1
|
Repolês BM, Rodrigues Ferreira WR, de Assis AV, Mendes IC, Morini FS, Gonçalves CS, Costa Catta-Preta CM, Kelley SO, Franco GR, Macedo AM, Mottram JC, Motta MCM, Fragoso SP, Machado CR. Transcription coupled repair occurrence in Trypanosoma cruzi mitochondria. Mitochondrion 2025; 83:102009. [PMID: 39993491 DOI: 10.1016/j.mito.2025.102009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025]
Abstract
Although several proteins involved in DNA repair systems have been identified in the T. cruzi mitochondrion, limited information is available regarding the specific DNA repair mechanisms responsible for kinetoplast DNA (kDNA) maintenance. The kDNA, contained within a single mitochondrion, exhibits a highly complex replication mechanism compared to the mitochondrial DNA of other eukaryotes. The absence of additional mitochondria makes the proper maintenance of this single mitochondrion essential for parasite viability. Trypanosomatids possess a distinct set of proteins dedicated to kDNA organization and metabolism, known as kinetoplast-associated proteins (KAPs). Despite studies identifying the localization of these proteins, their functions remain largely unclear. Here, we demonstrate that TcKAP7 is involved in the repair of kDNA lesions induced by UV radiation and cisplatin. TcKAP7 mutant cells exhibited phenotypes similar to those observed in Angomonas deanei following the deletion of this gene. This monoxenic trypanosomatid colonizes the gastrointestinal tract of insects and possesses a kinetoplast with a distinct shape and kDNA topology compared to T. cruzi, making it a suitable comparative model in this study. Additionally, we observed that DNA damage can trigger distinct signaling pathways leading to cell death. Furthermore, we elucidated the involvement of CSB in this response, suggesting a potential interaction between TcKAP7 and CSB proteins in transcription-coupled DNA repair. The results presented here describe, for the first time, the mechanism of mitochondrial DNA repair in trypanosomatids following exposure to UV radiation and cisplatin.
Collapse
Affiliation(s)
- Bruno Marçal Repolês
- Laboratório de Genética Bioquímica, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, MG 30161-970, Brasil
| | - Wesley Roger Rodrigues Ferreira
- Laboratório de Genética Bioquímica, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, MG 30161-970, Brasil
| | - Antônio Vinicius de Assis
- Laboratório de Genética Bioquímica, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, MG 30161-970, Brasil
| | - Isabela Cecília Mendes
- Laboratório de Genética Bioquímica, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, MG 30161-970, Brasil
| | - Flávia Souza Morini
- Laboratório de Biologia Molecular e Sistêmica de Tripanossomatídeos, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, PR, Brasil
| | - Camila Silva Gonçalves
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão (CPMP), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens - Rio de Janeiro, RJ, Brazil
| | | | - Shana O Kelley
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Glória Regina Franco
- Laboratório de Genética Bioquímica, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, MG 30161-970, Brasil
| | - Andrea Mara Macedo
- Laboratório de Genética Bioquímica, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, MG 30161-970, Brasil
| | - Jeremy C Mottram
- Department of Biology, York Biomedical Research Institute, University of York, Wentworth Way, Heslington YorkYO10 5DD, UK
| | - Maria Cristina M Motta
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão (CPMP), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens - Rio de Janeiro, RJ, Brazil
| | - Stênio Perdigão Fragoso
- Laboratório de Biologia Molecular e Sistêmica de Tripanossomatídeos, Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, PR, Brasil
| | - Carlos Renato Machado
- Laboratório de Genética Bioquímica, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, MG 30161-970, Brasil.
| |
Collapse
|
2
|
Galan A, Kraeva N, Záhonová K, Butenko A, Kostygov AY, Paris Z, Pergner J, Bianchi C, Fakih F, Saura A, Lukeš J, Yurchenko V. Converting Blastocrithidia Nonstop, a Trypanosomatid With Non-Canonical Genetic Code, Into a Genetically-Tractable Model. Mol Microbiol 2025. [PMID: 40205788 DOI: 10.1111/mmi.15365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/18/2025] [Accepted: 03/23/2025] [Indexed: 04/11/2025]
Abstract
Blastocrithidia nonstop is a protist with a highly unusual nuclear genetic code, in which all three standard stop codons are reassigned to encode amino acids, with UAA also serving as a sole termination codon. In this study, we demonstrate that this parasitic flagellate is amenable to genetic manipulation, enabling gene ablation and protein tagging. Using preassembled Cas9 ribonucleoprotein complexes, we successfully disrupted and tagged the non-essential gene encoding catalase. These advances establish this single-celled eukaryote as a model organism for investigating the malleability and evolution of the genetic code in eukaryotes.
Collapse
Affiliation(s)
- Arnau Galan
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Natalya Kraeva
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Kristína Záhonová
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
- Department of Parasitology, Faculty of Science, Charles University, Praha, Czechia
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Anzhelika Butenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Alexei Yu Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
- Zoological Institute, Russian Academy of Sciences, St. Petersburg, Russia
| | - Zdeněk Paris
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Jiří Pergner
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Claretta Bianchi
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Fadel Fakih
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Andreu Saura
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
| |
Collapse
|
3
|
Mohanty A, Vekariya V, Yadav S, Agrawal-Rajput R. Natural phytochemicals reverting M2 to M1 macrophages: A novel alternative leishmaniasis therapy. Microb Pathog 2025; 200:107311. [PMID: 39863089 DOI: 10.1016/j.micpath.2025.107311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 12/29/2024] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
INTRODUCTION Leishmaniasis is a tropical parasitic disease caused by the protozoan Leishmania which remains a significant global health concern with diverse clinical manifestations. Transmitted through the bite of an infected sandfly, its progression depends on the interplay between the host immune response and the parasite. The disease outcome is linked to macrophage polarisation into M1 and M2 phenotypes. M1 macrophages are pro-inflammatory and promote parasite clearance, while M2 macrophages support tissue repair and parasite survival by facilitating promastigote entry and intracellular amastigote proliferation. PURPOSE The review focuses on discovering novel phytochemicals that exploit the immunomodulatory properties of macrophages, which can serve as an alternative antileishmanial treatments due to their diverse chemical structures and ability to modulate immune responses. It examines the immunomodulatory effects of phytochemicals that directly or indirectly promote antileishmanial activity by influencing macrophage polarisation and cytokine secretion. They can induce M1 macrophage polarisation to directly combat leishmaniasis or suppress M2 macrophages, thereby exerting indirect antileishmanial activity by influencing the release of M1-and M2-related cytokines. RESULTS & DISCUSSION Phytochemicals demonstrate antileishmanial effects through ROS production, M1 activation, and cytokine modulation. They regulate M1/M2-related cytokines and macrophage activity, influencing immune responses. Although their effects may be non-specific, targeted delivery strategies could overcome current therapeutic limitations, positioning phytochemicals as promising candidates for leishmaniasis treatment to counter the limitations of current medications.
Collapse
Affiliation(s)
- Aditya Mohanty
- Immunology Lab, Biotechnology & Bioengineering, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India
| | - Vasu Vekariya
- Immunology Lab, Biotechnology & Bioengineering, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India
| | - Shivani Yadav
- Immunology Lab, Biotechnology & Bioengineering, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India
| | - Reena Agrawal-Rajput
- Immunology Lab, Biotechnology & Bioengineering, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India.
| |
Collapse
|
4
|
Tiritelli R, Cilia G, Gómez-Moracho T. The trypanosomatid (Kinetoplastida: Trypanosomatidae) parasites in bees: A review on their environmental circulation, impacts and implications. CURRENT RESEARCH IN INSECT SCIENCE 2025; 7:100106. [PMID: 39925747 PMCID: PMC11803887 DOI: 10.1016/j.cris.2025.100106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 02/11/2025]
Abstract
Trypanosomatids, obligate parasites capable of impacting insects' hindgut, have recently obtained considerable attention, especially about their effects on bees. While Crithidia mellificae and C. bombi were initially discovered and studied in honey bees and bumblebees, respectively, molecular techniques revealed Lotmaria passim as the predominant trypanosomatid in honey bees globally. New species like C. expoeki and C. acanthocephali have also been identified. These parasites have complex life cycles involving various host developmental stages and are transmitted horizontally within and outside colonies through direct contact, oral interactions, and contaminating flowers with infected faeces. The impact of trypanosomatids on honey bee colony health remains uncertain. In bumblebees, studies highlighted the widespread presence of C. bombi, affecting colony and individual fitness, development, and foraging behaviour. Bee trypanosomatids have been detected in various species, including other insects, and mammals, suggesting diverse epidemiological pathways and potential effects that warrant further investigation. Biotic factors, including co-infections, gut microbiota, food contamination, and abiotic factors like environmental conditions, pesticides, and urbanization, play crucial roles in infection dynamics. This review aimed to summarise key research on trypanosomatid transmission and infection in both managed and wild bees, focusing on the influence of biotic and abiotic factors. The work highlights significant gaps in current knowledge and provides a valuable foundation for future studies. Understanding the pathogenicity and infection dynamics of trypanosomatids, along with the impact of environmental factors, is essential for developing effective conservation strategies that support pollinator health and overall ecosystem resilience.
Collapse
Affiliation(s)
- Rossella Tiritelli
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Bologna, Italy
| | - Giovanni Cilia
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Bologna, Italy
| | - Tamara Gómez-Moracho
- Department of Parasitology, Biochemical and Molecular Parasitology Group CTS-183, University of Granada, Granada, Spain
- Institute of Biotechnology, University of Granada, Granada, Spain
| |
Collapse
|
5
|
Herreros-Cabello A, Callejas-Hernández F, Fresno M, Gironès N. Mitochondrial DNA Structure in Trypanosoma cruzi. Pathogens 2025; 14:73. [PMID: 39861034 PMCID: PMC11769408 DOI: 10.3390/pathogens14010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Kinetoplastids display a single, large mitochondrion per cell, with their mitochondrial DNA referred to as the kinetoplast. This kinetoplast is a network of concatenated circular molecules comprising a maxicircle (20-64 kb) and up to thousands of minicircles varying in size depending on the species (0.5-10 kb). In Trypanosoma cruzi, maxicircles contain typical mitochondrial genes found in other eukaryotes. They consist of coding and divergent/variable regions, complicating their assembly due to repetitive elements. However, next-generation sequencing (NGS) methods have resolved these issues, enabling the complete sequencing of maxicircles from different strains. Furthermore, several insertions and deletions in the maxicircle sequences have been identified among strains, affecting specific genes. Unique to kinetoplastids, minicircles play a crucial role in a particular U-insertion/deletion RNA editing system by encoding guide RNAs (gRNAs). These gRNAs are essential for editing and maturing maxicircle mRNAs. In Trypanosoma cruzi, although only a few studies have utilized NGS methods to date, the structure of these molecules suggests a classification into four main groups of minicircles. This classification is based on their size and the number of highly conserved regions (mHCRs) and hypervariable regions (mHVRs).
Collapse
Affiliation(s)
- Alfonso Herreros-Cabello
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | - Manuel Fresno
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
- Instituto Sanitario de Investigación Princesa, 28006 Madrid, Spain
| | - Núria Gironès
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
- Instituto Sanitario de Investigación Princesa, 28006 Madrid, Spain
| |
Collapse
|
6
|
Herreros-Cabello A, Callejas-Hernández F, Gironès N, Fresno M. Trypanosoma cruzi: Genomic Diversity and Structure. Pathogens 2025; 14:61. [PMID: 39861022 PMCID: PMC11768934 DOI: 10.3390/pathogens14010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/30/2025] Open
Abstract
Trypanosoma cruzi is the causative agent of Chagas disease, a neglected tropical disease, and one of the most important parasitic diseases worldwide. The first genome of T. cruzi was sequenced in 2005, and its complexity made assembly and annotation challenging. Nowadays, new sequencing methods have improved some strains' genome sequence and annotation, revealing this parasite's extensive genetic diversity and complexity. In this review, we examine the genetic diversity, the genomic structure, and the principal multi-gene families involved in the pathogenicity of T. cruzi. The T. cruzi genome sequence is divided into two compartments: the core (conserved) and the disruptive (variable in length and multicopy gene families among strains). The disruptive region has also been described as genome plasticity and plays a key role in the parasite survival and infection process. This region comprises several multi-gene families, including trans-sialidases, mucins, and mucin-associated surface proteins (MASPs). Trans-sialidases are the most prevalent genes in the genome with a key role in the infection process, while mucins and MASPs are also significant glycosylated proteins expressed on the parasite surface, essential for its biological functions, as host-parasite interaction, host cell invasion or protection against the host immune system, in both insect and mammalian stages. Collectively, in this review, some of the most recent advances in the structure and composition of the T. cruzi genome are reviewed.
