1
|
Zhu G, Tong N, Zhu Y, Wang L, Wang Q. The crosstalk between SUMOylation and immune system in host-pathogen interactions. Crit Rev Microbiol 2025; 51:164-186. [PMID: 38619159 DOI: 10.1080/1040841x.2024.2339259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 04/16/2024]
Abstract
Pathogens can not only cause infectious diseases, immune system diseases, and chronic diseases, but also serve as potential triggers or initiators for certain tumors. They directly or indirectly damage human health and are one of the leading causes of global deaths. Small ubiquitin-like modifier (SUMO) modification, a type of protein post-translational modification (PTM) that occurs when SUMO groups bond covalently to particular lysine residues on substrate proteins, plays a crucial role in both innate and adaptive immunologic responses, as well as pathogen-host immune system crosstalk. SUMOylation participates in the host's defense against pathogens by regulating immune responses, while numerically vast and taxonomically diverse pathogens have evolved to exploit the cellular SUMO modification system to break through innate defenses. Here, we describe the characteristics and multiple functions of SUMOylation as a pivotal PTM mechanism, the tactics employed by various pathogens to counteract the immune system through targeting host SUMOylation, and the character of the SUMOylation system in the fight between pathogens and the host immune system. We have also included a summary of the potential anti-pathogen SUMO enzyme inhibitors. This review serves as a reference for basic research and clinical practice in the diagnosis, prognosis, and treatment of pathogenic microorganism-caused disorders.
Collapse
Affiliation(s)
- Gangli Zhu
- Guangdong Province Solid Waste Recycling and Heavy Metal Pollution Control Engineering Technology Research Center, Guangdong Polytechnic of Environment Protection Engineering, Foshan, Guangdong, China
| | - Ni Tong
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Yipeng Zhu
- Guagnzhou NO.6 Middle school, Guangzhou, Guangdong, China
| | - Lize Wang
- General Department, Institute of Software Chinese Academy of Sciences, Beijing, China
| | - Qirui Wang
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Patel JG, Luo T, Zhang X, McBride JW. Immuno- and expression analysis of Ehrlichia canis immunoreactive proteins. Front Vet Sci 2024; 11:1481934. [PMID: 39497741 PMCID: PMC11532101 DOI: 10.3389/fvets.2024.1481934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/10/2024] [Indexed: 11/07/2024] Open
Abstract
Ehrlichia canis is the primary etiologic agent of canine monocytic ehrlichiosis, a serious and sometimes fatal hemorrhagic disease of dogs. Diagnosis of E. canis infection is often retrospectively confirmed by serologic detection of antibodies by immunofluorescent microscopy. Our laboratory previously identified numerous major immunoreactive proteins with species-specific linear antibody epitopes that are useful for immunodiagnosis of CME. More recently, we have defined the entire antibody-reactive immunome of E. canis, substantially increasing the number of major immunoreactive proteins known to exist. In this study, we analyzed and compared seven recently identified antibody reactive E. canis proteins with established diagnostic antigens including tandem repeat proteins TRP19, TRP36 and TRP140 and observed comparable immunoreactivity. Many of these proteins were conserved in different E. canis strains. Multiple linear antibody epitopes were mapped in a highly conserved TRP (Ecaj_0126), including within the tandem repeat domain. Temporal antibody responses were examined, and multiple proteins reacted with antibodies in sera as early as 21 days post experimental infection. Host-specific expression of the proteins was examined which revealed that some proteins exhibited higher expression in mammalian cells, while others in tick cells. This study has identified new immunodiagnostic candidates that exhibit different host expression patterns, information which may be useful for developing ultrasensitive immunodiagnostics and effective vaccines for CME.
