1
|
Denny JE, Flores JN, Mdluli NV, Abt MC. Standard mouse diets lead to differences in severity in infectious and non-infectious colitis. mBio 2025; 16:e0330224. [PMID: 40126017 PMCID: PMC11980566 DOI: 10.1128/mbio.03302-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/04/2025] [Indexed: 03/25/2025] Open
Abstract
Clostridioides difficile infects the large intestine and can result in debilitating and potentially fatal colitis. The intestinal microbiota is a major factor influencing the severity of disease following infection. Factors like diet that shape microbiota composition and function may modulate C. difficile colitis. Here, we report that mice fed two distinct standard mouse chows (LabDiet 5010 and LabDiet 5053) exhibited significantly different susceptibility to severe C. difficile infection. Both diets are grain-based with comparable profiles of macro and micronutrient composition. Diet 5010-fed mice had severe morbidity and mortality compared to Diet 5053-fed mice despite no differences in C. difficile colonization or toxin production. Furthermore, Diet 5053 protected mice from toxin-induced epithelial damage. This protection was microbiota-dependent as germ-free mice or mice harboring a reduced diversity microbiota fed Diet 5053 were not protected from severe infection. However, cohousing with mice harboring a complex microbiota restored the protective capacity of Diet 5053 but not Diet 5010. Metabolomic profiling revealed distinct metabolic capacities between Diet 5010- and Diet 5053-fed intestinal microbiotas. Diet 5053-mediated protection extended beyond C. difficile infection as Diet 5053-fed mice displayed less severe dextran sodium sulfate-induced colitis than Diet 5010-fed mice, highlighting a potentially broader capacity for Diet 5053 to limit colitis. These findings demonstrate that standard diet formulations in combination with the host microbiota can drive variability in severity of infectious and non-infectious murine colitis systems, and that diet holds therapeutic potential to limit the severity of C. difficile infection through modulating the functional capacity of the microbiota.IMPORTANCEDiet is a major modulator of the microbiota and intestinal health. This report finds that two different standard mouse diets starkly alter the severity of colitis observed in a pathogen-mediated (Clostridioides difficile) and non-infectious (dextran sodium sulfate) mouse colitis experimental systems. These findings in part explain study-to-study variability using these mouse systems to study disease. Since the gut microbiota plays a key role in intestinal homeostasis, diet-derived modulation of the microbiota is a promising avenue to control disease driven by intestinal inflammation and may represent a potential intervention strategy for at-risk patients.
Collapse
Affiliation(s)
- Joshua E. Denny
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Julia N. Flores
- Division of Infectious Disease, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Nontokozo V. Mdluli
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael C. Abt
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Raeisi H, Leeflang J, Hasan S, Woods SL. Bioengineered Probiotics for Clostridioides difficile Infection: An Overview of the Challenges and Potential for This New Treatment Approach. Probiotics Antimicrob Proteins 2025; 17:763-780. [PMID: 39531149 DOI: 10.1007/s12602-024-10398-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
The rapid increase in microbial antibiotic resistance in Clostridioides difficile (C. difficile) strains and the formation of hypervirulent strains have been associated with a global increase in the incidence of C. difficile infection (CDI) and subsequently, an increase in the rate of recurrence. These consequences have led to an urgent need to develop new and promising alternative strategies to control this pathogen. Engineered probiotics are exciting new bacterial strains produced by editing the genome of the original probiotics. Recently, engineered probiotics have been used to develop delivery vehicles for vaccines, diagnostics, and therapeutics. Recent studies have demonstrated engineered probiotics may potentially be an effective approach to control or treat CDI. This review provides a brief overview of the considerations for engineered probiotics for medicinal use, with a focus on recent preclinical research using engineered probiotics to prevent or treat CDI. We also address the challenges faced in the production of engineered strains and how they may be overcome in the application of these agents to meet patient needs in the future.
Collapse
Affiliation(s)
- Hamideh Raeisi
- Gastroenterology and Liver Diseases Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Julia Leeflang
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Sadia Hasan
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Susan L Woods
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| |
Collapse
|
3
|
Kilic G, Sengun IY. As next-generation probiotics: acetic acid bacteria isolated from Kombucha beverages produced with Anatolian hawthorn leaves. Int Microbiol 2025; 28:643-665. [PMID: 39134829 DOI: 10.1007/s10123-024-00568-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/14/2024] [Accepted: 07/31/2024] [Indexed: 04/12/2025]
Abstract
This research examined acetic acid bacteria (AAB) isolated from Kombucha beverages produced with Anatolian hawthorn (Crataegus orientalis) as next-generation probiotics. Eighty-six AAB were isolated from the samples and investigated in terms of biosafety, viability in vitro gastrointestinal conditions, technological and bioactive properties, and also in vitro adhesion abilities. Seventy-six isolates demonstrating γ-hemolysis exhibited resistance to erythromycin and ampicillin. Besides, these isolates survived at low pH and in the presence of bile salts. However, the majority of AAB isolates showed tolerance to phenol, pepsin, and pancreatin. Also, twenty-one isolates showed protease enzyme activity, while eight isolates had amylase enzyme activity. Despite most of the isolates showed viability at 1.5% salt, only 19 isolates survived at 10% salt. Most AAB isolates exhibited inhibition zones ranging from 8 to 26 mm against test bacteria, their antioxidant activities were above 80%. Additionally, some isolates exhibited auto-aggregation ability ranging from 0.66 to 23.62% and co-aggregation ability ranging from 1.18 to 71.32%, while hydrophobicity ranged from 1.32 to 69.87% toward xylene. Finally, the indigenous 76 AAB isolates that had remarkable probiotic properties were characterized based on 16S rRNA gene sequencing, and the isolates belonged to Komagateibacter sp. (64.47%), Komagateibacter saccharivorans (15.79%), K. rhaeticus (11.84%), and Gluconobacter sp. (7.90%). As a result, the isolates identified as Gluconobacter sp. A21, Komagataeibacter sp. A139, Gluconobacter sp. A141, and Komagataeibacter sp. A146, which showed high viability under gastrointestinal conditions, safe and acceptable in terms of technological, bioactive, and adhesion properties and could be evaluated as next-generation probiotics.
Collapse
Affiliation(s)
- Gulden Kilic
- Gastronomy and Culinary Arts Department, Art and Design Faculty, Alanya University, Alanya, Antalya, Turkey
- Food Engineering Department, Engineering Faculty, Ege University, Izmir, Turkey
| | - Ilkin Yucel Sengun
- Food Engineering Department, Engineering Faculty, Ege University, Izmir, Turkey.
| |
Collapse
|
4
|
Gurung B, Courreges MC, Pollak J, Malgor R, Jiang L, Wang B, Wang S. Non-invasive treatment of Clostridioides difficile infection with a human-origin probiotic cocktail through gut microbiome-gut metabolome modulations. Front Microbiol 2025; 16:1555220. [PMID: 40078549 PMCID: PMC11897039 DOI: 10.3389/fmicb.2025.1555220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 02/10/2025] [Indexed: 03/14/2025] Open
Abstract
Clostridioides difficile (C. difficile) is a leading cause of hospital-associated diarrhea, primarily due to gut dysbiosis following antibiotic use. Probiotics have been found to provide several benefits to hosts via modulation of the gut microbiota and their metabolites. However, till now, no conventional probiotics have been clearly proven to be an effective prophylactic option for CDI prevention. Therefore, more studies on developing specific probiotic candidates targeting CDI and improving diversity of probiotics administrated are needed. In this study, a human-origin highly diverse and highly targeted probiotic cocktail (Pro11) containing 11 various probiotic species was developed against C. difficile. Pro11 protected mice against CDI with lower clinical scores and higher survival rates, and inhibited C. difficile in vivo with less C. difficile burden and toxins production determined in colon. Histological analysis demonstrated that Pro11 strengthened gut barrier, reducing gut permeability (less secreted sCD14 in serum) and gut inflammation. In addition, gut microbiome analysis demonstrated that Pro11 increased gut microbiome diversity and beneficial species. Along with gut microbiome modulation, gut metabolites including butyrate, were significantly increased in the probiotics-fed group. Results from this study highlighted probiotics as a promising CDI therapy as gut microbiota modulators, which will lay the foundation for translating probiotics in mitigating CDI and other intestinal pathogens for clinical use.
Collapse
Affiliation(s)
- Bijay Gurung
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
- Infectious and Tropical Disease Institute, Ohio University, Athens, OH, United States
| | - Maria C. Courreges
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Julie Pollak
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, FL, United States
| | - Ramiro Malgor
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Lin Jiang
- Division of Natural Sciences, New College of Florida, Sarasota, FL, United States
| | - Bo Wang
- Department of Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, FL, United States
| | - Shaohua Wang
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
- Infectious and Tropical Disease Institute, Ohio University, Athens, OH, United States
| |
Collapse
|
5
|
Huang X, Johnson AE, Brehm JN, Do TVT, Auchtung TA, McCullough HC, Lerma AI, Haidacher SJ, Hoch KM, Horvath TD, Sorg JA, Haag AM, Auchtung JM. Clostridioides difficile colonization is not mediated by bile salts and utilizes Stickland fermentation of proline in an in vitro model. mSphere 2025; 10:e0104924. [PMID: 39817755 PMCID: PMC11852769 DOI: 10.1128/msphere.01049-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 12/18/2024] [Indexed: 01/18/2025] Open
Abstract
Treatment with antibiotics is a major risk factor for Clostridioides difficile infection, likely due to depletion of the gastrointestinal microbiota. Two microbiota-mediated mechanisms thought to limit C. difficile colonization include the conversion of conjugated primary bile salts into secondary bile salts toxic to C. difficile growth and competition between the microbiota and C. difficile for limiting nutrients. Using a continuous flow model that simulates the nutrient conditions of the distal colon, we investigated how treatment with 6 clinically used antibiotics influenced susceptibility to C. difficile infection in 12 different microbial communities cultivated from healthy individuals. Antibiotic treatment reduced microbial richness; disruption varied by antibiotic class and microbiota composition, but did not correlate with C. difficile susceptibility. Antibiotic treatment also disrupted microbial bile salt metabolism, increasing levels of the primary bile salt, cholate. However, changes in bile salt did not correlate with increased C. difficile susceptibility. Furthermore, bile salts were not required to inhibit C. difficile colonization. We tested whether amino acid fermentation contributed to the persistence of C. difficile in antibiotic-treated communities. C. difficile mutants unable to use proline as an electron acceptor in Stickland fermentation due to disruption of proline reductase (prdB-) had significantly lower levels of colonization than wild-type strains in four of six antibiotic-treated communities tested. The inability to ferment glycine or leucine as electron acceptors, however, was not sufficient to limit colonization in any communities. The data provide further support for the importance of bile salt-independent mechanisms in regulating the colonization of C. difficile.IMPORTANCEClostridioides difficile is one of the leading causes of hospital-acquired infections and antibiotic-associated diarrhea. Several potential mechanisms through which the microbiota can limit C. difficile infection have been identified and are potential targets for new therapeutics. However, it is unclear which mechanisms of C. difficile inhibition represent the best targets for the development of new therapeutics. These studies demonstrate that in a complex in vitro model of C. difficile infection, colonization resistance is independent of microbial bile salt metabolism. Instead, the ability of C. difficile to colonize is dependent upon its ability to metabolize proline, although proline-dependent colonization is context dependent and is not observed in all disrupted communities. Altogether, these studies support the need for further work to understand how bile-independent mechanisms regulate C. difficile colonization.
Collapse
Affiliation(s)
- Xiaoyun Huang
- Department of Food Science and Technology and Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - April E. Johnson
- Department of Food Science and Technology and Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Joshua N. Brehm
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Thi Van Thanh Do
- Department of Food Science and Technology and Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Thomas A. Auchtung
- Department of Food Science and Technology and Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Hugh C. McCullough
- Department of Food Science and Technology and Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Armando I. Lerma
- Department of Food Science and Technology and Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Sigmund J. Haidacher
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, Texas, USA
| | - Kathleen M. Hoch
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, Texas, USA
| | - Thomas D. Horvath
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, Texas, USA
- Department of Pharmacy Practice & Translational Research, University of Houston, Houston, Texas, USA
| | - Joseph A. Sorg
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Anthony M. Haag
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, Texas, USA
| | - Jennifer M. Auchtung
- Department of Food Science and Technology and Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
6
|
Grahl MVC, Hohl KS, Smaniotto T, Carlini CR. Microbial Trojan Horses: Virulence Factors as Key Players in Neurodegenerative Diseases. Molecules 2025; 30:687. [PMID: 39942791 PMCID: PMC11820544 DOI: 10.3390/molecules30030687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/01/2025] [Accepted: 02/01/2025] [Indexed: 02/16/2025] Open
Abstract
Changes in population demographics indicate that the elderly population will reach 2.1 billion worldwide by 2050. In parallel, there will be an increase in neurodegenerative diseases such as Alzheimer's and Parkinson's. This review explores dysbiosis occurring in these pathologies and how virulence factors contribute to the worsening or development of clinical conditions, and it summarizes existing and potential ways to combat microorganisms related to these diseases. Microbiota imbalances can contribute to the progression of neurodegenerative diseases by increasing intestinal permeability, exchanging information through innervation, and even acting as a Trojan horse affecting immune cells. The microorganisms of the microbiota produce virulence factors to protect themselves from host defenses, many of which contribute to neurodegenerative diseases. These virulence factors are expressed according to the genetic composition of each microorganism, leading to a wide range of factors to be considered. Among the main virulence factors are LPS, urease, curli proteins, amyloidogenic proteins, VacA, and CagA. These factors can also be packed into bacterial outer membrane vesicles, which transport proteins, RNA, and DNA, enabling distal communication that impacts various diseases, including Alzheimer's and Parkinson's.
