1
|
Talayev V, Svetlova M, Zaichenko I, Voronina E, Babaykina O, Neumoina N, Perfilova K. CCR6 + T helper cells and regulatory T cells in the blood and gastric mucosa during Helicobacter pylori infection. Helicobacter 2024; 29:e13097. [PMID: 38819071 DOI: 10.1111/hel.13097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Helicobacter pylori (H. pylori) can evade the host's immune response and persist for a long time on the gastric mucosa. T helper (Th) cells appear to be involved in the control of H. pylori bacteria but promote mucosal inflammation. In contrast, regulatory T cells (Tregs) may reduce inflammation but promote H. pylori persistence. CC motif chemokine receptor 6 (CCR6) is involved in the migration of various cells into inflamed gastric mucosa. In this study, we examined CCR6+ Th cells and CCR6+ Tregs during H. pylori infection in humans. MATERIALS AND METHODS Isolation of cells from blood and mucosal biopsies, magnetic separation of В cells, CD4+ and CD4+CCR6+CD45RO+ T cells, antigen-specific activation, B cell response in vitro, flow cytometry, determination of CD4+CD25hiFoxP3+ Tregs and various groups of Th cells. RESULTS CD4+CCR6+ blood lymphocytes from healthy donors included Th cells and Tregs. These CCR6+ Th cells produced proinflammatory cytokines and also stimulated plasma cell maturation and antibody production in vitro. H. pylori gastritis and peptic ulcer disease were associated with an increase in the number of circulate CD4+CCR6+CD45RO+ cells and the percentage of Th1, Th17 and Th1/17 cells in this lymphocyte subgroup. In H. pylori-positive patients, circulating CD4+CCR6+ cells contained a higher proportion of H. pylori-specific cells compared with their CD4+CCR6- counterparts. H. pylori infection strongly increased the content of CD4+ lymphocytes in the inflamed gastric mucosa, with the majority of these CD4+ lymphocytes expressing CCR6. CD4+CCR6+ lymphocytes from H. pylori-infected stomach included Tregs and in vivo activated T cells, some of which produced interferon-γ without ex vivo stimulation. CONCLUSION H. pylori infection causes an increase in the number of mature CD4+CCR6+ lymphocytes in the blood, with a pro-inflammatory shift in their composition and enrichment of the gastric mucosa with CD4+CCR6+ lymphocytes, including CCR6+ Th1 cells and Tregs.
Collapse
Affiliation(s)
- Vladimir Talayev
- Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of Rospotrebnadzor, Nizhny Novgorod, Russia
| | - Maria Svetlova
- Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of Rospotrebnadzor, Nizhny Novgorod, Russia
| | - Irina Zaichenko
- Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of Rospotrebnadzor, Nizhny Novgorod, Russia
| | - Elena Voronina
- Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of Rospotrebnadzor, Nizhny Novgorod, Russia
| | - Olga Babaykina
- Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of Rospotrebnadzor, Nizhny Novgorod, Russia
| | - Natalia Neumoina
- Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of Rospotrebnadzor, Nizhny Novgorod, Russia
| | - Ksenia Perfilova
- Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of Rospotrebnadzor, Nizhny Novgorod, Russia
| |
Collapse
|
2
|
Domínguez-Martínez DA, Fontes-Lemus JI, García-Regalado A, Juárez-Flores Á, Fuentes-Pananá EM. IL-8 Secreted by Gastric Epithelial Cells Infected with Helicobacter pylori CagA Positive Strains Is a Chemoattractant for Epstein-Barr Virus Infected B Lymphocytes. Viruses 2023; 15:651. [PMID: 36992360 PMCID: PMC10054738 DOI: 10.3390/v15030651] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 03/05/2023] Open
Abstract
Helicobacter pylori and EBV are considered the main risk factors in developing gastric cancer. Both pathogens establish life-lasting infections and both are considered carcinogenic in humans. Different lines of evidence support that both pathogens cooperate to damage the gastric mucosa. Helicobacter pylori CagA positive virulent strains induce the gastric epithelial cells to secrete IL-8, which is a potent chemoattractant for neutrophils and one of the most important chemokines for the bacterium-induced chronic gastric inflammation. EBV is a lymphotropic virus that persists in memory B cells. The mechanism by which EBV reaches, infects and persists in the gastric epithelium is not presently understood. In this study, we assessed whether Helicobacter pylori infection would facilitate the chemoattraction of EBV-infected B lymphocytes. We identified IL-8 as a powerful chemoattractant for EBV-infected B lymphocytes, and CXCR2 as the main IL-8 receptor whose expression is induced by the EBV in infected B lymphocytes. The inhibition of expression and/or function of IL-8 and CXCR2 reduced the ERK1/2 and p38 MAPK signaling and the chemoattraction of EBV-infected B lymphocytes. We propose that IL-8 at least partially explains the arrival of EBV-infected B lymphocytes to the gastric mucosa, and that this illustrates a mechanism of interaction between Helicobacter pylori and EBV.
Collapse
Affiliation(s)
- Diana A. Domínguez-Martínez
- Research Unit on Virology and Cancer, Children’s Hospital of Mexico Federico Gómez, Mexico City 06720, Mexico
| | - José I. Fontes-Lemus
- Research Unit on Virology and Cancer, Children’s Hospital of Mexico Federico Gómez, Mexico City 06720, Mexico
| | - Alejandro García-Regalado
- Research Unit on Virology and Cancer, Children’s Hospital of Mexico Federico Gómez, Mexico City 06720, Mexico
| | - Ángel Juárez-Flores
- Research Unit on Virology and Cancer, Children’s Hospital of Mexico Federico Gómez, Mexico City 06720, Mexico
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México 06720, Mexico
| | - Ezequiel M. Fuentes-Pananá
- Research Unit on Virology and Cancer, Children’s Hospital of Mexico Federico Gómez, Mexico City 06720, Mexico
| |
Collapse
|
3
|
Li Y, Liu A, Liu S, Yan L, Yuan Y, Xu Q. Involvement of CXCL17 and GPR35 in Gastric Cancer Initiation and Progression. Int J Mol Sci 2022; 24:ijms24010615. [PMID: 36614059 PMCID: PMC9820077 DOI: 10.3390/ijms24010615] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/26/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
The expression of CXC motif chemokine 17 (CXCL17) and its reported membrane receptor G-protein-coupled receptor 35 (GPR35) in different gastric pathological lesions and their clinical implications are largely unknown. In this study, a total of 860 pathological sections were immune-stained with either anti-CXCL17 or anti-GPR35 antibodies. Their expression was scored within the area of the normal gastric gland of non-atrophic gastritis (NAG-NOR), intestinal metaplasia of atrophic gastritis (AG-IM), IM adjacent to GC (GC-IM), and GC tissue. The clinical significance and potential function of CXCL17 and GPR35 were explored using multiple methods. Our results suggested that CXCL17 expression was gradually upregulated during the pathological progress of gastric diseases (NAG-NOR < AG-IM < GC-IM), but significantly downregulated when GC occurred. GPR35 had a similar expression pattern but its expression in GC remained abundant. High CXCL17 expression in GC was associated with less malignant behavior and was an independent biomarker of favorable prognosis. Overexpressing CXCL17 in HGC27 cells significantly upregulated CCL20 expression. TCGA analysis identified that CXCL17 was negatively correlated with some cancer-promoting pathways and involved in inflammatory activities. CTRP analysis revealed that gastric cell lines expressing less CXCL17 and were more sensitive to the CXCR2 inhibitor SB-225002.
Collapse
Affiliation(s)
- Yizhi Li
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Cancer Etiology and Prevention, Liaoning Provincial Education Department, China Medical University, Shenyang 110001, China
| | - Aoran Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Cancer Etiology and Prevention, Liaoning Provincial Education Department, China Medical University, Shenyang 110001, China
| | - Songyi Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Cancer Etiology and Prevention, Liaoning Provincial Education Department, China Medical University, Shenyang 110001, China
| | - Lirong Yan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Cancer Etiology and Prevention, Liaoning Provincial Education Department, China Medical University, Shenyang 110001, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Cancer Etiology and Prevention, Liaoning Provincial Education Department, China Medical University, Shenyang 110001, China
- Correspondence: (Y.Y.); (Q.X.)
| | - Qian Xu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Cancer Etiology and Prevention, Liaoning Provincial Education Department, China Medical University, Shenyang 110001, China
- Correspondence: (Y.Y.); (Q.X.)
| |
Collapse
|
4
|
Lee B, Namkoong H, Yang Y, Huang H, Heller D, Szot GL, Davis MM, Husain SZ, Pandol SJ, Bellin MD, Habtezion A. Single-cell sequencing unveils distinct immune microenvironments with CCR6-CCL20 crosstalk in human chronic pancreatitis. Gut 2022; 71:1831-1842. [PMID: 34702715 PMCID: PMC9105403 DOI: 10.1136/gutjnl-2021-324546] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 10/14/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Chronic pancreatitis (CP) is a potentially fatal disease of the exocrine pancreas, with no specific or effective approved therapies. Due to difficulty in accessing pancreas tissues, little is known about local immune responses or pathogenesis in human CP. We sought to characterise pancreatic immune responses using tissues derived from patients with different aetiologies of CP and non-CP organ donors in order to identify key signalling molecules associated with human CP. DESIGN We performed single-cell level cellular indexing of transcriptomes and epitopes by sequencing and T-cell receptor (TCR) sequencing of pancreatic immune cells isolated from organ donors, hereditary and idiopathic patients with CP who underwent total pancreatectomy. We validated gene expression data by performing flow cytometry and functional assays in a second patient with CP cohort. RESULTS Deep single-cell sequencing revealed distinct immune characteristics and significantly enriched CCR6+ CD4+ T cells in hereditary compared with idiopathic CP. In hereditary CP, a reduction in T-cell clonality was observed due to the increased CD4+ T (Th) cells that replaced tissue-resident CD8+ T cells. Shared TCR clonotype analysis among T-cell lineages also unveiled unique interactions between CCR6+ Th and Th1 subsets, and TCR clustering analysis showed unique common antigen binding motifs in hereditary CP. In addition, we observed a significant upregulation of the CCR6 ligand (CCL20) expression among monocytes in hereditary CP as compared with those in idiopathic CP. The functional significance of CCR6 expression in CD4+ T cells was confirmed by flow cytometry and chemotaxis assay. CONCLUSION Single-cell sequencing with pancreatic immune cells in human CP highlights pancreas-specific immune crosstalk through the CCR6-CCL20 axis, a signalling pathway that might be leveraged as a potential future target in human hereditary CP.
Collapse
Affiliation(s)
- Bomi Lee
- Division of Gastroenterology and Hepatology, Department of Medicine, School of Medicine, Stanford University, Stanford, California, USA .,Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, School of Medicine, Stanford University, Stanford, California, USA
| | - Hong Namkoong
- Division of Gastroenterology and Hepatology, Department of Medicine, School of Medicine, Stanford University, Stanford, California, USA
| | - Yan Yang
- Stanford Center for Genomics and Personalized Medicine, Stanford University, Stanford, California, USA
| | - Huang Huang
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, California, USA
| | - David Heller
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota Medical Center, Minneapolis, Minnesota, USA
| | - Gregory L Szot
- Department of Surgery, Division of Transplantation, University of California San Francisco, San Francisco, California, USA
| | - Mark M Davis
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, California, USA,Department of Microbiology and Immunology, Stanford Medicine, Stanford, California, USA,Howard Hughes Medical Institute, Stanford University, Stanford, California, USA
| | - Sohail Z Husain
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, School of Medicine, Stanford University, Stanford, California, USA
| | - Stephen J Pandol
- Basic and Translational Pancreatic Research, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Melena D Bellin
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota Medical Center, Minneapolis, Minnesota, USA,Department of Pediatrics, University of Minnesota Medical Center and Masonic Children’s Hospital, Minneapolis, Minnesota, USA
| | - Aida Habtezion
- Division of Gastroenterology and Hepatology, Department of Medicine, School of Medicine, Stanford University, Stanford, California, USA .,Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, California, USA
| |
Collapse
|
5
|
Abstract
Helicobacter pylori (H. pylori) represents one of the most widespread bacterial infections globally. Infection causes chronic gastritis and increases the risk of peptic ulcer disease, gastric adenocarcinoma, and mucosa-associated lymphoid tissue lymphoma. The pioneering discovery of H. pylori by Marshall and Warren in the early 1980s has initiated fervent research into H. pylori as a pathogen ever since. This chapter aims to provide an overview of our understanding of H. pylori infection and its management, with a focus on current options for diagnosis, the challenges associated with H. pylori eradication, and the need for alternative therapeutic strategies based on furthering our understanding of host: H. pylori interactions.
