1
|
Richardson S, Medhavi FNU, Tanner T, Lundy S, Omosun Y, Igietseme JU, Eko FO. Role of route of delivery on Chlamydia abortus vaccine-induced immune responses and genital tract immunity in mice. Microbes Infect 2025; 27:105463. [PMID: 39645188 DOI: 10.1016/j.micinf.2024.105463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
We investigated if the efficacy of a Chlamydia abortus (Cab) subunit vaccine is influenced by route of administration. Thus, female CBA/J mice were immunized either by mucosal or systemic routes with Vibrio cholerae ghost (VCG)-based vaccine expressing T and B cell epitopes of Cab polymorphic membrane protein (Pmp) 18D, termed rVCG-Pmp18.3. Vaccine evaluation revealed that all routes of vaccine delivery induced a Th1-type antibody response after a prime boost or three-dose immunization regimen. Also, the intranasal and rectal mucosal and intramuscular systemic routes induced cross-reactive neutralizing antibodies against homologous and heterologous Cab strains. Irrespective of the route of immunization, the vaccine elicited a Th1-type cytokine response (IFN-γ/IL-4 >1) in immunized mice. Analysis of reduction in genital Cab burden as an index of protection showed that immunization induced substantial degrees of protection against infection, irrespective of route of delivery with the intranasal and rectal mucosal routes showing superior levels of protection 12 days postchallenge. Furthermore, there was correlation between the humoral and cellular immune response and protection was associated with the Cab-specific serum IgG antibody avidity and IFN-γ. Thus, while route of administration impacts vaccine efficacy, the rVCG-Pmp18.3-induced protective immunity against Cab respiratory infection can be accomplished by both mucosal and systemic immunization.
Collapse
Affiliation(s)
- Shakyra Richardson
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - F N U Medhavi
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Tayhlor Tanner
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Stephanie Lundy
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Yusuf Omosun
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Joseph U Igietseme
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA; National Center for Emerging Zoonotic and Infectious Diseases, Center for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Francis O Eko
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
2
|
Medhavi F, Tanner T, Richardson S, Lundy S, Omosun Y, Eko FO. A VCG-Based Multiepitope Chlamydia Vaccine Incorporating the Cholera Toxin A1 Subunit (MECA) Confers Protective Immunity Against Transcervical Challenge. Biomedicines 2025; 13:288. [PMID: 40002702 PMCID: PMC11852492 DOI: 10.3390/biomedicines13020288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/19/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: We generated a novel recombinant Vibrio cholerae ghost (rVCG)-based subunit vaccine incorporating the A1 subunit of cholera toxin (CTA1) and a multiepitope Chlamydia trachomatis (CT) antigen (MECA) derived from five chlamydial outer membrane proteins (rVCG-MECA). The ability of this vaccine to protect against a CT transcervical challenge was evaluated. Methods: Female C57BL/6J mice were immunized thrice at two-week intervals with rVCG-MECA or rVCG-gD2 (antigen control) via the intramuscular (IM) or intranasal (IN) route. PBS-immunized mice or mice immunized with live CT served as negative and positive controls, respectively. Results: Vaccine delivery stimulated robust humoral and cell-mediated immune effectors, characterized by local mucosal and systemic CT-specific IgG, IgG2c, and IgA antibody and IFN-γ (Th1 cytokine) responses. The elicited mucosal and systemic IgG2c and IgA antibody responses persisted for 16 weeks post-immunization. Immunization with rVCG-MECA afforded protection comparable to that provided by IN immunization with live CT EBs without any side effects, irrespective of route of vaccine delivery. Conclusions: The results underline the potential of a multiepitope vaccine as a promising resource for protecting against CT genital infection and the potential of CTA1 on the VCG platform as a mucosal and systemic adjuvant for developing CT vaccines.
Collapse
Affiliation(s)
| | | | | | | | | | - Francis O. Eko
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (F.M.); (Y.O.)
| |
Collapse
|
3
|
Poston TB, Girardi J, Kim M, Zwarycz P, Polson AG, Yount KS, Hanlan C, Jaras Salas I, Lammert SM, Arroyo D, Bruno T, Wu M, Rozzelle J, Fairman J, Esser-Kahn AP, Darville T. Intranasal immunization with CPAF combined with ADU-S100 induces an effector CD4 T cell response and reduces bacterial burden following intravaginal infection with Chlamydia muridarum. Vaccine 2025; 43:126526. [PMID: 39536454 PMCID: PMC11817958 DOI: 10.1016/j.vaccine.2024.126526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Chlamydia trachomatis (Ct) is the most common bacterial sexually transmitted infection globally, and a vaccine is urgently needed to stop transmission and disease. Chlamydial Protease Activity Factor (CPAF) is an immunoprevalent and immunodominant antigen for CD4 T cells and B cells, which makes it a strong vaccine candidate. Due to the tolerogenic nature of the female genital tract (FGT) and its lack of secondary lymphoid tissue, effective induction of protective cell-mediated immunity will likely require potent and safe mucosal adjuvants. To address this need, we produced CPAF in a cell-free protein synthesis platform and adjuvanted it with the TLR9-agonist CpG1826, a synthetic cyclic-di-AMP (CDA) STING (stimulator of interferon genes) agonist ADU-S100, and/or the squalene oil-in-water nanoemulsion, AddaS03. We determined that intranasal immunization with CPAF plus ADU-S100 was well tolerated in female mice, induced CD4 T cells characterized by TNFα production alone or in combination with IL-17 A or IFNγ, significantly reduced bacterial shedding, and shortened the duration of infection in mice intravaginally challenged with Chlamydia muridarum. These data demonstrate the potential for CDA as a mucosal adjuvant for vaccines against Chlamydia genital tract infection.
Collapse
Affiliation(s)
- Taylor B Poston
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| | - Jenna Girardi
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Marie Kim
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Peter Zwarycz
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - A Grace Polson
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kacy S Yount
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Courtne Hanlan
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ian Jaras Salas
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Sarah Mae Lammert
- Department of Pathology, University of Chicago, Chicago, IL, United States
| | | | - Tony Bruno
- Vaxcyte, Inc., San Carlos, CA, United States
| | - Manhong Wu
- Vaxcyte, Inc., San Carlos, CA, United States
| | | | | | - Aaron P Esser-Kahn
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, United States
| | - Toni Darville
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
4
|
Poston TB, Girardi J, Kim M, Zwarycz P, Polson AG, Yount K, Hanlan C, Salas IJ, Lammert SM, Arroyo D, Bruno T, Wu M, Rozzelle J, Fairman J, Esser-Kahn A, Darville T. Intranasal immunization with CPAF combined with cyclic-di-AMP induces a memory CD4 T cell response and reduces bacterial burden following intravaginal infection with Chlamydia muridarum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.20.614154. [PMID: 39386616 PMCID: PMC11463518 DOI: 10.1101/2024.09.20.614154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Chlamydia trachomatis (Ct) is the most common bacterial sexually transmitted infection globally, and a vaccine is urgently needed to stop transmission and disease. Chlamydial Protease Activity Factor (CPAF) is an immunoprevalent and immunodominant antigen for CD4 T cells and B cells, which makes it a strong vaccine candidate. Due to the tolerogenic nature of the female genital tract (FGT) and its lack of secondary lymphoid tissue, effective induction of protective cell-mediated immunity will likely require potent and safe mucosal adjuvants. To address this need, we produced CPAF in a cell-free protein synthesis platform and adjuvanted it with the TLR9-agonist CpG1826, STING (stimulator of interferon genes) agonist cyclic-di-AMP (CDA), and/or the squalene oil-in-water nanoemulsion, AddaS03. We determined that intranasal immunization with CPAF plus CDA was well tolerated in female mice, induced CD4 T cells that produced IL-17A or IFNγ, significantly reduced bacterial shedding, and shortened the duration of infection in mice intravaginally challenged with Chlamydia muridarum . These data demonstrate the potential for CDA as a mucosal adjuvant for vaccines against Chlamydia genital tract infection.
Collapse
|
5
|
Koroleva EA, Goryainova OS, Ivanova TI, Rutovskaya MV, Zigangirova NA, Tillib SV. Anti-Idiotypic Nanobodies Mimicking an Epitope of the Needle Protein of the Chlamydial Type III Secretion System for Targeted Immune Stimulation. Int J Mol Sci 2024; 25:2047. [PMID: 38396724 PMCID: PMC10889375 DOI: 10.3390/ijms25042047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/19/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
The development of new approaches and drugs for effective control of the chronic and complicated forms of urogenital chlamydia caused by Chlamydia trachomatis, which is suspected to be one of the main causes of infertility in both women and men, is an urgent task. We used the technology of single-domain antibody (nanobody) generation both for the production of targeting anti-chlamydia molecules and for the subsequent acquisition of anti-idiotypic nanobodies (ai-Nbs) mimicking the structure of a given epitope of the pathogen (the epitope of the Chlamydial Type III Secretion System Needle Protein). In a mouse model, we have shown that the obtained ai-Nbs are able to induce a narrowly specific humoral immune response in the host, leading to the generation of intrinsic anti-Chlamydia antibodies, potentially therapeutic, specifically recognizing a given antigenic epitope of Chlamydia. The immune sera derived from mice immunized with ai-Nbs are able to suppress chlamydial infection in vitro. We hypothesize that the proposed method of the creation and use of ai-Nbs, which mimic and present to the host immune system exactly the desired region of the antigen, create a fundamentally new universal approach to generating molecular structures as a part of specific vaccine for the targeted induction of immune response, especially useful in cases where it is difficult to prepare an antigen preserving the desired epitope in its native conformation.
Collapse
Affiliation(s)
- Ekaterina A. Koroleva
- Institute of Gene Biology of the Russian Academy of Sciences, Vavilova Str. 34/5, 119334 Moscow, Russia; (E.A.K.)
- National Research Center for Epidemiology and Microbiology Named after the Honorary Academician N. F. Gamaleya, 123098 Moscow, Russia
| | - Oksana S. Goryainova
- Institute of Gene Biology of the Russian Academy of Sciences, Vavilova Str. 34/5, 119334 Moscow, Russia; (E.A.K.)
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Vavilova Str. 32, 119991 Moscow, Russia
| | - Tatiana I. Ivanova
- Institute of Gene Biology of the Russian Academy of Sciences, Vavilova Str. 34/5, 119334 Moscow, Russia; (E.A.K.)
| | - Marina V. Rutovskaya
- Institute of Gene Biology of the Russian Academy of Sciences, Vavilova Str. 34/5, 119334 Moscow, Russia; (E.A.K.)
| | - Naylia A. Zigangirova
- National Research Center for Epidemiology and Microbiology Named after the Honorary Academician N. F. Gamaleya, 123098 Moscow, Russia
| | - Sergei V. Tillib
- Institute of Gene Biology of the Russian Academy of Sciences, Vavilova Str. 34/5, 119334 Moscow, Russia; (E.A.K.)
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Vavilova Str. 32, 119991 Moscow, Russia
| |
Collapse
|
6
|
Murthy AK, Wright-McAfee E, Warda K, Moy LN, Bui N, Musunuri T, Manam S, Chako CZ, Ramsey KH, Li W. Protective anti-chlamydial vaccine regimen-induced CD4+ T cell response mediates early inhibition of pathogenic CD8+ T cell response following genital challenge. Pathog Dis 2024; 82:ftae008. [PMID: 38684476 PMCID: PMC11149721 DOI: 10.1093/femspd/ftae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024] Open
Abstract
We have demonstrated previously that TNF-α-producing CD8+ T cells mediate chlamydial pathogenesis, likely in an antigen (Ag)-specific fashion. Here we hypothesize that inhibition of Ag-specific CD8+ T cell response after immunization and/or challenge would correlate with protection against oviduct pathology induced by a protective vaccine regimen. Intranasal (i.n.) live chlamydial elementary body (EB), intramuscular (i.m.) live EB, or i.n. irrelevant antigen, bovine serum albumin (BSA), immunized animals induced near-total protection, 50% protection, or no protection, respectively against oviduct pathology following i.vag. C. muridarum challenge. In these models, we evaluated Ag-specific CD8+ T cell cytokine response at various time-periods after immunization or challenge. The results show protective efficacy of vaccine regimens correlated with reduction of Ag-specific CD8+ T cell TNF-α responses following i.vag. chlamydial challenge, not after immunization. Depletion of CD4+ T cells abrogated, whereas adoptive transfer of Ag-specific CD4+ T cells induced the significant reduction of Ag-specific CD8+ T cell TNF-α response after chlamydial challenge. In conclusion, protective anti-chlamydial vaccine regimens induce Ag-specific CD4+ T cell response that mediate early inhibition of pathogenic CD8+ T cell response following challenge and may serve as a predictive biomarker of protection against Chlamydia -induced chronic pathologies.