Collapse
Affiliation(s)
- Jignesh G. Patel
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Tian Luo
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Xiaofeng Zhang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Jere W. McBride
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, United States
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
3
|
Kumar D, Budachetri K, Rikihisa Y, Karim S. Analysis of Amblyomma americanum microRNAs in response to Ehrlichia chaffeensis infection and their potential role in vectorial capacity. Front Cell Infect Microbiol 2024; 14:1427562. [PMID: 39086604 PMCID: PMC11288922 DOI: 10.3389/fcimb.2024.1427562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/27/2024] [Indexed: 08/02/2024] Open
Abstract
Background MicroRNAs (miRNAs) represent a subset of small noncoding RNAs and carry tremendous potential for regulating gene expression at the post-transcriptional level. They play pivotal roles in distinct cellular mechanisms including inhibition of bacterial, parasitic, and viral infections via immune response pathways. Intriguingly, pathogens have developed strategies to manipulate the host's miRNA profile, fostering environments conducive to successful infection. Therefore, changes in an arthropod host's miRNA profile in response to pathogen invasion could be critical in understanding host-pathogen dynamics. Additionally, this area of study could provide insights into discovering new targets for disease control and prevention. The main objective of the present study is to investigate the functional role of differentially expressed miRNAs upon Ehrlichia chaffeensis, a tick-borne pathogen, infection in tick vector, Amblyomma americanum. Methods Small RNA libraries from uninfected and E. chaffeensis-infected Am. americanum midgut and salivary gland tissues were prepared using the Illumina Truseq kit. Small RNA sequencing data was analyzed using miRDeep2 and sRNAtoolbox to identify novel and known miRNAs. The differentially expressed miRNAs were validated using a quantitative PCR assay. Furthermore, a miRNA inhibitor approach was used to determine the functional role of selected miRNA candidates. Results The sequencing of small RNA libraries generated >147 million raw reads in all four libraries and identified a total of >250 miRNAs across the four libraries. We identified 23 and 14 differentially expressed miRNAs in salivary glands, and midgut tissues infected with E. chaffeensis, respectively. Three differentially expressed miRNAs (miR-87, miR-750, and miR-275) were further characterized to determine their roles in pathogen infection. Inhibition of target miRNAs significantly decreased the E. chaffeensis load in tick tissues, which warrants more in-depth mechanistic studies. Conclusions The current study identified known and novel miRNAs and suggests that interfering with these miRNAs may impact the vectorial capacity of ticks to harbor Ehrlichia. This study identified several new miRNAs for future analysis of their functions in tick biology and tick-pathogen interaction studies.
Collapse
Affiliation(s)
- Deepak Kumar
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Khemraj Budachetri
- Laboratory of Molecular, Cellular, and Environmental Rickettsiology, Department of Veterinary Biosciences, College of Veterinary Medicine, Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Yasuko Rikihisa
- Laboratory of Molecular, Cellular, and Environmental Rickettsiology, Department of Veterinary Biosciences, College of Veterinary Medicine, Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Shahid Karim
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| |
Collapse
|
4
|
Kumar D, Budachetri K, Rikihisa Y, Karim S. Analysis of Amblyomma americanum microRNAs in response to Ehrlichia chaffeensis infection and their potential role in vectorial capacity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592465. [PMID: 38765993 PMCID: PMC11100627 DOI: 10.1101/2024.05.03.592465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Background MicroRNAs (miRNAs) represent a subset of small noncoding RNAs and carry tremendous potential for regulating gene expression at the post-transcriptional level. They play pivotal roles in distinct cellular mechanisms including inhibition of bacterial, parasitic, and viral infections via immune response pathways. Intriguingly, pathogens have developed strategies to manipulate the host's miRNA profile, fostering environments conducive to successful infection. Therefore, changes in an arthropod host's miRNA profile in response to pathogen invasion could be critical in understanding host-pathogen dynamics. Additionally, this area of study could provide insights into discovering new targets for disease control and prevention. The main objective of the present study is to investigate the functional role of differentially expressed miRNAs upon Ehrlichia chaffeensis, a tick-borne pathogen, infection in tick vector, Amblyomma americanum. Methods Small RNA libraries from uninfected and E. chaffeensis-infected Am. americanum midgut and salivary gland tissues were prepared using the Illumina Truseq kit. Small RNA sequencing data was analyzed using miRDeep2 and sRNAtoolbox to identify novel and known miRNAs. The differentially expressed miRNAs were validated using a quantitative PCR assay. Furthermore, a miRNA inhibitor approach was used to determine the functional role of selected miRNA candidates. Results The sequencing of small RNA libraries generated >147 million raw reads in all four libraries and identified a total of >250 miRNAs across the four libraries. We identified 23 and 14 differentially expressed miRNAs in salivary glands, and midgut tissues infected with E. chaffeensis, respectively. Three differentially expressed miRNAs (miR-87, miR-750, and miR-275) were further characterized to determine their roles in pathogen infection. Inhibition of target miRNAs significantly decreased the E. chaffeensis load in tick tissues, which warrants more in-depth mechanistic studies. Conclusions The current study identified known and novel miRNAs and suggests that interfering with these miRNAs may impact the vectorial capacity of ticks to harbor Ehrlichia. This study identified several new miRNAs for future analysis of their functions in tick biology and tick-pathogen interaction studies.