Collapse
Affiliation(s)
- Alfonso Herreros-Cabello
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | - Núria Gironès
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
- Instituto Sanitario de Investigación Princesa, 28006 Madrid, Spain
| | - Manuel Fresno
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
- Instituto Sanitario de Investigación Princesa, 28006 Madrid, Spain
| |
Collapse
|
7
|
Michieletto D. Kinetoplast DNA: a polymer physicist's topological Olympic dream. Nucleic Acids Res 2025; 53:gkae1206. [PMID: 39676656 PMCID: PMC11754639 DOI: 10.1093/nar/gkae1206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 12/17/2024] Open
Abstract
All life forms are miraculous, but some are more inexplicable than others. Trypanosomes are by far one of the most puzzling organisms on Earth: their mitochondrial genome, also called kinetoplast DNA (kDNA) forms an Olympic-ring-like network of interlinked DNA circles, challenging conventional paradigms in both biology and physics. In this review, I will discuss kDNA from the astonished perspective of a polymer physicist and tell a story of how a single sub-cellular structure from a blood-dwelling parasite is inspiring generations of polymer chemists and physicists to create new catenated materials.
Collapse
Affiliation(s)
- Davide Michieletto
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer,University of Edinburgh, Edinburgh EH4 2XU, UK
| |
Collapse
|
8
|
Collier SL, Farrell SN, Goodman CD, McFadden GI. Modes and mechanisms for the inheritance of mitochondria and plastids in pathogenic protists. PLoS Pathog 2025; 21:e1012835. [PMID: 39847585 PMCID: PMC11756805 DOI: 10.1371/journal.ppat.1012835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025] Open
Abstract
Pathogenic protists are responsible for many diseases that significantly impact human and animal health across the globe. Almost all protists possess mitochondria or mitochondrion-related organelles, and many contain plastids. These endosymbiotic organelles are crucial to survival and provide well-validated and widely utilised drug targets in parasitic protists such as Plasmodium and Toxoplasma. However, mutations within the organellar genomes of mitochondria and plastids can lead to drug resistance. Such mutations ultimately challenge our ability to control and eradicate the diseases caused by these pathogenic protists. Therefore, it is important to understand how organellar genomes, and the resistance mutations encoded within them, are inherited during protist sexual reproduction and how this may impact the spread of drug resistance and future therapeutic approaches to target these organelles. In this review, we detail what is known about mitochondrial and plastid inheritance during sexual reproduction across different pathogenic protists, often turning to their better studied, nonpathogenic relatives for insight.
Collapse
Affiliation(s)
- Sophie L. Collier
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Sarah N. Farrell
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Geoffrey I. McFadden
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
9
|
Wiggins TJ, Peng R, Bushnell RV, Tobin JK, MacLeod DA, Du K, Tobin GJ, Dollery SJ. Instrument-Free Point-of-Care Diagnostic for Leishmania Parasites. Diagnostics (Basel) 2024; 14:2744. [PMID: 39682651 PMCID: PMC11640444 DOI: 10.3390/diagnostics14232744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/22/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVE Leishmaniasis is the second deadliest parasitic disease in the world, after malaria, with an estimated 1.6 million new cases each year. While cutaneous leishmaniasis can result in permanent scars from lesions after treatment, the mucocutaneous and visceral diseases can result in life-altering and life-threatening complications. Accurate species diagnosis is critical for treatment and follow-up, and while PCR-based diagnostics can provide sensitive parasite detection and species identification, they are slow, expensive, and not suitable for low-resource settings. In this publication, we describe our efforts to develop a simple, affordable, and instrument-free Leishmania DNA diagnostic that can be used in both high-tech settings and the field. METHODS Computational biology was utilized to design region-targeted RPA oligos and the corresponding CRISPR guides for the detection of all Leishmania species as well as the specific identification of L. (V.) panamensis as a predictor of mucocutaneous disease. Then, we executed systematic approaches for parasite lysis, RPA amplification of DNA, and fluorescent CRISPR crRNA detection. RESULTS We have demonstrated the ability to detect single-digit parasites without compromising the specificity in identifying single species as the proof of concept for a point-of-care diagnostic. Individual assays were carried out in succession, culminating in an unquenched fluorescent signal quantifiable over negative control. CONCLUSIONS The described work is the foundation which will be implemented into a three-track [all Leishmania, mucocutaneous or visceral only, and a human positive control] assay that we plan to utilize in a Funnel Adapted Sensing Tube (FAST) single use, instrument-free, and affordable diagnostic.
Collapse
Affiliation(s)
- Taralyn J. Wiggins
- Biological Mimetics, Inc., 124 Byte Drive, Frederick, MD 21702, USA (G.J.T.)
| | - Ruonan Peng
- Chemical and Environmental Engineering Department, University of California at Riverside, B350 Bourns Hall, 900 University Ave, Riverside, CA 92521, USA
| | - Ruth V. Bushnell
- Biological Mimetics, Inc., 124 Byte Drive, Frederick, MD 21702, USA (G.J.T.)
| | - John K. Tobin
- Biological Mimetics, Inc., 124 Byte Drive, Frederick, MD 21702, USA (G.J.T.)
| | - David A. MacLeod
- Biological Mimetics, Inc., 124 Byte Drive, Frederick, MD 21702, USA (G.J.T.)
| | - Ke Du
- Chemical and Environmental Engineering Department, University of California at Riverside, B350 Bourns Hall, 900 University Ave, Riverside, CA 92521, USA
| | - Gregory J. Tobin
- Biological Mimetics, Inc., 124 Byte Drive, Frederick, MD 21702, USA (G.J.T.)
| | - Stephen J. Dollery
- Biological Mimetics, Inc., 124 Byte Drive, Frederick, MD 21702, USA (G.J.T.)
| |
Collapse
|
10
|
Povelones ML, Ginger ML. Bric-à-brac, an 'umbilical cord' and trypanosome kinetoplast segregation. Trends Parasitol 2024; 40:1072-1074. [PMID: 39562266 DOI: 10.1016/j.pt.2024.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/21/2024]
Abstract
Cadena et al. recently discovered a conserved trypanosomatid 'nabelschnur' protein TbNAB70 from a search through the protein localization resource TrypTag, providing new insight into kinetoplast origin and evolution.
Collapse
Affiliation(s)
| | - Michael L Ginger
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK.
| |
Collapse
|
11
|
Meehan J, Ivens A, Grote S, Rodshagen T, Chen Z, Goode C, Sharma S, Kumar V, Frese A, Goodall Z, McCleskey L, Sechrist R, Zeng L, Savill N, Rouskin S, Schnaufer A, McDermott S, Cruz-Reyes J. KREH2 helicase represses ND7 mRNA editing in procyclic-stage Trypanosoma brucei by opposite modulation of canonical and 'moonlighting' gRNA utilization creating a proposed mRNA structure. Nucleic Acids Res 2024; 52:11940-11959. [PMID: 39149912 PMCID: PMC11514453 DOI: 10.1093/nar/gkae699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/17/2024] [Accepted: 08/01/2024] [Indexed: 08/17/2024] Open
Abstract
Unknown factors regulate mitochondrial U-insertion/deletion (U-indel) RNA editing in procyclic-form (PCF) and bloodstream-form (BSF) T. brucei. This editing, directed by anti-sense gRNAs, creates canonical protein-encoding mRNAs and may developmentally control respiration. Canonical editing by gRNAs that specify protein-encoding mRNA sequences occurs amid massive non-canonical editing of unclear sources and biological significance. We found PCF-specific repression at a major early checkpoint in mRNA ND7, involving helicase KREH2-dependent opposite modulation of canonical and non-canonical 'terminator' gRNA utilization. Terminator-programmed editing derails canonical editing and installs proposed repressive structure in 30% of the ND7 transcriptome. BSF-to-PCF differentiation in vitro recreated this negative control. Remarkably, KREH2-RNAi knockdown relieved repression and increased editing progression by reverting canonical/terminator gRNA utilization. ND7 transcripts lacking early terminator-directed editing in PCF exhibited similar negative editing control along the mRNA sequence, suggesting global modulation of gRNA utilization fidelity. The terminator is a 'moonlighting' gRNA also associated with mRNA COX3 canonical editing, so the gRNA transcriptome seems multifunctional. Thus, KREH2 is the first identified repressor in developmental editing control. This and our prior work support a model whereby KREH2 activates or represses editing in a stage and substrate-specific manner. KREH2's novel dual role tunes mitochondrial gene expression in either direction during development.
Collapse
Affiliation(s)
- Joshua Meehan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Alasdair Ivens
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Scott Grote
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Tyler Rodshagen
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Zihao Chen
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Cody Goode
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Sunil K Sharma
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Vikas Kumar
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Addison Frese
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Zachary Goodall
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Laura McCleskey
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Rebecca Sechrist
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Lanying Zeng
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Nicholas J Savill
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Silvi Rouskin
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Achim Schnaufer
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Suzanne M McDermott
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Jorge Cruz-Reyes
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
12
|
Cadena LR, Hammond M, Tesařová M, Chmelová Ľ, Svobodová M, Durante IM, Yurchenko V, Lukeš J. A novel nabelschnur protein regulates segregation of the kinetoplast DNA in Trypanosoma brucei. Curr Biol 2024; 34:4803-4812.e3. [PMID: 39321796 DOI: 10.1016/j.cub.2024.08.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/17/2024] [Accepted: 08/23/2024] [Indexed: 09/27/2024]
Abstract
The acquisition of mitochondria was imperative for initiating eukaryogenesis and thus is a characteristic feature of eukaryotic cells.1,2 The parasitic protist Trypanosoma brucei contains a singular mitochondrion with a unique mitochondrial genome, termed the kinetoplast DNA (kDNA).3 Replication of the kDNA occurs during the G1 phase of the cell cycle, prior to the start of nuclear DNA replication.4 Although numerous proteins have been functionally characterized and identified as vital components of kDNA replication and division, the molecular mechanisms governing this highly precise process remain largely unknown.5,6 One division-related and morphologically characteristic structure that remains most enigmatic is the "nabelschnur," an undefined, filament-resembling structure observed by electron microscopy between segregating daughter kDNA networks.7,8,9 To date, only one protein, TbLAP1, an M17 family leucyl aminopeptidase metalloprotease, is known to localize to the nabelschnur.9 While screening proteins from the T. brucei MitoTag project,10 we identified a previously uncharacterized protein with an mNeonGreen signal localizing to the kDNA as well as forming a point of connection between dividing kDNAs. Here, we demonstrate that this kDNA-associated protein, named TbNAB70, indeed localizes to the nabelschnur and plays an essential role in the segregation of newly replicated kDNAs and subsequent cytokinesis in T. brucei.
Collapse
Affiliation(s)
- Lawrence Rudy Cadena
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis) 370 05, Czech Republic.
| | - Michael Hammond
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis) 370 05, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis) 370 05, Czech Republic.
| | - Martina Tesařová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis) 370 05, Czech Republic
| | - Ľubomíra Chmelová
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava 701 03, Czech Republic
| | - Michaela Svobodová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis) 370 05, Czech Republic
| | - Ignacio M Durante
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis) 370 05, Czech Republic
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava 701 03, Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis) 370 05, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis) 370 05, Czech Republic
| |
Collapse
|
13
|
Becerra D, Klotz AR, Hall LM. Single-molecule analysis of solvent-responsive mechanically interlocked ring polymers and the effects of nanoconfinement from coarse-grained simulations. J Chem Phys 2024; 160:114906. [PMID: 38511659 DOI: 10.1063/5.0191295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/02/2024] [Indexed: 03/22/2024] Open
Abstract
In this study, we simulate mechanically interlocked semiflexible ring polymers inspired by the minicircles of kinetoplast DNA (kDNA) networks. Using coarse-grained molecular dynamics simulations, we investigate the impact of molecular topological linkage and nanoconfinement on the conformational properties of two- and three-ring polymer systems in varying solvent qualities. Under good-quality solvents, for two-ring systems, a higher number of crossing points lead to a more internally constrained structure, reducing their mean radius of gyration. In contrast, three-ring systems, which all had the same crossing number, exhibited more similar sizes. In unfavorable solvents, structures collapse, forming compact configurations with increased contacts. The morphological diversity of structures primarily arises from topological linkage rather than the number of rings. In three-ring systems with different topological conformations, structural uniformity varies based on link types. Extreme confinement induces isotropic and extended conformations for catenated polymers, aligning with experimental results for kDNA networks and influencing the crossing number and overall shape. Finally, the flat-to-collapse transition in extreme confinement occurs earlier (at relatively better solvent conditions) compared to non-confined systems. This study offers valuable insights into the conformational behavior of mechanically interlocked ring polymers, highlighting challenges in extrapolating single-molecule analyses to larger networks such as kDNA.