Collapse
Affiliation(s)
- Ashlesh K Murthy
- College of Veterinary Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Erika Wright-McAfee
- College of Veterinary Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Katerina Warda
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Lindsay N Moy
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Nhi Bui
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Tarakarama Musunuri
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Srikanth Manam
- College of Veterinary Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Clemence Z Chako
- College of Veterinary Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Kyle H Ramsey
- College of Veterinary Medicine, Midwestern University, Glendale, AZ 85308, USA
- College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| | - Weidang Li
- College of Veterinary Medicine, Midwestern University, Glendale, AZ 85308, USA
| |
Collapse
|
7
|
Poston TB. Advances in vaccine development for Chlamydia trachomatis. Pathog Dis 2024; 82:ftae017. [PMID: 39043447 PMCID: PMC11338180 DOI: 10.1093/femspd/ftae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/18/2024] [Accepted: 07/25/2024] [Indexed: 07/25/2024] Open
Abstract
Chlamydia trachomatis is the most prevalent bacterial sexually transmitted infection globally. Antibiotic treatment is highly effective, but infection is often asymptomatic resulting in most individuals going undetected and untreated. This untreated infection can ascend to the upper female genital tract to cause pelvic inflammatory disease, tubal factor infertility, and ectopic pregnancy. Chlamydia screening and treatment programs have failed to control this epidemic and demonstrate the need for an efficacious vaccine to prevent transmission and disease. Animal models and human epidemiological data reveal that natural immunity can provide partial or short-lived sterilizing immunity. These data further demonstrate the importance of eliciting interferon gamma (IFNγ)-producing cluster of differentiation 4 (CD4) T cells (Th1 and Th1/17 cells) that can likely synergize with antibody-mediated opsonophagocytosis to provide optimal protection. These studies have guided preclinical rational vaccine design for decades and the first Phase 1 clinical trials have recently been completed. Recent advances have led to improvements in vaccine platforms and clinically safe adjuvants that help provide a path forward. This review describes vaccine models, correlates of immunity, antigen and adjuvant selection, and future clinical testing for Chlamydia vaccine development.
Collapse
Affiliation(s)
- Taylor B Poston
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| |
Collapse
|
8
|
Tian Q, Zhang T, Wang L, Ma J, Sun X. Gut dysbiosis contributes to chlamydial induction of hydrosalpinx in the upper genital tract. Front Microbiol 2023; 14:1142283. [PMID: 37125189 PMCID: PMC10133527 DOI: 10.3389/fmicb.2023.1142283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/23/2023] [Indexed: 05/02/2023] Open
Abstract
Chlamydia trachomatis is one of the most common sexually infections that cause infertility, and its genital infection induces tubal adhesion and hydrosalpinx. Intravaginal Chlamydia muridarum infection in mice can induce hydrosalpinx in the upper genital tract and it has been used for studying C. trachomatis pathogenicity. DBA2/J strain mice were known to be resistant to the chlamydial induction of hydrosalpinx. In this study, we took advantage of this feature of DBA2/J mice to evaluate the role of antibiotic induced dysbiosis in chlamydial pathogenicity. Antibiotics (vancomycin and gentamicin) were orally administrated to induce dysbiosis in the gut of DBA2/J mice. The mice with or without antibiotic treatment were evaluated for gut and genital dysbiosis and then intravaginally challenged by C. muridarum. Chlamydial burden was tested and genital pathologies were evaluated. We found that oral antibiotics significantly enhanced chlamydial induction of genital hydrosalpinx. And the antibiotic treatment induced severe dysbiosis in the GI tract, including significantly reduced fecal DNA and increased ratios of firmicutes over bacteroidetes. The oral antibiotic did not alter chlamydial infection or microbiota in the mouse genital tracts. Our study showed that the oral antibiotics-enhanced hydrosalpinx correlated with dysbiosis in gut, providing the evidence for associating gut microbiome with chlamydial genital pathogenicity.
Collapse
Affiliation(s)
- Qi Tian
- Department of Obstetrics and Gynecology, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
- National Health Commission Key Laboratory for Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
- *Correspondence: Qi Tian,
| | - Tianyuan Zhang
- Key Lab of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- Tianyuan Zhang,
| | - Luying Wang
- Department of Obstetrics and Gynecology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jingyue Ma
- Department of Dermatovenereology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Sun
- Department of Obstetrics and Gynecology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
9
|
Fatima F, Kumar S, Das A. Vaccines against sexually transmitted infections: an update. Clin Exp Dermatol 2022; 47:1454-1463. [DOI: 10.1111/ced.15223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2022] [Indexed: 12/09/2022]
Affiliation(s)
- Farhat Fatima
- Department of Dermatology, Venereology, and Leprosy; Medical College & Hospital Kolkata India
| | - Satarupa Kumar
- Department of Dermatology, Venereology, and Leprosy; Medical College & Hospital Kolkata India
| | - Anupam Das
- Department of Dermatology, Venereology, and Leprosy; KPC Medical College & Hospital Kolkata India
| |
Collapse
|
10
|
Liu C, Hufnagel K, O'Connell CM, Goonetilleke N, Mokashi N, Waterboer T, Tollison TS, Peng X, Wiesenfeld HC, Hillier SL, Zheng X, Darville T. Reduced Endometrial Ascension and Enhanced Reinfection Associated with IgG Antibodies to Specific Chlamydia trachomatis Proteins in Women at Risk for Chlamydia. J Infect Dis 2021; 225:846-855. [PMID: 34610131 DOI: 10.1093/infdis/jiab496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/28/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Previous research revealed antibodies targeting Chlamydia trachomatis (CT) elementary bodies was not associated with reduced endometrial or incident infection in CT-exposed women. However, data on the role of CT protein-specific antibodies in protection are limited. METHODS A whole-proteome CT array screening serum pools from CT-exposed women identified 121 immunoprevalent proteins. Individual sera were probed using a focused array. IgG antibody frequencies and endometrial or incident infection relationships were examined using Wilcoxon Rank sum test. The impact of breadth and magnitude of protein-specific IgGs on ascension and incident infection were examined using multivariable stepwise logistic regression. Complementary RNA-sequencing quantified CT gene transcripts in cervical swabs from infected women. RESULTS IgG to Pgp3 and CT005 were associated with reduced endometrial infection; anti-CT443, -CT486 and -CT123 were associated with increased incident infection. Increased breadth of protein recognition did not however predict protection from endometrial or incident infection. mRNAs for immunoprevalent CT proteins were highly abundant in the cervix. CONCLUSIONS Protein-specific CT antibodies are not sufficient to protect against ascending or incident infection but broad recognition of CT proteins by IgG correlates with cervical CT gene transcript abundance, suggesting CT protein abundance correlates with immunogenicity and signifies their potential as vaccine candidates.
Collapse
Affiliation(s)
- Chuwen Liu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Katrin Hufnagel
- Division of Infections and Cancer Epidemiology, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Heidelberg, Germany
| | - Catherine M O'Connell
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nilu Goonetilleke
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Neha Mokashi
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Tim Waterboer
- Division of Infections and Cancer Epidemiology, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Heidelberg, Germany
| | - Tammy S Tollison
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Xinxia Peng
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina, USA.,Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, USA
| | - Harold C Wiesenfeld
- Department of Obstetrics, Gynecology and Reproductive Sciences, The University of Pittsburgh School of Medicine, The Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
| | - Sharon L Hillier
- Department of Obstetrics, Gynecology and Reproductive Sciences, The University of Pittsburgh School of Medicine, The Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
| | - Xiaojing Zheng
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Toni Darville
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
11
|
Chen H, Peng B, Yang C, Xie L, Zhong S, Sun Z, Li Z, Wang C, Liu X, Tang X, Zhong G, Lu C. The role of an enzymatically inactive CPAF mutant vaccination in Chlamydia muridarum genital tract infection. Microb Pathog 2021; 160:105137. [PMID: 34390765 DOI: 10.1016/j.micpath.2021.105137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022]
Abstract
Chlamydia trachomatis urogenital tract infection causes pelvic inflammatory disease and infertility, increases the risk of co-infection with HPV and HIV. Chlamydial vaccination is considered the most promising approach to prevent and control its infection. Among various chlamydial vaccine candidates, chlamydial protease-like activity factor (CPAF) have been reported to provide robust protective immunity against genital chlamydial infection in mice with reduced vaginal shedding and oviduct pathology. However, CPAF is a serine protease which has enzymatical activity to degrade a large number of substrates. In order to increase the safety of CPAF vaccine, in this study, we used a mutant CPAF that is deficient in enzymatical activity to determine whether proteolytic activity of CPAF affect its vaccine efficacy. The wild type or mutant CPAF immunization causes a significant lower chlamydial shedding from the vaginal and resolve the infection as early as day 20, compared to day 28 in adjuvant control mice. More important, reduced upper reproductive tract pathology were also observed in these two groups. The mutant or wild type CPAF immunization induced not only robust splenic IFN-γ and serum IgG2a but also sIgA secretion in the vaginal fluids. Furthermore, neutralization of chlamydia with immune sera did not provide protection against oviduct pathology. However, adoptive transfer of CD4+ splenocytes isolated from the mutant or wild type CPAF immunized mice resulted in a significant and comparable reduced oviduct pathology. Our results indicate mutant CPAF vaccination is as same efficacy as wild type, and the protection relies on CD4+ T cells, which will further promote the development of CPAF as clinical chlamydial vaccine.
Collapse
Affiliation(s)
- Hui Chen
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Bo Peng
- Cancer Research Institute, University of South China, Hengyang, Hunan, China
| | - Chunfen Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Lijuan Xie
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Shufang Zhong
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Zhenjie Sun
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Zhongyu Li
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Chuan Wang
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Xiao Liu
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Xin Tang
- Cancer Research Institute, University of South China, Hengyang, Hunan, China
| | - Guangming Zhong
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Chunxue Lu
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
12
|
Tifrea DF, He W, Pal S, Evans AC, Gilmore SF, Fischer NO, Rasley A, Coleman MA, de la Maza LM. Induction of Protection in Mice against a Chlamydia muridarum Respiratory Challenge by a Vaccine Formulated with the Major Outer Membrane Protein in Nanolipoprotein Particles. Vaccines (Basel) 2021; 9:755. [PMID: 34358171 PMCID: PMC8310061 DOI: 10.3390/vaccines9070755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/27/2022] Open
Abstract
Chlamydia trachomatis is a sexually transmitted bacterium that infects over 130 million individuals worldwide annually. To implement a vaccine, we developed a cell-free co-translational system to express the Chlamydia muridarum major outer membrane protein (MOMP). This approach uses a nanolipoprotein particles (tNLP) made from ApoA1 protein, amphiphilic telodendrimer and lipids that self-assemble to form 10-25 nm discs. These tNLP provide a protein-encapsulated lipid support to solubilize and fold membrane proteins. The cell-free system co-translated MOMP and ApoA1 in the presence of telodendrimer mixed with lipids. The MOMP-tNLP complex was amenable to CpG and FSL-1 adjuvant addition. To investigate the ability of MOMP-tNLP+CpG+FSL-1 to induce protection against an intranasal (i.n.) C. muridarum challenge, female mice were vaccinated intramuscularly (i.m.) or i.n. and i.m. simultaneously 4 weeks apart. Following vaccination with MOMP-tNLP+CpG+FSL-1, mice mounted significant humoral and cell-mediated immune responses. Following the i.n. challenge, mice vaccinated with MOMP-tNLP+CpG+FSL-1 i.n. + i.m. group were protected as determined by the percentage change in body weight and by the number of C. muridarum inclusion forming units (IFU) recovered from the lungs. To our knowledge, this is the first time a MOMP-based vaccine formulated in tNLP has been shown to protect against C. muridarum.