Collapse
Affiliation(s)
- Deepak Kumar
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Khemraj Budachetri
- Laboratory of Molecular, Cellular, and Environmental Rickettsiology, Department of Veterinary Biosciences, College of Veterinary Medicine, Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Yasuko Rikihisa
- Laboratory of Molecular, Cellular, and Environmental Rickettsiology, Department of Veterinary Biosciences, College of Veterinary Medicine, Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Shahid Karim
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406, USA
| |
Collapse
|
5
|
Zhang T, Chien RC, Budachetri K, Lin M, Boyaka P, Huang W, Rikihisa Y. Ehrlichia effector TRP120 manipulates bacteremia to facilitate tick acquisition. mBio 2024; 15:e0047624. [PMID: 38501870 PMCID: PMC11005420 DOI: 10.1128/mbio.00476-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/03/2024] [Indexed: 03/20/2024] Open
Abstract
Ehrlichia species are obligatory intracellular bacteria that cause a potentially fatal disease, human ehrlichiosis. The biomolecular mechanisms of tick acquisition of Ehrlichia and transmission between ticks and mammals are poorly understood. Ehrlichia japonica infection of mice recapitulates the full spectrum of human ehrlichiosis. We compared the pathogenicity and host acquisition of wild-type E. japonica with an isogenic transposon mutant of E. japonica that lacks tandem repeat protein 120 (TRP120) (ΔTRP120). Both wild-type and ΔTRP120 E. japonica proliferated similarly in cultures of mammalian and tick cells. Upon inoculation into mice, both wild-type and ΔTRP120 E. japonica multiplied to high levels in various tissues, with similar clinical chemistry and hematologic changes, proinflammatory cytokine induction, and fatal disease. However, the blood levels of ΔTRP120 E. japonica were almost undetectable within 24 h, whereas the levels of the wild type increased exponentially. Greater than 90% of TRP120 was released from infected cells into the culture medium. Mouse blood monocytes exposed to native TRP120 from culture supernatants showed significantly reduced cell surface expression of the transmigration-related markers Ly6C and CD11b. Larval ticks attached to mice infected with either wild-type or ΔTRP120 E. japonica imbibed similar amounts of blood and subsequently molted to nymphs at similar rates. However, unlike wild-type E. japonica, the ΔTRP120 mutant was minimally acquired by larval ticks and subsequent molted nymphs and, thus, failed to transmit to naïve mice. Thus, TRP120 is required for bacteremia but not disease. These findings suggest a novel mechanism whereby an obligatory intracellular bacterium manipulates infected blood monocytes to sustain the tick-mammal transmission cycle. IMPORTANCE Effective prevention of tick-borne diseases such as human ehrlichiosis requires an understanding of how disease-causing organisms are acquired. Ehrlichia species are intracellular bacteria that require infection of both mammals and ticks, involving cycles of transmission between them. Mouse models of ehrlichiosis and tick-mouse transmission can advance our fundamental understanding of the pathogenesis and prevention of ehrlichiosis. Herein, a mutant of Ehrlichia japonica was used to investigate the role of a single Ehrlichia factor, named tandem repeat protein 120 (TRP120), in infection of mammalian and tick cells in culture, infection and disease progression in mice, and tick acquisition of E. japonica from infected mice. Our results suggest that TRP120 is necessary only for Ehrlichia proliferation in circulating mouse blood and ongoing bacteremia to permit Ehrlichia acquisition by ticks. This study provides new insights into the importance of bacterial factors in regulating bacteremia, which may facilitate tick acquisition of pathogens.
Collapse
Affiliation(s)
- Tsian Zhang
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Rory C. Chien
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Khemraj Budachetri
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Mingqun Lin
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Prosper Boyaka
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Weiyan Huang
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Yasuko Rikihisa
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
6
|
Sharma AK, Ismail N. Non-Canonical Inflammasome Pathway: The Role of Cell Death and Inflammation in Ehrlichiosis. Cells 2023; 12:2597. [PMID: 37998332 PMCID: PMC10670716 DOI: 10.3390/cells12222597] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Activating inflammatory caspases and releasing pro-inflammatory mediators are two essential functions of inflammasomes which are triggered in response to pathogen-associated molecular patterns (PAMPs) or danger-associated molecular patterns (DAMPs). The canonical inflammasome pathway involves the activation of inflammasome and its downstream pathway via the adaptor ASC protein, which causes caspase 1 activation and, eventually, the cleavage of pro-IL-1b and pro-IL-18. The non-canonical inflammasome pathway is induced upon detecting cytosolic lipopolysaccharide (LPS) by NLRP3 inflammasome in Gram-negative bacteria. The activation of NLRP3 triggers the cleavage of murine caspase 11 (human caspase 4 or caspase 5), which results in the formation of pores (via gasdermin) to cause pyroptosis. Ehrlichia is an obligately intracellular bacterium which is responsible for causing human monocytic ehrlichiosis (HME), a potentially lethal disease similar to toxic shock syndrome and septic shock syndrome. Several studies have indicated that canonical and non-canonical inflammasome activation is a crucial pathogenic mechanism that induces dysregulated inflammation and host cellular death in the pathophysiology of HME. Mechanistically, the activation of canonical and non-canonical inflammasome pathways affected by virulent Ehrlichia infection is due to a block in autophagy. This review aims to explore the significance of non-canonical inflammasomes in ehrlichiosis, and how the pathways involving caspases (with the exception of caspase 1) contribute to the pathophysiology of severe and fatal ehrlichiosis. Improving our understanding of the non-canonical inflammatory pathway that cause cell death and inflammation in ehrlichiosis will help the advancement of innovative therapeutic, preventative, and diagnostic approaches to the treatment of ehrlichiosis.