Collapse
Affiliation(s)
- Diego Becerra
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | - Alexander R Klotz
- Department of Physics and Astronomy, California State University, Long Beach, California 90840, USA
| | - Lisa M Hall
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
14
|
González S, Wall RJ, Thomas J, Braillard S, Brunori G, Díaz IC, Cantizani J, Carvalho S, Castañeda Casado P, Chatelain E, Cotillo I, Fiandor JM, Francisco AF, Grimsditch D, Keenan M, Kelly JM, Kessler A, Luise C, Lyon JJ, MacLean L, Marco M, Martin JJ, Martinez MS, Paterson C, Read KD, Santos-Villarejo A, Zuccotto F, Wyllie S, Miles TJ, De Rycker M. Short-course combination treatment for experimental chronic Chagas disease. Sci Transl Med 2023; 15:eadg8105. [PMID: 38091410 PMCID: PMC7615676 DOI: 10.1126/scitranslmed.adg8105] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023]
Abstract
Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, affects millions of people in the Americas and across the world, leading to considerable morbidity and mortality. Current treatment options, benznidazole (BNZ) and nifurtimox, offer limited efficacy and often lead to adverse side effects because of long treatment durations. Better treatment options are therefore urgently required. Here, we describe a pyrrolopyrimidine series, identified through phenotypic screening, that offers an opportunity to improve on current treatments. In vitro cell-based washout assays demonstrate that compounds in the series are incapable of killing all parasites; however, combining these pyrrolopyrimidines with a subefficacious dose of BNZ can clear all parasites in vitro after 5 days. These findings were replicated in a clinically predictive in vivo model of chronic Chagas disease, where 5 days of treatment with the combination was sufficient to prevent parasite relapse. Comprehensive mechanism of action studies, supported by ligand-structure modeling, show that compounds from this pyrrolopyrimidine series inhibit the Qi active site of T. cruzi cytochrome b, part of the cytochrome bc1 complex of the electron transport chain. Knowledge of the molecular target enabled a cascade of assays to be assembled to evaluate selectivity over the human cytochrome b homolog. As a result, a highly selective and efficacious lead compound was identified. The combination of our lead compound with BNZ rapidly clears T. cruzi parasites, both in vitro and in vivo, and shows great potential to overcome key issues associated with currently available treatments.
Collapse
Affiliation(s)
- Silvia González
- Global Health Medicines R&D, GSK, Tres Cantos, Madrid, Spain
| | - Richard J. Wall
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - John Thomas
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | | | | | | | - Juan Cantizani
- Global Health Medicines R&D, GSK, Tres Cantos, Madrid, Spain
| | - Sandra Carvalho
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | | | | | - Ignacio Cotillo
- Global Health Medicines R&D, GSK, Tres Cantos, Madrid, Spain
| | - Jose M. Fiandor
- Global Health Medicines R&D, GSK, Tres Cantos, Madrid, Spain
| | | | | | | | - John M. Kelly
- London School for Hygiene and Tropical Medicine, London, UK
| | - Albane Kessler
- Global Health Medicines R&D, GSK, Tres Cantos, Madrid, Spain
| | - Chiara Luise
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | | | - Lorna MacLean
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - Maria Marco
- Global Health Medicines R&D, GSK, Tres Cantos, Madrid, Spain
| | - J. Julio Martin
- Global Health Medicines R&D, GSK, Tres Cantos, Madrid, Spain
| | | | - Christy Paterson
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - Kevin D. Read
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | | | - Fabio Zuccotto
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - Susan Wyllie
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - Tim J. Miles
- Global Health Medicines R&D, GSK, Tres Cantos, Madrid, Spain
| | - Manu De Rycker
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| |
Collapse
|
15
|
Braillard S, Keenan M, Breese KJ, Heppell J, Abbott M, Islam R, Shackleford DM, Katneni K, Crighton E, Chen G, Patil R, Lee G, White KL, Carvalho S, Wall RJ, Chemi G, Zuccotto F, González S, Marco M, Deakyne J, Standing D, Brunori G, Lyon JJ, Castañeda Casado P, Camino I, Martinez MSM, Zulfiqar B, Avery VM, Feijens PB, Van Pelt N, Matheeussen A, Hendrickx S, Maes L, Caljon G, Yardley V, Wyllie S, Charman SA, Chatelain E. DNDI-6174 is a preclinical candidate for visceral leishmaniasis that targets the cytochrome bc 1. Sci Transl Med 2023; 15:eadh9902. [PMID: 38091406 PMCID: PMC7615677 DOI: 10.1126/scitranslmed.adh9902] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/12/2023] [Indexed: 12/18/2023]
Abstract
New drugs for visceral leishmaniasis that are safe, low cost, and adapted to the field are urgently required. Despite concerted efforts over the last several years, the number of new chemical entities that are suitable for clinical development for the treatment of Leishmania remains low. Here, we describe the discovery and preclinical development of DNDI-6174, an inhibitor of Leishmania cytochrome bc1 complex activity that originated from a phenotypically identified pyrrolopyrimidine series. This compound fulfills all target candidate profile criteria required for progression into preclinical development. In addition to good metabolic stability and pharmacokinetic properties, DNDI-6174 demonstrates potent in vitro activity against a variety of Leishmania species and can reduce parasite burden in animal models of infection, with the potential to approach sterile cure. No major flags were identified in preliminary safety studies, including an exploratory 14-day toxicology study in the rat. DNDI-6174 is a cytochrome bc1 complex inhibitor with acceptable development properties to enter preclinical development for visceral leishmaniasis.
Collapse
Affiliation(s)
- Stéphanie Braillard
- Drugs for Neglected Diseases initiative (DNDi), Chemin Camille-Vidart 15, 1202 Geneva, Switzerland
| | | | | | - Jacob Heppell
- Epichem Pty Ltd, Perth, Western Australia, Australia
| | | | - Rafiqul Islam
- Epichem Pty Ltd, Perth, Western Australia, Australia
| | - David M. Shackleford
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Australia
| | - Kasiram Katneni
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Australia
| | - Elly Crighton
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Australia
| | - Gong Chen
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Australia
| | - Rahul Patil
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Australia
| | - Given Lee
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Australia
| | - Karen L. White
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Australia
| | - Sandra Carvalho
- Wellcome Centre for Anti-infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Richard J. Wall
- Wellcome Centre for Anti-infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Giulia Chemi
- Drug Discovery Unit, Wellcome Centre for Anti-infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Fabio Zuccotto
- Drug Discovery Unit, Wellcome Centre for Anti-infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Silvia González
- Global Health Medicines R&D, GlaxoSmithKline, Tres Cantos, Madrid 28760, Spain
| | - Maria Marco
- Global Health Medicines R&D, GlaxoSmithKline, Tres Cantos, Madrid 28760, Spain
| | | | | | - Gino Brunori
- Global Investigative Safety, GSK, Ware, United Kingdom
| | | | | | | | | | - Bilal Zulfiqar
- Discovery Biology, Griffith University, Nathan, Queensland, Australia 4111
| | - Vicky M. Avery
- Discovery Biology, Griffith University, Nathan, Queensland, Australia 4111
| | - Pim-Bart Feijens
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Natascha Van Pelt
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - An Matheeussen
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Sarah Hendrickx
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Vanessa Yardley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Susan Wyllie
- Wellcome Centre for Anti-infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Susan A. Charman
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Australia
| | - Eric Chatelain
- Drugs for Neglected Diseases initiative (DNDi), Chemin Camille-Vidart 15, 1202 Geneva, Switzerland
| |
Collapse
|
16
|
Staňo R, Likos CN, Egorov SA. Mixing Linear Polymers with Rings and Catenanes: Bulk and Interfacial Behavior. Macromolecules 2023; 56:8168-8182. [PMID: 37900098 PMCID: PMC10601540 DOI: 10.1021/acs.macromol.3c01267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/11/2023] [Indexed: 10/31/2023]
Abstract
We derive and parameterize effective interaction potentials between a multitude of different types of ring polymers and linear chains, varying the bending rigidity and solvent quality for the former species. We further develop and apply a density functional treatment for mixtures of both disconnected (chain-ring) and connected (chain-polycatenane) mixtures of the same, drawing coexistence binodals and exploring the ensuing response functions as well as the interface and wetting behavior of the mixtures. We show that worsening of the solvent quality for the rings brings about a stronger propensity for macroscopic phase separation in the linear-polycatenane mixtures, which is predominantly of the demixing type between phases of similar overall particle density. We formulate a simple criterion based on the effective interactions, allowing us to determine whether any specific linear-ring mixture will undergo a demixing phase separation.
Collapse
Affiliation(s)
- Roman Staňo
- Faculty
of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
- Vienna
Doctoral School in Physics, University of
Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Christos N. Likos
- Faculty
of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Sergei A. Egorov
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22901, United States
- Erwin
Schrödinger International Institute for Mathematics and Physics, Boltzmanngasse 9, 1090 Vienna, Austria
| |
Collapse
|
17
|
Meehan J, McDermott SM, Ivens A, Goodall Z, Chen Z, Yu Z, Woo J, Rodshagen T, McCleskey L, Sechrist R, Stuart K, Zeng L, Rouskin S, Savill N, Schnaufer A, Zhang X, Cruz-Reyes J. Trypanosome RNA helicase KREH2 differentially controls non-canonical editing and putative repressive structure via a novel proposed 'bifunctional' gRNA in mRNA A6. Nucleic Acids Res 2023; 51:6944-6965. [PMID: 37246647 PMCID: PMC10359474 DOI: 10.1093/nar/gkad453] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/07/2023] [Accepted: 05/26/2023] [Indexed: 05/30/2023] Open
Abstract
U-insertion/deletion (U-indel) RNA editing in trypanosome mitochondria is directed by guide RNAs (gRNAs). This editing may developmentally control respiration in bloodstream forms (BSF) and insect procyclic forms (PCF). Holo-editosomes include the accessory RNA Editing Substrate Binding Complex (RESC) and RNA Editing Helicase 2 Complex (REH2C), but the specific proteins controlling differential editing remain unknown. Also, RNA editing appears highly error prone because most U-indels do not match the canonical pattern. However, despite extensive non-canonical editing of unknown functions, accurate canonical editing is required for normal cell growth. In PCF, REH2C controls editing fidelity in RESC-bound mRNAs. Here, we report that KREH2, a REH2C-associated helicase, developmentally controls programmed non-canonical editing, including an abundant 3' element in ATPase subunit 6 (A6) mRNA. The 3' element sequence is directed by a proposed novel regulatory gRNA. In PCF, KREH2 RNAi-knockdown up-regulates the 3' element, which establishes a stable structure hindering element removal by canonical initiator-gRNA-directed editing. In BSF, KREH2-knockdown does not up-regulate the 3' element but reduces its high abundance. Thus, KREH2 differentially controls extensive non-canonical editing and associated RNA structure via a novel regulatory gRNA, potentially hijacking factors as a 'molecular sponge'. Furthermore, this gRNA is bifunctional, serving in canonical CR4 mRNA editing whilst installing a structural element in A6 mRNA.
Collapse
Affiliation(s)
- Joshua Meehan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Suzanne M McDermott
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
- Departments of Pediatrics and Global Health, University of Washington School of Medicine, Seattle, WA, USA
| | - Alasdair Ivens
- Departments of Pediatrics and Global Health, University of Washington School of Medicine, Seattle, WA, USA
| | - Zachary Goodall
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Zihao Chen
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Zihao Yu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Jia Woo
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Tyler Rodshagen
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Laura McCleskey
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Rebecca Sechrist
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Kenneth Stuart
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
- Departments of Pediatrics and Global Health, University of Washington School of Medicine, Seattle, WA, USA
| | - Lanying Zeng
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Silvi Rouskin
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Nicholas J Savill
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Achim Schnaufer
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Xiuren Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Jorge Cruz-Reyes
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
18
|
Staňo R, Likos CN, Smrek J. To thread or not to thread? Effective potentials and threading interactions between asymmetric ring polymers. SOFT MATTER 2022; 19:17-30. [PMID: 36477247 PMCID: PMC9768673 DOI: 10.1039/d2sm01177h] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
We use computer simulations to study a system of two unlinked ring polymers, whose length and bending stiffness are systematically varied. We derive the effective potentials between the rings, calculate the areas of minimal surfaces of the same, and characterize the threading between them. When the two rings are of the same kind, threading of a one ring through the surface of the other is immanent for small ring-ring separations. Flexible rings pierce the surface of the other ring several times but only shallowly, as compared to the stiff rings which pierce less frequently but deeply. Typically, the ring that is being threaded swells and flattens up into an oblate-like conformation, while the ring that is threading the other takes a shape of an elongated prolate. The roles of the threader and the threaded ring are being dynamically exchanged. If, on the other hand, the rings are of different kinds, the symmetry is broken and the rings tend to take up roles of the threader and the threaded ring with unequal probabilities. We propose a method how to predict these probabilities based on the parameters of the individual rings. Ultimately, our work captures the interactions between ring polymers in a coarse-grained fashion, opening the way to large-scale modelling of materials such as kinetoplasts, catenanes or topological brushes.
Collapse
Affiliation(s)
- Roman Staňo
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria.