Collapse
Affiliation(s)
| | - Sinéad M Smith
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
6
|
Merhi M, Raza A, Inchakalody VP, Siveen KS, Kumar D, Sahir F, Mestiri S, Hydrose S, Allahverdi N, Jalis M, Relecom A, Al Zaidan L, Hamid MSE, Mostafa M, Gul ARZ, Uddin S, Al Homsi M, Dermime S. Persistent anti-NY-ESO-1-specific T cells and expression of differential biomarkers in a patient with metastatic gastric cancer benefiting from combined radioimmunotherapy treatment: a case report. J Immunother Cancer 2020; 8:e001278. [PMID: 32913031 PMCID: PMC7484873 DOI: 10.1136/jitc-2020-001278] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2020] [Indexed: 12/14/2022] Open
Abstract
Combined radioimmunotherapy is currently being investigated to treat patients with cancer. Anti-programmed cell death-1 (PD-1) immunotherapy offers the prospect of long-term disease control in solid tumors. Radiotherapy has the ability to promote immunogenic cell death leading to the release of tumor antigens, increasing infiltration and activation of T cells. New York esophageal squamous cell carcinoma-1 (NY-ESO-1) is a cancer-testis antigen expressed in 20% of advanced gastric cancers and known to induce humoral and cellular immune responses in patients with cancer. We report on the dynamic immune response to the NY-ESO-1 antigen and important immune-related biomarkers in a patient with metastatic gastric cancer treated with radiotherapy combined with anti-PD-1 pembrolizumab antibody.Our patient was an 81-year-old man diagnosed with locally advanced unresectable mismatch repair-deficient gastric cancer having progressed to a metastatic state under a second line of systemic treatment consisting of an anti-PD-1 pembrolizumab antibody. The patient was subsequently treated with local radiotherapy administered concomitantly with anti-PD-1, with a complete response on follow-up radiologic assessment. Disease control was sustained with no further therapy for a period of 12 months before relapse. We have identified an NY-ESO-1-specific interferon-γ (IFN-γ) secretion from the patients' T cells that was significantly increased at response (****p˂0.0001). A novel promiscuous immunogenic NY-ESO-1 peptide P39 (P153-167) restricted to the four patient's HLA-DQ and HLA-DP alleles was identified. Interestingly, this peptide contained the known NY-ESO-1-derived HLA-A2-02:01(P157-165) immunogenic epitope. We have also identified a CD107+ cytotoxic T cell subset within a specific CD8+/HLA-A2-NY-ESO-1 T cell population that was low at disease progression, markedly increased at disease resolution and significantly decreased again at disease re-progression. Finally, we identified two groups of cytokines/chemokines. Group 1 contains five cytokines (IFN-γ, tumor necrosis factor-α, interleukin-2 (IL-2), IL-5 and IL-6) that were present at disease progression, significantly downregulated at disease resolution and dramatically upregulated again at disease re-progression. Group 2 contains four biomarkers (perforin, soluble FAS, macrophage inflammatory protein-3α and C-X-C motif chemokine 11/Interferon-inducible T Cell Alpha Chemoattractant that were present at disease progression, significantly upregulated at disease resolution and dramatically downregulated again at disease re-progression. Combined radioimmunotherapy can enhance specific T cell responses to the NY-ESO-1 antigen that correlates with beneficial clinical outcome of the patient.
Collapse
Affiliation(s)
- Maysaloun Merhi
- Medical Oncology, Hamad Medical Corporation, Doha, Ad Dawhah, Qatar
| | - Afsheen Raza
- Medical Oncology, Hamad Medical Corporation, Doha, Ad Dawhah, Qatar
| | | | | | - Deepak Kumar
- Computational Biology, Carnegie Mellon University - Qatar Campus, Doha, Ad Dawhah, Qatar
| | | | | | | | | | - Munir Jalis
- Hamad Medical Corporation, Doha, Ad Dawhah, Qatar
| | | | | | | | - Mai Mostafa
- Hamad Medical Corporation, Doha, Ad Dawhah, Qatar
| | | | - Shahab Uddin
- Hamad Medical Corporation, Doha, Ad Dawhah, Qatar
| | | | - Said Dermime
- Medical Oncology, National Center for Cancer Care and Research, Doha, Qatar
| |
Collapse
|
7
|
Yin H, Chu A, Liu S, Yuan Y, Gong Y. Identification of DEGs and transcription factors involved in H. pylori-associated inflammation and their relevance with gastric cancer. PeerJ 2020; 8:e9223. [PMID: 32547867 PMCID: PMC7275685 DOI: 10.7717/peerj.9223] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/29/2020] [Indexed: 12/16/2022] Open
Abstract
Background Previous studies have indicated that chronic inflammation linked to H. pylori infection is the leading causes for gastric cancer (GC). However, the exact mechanism is not entirely clear until now. Purpose To identify the key molecules and TFs involved in H. pylori infection and to provide new insights into H. pylori-associated carcinogenesis and lay the groundwork for the prevention of GC. Results GO and KEGG analysis revealed that the DEGs of Hp+-NAG were mainly associated with the immune response, chemokine activity, extracellular region and rheumatoid arthritis pathway. The DEGs of Hp+-AG-IM were related to the apical plasma membrane, intestinal cholesterol absorption, transporter activity and fat digestion and absorption pathway. In Hp+-NAG network, the expression of TNF, CXCL8, MMP9, CXCL9, CXCL1, CCL20, CTLA4, CXCL2, C3, SAA1 and FOXP3, JUN had statistical significance between normal and cancer in TCGA database. In Hp+-AG-IM network the expression of APOA4, GCG, CYP3A4, XPNPEP2 and FOXP3, JUN were statistically different in the comparison of normal and cancer in TCGA database. FOXP3 were negatively associated with overall survival, and the association for JUN was positive. Conclusion The current study identified key DEGs and their transcriptional regulatory networks involved in H. pylori-associated NAG, AG-IM and GC and found that patients with higher expressed FOXP3 or lower expressed JUN had shorter overall survival time. Our study provided new directions for inflammation-associated oncogenic transformation involved in H. pylori infection.
Collapse
Affiliation(s)
- Honghao Yin
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang, LiaoNing, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang, LiaoNing, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, LiaoNing, China
| | - Aining Chu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang, LiaoNing, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang, LiaoNing, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, LiaoNing, China
| | - Songyi Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang, LiaoNing, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang, LiaoNing, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, LiaoNing, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang, LiaoNing, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang, LiaoNing, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, LiaoNing, China
| | - Yuehua Gong
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, Shenyang, LiaoNing, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, the First Hospital of China Medical University, Shenyang, LiaoNing, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, the First Hospital of China Medical University, Shenyang, LiaoNing, China
| |
Collapse
|
8
|
Wang P, Wang Y, Langley SA, Zhou YX, Jen KY, Sun Q, Brislawn C, Rojas CM, Wahl KL, Wang T, Fan X, Jansson JK, Celniker SE, Zou X, Threadgill DW, Snijders AM, Mao JH. Diverse tumour susceptibility in Collaborative Cross mice: identification of a new mouse model for human gastric tumourigenesis. Gut 2019; 68:1942-1952. [PMID: 30842212 PMCID: PMC6839736 DOI: 10.1136/gutjnl-2018-316691] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The Collaborative Cross (CC) is a mouse population model with diverse and reproducible genetic backgrounds used to identify novel disease models and genes that contribute to human disease. Since spontaneous tumour susceptibility in CC mice remains unexplored, we assessed tumour incidence and spectrum. DESIGN We monitored 293 mice from 18 CC strains for tumour development. Genetic association analysis and RNA sequencing were used to identify susceptibility loci and candidate genes. We analysed genomes of patients with gastric cancer to evaluate the relevance of genes identified in the CC mouse model and measured the expression levels of ISG15 by immunohistochemical staining using a gastric adenocarcinoma tissue microarray. Association of gene expression with overall survival (OS) was assessed by Kaplan-Meier analysis. RESULTS CC mice displayed a wide range in the incidence and types of spontaneous tumours. More than 40% of CC036 mice developed gastric tumours within 1 year. Genetic association analysis identified Nfκb1 as a candidate susceptibility gene, while RNA sequencing analysis of non-tumour gastric tissues from CC036 mice showed significantly higher expression of inflammatory response genes. In human gastric cancers, the majority of human orthologues of the 166 mouse genes were preferentially altered by amplification or deletion and were significantly associated with OS. Higher expression of the CC036 inflammatory response gene signature is associated with poor OS. Finally, ISG15 protein is elevated in gastric adenocarcinomas and correlated with shortened patient OS. CONCLUSIONS CC strains exhibit tremendous variation in tumour susceptibility, and we present CC036 as a spontaneous laboratory mouse model for studying human gastric tumourigenesis.
Collapse
Affiliation(s)
- Pin Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Yunshan Wang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Clinical Laboratory, Second Hospital of Shandong University, Jinan, China
| | - Sasha A Langley
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Yan-Xia Zhou
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- College of Marine Science, Shandong University, Weihai, China
| | - Kuang-Yu Jen
- Department of Pathology, University of California Davis Medical Center, Sacramento, California, USA
| | - Qi Sun
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Colin Brislawn
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Carolina M Rojas
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, USA
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, USA
| | - Kimberly L Wahl
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, USA
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, USA
| | - Ting Wang
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiangshan Fan
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Janet K Jansson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Susan E Celniker
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Xiaoping Zou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - David W Threadgill
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, USA
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, USA
| | - Antoine M Snijders
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
9
|
Jafarzadeh A, Nemati M, Jafarzadeh S. The important role played by chemokines influence the clinical outcome of Helicobacter pylori infection. Life Sci 2019; 231:116688. [PMID: 31348950 DOI: 10.1016/j.lfs.2019.116688] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/30/2019] [Accepted: 07/22/2019] [Indexed: 02/07/2023]
Abstract
The extended infection with Helicobacter pylori (H. pylori), one of the most frequent infectious agents in humans, may cause gastritis, peptic ulcers, gastric mucosa-associated lymphoid tissue (MALT) lymphoma, and gastric cancer. During H. pylori infection, different kinds of inflammatory cells such as dendritic cells, macrophages, neutrophils, mast cells, eosinophils, T cells and B cells are accumulated into the stomach. The interactions between chemokines and their respective receptors recruit particular types of the leukocytes that ultimately determine the nature of immune response and therefore, have a main influence on the consequence of infection. The suitable production of chemokines especially in the early stages of H. pylori infection shapes appropriate immune responses that contribute to the H. pylori elimination. The unbalanced expression of the chemokines can contribute in the induction of inappropriate responses that result in the tissue damage or malignancy. Thus, chemokines and their receptors may be promising potential targets for designing the therapeutic strategies against various types H. pylori-related gastrointestinal disorders. In this review, a comprehensive explanation regarding the roles played by chemokines in H. pylori-mediated peptic ulcer, gastritis and gastric malignancies was provided while presenting the potential utilization of these chemoattractants as therapeutic elements.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Maryam Nemati
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Sara Jafarzadeh
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
10
|
Zuo X, Deguchi Y, Xu W, Liu Y, Li HS, Wei D, Tian R, Chen W, Xu M, Yang Y, Gao S, Jaoude JC, Liu F, Chrieki SP, Moussalli MJ, Gagea M, Sebastian MM, Zheng X, Tan D, Broaddus R, Wang J, Ajami NJ, Swennes AG, Watowich SS, Shureiqi I. PPARD and Interferon Gamma Promote Transformation of Gastric Progenitor Cells and Tumorigenesis in Mice. Gastroenterology 2019; 157:163-178. [PMID: 30885780 PMCID: PMC6581611 DOI: 10.1053/j.gastro.2019.03.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 02/20/2019] [Accepted: 03/12/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS The peroxisome proliferator-activated receptor delta (PPARD) regulates cell metabolism, proliferation, and inflammation and has been associated with gastric and other cancers. Villin-positive epithelial cells are a small population of quiescent gastric progenitor cells. We expressed PPARD from a villin promoter to investigate the role of these cells and PPARD in development of gastric cancer. METHODS We analyzed gastric tissues from mice that express the Ppard (PPARD1 and PPARD2 mice) from a villin promoter, and mice that did not carry this transgene (controls), by histology and immunohistochemistry. We performed cell lineage-tracing experiments and analyzed the microbiomes, chemokine and cytokine production, and immune cells and transcriptomes of stomachs of these mice. We also performed immunohistochemical analysis of PPARD levels in 2 sets of human gastric tissue microarrays. RESULTS Thirty-eight percent of PPARD mice developed spontaneous, invasive gastric adenocarcinomas, with severe chronic inflammation. Levels of PPARD were increased in human gastric cancer tissues, compared with nontumor tissues, and associated with gastric cancer stage and grade. We found an inverse correlation between level of PPARD in tumor tissue and patient survival time. Gastric microbiomes from PPARD and control mice did not differ significantly. Lineage-tracing experiments identified villin-expressing gastric progenitor cells (VGPCs) as the origin of gastric tumors in PPARD mice. In these mice, PPARD up-regulated CCL20 and CXCL1, which increased infiltration of the gastric mucosa by immune cells. Immune cell production of inflammatory cytokines promoted chronic gastric inflammation and expansion and transformation of VGPCs, leading to tumorigenesis. We identified a positive-feedback loop between PPARD and interferon gamma signaling that sustained gastric inflammation to induce VGPC transformation and gastric carcinogenesis. CONCLUSIONS We found PPARD overexpression in VPGCs to result in inflammation, dysplasia, and tumor formation. PPARD and VGPCs might be therapeutic targets for stomach cancer.