Collapse
Affiliation(s)
| | - Nahed Ismail
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA;
| |
Collapse
|
7
|
Ma X, Zhao C, Xu Y, Zhang H. Roles of host SUMOylation in bacterial pathogenesis. Infect Immun 2023; 91:e0028323. [PMID: 37725062 PMCID: PMC10580907 DOI: 10.1128/iai.00283-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023] Open
Abstract
Bacteria frequently interfere with the post-translational modifications of host cells to facilitate their survival and growth after invasion. SUMOylation, a reversible post-translational modification process, plays an important role in biological life activities. In addition to being critical to host cell metabolism and survival, SUMOylation also regulates gene expression and cell signal transmission. Moreover, SUMOylation in eukaryotic cells can be used by a variety of bacterial pathogens to advance bacterial invasion. In this minireview, we focused on the role and mechanism of host SUMOylation in the pathogenesis of six important clinical bacterial pathogens (Listeria monocytogenes, Shigella flexneri, Salmonella Typhimurium, Klebsiella pneumoniae, Staphylococcus aureus, and Escherichia coli). Taken together, this review provided new insights for understanding the unique pathogen-host interaction based on host SUMOylation and provided a novel perspective on the development of new strategies to combat bacterial infections in the future.
Collapse
Affiliation(s)
- Xin Ma
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chenhao Zhao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yuyao Xu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Clinical Laboratory, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, China
| | - Haifang Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
8
|
Patterson LL, Byerly CD, Solomon R, Pittner N, Bui DC, Patel J, McBride JW. Ehrlichia Notch signaling induction promotes XIAP stability and inhibits apoptosis. Infect Immun 2023; 91:e0000223. [PMID: 37594275 PMCID: PMC10501217 DOI: 10.1128/iai.00002-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/07/2023] [Indexed: 08/19/2023] Open
Abstract
Ehrlichia chaffeensis has evolved multiple strategies to evade innate defenses of the mononuclear phagocyte. Recently, we reported the E. chaffeensis tandem repeat protein (TRP)120 effector functions as a Notch ligand mimetic and a ubiquitin ligase that degrades the nuclear tumor suppressor, F-box and WD repeat domain-containing 7, a negative regulator of Notch. The Notch intracellular domain (NICD) is known to inhibit apoptosis primarily by interacting with X-linked inhibitor of apoptosis protein (XIAP) to prevent degradation. In this study, we determined that E. chaffeensis activation of Notch signaling increases XIAP levels, thereby inhibiting apoptosis through both the intrinsic and executioner pathways. Increased NICD and XIAP levels were detected during E. chaffeensis infection and after TRP120 Notch ligand mimetic peptide treatment. Conversely, XIAP levels were reduced in the presence of Notch inhibitor DAPT. Cytoplasmic and nuclear colocalization of NICD and XIAP was observed during infection and a direct interaction was confirmed by co-immunoprecipitation. Procaspase levels increased temporally during infection, consistent with increased XIAP levels; however, knockdown (KD) of XIAP during infection significantly increased apoptosis and Caspase-3, -7, and -9 levels. Furthermore, treatment with SM-164, a second mitochondrial activator of caspases (Smac/DIABLO) antagonist, resulted in decreased procaspase levels and increased caspase activation, induced apoptosis, and significantly decreased infection. In addition, RNAi KD of XIAP also decreased infection and significantly increased apoptosis. Moreover, ectopic expression of TRP120 HECT Ub ligase catalytically defective mutant in HeLa cells decreased NICD and XIAP levels and increased caspase activation compared to HeLa cells with functional HECT Ub ligase catalytic activity (TRP120-WT). This investigation reveals a mechanism whereby E. chaffeensis modulates Notch signaling to stabilize XIAP and inhibit apoptosis.
