antileishmanial activity in different studies. In this work, we have tested the in vitro efficacy of these two nitroimidazoles to validate our 384-well high-throughput screening (HTS) platform consisting of L. infantum parasites emitting the near-infrared fluorescent protein (iRFP) as a biomarker of cell viability. These molecules showed good efficacy in both axenic and intramacrophage amastigotes and were poorly cytotoxic in RAW 264.7 and HepG2 cultures. Fexinidazole and pretomanid induced the production of ROS in axenic amastigotes but were not able to inhibit trypanothione reductase (TryR), thus suggesting that these compounds may target thiol metabolism through a different mechanism of action.
Collapse
Affiliation(s)
- Julia Andrés-Rodríguez
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - María-Cristina González-Montero
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Nerea García-Fernández
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Estefanía Calvo-Álvarez
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | - María-Yolanda Pérez-Pertejo
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
- Instituto de Biomedicina (IBIOMED), Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Rosa-María Reguera-Torres
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
- Instituto de Biomedicina (IBIOMED), Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Rafael Balaña-Fouce
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
- Instituto de Biomedicina (IBIOMED), Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Carlos García-Estrada
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
- Instituto de Biomedicina (IBIOMED), Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| |
Collapse
|
23
|
Alpizar-Sosa E, Zimbres FM, Mantilla BS, Dickie EA, Wei W, Burle-Caldas GA, Filipe LNS, Van Bocxlaer K, Price HP, Ibarra-Meneses AV, Beaudry F, Fernandez-Prada C, Whitfield PD, Barrett MP, Denny PW. Evaluation of the Leishmania Inositol Phosphorylceramide Synthase as a Drug Target Using a Chemical and Genetic Approach. ACS Infect Dis 2024; 10:2913-2928. [PMID: 39023360 PMCID: PMC11320567 DOI: 10.1021/acsinfecdis.4c00284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024]
Abstract
The lack of effective vaccines and the development of resistance to the current treatments highlight the urgent need for new anti-leishmanials. Sphingolipid metabolism has been proposed as a promising source of Leishmania-specific targets as these lipids are key structural components of the eukaryotic plasma membrane and are involved in distinct cellular events. Inositol phosphorylceramide (IPC) is the primary sphingolipid in the Leishmania species and is the product of a reaction mediated by IPC synthase (IPCS). The antihistamine clemastine fumarate has been identified as an inhibitor of IPCS in L. major and a potent anti-leishmanial in vivo. Here we sought to further examine the target of this compound in the more tractable species L. mexicana, using an approach combining genomic, proteomic, metabolomic and lipidomic technologies, with molecular and biochemical studies. While the data demonstrated that the response to clemastine fumarate was largely conserved, unexpected disturbances beyond sphingolipid metabolism were identified. Furthermore, while deletion of the gene encoding LmxIPCS had little impact in vitro, it did influence clemastine fumarate efficacy and, importantly, in vivo pathogenicity. Together, these data demonstrate that clemastine does inhibit LmxIPCS and cause associated metabolic disturbances, but its primary target may lie elsewhere.
Collapse
Affiliation(s)
| | - Flavia M. Zimbres
- Department
of Biosciences, University of Durham, South Road, Durham, DH1 3LE, U.K.
| | - Brian S. Mantilla
- Department
of Biosciences, University of Durham, South Road, Durham, DH1 3LE, U.K.
| | - Emily A. Dickie
- School
of Infection and Immunity, College of Medical, Veterinary and Life
Sciences, University of Glasgow, Glasgow G12 8TA, U.K.
| | - Wenbin Wei
- Department
of Biosciences, University of Durham, South Road, Durham, DH1 3LE, U.K.
| | - Gabriela A. Burle-Caldas
- Department
of Biosciences, University of Durham, South Road, Durham, DH1 3LE, U.K.
- Departamento
de Bioquímica e Imunologia, Universidade
Federal de Minas Gerais, Caixa Postal 486 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Laura N. S. Filipe
- Department
of Biosciences, University of Durham, South Road, Durham, DH1 3LE, U.K.
| | - Katrien Van Bocxlaer
- York
Biomedical Research Institute, Hull York Medical School, University of York, York YO10 5NG, U.K.
| | - Helen P. Price
- School
of Life Sciences, Keele University, Staffordshire, ST5 5BG, U.K.
| | - Ana V. Ibarra-Meneses
- Département
de Pathologie et Microbiologie, Faculté de Médecine
Vétérinaire, Université
de Montréal, Saint-Hyacinthe, Quebec J2S 2M2, Canada
| | - Francis Beaudry
- Département
de Biomédecine, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec J2S 2M2, Canada
| | - Christopher Fernandez-Prada
- Département
de Pathologie et Microbiologie, Faculté de Médecine
Vétérinaire, Université
de Montréal, Saint-Hyacinthe, Quebec J2S 2M2, Canada
| | - Philip D. Whitfield
- School
of Infection and Immunity, College of Medical, Veterinary and Life
Sciences, University of Glasgow, Glasgow G12 8TA, U.K.
| | - Michael P. Barrett
- School
of Infection and Immunity, College of Medical, Veterinary and Life
Sciences, University of Glasgow, Glasgow G12 8TA, U.K.
| | - Paul W. Denny
- Department
of Biosciences, University of Durham, South Road, Durham, DH1 3LE, U.K.
| |
Collapse
|
24
|
Albuquerque LWN, Ferreira SCA, Nunes ICM, Santos HCN, Santos MS, Varjão MTS, Silva AEDA, Leite AB, Duarte AWF, Alexandre-Moreira MS, Queiroz ACDE. In vitro evaluation against Leishmania amazonensis and Leishmania chagasi of medicinal plant species of interest to the Unified Health System. AN ACAD BRAS CIENC 2024; 96:e20230888. [PMID: 39046021 DOI: 10.1590/0001-3764202420230888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/30/2023] [Indexed: 07/25/2024] Open
Abstract
Leishmaniasis is a disease of public health relevance that demands new therapeutic alternatives due to the toxicity of conventional treatments. In this study, 27 plants of interest to the Unified Health System (SUS) were evaluated for cytotoxicity in macrophages, leishmanicidal activity and production of nitric oxide (NO). None of the species demonstrated cytotoxicity to macrophages (CC50 >100 μg/mL). Extracts from Chenopodium ambrosioides, Equisetum arvense, Maytenus ilicifolia showed greater efficacy in inducing the death of Leishmania amazonensis amastigotes with IC50 of 68.4, 82.3, 75.7 μg/mL, respectively. The species Cynara scolymus, Punica granatum and Passiflora alata were the most effective in inducing an increase in the indirect concentration of NO (41.31, 29.30 and 28.86 µM, respectively) in cultures of macrophages infected with L. amazonensis. Furthermore, Punica granatum was also the most effective species in inducing an increase in NO in macrophages infected by Leishmania chagasi (19.90 µM). The results obtained so far support the continuation of studies, with the possibility of developing safer and more effective treatments for leishmaniasis, using natural products. The identification of plants that stimulate the production of NO in macrophages infected by Leishmania opens doors for more detailed investigations of the mechanism of action of these natural products.
Collapse
Affiliation(s)
- Lilyana Waleska N Albuquerque
- Universidade Federal de Alagoas, Instituto de Ciências Biológicas e da Saúde, Laboratório de Farmacologia e Imunologia, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-900 Maceió, AL, Brazil
| | - Shakira C A Ferreira
- Universidade Federal de Alagoas, Instituto de Ciências Biológicas e da Saúde, Laboratório de Farmacologia e Imunologia, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-900 Maceió, AL, Brazil
| | - Izabelly Carollynny M Nunes
- Universidade Federal de Alagoas, Instituto de Ciências Biológicas e da Saúde, Laboratório de Farmacologia e Imunologia, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-900 Maceió, AL, Brazil
| | - Hilda Caroline N Santos
- Universidade Federal de Alagoas, Instituto de Ciências Biológicas e da Saúde, Laboratório de Farmacologia e Imunologia, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-900 Maceió, AL, Brazil
| | - Mariana S Santos
- Universidade Federal de Alagoas, Instituto de Ciências Biológicas e da Saúde, Laboratório de Farmacologia e Imunologia, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-900 Maceió, AL, Brazil
| | - Márcio Thomaz S Varjão
- Universidade Federal de Alagoas, Instituto de Ciências Biológicas e da Saúde, Laboratório de Farmacologia e Imunologia, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-900 Maceió, AL, Brazil
| | - Amanda Evelyn DA Silva
- Universidade Federal de Alagoas, Instituto de Ciências Biológicas e da Saúde, Laboratório de Farmacologia e Imunologia, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-900 Maceió, AL, Brazil
| | - Anderson B Leite
- Universidade Federal de Alagoas, Instituto de Ciências Biológicas e da Saúde, Laboratório de Farmacologia e Imunologia, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-900 Maceió, AL, Brazil
| | - Alysson W F Duarte
- Universidade Federal de Alagoas, Centro de Ciências Médicas e de Enfermagem, Laboratório de Microbiologia, Imunologia e Parasitologia, Campus Arapiraca, Av. Manoel Severino Barbosa, s/n, Bom Sucesso, 57309-005 Arapiraca, AL, Brazil
| | - Magna Suzana Alexandre-Moreira
- Universidade Federal de Alagoas, Instituto de Ciências Biológicas e da Saúde, Laboratório de Farmacologia e Imunologia, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-900 Maceió, AL, Brazil
| | - Aline C DE Queiroz
- Universidade Federal de Alagoas, Instituto de Ciências Biológicas e da Saúde, Laboratório de Farmacologia e Imunologia, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-900 Maceió, AL, Brazil
- Universidade Federal de Alagoas, Centro de Ciências Médicas e de Enfermagem, Laboratório de Microbiologia, Imunologia e Parasitologia, Campus Arapiraca, Av. Manoel Severino Barbosa, s/n, Bom Sucesso, 57309-005 Arapiraca, AL, Brazil
| |
Collapse
|
25
|
Eom GD, Chu KB, Yoon KW, Mao J, Kim SS, Quan FS. Immunizing Mice with Influenza Virus-like Particles Expressing the Leishmania amazonensis Promastigote Surface Antigen Alleviates Inflammation in Footpad. Vaccines (Basel) 2024; 12:793. [PMID: 39066431 PMCID: PMC11281337 DOI: 10.3390/vaccines12070793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Cutaneous leishmaniasis (CL) is a tropical disease endemic in many parts of the world. Characteristic clinical manifestations of CL include the formation of ulcerative skin lesions that can inflict life-long disability if left untreated. Although drugs are available, they are unaffordable and out of reach for individuals who need them the most. Developing a highly cost-efficient CL vaccine could address this problem but such a vaccine remains unavailable. Here, we developed a chimeric influenza virus-like particle expressing the Leishmania amazonensis promastigote surface antigen (LaPSA-VLP). LaPSA-VLPs were self-assembled in Spodoptera frugiperda insect cell lines using the baculovirus expression system. After characterizing the vaccines and confirming successful VLP assembly, BALB/c mice were immunized with these vaccines for efficacy assessment. Sera acquired from mice upon subcutaneous immunization with the LaPSA-VLP specifically interacted with the L. amazonensis soluble total antigens. LaPSA-VLP-immunized mice elicited significantly greater quantities of parasite-specific IgG from the spleens, popliteal lymph nodes, and footpads than unimmunized mice. LaPSA-VLP immunization also enhanced the proliferation of B cell populations in the spleens of mice and significantly lessened the CL symptoms, notably the footpad swelling and IFN-γ-mediated inflammatory response. Overall, immunizing mice with the LaPSA-VLPs prevented mice from developing severe CL symptoms, signifying their developmental potential.