Collapse
Affiliation(s)
- Xiangsheng Zuo
- Departments of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Yasunori Deguchi
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Weiguo Xu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yi Liu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Haiyan S. Li
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Daoyan Wei
- Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rui Tian
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Weidong Chen
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Min Xu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yaying Yang
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shen Gao
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jonathan C. Jaoude
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Fuyao Liu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sarah P. Chrieki
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Micheline J. Moussalli
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mihai Gagea
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Manu M. Sebastian
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaofeng Zheng
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dongfeng Tan
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Russell Broaddus
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nadim J. Ajami
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alton G. Swennes
- Center for Comparative Medicine and Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Stephanie S. Watowich
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Imad Shureiqi
- Departments of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
11
|
Bhattacharjee S, Mejías-Luque R, Loffredo-Verde E, Toska A, Flossdorf M, Gerhard M, Prazeres da Costa C. Concomitant Infection of S. mansoni and H. pylori Promotes Promiscuity of Antigen-Experienced Cells and Primes the Liver for a Lower Fibrotic Response. Cell Rep 2019; 28:231-244.e5. [DOI: 10.1016/j.celrep.2019.05.108] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 01/29/2019] [Accepted: 05/29/2019] [Indexed: 12/12/2022] Open
|
12
|
Zhang JG, Xu C, Zhang L, Zhu W, Shen H, Deng HW. Identify gene expression pattern change at transcriptional and post-transcriptional levels. Transcription 2019; 10:137-146. [PMID: 30696368 PMCID: PMC6602563 DOI: 10.1080/21541264.2019.1575159] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 12/15/2022] Open
Abstract
Gene transcription is regulated with distinct sets of regulatory factors at multiple levels. Transcriptional and post-transcriptional regulation constitute two major regulation modes of gene expression to either activate or repress the initiation of transcription and thereby control the number of proteins synthesized during translation. Disruptions of the proper regulation patterns at transcriptional and post-transcriptional levels are increasingly recognized as causes of human diseases. Consequently, identifying the differential gene expression at transcriptional and post-transcriptional levels respectively is vital to identify potential disease-associated and/or causal genes and understand their roles in the disease development. Here, we proposed a novel method with a linear mixed model that can identify a set of differentially expressed genes at transcriptional and post-transcriptional levels. The simulation and real data analysis showed our method could provide an accurate way to identify genes subject to aberrant transcriptional and post-transcriptional regulation and reveal the potential causal genes that contributed to the diseases.
Collapse
Affiliation(s)
- Ji-Gang Zhang
- Center of Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, Tulane University, New Orleans, LA, USA
- Computational Science, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Chao Xu
- Center of Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, Tulane University, New Orleans, LA, USA
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Lan Zhang
- Center of Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, Tulane University, New Orleans, LA, USA
| | - Wei Zhu
- Center of Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, Tulane University, New Orleans, LA, USA
| | - Hui Shen
- Center of Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, Tulane University, New Orleans, LA, USA
| | - Hong-Wen Deng
- Center of Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, Tulane University, New Orleans, LA, USA
- School of Basic Medical Science, Central South University, Changsha, China
| |
Collapse
|
13
|
Wu YY, Hsieh CT, Tsay GJ, Kao JT, Chiu YM, Shieh DC, Lee YJ. Recruitment of CCR6 + Foxp3 + regulatory gastric infiltrating lymphocytes in Helicobacter pylori gastritis. Helicobacter 2019; 24:e12550. [PMID: 30412323 DOI: 10.1111/hel.12550] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 09/09/2018] [Accepted: 09/10/2018] [Indexed: 12/17/2022]
Abstract
Helicobacter pylori (H. pylori) infection is associated with an inflammatory response in the gastric mucosa, leading to chronic gastritis, peptic ulcers, and gastric cancer. Increased T-cell infiltration is found at sites of H. pylori infection. The CCR6+ subset of CD4+ regulatory T cells (Tregs), a newly characterized subset of Tregs, has been reported to contribute to local immune inhibition. However, whether CCR6+ Tregs are present in H. pylori gastritis, and what their relationship is to disease prognosis, remains to be elucidated. In this study, gastric infiltrating lymphocytes were isolated from endoscopic biopsy specimens of H. pylori gastritis patients and analyzed. We found that in gastric infiltrating lymphocytes, CCR6+ CD4+ CD25high Tregs, which express high levels of CD45RO, are positively associated with more severe inflammation in gastric mucosa during H. pylori infection. Furthermore, the frequency of CCR6+ Tregs in gastric infiltrating lymphocytes, but not CCR6- Tregs, is significantly increased in inflamed gastric tissues, which is inversely correlated with significantly lower expression of IFN-γ+ CD8+ T cells. We also found that the frequency of CCR6+ Tregs is positively correlated with the frequency of CD4+ IFN-γ+ T cells. In addition, the frequency of CCR6+ Tregs, but not that of CCR6- Tregs, is significantly correlated with increased inflammation in H. pylori gastritis. This study demonstrates that immunosuppression in H. pylori gastritis might be related to the activity of CCR6+ Tregs, which could influence disease prognosis.
Collapse
Affiliation(s)
- Yi-Ying Wu
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Research Center for Chinese Herbal Medicine, China Medical University, Taichung, Taiwan
| | - Chin-Tung Hsieh
- Department of Pediatrics, Lotung Poh-Ai Hospital, I-Lan, Taiwan
| | - Gregory J Tsay
- Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- Department of Internal Medicine, School of Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Jung-Ta Kao
- Department of Internal Medicine, School of Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
| | - Ying-Ming Chiu
- Department of Nursing, College of Nursing, Hungkuang University, Taichung, Taiwan
- Division of Allergy, Immunology & Rheumatology, Changhua Christian Hospital, Changhua, Taiwan
| | - Dong-Chen Shieh
- Department of Nursing, College of Nursing, Hungkuang University, Taichung, Taiwan
| | - Yi-Ju Lee
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
14
|
Su S, Sun X, Zhang Q, Zhang Z, Chen J. CCL20 Promotes Ovarian Cancer Chemotherapy Resistance by Regulating ABCB1 Expression. Cell Struct Funct 2019; 44:21-28. [PMID: 30760665 PMCID: PMC11926410 DOI: 10.1247/csf.18029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Ovarian cancer (OC) is one of prevalent tumors and this study aimed to explore CCL20's effects on doxorubicin resistance of OC and related mechanisms. Doxorubicin-resistant SKOV3 DR cells were established from SKOV3 cells via 6-month continuous exposure to gradient concentrations of doxorubicin. Quantitative PCR and Western blot assay showed that SKOV3 DR cells had higher level of CCL20 than SKOV3 cells, and doxorubicin upregulated CCL20 expression in SKOV3 cells. MTT and cell count assay found that CCL20 overexpression plasmid enhanced doxorubicin resistance of SKOV3 and OVCA433 cells compared to empty vector, as shown by the increase in cell viability. In contrast, CCL20 shRNA enhanced doxorubicin sensitivity of SKOV3 DR cells compared to control. CCL20 overexpression plasmid promoted NF-kB activation and positively regulated ABCB1 expression. Besides, ABCB1 overexpression plasmid enhanced the viability of SKOV3 and OVCA433 cells compared to empty vector under treatment with the same concentration of doxorubicin, whereas ABCB1 shRNA inhibited doxorubicin resistance of SKOV3 DR cells compared to control. In conclusion, CCL20 enhanced doxorubicin resistance of OC cells by regulating ABCB1 expression.Key words: CCL20, ovarian cancer, doxorubicin resistance, tumor-promoting, ABCB1.
Collapse
Affiliation(s)
- Shan Su
- Department of Gynecology, the Central Hospital of Zibo
| | - Xueqin Sun
- Department of Gynecology, the Central Hospital of Zibo
| | - Qinghua Zhang
- Department of Gynecology, the Central Hospital of Zibo
| | - Zhe Zhang
- Department of Gynecology, the Central Hospital of Zibo
| | - Ju Chen
- Department of Ultrasound, the Central Hospital of Zibo
| |
Collapse
|
15
|
Shapla UM, Raihan J, Islam A, Alam F, Solayman N, Gan SH, Hossen S, Khalil I. Propolis: The future therapy against Helicobacter pylori-mediated gastrointestinal diseases. J Appl Biomed 2018. [DOI: 10.1016/j.jab.2017.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
16
|
Song Y, Jiang K, Su S, Wang B, Chen G. Clinical manifestations and epigenetic mechanisms of gastric mucosa associated lymphoid tissue lymphoma and long-term follow-up following Helicobacter pylori eradication. Exp Ther Med 2017; 15:553-561. [PMID: 29387204 DOI: 10.3892/etm.2017.5413] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 06/22/2017] [Indexed: 01/14/2023] Open
Abstract
The current study aimed to summarize the clinical manifestations and identify the epigenetic mechanisms of gastric mucosa associated lymphoid tissue (MALT) lymphoma, as well as evaluate the long-term effects of Helicobacter pylori (H. pylori) eradication. A total of 122 patients with marginal zone B-cell lymphoma of primary gastric MALT lymphoma were enrolled in the present study. The clinical manifestations of gastric MALT lymphoma, including symptoms, H. pylori state and endoscopic type, were summarized. The response to therapy was evaluated in patients that underwent H. pylori eradication. Survival analysis was estimated using the Kaplan-Meier method. The expression of microRNA-383 (miR-383) in tumor tissues and cell lines was determined using reverse transcription quantitative polymerase chain reaction. Furthermore, bioinformatic analyses, luciferase reporter assays. and western blot analysis identified zinc finger E-box binding homeobox 2 (ZEB2) as a direct target gene of miR-383. An MTT assay was used to examine the function of miR-383 and ZEB2 in MALT lymphoma. The clinical symptoms of patients with gastric MALT lymphoma were non-specific and included epigastric pain, abdominal discomfort and bleeding. The majority of endoscopic types were classified as ulcer, erosion and mucosa edema. The H. pylori infection rate was 79.5% (97/122) and a total of 47 patients underwent eradication therapy. Lymphoma remission was achieved in 93.6% (44/47) of patients and complete remission (CR) was achieved in 74.4% (35/47). The median follow-up time was 38 months (range, 10-132 months) and the median time taken to achieve CR was 4 months (range, 3-7 months). The estimated 3-year survival rate was 90.3% and the 5-year survival rate was 76.2%. Therefore, it was determined that patients with stage I or II gastric MALT lymphoma are able to undergo H. pylori eradication as a first-line treatment and that the survival rate of patients undergoing this treatment is high. Furthermore, it was determined that the mechanism by which miR-383 and ZEB2 contribute to MALT lymphoma progression is by the targeting of ZEB2 by miR-383, which inhibits the proliferation of cancer cells.
Collapse
Affiliation(s)
- Yan Song
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Kui Jiang
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Shuai Su
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Bangmao Wang
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Guangxia Chen
- Department of Gastroenterology, No. 2 Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300151, P.R. China
| |
Collapse
|
17
|
Interleukin-17C in Human Helicobacter pylori Gastritis. Infect Immun 2017; 85:IAI.00389-17. [PMID: 28739826 DOI: 10.1128/iai.00389-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/15/2017] [Indexed: 12/16/2022] Open
Abstract
The interleukin-17 (IL-17) family of cytokines (IL-17A to IL-17F) is involved in many inflammatory diseases. Although IL-17A is recognized as being involved in the pathophysiology of Helicobacter pylori-associated diseases, the role of other IL-17 cytokine family members remains unclear. Microarray analysis of IL-17 family cytokines was performed in H. pylori-infected and uninfected gastric biopsy specimens. IL-17C mRNA was upregulated approximately 4.5-fold in H. pylori-infected gastric biopsy specimens. This was confirmed by quantitative reverse transcriptase PCR in infected and uninfected gastric mucosa obtained from Bhutan and from the Dominican Republic. Immunohistochemical analysis showed that IL-17C expression in H. pylori-infected gastric biopsy specimens was predominantly localized to epithelial and chromogranin A-positive endocrine cells. IL-17C mRNA levels were also significantly greater among cagA-positive than cagA-negative H. pylori infections (P = 0.012). In vitro studies confirmed an increase in IL-17C mRNA and protein levels in cells infected with cagA-positive infections compared to cells infected with either cagA-negative or cag pathogenicity island (PAI) mutant. Chemical inhibition of IκB kinase (IKK), mitogen-activated protein extracellular signal-regulated kinase (MEK), and Jun N-terminal kinase (JNK) inhibited induction of IL-17C proteins in infected cells, whereas p38 inhibition had no effect on IL-17C protein secretion. In conclusion, H. pylori infection was associated with a significant increase in IL-17C expression in human gastric mucosa. The role of IL-17C in the pathogenesis of H. pylori-induced diseases remains to be determined.