Collapse
Affiliation(s)
- Delia F. Tifrea
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA; (D.F.T.); (S.P.)
| | - Wei He
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA; (W.H.); (A.C.E.); (S.F.G.); (N.O.F.); (A.R.); (M.A.C.)
| | - Sukumar Pal
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA; (D.F.T.); (S.P.)
| | - Angela C. Evans
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA; (W.H.); (A.C.E.); (S.F.G.); (N.O.F.); (A.R.); (M.A.C.)
| | - Sean F. Gilmore
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA; (W.H.); (A.C.E.); (S.F.G.); (N.O.F.); (A.R.); (M.A.C.)
| | - Nicholas O. Fischer
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA; (W.H.); (A.C.E.); (S.F.G.); (N.O.F.); (A.R.); (M.A.C.)
| | - Amy Rasley
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA; (W.H.); (A.C.E.); (S.F.G.); (N.O.F.); (A.R.); (M.A.C.)
| | - Matthew A. Coleman
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA; (W.H.); (A.C.E.); (S.F.G.); (N.O.F.); (A.R.); (M.A.C.)
- School of Medicine, Radiation Oncology, University of California Davis, Sacramento, CA 95616, USA
| | - Luis M. de la Maza
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA; (D.F.T.); (S.P.)
| |
Collapse
|
13
|
Richardson S, Medhavi F, Tanner T, Lundy S, Omosun Y, Igietseme JU, Carroll D, Eko FO. Cellular Basis for the Enhanced Efficacy of the Fms-Like Tyrosine Kinase 3 Ligand (FL) Adjuvanted VCG-Based Chlamydia abortus Vaccine. Front Immunol 2021; 12:698737. [PMID: 34249004 PMCID: PMC8264281 DOI: 10.3389/fimmu.2021.698737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/11/2021] [Indexed: 12/02/2022] Open
Abstract
Efficacious vaccines are needed to control genital chlamydial diseases in humans and the veterinary industry. We previously reported a C. abortus (Cab) vaccine comprising recombinant Vibrio cholerae ghosts (rVCG) expressing the conserved and immunogenic N-terminal region of the Cab polymorphic membrane protein D (rVCG-Pmp18.1) protein that protected mice against intravaginal challenge. In this study, we investigated the immunomodulatory effect of the hematopoietic progenitor activator cytokine, Fms-like tyrosine kinase 3-ligand (FL) when co-administered with the rVCG-Pmp18.1 vaccine as a strategy to enhance the protective efficacy and the potential mechanism of immunomodulation. Groups of female C57BL/6J mice were immunized and boosted twice intranasally (IN) with rVCG-PmpD18.1 with and without FL or purified rPmp18.1 or rVCG-gD2 (antigen control) or PBS (medium) per mouse. The results revealed that co-administration of the vaccine with FL enhanced antigen-specific cellular and humoral immune responses and protected against live Cab genital infection. Comparative analysis of immune cell phenotypes infiltrating mucosal and systemic immune inductive tissue sites following immunization revealed that co-administration of rVCG-Pmp18.1 with FL significantly enhanced the number of macrophages, dendritic and NK cells, γδ and NK T cells in the spleen (systemic) and iliac lymph nodes (ILN) draining the genital tract (mucosal) tissues compared to rVCG-Pmp18.1 alone. Furthermore, FL enhanced monocyte infiltration in the ILN, while CD19+ B cells and CD4+ T cells were enhanced in the spleen. These results indicate that the immunomodulatory effect of FL is associated with its ability to mobilize innate immune cells and subsequent activation of robust antigen-specific immune effectors in mucosal and systemic lymphoid tissues.
Collapse
Affiliation(s)
- Shakyra Richardson
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Fnu Medhavi
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Tayhlor Tanner
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Stephanie Lundy
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Yusuf Omosun
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Joseph U. Igietseme
- National Center for Emerging Zoonotic and Infectious Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States
| | - Darin Carroll
- National Center for Emerging Zoonotic and Infectious Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States
| | - Francis O. Eko
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| |
Collapse
|
14
|
Dockterman J, Coers J. Immunopathogenesis of genital Chlamydia infection: insights from mouse models. Pathog Dis 2021; 79:ftab012. [PMID: 33538819 PMCID: PMC8189015 DOI: 10.1093/femspd/ftab012] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/02/2021] [Indexed: 12/13/2022] Open
Abstract
Chlamydiae are pathogenic intracellular bacteria that cause a wide variety of diseases throughout the globe, affecting the eye, lung, coronary arteries and female genital tract. Rather than by direct cellular toxicity, Chlamydia infection generally causes pathology by inducing fibrosis and scarring that is largely mediated by host inflammation. While a robust immune response is required for clearance of the infection, certain elements of that immune response may also damage infected tissue, leading to, in the case of female genital infection, disease sequelae such as pelvic inflammatory disease, infertility and ectopic pregnancy. It has become increasingly clear that the components of the immune system that destroy bacteria and those that cause pathology only partially overlap. In the ongoing quest for a vaccine that prevents Chlamydia-induced disease, it is important to target mechanisms that can achieve protective immunity while preventing mechanisms that damage tissue. This review focuses on mouse models of genital Chlamydia infection and synthesizes recent studies to generate a comprehensive model for immunity in the murine female genital tract, clarifying the respective contributions of various branches of innate and adaptive immunity to both host protection and pathogenic genital scarring.
Collapse
Affiliation(s)
- Jacob Dockterman
- Department of Immunology, Duke University Medical Center, Durham, NC 22710, USA
| | - Jörn Coers
- Department of Immunology, Duke University Medical Center, Durham, NC 22710, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 22710, USA
| |
Collapse
|
15
|
D Helble J, N Starnbach M. T cell responses to Chlamydia. Pathog Dis 2021; 79:6164867. [PMID: 33693620 DOI: 10.1093/femspd/ftab014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/07/2021] [Indexed: 12/27/2022] Open
Abstract
Chlamydia trachomatis is the most commonly reported sexually transmitted infection in the United States. The high prevalence of infection and lack of a vaccine indicate a critical knowledge gap surrounding the host's response to infection and how to effectively generate protective immunity. The immune response to C. trachomatis is complex, with cells of the adaptive immune system playing a crucial role in bacterial clearance. Here, we discuss the CD4+ and CD8+ T cell response to Chlamydia, the importance of antigen specificity and the role of memory T cells during the recall response. Ultimately, a deeper understanding of protective immune responses is necessary to develop a vaccine that prevents the inflammatory diseases associated with Chlamydia infection.
Collapse
Affiliation(s)
- Jennifer D Helble
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
16
|
Tifrea DF, Pal S, Fairman J, Massari P, de la Maza LM. Protection against a chlamydial respiratory challenge by a chimeric vaccine formulated with the Chlamydia muridarum major outer membrane protein variable domains using the Neisseria lactamica porin B as a scaffold. NPJ Vaccines 2020; 5:37. [PMID: 32411400 PMCID: PMC7210953 DOI: 10.1038/s41541-020-0182-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/27/2020] [Indexed: 11/26/2022] Open
Abstract
Chlamydia trachomatis is the most frequently detected sexually transmitted bacterial pathogen in the world. Attempts to control these infections with screening programs and antibiotics have failed and, therefore, a vaccine is the best approach to control this epidemic. The Chlamydia major outer membrane protein (MOMP) is the most protective subunit vaccine so far tested. Protection induced by MOMP is, in part, dependent on its tertiary structure. We have previously described new recombinant antigens composed of the Neisseria lactamica PorB engineered to express the variable domains (VD) from Chlamydia muridarum MOMP. Here we tested antigens containing each individual MOMP VD and different VD combinations. Following immunization, mice were challenged intranasally with C. muridarum. Our results show that three constructs, PorB/VD1-3, PorB/VD1-4, and PorB/VD1-2-4, elicited high serum IgG titers in vivo, significant IFN-γ levels upon T cells re-stimulation in vitro, and evidence of protective immunity in vivo. PorB/VD1-3, PorB/VD1-4, and PorB/VD1-2-4 immunized mice lost less body weight, had lighter lungs, and decreased numbers of inclusion forming units (IFUs) in lungs than other PorB/VD construct tested and mock PBS-immunized mice. These results suggest that this approach may be a promising alternative to the use of MOMP in a Chlamydia vaccine.
Collapse
Affiliation(s)
- Delia F. Tifrea
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Medical Sciences I, Room D440, Irvine, California 92697-4800 USA
| | - Sukumar Pal
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Medical Sciences I, Room D440, Irvine, California 92697-4800 USA
| | - Jeff Fairman
- Sutrovax, Inc., 400 E Jamie Court, Suite 205, South San Francisco, California 94080 USA
| | - Paola Massari
- Department of Immunology, Tufts University School of Medicine, Jaharis, 512C 150 Harrison Avenue, Boston, Massachusetts 02111 USA
| | - Luis M. de la Maza
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Medical Sciences I, Room D440, Irvine, California 92697-4800 USA
| |
Collapse
|
17
|
O'Neill LM, Keane OM, Ross PJ, Nally JE, Seshu J, Markey B. Evaluation of protective and immune responses following vaccination with recombinant MIP and CPAF from Chlamydia abortus as novel vaccines for enzootic abortion of ewes. Vaccine 2019; 37:5428-5438. [PMID: 31375438 DOI: 10.1016/j.vaccine.2019.06.088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 11/18/2022]
Abstract
MIP and CPAF from Chlamydia have been shown to be effective in inducing immune responses important in clearing chlamydial infections. This study evaluates the protection conferred by MIP and CPAF as novel vaccines in pregnant C. abortus challenged ewes. Fifty C. abortus sero-negative sheep were randomly allocated into 5 groups of 10 according to the treatment they were to receive (1) 100 µg of MBP-MIP (2) 100 µg CPAF (3) 50 µg MBP-MIP and 50 µg CPAF (4) Tris-buffer (negative control) (5) Enzovax (positive control). Booster inoculations were administered 3 weeks after primary inoculations. Blood samples were taken pre-vaccination and weekly for 5 weeks. Five months after vaccination the ewes were mated. Pregnant ewes were then challenged on day 90 of gestation. Blood samples taken at four time-points post challenge were analysed for IFNγ levels, TNFα and IL-10 expression and anti-chlamydial antibody levels. Vaginal swabs, placental and foetal tissue and bacterial shedding were analysed using qPCR to quantify levels of C. abortus. Enzovax was 100% effective with no abortions occurring. The MIP/CPAF combined vaccine offered the greatest protection of the novel vaccines with 67% of ewes giving birth to one or more live lambs equating to a 50% vaccine efficacy rate. MIP and CPAF administered singly did not confer protection. Enzovax and MIP/CPAF vaccinated ewes had longer gestations and lambs with higher birth weights than negative control ewes. Aborting ewes shed higher numbers of C. abortus than ewes that had live lambs, all vaccinated ewes demonstrated lower levels of bacterial shedding than negative control ewes with Enzovax ewes shedding significantly fewer bacteria. Ewes that went on to abort had significantly higher levels of IFNγ and IL-10 at day 35 post challenge and significantly higher levels of anti-chlamydial antibodies at 24 h post lambing compared to ewes that had live lambs.