Collapse
Affiliation(s)
- Gi-Deok Eom
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.-D.E.); (K.-W.Y.); (J.M.)
| | - Ki Back Chu
- Department of Parasitology, Inje University College of Medicine, Busan 47392, Republic of Korea;
- Department of Infectious Disease and Malaria, Paik Institute of Clinical Research, Inje University, Busan 47392, Republic of Korea
| | - Keon-Woong Yoon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.-D.E.); (K.-W.Y.); (J.M.)
| | - Jie Mao
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.-D.E.); (K.-W.Y.); (J.M.)
| | - Sung Soo Kim
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute (CRI), Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Fu-Shi Quan
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute (CRI), Kyung Hee University, Seoul 02447, Republic of Korea;
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
26
|
Zhou Q, Zheng Z, Yin S, Duan D, Liao X, Xiao Y, He J, Zhong J, Zeng Z, Su L, Luo L, Dong C, Chen J, Li J. Nicotinamide mitigates visceral leishmaniasis by regulating inflammatory response and enhancing lipid metabolism. Parasit Vectors 2024; 17:288. [PMID: 38971783 PMCID: PMC11227177 DOI: 10.1186/s13071-024-06370-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/21/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Currently, treatment regimens for visceral leishmaniasis (VL) are limited because of the presence of numerous adverse effects. Nicotinamide, a readily available and cost-effective vitamin, has been widely acknowledged for its safety profile. Several studies have demonstrated the anti-leishmanial effects of nicotinamide in vitro. However, the potential role of nicotinamide in Leishmania infection in vivo remains elusive. METHODS In this study, we assessed the efficacy of nicotinamide as a therapeutic intervention for VL caused by Leishmania infantum in an experimental mouse model and investigated its underlying molecular mechanisms. The potential molecular mechanism was explored through cytokine analysis, examination of spleen lymphocyte subsets, liver RNA-seq analysis, and pathway validation. RESULTS Compared to the infection group, the group treated with nicotinamide demonstrated significant amelioration of hepatosplenomegaly and recovery from liver pathological damage. The NAM group exhibited parasite reduction rates of 79.7% in the liver and 86.7% in the spleen, respectively. Nicotinamide treatment significantly reduced the activation of excessive immune response in infected mice, thereby mitigating hepatosplenomegaly and injury. Furthermore, nicotinamide treatment enhanced fatty acid β-oxidation by upregulating key enzymes to maintain lipid homeostasis. CONCLUSIONS Our findings provide initial evidence supporting the safety and therapeutic efficacy of nicotinamide in the treatment of Leishmania infection in BALB/c mice, suggesting its potential as a viable drug for VL.
Collapse
Affiliation(s)
- Qi Zhou
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Zhiwan Zheng
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
- Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, China
| | - Shuangshuang Yin
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Dengbinpei Duan
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Xuechun Liao
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Yuying Xiao
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Jinlei He
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
- Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, China
| | - Junchao Zhong
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Zheng Zeng
- Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, China
- Chong Qing Animal Disease Prevention and Control Center, Chongqing, China
| | - Liang Su
- Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, China
- Chong Qing Animal Disease Prevention and Control Center, Chongqing, China
| | - Lu Luo
- Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, China
- Chong Qing Animal Disease Prevention and Control Center, Chongqing, China
| | - Chunxia Dong
- Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, China
- Chong Qing Animal Disease Prevention and Control Center, Chongqing, China
| | - Jianping Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China.
- Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, China.
| | - Jiao Li
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China.
- Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, China.
| |
Collapse
|
27
|
Tulloch LB, Tinti M, Wall RJ, Weidt SK, Corpas- Lopez V, Dey G, Smith TK, Fairlamb AH, Barrett MP, Wyllie S. Sterol 14-alpha demethylase (CYP51) activity in Leishmania donovani is likely dependent upon cytochrome P450 reductase 1. PLoS Pathog 2024; 20:e1012382. [PMID: 38991025 PMCID: PMC11265716 DOI: 10.1371/journal.ppat.1012382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/23/2024] [Accepted: 06/30/2024] [Indexed: 07/13/2024] Open
Abstract
Liposomal amphotericin B is an important frontline drug for the treatment of visceral leishmaniasis, a neglected disease of poverty. The mechanism of action of amphotericin B (AmB) is thought to involve interaction with ergosterol and other ergostane sterols, resulting in disruption of the integrity and key functions of the plasma membrane. Emergence of clinically refractory isolates of Leishmania donovani and L. infantum is an ongoing issue and knowledge of potential resistance mechanisms can help to alleviate this problem. Here we report the characterisation of four independently selected L. donovani clones that are resistant to AmB. Whole genome sequencing revealed that in three of the moderately resistant clones, resistance was due solely to the deletion of a gene encoding C24-sterol methyltransferase (SMT1). The fourth, hyper-resistant resistant clone (>60-fold) was found to have a 24 bp deletion in both alleles of a gene encoding a putative cytochrome P450 reductase (P450R1). Metabolic profiling indicated these parasites were virtually devoid of ergosterol (0.2% versus 18% of total sterols in wild-type) and had a marked accumulation of 14-methylfecosterol (75% versus 0.1% of total sterols in wild-type) and other 14-alpha methylcholestanes. These are substrates for sterol 14-alpha demethylase (CYP51) suggesting that this enzyme may be a bona fide P450R specifically involved in electron transfer from NADPH to CYP51 during catalysis. Deletion of P450R1 in wild-type cells phenocopied the metabolic changes observed in our AmB hyper-resistant clone as well as in CYP51 nulls. Likewise, addition of a wild type P450R1 gene restored sterol profiles to wild type. Our studies indicate that P450R1 is essential for L. donovani amastigote viability, thus loss of this gene is unlikely to be a driver of clinical resistance. Nevertheless, investigating the mechanisms underpinning AmB resistance in these cells provided insights that refine our understanding of the L. donovani sterol biosynthetic pathway.
Collapse
Affiliation(s)
- Lindsay B. Tulloch
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Michele Tinti
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Richard J. Wall
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Stefan K. Weidt
- Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Bearsden, Glasgow, United Kingdom
| | - Victoriano Corpas- Lopez
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Gourav Dey
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Terry K. Smith
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, United Kingdom
| | - Alan H. Fairlamb
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Michael P. Barrett
- Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Bearsden, Glasgow, United Kingdom
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Susan Wyllie
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| |
Collapse
|
28
|
Barrie U, Floyd K, Datta A, Wetzel DM. MAPK/ERK activation in macrophages promotes Leishmania internalization and pathogenesis. Microbes Infect 2024; 26:105353. [PMID: 38763478 DOI: 10.1016/j.micinf.2024.105353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/21/2024]
Abstract
The obligate intracellular parasite Leishmania binds several receptors to trigger uptake by phagocytic cells, ultimately resulting in visceral or cutaneous leishmaniasis. A series of signaling pathways in host cells, which are critical for establishment and persistence of infection, are activated during Leishmania internalization. Thus, preventing Leishmania uptake by phagocytes could be a novel therapeutic strategy for leishmaniasis. However, the host cellular machinery mediating promastigote and amastigote uptake is not well understood. Here, using small molecule inhibitors of Mitogen-activated protein/Extracellular signal regulated kinases (MAPK/ERK), we demonstrate that ERK1/2 mediates Leishmania amazonensis uptake and (to a lesser extent) phagocytosis of beads by macrophages. We find that inhibiting host MEK1/2 or ERK1/2 leads to inefficient amastigote uptake. Moreover, using inhibitors and primary macrophages lacking spleen tyrosine kinase (SYK) or Abl family kinases, we show that SYK and Abl family kinases mediate Raf, MEK, and ERK1/2 activity and are necessary for uptake. Finally, we demonstrate that trametinib, a MEK1/2 inhibitor used to treat cancer, reduces disease severity and parasite burden in Leishmania-infected mice, even if it is started after lesions develop. Our results show that maximal Leishmania infection requires MAPK/ERK and highlight potential for MAPK/ERK-mediated signaling pathways to be novel therapeutic targets for leishmaniasis.