Collapse
|
18
|
Tsai HF, Hsu PN. Modulation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis by Helicobacter pylori in immune pathogenesis of gastric mucosal damage. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2016; 50:4-9. [PMID: 26947589 DOI: 10.1016/j.jmii.2016.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 12/20/2015] [Accepted: 01/17/2016] [Indexed: 12/28/2022]
Abstract
Helicobacter pylori infection is associated with chronic gastritis, peptic ulcer, gastric carcinoma, and gastric mucosa-associated lymphoid tissue lymphomas. Apoptosis induced by microbial infections is implicated in the pathogenesis of H. pylori infection. Enhanced gastric epithelial cell apoptosis during H. pylori infection was suggested to play an important role in the pathogenesis of chronic gastritis and gastric pathology. In addition to directly triggering apoptosis, H. pylori induces sensitivity to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis in gastric epithelial cells. Human gastric epithelial cells sensitized to H. pylori confer susceptibility to TRAIL-mediated apoptosis via modulation of death-receptor signaling. The induction of TRAIL sensitivity by H. pylori is dependent upon the activation of caspase-8 and its downstream pathway. H. pylori induces caspase-8 activation via enhanced assembly of the TRAIL death-inducing signaling complex through downregulation of cellular FLICE-inhibitory protein. Moreover, H. pylori infection induces infiltration of T lymphocytes and triggers inflammation to augment apoptosis. In H. pylori infection, significant increases in CCR6+ CD3+ T cell infiltration in the gastric mucosa was observed, and the CCR6 ligand, CCL20 chemokine, was selectively expressed in inflamed gastric tissues. These mechanisms initiate chemokine-mediated T lymphocyte trafficking into inflamed epithelium and induce mucosal injury during Helicobacter infection. This article will review recent findings on the interactions of H. pylori with host-epithelial signaling pathways and events involved in the initiation of gastric pathology, including gastric inflammation and mucosal damage.
Collapse
Affiliation(s)
- Hwei-Fang Tsai
- Department of Internal Medicine, Taipei Medical University Shuang Ho Hospital, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ping-Ning Hsu
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
19
|
Busch B, Weimer R, Woischke C, Fischer W, Haas R. Helicobacter pylori interferes with leukocyte migration via the outer membrane protein HopQ and via CagA translocation. Int J Med Microbiol 2015; 305:355-64. [PMID: 25736449 DOI: 10.1016/j.ijmm.2015.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 12/23/2014] [Accepted: 02/09/2015] [Indexed: 01/07/2023] Open
Abstract
The human gastric pathogen Helicobacter pylori is a paradigm for chronic bacterial infections. Persistent colonization of the stomach mucosa is facilitated by several mechanisms of immune evasion and immune modulation, such as avoidance of Toll-like receptor recognition or skewing of effector T cell responses. Interactions of H. pylori with different immune cells have been described with respect to immune cell activation, cytokine release, or oxidative burst induction. We show here that H. pylori infection of human granulocytes, or of HL-60 cells differentiated to a granulocyte-like phenotype (dHL-60 cells) results in inhibition of cell migration under different conditions. Migration of dHL-60 cells in a three-dimensional collagen gel was found to be inhibited independently of the cag pathogenicity island, whereas migration inhibition in an under agarose assay was dependent on the cag pathogenicity island, on its effector protein CagA, and on the outer membrane protein HopQ. CagA translocation into leukocytes is accompanied by its tyrosine phosphorylation and by proteolytic processing into an N-terminal 100 kDa and a C-terminal 35 kDa fragment at a distinct cleavage site. By using complemented H. pylori strains producing either phosphorylation-resistant or cleavage-resistant CagA variants, we show that CagA tyrosine phosphorylation is required for migration inhibition, but CagA processing is not. Our results suggest that direct contact of H. pylori with immune cells subverts not only their activation characteristics, but also their migratory behaviour.
Collapse
Affiliation(s)
- Benjamin Busch
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität, München, Germany
| | - Ramona Weimer
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität, München, Germany
| | - Christine Woischke
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität, München, Germany
| | - Wolfgang Fischer
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität, München, Germany.
| | - Rainer Haas
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität, München, Germany; German Center for Infection Research, Partner Site München, München, Germany
| |
Collapse
|
20
|
Santos AM, Lopes T, Oleastro M, Gato IV, Floch P, Benejat L, Chaves P, Pereira T, Seixas E, Machado J, Guerreiro AS. Curcumin inhibits gastric inflammation induced by Helicobacter pylori infection in a mouse model. Nutrients 2015; 7:306-20. [PMID: 25569625 PMCID: PMC4303841 DOI: 10.3390/nu7010306] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/09/2014] [Indexed: 12/17/2022] Open
Abstract
Helicobacter pylori (H. pylori) infection triggers a sequence of gastric alterations starting with an inflammation of the gastric mucosa that, in some cases, evolves to gastric cancer. Efficient vaccination has not been achieved, thus it is essential to find alternative therapies, particularly in the nutritional field. The current study evaluated whether curcumin could attenuate inflammation of the gastric mucosa due to H. pylori infection. Twenty-eight C57BL/6 mice, were inoculated with the H. pylori SS1 strain; ten non-infected mice were used as controls. H. pylori infection in live mice was followed-up using a modified 13C-Urea Breath Test (13C-UBT) and quantitative real-time polymerase chain reaction (PCR). Histologically confirmed, gastritis was observed in 42% of infected non-treated mice at both 6 and 18 weeks post-infection. These mice showed an up-regulation of the expression of inflammatory cytokines and chemokines, as well as of toll-like receptors (TLRs) and MyD88, at both time points. Treatment with curcumin decreased the expression of all these mediators. No inflammation was observed by histology in this group. Curcumin treatment exerted a significant anti-inflammatory effect in H. pylori-infected mucosa, pointing to the promising role of a nutritional approach in the prevention of H. pylori induced deleterious inflammation while the eradication or prevention of colonization by effective vaccine is not available.
Collapse
Affiliation(s)
- António M Santos
- Serviço de Medicina 4-Hospital de Santa Marta/Centro Hospitalar de Lisboa Central, Rua de Santa Marta, 50, 1169-024 Lisboa, Portugal.
| | - Teresa Lopes
- CEDOC-Nova Medical School-Faculdade de Ciências Médicas Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal.
| | - Mónica Oleastro
- Departamento de Doenças Infecciosas, Instituto Nacional de Saúde Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal.
| | - Inês Vale Gato
- Departamento de Doenças Infecciosas, Instituto Nacional de Saúde Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal.
| | - Pauline Floch
- Bacteriology Laboratory, Bordeaux University, 146 rue Léo Saignat F-33000 Bordeaux, France.
| | - Lucie Benejat
- Bacteriology Laboratory, Bordeaux University, 146 rue Léo Saignat F-33000 Bordeaux, France.
| | - Paula Chaves
- Serviço de Anatomia Patológica-Instituto Português de Oncologia Dr. Francisco Gentil, R. Prof. Lima Basto, 1099-023 Lisboa, Portugal.
| | - Teresa Pereira
- Serviço de Anatomia Patológica-Instituto Português de Oncologia Dr. Francisco Gentil, R. Prof. Lima Basto, 1099-023 Lisboa, Portugal.
| | - Elsa Seixas
- CEDOC-Nova Medical School-Faculdade de Ciências Médicas Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal.
| | - Jorge Machado
- Departamento de Doenças Infecciosas, Instituto Nacional de Saúde Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal.
| | - António S Guerreiro
- Serviço de Medicina 4-Hospital de Santa Marta/Centro Hospitalar de Lisboa Central, Rua de Santa Marta, 50, 1169-024 Lisboa, Portugal.
| |
Collapse
|
21
|
Cook KW, Letley DP, Ingram RJM, Staples E, Skjoldmose H, Atherton JC, Robinson K. CCL20/CCR6-mediated migration of regulatory T cells to the Helicobacter pylori-infected human gastric mucosa. Gut 2014; 63:1550-9. [PMID: 24436142 PMCID: PMC4173663 DOI: 10.1136/gutjnl-2013-306253] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Helicobacter pylori-induced peptic ulceration is less likely to occur in patients with a strong gastric anti-inflammatory regulatory T cell (Treg) response. Migration of Tregs into the gastric mucosa is therefore important. OBJECTIVE To identify the homing receptors involved in directing Tregs to the gastric mucosa, and investigate how H pylori stimulates the relevant chemokine responses. DESIGN Gastric biopsy samples and peripheral blood were donated by 84 H pylori-infected and 46 uninfected patients. Luminex assays quantified gastric biopsy chemokine concentrations. Flow cytometry was used to characterise homing receptors on CD4(+)CD25(hi) Tregs. H pylori wild-type and isogenic mutants were used to investigate the signalling mechanisms behind CCL20 and IL-8 induction in gastric epithelial cell lines. Transwell assays were used to quantify Treg migration towards chemokines in vitro. RESULTS CCL20, CXCL1-3 and IL-8 concentrations were significantly increased in gastric biopsy samples from H pylori-infected patients. CCR6 (CCL20 receptor), CXCR1 and CXCR2 (IL-8 and CXCL1-3 receptors) were expressed by a higher proportion of peripheral blood Tregs in infected patients. Most gastric Tregs expressed these receptors. H pylori induced CCL20 production by gastric epithelial cells via cag pathogenicity island (cagPAI)-dependent NF-κB signalling. Foxp3(+), but not Foxp3(-), CD4 cells from infected mice migrated towards recombinant CCL20 in vitro. CONCLUSIONS As well as increasing Treg numbers, H pylori infection induces a change in their characteristics. Expression of CCR6, CXCR1 and CXCR2 probably enables their migration towards CCL20 and IL-8 in the infected gastric mucosa. Such qualitative changes may also explain how H pylori protects against some extragastric inflammatory disorders.
Collapse
Affiliation(s)
- Katherine W Cook
- Nottingham Digestive Diseases Biomedical Research Unit, School of Medicine, The University of Nottingham, Nottingham, UK
| | - Darren P Letley
- Nottingham Digestive Diseases Biomedical Research Unit, School of Medicine, The University of Nottingham, Nottingham, UK
| | - Richard J M Ingram
- Nottingham Digestive Diseases Biomedical Research Unit, School of Medicine, The University of Nottingham, Nottingham, UK
| | - Emily Staples
- Nottingham Digestive Diseases Biomedical Research Unit, School of Medicine, The University of Nottingham, Nottingham, UK
| | - Helle Skjoldmose
- Nottingham Digestive Diseases Biomedical Research Unit, School of Medicine, The University of Nottingham, Nottingham, UK
| | - John C Atherton
- Nottingham Digestive Diseases Biomedical Research Unit, School of Medicine, The University of Nottingham, Nottingham, UK
| | - Karen Robinson
- Nottingham Digestive Diseases Biomedical Research Unit, School of Medicine, The University of Nottingham, Nottingham, UK
| |
Collapse
|
22
|
Inada N, Ishimori A, Shoji J. CCL20/MIP-3 alpha mRNA expression in the conjunctival epithelium of normal individuals and patients with vernal keratoconjunctivitis. Graefes Arch Clin Exp Ophthalmol 2014; 252:1977-84. [PMID: 25172034 PMCID: PMC4245489 DOI: 10.1007/s00417-014-2785-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 05/19/2014] [Accepted: 08/13/2014] [Indexed: 01/11/2023] Open
Abstract
Background CCL20, the single chemokine ligand for CCR6, contributes to recruiting CCR6-expressing memory B cells, memory T cells, Th17 cells and dendritic cells, and is involved in regulating immune responses, homeostasis, and inflammation in mucosal tissues. Methods CCL20 messenger RNA (mRNA) expression was analyzed in the conjunctival epithelium in an in vivo study of patients with vernal keratoconjunctivitis (VKC group) and healthy volunteers (control group) using impression cytology. In vitro analysis of CCL20 mRNA was performed using cultured conjunctival epithelial cells (CECs). Real-time polymerase chain reaction was used to assess IL-8 and eotaxin-2 mRNA expression for comparison with CCL20 mRNA expression. Results In the control group, CCL20 mRNA expression was present in all conjunctival locations. However, CCL20 mRNA expression was significantly higher in the upper palpebral conjunctiva in the severe VKC group than in the mild VKC and control groups (p < 0.05, Steel test). In vitro stimulation of CECs with lipopolysaccharide (LPS) significantly increased CCL20 expression in a concentration-dependent manner that was significantly correlated with expression of IL-8 (p < 0.001, Spearman’s rank correlation coefficient), but not eotaxin-2. Conclusion We conclude that CCL 20 mRNA expression in the conjunctival epithelium plays a crucial role in regulating homeostasis at the ocular surface and in exacerbation of VKC.