Collapse
Affiliation(s)
- L M O'Neill
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland; Animal & Bioscience Department, Teagasc Grange, Dunsany, Co. Meath, Ireland.
| | - O M Keane
- Animal & Bioscience Department, Teagasc Grange, Dunsany, Co. Meath, Ireland
| | - P J Ross
- Department of Agriculture, Food and the Marine, Central Veterinary Research Laboratory, Backweston, Co. Kildare, Ireland
| | - J E Nally
- Infectious Bacterial Diseases, National Animal Disease Center, Agriculture Research Service, United States Department of Agriculture, Ames, IA, USA
| | - J Seshu
- South Texas Center for Emerging Infectious Diseases, Centre of Excellence in Infection Genomics and Department of Biology, The University of Texas at San Antonio, San Antonio, TX, USA
| | - B Markey
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
18
|
Pais R, Omosun Y, Igietseme JU, Fujihashi K, Eko FO. Route of Vaccine Administration Influences the Impact of Fms-Like Tyrosine Kinase 3 Ligand (Flt3L) on Chlamydial-Specific Protective Immune Responses. Front Immunol 2019; 10:1577. [PMID: 31333682 PMCID: PMC6621642 DOI: 10.3389/fimmu.2019.01577] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 06/24/2019] [Indexed: 11/24/2022] Open
Abstract
We tested the hypothesis that the impact of the Fms-like tyrosine kinase 3-ligand (Flt3L; FL) on recombinant Vibrio cholerae ghost (rVCG) vaccine-induced chlamydial immunity is influenced by route of vaccine delivery. Female C57BL/6J mice were immunized rectally (IR) or intramuscularly (IM) with rVCG co-expressing the Chlamydia trachomatis PmpD and PorB proteins (rVCG- PmpD/PorB) with and without FL or glycoprotein D of HSV-2 (rVCG-gD2) as antigen control. Vaccine evaluation was based on measurement of T cell proliferation, Th1/Th2 cytokine, and humoral responses at systemic and mucosal compartments, and protection against intravaginal challenge infection. Results revealed that high levels of CD4+ T cell-mediated and humoral immune responses, were elicited in mice as a function of both IR and IM immunization. Unexpectedly, co-administration of vaccine with FL enhanced specific Th1-type cytokine levels and T cell proliferative responses following IR but not IM immunization. While administration of vaccine with FL enhanced the specific mucosal and systemic IgA antibody responses following both immunization routes, IgG2c responses were not enhanced following IR delivery. The vaccine-induced immune effectors protected mice against live heterologous C. muridarum infection irrespective of route of vaccine administration, with the regimen incorporating FL having a protective advantage. Further evaluation showed that protection afforded by the FL adjuvanted vaccine was facilitated by CD4+ T cells, as indicated by reduction in the intensity and duration of genital chlamydial shedding by naïve mice following adoptive transfer of immune CD4+ T cells. Taken together, the results indicate that comparable protective immunity, which is enhanced by co-delivery with FL, is elicited in the female genital tract against Chlamydia infection after mucosal and systemic administration, highlighting the ability of FL to function as an effective immunostimulator at both mucosal and systemic sites. The differential modulation of humoral and cellular immune responses, and protective immunity afforded by the FL adjuvanted vaccine following IR administration indicates that the immunomodulatory impact of FL on chlamydial-specific immunity is influenced by the route of vaccine administration. Thus, targeting of VCG-based vaccines to antigen presenting cells by co-delivery with FL is a feasible immunization approach for inducing effective chlamydial immunity in the female genital tract.
Collapse
Affiliation(s)
- Roshan Pais
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Yusuf Omosun
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Joseph U. Igietseme
- Molecular Pathogenesis Laboratory, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Kohtaro Fujihashi
- Department of Pediatric Dentistry, Institute of Oral Health Research, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Francis O. Eko
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| |
Collapse
|
19
|
Luan X, Peng B, Li Z, Tang L, Chen C, Chen L, Wu H, Sun Z, Lu C. Vaccination with MIP or Pgp3 induces cross-serovar protection against chlamydial genital tract infection in mice. Immunobiology 2018; 224:223-230. [PMID: 30558842 DOI: 10.1016/j.imbio.2018.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 01/26/2023]
Abstract
Previously we reported that recombinant Chlamydia muridarum macrophage infectivity potentiator (MIP) provided partial protection against C. muridarum genital tract infection in mice. On the other hand, Chlamydia trachomatis plasmid encoded Pgp3could induce the protection against C. muridarum air way infection. This study aimed to evaluate the immunogenicity of MIP and Pgp3 from C. trachomatis serovar D and further investigate whether MIP and Pgp3 provide cross-serovar protection against C. muridarum genital tract infection in mice. Our results showed that vaccination by any regimen, including MIP alone, Pgp3 alone or MIP plus Pgp3, induced specific serum antibody production and Th1-dominant cellular responses in mice. Live chlamydial shedding from the vaginal and inflammatory pathologies in the oviduct markedly reduced. However, MIP + Pgp3 vaccination did not provide better protection than the single immunization. In conclusion, this study demonstrated that both MIP and Pgp3 can induce cross-serovar protective against chlamydial genital tract infection, and provided the guide for the development of optimal multisubunit vaccines against C. trachomatis infection.
Collapse
Affiliation(s)
- Xiuli Luan
- Pathogenic Biology Institute, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China
| | - Bo Peng
- Pathogenic Biology Institute, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China; Department of Pathology, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Zhongyu Li
- Pathogenic Biology Institute, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China
| | - Lingli Tang
- Department of Clinic Diagnosis, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Chaoqun Chen
- Pathogenic Biology Institute, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
| | - Lili Chen
- Pathogenic Biology Institute, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
| | - Haiying Wu
- Pathogenic Biology Institute, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
| | - Zhenjie Sun
- Pathogenic Biology Institute, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
| | - Chunxue Lu
- Pathogenic Biology Institute, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China.
| |
Collapse
|
20
|
Verma R, Sahu R, Dixit S, Duncan SA, Giambartolomei GH, Singh SR, Dennis VA. The Chlamydia M278 Major Outer Membrane Peptide Encapsulated in the Poly(lactic acid)-Poly(ethylene glycol) Nanoparticulate Self-Adjuvanting Delivery System Protects Mice Against a Chlamydia muridarum Genital Tract Challenge by Stimulating Robust Systemic and Local Mucosal Immune Responses. Front Immunol 2018; 9:2369. [PMID: 30374357 PMCID: PMC6196261 DOI: 10.3389/fimmu.2018.02369] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/24/2018] [Indexed: 12/26/2022] Open
Abstract
Recently, we reported that our PPM chlamydial nanovaccine [a biodegradable co-polymeric PLA-PEG (poly(lactic acid)-poly(ethylene glycol))-encapsulated M278 peptide (derived from the major outer membrane protein (MOMP) of Chlamydia)] exploits the caveolin-mediated endocytosis pathway for endosomal processing and MHC class II presentation to immune-potentiate Chlamydia-specific CD4+ T-cell immune effector responses. In the present study, we employed the Chlamydia muridarum mouse infection model to evaluate the protective efficacy of PPM against a genital tract challenge. Our results show that mice immunized with PPM were significantly protected against a homologous genital tract challenge evidently by reduced vaginal bacterial loads. Protection of mice correlated with enhanced Chlamydia-specific adaptive immune responses predominated by IFN-γ along with CD4+ T-cells proliferation and their differentiation to CD4+ memory (CD44high CD62Lhigh) and effector (CD44high CD62Llow) T-cell phenotypes. We observed the elevation of M278- and MOMP-specific serum antibodies with high avidity in the ascending order IgG1 > IgG2b > IgG2a. A key finding was the elevated mucosal IgG1 and IgA antibody titers followed by an increase in MOMP-specific IgA after the challenge. The Th1/Th2 antibody titer ratios (IgG2a/IgG1 and IgG2b/IgG1) revealed that PPM evoked a Th2-directed response, which skewed to a Th1-dominated antibody response after the bacterial challenge of mice. In addition, PPM immune sera neutralized the infectivity of C. muridarum in McCoy cells, suggesting the triggering of functional neutralizing antibodies. Herein, we reveal for the first time that subcutaneous immunization with the self-adjuvanting biodegradable co-polymeric PPM nanovaccine immune-potentiated robust CD4+ T cell-mediated immune effector responses; a mixed Th1 and Th2 antibody response and local mucosal IgA to protect mice against a chlamydial genital tract challenge.
Collapse
Affiliation(s)
- Richa Verma
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL, United States
| | - Rajnish Sahu
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL, United States
| | - Saurabh Dixit
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL, United States
| | - Skyla A Duncan
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL, United States
| | - Guillermo H Giambartolomei
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Shree R Singh
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL, United States
| | - Vida A Dennis
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL, United States
| |
Collapse
|
21
|
Li W, Gudipaty P, Li C, Henderson KK, Ramsey KH, Murthy AK. Intranasal immunization with recombinant chlamydial protease-like activity factor attenuates atherosclerotic pathology following Chlamydia pneumoniae infection in mice. Immunol Cell Biol 2018; 97:85-91. [PMID: 30051926 DOI: 10.1111/imcb.12192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/23/2018] [Accepted: 07/23/2018] [Indexed: 12/17/2022]
Abstract
We have shown previously that intranasal vaccination with recombinant chlamydial protease-like activity factor (rCPAF: antigen) and interleukin-12 (IL-12) as an adjuvant induces robust protection against pathological consequences of female genital tract infection with Chlamydia muridarum, a closely related species and a rodent model for the human pathogen Chlamydia trachomatis. Another related species Chlamydia pneumoniae, a human respiratory pathogen, has been associated with exacerbation of atherosclerotic pathology. CPAF is highly conserved among Chlamydia spp. leading us to hypothesize that immunization with rCPAF with IL-12 will protect against high-fat diet (HFD) and C. pneumoniae-induced acceleration of atherosclerosis. rCPAF ± IL-12 immunization induced robust splenic antigen (Ag)-specific IFN-γ and TNF-α production and significantly elevated serum total anti-CPAF Ab, IgG2c, and IgG1 antibody levels compared to mock or IL-12 alone groups. The addition of IL-12 to rCPAF significantly elevated splenic Ag-specific IFN-γ production and IgG2c/IgG1 anti-CPAF antibody ratio. Following intranasal C. pneumoniae challenge and HFD feeding, rCPAF ± IL-12-immunized mice displayed significantly enhanced splenic IFN-γ, not TNF-α, response on days 6 and 9 after challenge, and significantly reduced lung chlamydial burden on day 9 post-challenge compared to mock- or IL-12-immunized mice. Importantly, rCPAF ± IL-12-immunized mice displayed significantly reduced atherosclerotic pathology in the aortas after C. pneumoniae challenge. Serum cholesterol levels were comparable between the groups suggesting that the observed differences in pathology were due to protective immunity against the infection. Together, these results confirm and extend our previous observations that CPAF is a promising candidate antigen for a multisubunit vaccine regimen to protect against Chlamydia-induced pathologies, including atherosclerosis.
Collapse
Affiliation(s)
- Weidang Li
- College of Veterinary Medicine, Midwestern University, Glendale, CA, USA
| | - Pareesha Gudipaty
- College of Health Sciences, Midwestern University, Glendale, CA, USA
| | - Chuxi Li
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, USA.,College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| | - Kyle K Henderson
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, USA
| | - Kyle H Ramsey
- College of Veterinary Medicine, Midwestern University, Glendale, CA, USA.,Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, USA
| | - Ashlesh K Murthy
- College of Veterinary Medicine, Midwestern University, Glendale, CA, USA
| |
Collapse
|
22
|
Pais R, Omosun Y, He Q, Blas-Machado U, Black C, Igietseme JU, Fujihashi K, Eko FO. Rectal administration of a chlamydial subunit vaccine protects against genital infection and upper reproductive tract pathology in mice. PLoS One 2017; 12:e0178537. [PMID: 28570663 PMCID: PMC5453548 DOI: 10.1371/journal.pone.0178537] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 05/15/2017] [Indexed: 11/18/2022] Open
Abstract
In this study, we tested the hypothesis that rectal immunization with a VCG-based chlamydial vaccine would cross-protect mice against heterologous genital Chlamydia trachomatis infection and Chlamydia-induced upper genital tract pathologies in mice. Female mice were immunized with a C. trachomatis serovar D-derived subunit vaccine or control or live serovar D elementary bodies (EBs) and the antigen-specific mucosal and systemic immune responses were characterized. Vaccine efficacy was determined by evaluating the intensity and duration of genital chlamydial shedding following intravaginal challenge with live serovar E chlamydiae. Protection against upper genital tract pathology was determined by assessing infertility and tubal inflammation. Rectal immunization elicited high levels of chlamydial-specific IFN-gamma-producing CD4 T cells and humoral immune responses in mucosal and systemic tissues. The elicited immune effectors cross-reacted with the serovar E chlamydial antigen and reduced the length and intensity of genital chlamydial shedding. Furthermore, immunization with the VCG-vaccine but not the rVCG-gD2 control reduced the incidence of tubal inflammation and protected mice against Chlamydia-induced infertility. These results highlight the potential of rectal immunization as a viable mucosal route for inducing protective immunity in the female genital tract.