- Vienna Doctoral School in Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Christos N Likos
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria.
| | - Jan Smrek
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria.
| |
Collapse
|
19
|
Delzell S, Nelson SW, Frost MP, Klingbeil MM. Trypanosoma brucei Mitochondrial DNA Polymerase POLIB Contains a Novel Polymerase Domain Insertion That Confers Dominant Exonuclease Activity. Biochemistry 2022; 61:2751-2765. [PMID: 36399653 PMCID: PMC9731263 DOI: 10.1021/acs.biochem.2c00392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/31/2022] [Indexed: 11/19/2022]
Abstract
Trypanosoma brucei and related parasites contain an unusual catenated mitochondrial genome known as kinetoplast DNA (kDNA) composed of maxicircles and minicircles. The kDNA structure and replication mechanism are divergent and essential for parasite survival. POLIB is one of three Family A DNA polymerases independently essential to maintain the kDNA network. However, the division of labor among the paralogs, particularly which might be a replicative, proofreading enzyme, remains enigmatic. De novo modeling of POLIB suggested a structure that is divergent from all other Family A polymerases, in which the thumb subdomain contains a 369 amino acid insertion with homology to DEDDh DnaQ family 3'-5' exonucleases. Here we demonstrate recombinant POLIB 3'-5' exonuclease prefers DNA vs RNA substrates and degrades single- and double-stranded DNA nonprocessively. Exonuclease activity prevails over polymerase activity on DNA substrates at pH 8.0, while DNA primer extension is favored at pH 6.0. Mutations that ablate POLIB polymerase activity slow the exonuclease rate suggesting crosstalk between the domains. We show that POLIB extends an RNA primer more efficiently than a DNA primer in the presence of dNTPs but does not incorporate rNTPs efficiently using either primer. Immunoprecipitation of Pol I-like paralogs from T. brucei corroborates the pH selectivity and RNA primer preferences of POLIB and revealed that the other paralogs efficiently extend a DNA primer. The enzymatic properties of POLIB suggest this paralog is not a replicative kDNA polymerase, and the noncanonical polymerase domain provides another example of exquisite diversity among DNA polymerases for specialized function.
Collapse
Affiliation(s)
- Stephanie
B. Delzell
- Department
of Microbiology, University of Massachusetts, Amherst, Massachusetts01003, United States
| | - Scott W. Nelson
- Roy
J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa50011, United States
| | - Matthew P. Frost
- Department
of Microbiology, University of Massachusetts, Amherst, Massachusetts01003, United States
| | - Michele M. Klingbeil
- Department
of Microbiology, University of Massachusetts, Amherst, Massachusetts01003, United States
- The
Institute for Applied Life Sciences, University
of Massachusetts, Amherst, Massachusetts01003, United States
| |
Collapse
|
20
|
Yilmaz IC, Dunuroglu E, Ayanoglu IC, Ipekoglu EM, Yildirim M, Girginkardesler N, Ozbel Y, Toz S, Ozbilgin A, Aykut G, Gursel I, Gursel M. Leishmania kinetoplast DNA contributes to parasite burden in infected macrophages: Critical role of the cGAS-STING-TBK1 signaling pathway in macrophage parasitemia. Front Immunol 2022; 13:1007070. [PMID: 36405710 PMCID: PMC9667060 DOI: 10.3389/fimmu.2022.1007070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Leishmania parasites harbor a unique network of circular DNA known as kinetoplast DNA (kDNA). The role of kDNA in leishmania infections is poorly understood. Herein, we show that kDNA delivery to the cytosol of Leishmania major infected THP-1 macrophages provoked increased parasite loads when compared to untreated cells, hinting at the involvement of cytosolic DNA sensors in facilitating parasite evasion from the immune system. Parasite proliferation was significantly hindered in cGAS- STING- and TBK-1 knockout THP-1 macrophages when compared to wild type cells. Nanostring nCounter gene expression analysis on L. major infected wild type versus knockout cells revealed that some of the most upregulated genes including, Granulysin (GNLY), Chitotriosidase-1 (CHIT1), Sialomucin core protein 24 (CD164), SLAM Family Member 7 (SLAMF7), insulin-like growth factor receptor 2 (IGF2R) and apolipoprotein E (APOE) were identical in infected cGAS and TBK1 knockout cells, implying their involvement in parasite control. Amlexanox treatment (a TBK1 inhibitor) of L. major infected wild type cells inhibited both the percentage and the parasite load of infected THP-1 cells and delayed footpad swelling in parasite infected mice. Collectively, these results suggest that leishmania parasites might hijack the cGAS-STING-TBK1 signaling pathway to their own advantage and the TBK1 inhibitor amlexanox could be of interest as a candidate drug in treatment of cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Ismail Cem Yilmaz
- Basic and Translational Research Program, Izmir Biomedicine and Genome Center, Izmir, Turkey
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Emre Dunuroglu
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Ihsan Cihan Ayanoglu
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Emre Mert Ipekoglu
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Muzaffer Yildirim
- Molecular Biology and Genetics Department, Bilkent University, Ankara, Turkey
| | - Nogay Girginkardesler
- Department of Parasitology, School of Medicine, Celal Bayar University, Manisa, Turkey
| | - Yusuf Ozbel
- Department of Parasitology, Ege University, Izmir, Turkey
| | - Seray Toz
- Department of Parasitology, Ege University, Izmir, Turkey
| | - Ahmet Ozbilgin
- Department of Parasitology, School of Medicine, Celal Bayar University, Manisa, Turkey
| | - Gamze Aykut
- Molecular Biology and Genetics Department, Bilkent University, Ankara, Turkey
| | - Ihsan Gursel
- Basic and Translational Research Program, Izmir Biomedicine and Genome Center, Izmir, Turkey
- Molecular Biology and Genetics Department, Bilkent University, Ankara, Turkey
| | - Mayda Gursel
- Basic and Translational Research Program, Izmir Biomedicine and Genome Center, Izmir, Turkey
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
- *Correspondence: Mayda Gursel,
| |
Collapse
|
21
|
Mitochondrial RNA editing in Trypanoplasma borreli: new tools, new revelations. Comput Struct Biotechnol J 2022; 20:6388-6402. [DOI: 10.1016/j.csbj.2022.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
|
22
|
Geerts M, Chen Z, Bebronne N, Savill NJ, Schnaufer A, Büscher P, Van Reet N, Van den Broeck F. Deep kinetoplast genome analyses result in a novel molecular assay for detecting Trypanosoma brucei gambiense-specific minicircles. NAR Genom Bioinform 2022; 4:lqac081. [PMID: 36285287 PMCID: PMC9582789 DOI: 10.1093/nargab/lqac081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/28/2022] [Accepted: 10/06/2022] [Indexed: 11/14/2022] Open
Abstract
The World Health Organization targeted Trypanosoma brucei gambiense (Tbg) human African trypanosomiasis for elimination of transmission by 2030. Sensitive molecular markers that specifically detect Tbg type 1 (Tbg1) parasites will be important tools to assist in reaching this goal. We aim at improving molecular diagnosis of Tbg1 infections by targeting the abundant mitochondrial minicircles within the kinetoplast of these parasites. Using Next-Generation Sequencing of total cellular DNA extracts, we assembled and annotated the kinetoplast genome and investigated minicircle sequence diversity in 38 animal- and human-infective trypanosome strains. Computational analyses recognized a total of 241 Minicircle Sequence Classes as Tbg1-specific, of which three were shared by the 18 studied Tbg1 strains. We developed a minicircle-based assay that is applicable on animals and as specific as the TgsGP-based assay, the current golden standard for molecular detection of Tbg1. The median copy number of the targeted minicircle was equal to eight, suggesting our minicircle-based assay may be used for the sensitive detection of Tbg1 parasites. Annotation of the targeted minicircle sequence indicated that it encodes genes essential for the survival of the parasite and will thus likely be preserved in natural Tbg1 populations, the latter ensuring the reliability of our novel diagnostic assay.
Collapse
Affiliation(s)
- Manon Geerts
- Department of Biomedical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| | - Zihao Chen
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Nicolas Bebronne
- Department of Biomedical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| | - Nicholas J Savill
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Achim Schnaufer
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Philippe Büscher
- Department of Biomedical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| | | | | |
Collapse
|
23
|
Dalvie ED, Stacy JC, Neuman KC, Osheroff N. Recognition of DNA Supercoil Handedness during Catenation Catalyzed by Type II Topoisomerases. Biochemistry 2022; 61:2148-2158. [PMID: 36122251 PMCID: PMC9548324 DOI: 10.1021/acs.biochem.2c00370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although the presence of catenanes (i.e., intermolecular tangles) in chromosomal DNA stabilizes interactions between daughter chromosomes, a lack of resolution can have serious consequences for genomic stability. In all species, from bacteria to humans, type II topoisomerases are the enzymes primarily responsible for catenating/decatenating DNA. DNA topology has a profound influence on the rate at which these enzymes alter the superhelical state of the double helix. Therefore, the effect of supercoil handedness on the ability of human topoisomerase IIα and topoisomerase IIβ and bacterial topoisomerase IV to catenate DNA was examined. Topoisomerase IIα preferentially catenated negatively supercoiled over positively supercoiled substrates. This is opposite to its preference for relaxing (i.e., removing supercoils from) DNA and may prevent the enzyme from tangling the double helix ahead of replication forks and transcription complexes. The ability of topoisomerase IIα to recognize DNA supercoil handedness during catenation resides in its C-terminal domain. In contrast to topoisomerase IIα, topoisomerase IIβ displayed little ability to distinguish DNA geometry during catenation. Topoisomerase IV from three bacterial species preferentially catenated positively supercoiled substrates. This may not be an issue, as these enzymes work primarily behind replication forks. Finally, topoisomerase IIα and topoisomerase IV maintain lower levels of covalent enzyme-cleaved DNA intermediates with catenated over monomeric DNA. This allows these enzymes to perform their cellular functions in a safer manner, as catenated daughter chromosomes may be subject to stress generated by the mitotic spindle that could lead to irreversible DNA cleavage.
Collapse
Affiliation(s)
- Esha D. Dalvie
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, United States
| | - Jordan C. Stacy
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, United States
| | - Keir C. Neuman
- Laboratory of Single Molecule Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20982, United States
| | - Neil Osheroff
- Departments of Biochemistry and Medicine (Hematology/Oncology), Vanderbilt University School of Medicine, Nashville, TN 37232, United States; VA Tennessee Valley Healthcare System, Nashville, TN 37212, United States
| |
Collapse
|
24
|
Wang JF, Lin RH, Zhang X, Hide G, Lun ZR, Lai DH. Novel insertions in the mitochondrial maxicircle of Trypanosoma musculi, a mouse trypanosome. Parasitology 2022; 149:1546-1555. [PMID: 35924587 PMCID: PMC11093713 DOI: 10.1017/s0031182022001019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 11/07/2022]
Abstract
Trypanosoma musculi is a, globally distributed, mouse-specific haemoflagellate, of the family Trypanosomatidae, which shares similar characteristics in morphology with Trypanosoma lewisi. The kinetoplast (mitochondrial) DNA of Trypanosomatidae flagellates is comprised of catenated maxicircles and minicircles. However, genetic information on the T. musculi kinetoplast remains largely unknown. In this study, the T. musculi maxicircle genome was completely assembled, with PacBio and Illumina sequencing, and the size was confirmed at 34 606 bp. It consisted of 2 distinct parts: the coding region and the divergent regions (DRs, DRI and II). In comparison with other trypanosome maxicircles (Trypanosoma brucei, Trypanosoma cruzi and T. lewisi), the T. musculi maxicircle has a syntenic distribution of genes and shares 73.9, 78.0 and 92.7% sequence identity, respectively, over the whole coding region. Moreover, novel insertions in MURF2 (630 bp) and in ND5 (1278 bp) were found, respectively, which are homologous to minicircles. These findings support an evolutionary scenario similar to the one proposed for insertions in Trypanosoma cruzi, the pathogen of American trypanosomiasis. These novel insertions, together with a deletion (281 bp) in ND4, question the role of Complex I in T. musculi. A detailed analysis of DRII indicated that it contains numerous repeat motifs and palindromes, the latter of which are highly conservative and contain A5C elements. The comprehensively annotated kinetoplast maxicircle of T. musculi reveals a high degree of similarity between this parasite and the maxicircle of T. lewisi and suggests that the DRII could be a valuable marker for distinguishing these evolutionarily related species.