Collapse
Affiliation(s)
- Matheus V. C. Grahl
- Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, RS, Brazil
| | - Kelvin Siqueira Hohl
- Graduate Program in Biochemistry, Institute of Health Basic Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (K.S.H.); (T.S.)
| | - Thiago Smaniotto
- Graduate Program in Biochemistry, Institute of Health Basic Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (K.S.H.); (T.S.)
| | - Célia R. Carlini
- Center of Biotechnology, Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre 91501-970, RS, Brazil
- Graduate Program of Biosciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, RS, Brazil
| |
Collapse
|
7
|
Yang Y, Zhou HY, Zhou GM, Chen J, Ming R, Zhang D, Jiang HW. The impact of different gastrointestinal reconstruction techniques on gut microbiota after gastric cancer surgery. Front Microbiol 2025; 15:1494049. [PMID: 39925886 PMCID: PMC11804259 DOI: 10.3389/fmicb.2024.1494049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/24/2024] [Indexed: 02/11/2025] Open
Abstract
Introduction Gastric cancer is one of the common malignant tumors in the digestive tract, characterized by high incidence and mortality rates. This is particularly significant in China, where a large proportion of global new cases of gastric cancer and related deaths occur. In recent years, with the continuous development of molecular biology technology, people have gained a deeper understanding of the gastrointestinal microbiome, and studies have shown that it is closely related to the occurrence, development, and therapeutic response of gastric cancer. Although surgical intervention is crucial in significantly extending the survival of gastric cancer patients, the disruption of the balance of the intestinal microbiota caused by surgery itself should not be overlooked, as it may affect postoperative recovery. Methods This study was approved by the Biomedical Ethics Committee of Sichuan Mianyang 404 Hospital. A random sampling method was used to select patients who underwent gastric cancer surgery at the hospital from January 2023 to December 2023. All patients signed written informed consent forms. Standardized perioperative management was conducted for the patients in the study, including preoperative preparation, intraoperative handling, and postoperative treatment. Fecal samples were collected from patients before surgery (before bowel preparation) and around one week after surgery for 16S rRNA sequencing analysis, through which differential biomarkers and related functional genes were sought. Results The study results indicated that there was no significant difference in the diversity of the gut microbiota between the two groups. Compared with the R-Y group, the DTR surgical method significantly altered the structure of the gut microbiota, affecting the types, quantities, and proportions of intestinal bacteria. Furthermore, the DTR group exhibited poorer postoperative nutritional absorption capacity compared to the R-Y group, as indicated by a lower F/B ratio. The R-Y group showed a richer abundance of Bacteroidetes and a lower abundance of Proteobacteria, as well as a higher F/B ratio after surgery. These findings provide new insights into the changes in the gut microbiota following gastric cancer surgery, which may be of significant importance for postoperative recovery and long-term health management. Discussion This study reveals the impact of different gastrointestinal reconstruction techniques on the postoperative gut microbiota of gastric cancer patients, providing new insights into the physiological changes during the postoperative recovery period. Although there was no significant difference in microbial diversity between the DTR group and the R-Y group, the DTR group showed more pronounced changes in microbial structure postoperatively, which may be associated with an increased risk of postoperative infection. These findings emphasize the importance of considering the impact on the gut microbiota when selecting gastric cancer surgery methods. However, the study had a limited sample size and did not delve into changes in metabolites. Future studies should expand the sample size and conduct metabolomic analyses to further validate these preliminary findings.
Collapse
Affiliation(s)
- Yu Yang
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Gastrointestinal Surgery, Mianyang 404 Hospital, Mianyang, Sichuan, China
| | - Hang-Yu Zhou
- Department of Gastrointestinal Surgery, Mianyang 404 Hospital, Mianyang, Sichuan, China
| | - Guo-Min Zhou
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Gastrointestinal Surgery, Mianyang 404 Hospital, Mianyang, Sichuan, China
| | - Jin Chen
- Department of Gastrointestinal Surgery, Mianyang 404 Hospital, Mianyang, Sichuan, China
| | - Rui Ming
- Department of Gastrointestinal Surgery, Mianyang 404 Hospital, Mianyang, Sichuan, China
| | - Dong Zhang
- Department of Gastrointestinal Surgery, Mianyang 404 Hospital, Mianyang, Sichuan, China
| | - Huai-Wu Jiang
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Gastrointestinal Surgery, Mianyang 404 Hospital, Mianyang, Sichuan, China
| |
Collapse
|
8
|
Kreis V, Toffano-Nioche C, Denève-Larrazet C, Marvaud JC, Garneau JR, Dumont F, van Dijk EL, Jaszczyszyn Y, Boutserin A, D'Angelo F, Gautheret D, Kansau I, Janoir C, Soutourina O. Dual RNA-seq study of the dynamics of coding and non-coding RNA expression during Clostridioides difficile infection in a mouse model. mSystems 2024; 9:e0086324. [PMID: 39601557 DOI: 10.1128/msystems.00863-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
Clostridioides difficile is the leading cause of healthcare-associated diarrhea in industrialized countries. Many questions remain to be answered about the mechanisms governing its interaction with the host during infection. Non-coding RNAs (ncRNAs) contribute to shape virulence in many pathogens and modulate host responses; however, their role in C. difficile infection (CDI) has not been explored. To better understand the dynamics of ncRNA expression contributing to C. difficile infectious cycle and host response, we used a dual RNA-seq approach in a conventional murine model. From the pathogen side, this transcriptomic analysis revealed the upregulation of virulence factors, metabolism, and sporulation genes, as well as the identification of 61 ncRNAs differentially expressed during infection that correlated with the analysis of available raw RNA-seq data sets from two independent studies. From these data, we identified 118 potential new transcripts in C. difficile, including 106 new ncRNA genes. From the host side, we observed the induction of several pro-inflammatory pathways, and among the 185 differentially expressed ncRNAs, the overexpression of microRNAs (miRNAs) previously associated to inflammatory responses or unknown long ncRNAs and miRNAs. A particular host gene expression profile could be associated to the symptomatic infection. In accordance, the metatranscriptomic analysis revealed specific microbiota changes accompanying CDI and specific species associated with symptomatic infection in mice. This first adaptation of in vivo dual RNA-seq to C. difficile contributes to unravelling the regulatory networks involved in C. difficile infectious cycle and host response and provides valuable resources for further studies of RNA-based mechanisms during CDI.IMPORTANCEClostridioides difficile is a major cause of nosocomial infections associated with antibiotic therapy classified as an urgent antibiotic resistance threat. This pathogen interacts with host and gut microbial communities during infection, but the mechanisms of these interactions remain largely to be uncovered. Noncoding RNAs contribute to bacterial virulence and host responses, but their expression has not been explored during C. difficile infection. We took advantage of the conventional mouse model of C. difficile infection to look simultaneously to the dynamics of gene expression in pathogen, its host, and gut microbiota composition, providing valuable resources for future studies. We identified a number of ncRNAs that could mediate the adaptation of C. difficile inside the host and the crosstalk with the host immune response. Promising inflammation markers and potential therapeutic targets emerged from this work open new directions for RNA-based and microbiota-modulatory strategies to improve the efficiency of C. difficile infection treatments.
Collapse
Affiliation(s)
- Victor Kreis
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Claire Toffano-Nioche
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | | | | | | | | | - Erwin L van Dijk
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Yan Jaszczyszyn
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Anaïs Boutserin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Francesca D'Angelo
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Daniel Gautheret
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Imad Kansau
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Orsay, France
| | - Claire Janoir
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Orsay, France
| | - Olga Soutourina
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
9
|
Taghaddos D, Saqib Z, Bai X, Bercik P, Collins SM. Post-infectious ibs following Clostridioides difficile infection; role of microbiota and implications for treatment. Dig Liver Dis 2024; 56:1805-1809. [PMID: 38653643 DOI: 10.1016/j.dld.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/21/2024] [Accepted: 03/13/2024] [Indexed: 04/25/2024]
Abstract
Up to 25% of patients recovering from antibiotic-treated Clostridioides difficile infection (CDI) develop functional symptoms reminiscent of Post-Infectious Irritable Bowel Syndrome (PI-IBS). For patients with persistent symptoms following infection, a clinical dilemma arises as to whether to provide additional antibiotic treatment or to adopt a conservative symptom-based approach. Here, we review the literature on CDI-related PI-IBS and compare the findings with PI-IBS. We review proposed mechanisms, including the role of C. difficile toxins and the microbiota, and discuss implications for therapy. We suggest that gut dysfunction post-CDI may be initiated by toxin-induced damage to enteroglial cells and that a dysbiotic gut microbitota maintains the clinical phenotype over time, prompting consideration of microbiota-directed therapies. While Fecal Microbial Transplant (FMT) is currently reserved for recurrent CDI (rCDI), we propose that microbiota-directed therapies may have a role in primary CDI in order to avoid or mitigate futher antibiotic treatment that further disrupts the microbiota and thus prevent PI-IBS. We discuss novel microbial transfer therapies and as they emerge, we recommend clinical trials to determine whether microbial transfer therapy of the primary infection prevents both rCDI and CDI-related PI- IBS.
Collapse
Affiliation(s)
- Dana Taghaddos
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Zarwa Saqib
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Xiaopeng Bai
- Division of Gastroenterology, Kyushu University, Japan
| | - Premysl Bercik
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Stephen M Collins
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
10
|
Cun WY, Keller PA, Pyne SG. Current and Ongoing Developments in Targeting Clostridioides difficile Infection and Recurrence. Microorganisms 2024; 12:1206. [PMID: 38930588 PMCID: PMC11205563 DOI: 10.3390/microorganisms12061206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Clostridioides difficile is a Gram-positive, spore-forming anaerobic bacterial pathogen that causes severe gastrointestinal infection in humans. This review provides background information on C. difficile infection and the pathogenesis and toxigenicity of C. difficile. The risk factors, causes, and the problem of recurrence of disease and current therapeutic treatments are also discussed. Recent therapeutic developments are reviewed including small molecules that inhibit toxin formation, disrupt the cell membrane, inhibit the sporulation process, and activate the host immune system in cells. Other treatments discussed include faecal microbiota treatment, antibody-based immunotherapies, probiotics, vaccines, and violet-blue light disinfection.
Collapse
Affiliation(s)
- Wendy Y. Cun
- School of Chemistry and Molecular Science, Molecular Horizons Institute, University of Wollongong, Wollongong, NSW 2522, Australia;
| | | | - Stephen G. Pyne
- School of Chemistry and Molecular Science, Molecular Horizons Institute, University of Wollongong, Wollongong, NSW 2522, Australia;
| |
Collapse
|
11
|
Li X, Li Y, Zhu K, Zou K, Lei Y, Liu C, Wei H, Zhang Z. Reuterin formed by poultry-derived Limosilactobacillus reuteri HLRE05 inhibits the growth of enterotoxigenic Bacillus cereus in in vitro and fermented milk. FOOD BIOSCI 2024; 59:104078. [DOI: 10.1016/j.fbio.2024.104078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
12
|
Belotserkovsky I, Stabryla LM, Hunter M, Allegretti J, Callahan BJ, Carlson PE, Daschner PJ, Goudarzi M, Guyard C, Jackson SA, Rao K, Servetas SL, Sokol H, Wargo JA, Novick S. Standards for fecal microbiota transplant: Tools and therapeutic advances. Biologicals 2024; 86:101758. [PMID: 38518435 DOI: 10.1016/j.biologicals.2024.101758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 03/04/2024] [Indexed: 03/24/2024] Open
Abstract
Fecal microbiota transplantation (FMT) has been demonstrated to be efficacious in preventing recurrent Clostridioides difficile (C. difficile) infections, and is being investigated for treatment of several other diseases including inflammatory bowel disease, cancer, obesity, liver disease, and diabetes. To speed up the translation of FMT into clinical practice as a safe and standardized therapeutic intervention, additional evidence-based technical and regulatory guidance is needed. To this end in May of 2022, the International Alliance for Biological Standardization (IABS) and the BIOASTER Microbiology Technology Institute hosted a second webinar to discuss key issues still impeding the advancement and standardization of FMT. The goal of this two-day webinar was to provide a forum for scientific experts to share and discuss data and key challenges with one another. Discussion included a focus on the evaluation of safety, efficacy, clinical trial design, reproducibility and accuracy in obtained microbiome measurements and data reporting, and the potential for standardization across these areas. It also focused on increasing the application potential and visibility of FMT beyond treating C. difficile infections.