Collapse
Affiliation(s)
- Noriko Inada
- Division of Ophthalmology, Department of Visual Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-Kamichou, Itabashi-ku, Tokyo, 173-8610, Japan,
| | | | | |
Collapse
|
23
|
Chen JP, Wu MS, Kuo SH, Liao F. IL-22 negatively regulates Helicobacter pylori-induced CCL20 expression in gastric epithelial cells. PLoS One 2014; 9:e97350. [PMID: 24824519 PMCID: PMC4019584 DOI: 10.1371/journal.pone.0097350] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 04/18/2014] [Indexed: 12/30/2022] Open
Abstract
Helicobacter pylori is a Gram-negative bacterium that infects the human gastric mucosa and causes various gastric diseases. H. pylori infection induces the production of inflammatory chemokine CCL20 in gastric mucosa and leads to gastric inflammation. Given that the IL-22/IL-22R axis plays a critical role in the regulation of homeostasis and inflammation of epithelial cells at barrier surfaces, we investigated the effect of IL-22 on CCL20 expression induced by H. pylori. We demonstrated that H. pylori infection of the gastric epithelia-derived AGS cells significantly induced CCL20 expression and the induction was inhibited by IL-22. Functional analysis of the CCL20 promoter revealed that the H. pylori-induced CCL20 expression required the activation of NF-κB, and that IL-22 inhibited the induction by attenuating NF-κB activation. Knockdown of endogenous STAT3 by either short interfering RNAs or a short hairpin RNA significantly reduced the inhibitory effect of IL-22. Furthermore, STAT3 phosphorylation elicited by IL-22 was crucial for the inhibition of H. pylori-induced CCL20 expression. Consistent with the in vitro data showing that IL-22 negatively regulated H. pylori-induced CCL20 expression in gastric epithelial cells, studies on the tissue sections from patients with H. pylori infection also revealed an inverse association of IL-22 expression and CCL20 expression in vivo. Together, our findings suggest that IL-22 plays a role in the control of overproduction of the inflammatory chemokine and thus may protect the gastric mucosa from inflammation-mediated damage.
Collapse
Affiliation(s)
- Jia-Perng Chen
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Ming-Shiang Wu
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Sung-Hsin Kuo
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
- Cancer Research Center and Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Fang Liao
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
24
|
Klein M, Brouwer MC, Angele B, Geldhoff M, Marquez G, Varona R, Häcker G, Schmetzer H, Häcker H, Hammerschmidt S, van der Ende A, Pfister HW, van de Beek D, Koedel U. Leukocyte attraction by CCL20 and its receptor CCR6 in humans and mice with pneumococcal meningitis. PLoS One 2014; 9:e93057. [PMID: 24699535 PMCID: PMC3974727 DOI: 10.1371/journal.pone.0093057] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 02/28/2014] [Indexed: 01/10/2023] Open
Abstract
We previously identified CCL20 as an early chemokine in the cerebrospinal fluid (CSF) of patients with pneumococcal meningitis but its functional relevance was unknown. Here we studied the role of CCL20 and its receptor CCR6 in pneumococcal meningitis. In a prospective nationwide study, CCL20 levels were significantly elevated in the CSF of patients with pneumococcal meningitis and correlated with CSF leukocyte counts. CCR6-deficient mice with pneumococcal meningitis and WT mice with pneumococcal meningitis treated with anti-CCL20 antibodies both had reduced CSF white blood cell counts. The reduction in CSF pleocytosis was also accompanied by an increase in brain bacterial titers. Additional in vitro experiments showed direct chemoattractant activity of CCL20 for granulocytes. In summary, our results identify the CCL20-CCR6 axis as an essential component of the innate immune defense against pneumococcal meningitis, controlling granulocyte recruitment.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Antibodies, Monoclonal/pharmacology
- Blotting, Western
- Brain/immunology
- Brain/metabolism
- Brain/microbiology
- Case-Control Studies
- Cells, Cultured
- Chemokine CCL20/antagonists & inhibitors
- Chemokine CCL20/immunology
- Chemokine CCL20/metabolism
- Chemotaxis, Leukocyte/immunology
- Enzyme-Linked Immunosorbent Assay
- Female
- Flow Cytometry
- Humans
- Immunoenzyme Techniques
- Male
- Meningitis, Pneumococcal/cerebrospinal fluid
- Meningitis, Pneumococcal/immunology
- Meningitis, Pneumococcal/metabolism
- Meningitis, Pneumococcal/microbiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Prognosis
- Prospective Studies
- Receptors, CCR6/physiology
- Survival Rate
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Matthias Klein
- Department of Neurology, Ludwig-Maximilians-University, Munich, Germany
- * E-mail:
| | - Matthijs C. Brouwer
- Department of Neurology, University of Amsterdam, Amsterdam, The Netherlands
- Center of Infection and Immunity Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - Barbara Angele
- Department of Neurology, Ludwig-Maximilians-University, Munich, Germany
| | - Madelijn Geldhoff
- Department of Neurology, University of Amsterdam, Amsterdam, The Netherlands
- Center of Infection and Immunity Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | | | - Rosa Varona
- Departamento de Immunologia y Oncologia, Centro National de Biotecnologia, Madrid, Spain
| | - Georg Häcker
- Institute for Medical Microbiology and Hygiene, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Helga Schmetzer
- Medical Department III, Ludwig-Maximilians-University, Munich, Germany
| | - Hans Häcker
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Sven Hammerschmidt
- Department Genetics of Microorganisms, University of Greifswald, Greifswald, Germany
| | - Arie van der Ende
- Center of Infection and Immunity Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
- Department of Medical Microbiology, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Diederik van de Beek
- Department of Neurology, University of Amsterdam, Amsterdam, The Netherlands
- Center of Infection and Immunity Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - Uwe Koedel
- Department of Neurology, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
25
|
Lassner D, Kuhl U, Siegismund CS, Rohde M, Elezkurtaj S, Escher F, Tschope C, Gross UM, Poller W, Schultheiss HP. Improved diagnosis of idiopathic giant cell myocarditis and cardiac sarcoidosis by myocardial gene expression profiling. Eur Heart J 2014; 35:2186-95. [DOI: 10.1093/eurheartj/ehu101] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
26
|
Lin WC, Tsai HF, Liao HJ, Tang CH, Wu YY, Hsu PI, Cheng AL, Hsu PN. Helicobacter pylori sensitizes TNF-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis in human gastric epithelial cells through regulation of FLIP. Cell Death Dis 2014; 5:e1109. [PMID: 24603337 PMCID: PMC3973194 DOI: 10.1038/cddis.2014.81] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 01/30/2014] [Accepted: 02/04/2014] [Indexed: 12/11/2022]
Abstract
Helicobacter pylori (H. pylori) infection is associated with chronic gastritis, peptic ulcer and gastric cancer. Apoptosis induced by microbial infections is implicated in the pathogenesis of H. pylori infection. Here we show that human gastric epithelial cells sensitized to H. pylori confer susceptibility to TRAIL-mediated apoptosis via modulation of death receptor signaling. Human gastric epithelial cells are intrinsically resistant to TRAIL-mediated apoptosis. The induction of TRAIL sensitivity by H. pylori is dependent on the activation of caspase-8 and its downstream pathway. H. pylori induces caspase-8 activation via enhanced assembly of the TRAIL death-inducing signaling complex (DISC) through downregulation of cellular FLICE-inhibitory protein (FLIP). Overexpression of FLIP abolished the H. pylori-induced TRAIL sensitivity in human gastric epithelial cells. Our study thus demonstrates that H. pylori induces sensitivity to TRAIL apoptosis by regulation of FLIP and assembly of DISC, which initiates caspase activation, resulting in the breakdown of resistance to apoptosis, and provides insight into the pathogenesis of gastric damage in Helicobacter infection. Modulation of host apoptosis signaling by bacterial interaction adds a new dimension to the pathogenesis of Helicobacter.
Collapse
Affiliation(s)
- W-C Lin
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - H-F Tsai
- Department of Internal Medicine, Taipei Medical University Shuang Ho Hospital, Taipei, Taiwan
- Gradute Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - H-J Liao
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - C-H Tang
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Y-Y Wu
- Department of Medical Laboratory Science and Biotechnology, China Medical University and Hospital, Taichung, Taiwan
| | - P-I Hsu
- Department of Internal Medicine, Veterans General Hospital-Kaohsiung, Kaohsiung, Taiwan
| | - A-L Cheng
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - P-N Hsu
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
27
|
Luo K, Zhang H, Zavala F, Biragyn A, Espinosa DA, Markham RB. Fusion of antigen to a dendritic cell targeting chemokine combined with adjuvant yields a malaria DNA vaccine with enhanced protective capabilities. PLoS One 2014; 9:e90413. [PMID: 24599116 PMCID: PMC3943962 DOI: 10.1371/journal.pone.0090413] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 01/30/2014] [Indexed: 12/31/2022] Open
Abstract
Although sterilizing immunity to malaria can be elicited by irradiated sporozoite vaccination, no clinically practical subunit vaccine has been shown to be capable of preventing the approximately 600,000 annual deaths attributed to this infection. DNA vaccines offer several potential advantages for a disease that primarily affects the developing world, but new approaches are needed to improve the immunogenicity of these vaccines. By using a novel, lipid-based adjuvant, Vaxfectin, to attract immune cells to the immunization site, in combination with an antigen-chemokine DNA construct designed to target antigen to immature dendritic cells, we elicited a humoral immune response that provided sterilizing immunity to malaria challenge in a mouse model system. The chemokine, MIP3αCCL20, did not significantly enhance the cellular infiltrate or levels of cytokine or chemokine expression at the immunization site but acted with Vaxfectin to reduce liver stage malaria infection by orders of magnitude compared to vaccine constructs lacking the chemokine component. The levels of protection achieved were equivalent to those observed with irradiated sporozoites, a candidate vaccine undergoing development for further large scale clinical trial. Only vaccination with the combined regimen of adjuvant and chemokine provided 80–100% protection against the development of bloodstream infection. Treating the immunization process as requiring the independent steps of 1) attracting antigen-presenting cells to the site of immunization and 2) specifically directing vaccine antigen to the immature dendritic cells that initiate the adaptive immune response may provide a rational strategy for the development of a clinically applicable malaria DNA vaccine.
Collapse
Affiliation(s)
- Kun Luo
- The Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Hong Zhang
- The Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Fidel Zavala
- The Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Arya Biragyn
- Immunoregulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, Maryland, United States of America
| | - Diego A. Espinosa
- The Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Richard B. Markham
- The Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
28
|
Wang HP, Zhu YL, Shao W. Role of Helicobacter pylori virulence factor cytotoxin-associated gene A in gastric mucosa-associated lymphoid tissue lymphoma. World J Gastroenterol 2013; 19:8219-8226. [PMID: 24363512 PMCID: PMC3857444 DOI: 10.3748/wjg.v19.i45.8219] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 11/01/2013] [Accepted: 11/13/2013] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection might initiate and contribute to the progression of lymphoma from gastric mucosa-associated lymphoid tissue (MALT). Increasing evidence shows that eradication of H. pylori with antibiotic therapy can lead to regression of gastric MALT lymphoma and can result in a 10-year sustained remission. The eradication of H. pylori is the standard care for patients with gastric MALT lymphoma. Cytotoxin-associated gene A (CagA) protein, one of the most extensively studied H. pylori virulence factors, is strongly associated with the gastric MALT lymphoma. CagA possesses polymorphisms according to its C-terminal structure and displays different functions among areas and races. After being translocated into B lymphocytes via type IV secretion system, CagA deregulates intracellular signaling pathways in both tyrosine phosphorylation-dependent and -independent manners and/or some other pathways, and thereby promotes lymphomagenesis. A variety of proteins including p53 and protein tyrosine phosphatases-2 are involved in the malignant transformation induced by CagA. Mucosal inflammation is the foundational mechanism underlying the occurrence and development of gastric MALT lymphoma.
Collapse
|
29
|
TLR1-induced chemokine production is critical for mucosal immunity against Yersinia enterocolitica. Mucosal Immunol 2013; 6:1101-9. [PMID: 23443468 PMCID: PMC3760963 DOI: 10.1038/mi.2013.5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 01/07/2013] [Indexed: 02/04/2023]
Abstract
Our gastrointestinal tract is a portal of entry for a number of bacteria and viruses. Thus, this tissue must develop ways to induce antigen-specific T cell and antibody responses quickly. Intestinal epithelial cells are a central player in barrier function and also in communicating signals from invading pathogens to the underlying immune tissue. Here we demonstrate that activation of Toll-like receptor 1 (TLR1) in the epithelium leads to the upregulation of the chemokine CCL20 during oral infection with Yersinia enterocolitica. Further, both neutralization of CCL20 using polyclonal antibody treatment and deletion of TLR1 resulted in a defect in CCR6+ dendritic cells (DCs), which produce innate cytokines that help to induce anti-Yersinia-specific T helper 17 (TH17) cells and IgA production. These data demonstrate a novel role for TLR1 signaling in the intestinal epithelium and demonstrate that together TLR1 and CCL20 are critical mediators of TH17 immunity through the activation and recruitment of DCs.