Collapse
Affiliation(s)
- Ju-Feng Wang
- Guangdong Provincial Key Laboratory of Aquatic Economic Animals, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
| | - Ruo-Hong Lin
- Guangdong Provincial Key Laboratory of Aquatic Economic Animals, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
| | - Xuan Zhang
- Guangdong Provincial Key Laboratory of Aquatic Economic Animals, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
| | - Geoff Hide
- Ecosystems and Environment Research Centre and Biomedical Research Centre, School of Science, Engineering and Environment, University of Salford, Salford M5 4WT, UK
| | - Zhao-Rong Lun
- Guangdong Provincial Key Laboratory of Aquatic Economic Animals, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
- Ecosystems and Environment Research Centre and Biomedical Research Centre, School of Science, Engineering and Environment, University of Salford, Salford M5 4WT, UK
| | - De-Hua Lai
- Guangdong Provincial Key Laboratory of Aquatic Economic Animals, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
| |
Collapse
|
25
|
Cooper S, Wadsworth ES, Schnaufer A, Savill NJ. Organization of minicircle cassettes and guide RNA genes in Trypanosoma brucei. RNA (NEW YORK, N.Y.) 2022; 28:972-992. [PMID: 35414587 PMCID: PMC9202587 DOI: 10.1261/rna.079022.121] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
Mitochondrial DNA of protists of order Kinetoplastida comprises thousands of interlinked circular molecules arranged in a network. There are two types of molecules called minicircles and maxicircles. Minicircles encode guide RNA (gRNA) genes whose transcripts mediate post-transcriptional editing of maxicircle encoded genes. Minicircles are diverse. The human sleeping sickness parasite Trypanosoma brucei has one of the most diverse sets of minicircle classes of all studied trypanosomatids with hundreds of different classes, each encoding one to four genes mainly within cassettes framed by 18 bp inverted repeats. A third of cassettes have no identifiable gRNA genes even though their sequence structures are similar to cassettes with identifiable genes. Only recently have almost all minicircle classes for some subspecies and isolates of T. brucei been sequenced and annotated with corresponding verification of gRNA expression by small-RNA transcriptome data. These data sets provide a rich resource for understanding the structure of minicircle classes, cassettes and gRNA genes and their transcription. Here, we provide a statistical description of the functionality, expression status, structure and sequence of gRNA genes in a differentiation-competent, laboratory-adapted strain of T. brucei We obtain a clearer definition of what is a gRNA gene. Our analysis supports the idea that many, if not all, cassettes without an identifiable gRNA gene contain decaying remnants of once functional gRNA genes. Finally, we report several new, unexplained discoveries such as the association between cassette position on the minicircle and gene expression and functionality, and the association between gene initiation sequence and anchor position.
Collapse
Affiliation(s)
- Sinclair Cooper
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, Scotland EH9 3FL, United Kingdom
| | - Elizabeth S Wadsworth
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, Scotland EH9 3FL, United Kingdom
| | - Achim Schnaufer
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, Scotland EH9 3FL, United Kingdom
| | - Nicholas J Savill
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, Scotland EH9 3FL, United Kingdom
| |
Collapse
|
26
|
de Abreu AP, Lucas da Silva HF, Sarto MPM, Iunklaus GF, Trovo JV, de Souza Fernandes N, Teston APM, Toledo MJDO. Infection susceptibility and vector competence of Rhodnius robustus Larrousse, 1927 and R. pictipes Stal, 1872 (Hemiptera, Reduviidae, Triatominae) for strains of Trypanosoma cruzi (Chagas, 1909) (Kinetoplastida, Trypanosomatidae) I, II and IV. Parasit Vectors 2022; 15:239. [PMID: 35773725 PMCID: PMC9245265 DOI: 10.1186/s13071-022-05350-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/31/2022] [Indexed: 11/23/2022] Open
Abstract
Background Rhodnius robustus and Rhodnius pictipes are vectors of Trypanosoma cruzi, the etiologic agent of Chagas disease (CD), that are found in the Brazilian Amazon region. Susceptibility to infection and vector competence depend on the parasite-vector relationship. Our objective was to evaluate the interaction between T. cruzi and these two triatomine vectors in pure and mixed experimental infections of T. cruzi strains from the same or different geographic regions. Methods Fifth-instar nymphs of R. robustus and R. pictipes were fed on mice infected with four T. cruzi strains, namely genotypes TcIAM, TcIMG, TcIIPR, and TcIVAM, respectively, from the Brazilian states of Amazonas, Minas Gerais and Paraná. Over a period of 120 days, excreta were examined every 20 days to assess vector competence, and intestinal contents (IC) were examined every 30 days to determine susceptibility to infection. Results The highest positive rate in the fresh examination (%+FE, 30.0%), the highest number of parasitic forms (PF, n = 1969) and the highest metacyclogenesis rate (%MC, 53.8%) in the excreta were recorded for R. robustus/TcIVAM. Examination of the IC of R. pictipes revealed a higher number of PF in infections with TcIAM (22,680 PF) and TcIIPR (19,845 PF) alone or in association (17,145 PF), as well as a %+FE of 75.0% with TcII, in comparison with the other genotypes. The highest %MC (100%) was recorded for the mixed infections of TcIAM with TcIIPR or TcIVAM in the IC of R. pictipes. Conclusions Overall, both species were found to be susceptible to the T. cruzi strains studied. Rhodnius robustus showed vector competence for genotypes TcIVAM and TcIAM+TcIVAM and R. pictipes for TcIAM+TcIVAM and TcIAM+TcIIPR; there was elimination of infective forms as early as at 20 days. Our results suggest that both the genetics of the parasite and its geographic origin influence the susceptibility to infection and vector competence, alone or in association. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Ana Paula de Abreu
- Programa de Pós-Graduação Em Ciências da Saúde, Centro de Ciências da Saúde (CCS), Universidade Estadual de Maringá (UEM), Maringá, PR, 87020-900, Brazil.
| | - Hevillyn Fernanda Lucas da Silva
- Programa de Pós-Graduação Em Ciências da Saúde, Centro de Ciências da Saúde (CCS), Universidade Estadual de Maringá (UEM), Maringá, PR, 87020-900, Brazil
| | - Marcella Paula Mansano Sarto
- Programa de Pós-Graduação Em Ciências da Saúde, Centro de Ciências da Saúde (CCS), Universidade Estadual de Maringá (UEM), Maringá, PR, 87020-900, Brazil
| | - Giullia Ferreira Iunklaus
- Programa de Pós-Graduação Em Ciências da Saúde, Centro de Ciências da Saúde (CCS), Universidade Estadual de Maringá (UEM), Maringá, PR, 87020-900, Brazil
| | - João Vitor Trovo
- Programa de Pós-Graduação Em Ciências da Saúde, Centro de Ciências da Saúde (CCS), Universidade Estadual de Maringá (UEM), Maringá, PR, 87020-900, Brazil
| | - Nilma de Souza Fernandes
- Programa de Pós-Graduação Em Ciências Biológicas, Centro de Ciências Biológicas, UEM, Maringá, PR, 87020-900, Brazil
| | - Ana Paula Margioto Teston
- Departamento de Farmácia, Centro Universitario Uningá, Rodovia PR-317, Maringá, PR, 87035-510, Brazil
| | - Max Jean de Ornelas Toledo
- Programa de Pós-Graduação Em Ciências da Saúde, Centro de Ciências da Saúde (CCS), Universidade Estadual de Maringá (UEM), Maringá, PR, 87020-900, Brazil.,Programa de Pós-Graduação Em Ciências Biológicas, Centro de Ciências Biológicas, UEM, Maringá, PR, 87020-900, Brazil.,Departamento de Ciências Básicas da Saúde, CCS, UEM, Maringá, PR, 87020-900, Brazil
| |
Collapse
|
27
|
Belyaev AO, Zagumyonnyi DG, Mylnikov AP, Tikhonenkov DV. The Morphology, Ultrastructure and Molecular Phylogeny of a New Soil-Dwelling Kinetoplastid Avlakibodo gracilis gen. et sp. nov. (Neobodonida; Kinetoplastea). Protist 2022; 173:125885. [DOI: 10.1016/j.protis.2022.125885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 01/04/2023]
|
28
|
Kay C, Peacock L, Williams TA, Gibson W. Signatures of hybridization in Trypanosoma brucei. PLoS Pathog 2022; 18:e1010300. [PMID: 35139131 PMCID: PMC8863249 DOI: 10.1371/journal.ppat.1010300] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 02/22/2022] [Accepted: 01/22/2022] [Indexed: 11/19/2022] Open
Abstract
Genetic exchange among disease-causing micro-organisms can generate progeny that combine different pathogenic traits. Though sexual reproduction has been described in trypanosomes, its impact on the epidemiology of Human African Trypanosomiasis (HAT) remains controversial. However, human infective and non-human infective strains of Trypanosoma brucei circulate in the same transmission cycles in HAT endemic areas in subsaharan Africa, providing the opportunity for mating during the developmental cycle in the tsetse fly vector. Here we investigated inheritance among progeny from a laboratory cross of T. brucei and then applied these insights to genomic analysis of field-collected isolates to identify signatures of past genetic exchange. Genomes of two parental and four hybrid progeny clones with a range of DNA contents were assembled and analysed by k-mer and single nucleotide polymorphism (SNP) frequencies to determine heterozygosity and chromosomal inheritance. Variant surface glycoprotein (VSG) genes and kinetoplast (mitochondrial) DNA maxi- and minicircles were extracted from each genome to examine how each of these components was inherited in the hybrid progeny. The same bioinformatic approaches were applied to an additional 37 genomes representing the diversity of T. brucei in subsaharan Africa and T. evansi. SNP analysis provided evidence of crossover events affecting all 11 pairs of megabase chromosomes and demonstrated that polyploid hybrids were formed post-meiotically and not by fusion of the parental diploid cells. VSGs and kinetoplast DNA minicircles were inherited biparentally, with approximately equal numbers from each parent, whereas maxicircles were inherited uniparentally. Extrapolation of these findings to field isolates allowed us to distinguish clonal descent from hybridization by comparing maxicircle genotype to VSG and minicircle repertoires. Discordance between maxicircle genotype and VSG and minicircle repertoires indicated inter-lineage hybridization. Significantly, some of the hybridization events we identified involved human infective and non-human infective trypanosomes circulating in the same geographic areas.
Collapse
Affiliation(s)
- Christopher Kay
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Lori Peacock
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
- Bristol Veterinary School, University of Bristol, Bristol, United Kingdom
| | - Tom A. Williams
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Wendy Gibson
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
29
|
Yadav I, Al Sulaiman D, Soh BW, Doyle PS. Phase Transition of Catenated DNA Networks in Poly(ethylene glycol) Solutions. ACS Macro Lett 2021; 10:1429-1435. [PMID: 35549007 DOI: 10.1021/acsmacrolett.1c00463] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Conformational phase transitions of macromolecules are an important class of problems in fundamental polymer physics. While the conformational phase transitions of linear DNA have been extensively studied, this feature of topologically complex DNA remains unexplored. We report herein the polymer-and-salt-induced (Ψ) phase transition of 2D catenated DNA networks, called kinetoplasts, using single-molecule fluorescence microscopy. We observe that kinetoplasts can undergo a reversible transition from the flat phase to the collapsed phase in the presence of NaCl as a function of the crowding agent poly(ethylene glycol). The nature of this phase transition is tunable through varying ionic strengths. For linear DNA, the coexistence of coil and globule phases was attributed to a first order phase transition associated with a double well potential in the transition regime. Kinetoplasts, however, navigate from the flat to the collapsed phase by passing through an intermediate regime, characterized by the coexistence of a multipopulation with varying shapes and sizes. Conformations of individual molecules in the multipopulation are long-lived, which suggests a rugged energy landscape.
Collapse
Affiliation(s)
- Indresh Yadav
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Dana Al Sulaiman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Beatrice W. Soh
- Institute of Materials Research and Engineering, 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Patrick S. Doyle
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Harvard Medical School Initiative for RNA Medicine, Boston, Massachusetts 02215, United States
| |
Collapse
|
30
|
Abstract
The recently developed ultrastructure expansion microscopy (U-ExM) technique allows us to increase the spatial resolution within a cell or tissue for microscopic imaging through the physical expansion of the sample. In this study, we validate the use of U-ExM in Trypanosoma brucei measuring the expansion factors of several different compartments/organelles and thus verify the isotropic expansion of the cell. We furthermore demonstrate the use of this sample preparation protocol for future studies by visualizing the nucleus and kDNA, as well as proteins of the cytoskeleton, the basal body, the mitochondrion and the endoplasmic reticulum. Lastly, we discuss the challenges and opportunities of U-ExM.
Collapse
Affiliation(s)
- Ana Kalichava
- Institute of Cell Biology, University of Bern, Switzerland,Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | | |
Collapse
|
31
|
Geerts M, Schnaufer A, Van den Broeck F. rKOMICS: an R package for processing mitochondrial minicircle assemblies in population-scale genome projects. BMC Bioinformatics 2021; 22:468. [PMID: 34583651 PMCID: PMC8479924 DOI: 10.1186/s12859-021-04384-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 09/20/2021] [Indexed: 12/28/2022] Open
Abstract
Background The advent of population-scale genome projects has revolutionized our biological understanding of parasitic protozoa. However, while hundreds to thousands of nuclear genomes of parasitic protozoa have been generated and analyzed, information about the diversity, structure and evolution of their mitochondrial genomes remains fragmentary, mainly because of their extraordinary complexity. Indeed, unicellular flagellates of the order Kinetoplastida contain structurally the most complex mitochondrial genome of all eukaryotes, organized as a giant network of homogeneous maxicircles and heterogeneous minicircles. We recently developed KOMICS, an analysis toolkit that automates the assembly and circularization of the mitochondrial genomes of Kinetoplastid parasites. While this tool overcomes the limitation of extracting mitochondrial assemblies from Next-Generation Sequencing datasets, interpreting and visualizing the genetic (dis)similarity within and between samples remains a time-consuming process. Results Here, we present a new analysis toolkit—rKOMICS—to streamline the analyses of minicircle sequence diversity in population-scale genome projects. rKOMICS is a user-friendly R package that has simple installation requirements and that is applicable to all 27 trypanosomatid genera. Once minicircle sequence alignments are generated, rKOMICS allows to examine, summarize and visualize minicircle sequence diversity within and between samples through the analyses of minicircle sequence clusters. We showcase the functionalities of the (r)KOMICS tool suite using a whole-genome sequencing dataset from a recently published study on the history of diversification of the Leishmania braziliensis species complex in Peru. Analyses of population diversity and structure highlighted differences in minicircle sequence richness and composition between Leishmania subspecies, and between subpopulations within subspecies. Conclusion The rKOMICS package establishes a critical framework to manipulate, explore and extract biologically relevant information from mitochondrial minicircle assemblies in tens to hundreds of samples simultaneously and efficiently. This should facilitate research that aims to develop new molecular markers for identifying species-specific minicircles, or to study the ancestry of parasites for complementary insights into their evolutionary history.