Collapse
Affiliation(s)
- LaNisha L. Patterson
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Caitlan D. Byerly
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Regina Solomon
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Nicholas Pittner
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Duc Cuong Bui
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jignesh Patel
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jere W. McBride
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
9
|
Chandrasekhar H, Mohapatra G, Kajal K, Singh M, Walia K, Rana S, Kaur N, Sharma S, Tuli A, Das P, Srikanth CV. SifA SUMOylation governs Salmonella Typhimurium intracellular survival via modulation of lysosomal function. PLoS Pathog 2023; 19:e1011686. [PMID: 37773952 PMCID: PMC10566704 DOI: 10.1371/journal.ppat.1011686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 10/11/2023] [Accepted: 09/14/2023] [Indexed: 10/01/2023] Open
Abstract
One of the mechanisms shaping the pathophysiology during the infection of enteric pathogen Salmonella Typhimurium is host PTM machinery utilization by the pathogen encoded effectors. Salmonella Typhimurium (S. Tm) during infection in host cells thrives in a vacuolated compartment, Salmonella containing vacuole (SCV), which sequentially acquires host endosomal and lysosomal markers. Long tubular structures, called as Salmonella induced filaments (SIFs), are further generated by S. Tm, which are known to be required for SCV's nutrient acquisition, membrane maintenance and stability. A tightly coordinated interaction involving prominent effector SifA and various host adapters PLEKHM1, PLEKHM2 and Rab GTPases govern SCV integrity and SIF formation. Here, we report for the first time that the functional regulation of SifA is modulated by PTM SUMOylation at its 11th lysine. S. Tm expressing SUMOylation deficient lysine 11 mutants of SifA (SifAK11R) is defective in intracellular proliferation due to compromised SIF formation and enhanced lysosomal acidification. Furthermore, murine competitive index experiments reveal defective in vivo proliferation and weakened virulence of SifAK11R mutant. Concisely, our data reveal that SifAK11R mutant nearly behaves like a SifA knockout strain which impacts Rab9-MPR mediated lysosomal acidification pathway, the outcome of which culminates in reduced bacterial load in in vitro and in vivo infection model systems. Our results bring forth a novel pathogen-host crosstalk mechanism where the SUMOylation of effector SifA regulated S. Tm intracellular survival.
Collapse
Affiliation(s)
| | - Gayatree Mohapatra
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Kirti Kajal
- Regional Centre for Biotechnology, Faridabad, India
| | - Mukesh Singh
- All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Kshitiz Walia
- Institute of Microbial Technology, Chandigarh, India
| | - Sarika Rana
- Laboratory of Immunobiology, Universite´ Libre de Bruxelles, Gosselies, Belgium
| | - Navneet Kaur
- Department of Laboratory Medicine, Yale University, New Haven, Connecticut, United States of America
| | | | - Amit Tuli
- Institute of Microbial Technology, Chandigarh, India
| | - Prasenjit Das
- All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | | |
Collapse
|
10
|
Clemente TM, Angara RK, Gilk SD. Establishing the intracellular niche of obligate intracellular vacuolar pathogens. Front Cell Infect Microbiol 2023; 13:1206037. [PMID: 37645379 PMCID: PMC10461009 DOI: 10.3389/fcimb.2023.1206037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/21/2023] [Indexed: 08/31/2023] Open
Abstract
Obligate intracellular pathogens occupy one of two niches - free in the host cell cytoplasm or confined in a membrane-bound vacuole. Pathogens occupying membrane-bound vacuoles are sequestered from the innate immune system and have an extra layer of protection from antimicrobial drugs. However, this lifestyle presents several challenges. First, the bacteria must obtain membrane or membrane components to support vacuole expansion and provide space for the increasing bacteria numbers during the log phase of replication. Second, the vacuole microenvironment must be suitable for the unique metabolic needs of the pathogen. Third, as most obligate intracellular bacterial pathogens have undergone genomic reduction and are not capable of full metabolic independence, the bacteria must have mechanisms to obtain essential nutrients and resources from the host cell. Finally, because they are separated from the host cell by the vacuole membrane, the bacteria must possess mechanisms to manipulate the host cell, typically through a specialized secretion system which crosses the vacuole membrane. While there are common themes, each bacterial pathogen utilizes unique approach to establishing and maintaining their intracellular niches. In this review, we focus on the vacuole-bound intracellular niches of Anaplasma phagocytophilum, Ehrlichia chaffeensis, Chlamydia trachomatis, and Coxiella burnetii.