Collapse
Affiliation(s)
| | - Lisa M Stabryla
- Complex Microbial Systems Group, Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Monique Hunter
- Complex Microbial Systems Group, Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Jessica Allegretti
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Benjamin J Callahan
- Bioinformatics Research Center, North Carolina State University, Raleigh, 27606, USA; Department of Population Health and Pathobiology, North Carolina State University, Raleigh, 27607, USA
| | - Paul E Carlson
- Laboratory of Mucosal Pathogens and Cellular Immunology, Division of Bacterial, Parasitic, and Allergenic Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Phillip J Daschner
- Division of Cancer Biology, National Cancer Institute, Bethesda, MD, USA
| | | | - Cyril Guyard
- BIOSTER Technological Research Institute, Lyon, France
| | - Scott A Jackson
- Complex Microbial Systems Group, Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Krishna Rao
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Stephanie L Servetas
- Complex Microbial Systems Group, Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Harry Sokol
- Assistance Publique des Hôpitaux de Paris, Saint-Antoine Hospital, Gastroenterology Department, Paris, France
| | - Jennifer A Wargo
- Departments of Surgical Oncology and Genomic Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Shawn Novick
- BioPhia Consulting, Inc., 7307 W. Green Lake Dr. N., Seattle, WA, 98103, USA.
| |
Collapse
|
13
|
Jo SH, Jeon HJ, Song WS, Lee JS, Kwon JE, Park JH, Kim YR, Kim MG, Baek JH, Kwon SY, Kim JS, Yang YH, Kim YG. Unveiling the inhibition mechanism of Clostridioides difficile by Bifidobacterium longum via multiomics approach. Front Microbiol 2023; 14:1293149. [PMID: 38029200 PMCID: PMC10663266 DOI: 10.3389/fmicb.2023.1293149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Antibiotic-induced gut microbiota disruption constitutes a major risk factor for Clostridioides difficile infection (CDI). Further, antibiotic therapy, which is the standard treatment option for CDI, exacerbates gut microbiota imbalance, thereby causing high recurrent CDI incidence. Consequently, probiotic-based CDI treatment has emerged as a long-term management and preventive option. However, the mechanisms underlying the therapeutic effects of probiotics for CDI remain uninvestigated, thereby creating a knowledge gap that needs to be addressed. To fill this gap, we used a multiomics approach to holistically investigate the mechanisms underlying the therapeutic effects of probiotics for CDI at a molecular level. We first screened Bifidobacterium longum owing to its inhibitory effect on C. difficile growth, then observed the physiological changes associated with the inhibition of C. difficile growth and toxin production via a multiomics approach. Regarding the mechanism underlying C. difficile growth inhibition, we detected a decrease in intracellular adenosine triphosphate (ATP) synthesis due to B. longum-produced lactate and a subsequent decrease in (deoxy)ribonucleoside triphosphate synthesis. Via the differential regulation of proteins involved in translation and protein quality control, we identified B. longum-induced proteinaceous stress. Finally, we found that B. longum suppressed the toxin production of C. difficile by replenishing proline consumed by it. Overall, the findings of the present study expand our understanding of the mechanisms by which probiotics inhibit C. difficile growth and contribute to the development of live biotherapeutic products based on molecular mechanisms for treating CDI.
Collapse
Affiliation(s)
- Sung-Hyun Jo
- Department of Chemical Engineering, Soongsil University, Seoul, Republic of Korea
| | - Hyo-Jin Jeon
- Department of Chemical Engineering, Soongsil University, Seoul, Republic of Korea
| | - Won-Suk Song
- Department of Chemical Engineering, Soongsil University, Seoul, Republic of Korea
| | - Jae-Seung Lee
- Department of Chemical Engineering, Soongsil University, Seoul, Republic of Korea
| | - Ji-Eun Kwon
- Department of Chemical Engineering, Soongsil University, Seoul, Republic of Korea
| | - Ji-Hyeon Park
- Department of Chemical Engineering, Soongsil University, Seoul, Republic of Korea
| | - Ye-Rim Kim
- Department of Chemical Engineering, Soongsil University, Seoul, Republic of Korea
| | - Min-Gyu Kim
- Department of Chemical Engineering, Soongsil University, Seoul, Republic of Korea
| | - Ji-Hyun Baek
- Department of Chemical Engineering, Soongsil University, Seoul, Republic of Korea
| | - Seo-Young Kwon
- Department of Chemical Engineering, Soongsil University, Seoul, Republic of Korea
| | - Jae-Seok Kim
- Department of Laboratory Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Yun-Gon Kim
- Department of Chemical Engineering, Soongsil University, Seoul, Republic of Korea
| |
Collapse
|
14
|
Di Gesù CM, Matz LM, Fultz R, Bolding IJ, Buffington SA. Monospecies probiotic preparation and administration with downstream analysis of sex-specific effects on gut microbiome composition in mice. STAR Protoc 2023; 4:102386. [PMID: 37379217 PMCID: PMC10331592 DOI: 10.1016/j.xpro.2023.102386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/16/2023] [Accepted: 05/25/2023] [Indexed: 06/30/2023] Open
Abstract
Dysbiosis of the gut microbiome is implicated in the growing burden of non-communicable chronic diseases, including neurodevelopmental disorders, and both preclinical and clinical studies highlight the potential for precision probiotic therapies in their prevention and treatment. Here, we present an optimized protocol for the preparation and administration of Limosilactobacillus reuteri MM4-1A (ATCC-PTA-6475) to adolescent mice. We also describe steps for performing downstream analysis of metataxonomic sequencing data with careful assessment of sex-specific effects on microbiome composition and structure. For complete details on the use and execution of this protocol, please refer to Di Gesù et al.1.
Collapse
Affiliation(s)
- Claudia M Di Gesù
- Department of Neurobiology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Lisa M Matz
- Department of Neurobiology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Robert Fultz
- Department of Neurobiology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Ian J Bolding
- Department of Neurobiology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Shelly A Buffington
- Department of Neurobiology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; Sealy Center for Microbiome Research, The University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
15
|
Gilboa M, Baharav N, Melzer E, Regev-Yochay G, Yahav D. Screening for Asymptomatic Clostridioides difficile Carriage Among Hospitalized Patients: A Narrative Review. Infect Dis Ther 2023; 12:2223-2240. [PMID: 37704801 PMCID: PMC10581986 DOI: 10.1007/s40121-023-00856-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/04/2023] [Indexed: 09/15/2023] Open
Abstract
Clostridioides difficile infection (CDI) has become the most common healthcare-associated infection in the United States, with considerable morbidity, mortality, and healthcare costs. Assessing new preventive strategies is vital. We present a literature review of studies evaluating a strategy of screening and isolation of asymptomatic carriers in hospital settings. Asymptomatic detection of C. difficile is reported in ~ 10-20% of admitted patients. Risk factors for carriage include recent hospitalization, previous antibiotics, older age, lower functional capacity, immunosuppression, and others. Asymptomatic C. difficile carriers of toxigenic strains are at higher risk for progression to CDI. They are also shedders of C. difficile spores and may contribute to the persistence and transmission of this bacterium. Screening for asymptomatic carriers at hospital admission can theoretically reduce CDI by isolating carriers to reduce transmission, and implementing antibiotic stewardship measures targeting carriers to prevent progression to clinical illness. Several observational studies, summarized in this review, have reported implementing screening and isolation strategies, and found a reduction in CDI rates. Nevertheless, the data are still limited to a few observational studies, and this strategy is not commonly practiced. Studies supporting screening were performed in North America, coinciding with the period of dominance of the 027/BI/NAP1 strain. Additional studies evaluating screening, followed by infection control and antibiotic stewardship measures, are needed.
Collapse
Affiliation(s)
- Mayan Gilboa
- Infection Prevention Unit, Sheba Medical Center, Ramat-Gan, Israel.
- Faculty of Medicine, Tel Aviv University, Ramat-Aviv, Tel-Aviv, Israel.
| | - Nadav Baharav
- Infectious Diseases Unit, Sheba Medical Center, Ramat-Gan, Israel
| | - Eyal Melzer
- Infection Prevention Unit, Sheba Medical Center, Ramat-Gan, Israel
- Faculty of Medicine, Tel Aviv University, Ramat-Aviv, Tel-Aviv, Israel
| | - Gili Regev-Yochay
- Infection Prevention Unit, Sheba Medical Center, Ramat-Gan, Israel
- Faculty of Medicine, Tel Aviv University, Ramat-Aviv, Tel-Aviv, Israel
| | - Dafna Yahav
- Faculty of Medicine, Tel Aviv University, Ramat-Aviv, Tel-Aviv, Israel
- Infectious Diseases Unit, Sheba Medical Center, Ramat-Gan, Israel
| |
Collapse
|
16
|
Li Y, Liu T, Qin L, Wu L. Effects of probiotic administration on overweight or obese children: a meta-analysis and systematic review. J Transl Med 2023; 21:525. [PMID: 37542325 PMCID: PMC10401801 DOI: 10.1186/s12967-023-04319-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 07/01/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND This paper aimed to examine the effects of probiotics on eight factors in overweight or obese children by meta-analysis, namely, body mass index (BMI), total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), adiponectin, leptin and tumor necrosis factor-α (TNF-α) and summarize the mechanisms of action of probiotics based on the existing researches. METHODS Six databases (PubMed, Web of Science, Embase, Cochrane Library, SinoMed and CNKI) were searched until March 2023. Review Manager 5.4 was used for meta-analysis. The data were analysed using weighted mean differences (WMDs) or standardized mean differences (SMDs) under a fixed effect model or random effect model to observe the effects of probiotic administration on the included indicators. RESULTS Four publications with a total of 206 overweight or obesity children were included. According to the meta-analysis, probiotics were able to significantly decrease the levels of HDL-C (MD, 0.06; 95% CI 0.03, 0.09; P = 0.0001), LDL-C (MD, - 0.06; 95% CI - 0.12, - 0.00; P = 0.04), adiponectin (MD, 1.39; 95% CI 1.19, 1.59; P < 0.00001), leptin (MD, - 2.72; 95% CI - 2.9, - 2.54; P < 0.00001) and TNF-α (MD, - 4.91; 95% CI - 7.15, - 2.67; P < 0.0001) compared to those in the placebo group. Still, for BMI, the palcebo group seemed to be better than the probiotic group (MD, 0.85; 95% CI 0.04, 1.66; P = 0.04). TC (MD, - 0.05; 95% CI - 0.12, 0.02; P = 0.14) and TG (MD, - 0.16; 95% CI - 0.36, 0.05; P = 0.14) were not different between two groups. CONCLUSIONS This review drew that probiotics might act as a role in regulating HDL-C, LDL-C, adiponectin, leptin and TNF-α in overweight or obesity children. Additionally, our systematic review yielded that probiotics might regulate lipid metabolism and improve obese associated symptoms by some paths. This meta-analysis has been registered at PROSPERO with ID: CRD42023408359.
Collapse
Affiliation(s)
- Ya Li
- Key Laboratory of Health Cultivation of Traditional Chinese Medicine, the Ministry of Education, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Tonghua Liu
- Key Laboratory of Health Cultivation of Traditional Chinese Medicine, the Ministry of Education, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Lingling Qin
- Key Laboratory of Health Cultivation of Traditional Chinese Medicine, the Ministry of Education, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Lili Wu
- Key Laboratory of Health Cultivation of Traditional Chinese Medicine, the Ministry of Education, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
17
|
Forsyth JH, Barron NL, Scott L, Watson BNJ, Chisnall MAW, Meaden S, van Houte S, Raymond B. Decolonizing drug-resistant E. coli with phage and probiotics: breaking the frequency-dependent dominance of residents. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001352. [PMID: 37418300 PMCID: PMC10433417 DOI: 10.1099/mic.0.001352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023]
Abstract
Widespread antibiotic resistance in commensal bacteria creates a persistent challenge for human health. Resident drug-resistant microbes can prevent clinical interventions, colonize wounds post-surgery, pass resistance traits to pathogens or move to more harmful niches following routine interventions such as catheterization. Accelerating the removal of resistant bacteria or actively decolonizing particular lineages from hosts could therefore have a number of long-term benefits. However, removing resident bacteria via competition with probiotics, for example, poses a number of ecological challenges. Resident microbes are likely to have physiological and numerical advantages and competition based on bacteriocins or other secreted antagonists is expected to give advantages to the dominant partner, via positive frequency dependence. Since a narrow range of Escherichia coli genotypes (primarily those belonging to the clonal group ST131) cause a significant proportion of multidrug-resistant infections, this group presents a promising target for decolonization with bacteriophage, as narrow-host-range viral predation could lead to selective removal of particular genotypes. In this study we tested how a combination of an ST131-specific phage and competition from the well-known probiotic E. coli Nissle strain could displace E. coli ST131 under aerobic and anaerobic growth conditions in vitro. We showed that the addition of phage was able to break the frequency-dependent advantage of a numerically dominant ST131 isolate. Moreover, the addition of competing E. coli Nissle could improve the ability of phage to suppress ST131 by two orders of magnitude. Low-cost phage resistance evolved readily in these experiments and was not inhibited by the presence of a probiotic competitor. Nevertheless, combinations of phage and probiotic produced stable long-term suppression of ST131 over multiple transfers and under both aerobic and anaerobic growth conditions. Combinations of phage and probiotic therefore have real potential for accelerating the removal of drug-resistant commensal targets.