Collapse
Affiliation(s)
- Umaru Barrie
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, United States; Medical Scientist Training Program, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, United States
| | - Katherine Floyd
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, United States
| | - Arani Datta
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, United States
| | - Dawn M Wetzel
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, United States; Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, United States.
| |
Collapse
|
29
|
Sahebi K, Shahsavani F, Mehravar F, Hatam G, Alimi R, Radfar A, Bahreini MS, Pouryousef A, Teimouri A. In vitro and in vivo anti-parasitic activity of curcumin nanoemulsion on Leishmania major (MRHO/IR/75/ER). BMC Complement Med Ther 2024; 24:238. [PMID: 38890586 PMCID: PMC11184741 DOI: 10.1186/s12906-024-04522-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
The present study aimed to assess the anti-leishmanial effects of curcumin nanoemulsion (CUR-NE) against Leishmania major (MRHO/IR/75/ER) in both in vitro and in vivo experiments. CUR-NE was successfully prepared via the spontaneous emulsification method. The in vitro effect of various concentrations of CUR-NE against L. major promastigotes was assessed using the flow cytometry method. In vivo experiments were carried out in BALB/c mice inoculated subcutaneously with 2 × 106 L. major promastigotes. Mice were treated with topical CUR-NE (2.5 mg/ml), intra-lesion injection of CUR-NE (2.5 mg/ml), topical CUR suspension (CUR-S, 2.5 mg/ml), topical NE without CUR (NE-no CUR), amphotericin B as the positive control group, and infected untreated mice as the negative control group. In vitro exposure of promastigotes to CUR-NE showed a dose-dependent anti-leishmanial effect, with a 67.52 ± 0.35% mortality rate at a concentration of 1250 µg/ml and an IC50 of 643.56 µg/ml. In vivo experiments showed that topical CUR-NE and CUR-S significantly decreased the mean lesion size in mice after four weeks from 4.73 ± 1.28 to 2.78 ± 1.28 mm and 4.45 ± 0.88 to 3.23 ± 0.59 mm, respectively (p = 0.001). Furthermore, CUR-NE significantly decreased the parasite load in treated mice compared with the negative control group (p = 0.001). Results from the current study demonstrated the promising activity of CUR-NE against L. major in both in vitro and in vivo experiments. Moreover, CUR-NE was more efficient than CUR-S in healing and reducing parasite burden in mouse models. Future studies should aim to identify molecular mechanisms as well as the pharmacologic and pharmacokinetic aspects of CUR-NE.
Collapse
Affiliation(s)
- Keivan Sahebi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Shahsavani
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Mehravar
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamreza Hatam
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rasoul Alimi
- Department of Epidemiology and Biostatistics, School of Health, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Amirhossein Radfar
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Saleh Bahreini
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Pouryousef
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aref Teimouri
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
30
|
Valashani HT, Ahmadpour M, Naddaf SR, Mohebali M, Hajjaran H, Latifi A, Salimi M, Farahmand M, Naeimi S, Raissi V, Kazemirad E. Insights into the trypanothione system in antimony-resistant and sensitive Leishmania tropica clinical isolates. Acta Trop 2024; 254:107190. [PMID: 38508372 DOI: 10.1016/j.actatropica.2024.107190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/07/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
Pentavalent antimonials are the mainstay treatment against different clinical forms of leishmaniasis. The emergence of resistant isolates in endemic areas has led to treatment failure. Unraveling the underlying resistance mechanism would assist in improving the treatment strategies against resistant isolates. This study aimed to investigate the RNA expression level of glutathione synthetase (GS), Spermidine synthetase (SpS), trypanothione synthetase (TryS) genes involved in trypanothione synthesis, and thiol-dependent reductase (TDR) implicated in drug reduction, in antimony-sensitive and -resistant Leishmania tropica isolates. We investigated 11 antimony-resistant and 11 antimony-sensitive L. tropica clinical isolates from ACL patients. Drug sensitivity of amastigotes was determined in mouse macrophage cell line J774A.1. The RNA expression level in the promastigote forms was analyzed by quantitative real-time PCR. The results revealed a significant increase in the average expression of GS, SpS, and TrpS genes by 2.19, 1.56, and 2.33-fold in resistant isolates compared to sensitive ones. The average expression of TDR was 1.24-fold higher in resistant isolates, which was insignificant. The highest correlation coefficient between inhibitory concentration (IC50) values and gene expression belonged to the TryS, GS, SpS, and TDR genes. Moreover, the intracellular thiol content was increased 2.17-fold in resistant isolates compared to sensitive ones and positively correlated with IC50 values. Our findings suggest that overexpression of trypanothione biosynthesis genes and increased thiol content might play a key role in the antimony resistance of L. tropica clinical isolates. In addition, the diversity of gene expression in the trypanothione system and thiol content among L. tropica clinical isolates highlighted the phenotypic heterogeneity of antimony resistance among the parasite population.
Collapse
Affiliation(s)
- Hakimeh Torkian Valashani
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran; Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Ahmadpour
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran; Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | - Mehdi Mohebali
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Homa Hajjaran
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Latifi
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Department of Clinical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Mona Salimi
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Mahin Farahmand
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | - Sabah Naeimi
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | - Vahid Raissi
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Kazemirad
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
31
|
Worku KM, Asfaw BG, Mamo DN, Haile Y, Tesfa H, Aemero M. Medicinal plants with promising antileishmanial activity in Ethiopia: A systematic review and meta-analysis. Medicine (Baltimore) 2024; 103:e38480. [PMID: 39259058 PMCID: PMC11142835 DOI: 10.1097/md.0000000000038480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 09/12/2024] Open
Abstract
INTRODUCTION Toxicity and resistance to chemotherapy used to treat leishmaniasis are increasing. Research on natural plant compounds has revealed their antileishmanial effects on certain Leishmania organisms. This review aimed to estimate the pooled IC50 values of medicinal plants with promising antileishmanial activity in Ethiopia. METHODS A systematic literature search was conducted using Science Direct, PubMed, Cochrane Library, and Google Scholar to locate potential studies. Studies published in peer-reviewed journals and gray literature in university repositories before April 1, 2022, which included a full-length study reporting the half-maximal inhibitory concentration (IC50) of Ethiopian medicinal plants that were written in English were included. Conference proceedings, review articles, letters to the editor, and correspondence were excluded. The quality of the included studies was assessed using the GIVIMP critical appraisal tools. Heterogeneity between studies was verified using Cochrane Q test statistics and I2 test statistics, and the effects were checked using Egger statistical test at a level of significance. A random-effects model was used to estimate the pooled IC50 of the medicinal plants. RESULTS Six articles that were conducted in Ethiopia that fulfilled the inclusion criteria, with a total of 62 in vitro experiments, were reviewed. The aggregated mean IC50 for medicinal plants in Ethiopia was 16.80 (95% CI: 12.44, 21.16) and 13.81 (95% CI: 13.12, 14.50) µg/mL for antipromastigote and antiamastigote activity, respectively. Aqueous was the significant preparation with IC50 of 0.53 (0.34, 0.73) µg/mL against promastigote and 0.98 (0.20, 1.76) µg/mL against the amastigote stage. DISCUSSION This review indicated that the pooled mean of IC50 for Ethiopian medicinal plants against promastigotes and amastigotes was relatively low and showed better efficacy. This strongly suggests the need to focus on antipromastigote and antiamastigote medicinal plants in Ethiopia for the development of antileishmanial drugs. It is necessary to identify their active components, and their potential toxic effects can lead to the production of well-tolerated and safe drugs for leishmaniasis. The high heterogeneity is the limitation of this study. REGISTRATION The review has been registered at Prospero with identification number CRD42022343543.
Collapse
Affiliation(s)
- Kassahun Misgana Worku
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Arba Minch University, Arba Minch, Ethiopia
| | - Birhanu Genanew Asfaw
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Arba Minch University, Arba Minch, Ethiopia
| | - Daniel Niguse Mamo
- Department of Health Informatics, School of Public Health, College of Medicine and Health Science, Arba Minch University, Arba Minch, Ethiopia
| | - Yosef Haile
- Department of Public Health, School of Public Health, College of Medicine and Health Science, Arba Minch University, Arba Minch, Ethiopia
| | - Habtie Tesfa
- Department of Medical Parasitology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Mulugeta Aemero
- Department of Medical Parasitology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
32
|
Abbasi Shiran J, Kaboudin B, Panahi N, Razzaghi-Asl N. Privileged small molecules against neglected tropical diseases: A perspective from structure activity relationships. Eur J Med Chem 2024; 271:116396. [PMID: 38643671 DOI: 10.1016/j.ejmech.2024.116396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/02/2024] [Accepted: 04/06/2024] [Indexed: 04/23/2024]
Abstract
Neglected tropical diseases (NTDs) comprise diverse infections with more incidence in tropical/sub-tropical areas. In spite of preventive and therapeutic achievements, NTDs are yet serious threats to the public health. Epidemiological reports of world health organization (WHO) indicate that more than 1.5 billion people are afflicted with at least one NTD type. Among NTDs, leishmaniasis, chagas disease (CD) and human African trypanosomiasis (HAT) result in substantial morbidity and death, particularly within impoverished countries. The statistical facts call for robust efforts to manage the NTDs. Currently, most of the anti-NTD drugs are engaged with drug resistance, lack of efficient vaccines, limited spectrum of pharmacological effect and adverse reactions. To circumvent the issue, numerous scientific efforts have been directed to the synthesis and pharmacological development of chemical compounds as anti-infectious agents. A survey of the anti-NTD agents reveals that the majority of them possess privileged nitrogen, sulfur and oxygen-based heterocyclic structures. In this review, recent achievements in anti-infective small molecules against parasitic NTDs are described, particularly from the SAR (Structure activity relationship) perspective. We also explore current advocating strategies to extend the scope of anti-NTD agents.