Collapse
Affiliation(s)
- Roshan Pais
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Yusuf Omosun
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Qing He
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Uriel Blas-Machado
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, The University of Georgia, Athens, Georgia, United States of America
| | - Carolyn Black
- Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, United States of America
| | - Joseph U. Igietseme
- Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, United States of America
| | - Kohtaro Fujihashi
- Department of Pediatric Dentistry, Immunobiology Vaccine Center, The University of Alabama at Birmingham, Birmingham Alabama, United States of America
| | - Francis O. Eko
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| |
Collapse
|
23
|
Update on Chlamydia trachomatis Vaccinology. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00543-16. [PMID: 28228394 DOI: 10.1128/cvi.00543-16] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Attempts to produce a vaccine to protect against Chlamydia trachomatis-induced trachoma were initiated more than 100 years ago and continued for several decades. Using whole organisms, protective responses were obtained. However, upon exposure to C. trachomatis, disease exacerbation developed in some immunized individuals, precluding the implementation of the vaccine. Evidence of the role of C. trachomatis as a sexually transmitted pathogen started to emerge in the 1960s, and it soon became evident that it can cause acute infections and long-term sequelae in women, men, and newborns. The main focus of this minireview is to summarize recent findings and discuss formulations, including antigens, adjuvants, routes, and delivery systems for immunization, primarily explored in the female mouse model, with the goal of implementing a vaccine against C. trachomatis genital infections.
Collapse
|
24
|
Chlamydial Type III Secretion System Needle Protein Induces Protective Immunity against Chlamydia muridarum Intravaginal Infection. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3865802. [PMID: 28459057 PMCID: PMC5385227 DOI: 10.1155/2017/3865802] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/19/2017] [Indexed: 01/04/2023]
Abstract
Chlamydia trachomatis imposes serious health problems and causes infertility. Because of asymptomatic onset, it often escapes antibiotic treatment. Therefore, vaccines offer a better option for the prevention of unwanted inflammatory sequelae. The existence of serologically distinct serovars of C. trachomatis suggests that a vaccine will need to provide protection against multiple serovars. Chlamydia spp. use a highly conserved type III secretion system (T3SS) composed of structural and effector proteins which is an essential virulence factor. In this study, we expressed the T3SS needle protein of Chlamydia muridarum, TC_0037, an ortholog of C. trachomatis CdsF, in a replication-defective adenoviral vector (AdTC_0037) and evaluated its protective efficacy in an intravaginal Chlamydia muridarum model. For better immune responses, we employed a heterologous prime-boost immunization protocol in which mice were intranasally primed with AdTC_0037 and subcutaneously boosted with recombinant TC_0037 and Toll-like receptor 4 agonist monophosphoryl lipid A mixed in a squalene nanoscale emulsion. We found that immunization with TC_0037 antigen induced specific humoral and T cell responses, decreased Chlamydia loads in the genital tract, and abrogated pathology of upper genital organs. Together, our results suggest that TC_0037, a highly conserved chlamydial T3SS protein, is a good candidate for inclusion in a Chlamydia vaccine.
Collapse
|
25
|
MicroRNAs Modulate Pathogenesis Resulting from Chlamydial Infection in Mice. Infect Immun 2016; 85:IAI.00768-16. [PMID: 27799333 DOI: 10.1128/iai.00768-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/26/2016] [Indexed: 02/07/2023] Open
Abstract
Not all women infected with chlamydiae develop upper genital tract disease, but the reason(s) for this remains undefined. Host genetics and hormonal changes associated with the menstrual cycle are possible explanations for variable infection outcomes. It is also possible that disease severity depends on the virulence of the chlamydial inoculum. It is likely that the inoculum contains multiple genetic variants, differing in virulence. If the virulent variants dominate, then the individual is more likely to develop severe disease. Based on our previous studies, we hypothesized that the relative degree of virulence of a chlamydial population dictates the microRNA (miRNA) expression profile of the host, which, in turn, through regulation of the host inflammatory response, determines disease severity. Thus, we infected C57BL/6 mice with two populations of Chlamydia muridarum, each comprised of multiple genetic variants and differing in virulence: an attenuated strain (NiggA) and a virulent strain (NiggV). NiggA and NiggV elicited upper tract pathology in 54% and 91% of mice, respectively. miRNA expression analysis in NiggV-infected mice showed significant downregulation of miRNAs involved in dampening fibrosis (miR-200b, miR-200b-5p, and 200b-3p miR-200a-3p) and in transcriptional regulation of cytokine responses (miR-148a-3p, miR-152-3p, miR-132, and miR-212) and upregulation of profibrotic miRNAs (miR-142, and miR-147). Downregulated miRNAs were associated with increased expression of interleukin 8 (IL-8), CXCL2, IL-1β, tumor necrosis factor alpha (TNF-α), and IL-6. Infection with NiggV but not NiggA led to decreased expression of Dicer and Ago 2, suggesting that NiggV interaction with host cells inhibits expression of the miRNA biogenesis machinery, leading to increased cytokine expression and pathology.
Collapse
|
26
|
Wali S, Gupta R, Yu JJ, Lanka GKK, Chambers JP, Guentzel MN, Zhong G, Murthy AK, Arulanandam BP. Chlamydial protease-like activity factor mediated protection against C. trachomatis in guinea pigs. Immunol Cell Biol 2016; 95:454-460. [PMID: 27990018 PMCID: PMC5449249 DOI: 10.1038/icb.2016.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 12/02/2016] [Accepted: 12/06/2016] [Indexed: 01/30/2023]
Abstract
We have comprehensively demonstrated using the mouse model that intranasal immunization with recombinant chlamydial protease-like activity factor (rCPAF) leads to a significant reduction in bacterial burden, genital tract pathology and preserves fertility following intravaginal genital chlamydial challenge. In the present report, we evaluated the protective efficacy of rCPAF immunization in guinea pigs, a second animal model for genital chlamydial infection. Using a vaccination strategy similar to the mouse model, we intranasally immunized female guinea pigs with rCPAF plus CpG deoxynucleotides (CpG; as an adjuvant), and challenged intravaginally with C. trachomatis serovar D (CT-D). Immunization with rCPAF/CpG significantly reduced vaginal CT-D shedding and induced resolution of infection by day 24, compared to day 33 in CpG alone treated and challenged animals. Immunization induced robust anti-rCPAF serum IgG 2 weeks following the last immunization, and was sustained at a high level 4 weeks post challenge. Upregulation of antigen specific IFN-γ gene expression was observed in rCPAF/CpG vaccinated splenocytes. Importantly, a significant reduction in inflammation in the genital tissue in rCPAF/CpG-immunized guinea pigs compared to CpG-immunized animals was observed. Taken together, this study provides evidence of the protective efficacy of rCPAF as a vaccine candidate in a second animal model of genital chlamydial infection.
Collapse
Affiliation(s)
- Shradha Wali
- South Texas Center for Emerging Infectious Diseases and Center for Excellence in Infection Genomics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, USA
| | - Rishein Gupta
- South Texas Center for Emerging Infectious Diseases and Center for Excellence in Infection Genomics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, USA
| | - Jieh-Juen Yu
- South Texas Center for Emerging Infectious Diseases and Center for Excellence in Infection Genomics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, USA
| | - Gopala Krishna Koundinya Lanka
- South Texas Center for Emerging Infectious Diseases and Center for Excellence in Infection Genomics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, USA
| | - James P Chambers
- South Texas Center for Emerging Infectious Diseases and Center for Excellence in Infection Genomics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, USA
| | - M Neal Guentzel
- South Texas Center for Emerging Infectious Diseases and Center for Excellence in Infection Genomics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, USA
| | - Guangming Zhong
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Ashlesh K Murthy
- Department of Pathology, Midwestern University, Downers Grove, IL, USA
| | - Bernard P Arulanandam
- South Texas Center for Emerging Infectious Diseases and Center for Excellence in Infection Genomics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, USA
| |
Collapse
|
27
|
Russell AN, Zheng X, O'Connell CM, Wiesenfeld HC, Hillier SL, Taylor BD, Picard MD, Flechtner JB, Zhong W, Frazer LC, Darville T. Identification of Chlamydia trachomatis Antigens Recognized by T Cells From Highly Exposed Women Who Limit or Resist Genital Tract Infection. J Infect Dis 2016; 214:1884-1892. [PMID: 27738051 DOI: 10.1093/infdis/jiw485] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/04/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Natural infection induces partial immunity to Chlamydia trachomatis Identification of chlamydial antigens that induce interferon γ (IFN-) secretion by T cells from immune women could advance vaccine development. METHODS IFN-γ production by CD4+ and CD8+ peripheral blood T cells from 58 high-risk women was measured after coculture with antigen-presenting cells preincubated with recombinant Escherichia coli expressing a panel of 275 chlamydial antigens. Quantile median regression analysis was used to compare frequencies of IFN-γ responses in women with only cervical infection to those in women with endometrial infection and frequencies in women who remained uninfected for over 1 year to those in women who developed incident infection. Statistical methods were then used to identify proteins associated with protection. RESULTS A higher median frequency of CD8+ T-cell responses was detected in women with lower genital tract chlamydial infection, compared with those with upper genital tract chlamydial infection (13.8% vs 9.5%; P =04), but the CD4+ T-cell response frequencies were not different. Women who remained uninfected displayed a greater frequency of positive CD4+ T-cell responses (29% vs 18%; P < .0001), compared with women who had incident infection, while the frequencies of CD8+ T-cell responses did not differ. A subset of proteins involved in central metabolism, type III secretion, and protein synthesis were associated with protection. CONCLUSIONS Investigations in naturally exposed women reveal protective responses and identify chlamydial vaccine candidate antigens.
Collapse
Affiliation(s)
| | | | | | - Harold C Wiesenfeld
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine and Magee-Womens Research Institute, Pennsylvania
| | - Sharon L Hillier
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine and Magee-Womens Research Institute, Pennsylvania
| | - Brandie D Taylor
- Department of Epidemiology and Biostatistics, Texas A&M Health Science Center, College Station
| | | | | | - Wujuan Zhong
- Department of Biostatistics, University of North Carolina-Chapel Hill
| | | | | |
Collapse
|
28
|
Gupta R, Arkatkar T, Keck J, Koundinya GKL, Castillo K, Hobel S, Chambers JP, Yu JJ, Guentzel MN, Aigner A, Christenson LK, Arulanandam BP. Antigen specific immune response in Chlamydia muridarum genital infection is dependent on murine microRNAs-155 and -182. Oncotarget 2016; 7:64726-64742. [PMID: 27556515 PMCID: PMC5323111 DOI: 10.18632/oncotarget.11461] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 08/02/2016] [Indexed: 12/21/2022] Open
Abstract
Anti-chlamydial immunity involves efficient presentation of antigens (Ag) to effector cells resulting in Ag-specific immune responses. There is limited information on inherent underlying mechanisms regulating these events. Previous studies from our laboratory have established that select microRNAs (miRs) function as molecular regulators of immunity in Chlamydia muridarum (Cm) genital infection. In this report, we investigated immune cell type-specific miRs, i.e. miR-155 and -182, and the role in Ag-specific immunity. We observed significant up-regulation of miR-155 in C57BL/6 bone marrow derived dendritic cells (BMDC), and miR-182 in splenic Ag-specific CD4+ T-cells. Using mimics and inhibitors, we determined that miR-155 contributed to BMDC activation following Cm infection. Co-cultures of miR-155 over-expressed in BMDC and miR-182 over-expressed in Ag-specific CD4+ T-cells, or miR-155-/- BMDC with miR-182 inhibitor treated Ag-specific CD4+ T-cells, resulted in IFN-γ production comparable to Ag-specific CD4+ T-cells isolated from Cm infected mice. Additionally, miR-182 was significantly up-regulated in intranasally vaccinated mice protected against Cm infection. In vivo depletion of miR-182 resulted in reduction in Ag-specific IFN-γ and genital pathology in Cm infected mice. To the best of our knowledge, this is the first study to report an interaction of miR-155 (in Cm infected DC) and miR-182 (in CD4+ T-cell) resulting in Ag specific immune responses against genital Cm.