Collapse
Affiliation(s)
- Jessica H. Forsyth
- Centre for Ecology and Conservation, University of Exeter, Penryn, TR10 9FE, UK
- Present address: Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Natalie L. Barron
- Centre for Ecology and Conservation, University of Exeter, Penryn, TR10 9FE, UK
| | - Lucy Scott
- Centre for Ecology and Conservation, University of Exeter, Penryn, TR10 9FE, UK
| | | | | | - Sean Meaden
- Centre for Ecology and Conservation, University of Exeter, Penryn, TR10 9FE, UK
- Present address: Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Stineke van Houte
- Centre for Ecology and Conservation, University of Exeter, Penryn, TR10 9FE, UK
| | - Ben Raymond
- Centre for Ecology and Conservation, University of Exeter, Penryn, TR10 9FE, UK
| |
Collapse
|
18
|
Sionek B, Szydłowska A, Zielińska D, Neffe-Skocińska K, Kołożyn-Krajewska D. Beneficial Bacteria Isolated from Food in Relation to the Next Generation of Probiotics. Microorganisms 2023; 11:1714. [PMID: 37512887 PMCID: PMC10385805 DOI: 10.3390/microorganisms11071714] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Recently, probiotics are increasingly being used for human health. So far, only lactic acid bacteria isolated from the human gastrointestinal tract were recommended for human use as probiotics. However, more authors suggest that probiotics can be also isolated from unconventional sources, such as fermented food products of animal and plant origin. Traditional fermented products are a rich source of microorganisms, some of which may have probiotic properties. A novel category of recently isolated microorganisms with great potential of health benefits are next-generation probiotics (NGPs). In this review, general information of some "beneficial microbes", including NGPs and acetic acid bacteria, were presented as well as essential mechanisms and microbe host interactions. Many reports showed that NGP selected strains and probiotics from unconventional sources exhibit positive properties when it comes to human health (i.e., they have a positive effect on metabolic, human gastrointestinal, neurological, cardiovascular, and immune system diseases). Here we also briefly present the current regulatory framework and requirements that should be followed to introduce new microorganisms for human use. The term "probiotic" as used herein is not limited to conventional probiotics. Innovation will undoubtedly result in the isolation of potential probiotics from new sources with fascinating new health advantages and hitherto unforeseen functionalities.
Collapse
Affiliation(s)
- Barbara Sionek
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska St. 159C, 02-776 Warszawa, Poland
| | - Aleksandra Szydłowska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska St. 159C, 02-776 Warszawa, Poland
| | - Dorota Zielińska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska St. 159C, 02-776 Warszawa, Poland
| | - Katarzyna Neffe-Skocińska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska St. 159C, 02-776 Warszawa, Poland
| | - Danuta Kołożyn-Krajewska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska St. 159C, 02-776 Warszawa, Poland
- Department of Dietetics and Food Studies, Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, Al. Armii Krajowej 13/15, 42-200 Częstochowa, Poland
| |
Collapse
|
19
|
Pal R, Athamneh AI, Deshpande R, Ramirez JAR, Adu KT, Muthuirulan P, Pawar S, Biazzo M, Apidianakis Y, Sundekilde UK, de la Fuente-Nunez C, Martens MG, Tegos GP, Seleem MN. Probiotics: insights and new opportunities for Clostridioides difficile intervention. Crit Rev Microbiol 2023; 49:414-434. [PMID: 35574602 PMCID: PMC9743071 DOI: 10.1080/1040841x.2022.2072705] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/17/2022] [Accepted: 04/28/2022] [Indexed: 02/08/2023]
Abstract
Clostridioides difficile infection (CDI) is a life-threatening disease caused by the Gram-positive, opportunistic intestinal pathogen C. difficile. Despite the availability of antimicrobial drugs to treat CDI, such as vancomycin, metronidazole, and fidaxomicin, recurrence of infection remains a significant clinical challenge. The use of live commensal microorganisms, or probiotics, is one of the most investigated non-antibiotic therapeutic options to balance gastrointestinal (GI) microbiota and subsequently tackle dysbiosis. In this review, we will discuss major commensal probiotic strains that have the potential to prevent and/or treat CDI and its recurrence, reassess the efficacy of probiotics supplementation as a CDI intervention, delve into lessons learned from probiotic modulation of the immune system, explore avenues like genome-scale metabolic network reconstructions, genome sequencing, and multi-omics to identify novel strains and understand their functionality, and discuss the current regulatory framework, challenges, and future directions.
Collapse
Affiliation(s)
- Rusha Pal
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Ahmad I.M. Athamneh
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | | | - Jose A. R Ramirez
- ProbioWorld Consulting Group, James Cook University, 4811, Queensland, Australia
| | - Kayode T. Adu
- ProbioWorld Consulting Group, James Cook University, 4811, Queensland, Australia
- Cann Group, Walter and Eliza Hall Institute, La Trobe University, Victoria 3083, Australia
| | | | - Shrikant Pawar
- The Anlyan Center Yale Center for Genomic Analysis, Yale School of Medicine, New Haven CT USA
| | - Manuele Biazzo
- The Bioarte Ltd Laboratories at Life Science Park, San Gwann, Malta
| | | | | | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Mark G. Martens
- Reading Hospital, Tower Health, West Reading, PA 19611, USA
- Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - George P. Tegos
- Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Mohamed N. Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
20
|
Dahiya M, Jovel J, Monaghan T, Wong K, Elhenawy W, Chui L, McAlister F, Kao D. In Silico Analysis of Changes in Predicted Metabolic Capabilities of Intestinal Microbiota after Fecal Microbial Transplantation for Treatment of Recurrent Clostridioides difficile Infection. Microorganisms 2023; 11:microorganisms11041078. [PMID: 37110500 PMCID: PMC10143790 DOI: 10.3390/microorganisms11041078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
IMPORTANCE Although highly effective in treating recurrent Clostridioides difficile infection (RCDI), the mechanisms of action of fecal microbial transplantation (FMT) are not fully understood. AIM The aim of this study was to explore microbially derived products or pathways that could contribute to the therapeutic efficacy of FMT. METHODS Stool shotgun metagenomic sequencing data from 18 FMT-treated RCDI patients at 4 points in time were used for the taxonomic and functional profiling of their gut microbiome. The abundance of the KEGG orthology (KO) groups was subjected to univariate linear mixed models to assess the significance of the observed differences between 0 (pre-FMT), 1, 4, and 12 weeks after FMT. RESULTS Of the 59,987 KO groups identified by shotgun metagenomic sequencing, 27 demonstrated a statistically significant change after FMT. These KO groups are involved in many cellular processes, including iron homeostasis, glycerol metabolism, and arginine regulation, all of which have been implicated to play important roles in bacterial growth and virulence in addition to modulating the intestinal microbial composition. CONCLUSION Our findings suggest potential changes in key KO groups post-FMT, which may contribute to FMT efficacy beyond the restored microbial composition/diversity and metabolism of bile acids and short-chain fatty acids. Future larger studies that include a fecal metabolomics analysis combined with animal model validation work are required to further elucidate the molecular mechanisms.
Collapse
Affiliation(s)
- Monica Dahiya
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Juan Jovel
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Tanya Monaghan
- National Institute for Health Research, Nottingham Biomedical Research Centre, Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Karen Wong
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Wael Elhenawy
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Linda Chui
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Public Health Laboratory, Alberta Precision Laboratories, Edmonton, AB T6G 2R3, Canada
| | - Finlay McAlister
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Dina Kao
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|
21
|
Das S, Bhattacharjee MJ, Mukherjee AK, Khan MR. Recent advances in understanding of multifaceted changes in the vaginal microenvironment: implications in vaginal health and therapeutics. Crit Rev Microbiol 2023; 49:256-282. [PMID: 35312419 DOI: 10.1080/1040841x.2022.2049696] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The vagina endures multifaceted changes from neonatal to menopausal phases due to hormonal flux, metabolite deposition, and microbial colonization. These features have important implications in women's health. Several pre-factors show dynamic characteristics according to the phases that shift the vaginal microbiota from anaerobes to aerobes which is a hallmark of healthy vaginal environment. These factors include oestrogen levels, glycogen deposition, and vaginal microstructure. In the adult phase, Lactobacillus is highly dominant and regulates pH, adherence, aggregation, immune modulation, synthesis of bacteriocins, and biosurfactants (BSs) which are antagonistic to pathogens. Maternal factors are protective by favouring the colonization of lactobacilli in the vagina in the neonatal phase, which diminishes with age. The dominance of lactobacilli and dysbiosis in the adult phase depends on intrinsic and extrinsic factors in women, which vary between ethnicities. Recent developments in probiotics used against vaginal microbiome dysbiosis have shown great promise in restoring the normal microbiota including preventing the loss of beneficial bacteria. However, further in-depth studies are warranted to ensure long-term protection by probiotics. This review highlights various aspects of the vaginal microenvironment in different phases of growth and diverse ethnicities. Furthermore, it discusses future trends for formulating more effective population-specific probiotics and implications of paraprobiotics and postbiotics as effective therapeutics.
Collapse
Affiliation(s)
- Sushmita Das
- Division of Life Science, Institute of Advanced Study in Science and Technology, Guwahati, India
| | | | - Ashis K Mukherjee
- Division of Life Science, Institute of Advanced Study in Science and Technology, Guwahati, India.,Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| | - Mojibur Rohman Khan
- Division of Life Science, Institute of Advanced Study in Science and Technology, Guwahati, India
| |
Collapse
|
22
|
Sankova MV, Nikolenko VN, Sankov SV, Sinelnikov MY. SARS-CoV-2 and microbiome. AUTOIMMUNITY, COVID-19, POST-COVID19 SYNDROME AND COVID-19 VACCINATION 2023:279-337. [DOI: 10.1016/b978-0-443-18566-3.00023-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
23
|
Bloom PP, Young VB. Microbiome therapeutics for the treatment of recurrent Clostridioides difficile infection. Expert Opin Biol Ther 2023; 23:89-101. [PMID: 36536532 DOI: 10.1080/14712598.2022.2154600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION The gut microbiome is implicated in Clostridioides difficile infection (CDI) and recurrent CDI (rCDI). AREAS COVERED This review covers the mechanisms by which microbiome therapeutics treat rCDI, their efficacy and safety, and clinical trial design considerations for future research. EXPERT OPINION Altering the chemical environment of the gut and reconstituting colonization resistance is a promising strategy for preventing and treating rCDI. Fecal microbiota transplant (FMT) is safe and effective for the treatment of rCDI. However, limitations of FMT have prompted investigation into alternative microbiome therapeutics. These alternative microbiome therapies require further evaluation, and adaptive trial designs should be strongly considered to more rapidly discern variables including the need for bowel preparation, timing and selection of pre-treatment antibiotics, and dose and duration of microbiome therapeutics. A broad range of adverse events must be prospectively evaluated in these controlled trials, as microbiome therapeutics have the potential for numerous effects. Future studies will lead to a greater understanding of the mechanisms by which microbiome therapies can break the cycle of rCDI, which should ultimately yield a personalized approach to rCDI treatment that restores an individual's specific deficit(s) in colonization resistance to C. difficile.