Collapse
Affiliation(s)
- J Abbasi Shiran
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, PO Code: 5618953141, Iran
| | - B Kaboudin
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - N Panahi
- Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - N Razzaghi-Asl
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, PO Code: 5618953141, Iran; Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
33
|
Worku KM, Araya D, Tesfa H, Birru EM, Hailu A, Aemero M. In vitro antileishmanial activities of hydro-methanolic crude extracts and solvent fractions of Clematis simensis fresen leaf, and Euphorbia abyssinica latex. Medicine (Baltimore) 2024; 103:e38039. [PMID: 38701291 PMCID: PMC11062719 DOI: 10.1097/md.0000000000038039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/05/2024] [Indexed: 05/05/2024] Open
Abstract
As a result of increasing drug resistance, crossover resistance development, prolonged therapy, and the absence of different agents with innovative methods for implementation, the efficacy of recent antileishmanial medications is severely declining. So, it is vital to look for other medications from botanical remedies that have antileishmanial activity. The latex of Euphorbia abyssinica (E abyssinica) and the leaves of Clematis simensis fresen (C simensis) were macerated in methanol (80%). In vitro antileishmanial activity of the preparation was tried on promastigotes of Leishmania aethiopica (L aethiopica) and Leishmania donovani (L donovani) using resazurin assay, and fluorescence intensity was measured. One percent of dimethyl sulfoxide (DMSO) and media as negative control and amphotericin B as positive control were used. Additionally, hemolytic & phytochemical tests of the preparation were done. The mean and standard errors of each extract were evaluated and interpreted for statistical significance using one-way analysis of variance. From sigmoidal dose-response curves of % inhibition, half maximal inhibitory concentration (IC50) values were determined by GraphPad Prism and Microsoft Excel; outcomes were presented as mean ± standard error of mean of triplicate trials. P < .05 was statistical significance. The phytochemical screening of C simensis and E abyssinica confirmed the existence of steroids, phenols, tannins, saponins, alkaloids, terpenoids, flavonoids and glycosides. C simensis possesses antileishmanial activity with IC50 outcomes of 46.12 ± 0.03 and 8.18 ± 0.10 µg/mL on the promastigotes of L aethiopica and L donovani, respectively. However, E abyssinica showed stronger activity with IC50 outcomes of 16.07 ± 0.05 µg/mL and 4.82 ± 0.07 µg/mL on L aethiopica and L donovani, respectively. C simensis and E abyssinica have a less hemolytic effect on human red blood cells at low concentrations. The outcomes from this investigation demonstrated that the preparation of C simensis and E abyssinica indicated significant antileishmanial activity. Therefore, further in vivo assessment of antileishmanial, cytotoxicity activity and quantitative identification of secondary metabolites are highly recommended.
Collapse
Affiliation(s)
- Kassahun Misgana Worku
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Arba Minch University, Arba Minch, Ethiopia
| | - Dawit Araya
- Department of Microbiology, Immunology and Parasitology, Faculty of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Habtie Tesfa
- Department of Medical Parasitology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Eshetie Melese Birru
- Department of Pharmacology, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Asrat Hailu
- Department of Microbiology, Immunology and Parasitology, Faculty of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Mulugeta Aemero
- Department of Medical Parasitology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
34
|
Kumar K, Basak R, Rai A, Mukhopadhyay A. GRASP negatively regulates the secretion of the virulence factor gp63 in Leishmania. Mol Microbiol 2024; 121:1063-1078. [PMID: 38558112 DOI: 10.1111/mmi.15255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024]
Abstract
Metalloprotease-gp63 is a virulence factor secreted by Leishmania. However, secretory pathway in Leishmania is not well defined. Here, we cloned and expressed the GRASP homolog from Leishmania. We found that Leishmania expresses one GRASP homolog of 58 kDa protein (LdGRASP) which localizes in LdRab1- and LPG2-positive Golgi compartment in Leishmania. LdGRASP was found to bind with COPII complex, LdARF1, LdRab1 and LdRab11 indicating its role in ER and Golgi transport in Leishmania. To determine the function of LdGRASP, we generated LdGRASP knockout parasites using CRISPR-Cas9. We found fragmentation of Golgi in Ld:GRASPKO parasites. Our results showed enhanced transport of non-GPI-anchored gp63 to the cell surface leading to higher secretion of this form of gp63 in Ld:GRASPKO parasites in comparison to Ld:WT cells. In contrast, we found that transport of GPI-anchored gp63 to the cell surface is blocked in Ld:GRASPKO parasites and thereby inhibits its secretion. The overexpression of dominant-negative mutant of LdRab1 or LdSar1 in Ld:GRASPKO parasites significantly blocked the secretion of non-GPI-anchored gp63. Interestingly, we found that survival of transgenic parasites overexpressing Ld:GRASP-GFP is significantly compromised in macrophages in comparison to Ld:WT and Ld:GRASPKO parasites. These results demonstrated that LdGRASP differentially regulates Ldgp63 secretory pathway in Leishmania.
Collapse
Affiliation(s)
- Kamal Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India
| | - Rituparna Basak
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India
| | - Aakansha Rai
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India
| | - Amitabha Mukhopadhyay
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India
| |
Collapse
|
35
|
Silva RA, Damasio DS, Coelho LD, de Morais-Teixeira E, Queiroz-Junior CM, Souza PE, Azevedo RB, Tedesco A, Ferreira LA, Oliveira MC, Aguiar MG. Combination of the Topical Photodynamic Therapy of Chloroaluminum Phthalocyanine Liposomes with Fexinidazole Oral Self-Emulsifying System as a New Strategy for Cutaneous Leishmaniasis Treatment. Pharmaceutics 2024; 16:509. [PMID: 38675171 PMCID: PMC11054953 DOI: 10.3390/pharmaceutics16040509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Cutaneous leishmaniasis (CL) is a neglected tropical disease. The treatment is restricted to drugs, such as meglumine antimoniate and amphotericin B, that exhibit toxic effects, high cost, long-term treatment, and limited efficacy. The development of new alternative therapies, including the identification of effective drugs for the topical and oral treatment of CL, is of great interest. In this sense, a combination of topical photodynamic therapy (PDT) with chloroaluminum phthalocyanine liposomes (Lip-ClAlPc) and the oral administration of a self-emulsifying drug delivery system containing fexinidazole (SEDDS-FEX) emerges as a new strategy. The aim of the present study was to prepare, characterize, and evaluate the efficacy of combined therapy with Lip-ClAlPc and SEDDS-FEX in the experimental treatment of Leishmania (Leishmania) major. Lip-ClAlPc and SEDDS-FEX were prepared, and the antileishmanial efficacy study was conducted with the following groups: 1. Lip-ClAlPc (0.05 mL); 2. SEDDS-FEX (50 mg/kg/day); 3. Lip-ClAlPc (0.05 mL)+SEDDS-FEX (50 mg/kg/day) combination; 4. FEX suspension (50 mg/kg/day); and 5. control (untreated). BALB/c mice received 10 sessions of topical Lip-ClAlPc on alternate days and 20 consecutive days of SEDDS-FEX or FEX oral suspension. Therapeutical efficacy was evaluated via the parasite burden (limiting-dilution assay), lesion size (mm), healing of the lesion, and histological analyses. Lip-ClAlPc and SEDDS-FEX presented physicochemical characteristics that are compatible with the administration routes used in the treatments. Lip-ClAlPc+SEDDS-FEX led to a significant reduction in the parasitic burden in the lesion and spleen when compared to the control group (p < 0.05) and the complete healing of the lesion in 43% of animals. The Lip-ClAlPc+SEDDS-FEX combination may be promising for the treatment of CL caused by L. major.
Collapse
Affiliation(s)
- Raphaela Ariany Silva
- Department of Pharmaceutical Products, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (R.A.S.); (D.S.D.); (L.D.C.); (L.A.F.)
| | - Danielle Soter Damasio
- Department of Pharmaceutical Products, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (R.A.S.); (D.S.D.); (L.D.C.); (L.A.F.)
| | - Larissa Dutra Coelho
- Department of Pharmaceutical Products, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (R.A.S.); (D.S.D.); (L.D.C.); (L.A.F.)
| | - Eliane de Morais-Teixeira
- Clinical Research and Public Policy Group on Infectious and Parasitic Diseases, Instituto René Rachou, Fundação Oswaldo Cruz—FIOCRUZ, Belo Horizonte 330190-002, Brazil;
| | - Celso M. Queiroz-Junior
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Paulo Eduardo Souza
- Laboratory of Software and Instrumentation in Applied Physics and Laboratory of Electron Paramagnetic Resonance, Institute of Physics, University of Brasília, Brasília 70910-900, Brazil;
| | - Ricardo Bentes Azevedo
- Nanobiotechnology Laboratory, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil;
| | - Antônio Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering—Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-900, Brazil;
| | - Lucas Antônio Ferreira
- Department of Pharmaceutical Products, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (R.A.S.); (D.S.D.); (L.D.C.); (L.A.F.)
| | - Mônica Cristina Oliveira
- Department of Pharmaceutical Products, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (R.A.S.); (D.S.D.); (L.D.C.); (L.A.F.)
| | - Marta Gontijo Aguiar
- Department of Pharmaceutical Products, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (R.A.S.); (D.S.D.); (L.D.C.); (L.A.F.)
| |
Collapse
|
36
|
Bharadava K, Upadhyay TK, Kaushal RS, Ahmad I, Alraey Y, Siddiqui S, Saeed M. Genomic Insight of Leishmania Parasite: In-Depth Review of Drug Resistance Mechanisms and Genetic Mutations. ACS OMEGA 2024; 9:12500-12514. [PMID: 38524425 PMCID: PMC10955595 DOI: 10.1021/acsomega.3c09400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 03/26/2024]
Abstract
Leishmaniasis, which is caused by a parasitic protozoan of the genus Leishmania, is still a major threat to global health, impacting millions of individuals worldwide in endemic areas. Chemotherapy has been the principal method for managing leishmaniasis; nevertheless, the evolution of drug resistance offers a significant obstacle to therapeutic success. Drug-resistant behavior in these parasites is a complex phenomenon including both innate and acquired mechanisms. Resistance is frequently related to changes in drug transportation, drug target alterations, and enhanced efflux of the drug from the pathogen. This review has revealed specific genetic mutations in Leishmania parasites that are associated with resistance to commonly used antileishmanial drugs such as pentavalent antimonials, miltefosine, amphotericin B, and paromomycin, resulting in changes in gene expression along with the functioning of various proteins involved in drug uptake, metabolism, and efflux. Understanding the genetic changes linked to drug resistance in Leishmania parasites is essential for creating approaches for tackling and avoiding the spread of drug-resistant variants. Based on which specific treatments focus on mutations and pathways could potentially improve treatment efficacy and help long-term leishmaniasis control. More study is needed to uncover the complete range of genetic changes generating medication resistance and to develop new therapies based on available information.