Collapse
Affiliation(s)
- Rishein Gupta
- South Texas Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, USA
| | - Tanvi Arkatkar
- South Texas Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, USA
| | - Jonathon Keck
- South Texas Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, USA
| | - Gopala Krishna Lanka Koundinya
- South Texas Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, USA
| | - Kevin Castillo
- South Texas Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, USA
| | - Sabrina Hobel
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, HärtelstraΔe, Leipzig, Germany
| | - James P. Chambers
- South Texas Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, USA
| | - Jieh-Juen Yu
- South Texas Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, USA
| | - M. Neal Guentzel
- South Texas Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, USA
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, HärtelstraΔe, Leipzig, Germany
| | - Lane K. Christenson
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Bernard P. Arulanandam
- South Texas Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
29
|
IFNγ is Required for Optimal Antibody-Mediated Immunity against Genital Chlamydia Infection. Infect Immun 2016; 84:3232-3242. [PMID: 27600502 PMCID: PMC5067755 DOI: 10.1128/iai.00749-16] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Defining the mechanisms of immunity conferred by the combination of antibody and CD4+ T cells is fundamental to designing an efficacious chlamydial vaccine. Using the Chlamydia muridarum genital infection model of mice, which replicates many features of human C. trachomatis infection and avoids the characteristic low virulence of C. trachomatis in the mouse, we previously demonstrated a significant role for antibody in immunity to chlamydial infection. We found that antibody alone was not protective. Instead, protection appeared to be conferred through an undefined antibody-cell interaction. Using gene knockout mice and in vivo cellular depletion methods, our data suggest that antibody-mediated protection is dependent on the activation of an effector cell population in genital tract tissues by CD4+ T cells. Furthermore, the CD4+ T cell-secreted cytokine gamma interferon (IFN-γ) was found to be a key component of the protective antibody response. The protective function of IFN-γ was not related to the immunoglobulin class or to the magnitude of the Chlamydia-specific antibody response or to recruitment of an effector cell population to genital tract tissue. Rather, IFN-γ appears to be necessary for activation of the effector cell population that functions in antibody-mediated chlamydial immunity. Our results confirm the central role of antibody in immunity to chlamydia reinfection and demonstrate a key function for IFN-γ in antibody-mediated protection.
Collapse
|
30
|
Abstract
Etiology, transmission and protection: Chlamydia
trachomatis is the leading cause of bacterial sexually transmitted
infection (STI) globally. However, C. trachomatis also causes
trachoma in endemic areas, mostly Africa and the Middle East, and is a leading
cause of preventable blindness worldwide. Epidemiology, incidence and
prevalence: The World Health Organization estimates 131 million
new cases of C. trachomatis genital infection occur annually.
Globally, infection is most prevalent in young women and men (14-25 years),
likely driven by asymptomatic infection, inadequate partner treatment and
delayed development of protective immunity.
Pathology/Symptomatology: C.
trachomatis infects susceptible squamocolumnar or transitional
epithelial cells, leading to cervicitis in women and urethritis in men. Symptoms
are often mild or absent but ascending infection in some women may lead to
Pelvic Inflammatory Disease (PID), resulting in reproductive sequelae such as
ectopic pregnancy, infertility and chronic pelvic pain. Complications of
infection in men include epididymitis and reactive arthritis.
Molecular mechanisms of infection: Chlamydiae
manipulate an array of host processes to support their obligate intracellular
developmental cycle. This leads to activation of signaling pathways resulting in
disproportionate influx of innate cells and the release of tissue damaging
proteins and pro-inflammatory cytokines. Treatment and
curability: Uncomplicated urogenital infection is treated with
azithromycin (1 g, single dose) or doxycycline (100 mg twice daily x 7 days).
However, antimicrobial treatment does not ameliorate established disease. Drug
resistance is rare but treatment failures have been described. Development of an
effective vaccine that protects against upper tract disease or that limits
transmission remains an important goal.
Collapse
Affiliation(s)
- Catherine M O'Connell
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Morgan E Ferone
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
31
|
Thema N, Pretorius A, Tshilwane SI, Liebenberg J, Steyn H, Van Kleef M. Cellular immune responses induced <i>in vitro</i> by <i>Ehrlichia ruminantium</i> secreted proteins and identification of vaccine candidate peptides. ACTA ACUST UNITED AC 2016; 83:e1-e11. [PMID: 27608502 PMCID: PMC6238801 DOI: 10.4102/ojvr.v83i1.1170] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/12/2016] [Accepted: 04/14/2016] [Indexed: 01/01/2023]
Abstract
Secreted proteins are reported to induce cell-mediated immunity characterised by the production of interferon-gamma (IFN)-γ. In this study three open reading frames (ORFs) (Erum8060, Erum7760, Erum5000) encoding secreted proteins were selected from the Ehrlichia ruminantium (Welgevonden) genome sequence using bioinformatics tools to determine whether they induce a cellular immune response in vitro with mononuclear cells from needle and tick infected animals. The whole recombinant protein of the three ORFs as well as four adjacent fragments of the Erum5000 protein (Erum5000A, Erum5000B, Erum5000C, Erum5000D) were successfully expressed in a bacterial expression system which was confirmed by immunoblots using anti-His antibodies and sheep sera. These recombinant proteins were assayed with immune sheep and cattle peripheral blood mononuclear cells (PBMCs), spleen and lymph node (LN) cells to determine whether they induce recall cellular immune responses in vitro. Significant proliferative responses and IFN-γ production were evident for all recombinant proteins, especially Erum5000A, in both ruminant species tested. Thus overlapping peptides spanning Erum5000A were synthesised and peptides that induce proliferation of memory CD4+ and CD8+ T cells and production of IFN-γ were identified. These results illustrate that a Th1 type immune response was elicited and these recombinant proteins and peptides may therefore be promising candidates for development of a heartwater vaccine.
Collapse
Affiliation(s)
- Nontobeko Thema
- New Generation Vaccines Programme, Agricultural Research Council-Onderstepoort Veterinary Institute; Department of Veterinary Tropical Diseases, University of Pretoria.
| | | | | | | | | | | |
Collapse
|
32
|
Rey-Ladino J, Ross AGP, Cripps AW. Immunity, immunopathology, and human vaccine development against sexually transmitted Chlamydia trachomatis. Hum Vaccin Immunother 2016; 10:2664-73. [PMID: 25483666 PMCID: PMC4977452 DOI: 10.4161/hv.29683] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This review examines the immunity, immunopathology, and contemporary problems of vaccine development against sexually transmitted Chlamydia trachomatis. Despite improved surveillance and treatment initiatives, the incidence of C. trachomatis infection has increased dramatically over the past 30 years in both the developed and developing world. Studies in animal models have shown that protective immunity to C. trachomatis is largely mediated by Th1 T cells producing IFN-γ which is needed to prevent dissemination of infection. Similar protection appears to develop in humans but in contrast to mice, immunity in humans may take years to develop. Animal studies and evidence from human infection indicate that immunity to C. trachomatis is accompanied by significant pathology in the upper genital tract. Although no credible evidence is currently available to indicate that autoimmunity plays a role, nevertheless, this underscores the necessity to design vaccines strictly based on chlamydial-specific antigens and to avoid those displaying even minimal sequence homologies with host molecules. Current advances in C. trachomatis vaccine development as well as alternatives for designing new vaccines for this disease are discussed. A novel approach for chlamydia vaccine development, based on targeting endogenous dendritic cells, is described.
Collapse
Affiliation(s)
- Jose Rey-Ladino
- a Department of Microbiology and Immunology; School of Medicine ; Alfaisal University ; Riyadh , Saudi Arabia
| | | | | |
Collapse
|
33
|
Genital Chlamydia trachomatis: understanding the roles of innate and adaptive immunity in vaccine research. Clin Microbiol Rev 2016; 27:346-70. [PMID: 24696438 DOI: 10.1128/cmr.00105-13] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Chlamydia trachomatis is the leading cause of bacterial sexually transmitted disease worldwide, and despite significant advances in chlamydial research, a prophylactic vaccine has yet to be developed. This Gram-negative obligate intracellular bacterium, which often causes asymptomatic infection, may cause pelvic inflammatory disease (PID), ectopic pregnancies, scarring of the fallopian tubes, miscarriage, and infertility when left untreated. In the genital tract, Chlamydia trachomatis infects primarily epithelial cells and requires Th1 immunity for optimal clearance. This review first focuses on the immune cells important in a chlamydial infection. Second, we summarize the research and challenges associated with developing a chlamydial vaccine that elicits a protective Th1-mediated immune response without inducing adverse immunopathologies.
Collapse
|
34
|
Murthy AK, Li W, Ramsey KH. Immunopathogenesis of Chlamydial Infections. Curr Top Microbiol Immunol 2016; 412:183-215. [PMID: 27370346 DOI: 10.1007/82_2016_18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chlamydial infections lead to a number of clinically relevant diseases and induce significant morbidity in human populations. It is generally understood that certain components of the host immune response to infection also mediate such disease pathologies. A clear understanding of pathogenic mechanisms will enable us to devise better preventive and/or intervention strategies to mitigate the morbidity caused by these infections. Over the years, numerous studies have been conducted to explore the immunopathogenic mechanisms of Chlamydia-induced diseases of the eye, reproductive tract, respiratory tract, and cardiovascular systems. In this article, we provide an overview of the diseases caused by Chlamydia, animal models used to study disease pathology, and a historical context to the efforts to understand chlamydial pathogenesis. Furthermore, we discuss recent findings regarding pathogenesis, with an emphasis on the role of the adaptive immune response in the development of chlamydial disease sequelae. Finally, we summarize the key insights obtained from studies of chlamydial pathogenesis and avenues that remain to be explored in order to inform the next steps of vaccine development against chlamydial infections.
Collapse
Affiliation(s)
- Ashlesh K Murthy
- Department of Pathology, Midwestern University, 555, 31st Steet, Downers Grove, IL, 60515, USA.
| | - Weidang Li
- Department of Pathology, Midwestern University, 555, 31st Steet, Downers Grove, IL, 60515, USA
| | - Kyle H Ramsey
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL, 60515, USA
| |
Collapse
|
35
|
Poston TB, Darville T. Chlamydia trachomatis: Protective Adaptive Responses and Prospects for a Vaccine. Curr Top Microbiol Immunol 2016; 412:217-237. [PMID: 27033698 DOI: 10.1007/82_2016_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chlamydia trachomatis is the most common cause of sexually transmitted bacterial infection globally. These infections translate to a significant public health burden, particularly women's healthcare costs due to serious disease sequelae such as pelvic inflammatory disease (PID), tubal factor infertility, chronic pelvic pain, and ectopic pregnancy. There is no evidence that natural immunity can provide complete, long-term protection necessary to prevent chronic pathology, making human vaccine development critical. Vaccine design will require careful consideration of protective versus pathological host-response mechanisms in concert with elucidation of optimal antigens and adjuvants. Evidence suggests that a Th1 response, facilitated by IFN-γ-producing CD4 T cells, will be instrumental in generating long-term, sterilizing immunity. Although the role of antibodies is not completely understood, they have exhibited a protective effect by enhancing chlamydial clearance. Future work will require investigation of broadly neutralizing antibodies and antibody-augmented cellular immunity to successfully design a vaccine that potently elicits both arms of the immune response. Sterilizing immunity is the ultimate goal. However, vaccine-induced partial immunity that prevents upper genital tract infection and inflammation would be cost-effective compared to current screening and treatment strategies. In this chapter, we examine evidence from animal and human studies demonstrating protective adaptive immune responses to Chlamydia and discuss future challenges and prospects for vaccine development.