Collapse
Affiliation(s)
- Patricia P Bloom
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, USA
| | - Vincent B Young
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan, USA.,Department of Microbiology and Immunology, University of Michigan, USA
| |
Collapse
|
24
|
Sun MC, Hu ZY, Li DD, Chen YX, Xi JH, Zhao CH. Application of the Reuterin System as Food Preservative or Health-Promoting Agent: A Critical Review. Foods 2022; 11:foods11244000. [PMID: 36553742 PMCID: PMC9778575 DOI: 10.3390/foods11244000] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/03/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
The reuterin system is a complex multi-component antimicrobial system produced by Limosilactobacillus reuteri by metabolizing glycerol. The system mainly includes 3-hydroxypropionaldehyde (3-HPA, reuterin), 3-HPA dimer, 3-HPA hydrate, acrolein and 3-hydroxypropionic acid, and has great potential to be applied in the food and medical industries due to its functional versatility. It has been reported that the reuterin system possesses regulation of intestinal flora and anti-infection, anti-inflammatory and anti-cancer activities. Typically, the reuterin system exerts strong broad-spectrum antimicrobial properties. However, the antimicrobial mechanism of the reuterin system remains unclear, and its toxicity is still controversial. This paper presents an updated review on the biosynthesis, composition, biological production, antimicrobial mechanisms, stability, toxicity and potential applications of the reuterin system. Challenges and opportunities of the use of the reuterin system as a food preservative or health-promoting agent are also discussed. The present work will allow researchers to accelerate their studies toward solving critical challenges obstructing industrial applications of the reuterin system.
Collapse
Affiliation(s)
- Mao-Cheng Sun
- College of Plant Science, Jilin University, Changchun 130062, China
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Zi-Yi Hu
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Dian-Dian Li
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Yu-Xin Chen
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Jing-Hui Xi
- College of Plant Science, Jilin University, Changchun 130062, China
- Correspondence: (J.-H.X.); (C.-H.Z.)
| | - Chang-Hui Zhao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
- Correspondence: (J.-H.X.); (C.-H.Z.)
| |
Collapse
|
25
|
Ragan MV, Wala SJ, Goodman SD, Bailey MT, Besner GE. Next-Generation Probiotic Therapy to Protect the Intestines From Injury. Front Cell Infect Microbiol 2022; 12:863949. [PMID: 35837474 PMCID: PMC9273849 DOI: 10.3389/fcimb.2022.863949] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/25/2022] [Indexed: 12/20/2022] Open
Abstract
Probiotics are live microorganisms that, when administered in adequate amounts, provide health benefits to the host. Some strains of the probiotic Lactobacillus reuteri (L. reuteri) have both antimicrobial and anti-inflammatory properties that may be exploited for the treatment and prevention of different gastrointestinal diseases, including necrotizing enterocolitis (NEC) and Clostridioides difficile (C. difficile) infection. Our laboratory has developed a new delivery system for L. reuteri in which the probiotic is incubated with biocompatible, semipermeable, porous dextranomer microspheres (DM) that can be loaded with beneficial and diffusible cargo. L. reuteri can be induced to form a biofilm by incubating the bacteria on the surface of these microspheres, which enhances the efficacy of the probiotic. Loading the DM with sucrose or maltose induces L. reuteri to produce more biofilm, further increasing the efficacy of the probiotic. Using a rat model of NEC, L. reuteri administered in its biofilm state significantly increases animal survival, reduces the incidence of NEC, preserves gut barrier function, and decreases intestinal inflammation. In a murine model of Clostridiodes difficile infection, L. reuteri administered in its biofilm state decreases colitis when administered either before or after C. difficile induction, demonstrating both prophylactic and therapeutic efficacy. There are currently no FDA-approved probiotic preparations for human use. An FDA-approved phase I clinical trial of L. reuteri in its biofilm state in healthy adults is currently underway. The results of this trial will be used to support a phase 1 clinical trial in neonates, with the goal of utilizing L. reuteri in its biofilm state to prevent NEC in premature neonates in the future.
Collapse
Affiliation(s)
- Mecklin V. Ragan
- Center for Perinatal Research, Department of Pediatric Surgery, Columbus, OH, United States
| | - Samantha J. Wala
- Center for Perinatal Research, Department of Pediatric Surgery, Columbus, OH, United States
| | - Steven D. Goodman
- Nationwide Children’s Hospital, The Ohio State University, Columbus, OH, United States
| | - Michael T. Bailey
- Nationwide Children’s Hospital, The Ohio State University, Columbus, OH, United States
| | - Gail E. Besner
- Center for Perinatal Research, Department of Pediatric Surgery, Columbus, OH, United States
- *Correspondence: Gail E. Besner,
| |
Collapse
|
26
|
Nguyen TT, Nguyen PT, Pham MN, Razafindralambo H, Hoang QK, Nguyen HT. Synbiotics: a New Route of Self-production and Applications to Human and Animal Health. Probiotics Antimicrob Proteins 2022; 14:980-993. [PMID: 35650337 DOI: 10.1007/s12602-022-09960-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 01/17/2023]
Abstract
Synbiotics are preparations in which prebiotics are added to probiotics to achieve superior performance and benefits on the host. A new route of their formation is to induce the prebiotic biosynthesis within the probiotic for synbiotic self-production or autologous synbiotics. The aim of this review paper is first to overview the basic concept and (updated) definitions of synergistic synbiotics, and then to focus particularly on the prebiotic properties of probiotic wall components while describing the environmental factors/stresses that stimulate autologous synbiotics, that is, the biosynthesis of prebiotic-forming microcapsule by probiotic bacteria, and finally to present some of their applications to human and animal health.
Collapse
Affiliation(s)
- Thi-Tho Nguyen
- Hutech Institute of Applied Science, HUTECH University, Ho Chi Minh City, Vietnam
| | - Phu-Tho Nguyen
- An Giang University, An Giang, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Minh-Nhut Pham
- Hutech Institute of Applied Science, HUTECH University, Ho Chi Minh City, Vietnam
| | | | - Quoc-Khanh Hoang
- Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Huu-Thanh Nguyen
- An Giang University, An Giang, Vietnam.
- Vietnam National University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
27
|
Cruz KCP, Enekegho LO, Stuart DT. Bioengineered Probiotics: Synthetic Biology Can Provide Live Cell Therapeutics for the Treatment of Foodborne Diseases. Front Bioeng Biotechnol 2022; 10:890479. [PMID: 35656199 PMCID: PMC9152101 DOI: 10.3389/fbioe.2022.890479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/29/2022] [Indexed: 11/15/2022] Open
Abstract
The rising prevalence of antibiotic resistant microbial pathogens presents an ominous health and economic challenge to modern society. The discovery and large-scale development of antibiotic drugs in previous decades was transformational, providing cheap, effective treatment for what would previously have been a lethal infection. As microbial strains resistant to many or even all antibiotic drug treatments have evolved, there is an urgent need for new drugs or antimicrobial treatments to control these pathogens. The ability to sequence and mine the genomes of an increasing number of microbial strains from previously unexplored environments has the potential to identify new natural product antibiotic biosynthesis pathways. This coupled with the power of synthetic biology to generate new production chassis, biosensors and “weaponized” live cell therapeutics may provide new means to combat the rapidly evolving threat of drug resistant microbial pathogens. This review focuses on the application of synthetic biology to construct probiotic strains that have been endowed with functionalities allowing them to identify, compete with and in some cases kill microbial pathogens as well as stimulate host immunity. Weaponized probiotics may have the greatest potential for use against pathogens that infect the gastrointestinal tract: Vibrio cholerae, Staphylococcus aureus, Clostridium perfringens and Clostridioides difficile. The potential benefits of engineered probiotics are highlighted along with the challenges that must still be met before these intriguing and exciting new therapeutic tools can be widely deployed.
Collapse
|
28
|
Chen J, Du Y, Lu Y, Wang H, Wu Q. Recent development of small-molecular inhibitors against Clostridioides difficile infection. Bioorg Chem 2022; 125:105843. [DOI: 10.1016/j.bioorg.2022.105843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 03/02/2022] [Accepted: 04/23/2022] [Indexed: 11/29/2022]
|
29
|
Li X, Wang Q, Hu X, Liu W. Current Status of Probiotics as Supplements in the Prevention and Treatment of Infectious Diseases. Front Cell Infect Microbiol 2022; 12:789063. [PMID: 35360101 PMCID: PMC8964067 DOI: 10.3389/fcimb.2022.789063] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/03/2022] [Indexed: 12/20/2022] Open
Abstract
Probiotics play an important role against infectious pathogens via their effects on the epithelium, the production of antimicrobial compounds, and competitive exclusion. Administration of probiotic supplements may reduce the risk of infectious diseases and the use of antibiotics, hence contributing to a reduction or a delay of the development of multi-resistant bacteria. Infection is a constant concern for people who experience recurrent infections, and antibiotic treatment usually fails due to antibiotic resistance. Therefore, an infection can lead to severe illness and hospitalization if left untreated. A growing number of studies have demonstrated promising results for a variety of probiotic strains used to prevent or treat acute and recurrent infectious diseases, but additional standardized clinical research is needed.
Collapse
Affiliation(s)
| | - Qiang Wang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | | | | |
Collapse
|
30
|
Vasilescu IM, Chifiriuc MC, Pircalabioru GG, Filip R, Bolocan A, Lazăr V, Diţu LM, Bleotu C. Gut Dysbiosis and Clostridioides difficile Infection in Neonates and Adults. Front Microbiol 2022; 12:651081. [PMID: 35126320 PMCID: PMC8810811 DOI: 10.3389/fmicb.2021.651081] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022] Open
Abstract
In this review, we focus on gut microbiota profiles in infants and adults colonized (CDC) or infected (CDI) with Clostridioides difficile. After a short update on CDI epidemiology and pathology, we present the gut dysbiosis profiles associated with CDI in adults and infants, as well as the role of dysbiosis in C. difficile spores germination and multiplication. Both molecular and culturomic studies agree on a significant decrease of gut microbiota diversity and resilience in CDI, depletion of Firmicutes, Bacteroidetes, and Actinobacteria phyla and a high abundance of Proteobacteria, associated with low butyrogenic and high lactic acid-bacteria levels. In symptomatic cases, microbiota deviations are associated with high levels of inflammatory markers, such as calprotectin. In infants, colonization with Bifidobacteria that trigger a local anti-inflammatory response and abundance of Ruminococcus, together with lack of receptors for clostridial toxins and immunological factors (e.g., C. difficile toxins neutralizing antibodies) might explain the lack of clinical symptoms. Gut dysbiosis amelioration through administration of “biotics” or non-toxigenic C. difficile preparations and fecal microbiota transplantation proved to be very useful for the management of CDI.
Collapse
Affiliation(s)
- Iulia-Magdalena Vasilescu
- Department of Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- INBI “Prof. Dr. Matei Balş” – National Institute for Infectious Diseases, Bucharest, Romania
| | - Mariana-Carmen Chifiriuc
- Department of Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Research Institute of the University of Bucharest, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
- The Romanian Academy, Bucharest, Romania
- *Correspondence: Mariana-Carmen Chifiriuc,
| | | | - Roxana Filip
- Faculty of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, Suceava, Romania
- Regional County Emergency Hospital, Suceava, Romania
| | - Alexandra Bolocan
- Department of General Surgery, University Emergency Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Veronica Lazăr
- Department of Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Lia-Mara Diţu
- Department of Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Coralia Bleotu
- Department of Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Research Institute of the University of Bucharest, Bucharest, Romania
- Ştefan S. Nicolau Institute of Virology, Romanian Academy, Bucharest, Romania
| |
Collapse
|
31
|
Panpetch W, Phuengmaung P, Cheibchalard T, Somboonna N, Leelahavanichkul A, Tumwasorn S. Lacticaseibacillus casei Strain T21 Attenuates Clostridioides difficile Infection in a Murine Model Through Reduction of Inflammation and Gut Dysbiosis With Decreased Toxin Lethality and Enhanced Mucin Production. Front Microbiol 2021; 12:745299. [PMID: 34925261 PMCID: PMC8672038 DOI: 10.3389/fmicb.2021.745299] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/02/2021] [Indexed: 12/18/2022] Open
Abstract
Clostridioides difficile is a major cause of diarrhea in patients with antibiotic administration. Lacticaseibacillus casei T21, isolated from a human gastric biopsy, was tested in a murine C. difficile infection (CDI) model and colonic epithelial cells (Caco-2 and HT-29). Daily administration of L. casei T21 [1 × 108 colony forming units (CFU)/dose] for 4 days starting at 1 day before C. difficile challenge attenuated CDI as demonstrated by a reduction in mortality rate, weight loss, diarrhea, gut leakage, gut dysbiosis, intestinal pathology changes, and levels of pro-inflammatory cytokines [interleukin (IL)-1β, tumor necrosis factor (TNF)-α, macrophage inflammatory protein 2 (MIP-2), and keratinocyte chemoattractant (KC)] in the intestinal tissue and serum. Conditioned media from L. casei T21 exerted biological activities that fight against C. difficile as demonstrated in colonic epithelial cells by the following: (i) suppression of gene expression and production of IL-8, an important chemokine involved in C. difficile pathogenesis, (ii) reduction in the expression of SLC11A1 (solute carrier family 11 member 1) and HuR (human antigen R), important genes for the lethality of C. difficile toxin B, (iii) augmentation of intestinal integrity, and (iv) up-regulation of MUC2, a mucosal protective gene. These results supported the therapeutic potential of L. casei T21 for CDI and the need for further study on the intervention capabilities of CDI.