Collapse
Affiliation(s)
- Krupanshi Bharadava
- Biophysics
& Structural Biology, Research & Development Cell, Parul University, Vadodara, Gujarat 391760, India
| | - Tarun Kumar Upadhyay
- Department
of Life Sciences, Parul Institute of Applied Sciences & Research
and Development Cell, Parul University, Vadodara, Gujarat 391760, India
| | - Radhey Shyam Kaushal
- Biophysics
& Structural Biology, Research & Development Cell, Parul University, Vadodara, Gujarat 391760, India
- Department
of Life Sciences, Parul Institute of Applied Sciences & Research
and Development Cell, Parul University, Vadodara, Gujarat 391760, India
| | - Irfan Ahmad
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Yasser Alraey
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Samra Siddiqui
- Department
of Health Service Management, College of Public Health and Health
Informatics, University of Hail, Hail 55476, Saudi Arabia
| | - Mohd Saeed
- Department
of Biology, College of Science, University
of Hail, Hail 55476, Saudi Arabia
| |
Collapse
|
37
|
Delgado-Domínguez J, Mejía-Camacho L, Torres-Martínez L, Zamora-Chimal J, Cervantes-Sarabia R, Espinoza-Guillen A, Ruiz-Azuara L, Becker I. Casiopeina III-ia: A Copper Compound with Potential Use for Treatment of Infections Caused by Leishmania mexicana. Chemotherapy 2024; 69:168-176. [PMID: 38498996 PMCID: PMC11373577 DOI: 10.1159/000538360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 03/11/2024] [Indexed: 03/20/2024]
Abstract
INTRODUCTION Casiopeina III-ia (CasIII-ia) is a mixed chelate copper (II) compound capable of interacting with free radicals generated in the respiratory chain through redox reactions, producing toxic reactive oxygen species (ROS) that compromise the viability of cancer cells, bacteria and protozoa. Due to its remarkable effect on protozoa, this study evaluated the effect of CasIII-ia on Leishmania mexicana amastigotes and its potential use as a treatment for cutaneous leishmaniasis in the murine model. METHODS We analyzed the leishmanicidal effect of CasIII-ia on L. mexicana amastigotes and on their survival in bone marrow-derived macrophages. Furthermore, we evaluated the production of ROS in treated parasites and the efficacy of CasIII-ia in the treatment of mice infected with L. mexicana. RESULTS Our results show that CasIII-ia reduces parasite viability in a dose-dependent manner that correlates with increased ROS production. A decrease in the size of footpad lesions and in parasite loads was observed in infected mice treated with the intraperitoneal administration of CasIII-ia. CONCLUSIONS We propose CasIII-ia as a potential drug for the treatment of cutaneous leishmaniasis.
Collapse
Affiliation(s)
- José Delgado-Domínguez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Lizet Mejía-Camacho
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Lisset Torres-Martínez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jaime Zamora-Chimal
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rocely Cervantes-Sarabia
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Adrián Espinoza-Guillen
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Lena Ruiz-Azuara
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ingeborg Becker
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
38
|
Nawaz A, Priya B, Singh K, Ali V. Unveiling the role of serine o-acetyltransferase in drug resistance and oxidative stress tolerance in Leishmania donovani through the regulation of thiol-based redox metabolism. Free Radic Biol Med 2024; 213:371-393. [PMID: 38272324 DOI: 10.1016/j.freeradbiomed.2024.01.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/25/2023] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Understanding the unique metabolic pathway of L. donovani is crucial for comprehending its biology under oxidative stress conditions. The de novo cysteine biosynthetic pathway of L. donovani is absent in humans and its product, cysteine regulates the downstream components of trypanothione-based thiol metabolism, important for maintaining cellular redox homeostasis. The role of serine o-acetyl transferase (SAT), the first enzyme of this pathway remains unexplored. In order to investigate the role of SAT protein, we cloned SAT gene into pXG-GFP+ vector for episomal expression of SAT in Amphotericin B sensitive L. donovani promastigotes. The SAT overexpression was confirmed by SAT enzymatic assay, GFP fluorescence, immunoblotting and PCR. Our study unveiled an upregulated expression of both LdSAT and LdCS of cysteine biosynthetic pathway and other downstream thiol pathway proteins in LdSAT-OE promastigotes. Additionally, there was an increase in enzymatic activities of LdSAT and LdCS proteins in LdSAT-OE, which was found similar to the Amp B resistant parasites, indicating a potential role of SAT protein in modulating drug resistance. We observed that the overexpression of SAT in Amp B sensitive parasites increases tolerance to drug pressure and oxidative stress via trypanothione-dependent antioxidant mechanism. Moreover, the in vitro J774A.1 macrophage infectivity assessment showed that SAT overexpression augments parasite infectivity. In LdSAT-OE promastigotes, antioxidant enzyme activities like APx and SOD were upregulated, intracellular reactive oxygen species were reduced with a corresponding increase in thiol level, emphasizing SAT's role in stress tolerance and enhanced infectivity. Additionally, the ROS mediated upregulation in the expression of LdSAT, LdCS, LdTryS and LdcTXNPx proteins reveals an essential cross talk between SAT and proteins of thiol metabolism in combating oxidative stress and maintaining redox homeostasis. Taken together, our results provide the first insight into the role of SAT protein in parasite infectivity and survival under drug pressure and oxidative stress.
Collapse
Affiliation(s)
- Afreen Nawaz
- ICMR - Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar, 800007, India
| | - Bhawna Priya
- ICMR - Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar, 800007, India
| | - Kuljit Singh
- Infectious Diseases Division, CSIR - Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Vahab Ali
- ICMR - Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar, 800007, India.
| |
Collapse
|
39
|
Phan TN, Lee H, Baek KH, No JH. Identification of Novel Flavonoids and Ansa-Macrolides with Activities against Leishmania donovani through Natural Product Library Screening. Pathogens 2024; 13:213. [PMID: 38535556 PMCID: PMC10974828 DOI: 10.3390/pathogens13030213] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 02/11/2025] Open
Abstract
The protozoan parasite Leishmania donovani is the causative agent of visceral leishmaniasis (VL), a potentially fatal disease if left untreated. Given the limitations of current therapies, there is an urgent need for new, safe, and effective drugs. To discover novel antileishmanial compounds from previously unexplored chemical spaces, we conducted a high-throughput screening (HTS) of 2562 natural compounds, assessing their activity against L. donovani promastigotes and intracellular amastigotes. Utilizing the criteria of ≥70% parasite growth inhibition and ≥70% host cell (THP-1) viability, we selected 100 inhibitors for half-maximal inhibitory concentration (IC50) value determination. Twenty-six compounds showed activities in both forms of Leishmania with a selectivity index of over 3. Clustering analysis resulted in four chemical clusters with scaffolds of lycorine (cluster 1), 5-hydroxy-9,10-dihydro-4H,8H-pyrano[2,3-f]chromene-4,8-dione (cluster 2), and semi-synthetic derivatives of ansamycin macrolide (cluster 4). The enantiomer of lycorine, BMD-NP-00820, showed the highest anti-amastigote activity with an IC50 value of 1.74 ± 0.27 μM and a selectivity index (SI) > 29. In cluster 3, the most potent compound had an IC50 value of 2.20 ± 0.29 μM with an SI > 23, whereas in cluster 4, with compounds structurally similar to the tuberculosis drug rifapentine, BMD-NP-02085 had an IC50 value of 1.76 ± 0.28 μM, but the SI value was 7.5. Taken together, the natural products identified from this study are a potential source for the discovery of antileishmanial chemotypes for further development.
Collapse
Affiliation(s)
- Trong-Nhat Phan
- Institute of Applied Science and Technology, School of Technology, Van Lang University, Ho Chi Minh City 700000, Vietnam;
- Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City 700000, Vietnam
- Host-Parasite Research Laboratory, Discovery Biology, Institut Pasteur Korea, Seongnam-si 13488, Gyeonggi-do, Republic of Korea; (H.L.); (K.-H.B.)
| | - Hyeryon Lee
- Host-Parasite Research Laboratory, Discovery Biology, Institut Pasteur Korea, Seongnam-si 13488, Gyeonggi-do, Republic of Korea; (H.L.); (K.-H.B.)
| | - Kyung-Hwa Baek
- Host-Parasite Research Laboratory, Discovery Biology, Institut Pasteur Korea, Seongnam-si 13488, Gyeonggi-do, Republic of Korea; (H.L.); (K.-H.B.)
| | - Joo Hwan No
- Host-Parasite Research Laboratory, Discovery Biology, Institut Pasteur Korea, Seongnam-si 13488, Gyeonggi-do, Republic of Korea; (H.L.); (K.-H.B.)