Collapse
|
30
|
Lin KY, Su HW. Progress in understanding role of chemokine receptors in liver metastases of colorectal cancer. Shijie Huaren Xiaohua Zazhi 2013; 21:2403-2411. [DOI: 10.11569/wcjd.v21.i24.2403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer is a common malignant tumor of the digestive tract. The liver is the most common target organ for the metastasis of colorectal cancer, and about 50% of patients with colorectal cancer will develop liver metastasis in their expected lifetime. Untreated patients with liver metastases of colorectal cancer have a median survival of 6-12 mo and a 5-year survival rate less than 10%. Due to the high malignancy of colorectal cancer, patients developing metastasis have a high death rate. Therefore, management of liver metastases of colorectal cancer (CRLM) is important for improving patient's survival and quality of life. Many researchers have a great interest in more effective and reasonable treatment of CRLM. Currently, surgical treatment remains the only potentially curative treatment for CRLM, but in the long run, surgical treatment has a limited role in improving the postoperative survival of patients. The rapid advances in life science (e.g., gene field) and pharmaceutical technology have led to the development of some promising treatments for cancers. Recently, chemokines, a class of small-molecule proteins with chemotactic cell function, have aroused the interest of many scholars. Chemokines act upon their receptors and can recruit tumor cells and promote their migration. In this paper, we will review recent advances in understanding the role of chemokines in liver metastases of colorectal cancer.
Collapse
|
31
|
Deutsch AJA, Steinbauer E, Hofmann NA, Strunk D, Gerlza T, Beham-Schmid C, Schaider H, Neumeister P. Chemokine receptors in gastric MALT lymphoma: loss of CXCR4 and upregulation of CXCR7 is associated with progression to diffuse large B-cell lymphoma. Mod Pathol 2013; 26:182-94. [PMID: 22936065 DOI: 10.1038/modpathol.2012.134] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chemokine receptors have a crucial role in the development and progression of lymphoid neoplasms. To determine the chemokine receptor expression profile in gastric mucosa-associated lymphoid tissue (MALT) lymphoma, we performed an expression analysis of 19 chemokine receptors at mRNA levels by using real-time RT-PCR, as well as of five chemokine receptors--CCR8, CCR9, CXCR4, CXCR6 and CXCR7--by immunohistochemistry on human tissue samples of Helicobacter pylori-associated gastritis, gastric MALT lymphoma and gastric extranodal diffuse large B-cell lymphoma originating from MALT lymphoma (transformed MALT lymphoma). Following malignant transformation from H. pylori-associated gastritis to MALT lymphoma, an upregulation of CCR7, CXCR3 and CXCR7, and a loss of CXCR4 were detected. The transformation of gastric MALT lymphomas to gastric extranodal diffuse large B-cell lymphoma was accompanied by upregulation of CCR1, CCR5, CCR7, CCR8, CCR9, CXCR3, CXCR6, CXCR7 and XCR1. Remarkably, CXCR4 expression was exclusively found in nodal marginal B-cell lymphomas and nodal diffuse large B-cell lymphomas but not at extranodal manifestation sites, ie, in gastric MALT lymphomas or gastric extranodal diffuse large B-cell lymphomas. Furthermore, the incidence of bone marrow infiltration (16/51 with bone marrow involvement vs 35/51 with bone marrow involvement; Spearman ρ=0467 P<0.001) positively correlated with CXCR4 expression. CXCL12, the ligand of CXCR4 and CXCR7, was expressed by epithelial, endothelial and inflammatory cells, MALT lymphoma cells and was most strongly expressed by extranodal diffuse large B-cell lymphoma cells, suggesting at least in part an autocrine signaling pathway. Our data indicate that CXCR4 expression is associated with nodal manifestation and a more advanced stage of lymphomas and hence, might serve as useful clinical prognostic marker.
Collapse
Affiliation(s)
- Alexander J A Deutsch
- Division of Hematology, Department of Internal Medicine, Medical University Graz, Graz, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Serelli-Lee V, Ling KL, Ho C, Yeong LH, Lim GK, Ho B, Wong SBJ. Persistent Helicobacter pylori specific Th17 responses in patients with past H. pylori infection are associated with elevated gastric mucosal IL-1β. PLoS One 2012; 7:e39199. [PMID: 22761739 PMCID: PMC3382622 DOI: 10.1371/journal.pone.0039199] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 05/16/2012] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Ongoing Helicobacter pylori (HP) infection triggers a chronic active gastritis. Eradicating HP reduces gastric inflammation, but does not eliminate it. We sought to characterize this persistent gastritis, and demonstrate the persistence of HP-specific Th17 responses in individuals previously infected with HP but who no longer had evidence of ongoing infection. METHODOLOGY/PRINCIPAL FINDINGS Study subjects were divided into 3 groups 55 individuals had active HP infection (group A), 41 were diagnosed with previous HP infection (group P), and 59 were naïve to HP (group N). Blood and gastric tissue were obtained with written informed consent from all subjects, and immune responses were evaluated using flow cytometry, semi-quantitative real time PCR, immunofluorescent staining, ELISA, and multiplex cytometric bead array for cytokine quantification. Elevated IL-17A responses were observed in patients from group A compared to group N. Interestingly, IL-17A responses remained persistently elevated in the blood and gastric mucosa of individuals from group P, despite the absence of ongoing HP infection. Using purified CD4(+) T cells as effectors and antibodies that blocked antigen presentation by MHC Class II, we showed that these persistent IL-17A responses were mediated primarily by HP-specific Th17 cells, rather than other immune cells that have also been described to secrete IL-17A. Gastric mucosal IL-1β levels were also persistently elevated in group P, and neutralisation of IL-1β reduced the HP-specific IL-17A response of purified CD4(+) T cells to autologous HP-pulsed antigen presenting cells in vitro, suggesting a functional association between IL-1β and the persistent Th17 response in group P patients. CONCLUSIONS/SIGNIFICANCE Despite lack of ongoing HP infection, HP-specific Th17 cells persist in the blood and gastric mucosa of individuals with past HP infection. We speculate that this persistent inflammation might contribute to gastric mucosal pathology, for example, persistent increased gastric cancer risk despite eradication of HP.
Collapse
Affiliation(s)
- Victoria Serelli-Lee
- Department of Microbiology, National University of Singapore, Singapore, Republic of Singapore
| | - Khoon Lin Ling
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore, Republic of Singapore
| | - Cassandra Ho
- Department of Microbiology, National University of Singapore, Singapore, Republic of Singapore
| | - Lai Han Yeong
- Department of Microbiology, National University of Singapore, Singapore, Republic of Singapore
| | - Gek Keow Lim
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore, Republic of Singapore
| | - Bow Ho
- Department of Microbiology, National University of Singapore, Singapore, Republic of Singapore
| | - Soon Boon Justin Wong
- Department of Microbiology, National University of Singapore, Singapore, Republic of Singapore
- Immunology Programme, National University of Singapore, Singapore, Republic of Singapore
| |
Collapse
|
33
|
Waldron-Lynch F, Henegariu O, Deng S, Preston-Hurlburt P, Tooley J, Flavell R, Herold KC. Teplizumab induces human gut-tropic regulatory cells in humanized mice and patients. Sci Transl Med 2012; 4:118ra12. [PMID: 22277969 PMCID: PMC4131554 DOI: 10.1126/scitranslmed.3003401] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The development and optimization of immune therapies in patients has been hampered by the lack of preclinical models in which their effects on human immune cells can be studied. As a result, observations that have been made in preclinical studies have suggested mechanisms of drug action in murine models that have not been confirmed in clinical studies. Here, we used a humanized mouse reconstituted with human hematopoietic stem cells to study the mechanism of action of teplizumab, an Fc receptor nonbinding humanized monoclonal antibody to CD3 being tested in clinical trials for the treatment of patients with type 1 diabetes mellitus. In this model, human gut-tropic CCR6(+) T cells exited the circulation and secondary lymph organs and migrated to the small intestine. These cells then produced interleukin-10 (IL-10), a regulatory cytokine, in quantities that could be detected in the peripheral circulation. Blocking T cell migration to the small intestine with natalizumab, which prevents cellular adhesion by inhibiting α(4) integrin binding, abolished the treatment effects of teplizumab. Moreover, IL-10 expression by CD4(+)CD25(high)CCR6(+)FoxP3 cells returning to the peripheral circulation was increased in patients with type 1 diabetes treated with teplizumab. These findings demonstrate that humanized mice may be used to identify novel immunologic mechanisms that occur in patients treated with immunomodulators.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- CD3 Complex/immunology
- Cell Movement/drug effects
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/immunology
- Forkhead Transcription Factors/metabolism
- Gastrointestinal Tract/cytology
- Gastrointestinal Tract/drug effects
- Gastrointestinal Tract/immunology
- Humans
- Hypoglycemic Agents/pharmacology
- Hypoglycemic Agents/therapeutic use
- Interleukin-10/metabolism
- Intestine, Small/cytology
- Intestine, Small/drug effects
- Intestine, Small/immunology
- L-Selectin/metabolism
- Mice
- Mucous Membrane/cytology
- Mucous Membrane/drug effects
- Mucous Membrane/immunology
- Natalizumab
- Oligonucleotide Array Sequence Analysis
- Receptors, CCR6/metabolism
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
Collapse
Affiliation(s)
- Frank Waldron-Lynch
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Enhanced expression of CXCL13 in human Helicobacter pylori-associated gastritis. Dig Dis Sci 2011; 56:2887-94. [PMID: 21647655 DOI: 10.1007/s10620-011-1717-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 04/08/2011] [Indexed: 01/26/2023]
Abstract
BACKGROUND AND AIMS Chemokine CXC ligand 13 (CXCL13) and CXC receptor type 5 (CXCR5) are constitutively expressed in tertiary lymphoid follicles where the CXCL13/CXCR5 system regulates B lymphocytes homing. In this study, we sought to examine CXCL13 expression in the H. pylori-infected and -uninfected gastric mucosa and to elucidate the implication in the pathogenesis of HAG in humans. METHODS Using endoscopic biopsies taken from the gastric antrum of 29 subjects infected with Helicobacter pylori and 22 uninfected subjects, mucosal CXCL13 mRNA and protein levels were measured by real-time polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. RESULTS The CXCL13 expression levels were significantly more elevated in H. pylori-positive patients than uninfected ones. The CXCL13 expression levels correlated with the degree of chronic gastritis and bacterial colonization. Immunohistochemistry and in vitro infection assay showed that CXCL13 was not produced by the gastric epithelium, but the α-smooth muscle antigen expressing mesenchymal cells were the possible source of CXCL13 within H. pylori-infected gastric mucosa. CXCR5 immunostaining was seen in the CD20-positive lymphoid aggregates. CONCLUSIONS The enhanced induction of CXCL13 may be involved in the pathogenesis of H. pylori-associated gastritis.
Collapse
|
35
|
Wu YY, Chen JH, Kao JT, Liu KC, Lai CH, Wang YM, Hsieh CT, Tzen JTC, Hsu PN. Expression of CD25(high) regulatory T cells and PD-1 in gastric infiltrating CD4(+) T lymphocytes in patients with Helicobacter pylori infection. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:1198-1201. [PMID: 21562113 PMCID: PMC3147316 DOI: 10.1128/cvi.00422-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 04/28/2011] [Indexed: 01/30/2023]
Abstract
We observed by flow cytometry that the frequency of both gastric infiltrating Tregs and PD-1-positive CD4 T cells is correlated with the density of Helicobacter pylori, suggesting that cellular immunity against this pathogen is inhibited.
Collapse
Affiliation(s)
- Yi-Ying Wu
- Department of Medical Laboratory Science and Biotechnology, China Medical University and Hospital, No. 91 Hsueh-Shih Rd., Taichung 404, Taiwan.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Smith SM, Moran AP, Duggan SP, Ahmed SE, Mohamed AS, Windle HJ, O'Neill LA, Kelleher DP. Tribbles 3: a novel regulator of TLR2-mediated signaling in response to Helicobacter pylori lipopolysaccharide. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:2462-2471. [PMID: 21220698 DOI: 10.4049/jimmunol.1000864] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Helicobacter pylori causes chronic gastritis, peptic ulcers, and gastric carcinoma. Gastric epithelial cells provide the first point of contact between H. pylori and the host. TLRs present on these cells recognize various microbial products, resulting in the initiation of innate immunity. Although previous reports investigated TLR signaling in response to intact H. pylori, the specific contribution of H. pylori LPS with regard to functional genomics and cell-signaling events has not been defined. This study set out to define downstream signaling components and altered gene expression triggered by H. pylori LPS and to investigate the role of the signaling protein tribbles 3 (TRIB3) during the TLR-mediated response to H. pylori LPS. Cotransfections using small interfering RNA and dominant-negative constructs demonstrated that H. pylori LPS functions as a classic TLR2 ligand by signaling through pathways involving the key TLR signaling components MyD88 adaptor-like, MyD88, IRAK1, IRAK4, TNFR-associated factor 6, IκB kinase β, and IκBα. Microarray analysis, real-time PCR, and ELISA revealed the induction of a discrete pattern of chemokines as a direct effect of LPS:TLR2 signaling. H. pylori infection was associated with decreased expression of TRIB3 in human gastric epithelial cell lines and tissue samples. Additionally, H. pylori decreased expression of C/EBP homologous protein and activating transcription factor 4, the transcription factors involved in the induction of TRIB3 expression. Furthermore, knockdown of TRIB3 and C/EBP homologous protein enhanced TLR2-mediated NF-κB activation and chemokine induction in response to H. pylori LPS. Thus, modulation of TRIB3 by H. pylori and/or its products may be an important mechanism during H. pylori-associated pathogenesis.