Collapse
Affiliation(s)
- Wimonrat Panpetch
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pornpimol Phuengmaung
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thanya Cheibchalard
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Naraporn Somboonna
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Microbiome Research Unit for Probiotics in Food and Cosmetics, Chulalongkorn University, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Medicine, Center of Excellence in Immunology and Immune-Mediated Diseases, Bangkok, Thailand
- *Correspondence: Asada Leelahavanichkul,
| | - Somying Tumwasorn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Microbiome Research Unit for Probiotics in Food and Cosmetics, Chulalongkorn University, Bangkok, Thailand
- Somying Tumwasorn,
| |
Collapse
|
32
|
Zhang Z, He F, Yang W, Yang L, Huang S, Mao H, Hou Y, Xiao R. Pu-erh tea extraction alleviates intestinal inflammation in mice with flora disorder by regulating gut microbiota. Food Sci Nutr 2021; 9:4883-4892. [PMID: 34532000 PMCID: PMC8441289 DOI: 10.1002/fsn3.2437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/27/2021] [Accepted: 06/06/2021] [Indexed: 01/01/2023] Open
Abstract
Pu-erh tea is very popular in Southwestern China and South Asian countries and is now becoming increasingly popular in Europe due to its well-documented beneficial effects on human health. Pu-erh tea aqueous extracts can maintain intestinal homeostasis. However, the mechanism of its beneficial effects on intestinal flora disorder is not clear. In this study, we focused on the effects of ripe Pu-erh tea aqueous extracts on the intestinal microbiota in an intestinal flora disorder mouse model. Physiological indexes and the tissue section staining results showed that feeding Pu-erh tea extract could help mice regain weight and alleviate intestinal inflammation. Further assessment of the intestinal microflora found that Pu-erh tea extract could promote the growth of intestinal probiotics and inhibit pathogenic bacteria, thereby achieving a treatment effect for enteritis. This study provides new evidence for the therapeutic effect of Pu-erh tea.
Collapse
Affiliation(s)
- Zhifang Zhang
- College of Food Science and TechnologyYunnan Agriculture UniversityKunmingChina
| | - Fei He
- College of Food Science and TechnologyYunnan Agriculture UniversityKunmingChina
| | - Weixing Yang
- College of Biological Resource and Food EngineeringQujing Normal UniversityQujingChina
| | - Li Yang
- College of Food Science and TechnologyYunnan Agriculture UniversityKunmingChina
| | - Siqi Huang
- College of Food Science and TechnologyYunnan Agriculture UniversityKunmingChina
| | - Hongling Mao
- College of Food Science and TechnologyYunnan Agriculture UniversityKunmingChina
| | - Yan Hou
- College of Food Science and TechnologyYunnan Agriculture UniversityKunmingChina
- College of Longrun Pu‐erh TeaYunnan Agriculture UniversityKunmingChina
| | - Rong Xiao
- College of Food Science and TechnologyYunnan Agriculture UniversityKunmingChina
| |
Collapse
|
33
|
Lee BH, Hsu WH, Chien HY, Hou CY, Hsu YT, Chen YZ, Wu SC. Applications of Lactobacillus acidophilus-Fermented Mango Protected Clostridioides difficile Infection and Developed as an Innovative Probiotic Jam. Foods 2021; 10:foods10071631. [PMID: 34359501 PMCID: PMC8303244 DOI: 10.3390/foods10071631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/26/2021] [Accepted: 07/08/2021] [Indexed: 12/02/2022] Open
Abstract
Clostridioides difficile infection (CDI) is a large intestine disease caused by toxins produced by the spore-forming bacterium C. difficile, which belongs to Gram-positive bacillus. Using antibiotics treatment disturbances in the gut microbiota and toxins produced by C. difficile disrupt the intestinal barrier. Some evidence indicates fecal microbiota transplantation and probiotics may decrease the risk of CDI recurrence. This study aimed to evaluate the efficacy of fermented mango by using the lactic acid bacteria Lactobacillus acidophilus and develop innovative products in the form of fermented mango jam. L. acidophilus-fermented mango products inhibited the growth of C. difficile while promoting the growth of next-generation probiotic Faecalibacterium prausnitzii. Both supernatant and precipitate of mango-fermented products prevented cell death in gut enterocyte-like Caco-2 cells against C. difficile infection. Mango-fermented products also protected gut barrier function by elevating the expression of tight junction proteins. Moreover, L. acidophilus-fermented mango jam with high hydrostatic pressure treatment had favorable textural characteristics and sensory quality.
Collapse
Affiliation(s)
- Bao-Hong Lee
- Department of Horticulture, National Chiayi University, Chiayi 600355, Taiwan; (B.-H.L.); (H.-Y.C.)
| | - Wei-Hsuan Hsu
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan; (W.-H.H.); (Y.-T.H.); (Y.-Z.C.)
- Center of Allergy and Mucosal Immunity Advancement at the National Cheng Kung University, Tainan 701401, Taiwan
| | - Hao-Yuan Chien
- Department of Horticulture, National Chiayi University, Chiayi 600355, Taiwan; (B.-H.L.); (H.-Y.C.)
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan;
| | - Ya-Ting Hsu
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan; (W.-H.H.); (Y.-T.H.); (Y.-Z.C.)
| | - You-Zuo Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan; (W.-H.H.); (Y.-T.H.); (Y.-Z.C.)
| | - She-Ching Wu
- Department of Food Science, National Chiayi University, No. 300 Syuefu Rd., Chiayi 600355, Taiwan
- Correspondence: ; Tel.: +886-05-2717622
| |
Collapse
|
34
|
Zhang Z, Jin M, Wang K, Zhang N, Zhang Q, Tao X, Wei H. Short-term intake of Lactiplantibacillus plantarum ZDY2013 fermented milk promotes homoeostasis of gut microbiota under enterotoxigenic Bacillus cereus challenge. Food Funct 2021; 12:5118-5129. [PMID: 33973610 DOI: 10.1039/d1fo00162k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Probiotics have long been used as functional starter cultures for fermented foods and are associated with numerous health benefits. Lactiplantibacillus (L.) plantarum ZDY2013 is an acid-tolerant probiotic candidate owning antagonistic properties against the food-borne pathogen Bacillus (B.) cereus and serves as a potent regulator of the gut microbiota. However, whether it retains these properties when used as dietary supplements in functional foods remains unknown. Accordingly, we investigated the ameliorating effects of L. plantarum fermented milk on disease phenotypes triggered by enterotoxigenic B. cereus in mice. The results revealed that administration of 3.0 × 108 cfu pathogenic B. cereus for one week induced damage to intestinal structures and bowel function, accompanied by an imbalance of gut microbiota. However, before or after B. cereus infection, oral administration of L. plantarum fermented milk mitigated losses of body weight and damage in the histological structure of the gastrointestinal tract, restored serum levels of IL-1β and IL-10, and contributed to significant decreases in platelet counts and uric acid levels. Most importantly, it restored the dissimilarity of gut microbiota and the abundance of bacterial taxa (i.e., reduced the abundance of Deferribacteres and Bacilli and increased the abundance of Lactobacillus and Bifidobacterium) without impacting the taxonomic composition. Combining these results, we speculate that enterotoxigenic B. cereus damages the intestinal epithelium and weakens its adherence capacity for the microbe, which is rescued by the supplementation of L. plantarum fermented milk. Overall, our findings revealed that L. plantarum ZDY2013 has the potential to be a fermented starter in functional foods and retains its antagonism against B. cereus pathogenesis.
Collapse
Affiliation(s)
- Zhihong Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 30047, China.
| | - Mingliang Jin
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Kaiming Wang
- Department of Physiology, CEGIIR, University of Alberta, Edmonton T6G 2E1, Canada
| | - Na Zhang
- Sino-German Joint Research Institute, Nanchang University, Nanchang 30047, China
| | - Qimeng Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 30047, China.
| | - Xueying Tao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 30047, China.
| | - Hua Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 30047, China. and Sino-German Joint Research Institute, Nanchang University, Nanchang 30047, China
| |
Collapse
|
35
|
Co-Encapsulated Synbiotics and Immobilized Probiotics in Human Health and Gut Microbiota Modulation. Foods 2021; 10:foods10061297. [PMID: 34200108 PMCID: PMC8230215 DOI: 10.3390/foods10061297] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/20/2022] Open
Abstract
Growing interest in the development of innovative functional products as ideal carriers for synbiotics, e.g., nutrient bars, yogurt, chocolate, juice, ice cream, and cheese, to ensure the daily intake of probiotics and prebiotics, which are needed to maintain a healthy gut microbiota and overall well-being, is undeniable and inevitable. This review focuses on the modern approaches that are currently being developed to modulate the gut microbiota, with an emphasis on the health benefits mediated by co-encapsulated synbiotics and immobilized probiotics. The impact of processing, storage, and simulated gastrointestinal conditions on the viability and bioactivity of probiotics together with prebiotics such as omega-3 polyunsaturated fatty acids, phytochemicals, and dietary fibers using various delivery systems are considered. Despite the proven biological properties of synbiotics, research in this area needs to be focused on the proper selection of probiotic strains, their prebiotic counterparts, and delivery systems to avoid suppression of their synergistic or complementary effect on human health. Future directions should lead to the development of functional food products containing stable synbiotics tailored for different age groups or specifically designed to fulfill the needs of adjuvant therapy.
Collapse
|
36
|
Tang C, Kong L, Shan M, Lu Z, Lu Y. Protective and ameliorating effects of probiotics against diet-induced obesity: A review. Food Res Int 2021; 147:110490. [PMID: 34399486 DOI: 10.1016/j.foodres.2021.110490] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 05/05/2021] [Accepted: 05/23/2021] [Indexed: 02/07/2023]
Abstract
Diet-induced obesity is one of the major public health concerns all over the world, and obesity also contributes to the development of other chronic diseases such as non-alcoholic fatty acid liver disease, type 2 diabetes mellitus and cardiovascular diseases. Evidence shows that the pathogenesis of obesity and obesity-associated chronic diseases are closely related to dysregulation of lipid metabolism, glucose metabolism and cholesterol metabolism, and oxidative stress, endoplasmic reticulum stress, abnormal gut microbiome and chronic low-grade inflammation. Recently, in view of potential effects on lipid metabolism, glucose metabolism, cholesterol metabolism and intestinal microbiome, as well as anti-oxidative and anti-inflammatory activities, natural probiotics, including live and dead probiotics, and probiotic components and metabolites, have attracted increasing attention and are considered as novel strategies for preventing and ameliorating obesity and obesity-related chronic diseases. Specifically, this review is presented on the anti-obesity effects of probiotics and underlying molecular mechanisms, which will provide a theoretical basis of anti-obesity probiotics for the development of functional foods.
Collapse
Affiliation(s)
- Chao Tang
- College of Food Science & Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Liangyu Kong
- College of Food Science & Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengyuan Shan
- College of Food Science & Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaoxin Lu
- College of Food Science & Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yingjian Lu
- College of Food Science & Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China.
| |
Collapse
|
37
|
Roupar D, Berni P, Martins JT, Caetano AC, Teixeira JA, Nobre C. Bioengineering approaches to simulate human colon microbiome ecosystem. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
38
|
Zhang Z, Wang K, Oh JH, Zhang S, van Pijkeren JP, Cheng CC, Ren D, Wei H, Gänzle MG, Walter J. A Phylogenetic View on the Role of Glycerol for Growth Enhancement and Reuterin Formation in Limosilactobacillus reuteri. Front Microbiol 2020; 11:601422. [PMID: 33408707 PMCID: PMC7779471 DOI: 10.3389/fmicb.2020.601422] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/02/2020] [Indexed: 11/13/2022] Open
Abstract
Lineages within the species Limosilactobacillus reuteri have specialized to various hosts and their genomes reflect these adaptations. The pdu-cbi-cob-hem gene cluster is conserved in most human and poultry isolates but is infrequent in rodent and porcine isolates. This gene cluster confers the transformation of glycerol into 3-hydroxy-propionaldehyde (reuterin), which can either be secreted and function as precursor of the antimicrobial compound acrolein or serve as an electron acceptor that enhances the organisms' growth rate. However, it remains unclear which of these two functions is more relevant for L. reuteri evolution and ecology. Here we characterized the effect of glycerol on growth rate and reuterin formation in L. reuteri strains across different phylogenetic lineages during growth on ecologically relevant carbohydrates. We further evaluated the innate reuterin resistance among these strains to infer a possible role of reuterin in the evolution of strains. Results revealed that the poultry/human lineage VI strain, L. reuteri DSM 17938 shows more growth enhancement through glycerol and greater capacity for reuterin production on glucose and maltose as compared to human lineage II strains. Interestingly, reuterin production in lineage II strains was significantly elevated on raffinose and lactose, reaching levels similar to DSM 17938. On all carbohydrates tested, reuterin production occurred during the exponential growth phase and became undetectable during the stationary growth phase. The amount of reuterin produced was sufficient to inhibit E. coli, suggesting that it could be ecologically relevant, but the resistance towards reuterin among L. reuteri strains was highly variable and, for the most part, unrelated to the strain's capacity for reuterin production. Overall, the findings suggest differences in the substrate-specific regulation of the pdu cluster in L. reuteri lineages that might be reflective of their ecological niches, e.g., chicken foregut versus human infant and adult large intestine. Such information can inform future studies on the ecology of L. reuteri and guide the development of synbiotic applications to improve the therapeutic use of this species.