Collapse
Affiliation(s)
- Manon Geerts
- Department of Biomedical Sciences, Institute of Tropical Medicine, 2000, Antwerp, Belgium
| | - Achim Schnaufer
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Frederik Van den Broeck
- Department of Biomedical Sciences, Institute of Tropical Medicine, 2000, Antwerp, Belgium. .,Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
32
|
Feric M, Misteli T. Phase separation in genome organization across evolution. Trends Cell Biol 2021; 31:671-685. [PMID: 33771451 PMCID: PMC8286288 DOI: 10.1016/j.tcb.2021.03.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/17/2021] [Accepted: 03/01/2021] [Indexed: 02/06/2023]
Abstract
Phase separation is emerging as a paradigm to explain the self-assembly and organization of membraneless bodies in the cell. Recent advances show that this principle also extends to nucleoprotein complexes, including DNA-based structures. We discuss here recent observations on the role of phase separation in genome organization across the evolutionary spectrum from bacteria to mammals. These findings suggest that molecular interactions amongst DNA-binding proteins evolved to form a variety of biomolecular condensates with distinct material properties that affect genome organization and function. We suggest that phase separation contributes to genome organization across evolution and that the resulting phase behavior of genomes may underlie regulatory mechanisms and disease.
Collapse
Affiliation(s)
- Marina Feric
- National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, USA; National Institute of General Medical Sciences, NIH, Bethesda, MD, USA.
| | - Tom Misteli
- National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
33
|
Berná L, Greif G, Pita S, Faral-Tello P, Díaz-Viraqué F, Souza RDCMD, Vallejo GA, Alvarez-Valin F, Robello C. Maxicircle architecture and evolutionary insights into Trypanosoma cruzi complex. PLoS Negl Trop Dis 2021; 15:e0009719. [PMID: 34437557 PMCID: PMC8425572 DOI: 10.1371/journal.pntd.0009719] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/08/2021] [Accepted: 08/10/2021] [Indexed: 12/13/2022] Open
Abstract
We sequenced maxicircles from T. cruzi strains representative of the species evolutionary diversity by using long-read sequencing, which allowed us to uncollapse their repetitive regions, finding that their real lengths range from 35 to 50 kb. T. cruzi maxicircles have a common architecture composed of four regions: coding region (CR), AT-rich region, short (SR) and long repeats (LR). Distribution of genes, both in order and in strand orientation are conserved, being the main differences the presence of deletions affecting genes coding for NADH dehydrogenase subunits, reinforcing biochemical findings that indicate that complex I is not functional in T. cruzi. Moreover, the presence of complete minicircles into maxicircles of some strains lead us to think about the origin of minicircles. Finally, a careful phylogenetic analysis was conducted using coding regions of maxicircles from up to 29 strains, and 1108 single copy nuclear genes from all of the DTUs, clearly establishing that taxonomically T. cruzi is a complex of species composed by group 1 that contains clades A (TcI), B (TcIII) and D (TcIV), and group 2 (1 and 2 do not coincide with groups I and II described decades ago) containing clade C (TcII), being all hybrid strains of the BC type. Three variants of maxicircles exist in T. cruzi: a, b and c, in correspondence with clades A, B, and C from mitochondrial phylogenies. While A and C carry maxicircles a and c respectively, both clades B and D carry b maxicircle variant; hybrid strains also carry the b- variant. We then propose a new nomenclature that is self-descriptive and makes use of both the phylogenetic relationships and the maxicircle variants present in T. cruzi.
Collapse
Affiliation(s)
- Luisa Berná
- Laboratorio de Interacciones Hospedero-Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Sección Biomatemática—Unidad de Genómica Evolutiva, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Gonzalo Greif
- Laboratorio de Interacciones Hospedero-Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Sebastián Pita
- Laboratorio de Interacciones Hospedero-Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Sección Genética, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Paula Faral-Tello
- Laboratorio de Interacciones Hospedero-Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Florencia Díaz-Viraqué
- Laboratorio de Interacciones Hospedero-Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | | | - Gustavo Adolfo Vallejo
- Laboratorio de investigaciones en Parasitología Tropical (LIPT), Facultad de Ciencias, Universidad del Tolima, Tolima, Colombia
| | - Fernando Alvarez-Valin
- Sección Biomatemática—Unidad de Genómica Evolutiva, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Carlos Robello
- Laboratorio de Interacciones Hospedero-Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- * E-mail:
| |
Collapse
|
34
|
Zuma AA, Dos Santos Barrias E, de Souza W. Basic Biology of Trypanosoma cruzi. Curr Pharm Des 2021; 27:1671-1732. [PMID: 33272165 DOI: 10.2174/1381612826999201203213527] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/01/2020] [Accepted: 10/08/2020] [Indexed: 11/22/2022]
Abstract
The present review addresses basic aspects of the biology of the pathogenic protozoa Trypanosoma cruzi and some comparative information of Trypanosoma brucei. Like eukaryotic cells, their cellular organization is similar to that of mammalian hosts. However, these parasites present structural particularities. That is why the following topics are emphasized in this paper: developmental stages of the life cycle in the vertebrate and invertebrate hosts; the cytoskeleton of the protozoa, especially the sub-pellicular microtubules; the flagellum and its attachment to the protozoan body through specialized junctions; the kinetoplast-mitochondrion complex, including its structural organization and DNA replication; glycosome and its role in the metabolism of the cell; acidocalcisome, describing its morphology, biochemistry, and functional role; cytostome and the endocytic pathway; the organization of the endoplasmic reticulum and Golgi complex; the nucleus, describing its structural organization during interphase and division; and the process of interaction of the parasite with host cells. The unique characteristics of these structures also make them interesting chemotherapeutic targets. Therefore, further understanding of cell biology aspects contributes to the development of drugs for chemotherapy.
Collapse
Affiliation(s)
- Aline A Zuma
- Laboratorio de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Emile Dos Santos Barrias
- Laboratorio de Metrologia Aplicada a Ciencias da Vida, Diretoria de Metrologia Aplicada a Ciencias da Vida - Instituto Nacional de Metrologia, Qualidade e Tecnologia (Inmetro), Rio de Janeiro, Brazil
| | - Wanderley de Souza
- Laboratorio de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
35
|
Dean S. Basic Biology of Trypanosoma brucei with Reference to the Development of Chemotherapies. Curr Pharm Des 2021; 27:1650-1670. [PMID: 33463458 DOI: 10.2174/1381612827666210119105008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 11/22/2022]
Abstract
Trypanosoma brucei are protozoan parasites that cause the lethal human disease African sleeping sickness and the economically devastating disease of cattle, Nagana. African sleeping sickness, also known as Human African Trypanosomiasis (HAT), threatens 65 million people and animal trypanosomiasis makes large areas of farmland unusable. There is no vaccine and licensed therapies against the most severe, late-stage disease are toxic, impractical and ineffective. Trypanosomes are transmitted by tsetse flies, and HAT is therefore predominantly confined to the tsetse fly belt in sub-Saharan Africa. They are exclusively extracellular and they differentiate between at least seven developmental forms that are highly adapted to host and vector niches. In the mammalian (human) host they inhabit the blood, cerebrospinal fluid (late-stage disease), skin, and adipose fat. In the tsetse fly vector they travel from the tsetse midgut to the salivary glands via the ectoperitrophic space and proventriculus. Trypanosomes are evolutionarily divergent compared with most branches of eukaryotic life. Perhaps most famous for their extraordinary mechanisms of monoallelic gene expression and antigenic variation, they have also been investigated because much of their biology is either highly unconventional or extreme. Moreover, in addition to their importance as pathogens, many researchers have been attracted to the field because trypanosomes have some of the most advanced molecular genetic tools and database resources of any model system. The following will cover just some aspects of trypanosome biology and how its divergent biochemistry has been leveraged to develop drugs to treat African sleeping sickness. This is by no means intended to be a comprehensive survey of trypanosome features. Rather, I hope to present trypanosomes as one of the most fascinating and tractable systems to do discovery biology.
Collapse
Affiliation(s)
- Samuel Dean
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
36
|
Callejas-Hernández F, Herreros-Cabello A, Del Moral-Salmoral J, Fresno M, Gironès N. The Complete Mitochondrial DNA of Trypanosoma cruzi: Maxicircles and Minicircles. Front Cell Infect Microbiol 2021; 11:672448. [PMID: 34268138 PMCID: PMC8277381 DOI: 10.3389/fcimb.2021.672448] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/04/2021] [Indexed: 11/13/2022] Open
Abstract
The mitochondrial DNA of Trypanosomatids, known as the kinetoplast DNA or kDNA or mtDNA, consists of a few maxicircles and thousands of minicircles concatenated together into a huge complex network. These structures present species-specific sizes, from 20 to 40 Kb in maxicircles and from 0.5 to 10 Kb in minicircles. Maxicircles are equivalent to other eukaryotic mitochondrial DNAs, while minicircles contain coding guide RNAs involved in U-insertion/deletion editing processes exclusive of Trypanosomatids that produce the maturation of the maxicircle-encoded transcripts. The knowledge about this mitochondrial genome is especially relevant since the expression of nuclear and mitochondrial genes involved in oxidative phosphorylation must be coordinated. In Trypanosoma cruzi (T. cruzi), the mtDNA has a dual relevance; the production of energy, and its use as a phylogenetic marker due to its high conservation among strains. Therefore, this study aimed to assemble, annotate, and analyze the complete repertoire of maxicircle and minicircle sequences of different T. cruzi strains by using DNA sequencing. We assembled and annotated the complete maxicircle sequence of the Y and Bug2148 strains. For Bug2148, our results confirm that the maxicircle sequence is the longest assembled to date, and is composed of 21 genes, most of them conserved among Trypanosomatid species. In agreement with previous results, T. cruzi minicircles show a conserved structure around 1.4 Kb, with four highly conserved regions and other four hypervariable regions interspersed between them. However, our results suggest that the parasite minicircles display several sizes and numbers of conserved and hypervariable regions, contrary to those previous studies. Besides, this heterogeneity is also reflected in the three conserved sequence blocks of the conserved regions that play a key role in the minicircle replication. Our results using sequencing technologies of second and third-generation indicate that the different consensus sequences of the maxicircles and minicircles seem to be more complex than previously described indicating at least four different groups in T. cruzi minicircles.
Collapse
Affiliation(s)
- Francisco Callejas-Hernández
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alfonso Herreros-Cabello
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Javier Del Moral-Salmoral
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Manuel Fresno
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto Sanitario de Investigación de la Princesa, Group 12, Madrid, Spain
| | - Núria Gironès
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto Sanitario de Investigación de la Princesa, Group 12, Madrid, Spain
| |
Collapse
|
37
|
Gonçalves CS, Catta-Preta CMC, Repolês B, Mottram JC, De Souza W, Machado CR, Motta MCM. Importance of Angomonas deanei KAP4 for kDNA arrangement, cell division and maintenance of the host-bacterium relationship. Sci Rep 2021; 11:9210. [PMID: 33911164 PMCID: PMC8080567 DOI: 10.1038/s41598-021-88685-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 04/13/2021] [Indexed: 11/29/2022] Open
Abstract
Angomonas deanei coevolves in a mutualistic relationship with a symbiotic bacterium that divides in synchronicity with other host cell structures. Trypanosomatid mitochondrial DNA is contained in the kinetoplast and is composed of thousands of interlocked DNA circles (kDNA). The arrangement of kDNA is related to the presence of histone-like proteins, known as KAPs (kinetoplast-associated proteins), that neutralize the negatively charged kDNA, thereby affecting the activity of mitochondrial enzymes involved in replication, transcription and repair. In this study, CRISPR-Cas9 was used to delete both alleles of the A. deanei KAP4 gene. Gene-deficient mutants exhibited high compaction of the kDNA network and displayed atypical phenotypes, such as the appearance of a filamentous symbionts, cells containing two nuclei and one kinetoplast, and division blocks. Treatment with cisplatin and UV showed that Δkap4 null mutants were not more sensitive to DNA damage and repair than wild-type cells. Notably, lesions caused by these genotoxic agents in the mitochondrial DNA could be repaired, suggesting that the kDNA in the kinetoplast of trypanosomatids has unique repair mechanisms. Taken together, our data indicate that although KAP4 is not an essential protein, it plays important roles in kDNA arrangement and replication, as well as in the maintenance of symbiosis.