Collapse
Affiliation(s)
- Sinéad M Smith
- Department of Clinical Medicine, Trinity College Dublin, Dublin 8, Ireland.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Wu YY, Lin CW, Cheng KS, Lin C, Wang YM, Lin IT, Chou YH, Hsu PN. Increased programmed death-ligand-1 expression in human gastric epithelial cells in Helicobacter pylori infection. Clin Exp Immunol 2011; 161:551-9. [PMID: 20646001 DOI: 10.1111/j.1365-2249.2010.04217.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
B7-H1 [programmed death-ligand-1 (PD-L1)] is a B7-family member that binds to programmed death-1 (PD-1). Recently, deficiency of PD-L1 has been demonstrated to result in accelerated gastric epithelial cell damage in gastritis, and PD-L1 is suggested to play a critical role in regulating T cell homeostasis. Here, we aimed to gain more insight into gastric PD-L1 expression, regulation and function during Helicobacter pylori infection. PD-L1 expression in human gastric epithelial cells was analysed using Western blotting, quantitative polymerase chain reaction and fluorescence activated cell sorter analysis. Furthermore, co-culture experiments of human gastric epithelial cells with primary human T cells or Jurkat T cells were conducted. PD-L1 expression in primary human gastric epithelial cells was strongly enhanced by H. pylori infection and activated T cells, and augmented markedly by further stimulation with interferon-γ or tumour necrosis factor-α. Moreover, PD-L1 expression in gastric epithelial cells significantly induced apoptosis of T cells. Our results indicate that a novel bidirectional interaction between human gastric epithelial cells and lymphocytes modulates PD-L1 expression in human gastric epithelial cells, contributing to the unique immunological properties of the stomach.
Collapse
Affiliation(s)
- Y-Y Wu
- Department of Medical Laboratory Science and Biotechnology, China Medical University and Hospital, Taichung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Rajkumar T, Vijayalakshmi N, Gopal G, Sabitha K, Shirley S, Raja UM, Ramakrishnan SA. Identification and validation of genes involved in gastric tumorigenesis. Cancer Cell Int 2010; 10:45. [PMID: 21092330 PMCID: PMC3004887 DOI: 10.1186/1475-2867-10-45] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 11/24/2010] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Gastric cancer is one of the common cancers seen in south India. Unfortunately more than 90% are advanced by the time they report to a tertiary centre in the country. There is an urgent need to characterize these cancers and try to identify potential biomarkers and novel therapeutic targets. MATERIALS AND METHODS We used 24 gastric cancers, 20 Paired normal (PN) and 5 apparently normal gastric tissues obtained from patients with non-gastric cancers (Apparently normal - AN) for the microarray study followed by validation of the significant genes (n = 63) by relative quantitation using Taqman Low Density Array Real Time PCR. We then used a custom made Quantibody protein array to validate the expression of 15 proteins in gastric tissues (4 AN, 9 PN and 9 gastric cancers). The same array format was used to study the plasma levels of these proteins in 58 patients with gastric cancers and 18 from patients with normal/non-malignant gastric conditions. RESULTS Seventeen genes (ASPN, CCL15/MIP-1δ, MMP3, SPON2, PRSS2, CCL3, TMEPAI/PMEPAI, SIX3, MFNG, SOSTDC1, SGNE1, SST, IGHA1, AKR1B10, FCGBP, ATP4B, NCAPH2) were shown to be differentially expressed between the tumours and the paired normal, for the first time. EpCAM (p = 0.0001), IL8 (p = 0.0003), CCL4/MIP-1β (p = 0.0026), CCL20/MIP-3α (p = 0.039) and TIMP1 (p = 0.0017) tissue protein levels were significantly different (Mann Whitney U test) between tumours versus AN & PN. In addition, median plasma levels of IL8, CXCL9/MIG, CCL3/MIP-1α, CCL20/MIP-3α, PDGFR-B and TIMP1 proteins were significantly different between the non-malignant group and the gastric cancer group. The post-surgical levels of EpCAM, IGFBP3, IL8, CXCL10/IP10, CXCL9/MIG, CCL3/MIP-1α, CCL20/MIP-3α, SPP1/OPN and PDGFR-B showed a uniform drop in all the samples studied. CONCLUSIONS Our study has identified several genes differentially expressed in gastric cancers, some for the first time. Some of these have been confirmed at the protein level, as well. Some of these proteins will need to be evaluated further for their potential as diagnostic biomarkers in gastric cancers and some could be useful as follow-up markers in gastric cancer.
Collapse
Affiliation(s)
- Thangarajan Rajkumar
- Dept. of Molecular Oncology, Cancer Institute (WIA), 38, Sardar Patel Road, Chennai - 600036, India
| | | | - Gopisetty Gopal
- Dept. of Molecular Oncology, Cancer Institute (WIA), 38, Sardar Patel Road, Chennai - 600036, India
| | - Kesavan Sabitha
- Dept. of Molecular Oncology, Cancer Institute (WIA), 38, Sardar Patel Road, Chennai - 600036, India
| | - Sundersingh Shirley
- Dept. of Pathology, Cancer Institute (WIA), 38, Sardar Patel Road, Chennai - 600036, India
| | - Uthandaraman M Raja
- Dept. of Molecular Oncology, Cancer Institute (WIA), 38, Sardar Patel Road, Chennai - 600036, India
| | - Seshadri A Ramakrishnan
- Dept. of Surgical Oncology, Cancer Institute (WIA), 38, Sardar Patel Road, Chennai - 600036, India
| |
Collapse
|
39
|
Hsu PN, Yang TC, Kao JT, Cheng KS, Lee YJ, Wang YM, Hsieh CT, Lin CW, Wu YY. Increased PD-1 and decreased CD28 expression in chronic hepatitis B patients with advanced hepatocellular carcinoma. Liver Int 2010; 30:1379-1386. [PMID: 20738778 DOI: 10.1111/j.1478-3231.2010.02323.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND/AIMS Hepatitis B infection is a well-known cause of hepatocellular carcinoma (HCC). This study aims to investigate the role that the co-stimulatory molecule CD28 and co-inhibitory molecule programmed death-1 (PD-1) play in compromising the function of tumour-infiltrating lymphocytes (TIL) in hepatitis B virus (HBV)-related HCC. METHODS A total of 45 patients with HBV-related HCC were enrolled during the period February 2008 to March 2010. The immune phenotype and the expression of PD-1, CD28 and CD127 in TIL in biopsy specimens and in peripheral blood lymphocytes (PBL) from the same patients were analysed by flow cytometry. RESULTS Among the 45 patients, there was a male predominance (80%) and the mean age was 50 ± 13.68 years (range: 29-71). The majority of TIL were CD45RO(+) CD69(+). PD-1 expression was higher and CD28 and CD127 expression levels were lower in TIL than in PBL. The prevalence of portal vein thrombosis was 40%. Furthermore, tumour thrombosis invasion into the portal vein correlated with the expression level of the PD-1 co-inhibitory molecule. CONCLUSION PD-1(+) tumour-infiltrating lymphocytes correlate with portal vein thrombosis and might serve as a potential prognostic marker of and a novel therapeutic target for HBV-related HCC.
Collapse
Affiliation(s)
- Ping-Ning Hsu
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Lin WC, Tsai HF, Kuo SH, Wu MS, Lin CW, Hsu PI, Cheng AL, Hsu PN. Translocation of Helicobacter pylori CagA into Human B lymphocytes, the origin of mucosa-associated lymphoid tissue lymphoma. Cancer Res 2010; 70:5740-5748. [PMID: 20587516 DOI: 10.1158/0008-5472.can-09-4690] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Infection by cagA-positive Helicobacter pylori (H. pylori) is strongly associated with gastric carcinomas and gastric mucosa-associated lymphoid tissue (MALT) lymphomas. H. pylori translocates the bacterial protein CagA into gastric epithelial cells, and the translocated CagA deregulates intracellular signaling pathways and thereby initiates pathogenesis. This in turn raised the possibility that H. pylori is associated with the development of MALT lymphomas during persistent infection by direct interaction with B lymphocytes. In this work, we showed that CagA can be directly translocated into human B lymphoid cells by H. pylori, and the translocated CagA undergoes tyrosine phosphorylation and binds to intracellular SH-2. Meanwhile, the translocated CagA induces activation of extracellular signal-regulated kinase and p38 mitogen-activated protein kinase in human B lymphoid cells, and upregulates the expressions of Bcl-2 and Bcl-X(L), which prevents apoptosis. These results provide the first direct evidence for the role of CagA as a bacterium-derived oncoprotein that acts in human B cells, and further implies that CagA is directly delivered into B cells by H. pylori and is associated with the development of MALT lymphomas.
Collapse
MESH Headings
- Antigens, Bacterial/metabolism
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Bacterial Proteins/metabolism
- Cell Line, Tumor
- Enzyme Activation
- Helicobacter Infections/immunology
- Helicobacter Infections/metabolism
- Helicobacter Infections/pathology
- Helicobacter pylori/metabolism
- Humans
- Immunohistochemistry
- Lymphoma, B-Cell/metabolism
- Lymphoma, B-Cell/microbiology
- Lymphoma, B-Cell/pathology
- Lymphoma, B-Cell, Marginal Zone/immunology
- Lymphoma, B-Cell, Marginal Zone/metabolism
- Lymphoma, B-Cell, Marginal Zone/microbiology
- Mitogen-Activated Protein Kinases/metabolism
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Up-Regulation
- bcl-X Protein/metabolism
Collapse
Affiliation(s)
- Wei-Cheng Lin
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Interplay between Helicobacter pylori and immune cells in immune pathogenesis of gastric inflammation and mucosal pathology. Cell Mol Immunol 2010; 7:255-9. [PMID: 20190789 DOI: 10.1038/cmi.2010.2] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Helicobacter pylori infection is associated with an inflammatory response in the gastric mucosa, leading to chronic gastritis, peptic ulcers, gastric carcinoma and gastric mucosa-associated lymphoid tissue (MALT) lymphomas. Recent studies have shown that apoptosis of gastric epithelial cells is increased during H. pylori infection. Apoptosis induced by microbial infections are factors implicated in the pathogenesis of H. pylori infection. The enhanced gastric epithelial cell apoptosis in H. pylori infection has been suggested to play an important role in the pathogenesis of chronic gastritis and gastric pathology. In addition to directly triggering apoptosis, H. pylori induces sensitivity to tumor-necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis in gastric epithelial cells via modulation of TRAIL apoptosis signaling. Moreover, H. pylori infection induces infiltration of T lymphocytes and triggers inflammation to augment apoptosis. In H. pylori infection, there was significantly increased CCR6(+)CD3(+ )T-cell infiltration in the gastric mucosa, and the CCR6 ligand, CCL20 chemokine, was selectively expressed in inflamed gastric tissues. These results implicate that the interaction between CCL20 and CCR6 may play a role in recruiting T cells to the sites of inflammation in the gastric mucosa during Helicobacter infection. Through these mechanisms, chemokine-mediated T lymphocyte trafficking into inflamed epithelium is initiated and the mucosal injury in Helicobacter infection is induced. This article will review the recent novel findings on the interactions of H. pylori with diverse host epithelial signaling pathways and events involved in the initiation of gastric pathology, including gastric inflammation, mucosal damage and development of MALT lymphomas.
Collapse
|
42
|
Sim SH, Liu Y, Wang D, Novem V, Sivalingam SP, Thong TW, Ooi EE, Tan G. Innate immune responses of pulmonary epithelial cells to Burkholderia pseudomallei infection. PLoS One 2009; 4:e7308. [PMID: 19806192 PMCID: PMC2751829 DOI: 10.1371/journal.pone.0007308] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 09/15/2009] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Burkholderia pseudomallei, a facultative intracellular pathogen, causes systemic infection in humans with high mortality especially when infection occurs through an infectious aerosol. Previous studies indicated that the epithelial cells in the lung are an active participant in host immunity. In this study, we aimed to investigate the innate immune responses of lung epithelial cells against B. pseudomallei. METHODOLOGY AND PRINCIPAL FINDINGS Using a murine lung epithelial cell line, primary lung epithelial cells and an inhalational murine infection model, we characterized the types of innate immunity proteins and peptides produced upon B. pseudomallei infection. Among a wide panel of immune components studied, increased levels of major pro-inflammatory cytokines IL-6 and TNFalpha, chemokine MCP-1, and up-regulation of secretory leukocyte protease inhibitor (SLPI) and chemokine (C-C motif) ligand 20 (CCL20) were observed. Inhibition assays using specific inhibitors suggested that NF-kappaB and p38 MAPK pathways were responsible for these B. pseudomallei-induced antimicrobial peptides. CONCLUSIONS Our findings indicate that the respiratory epithelial cells, which form the majority of the cells lining the epithelial tract and the lung, have important roles in the innate immune response against B. pseudomallei infection.