Collapse
Affiliation(s)
- Taylor B Poston
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC, USA
| | - Toni Darville
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
36
|
The contribution of Chlamydia-specific CD8⁺ T cells to upper genital tract pathology. Immunol Cell Biol 2015; 94:208-12. [PMID: 26323581 PMCID: PMC4747851 DOI: 10.1038/icb.2015.74] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/10/2015] [Accepted: 07/11/2015] [Indexed: 01/08/2023]
Abstract
Genital chlamydial infections lead to severe upper reproductive tract pathology in a subset of untreated women. We demonstrated previously that TNF-α producing CD8+ T cells contribute significantly to chlamydial upper genital tract pathology in female mice. Additionally, we observed minimal chlamydial oviduct pathology develops in OT-1 transgenic (OT-1) mice, wherein CD8+ T cell repertoire is restricted to recognition of the ovalbumin peptide Ova257–264, suggesting that non-Chlamydia-specific CD8+ T cells may not be responsible for chlamydial pathogenesis. In the current study, we evaluated whether antigen-specific CD8+ T cells mediate chlamydial pathology. Groups of wild type C57BL/6J (WT), OT-1 mice, and OT-1 mice replete with WT CD8+ T cells (1×106 cells/mouse intravenously) were infected intravaginally with C. muridarum (5 × 104 IFU/mouse). Serum total anti-Chlamydia antibody and total splenic anti-Chlamydia IFN-γ and TNF-α responses were comparable among the three groups of animals. However, Chlamydia-specific IFN-γ and TNF-α production from purified splenic CD8+ T cells of OT-1 mice was minimal, whereas responses in OT-1 mice replete with WT CD8+ T cells were comparable to those in WT animals. Vaginal chlamydial clearance was comparable between the three groups of mice. Importantly, the incidence and severity of oviduct and uterine horn pathology was significantly reduced in OT-1 mice but reverted to WT levels in OT-1 mice replete with WT CD8+ T cells. Collectively, these results demonstrate that Chlamydia-specific CD8+ T cells contribute significantly to upper genital tract pathology.
Collapse
|
37
|
Nogueira CV, Zhang X, Giovannone N, Sennott EL, Starnbach MN. Protective immunity against Chlamydia trachomatis can engage both CD4+ and CD8+ T cells and bridge the respiratory and genital mucosae. THE JOURNAL OF IMMUNOLOGY 2015; 194:2319-29. [PMID: 25637024 DOI: 10.4049/jimmunol.1402675] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Understanding the cellular populations and mechanisms responsible for overcoming immune compartmentalization is valuable for designing vaccination strategies targeting distal mucosae. In this study, we show that the human pathogen Chlamydia trachomatis infects the murine respiratory and genital mucosae and that T cells, but not Abs, elicited through intranasal immunization can protect against a subsequent transcervical challenge. Unlike the genital infection where CD8(+) T cells are primed, yet fail to confer protection, we found that intranasal priming engages both CD4(+) and CD8(+) T cells, allowing for protection against genital infection with C. trachomatis. The protection is largely dependent on IFN-γ secretion by T cells. Moreover, different chemokine receptors are critical for C. trachomatis-specific CD4(+) T cells to home to the lung, rather than the CXCR3- and CCR5-dependent migration observed during genital infection. Overall, this study demonstrates that the cross-mucosa protective immunity against genital C. trachomatis infection following intranasal immunization is not dependent on Ab response but is mediated by not only CD4(+) T cells but also by CD8(+) T cells. This study provides insights for the development of vaccines against mucosal pathogens that threaten reproductive health worldwide.
Collapse
Affiliation(s)
- Catarina V Nogueira
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| | - Xuqing Zhang
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| | - Nicholas Giovannone
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| | - Erica L Sennott
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| | - Michael N Starnbach
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
38
|
|
39
|
Maternal Genital Tract Infection. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00113-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
40
|
Manam S, Thomas JD, Li W, Maladore A, Schripsema JH, Ramsey KH, Murthy AK. Tumor Necrosis Factor (TNF) Receptor Superfamily Member 1b on CD8+ T Cells and TNF Receptor Superfamily Member 1a on Non-CD8+ T Cells Contribute Significantly to Upper Genital Tract Pathology Following Chlamydial Infection. J Infect Dis 2014; 211:2014-22. [PMID: 25552370 DOI: 10.1093/infdis/jiu839] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 12/19/2014] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND We demonstrated previously that tumor necrosis factor α (TNF-α)-producing Chlamydia-specific CD8(+) T cells cause oviduct pathological sequelae. METHODS In the current study, we used wild-type C57BL/6J (WT) mice with a deficiency in genes encoding TNF receptor superfamily member 1a (TNFR1; TNFR1 knockout [KO] mice), TNF receptor superfamily member 1b (TNFR2; TNFR2 KO mice), and both TNFR1 and TNFR2 (TNFR1/2 double KO [DKO] mice) and mix-match adoptive transfers of CD8(+) T cells to study chlamydial pathogenesis. RESULTS TNFR1 KO, TNFR2 KO, and TNFR1/2 DKO mice displayed comparable clearance of primary or secondary genital Chlamydia muridarum infection but significantly reduced oviduct pathology, compared with WT animals. The Chlamydia-specific total cellular cytokine response in splenic and draining lymph nodes and the antibody response in serum were comparable between the WT and KO animals. However, CD8(+) T cells from TNFR2 KO mice displayed significantly reduced activation (CD11a expression and cytokine production), compared with TNFR1 KO or WT animals. Repletion of TNFR2 KO mice with WT CD8(+) T cells but not with TNFR2 KO CD8(+) T cells and repletion of TNFR1 KO mice with either WT or TNFR1 KO CD8(+) T cells restored oviduct pathology to WT levels in both KO groups. CONCLUSIONS Collectively, these results demonstrate that TNFR2-bearing CD8(+) T cells and TNFR1-bearing non-CD8(+) T cells contribute significantly to oviduct pathology following genital chlamydial infection.
Collapse
Affiliation(s)
| | | | | | | | - Justin H Schripsema
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, Illinois
| | - Kyle H Ramsey
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, Illinois
| | | |
Collapse
|
41
|
Wali S, Gupta R, Veselenak RL, Li Y, Yu JJ, Murthy AK, Cap AP, Guentzel MN, Chambers JP, Zhong G, Rank RG, Pyles RB, Arulanandam BP. Use of a Guinea pig-specific transcriptome array for evaluation of protective immunity against genital chlamydial infection following intranasal vaccination in Guinea pigs. PLoS One 2014; 9:e114261. [PMID: 25502875 PMCID: PMC4263467 DOI: 10.1371/journal.pone.0114261] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 11/05/2014] [Indexed: 12/21/2022] Open
Abstract
Guinea pigs have been used as a second animal model to validate putative anti-chlamydial vaccine candidates tested in mice. However, the lack of guinea pig-specific reagents has limited the utility of this animal model in Chlamydia sp. vaccine studies. Using a novel guinea pig-specific transcriptome array, we determined correlates of protection in guinea pigs vaccinated with Chlamydia caviae (C. caviae) via the intranasal route, previously reported by us and others to provide robust antigen specific immunity against subsequent intravaginal challenge. C. caviae vaccinated guinea pigs resolved genital infection by day 3 post challenge. In contrast, mock vaccinated animals continued to shed viable Chlamydia up to day 18 post challenge. Importantly, at day 80 post challenge, vaccinated guinea pigs experienced significantly reduced genital pathology - a sequelae of genital chlamydial infections, in comparison to mock vaccinated guinea pigs. Sera from vaccinated guinea pigs displayed antigen specific IgG responses and increased IgG1 and IgG2 titers capable of neutralizing GPIC in vitro. Th1-cellular/inflammatory immune genes and Th2-humoral associated genes were also found to be elevated in vaccinated guinea pigs at day 3 post-challenge and correlated with early clearance of the bacterium. Overall, this study provides the first evidence of guinea pig-specific genes involved in anti-chlamydial vaccination and illustrates the enhancement of the utility of this animal model in chlamydial pathogenesis.
Collapse
Affiliation(s)
- Shradha Wali
- South Texas Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, United Stats of America
| | - Rishein Gupta
- South Texas Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, United Stats of America
| | - Ronald L. Veselenak
- Departments of Pediatrics and Microbiology & Immunology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555, United States of America
| | - Yansong Li
- US Army Institute of Surgical Research, 3650 Chambers Pass, BHT2, Building 3610/Room224-1, Fort Sam Houston, Texas 78234, United States of America
| | - Jieh-Juen Yu
- South Texas Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, United Stats of America
| | - Ashlesh K. Murthy
- Department of Pathology, Midwestern University, Downer's Grove, Illinois, 60148, United States of America
| | - Andrew P. Cap
- US Army Institute of Surgical Research, 3650 Chambers Pass, BHT2, Building 3610/Room224-1, Fort Sam Houston, Texas 78234, United States of America
| | - M. Neal Guentzel
- South Texas Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, United Stats of America
| | - James P. Chambers
- South Texas Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, United Stats of America
| | - Guangming Zhong
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7702 Floyd Curl Drive, San Antonio, Texas 78229, United States of America
| | - Roger G. Rank
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, and Arkansas Children's Hospital Research Institute, Little Rock, Arkansas 72202, United States of America
| | - Richard B. Pyles
- Departments of Pediatrics and Microbiology & Immunology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555, United States of America
| | - Bernard P. Arulanandam
- South Texas Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, United Stats of America
- * E-mail:
| |
Collapse
|
42
|
Gupta R, Arkatkar T, Yu JJ, Wali S, Haskins WE, Chambers JP, Murthy AK, Bakar SA, Guentzel MN, Arulanandam BP. Chlamydia muridarum infection associated host MicroRNAs in the murine genital tract and contribution to generation of host immune response. Am J Reprod Immunol 2014; 73:126-40. [PMID: 24976530 DOI: 10.1111/aji.12281] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 05/21/2014] [Indexed: 12/23/2022] Open
Abstract
PROBLEM Chlamydia trachomatis (CT) is the leading sexually transmitted bacterial infection in humans and is associated with reproductive tract damage. However, little is known about the involvement and regulation of microRNAs (miRs) in genital CT. METHODS We analyzed miRs in the genital tract (GT) following C. muridarum (murine strain of CT) challenge of wild type (WT) and CD4(+) T-cell deficient (CD4(-/-)) C57BL/6 mice at days 6 and 12 post-challenge. RESULTS At day 6, miRs significantly downregulated in the lower GT were miR-125b-5p, -16, -214, -23b, -135a, -182, -183, -30c, and -30e while -146 and -451 were significantly upregulated, profiles not exhibited at day 12 post-bacterial challenge. Significant differences in miR-125b-5p (+5.06-fold change), -135a (+4.9), -183 (+7.9), and -182 (+3.2) were observed in C. muridarum-infected CD4(-/-) compared to WT mice. In silico prediction and mass spectrometry revealed regulation of miR-135a and -182 and associated proteins, that is, heat-shock protein B1 and alpha-2HS-glycoprotein. CONCLUSION This study provides evidence on regulation of miRs following genital chlamydial infection suggesting a role in pathogenesis and host immunity.
Collapse
Affiliation(s)
- Rishein Gupta
- South Texas Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, San Antonio, TX, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Signaling via tumor necrosis factor receptor 1 but not Toll-like receptor 2 contributes significantly to hydrosalpinx development following Chlamydia muridarum infection. Infect Immun 2014; 82:1833-9. [PMID: 24549331 DOI: 10.1128/iai.01668-13] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Chlamydial infection in the lower genital tract can lead to hydrosalpinx, which is accompanied by activation of both pattern recognition receptor TLR2- and inflammatory cytokine receptor TNFR1-mediated signaling pathways. In the current study, we compared the relative contributions of these two receptors to chlamydial induction of hydrosalpinx in mice. We found that mice with or without deficiencies in TLR2 or TNFR1 displayed similar time courses of live organism shedding from vaginal swabs, suggesting that these receptor-mediated signaling pathways are not required for controlling chlamydial lower genital infection. However, mice deficient in TNFR1 but not TLR2 developed significantly reduced hydrosalpinx. The decreased pathogenicity correlated with a significant reduction in interleukin-17 by in vitro-restimulated splenocytes of TNFR1-deficient mice. Although TLR2-deficient mice developed hydrosalpinx as severe as that of wild-type mice, peritoneal macrophages from mice deficient in TLR2 but not TNFR1 produced significantly reduced cytokines upon chlamydial stimulation, suggesting that reduced macrophage responses to chlamydial infection do not always lead to a reduction in hydrosalpinx. Thus, we have demonstrated that the signaling pathways triggered by the cytokine receptor TNFR1 play a more significant role in chlamydial induction of hydrosalpinx than those mediated by the pattern recognition receptor TLR2, which has laid a foundation for further revealing the chlamydial pathogenic mechanisms.