| |
Collapse
|
40
|
de Franca MNF, Rodrigues LS, Barreto AS, da Cruz GS, Aragão-Santos JC, da Silva AM, de Jesus AR, Palatnik-de-Sousa CB, de Almeida RP, Corrêa CB. CD4 + Th1 and Th17 responses and multifunctional CD8 T lymphocytes associated with cure or disease worsening in human visceral leishmaniasis. Front Immunol 2024; 15:1277557. [PMID: 38410517 PMCID: PMC10895669 DOI: 10.3389/fimmu.2024.1277557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/02/2024] [Indexed: 02/28/2024] Open
Abstract
Introduction In VL, a proinflammatory phenotype is typically associated with enhanced phagocytosis and a Th1 mediated immune response resulting in infection control. In contrast, an anti-inflammatory phenotype, associated with a predominant regulatory response, typically enables intracellular multiplication of Leishmania parasites and disease progression. Methods To investigate the impact of chemotherapy on Th2 and Th17 immune responses in patients with visceral leishmaniasis (VL), we assessed all combinations of intracellular expression of IFN-γ, IL-10, IL-4 and IL-17 in the CD4+ and CD8+ T cell populations of peripheral blood mononuclear cell (PBMC) samples from patients, after antigenic stimulation with Leishmania lysate, throughout treatment and follow-up. As increases in spleen and liver sizes and decreases in hematocrit, hemogloblin, erythrocytes, monocytes, leukocytes and platelets levels are strongly related to the disease, we studied the correlations between the frequencies of T cells producing the afore mentioned cytokines, individually and in combination, and these variables, as markers of disease or cure. Results We found that the frequency of IFN-γ-producingCD4+ T cells increased until the end of chemotherapy with Glucantime® or AmBisome ®, while IL-10, IL-4 and IL-17-producing CD4+ T cells peaked on day 7 following the start of treatment. Although the frequency of CD4+IL-17+ cells decreased during treatment an increase was observed after clinical cure. The frequency of CD4+ T cells producing only IFN-γ or IL-17 correlated with blood monocytes levels. Frequencies of double-producers of IFN-γ and IL-10 or IL-4 correlated positively with eosinophils and platelets levels. Together, this suggest that IFN-γ drives the immune response towards Th1 at cure. In contrast, and associated with disease or Th2 response, the frequency of CD4+ IL-10+ cells correlated positively with spleen sizes and negatively with circulating monocyte levels, while the frequency of CD4+ producing both IL-4 and IL-10 correlated negatively with platelets levels. The frequency of CD8+ single-producers of IFN-γ increased from day 21 to 90 while that of single-producers of IL-10 peaked on day 7, of IL-4 on day 30 and of IL-17, on day 180. IFN-γ expression in CD8+ single- and double-producers of cytokines was indicative of an immune response associated with cure. In contrast, frequencies of CD8+ double-producers of IL-4 and IL-10, IL-4 and IL-17 and IL-10 and IL-17 and producers of three and four cytokines, were associated with disease and were low after the cure. Frequencies of CD8+ T cells producing IFN-γ alone or with IL-17 were positively correlated with platelets levels. In contrast, as markers of disease: 1) frequencies of single producers of IL-10 correlated negatively with leukocytes levels, 2) frequencies of double producers of IL-4 and IL-10 correlated negatively with platelet, leukocyte, lymphocyte and circulating monocyte levels, 3) frequencies of triple-producers of IFN-γ, IL-4 and IL-10 correlated negatively with platelet, leukocyte and neutrophil levels and 4) frequencies of producers of IFN-γ, IL-4, IL-10 and IL-17 simultaneously correlated positively with spleen size, and negatively with leukocyte and neutrophil levels. Discussion Our results confirmed that the clinical improvement of VL patients correlates with the decrease of an IL-4 and IL-10 CD4+Th2 response, the recovery of CD4+ Th1 and Th17 responses and the frequency of CD8+ single-producers of IFN-γ and double producers of IFN-γ and IL-17.
Collapse
Affiliation(s)
- Mariana Nobre Farias de Franca
- Laboratory of Biology and Immunology of Cancer and Leishmania, Department of Morphology, Federal University of Sergipe, Aracaju, Sergipe, Brazil
- Graduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - Lorranny Santana Rodrigues
- Laboratory of Biology and Immunology of Cancer and Leishmania, Department of Morphology, Federal University of Sergipe, Aracaju, Sergipe, Brazil
- Graduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - Aline Silva Barreto
- Graduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil
- Division of Immunology and Molecular Biology Laboratory, University Hospital/Empresa Brasileira de Serviços Hospitalares (EBSERBH), Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - Geydson Silveira da Cruz
- Graduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil
- Division of Immunology and Molecular Biology Laboratory, University Hospital/Empresa Brasileira de Serviços Hospitalares (EBSERBH), Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - José Carlos Aragão-Santos
- Graduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil
- Department of Physical Education, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - Angela Maria da Silva
- Graduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil
- Department of Medicine, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - Amélia Ribeiro de Jesus
- Graduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil
- Division of Immunology and Molecular Biology Laboratory, University Hospital/Empresa Brasileira de Serviços Hospitalares (EBSERBH), Federal University of Sergipe, Aracaju, Sergipe, Brazil
- Department of Medicine, Federal University of Sergipe, Immunology Investigative Institute (III), INCT, CNPq, Aracaju, Sergipe, Brazil
| | - Clarisa B. Palatnik-de-Sousa
- Graduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Immunology Investigative Institute (III), Insititutos nacionais de Ciência e Tecnologia (INCT), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Rio de Janeiro, Brazil
- Graduate Program in Vegetal Biotechnology and Bioprocesses, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Roque Pacheco de Almeida
- Graduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil
- Division of Immunology and Molecular Biology Laboratory, University Hospital/Empresa Brasileira de Serviços Hospitalares (EBSERBH), Federal University of Sergipe, Aracaju, Sergipe, Brazil
- Department of Medicine, Federal University of Sergipe, Immunology Investigative Institute (III), INCT, CNPq, Aracaju, Sergipe, Brazil
| | - Cristiane Bani Corrêa
- Laboratory of Biology and Immunology of Cancer and Leishmania, Department of Morphology, Federal University of Sergipe, Aracaju, Sergipe, Brazil
- Graduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| |
Collapse
|
41
|
Kumar S, Bodhale N, Patra SK, Sarode A, Zhao L, Sarkar A, Saha B. Interleukin-7 potentiates MAPK10-elicited host-protective vaccine against Leishmania donovani. Cytokine 2024; 174:156475. [PMID: 38134556 DOI: 10.1016/j.cyto.2023.156475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/29/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
Leishmania donovani causes the potentially fatal disease visceral leishmaniasis for which neither a vaccine nor an adjuvant for human use exists. Although interleukin-7 (IL-7) is implicated in CD4+ T-cell response stabilization, its anti-leishmanial function is uncertain. Therefore, we examined whether IL-7 would potentiate the efficacy of Leishmania major-expressed MAPK10 (LmjMAPK10; M10)-elicited anti-leishmanial host-protective response. We observed that aligning with IL-7R expression, IL-7 increased IFN-γ-secreting TH1 cell but reduced IL-4-producing TH2 cells and production of IL-10 and TGF-β effectuating anti-leishmanial functions in susceptible BALB/c mouse-derived macrophages. Co-culturing IL-7-pre-treated L. donovani-infected macrophages with L. donovani-infected BALB/c-derived T cells induced IFN-γ-dominated TH1 type anti-leishmanial function. IL-7 treatment of L. donovani-infected BALB/c mice significantly reduced splenic and hepatic parasite loads. Co-culturing CD4+ T cells from IL to 7-treated mice with L. donovani-infected macrophages reduced amastigote numbers suggesting IL-7-elicited host-protective effector T cells. Priming BALB/c with M10 + IL-7 reduced the splenic parasite burden more effectively than that was observed in M10-primed mice. An enhanced protection against L. donovani infection was accompanied by enhanced IL-12 and IFN-γ, but suppressed IL-10 and IL-4, response and host-protective TH1 and memory T cells. These results indicate IL-7-induced leishmanial antigen-specific memory T cell response that protects a susceptible host against L. donovani infection.
Collapse
Affiliation(s)
- Sunil Kumar
- National Centre for Cell Science, Ganeshkhind, Pune 411007. India
| | - Neelam Bodhale
- National Centre for Cell Science, Ganeshkhind, Pune 411007. India
| | | | - Aditya Sarode
- National Centre for Cell Science, Ganeshkhind, Pune 411007. India
| | - Ling Zhao
- Ling Zhao, Huazhong Agricultural University, Wuhan 430070, China
| | - Arup Sarkar
- Trident Academy of Creative Technology, Bhubaneswar 751024. India
| | - Bhaskar Saha
- National Centre for Cell Science, Ganeshkhind, Pune 411007. India; Trident Academy of Creative Technology, Bhubaneswar 751024. India.
| |
Collapse
|
42
|
Bernardo L, Ibarra-Meneses AV, Douanne N, Corbeil A, Solana JC, Beaudry F, Carrillo E, Moreno J, Fernandez-Prada C. Potential selection of antimony and methotrexate cross-resistance in Leishmania infantum circulating strains. PLoS Negl Trop Dis 2024; 18:e0012015. [PMID: 38422164 DOI: 10.1371/journal.pntd.0012015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/12/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Visceral leishmaniasis (VL) resolution depends on a wide range of factors, including the instauration of an effective treatment coupled to a functional host immune system. Patients with a depressed immune system, like the ones receiving methotrexate (MTX), are at higher risk of developing VL and refusing antileishmanial drugs. Moreover, the alarmingly growing levels of antimicrobial resistance, especially in endemic areas, contribute to the increasing the burden of this complex zoonotic disease. PRINCIPAL FINDINGS To understand the potential links between immunosuppressants and antileishmanial drugs, we have studied the interaction of antimony (Sb) and MTX in a Leishmania infantum reference strain (LiWT) and in two L. infantum clinical strains (LiFS-A and LiFS-B) naturally circulating in non-treated VL dogs in Spain. The LiFS-A strain was isolated before Sb treatment in a case that responded positively to the treatment, while the LiFS-B strain was recovered from a dog before Sb treatment, with the dog later relapsing after the treatment. Our results show that, exposure to Sb or MTX leads to an increase in the production of reactive oxygen species (ROS) in LiWT which correlates with a sensitive phenotype against both drugs in promastigotes and intracellular amastigotes. LiFS-A was sensitive against Sb but resistant against MTX, displaying high levels of protection against ROS when exposed to MTX. LiFS-B was resistant to both drugs. Evaluation of the melting proteomes of the two LiFS, in the presence and absence of Sb and MTX, showed a differential enrichment of direct and indirect targets for both drugs, including common and unique pathways. CONCLUSION Our results show the potential selection of Sb-MTX cross-resistant parasites in the field, pointing to the possibility to undermine antileishmanial treatment of those patients being treated with immunosuppressant drugs in Leishmania endemic areas.