Collapse
Affiliation(s)
| | | | - Stacey D. Gilk
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
11
|
Bui DC, Luo T, McBride JW. Type 1 secretion system and effectors in Rickettsiales. Front Cell Infect Microbiol 2023; 13:1175688. [PMID: 37256108 PMCID: PMC10225607 DOI: 10.3389/fcimb.2023.1175688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/02/2023] [Indexed: 06/01/2023] Open
Abstract
Obligate intracellular bacteria in the order Rickettsiales are transmitted by arthropod vectors and cause life-threatening infections in humans and animals. While both type 1 and type 4 secretion systems (T1SS and T4SS) have been identified in this group, the most extensive studies of Rickettsiales T1SS and associated effectors have been performed in Ehrlichia. These studies have uncovered important roles for the T1SS effectors in pathobiology and immunity. To evade innate immune responses and promote intracellular survival, Ehrlichia and other related obligate pathogens secrete multiple T1SS effectors which interact with a diverse network of host targets associated with essential cellular processes. T1SS effectors have multiple functional activities during infection including acting as nucleomodulins and ligand mimetics that activate evolutionarily conserved cellular signaling pathways. In Ehrlichia, an array of newly defined major immunoreactive proteins have been identified that are predicted as T1SS substrates and have conformation-dependent antibody epitopes. These findings highlight the underappreciated and largely uncharacterized roles of T1SS effector proteins in pathobiology and immunity. This review summarizes current knowledge regarding roles of T1SS effectors in Rickettsiales members during infection and explores newly identified immunoreactive proteins as potential T1SS substrates and targets of a protective host immune response.
Collapse
Affiliation(s)
- Duc-Cuong Bui
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Tian Luo
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Jere W. McBride
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, United States
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
12
|
Pittner NA, Solomon RN, Bui DC, McBride JW. Ehrlichia effector SLiM-icry: Artifice of cellular subversion. Front Cell Infect Microbiol 2023; 13:1150758. [PMID: 36960039 PMCID: PMC10028187 DOI: 10.3389/fcimb.2023.1150758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/23/2023] [Indexed: 03/09/2023] Open
Abstract
As an obligately intracellular bacterial pathogen that selectively infects the mononuclear phagocyte, Ehrlichia chaffeensis has evolved sophisticated mechanisms to subvert innate immune defenses. While the bacterium accomplishes this through a variety of mechanisms, a rapidly expanding body of evidence has revealed that E. chaffeensis has evolved survival strategies that are directed by the versatile, intrinsically disordered, 120 kDa tandem repeat protein (TRP120) effector. E. chaffeensis establishes infection by manipulating multiple evolutionarily conserved cellular signaling pathways through effector-host interactions to subvert innate immune defenses. TRP120 activates these pathways using multiple functionally distinct, repetitive, eukaryote-mimicking short linear motifs (SLiMs) located within the tandem repeat domain that have evolved in nihilo. Functionally, the best characterized TRP120 SLiMs mimic eukaryotic ligands (SLiM-icry) to engage pathway-specific host receptors and activate cellular signaling, thereby repurposing these pathways to promote infection. Moreover, E. chaffeensis TRP120 contains SLiMs that are targets of post-translational modifications such as SUMOylation in addition to many other validated SLiMs that are curated in the eukaryotic linear motif (ELM) database. This review will explore the extracellular and intracellular roles TRP120 SLiM-icry plays during infection - mediated through a variety of SLiMs - that enable E. chaffeensis to subvert mononuclear phagocyte innate defenses.
Collapse
Affiliation(s)
- Nicholas A. Pittner
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Regina N. Solomon
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Duc-Cuong Bui
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Jere W. McBride
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, United States
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
13
|
Patterson LL, Byerly CD, Solomon R, Pittner N, Bui DC, Patel J, McBride JW. Ehrlichia Notch signaling induction promotes XIAP stability and inhibits apoptosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.06.523066. [PMID: 36711597 PMCID: PMC9881962 DOI: 10.1101/2023.01.06.523066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Ehrlichia chaffeensis has evolved multiple strategies to evade innate defenses of the mononuclear phagocyte. Recently, we reported the E. chaffeensis TRP120 effector functions as a Notch ligand mimetic and a ubiquitin ligase that degrades the nuclear tumor suppressor, F-box and WD repeat domain-containing 7 (FBW7), a negative regulator of Notch. The Notch receptor intracellular domain (NICD) is known to inhibit apoptosis primarily by interacting with X-linked inhibitor of apoptosis protein (XIAP) to prevent degradation. In this study, we determined E. chaffeensis activation of Notch signaling increases XIAP levels, thereby inhibiting intrinsic