Collapse
|
44
|
Olsen AW, Andersen P, Follmann F. Characterization of protective immune responses promoted by human antigen targets in a urogenital Chlamydia trachomatis mouse model. Vaccine 2014; 32:685-92. [DOI: 10.1016/j.vaccine.2013.11.100] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/15/2013] [Accepted: 11/27/2013] [Indexed: 11/30/2022]
|
45
|
A Conrad T, Yang Z, Ojcius D, Zhong G. A path forward for the chlamydial virulence factor CPAF. Microbes Infect 2013; 15:1026-32. [PMID: 24141088 DOI: 10.1016/j.micinf.2013.09.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/26/2013] [Accepted: 09/02/2013] [Indexed: 12/14/2022]
Abstract
CPAF is a conserved and secreted protease from obligate intracellular bacteria of the order Chlamydiales. Recently, it was demonstrated that most of its host targets are an artifact of inaccurate methods. This review aims to summarize key features of CPAF and propose new approaches for evaluating its role in chlamydial pathogenesis.
Collapse
Affiliation(s)
- Turner A Conrad
- Department of Microbiology and Immunology, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | | | | | | |
Collapse
|
46
|
Li W, Murthy AK, Lanka GK, Chetty SL, Yu JJ, Chambers JP, Zhong G, Forsthuber TG, Guentzel MN, Arulanandam BP. A T cell epitope-based vaccine protects against chlamydial infection in HLA-DR4 transgenic mice. Vaccine 2013; 31:5722-8. [PMID: 24096029 DOI: 10.1016/j.vaccine.2013.09.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 09/05/2013] [Accepted: 09/19/2013] [Indexed: 01/01/2023]
Abstract
Vaccination with recombinant chlamydial protease-like activity factor (rCPAF) has been shown to provide robust protection against genital Chlamydia infection. Adoptive transfer of IFN-γ competent CPAF-specific CD4⁺ T cells was sufficient to induce early resolution of chlamydial infection and reduction of subsequent pathology in recipient IFN-γ-deficient mice indicating the importance of IFN-γ secreting CD4⁺ T cells in host defense against Chlamydia. In this study, we identify CD4⁺ T cell reactive CPAF epitopes and characterize the activation of epitope-specific CD4⁺ T cells following antigen immunization or Chlamydia challenge. Using the HLA-DR4 (HLA-DRB1*0401) transgenic mouse for screening overlapping peptides that induced T cell IFN-γ production, we identified at least 5 CPAF T cell epitopes presented by the HLA-DR4 complex. Immunization of HLA-DR4 transgenic mice with a rCPAFep fusion protein containing these 5 epitopes induced a robust cell-mediated immune response and significantly accelerated the resolution of genital and pulmonary Chlamydia infection. rCPAFep vaccination induced CPAF-specific CD4⁺ T cells in the spleen were detected using HLA-DR4/CPAF-epitope tetramers. Additionally, CPAF-specific CD4⁺ clones could be detected in the mouse spleen following Chlamydia muridarum and a human Chlamydia trachomatis strain challenge using these novel tetramers. These results provide the first direct evidence that a novel CPAF epitope vaccine can provide protection and that HLA-DR4/CPAF-epitope tetramers can detect CPAF epitope-specific CD4⁺ T cells in HLA-DR4 mice following C. muridarum or C. trachomatis infection. Such tetramers could be a useful tool for monitoring CD4⁺ T cells in immunity to Chlamydia infection and in developing epitope-based human vaccines using the murine model.
Collapse
Affiliation(s)
- Weidang Li
- South Texas Center for Emerging Infectious Diseases and Center for Excellence in Infection Genomics, Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, United States; Department of Pathology and Department of Dental Medicine, Midwestern University, Downers Grove, IL 60515, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Manam S, Chaganty BKR, Evani SJ, Zafiratos MT, Ramasubramanian AK, Arulanandam BP, Murthy AK. Intranasal vaccination with Chlamydia pneumoniae induces cross-species immunity against genital Chlamydia muridarum challenge in mice. PLoS One 2013; 8:e64917. [PMID: 23741420 PMCID: PMC3669087 DOI: 10.1371/journal.pone.0064917] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 04/21/2013] [Indexed: 01/14/2023] Open
Abstract
Chlamydia trachomatis is the most common bacterial sexually transmitted disease in the world and specifically in the United States, with the highest incidence in age-groups 14-19 years. In a subset of females, the C. trachomatis genital infection leads to serious pathological sequelae including pelvic inflammatory disease, ectopic pregnancy, and infertility. Chlamydia pneumoniae, another member of the same genus, is a common cause of community acquired respiratory infection with significant number of children aged 5-14 yr displaying sero-conversion. Since these bacteriae share several antigenic determinants, we evaluated whether intranasal immunization with live C. pneumoniae (1×10(6) inclusion forming units; IFU) in 5 week old female C57BL/6 mice would induce cross-species protection against subsequent intravaginal challenge with Chlamydia muridarum (5×10(4) IFU), which causes a similar genital infection and pathology in mice as C. trachomatis in humans. Mice vaccinated intranasally with live C. pneumoniae, but not mock (PBS) immunized animals, displayed high levels of splenic cellular antigen-specific IFN-γ production and serum antibody response against C. muridarum and C. trachomatis. Mice vaccinated with C. pneumoniae displayed a significant reduction in the vaginal C. muridarum shedding as early as day 12 after secondary i.vag. challenge compared to PBS (mock) immunized mice. At day 19 after C. muridarum challenge, 100% of C. pneumoniae vaccinated mice had cleared the infection compared to none (0%) of the mock immunized mice, which cleared the infection by day 27. At day 80 after C. muridarum challenge, C. pneumoniae vaccinated mice displayed a significant reduction in the incidence (50%) and degree of hydrosalpinx compared to mock immunized animals (100%). These results suggest that respiratory C. pneumoniae infection induces accelerated chlamydial clearance and reduction of oviduct pathology following genital C. muridarum challenge, and may have important implications to the C. trachomatis-induced reproductive disease in humans.
Collapse
Affiliation(s)
- Srikanth Manam
- Department of Pathology, Midwestern University, Downers Grove, Illinois, United States of America
| | - Bharat K. R. Chaganty
- South Texas Center for Emerging Infectious Diseases, Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Shankar Jaikishan Evani
- South Texas Center for Emerging Infectious Diseases, Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Mark T. Zafiratos
- Department of Pathology, Midwestern University, Downers Grove, Illinois, United States of America
| | - Anand K. Ramasubramanian
- South Texas Center for Emerging Infectious Diseases, Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Bernard P. Arulanandam
- South Texas Center for Emerging Infectious Diseases, Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Ashlesh K. Murthy
- Department of Pathology, Midwestern University, Downers Grove, Illinois, United States of America
- * E-mail:
| |
Collapse
|
48
|
Antibody signature of spontaneous clearance of Chlamydia trachomatis ocular infection and partial resistance against re-challenge in a nonhuman primate trachoma model. PLoS Negl Trop Dis 2013; 7:e2248. [PMID: 23738030 PMCID: PMC3667776 DOI: 10.1371/journal.pntd.0002248] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 04/18/2013] [Indexed: 11/19/2022] Open
Abstract
Background Chlamydia trachomatis is the etiological agent of trachoma the world's leading cause of infectious blindness. Here, we investigate whether protracted clearance of a primary infection in nonhuman primates is attributable to antigenic variation or related to the maturation of the anti-chlamydial humoral immune response specific to chlamydial antigens. Methodology/Principal Findings Genomic sequencing of organisms isolated throughout the protracted primary infection revealed that antigenic variation was not related to the inability of monkeys to efficiently resolve their infection. To explore the maturation of the humoral immune response as a possible reason for delayed clearance, sera were analyzed by radioimmunoprecipitation using intrinsically radio-labeled antigens prepared under non-denaturing conditions. Antibody recognition was restricted to the antigenically variable major outer membrane protein (MOMP) and a few antigenically conserved antigens. Recognition of MOMP occurred early post-infection and correlated with reduction in infectious ocular burdens but not with infection eradication. In contrast, antibody recognition of conserved antigens, identified as PmpD, Hsp60, CPAF and Pgp3, appeared late and correlated with infection eradication. Partial immunity to re-challenge was associated with a discernible antibody recall response against all antigens. Antibody recognition of PmpD and CPAF was destroyed by heat treatment while MOMP and Pgp3 were partially affected, indicating that antibody specific to conformational epitopes on these proteins may be important to protective immunity. Conclusions/Significance Our findings suggest that delayed clearance of chlamydial infection in NHP is not the result of antigenic variation but rather a consequence of the gradual maturation of the C. trachomatis antigen-specific humoral immune response. However, we cannot conclude that antibodies specific for these proteins play the primary role in host protective immunity as they could be surrogate markers of T cell immunity. Collectively, our results argue that an efficacious subunit trachoma vaccine might require a combination of these antigens delivered in their native conformation. Chlamydia trachomatis is the etiological agent of trachoma the world's leading cause of infectious blindness. In this study, we investigated whether delayed clearance of a primary infection in nonhuman primates was attributable to antigenic variation or related to gradual changes in the humoral immune response specific to chlamydial antigens. We found that antigenic variation was not related to the inability of monkeys to efficiently resolve their infection. However, exploring changes in the immune response as a possible reason for delayed clearance revealed that antibody recognition was restricted to the antigenically variable major surface protein and a few conserved polypeptides. Antibody recognition of the major antigenically variable surface protein correlated with the initial reduction in infectious burdens while recognition of conserved chlamydial antigens occurred late and correlated with infection eradication. These findings suggest that delayed clearance of chlamydial infection is not the result of antigenic variation but a consequence of a gradually evolving humoral immune response specific to different chlamydial antigens. Antibody recognition was at least partially directed against conformational epitopes, indicating that an efficacious subunit trachoma vaccine might require a combination of antigens delivered in their native conformation.
Collapse
|
49
|
Lu C, Peng B, Li Z, Lei L, Li Z, Chen L, He Q, Zhong G, Wu Y. Induction of protective immunity against Chlamydia muridarum intravaginal infection with the chlamydial immunodominant antigen macrophage infectivity potentiator. Microbes Infect 2013; 15:329-38. [PMID: 23416214 DOI: 10.1016/j.micinf.2013.02.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 01/28/2013] [Accepted: 02/03/2013] [Indexed: 12/21/2022]
Abstract
We previously reported that 5 Chlamydia muridarum antigens reacted with antisera from >90% mice urogenitally infected with C. muridarum and they are TC0660 (ABC transporter or ArtJ), TC0727 (outer membrane complex protein B or OmcB), TC0828 (macrophage infectivity potentiator or MIP), TC0726 (inclusion membrane protein or Inc) & TC0268 (hypothetical protein or HP). The orthologs of these antigens in Chlamydia trachomatis were also highly reactive with antisera from women urogenitally infected with C. trachomatis. In the current study, we evaluated these C. muridarum antigens for their ability to induce protection against a C. muridarum intravaginal challenge infection in mice. We found that only MIP induced the most pronounced protection against C. muridarum infection. The protection correlated well with robust C. muridarum MIP-specific antibody and Th1-dominant T cell responses. The MIP-immunized mice displayed significantly reduced live organism shedding from the lower genital tract and highly attenuated inflammatory pathologies in the upper genital tissues. These results demonstrate that MIP, an immunodominant antigen identified by both human and mouse antisera, may be considered a component of a multi-subunit chlamydial vaccine for inducing protective immunity.
Collapse
Affiliation(s)
- Chunxue Lu
- Department of Microbiology and Immunology, University of South China, 28 West Changsheng Rd., Hengyang, Hunan 421001, China
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
|