Collapse
Affiliation(s)
- Camila Silva Gonçalves
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, IBCCF, CCS, UFRJ, Cidade Universitária, Rio de Janeiro, RJ, CEP 21941-590, Brazil
- Centro Nacional de Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brazil
| | | | - Bruno Repolês
- Laboratório de Genética Bioquímica, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jeremy C Mottram
- Department of Biology, York Biomedical Research Institute, University of York, Wentworth Way, Heslington, York, YO10 5DD, UK
| | - Wanderley De Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, IBCCF, CCS, UFRJ, Cidade Universitária, Rio de Janeiro, RJ, CEP 21941-590, Brazil
- Centro Nacional de Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brazil
| | - Carlos Renato Machado
- Laboratório de Genética Bioquímica, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | - Maria Cristina M Motta
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, IBCCF, CCS, UFRJ, Cidade Universitária, Rio de Janeiro, RJ, CEP 21941-590, Brazil.
- Centro Nacional de Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
38
|
Gibson W. The sexual side of parasitic protists. Mol Biochem Parasitol 2021; 243:111371. [PMID: 33872659 DOI: 10.1016/j.molbiopara.2021.111371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/26/2021] [Accepted: 04/13/2021] [Indexed: 01/09/2023]
Abstract
Much of the vast evolutionary landscape occupied by Eukaryotes is dominated by protists. Though parasitism has arisen in many lineages, there are three main groups of parasitic protists of relevance to human and livestock health: the Apicomplexa, including the malaria parasite Plasmodium and coccidian pathogens of livestock such as Eimeria; the excavate flagellates, encompassing a diverse range of protist pathogens including trypanosomes, Leishmania, Giardia and Trichomonas; and the Amoebozoa, including pathogenic amoebae such as Entamoeba. These three groups represent separate, deep branches of the eukaryote tree, underlining their divergent evolutionary histories. Here, I explore what is known about sex in these three main groups of parasitic protists.
Collapse
Affiliation(s)
- Wendy Gibson
- School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol, BS8 1TQ, United Kingdom.
| |
Collapse
|
39
|
Gerasimov ES, Gasparyan AA, Afonin DA, Zimmer SL, Kraeva N, Lukeš J, Yurchenko V, Kolesnikov A. Complete minicircle genome of Leptomonas pyrrhocoris reveals sources of its non-canonical mitochondrial RNA editing events. Nucleic Acids Res 2021; 49:3354-3370. [PMID: 33660779 PMCID: PMC8034629 DOI: 10.1093/nar/gkab114] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 01/24/2023] Open
Abstract
Uridine insertion/deletion (U-indel) editing of mitochondrial mRNA, unique to the protistan class Kinetoplastea, generates canonical as well as potentially non-productive editing events. While the molecular machinery and the role of the guide (g) RNAs that provide required information for U-indel editing are well understood, little is known about the forces underlying its apparently error-prone nature. Analysis of a gRNA:mRNA pair allows the dissection of editing events in a given position of a given mitochondrial transcript. A complete gRNA dataset, paired with a fully characterized mRNA population that includes non-canonically edited transcripts, would allow such an analysis to be performed globally across the mitochondrial transcriptome. To achieve this, we have assembled 67 minicircles of the insect parasite Leptomonas pyrrhocoris, with each minicircle typically encoding one gRNA located in one of two similar-sized units of different origin. From this relatively narrow set of annotated gRNAs, we have dissected all identified mitochondrial editing events in L. pyrrhocoris, the strains of which dramatically differ in the abundance of individual minicircle classes. Our results support a model in which a multitude of editing events are driven by a limited set of gRNAs, with individual gRNAs possessing an inherent ability to guide canonical and non-canonical editing.
Collapse
Affiliation(s)
- Evgeny S Gerasimov
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow 119435, Russia
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127051, Russia
| | - Anna A Gasparyan
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Dmitry A Afonin
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Sara L Zimmer
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, Duluth, MN 55812, USA
| | - Natalya Kraeva
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice (Budweis), Czech Republic
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice (Budweis), Czech Republic
| | - Vyacheslav Yurchenko
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow 119435, Russia
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
| | - Alexander Kolesnikov
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
40
|
Rosa LB, Aires RL, Oliveira LS, Fontes JV, Miguel DC, Abbehausen C. A "Golden Age" for the discovery of new antileishmanial agents: Current status of leishmanicidal gold complexes and prospective targets beyond the trypanothione system. ChemMedChem 2021; 16:1681-1695. [PMID: 33615725 DOI: 10.1002/cmdc.202100022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 12/11/2022]
Abstract
Leishmaniasis is one of the most neglected diseases worldwide and is considered a serious public health issue. The current therapeutic options have several disadvantages that make the search for new therapeutics urgent. Gold compounds are emerging as promising candidates based on encouraging in vitro and limited in vivo results for several AuI and AuIII complexes. The antiparasitic mechanisms of these molecules remain only partially understood. However, a few studies have proposed the trypanothione redox system as a target, similar to the mammalian thioredoxin system, pointed out as the main target for several gold compounds with significant antitumor activity. In this review, we present the current status of the investigation and design of gold compounds directed at treating leishmaniasis. In addition, we explore potential targets in Leishmania parasites beyond the trypanothione system, taking into account previous studies and structure modulation performed for gold-based compounds.
Collapse
Affiliation(s)
- Leticia B Rosa
- Institute of Biology, University of Campinas UNICAMP, Campinas, SP, Brazil
| | - Rochanna L Aires
- Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil)
| | - Laiane S Oliveira
- Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil)
| | - Josielle V Fontes
- Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil)
| | - Danilo C Miguel
- Institute of Biology, University of Campinas UNICAMP, Campinas, SP, Brazil
| | - Camilla Abbehausen
- Institute of Chemistry, University of Campinas, PO Box 6154, 13083-970, Campinas, SP, Brazil)
| |
Collapse
|
41
|
Kostygov AY, Karnkowska A, Votýpka J, Tashyreva D, Maciszewski K, Yurchenko V, Lukeš J. Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses. Open Biol 2021; 11:200407. [PMID: 33715388 PMCID: PMC8061765 DOI: 10.1098/rsob.200407] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/08/2021] [Indexed: 12/14/2022] Open
Abstract
Euglenozoa is a species-rich group of protists, which have extremely diverse lifestyles and a range of features that distinguish them from other eukaryotes. They are composed of free-living and parasitic kinetoplastids, mostly free-living diplonemids, heterotrophic and photosynthetic euglenids, as well as deep-sea symbiontids. Although they form a well-supported monophyletic group, these morphologically rather distinct groups are almost never treated together in a comparative manner, as attempted here. We present an updated taxonomy, complemented by photos of representative species, with notes on diversity, distribution and biology of euglenozoans. For kinetoplastids, we propose a significantly modified taxonomy that reflects the latest findings. Finally, we summarize what is known about viruses infecting euglenozoans, as well as their relationships with ecto- and endosymbiotic bacteria.
Collapse
Affiliation(s)
- Alexei Y. Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Zoological Institute, Russian Academy of Sciences, St Petersburg, Russia
| | - Anna Karnkowska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Jan Votýpka
- Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Daria Tashyreva
- Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Kacper Maciszewski
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia
| | - Julius Lukeš
- Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| |
Collapse
|
42
|
Tikhonenkov DV, Gawryluk RMR, Mylnikov AP, Keeling PJ. First finding of free-living representatives of Prokinetoplastina and their nuclear and mitochondrial genomes. Sci Rep 2021; 11:2946. [PMID: 33536456 PMCID: PMC7859406 DOI: 10.1038/s41598-021-82369-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/19/2021] [Indexed: 01/30/2023] Open
Abstract
Kinetoplastids are heterotrophic flagellated protists, including important parasites of humans and animals (trypanosomatids), and ecologically important free-living bacterial consumers (bodonids). Phylogenies have shown that the earliest-branching kinetoplastids are all parasites or obligate endosymbionts, whose highly-derived state makes reconstructing the ancestral state of the group challenging. We have isolated new strains of unusual free-living flagellates that molecular phylogeny shows to be most closely related to endosymbiotic and parasitic Perkinsela and Ichthyobodo species that, together with unidentified environmental sequences, form the clade at the base of kinetoplastids. These strains are therefore the first described free-living prokinetoplastids, and potentially very informative in understanding the evolution and ancestral states of morphological and molecular characteristics described in other kinetoplastids. Overall, we find that these organisms morphologically and ultrastructurally resemble some free-living bodonids and diplonemids, and possess nuclear genomes with few introns, polycistronic mRNA expression, high coding density, and derived traits shared with other kinetoplastids. Their genetic repertoires are more diverse than the best-studied free-living kinetoplastids, which is likely a reflection of their higher metabolic potential. Mitochondrial RNAs of these new species undergo the most extensive U insertion/deletion editing reported so far, and limited deaminative C-to-U and A-to-I editing, but we find no evidence for mitochondrial trans-splicing.
Collapse
Affiliation(s)
- Denis V. Tikhonenkov
- grid.4886.20000 0001 2192 9124Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, 152742 Russia ,grid.446209.d0000 0000 9203 3563AquaBioSafe Laboratory, University of Tyumen, 625003 Tyumen, Russia
| | - Ryan M. R. Gawryluk
- grid.143640.40000 0004 1936 9465Department of Biology, University of Victoria, Victoria, British Columbia V8W 2Y2 Canada
| | - Alexander P. Mylnikov
- grid.4886.20000 0001 2192 9124Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, 152742 Russia
| | - Patrick J. Keeling
- grid.17091.3e0000 0001 2288 9830Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4 Canada
| |
Collapse
|
43
|
Ettahi K, Lhee D, Sung JY, Simpson AGB, Park JS, Yoon HS. Evolutionary History of Mitochondrial Genomes in Discoba, Including the Extreme Halophile Pleurostomum flabellatum (Heterolobosea). Genome Biol Evol 2021; 13:evaa241. [PMID: 33185659 PMCID: PMC7900873 DOI: 10.1093/gbe/evaa241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2020] [Indexed: 12/29/2022] Open
Abstract
Data from Discoba (Heterolobosea, Euglenozoa, Tsukubamonadida, and Jakobida) are essential to understand the evolution of mitochondrial genomes (mitogenomes), because this clade includes the most primitive-looking mitogenomes known, as well some extremely divergent genome information systems. Heterolobosea encompasses more than 150 described species, many of them from extreme habitats, but only six heterolobosean mitogenomes have been fully sequenced to date. Here we complete the mitogenome of the heterolobosean Pleurostomum flabellatum, which is extremely halophilic and reportedly also lacks classical mitochondrial cristae, hinting at reduction or loss of respiratory function. The mitogenome of P. flabellatum maps as a 57,829-bp-long circular molecule, including 40 coding sequences (19 tRNA, two rRNA, and 19 orfs). The gene content and gene arrangement are similar to Naegleria gruberi and Naegleria fowleri, the closest relatives with sequenced mitogenomes. The P. flabellatum mitogenome contains genes that encode components of the electron transport chain similar to those of Naegleria mitogenomes. Homology searches against a draft nuclear genome showed that P. flabellatum has two homologs of the highly conserved Mic60 subunit of the MICOS complex, and likely lost Mic19 and Mic10. However, electron microscopy showed no cristae structures. We infer that P. flabellatum, which originates from high salinity (313‰) water where the dissolved oxygen concentration is low, possesses a mitochondrion capable of aerobic respiration, but with reduced development of cristae structure reflecting limited use of this aerobic capacity (e.g., microaerophily).
Collapse
Affiliation(s)
- Khaoula Ettahi
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Duckhyun Lhee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Ji Yeon Sung
- Department of Oceanography, Kyungpook Institute of Oceanography, School of Earth System Sciences, Kyungpook National University, Daegu, South Korea
| | - Alastair G B Simpson
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jong Soo Park
- Department of Oceanography, Kyungpook Institute of Oceanography, School of Earth System Sciences, Kyungpook National University, Daegu, South Korea
- Research Institute for Dok-do and Ulleung-do Island, Kyungpook National University, Daegu, South Korea
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
44
|
Davey JW, Catta-Preta CMC, James S, Forrester S, Motta MCM, Ashton PD, Mottram JC. Chromosomal assembly of the nuclear genome of the endosymbiont-bearing trypanosomatid Angomonas deanei. G3 (BETHESDA, MD.) 2021; 11:jkaa018. [PMID: 33561222 PMCID: PMC8022732 DOI: 10.1093/g3journal/jkaa018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/17/2020] [Indexed: 12/22/2022]
Abstract
Angomonas deanei is an endosymbiont-bearing trypanosomatid with several highly fragmented genome assemblies and unknown chromosome number. We present an assembly of the A. deanei nuclear genome based on Oxford Nanopore sequence that resolves into 29 complete or close-to-complete chromosomes. The assembly has several previously unknown special features; it has a supernumerary chromosome, a chromosome with a 340-kb inversion, and there is a translocation between two chromosomes. We also present an updated annotation of the chromosomal genome with 10,365 protein-coding genes, 59 transfer RNAs, 26 ribosomal RNAs, and 62 noncoding RNAs.