Collapse
Affiliation(s)
- Siew Hoon Sim
- Defence Medical and Environmental Research Institute, DSO National Laboratories, Singapore, Republic of Singapore
| | - Yichun Liu
- Defence Medical and Environmental Research Institute, DSO National Laboratories, Singapore, Republic of Singapore
| | - Dongling Wang
- Defence Medical and Environmental Research Institute, DSO National Laboratories, Singapore, Republic of Singapore
| | - Vidhya Novem
- Defence Medical and Environmental Research Institute, DSO National Laboratories, Singapore, Republic of Singapore
| | | | - Tuck Weng Thong
- Defence Medical and Environmental Research Institute, DSO National Laboratories, Singapore, Republic of Singapore
| | - Eng Eong Ooi
- Defence Medical and Environmental Research Institute, DSO National Laboratories, Singapore, Republic of Singapore
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore, Republic of Singapore
| | - Gladys Tan
- Defence Medical and Environmental Research Institute, DSO National Laboratories, Singapore, Republic of Singapore
| |
Collapse
|
43
|
Ryan KA, O'Hara AM, van Pijkeren JP, Douillard FP, O'Toole PW. Lactobacillus salivarius modulates cytokine induction and virulence factor gene expression in Helicobacter pylori. J Med Microbiol 2009; 58:996-1005. [PMID: 19528183 DOI: 10.1099/jmm.0.009407-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Human infection by the gastric pathogen Helicobacter pylori is characterized by a robust immune response which rarely prevents persistent H. pylori colonization. Emerging evidence suggests that lactobacilli may reduce H. pylori infection rates and associated inflammation. In this study, we measured the ability of two model strains of Lactobacillus salivarius (UCC118 and UCC119) to modulate gastric epithelial cell chemokine responses to H. pylori infection. Pre-treatment of AGS cells with either L. salivarius strain significantly decreased interleukin-8 (IL-8) production upon exposure to H. pylori, but not in cells stimulated with TNF-alpha. The production of the chemokines CCL20 and IP-10 by AGS cells infected with H. pylori was also altered following pre-treatment with UCC118 and UCC119. We showed that a greater reduction in IL-8 production with UCC119 was due to the production of more acid by this strain. Furthermore, UV-killed cells of both lactobacillus strains were still able to reduce H. pylori-induced IL-8 in the absence of acid production, indicating the action of a second anti-inflammatory mechanism. This immunomodulatory activity was not dependent on adhesion to epithelial cells or bacteriocin production. Real-time RT-PCR analysis showed that expression of eight of twelve Cag pathogenicity island genes tested was downregulated by exposure to L. salivarius, but not by cells of four other lactobacillus species. CagA accumulated in H. pylori cells following exposure to L. salivarius presumably as a result of loss of functionality of the Cag secretion system. These data identified a new mechanism whereby some probiotic bacteria have a positive effect on H. pylori-associated inflammation without clearing the infection.
Collapse
Affiliation(s)
- Kieran A Ryan
- Department of Microbiology, University College Cork, Cork, Ireland
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Ann M O'Hara
- Department of Medicine, University College Cork, Cork, Ireland
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Jan-Peter van Pijkeren
- Department of Microbiology, University College Cork, Cork, Ireland
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | | | - Paul W O'Toole
- Department of Microbiology, University College Cork, Cork, Ireland
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| |
Collapse
|
44
|
Yoshida A, Isomoto H, Hisatsune J, Nakayama M, Nakashima Y, Matsushima K, Mizuta Y, Hayashi T, Yamaoka Y, Azuma T, Moss J, Hirayama T, Kohno S. Enhanced expression of CCL20 in human Helicobacter pylori-associated gastritis. Clin Immunol 2009; 130:290-7. [PMID: 19006683 PMCID: PMC3404125 DOI: 10.1016/j.clim.2008.09.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Accepted: 09/24/2008] [Indexed: 01/26/2023]
Abstract
CC chemokine ligand 20 (CCL20) attracts CC chemokine receptor 6 (CCR6)-expressing cells. Using endoscopic biopsies taken from the gastric antrum of 42 subjects infected with H. pylori and 42 uninfected subjects, mucosal CCL20 mRNA and protein levels were measured by real-time polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. CCL19 mRNA and protein levels, as well as CCL21 mRNA levels, were also measured. The CCL20 mRNA and protein levels were significantly elevated in H. pylori-positive patients and substantially decreased after successful eradication. CCL19 and CCL21 expression levels were comparable in the H. pylori-infected and the uninfected groups. The CCL20 concentrations correlated with the degree of chronic gastritis. Immunohistochemistry and the in vitro infection assay showed that CCL20 was principally produced by the gastric epithelium. CCR6-expressing cells, including CD45RO(+) memory T lymphocytes and fascin(+)-CD1a(+) immature dendritic cells, infiltrated close to the CCL20-expressing epithelial cells. The CCL20/CCR6 interaction may be involved in the development of H. pylori-associated gastritis.
Collapse
Affiliation(s)
- Akira Yoshida
- Second Department of Internal Medicine, Nagasaki University School of Medicine, Sakamoto, Nagasaki 852-8501, Japan
| | - Hajime Isomoto
- Second Department of Internal Medicine, Nagasaki University School of Medicine, Sakamoto, Nagasaki 852-8501, Japan
| | - Junzo Hisatsune
- Department of Bacteriology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Masaaki Nakayama
- Department of Bacteriology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Yujiro Nakashima
- Second Department of Internal Medicine, Nagasaki University School of Medicine, Sakamoto, Nagasaki 852-8501, Japan
| | - Kayoko Matsushima
- Second Department of Internal Medicine, Nagasaki University School of Medicine, Sakamoto, Nagasaki 852-8501, Japan
| | - Yohei Mizuta
- Second Department of Internal Medicine, Nagasaki University School of Medicine, Sakamoto, Nagasaki 852-8501, Japan
| | - Tomayoshi Hayashi
- Department of Pathology, Nagasaki University School of Medicine, Sakamoto, Nagasaki, Japan
| | - Yoshio Yamaoka
- Department of Medicine-Gastroenterology, Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Houston, TX, USA
| | - Takeshi Azuma
- Department of Gastroenterology, Kobe University School of Medicine, Kobe, Japan
| | - Joel Moss
- Translational Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Toshiya Hirayama
- Department of Bacteriology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Shigeru Kohno
- Second Department of Internal Medicine, Nagasaki University School of Medicine, Sakamoto, Nagasaki 852-8501, Japan
| |
Collapse
|
45
|
Marcos NT, Magalhães A, Ferreira B, Oliveira MJ, Carvalho AS, Mendes N, Gilmartin T, Head SR, Figueiredo C, David L, Santos-Silva F, Reis CA. Helicobacter pylori induces beta3GnT5 in human gastric cell lines, modulating expression of the SabA ligand sialyl-Lewis x. J Clin Invest 2008; 118:2325-36. [PMID: 18483624 DOI: 10.1172/jci34324] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Accepted: 03/26/2008] [Indexed: 12/19/2022] Open
Abstract
Chronic Helicobacter pylori infection is recognized as a cause of gastric cancer. H. pylori adhesion to gastric cells is mediated by bacterial adhesins such as sialic acid-binding adhesin (SabA), which binds the carbohydrate structure sialyl-Lewis x. Sialyl-Lewis x expression in the gastric epithelium is induced during persistent H. pylori infection, suggesting that H. pylori modulates host cell glycosylation patterns for enhanced adhesion. Here, we evaluate changes in the glycosylation-related gene expression profile of a human gastric carcinoma cell line following H. pylori infection. We observed that H. pylori significantly altered expression of 168 of the 1,031 human genes tested by microarray, and the extent of these alterations was associated with the pathogenicity of the H. pylori strain. A highly pathogenic strain altered expression of several genes involved in glycan biosynthesis, in particular that encoding beta3 GlcNAc T5 (beta3GnT5), a GlcNAc transferase essential for the biosynthesis of Lewis antigens. beta3GnT5 induction was specific to infection with highly pathogenic strains of H. pylori carrying a cluster of genes known as the cag pathogenicity island, and was dependent on CagA and CagE. Further, beta3GnT5 overexpression in human gastric carcinoma cell lines led to increased sialyl-Lewis x expression and H. pylori adhesion. This study identifies what we believe to be a novel mechanism by which H. pylori modulates the biosynthesis of the SabA ligand in gastric cells, thereby strengthening the epithelial attachment necessary to achieve successful colonization.
Collapse
Affiliation(s)
- Nuno T Marcos
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Marcos NT, Magalhães A, Ferreira B, Oliveira MJ, Carvalho AS, Mendes N, Gilmartin T, Head SR, Figueiredo C, David L, Santos-Silva F, Reis CA. Helicobacter pylori induces beta3GnT5 in human gastric cell lines, modulating expression of the SabA ligand sialyl-Lewis x. J Clin Invest 2008. [PMID: 18483624 DOI: 10.1172/jc134324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Chronic Helicobacter pylori infection is recognized as a cause of gastric cancer. H. pylori adhesion to gastric cells is mediated by bacterial adhesins such as sialic acid-binding adhesin (SabA), which binds the carbohydrate structure sialyl-Lewis x. Sialyl-Lewis x expression in the gastric epithelium is induced during persistent H. pylori infection, suggesting that H. pylori modulates host cell glycosylation patterns for enhanced adhesion. Here, we evaluate changes in the glycosylation-related gene expression profile of a human gastric carcinoma cell line following H. pylori infection. We observed that H. pylori significantly altered expression of 168 of the 1,031 human genes tested by microarray, and the extent of these alterations was associated with the pathogenicity of the H. pylori strain. A highly pathogenic strain altered expression of several genes involved in glycan biosynthesis, in particular that encoding beta3 GlcNAc T5 (beta3GnT5), a GlcNAc transferase essential for the biosynthesis of Lewis antigens. beta3GnT5 induction was specific to infection with highly pathogenic strains of H. pylori carrying a cluster of genes known as the cag pathogenicity island, and was dependent on CagA and CagE. Further, beta3GnT5 overexpression in human gastric carcinoma cell lines led to increased sialyl-Lewis x expression and H. pylori adhesion. This study identifies what we believe to be a novel mechanism by which H. pylori modulates the biosynthesis of the SabA ligand in gastric cells, thereby strengthening the epithelial attachment necessary to achieve successful colonization.
Collapse
Affiliation(s)
- Nuno T Marcos
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Tomimori K, Uema E, Teruya H, Ishikawa C, Okudaira T, Senba M, Yamamoto K, Matsuyama T, Kinjo F, Fujita J, Mori N. Helicobacter pylori induces CCL20 expression. Infect Immun 2007; 75:5223-32. [PMID: 17724069 PMCID: PMC2168315 DOI: 10.1128/iai.00731-07] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
CCL20 attracts immature dendritic cells and memory T cells and plays a role on mucosal surfaces in inflammation. However, whether Helicobacter pylori infection induces CCL20 in human gastric epithelial cells remains to be determined. The aim of this study was to analyze the molecular mechanism of H. pylori-induced CCL20 expression. Expression of CCL20 mRNA was assessed by reverse transcription-PCR. Five normal and five H. pylori-infected gastric tissue samples were stained immunohistochemically for CCL20. A luciferase assay was used to monitor activation of the CCL20 gene promoter, and an electrophoretic mobility shift assay was used to explore the binding of transcription factors to this promoter. The CCL20 expression in epithelial cells of H. pylori-positive tissues was higher than that in H. pylori-negative tissues. H. pylori induced CCL20 expression in gastric epithelial cell lines, and the induction was dependent on an intact cag pathogenicity island. Activation of the CCL20 promoter by H. pylori occurred through the action of NF-kappaB. Transfection of IkappaB kinase and NF-kappaB-inducing kinase dominant negative mutants inhibited H. pylori-mediated activation of CCL20. Treatment with an inhibitor of Hsp90 suppressed H. pylori-induced CCL20 mRNA due to deactivation of NF-kappaB. Collectively, these results suggest that H. pylori activates NF-kappaB through an intracellular signaling pathway that involves IkappaB kinase and NF-kappaB-inducing kinase, leading to CCL20 gene transcription, and that Hsp90 is a crucial regulator of H. pylori-induced CCL20 expression, presumably contributing to the immune response in H. pylori.
Collapse
Affiliation(s)
- Koh Tomimori
- Division of Molecular Virology and Oncology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|