apoptosis. Increased NICD and XIAP levels were detected during E. chaffeensis infection and after TRP120 Notch ligand mimetic peptide treatment. Conversely, XIAP levels were reduced in the presence of Notch inhibitor DAPT. Cytoplasmic colocalization of NICD and XIAP was observed during infection and a direct interaction was confirmed by co-immunoprecipitation. Procaspase levels increased temporally during infection, consistent with increased XIAP levels; however, knockdown of XIAP during infection significantly increased apoptosis and Caspase-3, -7 and -9 levels. Further, treatment with SM-164, a second mitochondrial activator of caspases (Smac/DIABLO) antagonist, resulted in decreased procaspase levels and increased caspase activation, induced apoptosis, and significantly decreased infection. In addition, iRNA knockdown of XIAP also decreased infection and significantly increased apoptosis. Moreover, ectopic expression of TRP120 HECT Ub ligase catalytically defective mutant in HeLa cells decreased NICD and XIAP levels and increased caspase activation compared to WT. This investigation reveals a mechanism whereby E. chaffeensis repurposes Notch signaling to stabilize XIAP and inhibit apoptosis. Author Summary Ehrlichia chaffeensis is a tick-borne, obligately intracellular bacterium that exhibits tropism for mononuclear phagocytes. E. chaffeensis survives by mobilizing various molecular strategies to promote cell survival, including modulation of apoptosis. This investigation reveals an E. chaffeensis initiated, Notch signaling regulated, antiapoptotic mechanism involving inhibitor of apoptosis proteins (IAPs). Herein, we demonstrate that E. chaffeensis induced Notch activation results in Notch intracellular domain stabilization of X-linked inhibitor of apoptosis protein (XIAP) to inhibit intrinsic apoptosis. This study highlights a novel mechanistic strategy whereby intracellular pathogens repurpose evolutionarily conserved eukaryotic signaling pathways to engage an antiapoptotic program for intracellular survival.
Collapse
|
14
|
Orientia tsutsugamushi OtDUB Is Expressed and Interacts with Adaptor Protein Complexes during Infection. Infect Immun 2022; 90:e0046922. [PMID: 36374099 PMCID: PMC9753657 DOI: 10.1128/iai.00469-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Orientia tsutsugamushi is an etiologic agent of scrub typhus, a globally emerging rickettsiosis that can be fatal. The bacterium's obligate intracellular lifestyle requires its interaction with host eukaryotic cellular pathways. The proteins it employs to do so and their functions during infection are understudied. Recombinant versions of the recently characterized O. tsutsugamushi deubiquitylase (OtDUB) exhibit high-affinity ubiquitin binding, mediate guanine nucleotide exchange to activate Rho GTPases, bind clathrin adaptor protein complexes 1 and 2, and bind the phospholipid phosphatidylserine. Whether OtDUB is expressed and its function during O. tsutsugamushi infection have yet to be explored. Here, OtDUB expression, location, and interactome during infection were examined. O. tsutsugamushi transcriptionally and translationally expresses OtDUB throughout infection of epithelial, monocytic, and endothelial cells. Results from structured illumination microscopy, surface trypsinization of intact bacteria, and acetic acid extraction of non-integral membrane proteins indicate that OtDUB peripherally associates with the O. tsutsugamushi cell wall and is at least partially present on the bacterial surface. Analyses of the proteins with which OtDUB associates during infection revealed several known O. tsutsugamushi cell wall proteins and others. It also forms an interactome with adapter protein complex 2 and other endosomal membrane traffic regulators. This study documents the first interactors of OtDUB during O. tsutsugamushi infection and establishes a strong link between OtDUB and the host endocytic pathway.
Collapse
|
15
|
Patterson LL, Velayutham TS, Byerly CD, Bui DC, Patel J, Veljkovic V, Paessler S, McBride JW. Ehrlichia SLiM Ligand Mimetic Activates Notch Signaling in Human Monocytes. mBio 2022; 13:e0007622. [PMID: 35357214 PMCID: PMC9040721 DOI: 10.1128/mbio.00076-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/14/2022] [Indexed: 12/15/2022] Open
Abstract
Ehrlichia chaffeensis evades innate host defenses by reprogramming the mononuclear phagocyte through mechanisms that involve the exploitation of multiple evolutionarily conserved cellular signaling pathways, including Notch. This immune evasion strategy is directed in part by tandem repeat protein (TRP) effectors. Specifically, the TRP120 effector activates and regulates Notch signaling through interactions with the Notch receptor and the negative regulator, F-Box and WD repeat domain-containing 7 (FBW7). However, the specific molecular interactions and motifs required for E. chaffeensis TRP120-Notch receptor interaction and activation have not been defined. To investigate the molecular basis of TRP120 Notch activation, we compared TRP120 with endogenous canonical/noncanonical Notch ligands and identified a short region of sequence homology within the tandem repeat (TR) domain. TRP120 was predicted to share biological function with Notch ligands, and a function-associated sequence in the TR domain was identified. To investigate TRP120-Notch receptor interactions, colocalization