Collapse
Affiliation(s)
- Zhihong Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Kaiming Wang
- Department of Physiology, CEGIIR, University of Alberta, Edmonton, AB, Canada
| | - Jee-Hwan Oh
- Department of Food Science, University of Wisconsin-Madison, Madison, WI, United States
| | - Shenwei Zhang
- Department of Food Science, University of Wisconsin-Madison, Madison, WI, United States
| | | | - Christopher C. Cheng
- Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Dayong Ren
- Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Hua Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Michael G. Gänzle
- Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Jens Walter
- Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- Department of Physiology, CEGIIR, University of Alberta, Edmonton, AB, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
- APC Microbiome Ireland, School of Microbiology, University College Cork, Cork, Ireland
- Department of Medicine, University College Cork, Cork, Ireland
| |
Collapse
|
39
|
Pike CM, Theriot CM. Mechanisms of Colonization Resistance Against Clostridioides difficile. J Infect Dis 2020; 223:S194-S200. [PMID: 33326565 DOI: 10.1093/infdis/jiaa408] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Clostridioides difficile is an urgent antimicrobial-resistant bacterium, causing mild to moderate and sometimes life-threatening disease. Commensal gut microbes are critical for providing colonization resistance against C difficile and can be leveraged as non-antibiotic alternative therapeutics for the prevention and treatment of C difficile infection.
Collapse
Affiliation(s)
- Colleen M Pike
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Casey M Theriot
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
40
|
Engevik MA, Danhof HA, Shrestha R, Chang-Graham AL, Hyser JM, Haag AM, Mohammad MA, Britton RA, Versalovic J, Sorg JA, Spinler JK. Reuterin disrupts Clostridioides difficile metabolism and pathogenicity through reactive oxygen species generation. Gut Microbes 2020; 12:1788898. [PMID: 32804011 PMCID: PMC7524292 DOI: 10.1080/19490976.2020.1795388] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/16/2020] [Accepted: 07/06/2020] [Indexed: 02/03/2023] Open
Abstract
Antibiotic resistance is one of the world's greatest public health challenges and adjunct probiotic therapies are strategies that could lessen this burden. Clostridioides difficile infection (CDI) is a prime example where adjunct probiotic therapies could decrease disease incidence through prevention. Human-derived Lactobacillus reuteri is a probiotic that produces the antimicrobial compound reuterin known to prevent C. difficile colonization of antibiotic-treated fecal microbial communities. However, the mechanism of inhibition is unclear. We show that reuterin inhibits C. difficile outgrowth from spores and vegetative cell growth, however, no effect on C. difficile germination or sporulation was observed. Consistent with published studies, we found that exposure to reuterin stimulated reactive oxygen species (ROS) in C. difficile, resulting in a concentration-dependent reduction in cell viability that was rescued by the antioxidant glutathione. Sublethal concentrations of reuterin enhanced the susceptibility of vegetative C. difficile to vancomycin and metronidazole treatment and reduced toxin synthesis by C. difficile. We also demonstrate that reuterin is protective against C. difficile toxin-mediated cellular damage in the human intestinal enteroid model. Overall, our results indicate that ROS are essential mediators of reuterin activity and show that reuterin production by L. reuteri is compatible as a therapeutic in a clinically relevant model.
Collapse
Affiliation(s)
- Melinda A. Engevik
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Heather A. Danhof
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Ritu Shrestha
- Department of Biology, Texas A&M University, College Station, TX, USA
| | | | - Joseph M. Hyser
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Anthony M. Haag
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Microbiome Center, Department of Pathology, Texas Children’s Hospital, Houston, TX, USA
| | - Mahmoud A. Mohammad
- Department of Pediatrics, Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Robert A. Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - James Versalovic
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Microbiome Center, Department of Pathology, Texas Children’s Hospital, Houston, TX, USA
| | - Joseph A. Sorg
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Jennifer K. Spinler
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Microbiome Center, Department of Pathology, Texas Children’s Hospital, Houston, TX, USA
| |
Collapse
|
41
|
Shelby RD, Janzow GE, Mashburn-Warren L, Galley J, Tengberg N, Navarro J, Conces M, Bailey MT, Goodman SD, Besner GE. A novel probiotic therapeutic in a murine model of Clostridioides difficile colitis. Gut Microbes 2020; 12:1814119. [PMID: 32954922 PMCID: PMC7524353 DOI: 10.1080/19490976.2020.1814119] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
For prophylactic therapy, mice received an oral antibiotic cocktail followed by clindamycin injection, followed by probiotic administration (planktonic vs. biofilm state), followed by C. difficile oral gavage. For treatment therapy, mice received antibiotics and C. difficile first, followed by probiotic administration. Clinical sickness scores (CSS) and intestinal histologic injury scores (HIS) were assigned. In the Prophylactic Therapy model, CSS: 67% of untreated mice exposed to C. difficile demonstrated CSS ≥ 6, which is consistent with C. difficile infection (p< .001 compared to unexposed mice). In mice treated with planktonic Lr, 55% had a CSS ≥ 6, but only 19% of mice treated with Lr in its biofilm state had CSS ≥ 6 (p< .001). Mice receiving Lr + DM-Maltose lost the least amount of weight compared to mice receiving saline (p = .004676) or to mice receiving Lr (p= .003185). HIS: 77% of untreated mice exposed to C. difficile had HIS scores ≥4, which is consistent with C. difficile infection. In mice treated with planktonic Lr, 62% had HIS ≥4, but only 19% of mice treated with Lr in its biofilm state had HIS ≥4. (p< .001). Additionally, mice treated with Lr in its biofilm state had better survival compared to untreated mice and to mice treated with planktonic Lr (p ≤ 0.05). Similar findings for weight loss, CSS, HIS and survival were obtained for Treatment Therapy. A single dose of Lactobacillus reuteri in its biofilm state reduces the severity and incidence of experimental C. difficile infection when administered as both prophylactic and treatment therapy.
Collapse
Affiliation(s)
- Rita D. Shelby
- Center for Perinatal Research, The Research Institute at Nationwide Children’s Hospital, Department of Pediatric Surgery, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Grace E. Janzow
- Center for Perinatal Research, The Research Institute at Nationwide Children’s Hospital, Department of Pediatric Surgery, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Lauren Mashburn-Warren
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Jeffrey Galley
- Center for Perinatal Research, The Research Institute at Nationwide Children’s Hospital, Department of Pediatric Surgery, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Natalie Tengberg
- Center for Perinatal Research, The Research Institute at Nationwide Children’s Hospital, Department of Pediatric Surgery, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Jason Navarro
- Department of Pathology, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Miriam Conces
- Department of Pathology, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Michael T. Bailey
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Steven D. Goodman
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Gail E. Besner
- Center for Perinatal Research, The Research Institute at Nationwide Children’s Hospital, Department of Pediatric Surgery, Nationwide Children’s Hospital, Columbus, OH, USA,CONTACT Gail E. Besner Department of Pediatric Surgery, Nationwide Children’s Hospital, Columbus, Ohio43205, USA
| |
Collapse
|
42
|
Teame T, Wang A, Xie M, Zhang Z, Yang Y, Ding Q, Gao C, Olsen RE, Ran C, Zhou Z. Paraprobiotics and Postbiotics of Probiotic Lactobacilli, Their Positive Effects on the Host and Action Mechanisms: A Review. Front Nutr 2020; 7:570344. [PMID: 33195367 PMCID: PMC7642493 DOI: 10.3389/fnut.2020.570344] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022] Open
Abstract
Lactobacilli comprise an important group of probiotics for both human and animals. The emerging concern regarding safety problems associated with live microbial cells is enhancing the interest in using cell components and metabolites derived from probiotic strains. Here, we define cell structural components and metabolites of probiotic bacteria as paraprobiotics and postbiotics, respectively. Paraprobiotics and postbiotics produced from Lactobacilli consist of a wide range of molecules including peptidoglycans, surface proteins, cell wall polysaccharides, secreted proteins, bacteriocins, and organic acids, which mediate positive effect on the host, such as immunomodulatory, anti-tumor, antimicrobial, and barrier-preservation effects. In this review, we systematically summarize the paraprobiotics and postbiotics derived from Lactobacilli and their beneficial functions. We also discuss the mechanisms underlying their beneficial effects on the host, and their interaction with the host cells. This review may boost our understanding on the benefits and molecular mechanisms associated with paraprobiotics and probiotics from Lactobacilli, which may promote their applications in humans and animals.
Collapse
Affiliation(s)
- Tsegay Teame
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Tigray Agricultural Research Institute, Mekelle, Ethiopia
| | - Anran Wang
- AgricultureIsLife/EnvironmentIsLife and Precision Livestock and Nutrition Unit, AgroBioChem/TERRA, Gembloux Agro-Bio Tech, University of Liege, Passage des Deportes, Gembloux, Belgium
| | - Mingxu Xie
- Norway-China Fish Gastrointestinal Microbiota Joint Lab, Institute of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Zhen Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yalin Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qianwen Ding
- Norway-China Fish Gastrointestinal Microbiota Joint Lab, Institute of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Chenchen Gao
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rolf Erik Olsen
- Norway-China Fish Gastrointestinal Microbiota Joint Lab, Institute of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Chao Ran
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhigang Zhou
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
43
|
Pereira FC, Wasmund K, Cobankovic I, Jehmlich N, Herbold CW, Lee KS, Sziranyi B, Vesely C, Decker T, Stocker R, Warth B, von Bergen M, Wagner M, Berry D. Rational design of a microbial consortium of mucosal sugar utilizers reduces Clostridiodes difficile colonization. Nat Commun 2020; 11:5104. [PMID: 33037214 PMCID: PMC7547075 DOI: 10.1038/s41467-020-18928-1] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 09/18/2020] [Indexed: 12/18/2022] Open
Abstract
Many intestinal pathogens, including Clostridioides difficile, use mucus-derived sugars as crucial nutrients in the gut. Commensals that compete with pathogens for such nutrients are therefore ecological gatekeepers in healthy guts, and are attractive candidates for therapeutic interventions. Nevertheless, there is a poor understanding of which commensals use mucin-derived sugars in situ as well as their potential to impede pathogen colonization. Here, we identify mouse gut commensals that utilize mucus-derived monosaccharides within complex communities using single-cell stable isotope probing, Raman-activated cell sorting and mini-metagenomics. Sequencing of cell-sorted fractions reveals members of the underexplored family Muribaculaceae as major mucin monosaccharide foragers, followed by members of Lachnospiraceae, Rikenellaceae, and Bacteroidaceae families. Using this information, we assembled a five-member consortium of sialic acid and N-acetylglucosamine utilizers that impedes C. difficile's access to these mucosal sugars and impairs pathogen colonization in antibiotic-treated mice. Our findings underscore the value of targeted approaches to identify organisms utilizing key nutrients and to rationally design effective probiotic mixtures.
Collapse
Affiliation(s)
- Fátima C Pereira
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Althanstrasse 14, 1090, Vienna, Austria
| | - Kenneth Wasmund
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Althanstrasse 14, 1090, Vienna, Austria
| | - Iva Cobankovic
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Straße 38, 1090, Vienna, Austria
| | - Nico Jehmlich
- Helmholtz-Centre for Environmental Research - UFZ, Department of Molecular Systems Biology, Permoserstraße 15, 04318, Leipzig, Germany
| | - Craig W Herbold
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Althanstrasse 14, 1090, Vienna, Austria
| | - Kang Soo Lee
- Ralph M. Parsons Laboratory for Environmental Science and Engineering, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Barbara Sziranyi
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Althanstrasse 14, 1090, Vienna, Austria
| | - Cornelia Vesely
- Medical University of Vienna, Center for Anatomy and Cell Biology, Division of Cell and Developmental Biology, Vienna, Austria
| | - Thomas Decker
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| | - Roman Stocker
- Ralph M. Parsons Laboratory for Environmental Science and Engineering, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Benedikt Warth
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Währinger Straße 38, 1090, Vienna, Austria
| | - Martin von Bergen
- Helmholtz-Centre for Environmental Research - UFZ, Department of Molecular Systems Biology, Permoserstraße 15, 04318, Leipzig, Germany
| | - Michael Wagner
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Althanstrasse 14, 1090, Vienna, Austria
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9220, Aalborg, Denmark
| | - David Berry
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Althanstrasse 14, 1090, Vienna, Austria.