Collapse
Affiliation(s)
- John W Davey
- Department of Biology, University of York, York YO10 5DD, UK
| | - Carolina M C Catta-Preta
- Department of Biology, University of York, York YO10 5DD, UK
- York Biomedical Research Institute, University of York, York YO10 5DD, UK
- Medicinal Chemistry Center (CQMED)/Structural Genomics Consortium, Universidade Estadual de Campinas, Campinas, São Paulo 13083-886, Brazil
| | - Sally James
- Department of Biology, University of York, York YO10 5DD, UK
| | - Sarah Forrester
- Department of Biology, University of York, York YO10 5DD, UK
| | - Maria Cristina M Motta
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Departamento de Biologia Celular e Parasitologia, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Rio de Janeiro, RJ, Brazil
| | - Peter D Ashton
- Department of Biology, University of York, York YO10 5DD, UK
| | - Jeremy C Mottram
- Department of Biology, University of York, York YO10 5DD, UK
- York Biomedical Research Institute, University of York, York YO10 5DD, UK
| |
Collapse
|
45
|
Harada R, Inagaki Y. Phage Origin of Mitochondrion-Localized Family A DNA Polymerases in Kinetoplastids and Diplonemids. Genome Biol Evol 2021; 13:6081025. [PMID: 33432342 PMCID: PMC7883662 DOI: 10.1093/gbe/evab003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2021] [Indexed: 01/18/2023] Open
Abstract
Mitochondria retain their own genomes as other bacterial endosymbiont-derived organelles. Nevertheless, no protein for DNA replication and repair is encoded in any mitochondrial genomes (mtDNAs) assessed to date, suggesting that the nucleus primarily governs the maintenance of mtDNA. As the proteins of diverse evolutionary origins occupy a large proportion of the current mitochondrial proteomes, we anticipate finding the same evolutionary trend in the nucleus-encoded machinery for mtDNA maintenance. Indeed, none of the DNA polymerases (DNAPs) in the mitochondrial endosymbiont, a putative α-proteobacterium, seemingly had been inherited by their descendants (mitochondria), as none of the known types of mitochondrion-localized DNAP showed a specific affinity to the α-proteobacterial DNAPs. Nevertheless, we currently have no concrete idea of how and when the known types of mitochondrion-localized DNAPs emerged. We here explored the origins of mitochondrion-localized DNAPs after the improvement of the samplings of DNAPs from bacteria and phages/viruses. Past studies have revealed that a set of mitochondrion-localized DNAPs in kinetoplastids and diplonemids, namely PolIB, PolIC, PolID, PolI-Perk1/2, and PolI-dipl (henceforth designated collectively as “PolIBCD+”) have emerged from a single DNAP. In this study, we recovered an intimate connection between PolIBCD+ and the DNAPs found in a particular group of phages. Thus, the common ancestor of kinetoplastids and diplonemids most likely converted a laterally acquired phage DNAP into a mitochondrion-localized DNAP that was ancestral to PolIBCD+. The phage origin of PolIBCD+ hints at a potentially large contribution of proteins acquired via nonvertical processes to the machinery for mtDNA maintenance in kinetoplastids and diplonemids.
Collapse
Affiliation(s)
- Ryo Harada
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Japan
| | - Yuji Inagaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Japan.,Center for Computational Sciences, University of Tsukuba, Japan
| |
Collapse
|
46
|
Gupta CM, Ambaru B, Bajaj R. Emerging Functions of Actins and Actin Binding Proteins in Trypanosomatids. Front Cell Dev Biol 2020; 8:587685. [PMID: 33163497 PMCID: PMC7581878 DOI: 10.3389/fcell.2020.587685] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/22/2020] [Indexed: 01/20/2023] Open
Abstract
Actin is the major protein constituent of the cytoskeleton that performs wide range of cellular functions. It exists in monomeric and filamentous forms, dynamics of which is regulated by a large repertoire of actin binding proteins. However, not much was known about existence of these proteins in trypanosomatids, till the genome sequence data of three important organisms of this class, viz. Trypanosoma brucei, Trypanosoma cruzi and Leishmania major, became available. Here, we have reviewed most of the findings reported to date on the intracellular distribution, structure and functions of these proteins and based on them, we have hypothesized some of their functions. The major findings are as follows: (1) All the three organisms encode at least a set of ten actin binding proteins (profilin, twinfilin, ADF/cofilin, CAP/srv2, CAPz, coronin, two myosins, two formins) and one isoform of actin, except that T. cruzi encodes for three formins and several myosins along with four actins. (2) Actin 1 and a few actin binding proteins (ADF/cofilin, profilin, twinfilin, coronin and myosin13 in L. donovani; ADF/cofilin, profilin and myosin1 in T. brucei; profilin and myosin-F in T.cruzi) have been identified and characterized. (3) In all the three organisms, actin cytoskeleton has been shown to regulate endocytosis and intracellular trafficking. (4) Leishmania actin1 has been the most characterized protein among trypanosomatid actins. (5) This protein is localized to the cytoplasm as well as in the flagellum, nucleus and kinetoplast, and in vitro, it binds to DNA and displays scDNA relaxing and kDNA nicking activities. (6) The pure protein prefers to form bundles instead of thin filaments, and does not bind DNase1 or phalloidin. (7) Myosin13, myosin1 and myosin-F regulate endocytosis and intracellular trafficking, respectively, in Leishmania, T. brucei and T. cruzi. (8) Actin-dependent myosin13 motor is involved in dynamics and assembly of Leishmania flagellum. (9) Leishmania twinfilin localizes mostly to the nucleolus and coordinates karyokinesis by effecting splindle elongation and DNA synthesis. (10) Leishmania coronin binds and promotes actin filament formation and exists in tetrameric form rather than trimeric form, like other coronins. (11) Trypanosomatid profilins are essential for survival of all the three parasites.
Collapse
Affiliation(s)
- Chhitar M Gupta
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India
| | - Bindu Ambaru
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India.,Manipal Academy of Higher Education, Manipal, India
| | - Rani Bajaj
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India.,Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
47
|
Butenko A, Hammond M, Field MC, Ginger ML, Yurchenko V, Lukeš J. Reductionist Pathways for Parasitism in Euglenozoans? Expanded Datasets Provide New Insights. Trends Parasitol 2020; 37:100-116. [PMID: 33127331 DOI: 10.1016/j.pt.2020.10.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 12/21/2022]
Abstract
The unicellular trypanosomatids belong to the phylum Euglenozoa and all known species are obligate parasites. Distinct lineages infect plants, invertebrates, and vertebrates, including humans. Genome data for marine diplonemids, together with freshwater euglenids and free-living kinetoplastids, the closest known nonparasitic relatives to trypanosomatids, recently became available. Robust phylogenetic reconstructions across Euglenozoa are now possible and place the results of parasite-focused studies into an evolutionary context. Here we discuss recent advances in identifying the factors shaping the evolution of Euglenozoa, focusing on ancestral features generally considered parasite-specific. Remarkably, most of these predate the transition(s) to parasitism, suggesting that the presence of certain preconditions makes a significant lifestyle change more likely.
Collapse
Affiliation(s)
- Anzhelika Butenko
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Faculty of Science, University of Ostrava, Ostrava, Czech Republic.
| | - Michael Hammond
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Mark C Field
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; School of Life Sciences, University of Dundee, Dundee, UK
| | - Michael L Ginger
- School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - Vyacheslav Yurchenko
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic; Martsinovsky Institute of Medical Parasitology, Sechenov University, Moscow, Russia
| | - Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic.
| |
Collapse
|
48
|
Herreros-Cabello A, Callejas-Hernández F, Gironès N, Fresno M. Trypanosoma Cruzi Genome: Organization, Multi-Gene Families, Transcription, and Biological Implications. Genes (Basel) 2020; 11:E1196. [PMID: 33066599 PMCID: PMC7602482 DOI: 10.3390/genes11101196] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 01/20/2023] Open
Abstract
Chagas disease caused by the parasite Trypanosoma cruzi affects millions of people. Although its first genome dates from 2005, its complexity hindered a complete assembly and annotation. However, the new sequencing methods have improved genome annotation of some strains elucidating the broad genetic diversity and complexity of this parasite. Here, we reviewed the genomic structure and regulation, the genetic diversity, and the analysis of the principal multi-gene families of the recent genomes for several strains. The telomeric and sub-telomeric regions are sites with high recombination events, the genome displays two different compartments, the core and the disruptive, and the genome plasticity seems to play a key role in the survival and the infection process. Trypanosoma cruzi (T. cruzi) genome is composed mainly of multi-gene families as the trans-sialidases, mucins, and mucin-associated surface proteins. Trans-sialidases are the most abundant genes in the genome and show an important role in the effectiveness of the infection and the parasite survival. Mucins and MASPs are also important glycosylated proteins of the surface of the parasite that play a major biological role in both insect and mammal-dwelling stages. Altogether, these studies confirm the complexity of T. cruzi genome revealing relevant concepts to better understand Chagas disease.
Collapse
Affiliation(s)
- Alfonso Herreros-Cabello
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (A.H.-C.); (F.C.-H.)
| | - Francisco Callejas-Hernández
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (A.H.-C.); (F.C.-H.)
| | - Núria Gironès
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (A.H.-C.); (F.C.-H.)
- Instituto Sanitario de Investigación Princesa, 28006 Madrid, Spain
| | - Manuel Fresno
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (A.H.-C.); (F.C.-H.)
- Instituto Sanitario de Investigación Princesa, 28006 Madrid, Spain
| |
Collapse
|
49
|
A novel decatenation assay for DNA topoisomerases using a singly-linked catenated substrate. Biotechniques 2020; 69:356-362. [PMID: 33000631 DOI: 10.2144/btn-2020-0059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Decatenation is a crucial in vivo reaction of DNA topoisomerases in DNA replication and is frequently used in in vitro drug screening. Usually this reaction is monitored using kinetoplast DNA as a substrate, although this assay has several limitations. Here we have engineered a substrate for Tn3 resolvase that generates a singly-linked catenane that can readily be purified from the DNA substrate after restriction enzyme digestion and centrifugation. We show that this catenated substrate can be used with high sensitivity in topoisomerase assays and drug-inhibition assays.
Collapse
|
50
|
Li SJ, Zhang X, Lukeš J, Li BQ, Wang JF, Qu LH, Hide G, Lai DH, Lun ZR. Novel organization of mitochondrial minicircles and guide RNAs in the zoonotic pathogen Trypanosoma lewisi. Nucleic Acids Res 2020; 48:9747-9761. [PMID: 32853372 PMCID: PMC7515712 DOI: 10.1093/nar/gkaa700] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 08/06/2020] [Accepted: 08/11/2020] [Indexed: 01/01/2023] Open
Abstract
Kinetoplastid flagellates are known for several unusual features, one of which is their complex mitochondrial genome, known as kinetoplast (k) DNA, composed of mutually catenated maxi- and minicircles. Trypanosoma lewisi is a member of the Stercorarian group of trypanosomes which is, based on human infections and experimental data, now considered a zoonotic pathogen. By assembling a total of 58 minicircle classes, which fall into two distinct categories, we describe a novel type of kDNA organization in T. lewisi. RNA-seq approaches allowed us to map the details of uridine insertion and deletion editing events upon the kDNA transcriptome. Moreover, sequencing of small RNA molecules enabled the identification of 169 unique guide (g) RNA genes, with two differently organized minicircle categories both encoding essential gRNAs. The unprecedented organization of minicircles and gRNAs in T. lewisi broadens our knowledge of the structure and expression of the mitochondrial genomes of these human and animal pathogens. Finally, a scenario describing the evolution of minicircles is presented.
Collapse
Affiliation(s)
- Su-Jin Li
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences, and Key Laboratory of Tropical Diseases Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
| | - Xuan Zhang
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences, and Key Laboratory of Tropical Diseases Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences and Faculty of Science, University of South Bohemia, České Budějovice (Budweis) 37005, Czech Republic
| | - Bi-Qi Li
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences, and Key Laboratory of Tropical Diseases Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
| | - Ju-Feng Wang
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences, and Key Laboratory of Tropical Diseases Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
| | - Liang-Hu Qu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
| | - Geoff Hide
- Ecosystems and Environment Research Centre and Biomedical Research Centre, School of Science, Engineering and Environment, University of Salford, Salford, UK
| | - De-Hua Lai
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences, and Key Laboratory of Tropical Diseases Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
| | - Zhao-Rong Lun
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences, and Key Laboratory of Tropical Diseases Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
- Ecosystems and Environment Research Centre and Biomedical Research Centre, School of Science, Engineering and Environment, University of Salford, Salford, UK
| |
Collapse
|