Collapse
Affiliation(s)
- Lorena Bernardo
- WHO Collaborating Centre for Leishmaniasis, Spanish National Center for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), ISCIII, Madrid, Spain
| | - Ana Victoria Ibarra-Meneses
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
- The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Noelie Douanne
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
- The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Audrey Corbeil
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
- The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Jose Carlos Solana
- WHO Collaborating Centre for Leishmaniasis, Spanish National Center for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), ISCIII, Madrid, Spain
| | - Francis Beaudry
- Département de Biomédecine, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
- Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Quebec, Canada
| | - Eugenia Carrillo
- WHO Collaborating Centre for Leishmaniasis, Spanish National Center for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), ISCIII, Madrid, Spain
| | - Javier Moreno
- WHO Collaborating Centre for Leishmaniasis, Spanish National Center for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), ISCIII, Madrid, Spain
| | - Christopher Fernandez-Prada
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
- The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| |
Collapse
|
43
|
Melcón-Fernández E, Galli G, Balaña-Fouce R, García-Fernández N, Martínez-Valladares M, Reguera RM, García-Estrada C, Pérez-Pertejo Y. In Vitro and Ex Vivo Synergistic Effect of Pyrvinium Pamoate Combined with Miltefosine and Paromomycin against Leishmania. Trop Med Infect Dis 2024; 9:30. [PMID: 38393119 PMCID: PMC10891607 DOI: 10.3390/tropicalmed9020030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/25/2024] Open
Abstract
One of the major drawbacks of current treatments for neglected tropical diseases is the low safety of the drugs used and the emergence of resistance. Leishmaniasis is a group of neglected diseases caused by protozoa of the trypanosomatidae family that lacks preventive vaccines and whose pharmacological treatments are scarce and unsafe. Combination therapy is a strategy that could solve the above-mentioned problems, due to the participation of several mechanisms of action and the reduction in the amount of drug necessary to obtain the therapeutic effect. In addition, this approach also increases the odds of finding an effective drug following the repurposing strategy. From the previous screening of two collections of repositioning drugs, we found that pyrvinium pamoate had a potent leishmanicidal effect. For this reason, we decided to combine it separately with two clinically used leishmanicidal drugs, miltefosine and paromomycin. These combinations were tested in axenic amastigotes of Leishmania infantum obtained from bone marrow cells and in intramacrophagic amastigotes obtained from primary cultures of splenic cells, both cell types coming from experimentally infected mice. Some of the combinations showed synergistic behavior, especially in the case of the combination of pyrvinium pamoate with paromomycin, and exhibited low cytotoxicity and good tolerability on intestinal murine organoids, which reveal the potential of these combinations for the treatment of leishmaniasis.
Collapse
Affiliation(s)
- Estela Melcón-Fernández
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, 24071 Leon, Spain; (E.M.-F.); (G.G.); (R.B.-F.); (N.G.-F.); (R.M.R.); (C.G.-E.)
| | - Giulio Galli
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, 24071 Leon, Spain; (E.M.-F.); (G.G.); (R.B.-F.); (N.G.-F.); (R.M.R.); (C.G.-E.)
| | - Rafael Balaña-Fouce
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, 24071 Leon, Spain; (E.M.-F.); (G.G.); (R.B.-F.); (N.G.-F.); (R.M.R.); (C.G.-E.)
- Instituto de Biomedicina (IBIOMED), Universidad de León, Campus de Vegazana s/n, 24071 Leon, Spain
| | - Nerea García-Fernández
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, 24071 Leon, Spain; (E.M.-F.); (G.G.); (R.B.-F.); (N.G.-F.); (R.M.R.); (C.G.-E.)
| | | | - Rosa M. Reguera
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, 24071 Leon, Spain; (E.M.-F.); (G.G.); (R.B.-F.); (N.G.-F.); (R.M.R.); (C.G.-E.)
- Instituto de Biomedicina (IBIOMED), Universidad de León, Campus de Vegazana s/n, 24071 Leon, Spain
| | - Carlos García-Estrada
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, 24071 Leon, Spain; (E.M.-F.); (G.G.); (R.B.-F.); (N.G.-F.); (R.M.R.); (C.G.-E.)
- Instituto de Biomedicina (IBIOMED), Universidad de León, Campus de Vegazana s/n, 24071 Leon, Spain
| | - Yolanda Pérez-Pertejo
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, 24071 Leon, Spain; (E.M.-F.); (G.G.); (R.B.-F.); (N.G.-F.); (R.M.R.); (C.G.-E.)
- Instituto de Biomedicina (IBIOMED), Universidad de León, Campus de Vegazana s/n, 24071 Leon, Spain
| |
Collapse
|
44
|
Pérez-Pertejo Y, García-Estrada C, Martínez-Valladares M, Murugesan S, Reguera RM, Balaña-Fouce R. Polyamine Metabolism for Drug Intervention in Trypanosomatids. Pathogens 2024; 13:79. [PMID: 38251386 PMCID: PMC10820115 DOI: 10.3390/pathogens13010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Neglected tropical diseases transmitted by trypanosomatids include three major human scourges that globally affect the world's poorest people: African trypanosomiasis or sleeping sickness, American trypanosomiasis or Chagas disease and different types of leishmaniasis. Different metabolic pathways have been targeted to find antitrypanosomatid drugs, including polyamine metabolism. Since their discovery, the naturally occurring polyamines, putrescine, spermidine and spermine, have been considered important metabolites involved in cell growth. With a complex metabolism involving biosynthesis, catabolism and interconversion, the synthesis of putrescine and spermidine was targeted by thousands of compounds in an effort to produce cell growth blockade in tumor and infectious processes with limited success. However, the discovery of eflornithine (DFMO) as a curative drug against sleeping sickness encouraged researchers to develop new molecules against these diseases. Polyamine synthesis inhibitors have also provided insight into the peculiarities of this pathway between the host and the parasite, and also among different trypanosomatid species, thus allowing the search for new specific chemical entities aimed to treat these diseases and leading to the investigation of target-based scaffolds. The main molecular targets include the enzymes involved in polyamine biosynthesis (ornithine decarboxylase, S-adenosylmethionine decarboxylase and spermidine synthase), enzymes participating in their uptake from the environment, and the enzymes involved in the redox balance of the parasite. In this review, we summarize the research behind polyamine-based treatments, the current trends, and the main challenges in this field.
Collapse
Affiliation(s)
- Yolanda Pérez-Pertejo
- Departamento de Ciencias Biomédicas, Campus de Vegazana s/n, Universidad de León, 24071 León, Spain; (Y.P.-P.); (C.G.-E.); (R.M.R.)
- Instituto de Biomedicina (IBIOMED), Campus de Vegazana s/n, Universidad de León, 24071 León, Spain
| | - Carlos García-Estrada
- Departamento de Ciencias Biomédicas, Campus de Vegazana s/n, Universidad de León, 24071 León, Spain; (Y.P.-P.); (C.G.-E.); (R.M.R.)
- Instituto de Biomedicina (IBIOMED), Campus de Vegazana s/n, Universidad de León, 24071 León, Spain
| | | | - Sankaranarayanan Murugesan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani 333031, India;
| | - Rosa M. Reguera
- Departamento de Ciencias Biomédicas, Campus de Vegazana s/n, Universidad de León, 24071 León, Spain; (Y.P.-P.); (C.G.-E.); (R.M.R.)
- Instituto de Biomedicina (IBIOMED), Campus de Vegazana s/n, Universidad de León, 24071 León, Spain
| | - Rafael Balaña-Fouce
- Departamento de Ciencias Biomédicas, Campus de Vegazana s/n, Universidad de León, 24071 León, Spain; (Y.P.-P.); (C.G.-E.); (R.M.R.)
- Instituto de Biomedicina (IBIOMED), Campus de Vegazana s/n, Universidad de León, 24071 León, Spain
| |
Collapse
|
45
|
Pal R, Teli G, Akhtar MJ, Matada GSP. Synthetic product-based approach toward potential antileishmanial drug development. Eur J Med Chem 2024; 263:115927. [PMID: 37976706 DOI: 10.1016/j.ejmech.2023.115927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
Leishmaniasis is a parasitic disease and is categorized as a tropically neglected disease (NTD) with no effective vaccines available. The available chemotherapeutics against leishmaniasis are associated with an increase in the incidence of toxicity and drug resistance. Consequently, targeting metabolic pathways and enzymes of parasites which differs from the mammalian host can be exploited to treat and overcome the resistance. The classical methods of identifying the structural fragments and the moieties responsible for the biological activities from the standard compounds and their modification are options for developing more effective novel compounds. Significant progress has been made in refining the development of potent non-toxic molecules and addressing the limitations of the current treatment available. Several examples of synthetic product-based approach utilizing their core heterocyclic rings including furan, pyrrole, thiazole, imidazole, pyrazole, triazole, quinazoline, quinoline, pyrimidine, coumarin, indole, acridine, oxadiazole, purine, chalcone, carboline, phenanthrene and metal containing derivatives and their structure-activity relationships are discussed in this review. It also analyses the groups/fragments interacting with the host cell receptors and will support the medicinal chemists with novel antileishmanial agents.
Collapse
Affiliation(s)
- Rohit Pal
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - Ghanshyam Teli
- School of Pharmacy, Sangam University, Atoon, Bhilwara, 311001, Rajasthan, India
| | - Md Jawaid Akhtar
- Department of Pharmaceutical Chemistry, National University of Science and Technology, PO 620, PC 130, Azaiba Bousher, Muscat, Sultanate of Oman
| | - Gurubasavaraja Swamy Purawarga Matada
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India.
| |
Collapse
|
46
|
Sooram B, Mallikarjunachari U, Uddavesh S, Saudagar P. Pharmacophore-guided drug design using LdNMT as a model drug target for leishmaniasis. J Biomol Struct Dyn 2024; 42:863-875. [PMID: 37096664 DOI: 10.1080/07391102.2023.2196695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/22/2023] [Indexed: 04/26/2023]
Abstract
Leishmaniasis is caused by Leishmania genus parasites and has a high mortality rate. The available drugs to treat leishmaniasis fail due to acquired resistance in parasites. Several enzymes of the Leishmania parasite have been used to design new therapeutic molecules against leishmaniasis. This study uses a pharmacophore-guided approach to design the drug candidate by targeting Leishmania N-Myristoyl transferase (LdNMT). From the initial sequence analysis of LdNMT, we have identified a unique 20 amino acid stretch exploited for screening and designing the small molecules. The pharmacophore for the myristate binding site on LdNMT was elucidated, and a heatmap was constructed. The leishmanial NMT pharmacophore has similarities with other pathogenic microorganisms. Moreover, substituting alanine in pharmacophoric residues elevates the affinity of myristate with NMT. Furthermore, a molecular dynamics (MD) simulation study was conducted to ascertain the stability of the mutants and or wild type. The wild-type NMT has a comparatively low affinity to myristate compared to alanine mutants, indicating that hydrophobic residues favor the myristate binding. The molecules were initially designed by using pharmacophore as a sieving mechanism. In subsequent steps, the selected molecules screened against leishmanial unique amino acid stretch and subsequently with human, leishmanial full-size NMTs. The compounds BP5, TYI, DMU, 3PE and 4UL were the top hits and chemical features similar to the myristate. The molecule 4UL was found to be highly specific towards leishmanial NMT over human NMT, suggesting the molecule is a strong leishmanial NMT inhibitor. The molecule can be taken further to assess it in in-vitro conditions.