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria.
| |
Collapse
|
44
|
Maheshwari M, Gupta A, Gaur S. Probiotic Potential of Traditional Indian Fermented Drinks. CURRENT NUTRITION & FOOD SCIENCE 2020. [DOI: 10.2174/1573401315666190821113406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Probiotics are living microorganisms, which when taken in adequate amount, provide various health benefits by maintaining the balance of bacteria in the intestine. Probiotics are purported to have countless health benefits, some of which include improved digestion, enhanced immunity, prevention of cancer and diabetes. The most common group of probiotics include species of Lactobacillus, Bifidobacterium and Enterococcus. In order to work as an effective probiotic, the microbial strain is expected to exhibit certain desirable characteristics like acid and bile tolerance, antimicrobial activity, adhesion to intestinal epithelium, etc. The fermented products contain a myriad of bacteria, some of which are characterized as probiotics and are responsible for various health benefits associated with the product. The fermented foods and drinks have been consumed in India since time immemorial. The art of fermentation has been a part of the traditional knowledge of India for thousands of years. The use of fermented products is strongly linked to the culture and tradition of India. Some traditional fermented drinks of India having probiotic potential include Koozh, Toddy, Kanji, Hamei and Handia. Further research on the probiotic potential of traditional fermented drinks may pave a path for their medical usage and commercial development.
Collapse
Affiliation(s)
- Mahima Maheshwari
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Akshra Gupta
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Smriti Gaur
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| |
Collapse
|
45
|
Butler É, Lundqvist C, Axelsson J. Lactobacillus reuteri DSM 17938 as a Novel Topical Cosmetic Ingredient: A Proof of Concept Clinical Study in Adults with Atopic Dermatitis. Microorganisms 2020; 8:microorganisms8071026. [PMID: 32664536 PMCID: PMC7409218 DOI: 10.3390/microorganisms8071026] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022] Open
Abstract
Atopic Dermatitis (AD) is a chronically relapsing skin condition characterized by dry, itchy, and inflamed skin where sufferers can frequently be subject to infections. Probiotics are known to be potent immune-modulators, and live Lactobacillus reuteri DSM 17938 has shown to be anti-inflammatory but also to possess antimicrobial and barrier function properties. This study aimed to investigate and compare two investigational ointment products (topical probiotic and control) for cutaneous acceptability, safety, and efficacy under normal conditions of use, in adult subjects with atopic dermatitis. The products were applied twice daily for 8 weeks, and cutaneous acceptability, SCORAD index, local SCORAD, and adverse events were evaluated after 4 and 8 weeks of treatment. At the end of the observations, it was demonstrated that both the probiotic-containing and probiotic-free ointments were both cutaneously acceptable and safe. It importantly showed a statistically and clinically significant improvement of the SCORAD index and local SCORAD in adult subjects with AD after 4 and 8 weeks of continuous use. In conclusion, we show evidence that the probiotic product, containing live L. reuteri DSM 17938 as an extra ingredient, is safe and promising as a novel topical cosmetic ointment and with further testing could be a standard topical product for the management of atopic dermatitis or other disorders associated with the skin.
Collapse
Affiliation(s)
- Éile Butler
- BioGaia AB, Mobilvägen 10, 223 62 Lund, Sweden; (É.B.); (C.L.)
- Faculty of health and society, Department of Health Biomedical, Malmö University, Jan Waldenströms Gata 25, 214 28 Malmö, Sweden
| | | | - Jakob Axelsson
- BioGaia AB, Mobilvägen 10, 223 62 Lund, Sweden; (É.B.); (C.L.)
- Correspondence:
| |
Collapse
|
46
|
Wu Q, Chen T, El-Nezami H, Savidge TC. Food ingredients in human health: Ecological and metabolic perspectives implicating gut microbiota function. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
47
|
Andersson JA, Peniche AG, Galindo CL, Boonma P, Sha J, Luna RA, Savidge TC, Chopra AK, Dann SM. New Host-Directed Therapeutics for the Treatment of Clostridioides difficile Infection. mBio 2020; 11:e00053-20. [PMID: 32156806 PMCID: PMC7064747 DOI: 10.1128/mbio.00053-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 01/31/2020] [Indexed: 01/25/2023] Open
Abstract
Frequent and excessive use of antibiotics primes patients to Clostridioides difficile infection (CDI), which leads to fatal pseudomembranous colitis, with limited treatment options. In earlier reports, we used a drug repurposing strategy and identified amoxapine (an antidepressant), doxapram (a breathing stimulant), and trifluoperazine (an antipsychotic), which provided significant protection to mice against lethal infections with several pathogens, including C. difficile However, the mechanisms of action of these drugs were not known. Here, we provide evidence that all three drugs offered protection against experimental CDI by reducing bacterial burden and toxin levels, although the drugs were neither bacteriostatic nor bactericidal in nature and had minimal impact on the composition of the microbiota. Drug-mediated protection was dependent on the presence of the microbiota, implicating its role in evoking host defenses that promoted protective immunity. By utilizing transcriptome sequencing (RNA-seq), we identified that each drug increased expression of several innate immune response-related genes, including those involved in the recruitment of neutrophils, the production of interleukin 33 (IL-33), and the IL-22 signaling pathway. The RNA-seq data on selected genes were confirmed by quantitative real-time PCR (qRT-PCR) and protein assays. Focusing on amoxapine, which had the best anti-CDI outcome, we demonstrated that neutralization of IL-33 or depletion of neutrophils resulted in loss of drug efficacy. Overall, our lead drugs promote disease alleviation and survival in the murine model through activation of IL-33 and by clearing the pathogen through host defense mechanisms that critically include an early influx of neutrophils.IMPORTANCEClostridioides difficile is a spore-forming anaerobic bacterium and the leading cause of antibiotic-associated colitis. With few therapeutic options and high rates of disease recurrence, the need to develop new treatment options is urgent. Prior studies utilizing a repurposing approach identified three nonantibiotic Food and Drug Administration-approved drugs, amoxapine, doxapram, and trifluoperazine, with efficacy against a broad range of human pathogens; however, the protective mechanisms remained unknown. Here, we identified mechanisms leading to drug efficacy in a murine model of lethal C. difficile infection (CDI), advancing our understanding of the role of these drugs in infectious disease pathogenesis that center on host immune responses to C. difficile Overall, these studies highlight the crucial involvement of innate immune responses, as well as the importance of immunomodulation as a potential therapeutic option to combat CDI.
Collapse
Affiliation(s)
- Jourdan A Andersson
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Texas Children's Microbiome Center, Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Alex G Peniche
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Cristi L Galindo
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Prapaporn Boonma
- Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Jian Sha
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| | - Ruth Ann Luna
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Texas Children's Microbiome Center, Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Tor C Savidge
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Texas Children's Microbiome Center, Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Ashok K Chopra
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| | - Sara M Dann
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
48
|
Ruan W, Engevik MA, Spinler JK, Versalovic J. Healthy Human Gastrointestinal Microbiome: Composition and Function After a Decade of Exploration. Dig Dis Sci 2020; 65:695-705. [PMID: 32067143 DOI: 10.1007/s10620-020-06118-4] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The human gastrointestinal (GI) tract contains communities of microbes (bacteria, fungi, viruses) that vary by anatomic location and impact human health. Microbial communities differ in composition based on age, diet, and location in the gastrointestinal tract. Differences in microbial composition have been associated with chronic disease states. In terms of function, microbial metabolites provide key signals that help maintain healthy human physiology. Alterations of the healthy gastrointestinal microbiome have been linked to the development of various disease states including inflammatory bowel disease, diabetes, and colorectal cancer. While the definition of a healthy GI microbiome cannot be precisely identified, features of a healthy gut microbiome include relatively greater biodiversity and relative abundances of specific phyla and genera. Microbes with desirable functional profiles for the human host have been identified, in addition to specific metabolic features of the microbiome. This article reviews the composition and function of the healthy human GI microbiome, including the relative abundances of different bacterial taxa and the specific metabolic pathways and classes of microbial metabolites contributing to human health and disease prevention.
Collapse
Affiliation(s)
- Wenly Ruan
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,Section of Gastroenterology, Hepatology, and Nutrition, Texas Children's Hospital, Houston, TX, USA
| | - Melinda A Engevik
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA.,Department of Pathology, Texas Children's Hospital, 1102 Bates St., Feigin Tower Suite 830, Houston, TX, 77030, USA
| | - Jennifer K Spinler
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA.,Department of Pathology, Texas Children's Hospital, 1102 Bates St., Feigin Tower Suite 830, Houston, TX, 77030, USA
| | - James Versalovic
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA. .,Department of Pathology, Texas Children's Hospital, 1102 Bates St., Feigin Tower Suite 830, Houston, TX, 77030, USA.
| |
Collapse
|
49
|
Turck D, Castenmiller J, De Henauw S, Ildico Hirsch‐Ernst K, Kearney J, Knutsen HK, Maciuk A, Mangelsdorf I, McArdle HJ, Naska A, Pelaez C, Pentieva K, Thies F, Tsabouri S, Vinceti M, Bresson J, Sanz Y, Siani A. Orodispersible lozenges containing a combination of Lactobacillus reuteri DSM 17938 and Lactobacillus reuteri ATCC PTA 5289 and normal gum function: evaluation of a health claim pursuant to Article 13(5) of Regulation (EC) No 1924/2006. EFSA J 2020; 18:e06004. [PMID: 32874242 PMCID: PMC7447865 DOI: 10.2903/j.efsa.2020.6004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Following an application from BioGaia AB submitted for authorisation of a health claim pursuant to Article 13(5) of Regulation (EC) No 1924/2006 via the Competent Authority of Sweden, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on the scientific substantiation of a health claim related to orodispersible lozenges containing a combination of Lactobacillus reuteri DSM 17938 and Lactobacillus reuteri ATCC PTA 5289 and normal gum function. The scope of the application was proposed to fall under a health claim based on newly developed scientific evidence. The Panel considers that orodispersible lozenges containing L. reuteri DSM 17938 and L. reuteri ATCC PTA 5289 are sufficiently characterised. Maintenance of normal gum function is a beneficial physiological effect. Out of the two studies from which conclusions could be drawn and that investigated the effect of lozenges containing L. reuteri at the proposed conditions of use (i.e. consumption twice daily) on appropriate gingival outcomes (bleeding on probing (PoB) and gingival index (GI)) in subjects with gingivitis, but without periodontitis, one showed a large effect on BoP and other gingival outcomes and one showed no effect. No effect was found in one study with the use of one lozenge daily. The three studies that investigated, at the proposed conditions of use, modified GI (and not BoP or GI) in subjects with gingivitis, but without periodontitis, or were conducted in patients with periodontitis support an effect of lozenges with L. reuteri on gum function. Some evidence has been provided for mechanisms by which consumption of lozenges containing L. reuteri could improve outcomes of gingivitis in patients with chronic periodontitis but the relevance of such mechanisms for the target population of the claim (i.e. subjects without periodontitis) is unclear. The Panel concludes that the evidence provided is insufficient to establish a cause and effect relationship between the consumption of orodispersible lozenges containing a combination of L. reuteri DSM 17938 and L. reuteri ATCC PTA 5289 and maintenance of normal gum function.
Collapse
|
50
|
DUPONT HERBERTL, JIANG ZHIDONG, DUPONT ANDREWW, UTAY NETANYAS. THE INTESTINAL MICROBIOME IN HUMAN HEALTH AND DISEASE. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2020; 131:178-197. [PMID: 32675857 PMCID: PMC7358474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The Human Microbiome Initiative of NIH, begun in 2007, has opened the door to the power of the intestinal microbiome in health and disease. The 100 trillion gut microbes influence body function through three pathways: (1) via the neural route where 500 million neurons of the enteric nervous system (the body's second brain) connect to the brain and spinal cord, (2) via the immune route where the gut-immune capacity prevents infection and elicits immune response to vaccines, and (3) by the hormonal route wherein biologically active chemicals are released from enteroendocrine cells to control mood and body functions. Through research, the identification of diseases and disorders associated with abnormal microbiome ("dysbiosis") has increased in number with potential for reversibility. Our team has developed an orally administered fecal microbiota transplantation product that is effective in reversing dysbiosis in recurrent Clostridioides difficile (C. difficile) and is being used to reverse abnormal microbiomes in chronic dysbiotic disorders.
Collapse
Affiliation(s)
- HERBERT L. DUPONT
- Correspondence and reprint requests: Herbert L. DuPont, MD, MACP, 1200 Pressler Street, Houston, Texas 77030713-500-9366
| | | | | | | |
Collapse
|