Collapse
Affiliation(s)
- Banesh Sooram
- Department of Biotechnology, National Institute of Technology-Warangal, Warangal, Telangana, India
| | - Uppuladinne Mallikarjunachari
- Department of High Performance Computing-Medical and Bioinformatics Applications, Centre for Development for Advanced Computing (CDAC), Pune, Maharastra, India
| | - Sonavane Uddavesh
- Department of High Performance Computing-Medical and Bioinformatics Applications, Centre for Development for Advanced Computing (CDAC), Pune, Maharastra, India
| | - Prakash Saudagar
- Department of Biotechnology, National Institute of Technology-Warangal, Warangal, Telangana, India
| |
Collapse
|
47
|
Edwards CL, Engel JA, de Labastida Rivera F, Ng SS, Corvino D, Montes de Oca M, Frame TC, Chauhan SB, Singh SS, Kumar A, Wang Y, Na J, Mukhopadhyay P, Lee JS, Nylen S, Sundar S, Kumar R, Engwerda CR. A molecular signature for IL-10-producing Th1 cells in protozoan parasitic diseases. JCI Insight 2023; 8:e169362. [PMID: 37917177 PMCID: PMC10807716 DOI: 10.1172/jci.insight.169362] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023] Open
Abstract
Control of visceral leishmaniasis (VL) depends on proinflammatory Th1 cells that activate infected tissue macrophages to kill resident intracellular parasites. However, proinflammatory cytokines produced by Th1 cells can damage tissues and require tight regulation. Th1 cell IL-10 production is an important cell-autologous mechanism to prevent such damage. However, IL-10-producing Th1 (type 1 regulatory; Tr1) cells can also delay control of parasites and the generation of immunity following drug treatment or vaccination. To identify molecules to target in order to alter the balance between Th1 and Tr1 cells for improved antiparasitic immunity, we compared the molecular and phenotypic profiles of Th1 and Tr1 cells in experimental VL caused by Leishmania donovani infection of C57BL/6J mice. We also identified a shared Tr1 cell protozoan signature by comparing the transcriptional profiles of Tr1 cells from mice with experimental VL and malaria. We identified LAG3 as an important coinhibitory receptor in patients with VL and experimental VL, and we reveal tissue-specific heterogeneity of coinhibitory receptor expression by Tr1 cells. We also discovered a role for the transcription factor Pbx1 in suppressing CD4+ T cell cytokine production. This work provides insights into the development and function of CD4+ T cells during protozoan parasitic infections and identifies key immunoregulatory molecules.
Collapse
Affiliation(s)
- Chelsea L. Edwards
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- University of Queensland, School of Medicine, Brisbane, Australia
| | | | | | - Susanna S. Ng
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Griffith University, School of Natural Sciences, Nathan, Australia
- Institute of Experimental Oncology, University of Bonn, Bonn, Germany
| | - Dillon Corvino
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Institute of Experimental Oncology, University of Bonn, Bonn, Germany
| | | | - Teija C.M. Frame
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- University of Queensland, School of Medicine, Brisbane, Australia
| | | | | | - Awnish Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Yulin Wang
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Griffith University, School of Natural Sciences, Nathan, Australia
| | - Jinrui Na
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- University of Queensland, School of Medicine, Brisbane, Australia
| | | | - Jason S. Lee
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- University of Queensland, School of Medicine, Brisbane, Australia
| | - Susanne Nylen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | | | - Rajiv Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | | |
Collapse
|
48
|
Tulloch LB, Carvalho S, Lima M, Wall RJ, Tinti M, Pinto EG, MacLean L, Wyllie S. RES-Seq-a barcoded library of drug-resistant Leishmania donovani allowing rapid assessment of cross-resistance and relative fitness. mBio 2023; 14:e0180323. [PMID: 37929970 PMCID: PMC10746238 DOI: 10.1128/mbio.01803-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
IMPORTANCE Visceral leishmaniasis (VL) remains the third largest parasitic killer worldwide, responsible for 20,000-30,000 deaths each year. Control and ultimate elimination of VL will require a range of therapeutic options with diverse mechanisms of action to combat drug resistance. One approach to ensure that compounds in development exploit diverse mechanisms of action is to screen them against highly curated cell lines resistant to drugs already in the VL pipeline. The identification of cross-resistant cell lines indicates that test compounds are likely acting via previously established mechanisms. Current cross-resistance screens are limited by the requirement to profile individual resistant cell lines one at a time. Here, we introduce unique DNA barcodes into multiple resistant cell lines to facilitate parallel profiling. Utilizing the power of Illumina sequencing, growth kinetics and relative fitness under compound selection can be monitored revolutionizing our ability to identify and prioritize compounds acting via novel mechanisms.
Collapse
Affiliation(s)
- Lindsay B. Tulloch
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Sandra Carvalho
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Marta Lima
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Richard J. Wall
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Michele Tinti
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Erika G. Pinto
- Drug Discovery Unit, Wellcome Centre for Anti-infectives Research, University of Dundee, Dundee, United Kingdom
| | - Lorna MacLean
- Drug Discovery Unit, Wellcome Centre for Anti-infectives Research, University of Dundee, Dundee, United Kingdom
| | - Susan Wyllie
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
49
|
Katiyar S, Ramalingam K, Kumar A, Ansari A, Bisen AC, Mishra G, Sanap SN, Bhatta RS, Purkait B, Goyal N, Sashidhara KV. Design, synthesis, and biological evaluation of quinoline-piperazine/pyrrolidine derivatives as possible antileishmanial agents. Eur J Med Chem 2023; 261:115863. [PMID: 37837672 DOI: 10.1016/j.ejmech.2023.115863] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 10/16/2023]
Abstract
In pursuance of our efforts to expand the scope of novel antileishmanial entities, a series of thirty-five quinoline-piperazine/pyrrolidine, and other heterocyclic amine derivatives were synthesized via a molecular hybridization approach and examined against intracellular amastigotes of luciferase-expressing Leishmania donovani. The preliminary in vitro screening suggests that twelve compounds in the series exhibited better inhibition against amastigote form with good IC50 values ranging from 2.09 to 8.89 μM and lesser cytotoxicity in contrast to the standard drug miltefosine (IC50 9.25 ± 0.17 μM). Based on the satisfactory selectivity index (SI), two compounds were tested for in vivo leishmanicidal efficacy against Leishmania donovani/golden hamster model. Compounds 33 and 46 have shown significant inhibition of 56.32%, and 49.29%, respectively, in vivo screening at a daily dose of 50 mg/kg for 5 days. The pharmacokinetic results confirmed that 33 and 46 have satisfactory IP exposure with adequate parameters. Collectively, Compound 33 was identified as the most significant potential lead that could be employed as a prototype for future optimizations.
Collapse
Affiliation(s)
- Sarita Katiyar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U.P., India
| | - Karthik Ramalingam
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Abhishek Kumar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Alisha Ansari
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U.P., India
| | - Amol Chhatrapati Bisen
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U.P., India
| | - Garvita Mishra
- Molecular Microbiology & Immunology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Sachin Nashik Sanap
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U.P., India
| | - Rabi Sankar Bhatta
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Bidyut Purkait
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U.P., India; Molecular Microbiology & Immunology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Neena Goyal
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.
| | - Koneni V Sashidhara
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, U.P., India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, U.P., India.
| |
Collapse
|
50
|
Zhou Z, Zhuo L, Fu X, Zou Q. Joint deep autoencoder and subgraph augmentation for inferring microbial responses to drugs. Brief Bioinform 2023; 25:bbad483. [PMID: 38171927 PMCID: PMC10764208 DOI: 10.1093/bib/bbad483] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/25/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
Exploring microbial stress responses to drugs is crucial for the advancement of new therapeutic methods. While current artificial intelligence methodologies have expedited our understanding of potential microbial responses to drugs, the models are constrained by the imprecise representation of microbes and drugs. To this end, we combine deep autoencoder and subgraph augmentation technology for the first time to propose a model called JDASA-MRD, which can identify the potential indistinguishable responses of microbes to drugs. In the JDASA-MRD model, we begin by feeding the established similarity matrices of microbe and drug into the deep autoencoder, enabling to extract robust initial features of both microbes and drugs. Subsequently, we employ the MinHash and HyperLogLog algorithms to account intersections and cardinality data between microbe and drug subgraphs, thus deeply extracting the multi-hop neighborhood information of nodes. Finally, by integrating the initial node features with subgraph topological information, we leverage graph neural network technology to predict the microbes' responses to drugs, offering a more effective solution to the 'over-smoothing' challenge. Comparative analyses on multiple public datasets confirm that the JDASA-MRD model's performance surpasses that of current state-of-the-art models. This research aims to offer a more profound insight into the adaptability of microbes to drugs and to furnish pivotal guidance for drug treatment strategies. Our data and code are publicly available at: https://github.com/ZZCrazy00/JDASA-MRD.
Collapse
Affiliation(s)
- Zhecheng Zhou
- School of Data Science and Artificial Intelligence, Wenzhou University of Technology, 325000, Wenzhou, China
| | - Linlin Zhuo
- School of Data Science and Artificial Intelligence, Wenzhou University of Technology, 325000, Wenzhou, China
| | - Xiangzheng Fu
- College of Computer Science and Electronic Engineering, Hunan University, 410012, Changsha, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, 611730, Chengdu, China
| |
Collapse
|