between TRP120 and endogenous Notch-1 was observed. Moreover, direct interactions between full-length TRP120, the TRP120 TR domain containing the putative Notch ligand sequence, and the Notch receptor LBR were demonstrated. To molecularly define the TRP120 Notch activation motif, peptide mapping was used to identify an 11-amino acid short linear motif (SLiM) located within the TRP120 TR that activated Notch signaling and downstream gene expression. Peptide mutants of the Notch SLiM or anti-Notch SLiM antibody reduced or eliminated Notch activation and NICD nuclear translocation. This investigation reveals a novel molecularly defined pathogen encoded Notch SLiM mimetic that activates Notch signaling consistent with endogenous ligands. IMPORTANCE E. chaffeensis infects and replicates in mononuclear phagocytes, but how it evades innate immune defenses of this indispensable primary innate immune cell is not well understood. This investigation revealed the molecular details of a ligand mimicry cellular reprogramming strategy that involved a short linear motif (SLiM), which enabled E. chaffeensis to exploit host cell signaling to establish and maintain infection. E. chaffeensis TRP120 is a moonlighting effector that has been associated with cellular activation and other functions, including ubiquitin ligase activity. Herein, we identified and demonstrated that a SLiM present within each tandem repeat of TRP120 activated Notch signaling. Notch is an evolutionarily conserved signaling pathway responsible for many cell functions, including cell fate, development, and innate immunity. This study is significant because it revealed the first molecularly defined pathogen encoded SLiM that appears to have evolved de novo to mimic endogenous Notch ligands. Understanding Notch activation during E. chaffeensis infection provides a model to study pathogen exploitation of signaling pathways and will be useful in developing molecularly targeted countermeasures for inhibiting infection by a multitude of disease-causing pathogens that exploit cell signaling through molecular mimicry.
Collapse
Affiliation(s)
- LaNisha L. Patterson
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | | | - Caitlan D. Byerly
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Duc Cuong Bui
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jignesh Patel
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | | | - Slobodan Paessler
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jere W. McBride
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
16
|
Ismail N, Sharma A, Soong L, Walker DH. Review: Protective Immunity and Immunopathology of Ehrlichiosis. ZOONOSES (BURLINGTON, MASS.) 2022; 2:10.15212/zoonoses-2022-0009. [PMID: 35876763 PMCID: PMC9300479 DOI: 10.15212/zoonoses-2022-0009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Human monocytic ehrlichiosis, a tick transmitted infection, ranges in severity from apparently subclinical to a fatal toxic shock-like fatal disease. Models in immunocompetent mice range from an abortive infection to uniformly lethal depending on the infecting Ehrlichia species, dose of inoculum, and route of inoculation. Effective immunity is mediated by CD4+ T lymphocytes and gamma interferon. Lethal infection occurs with early overproduction of proinflammatory cytokines and overproduction of TNF alpha and IL-10 by CD8+ T lymphocytes. Furthermore, fatal ehrlichiosis is associated with signaling via TLR 9/MyD88 with upregulation of several inflammasome complexes and secretion of IL-1 beta, IL-1 alpha, and IL-18 by hepatic mononuclear cells, suggesting activation of canonical and noncanonical inflammasome pathways, a deleterious role for IL-18, and the protective role for caspase 1. Autophagy promotes ehrlichial infection, and MyD88 signaling hinders ehrlichial infection by inhibiting autophagy induction and flux. Activation of caspase 11 during infection of hepatocytes by the lethal ehrlichial species after interferon alpha receptor signaling results in the production of inflammasome-dependent IL-1 beta, extracellular secretion of HMGB1, and pyroptosis. The high level of HMGB1 in lethal ehrlichiosis suggests a role in toxic shock. Studies of primary bone marrow-derived macrophages infected by highly avirulent or mildly avirulent ehrlichiae reveal divergent M1 and M2 macrophage polarization that links with generation of pathogenic CD8 T cells, neutrophils, and excessive inflammation or with strong expansion of protective Th1 and NKT cells, resolution of inflammation and clearance of infection, respectively.
Collapse
Affiliation(s)
- Nahed Ismail
- Clinical Microbiology, Laboratory Medicine, University of Illinois at Chicago-College of Medicine, University of Illinois Hospitals & Health Science System, Chicago, IL
| | - Aditya Sharma
- Clinical Microbiology, Laboratory Medicine, University of Illinois at Chicago-College of Medicine, University of Illinois Hospitals & Health Science System, Chicago, IL
| | - Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX
- Department of Pathology, Center for Biodefense & Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX
| | - David H. Walker
- Department of Pathology, Center for Biodefense & Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX
| |
Collapse
|
17
|
Rajeev R, Dwivedi AP, Sinha A, Agarwaal V, Dev RR, Kar A, Khosla S. Epigenetic interaction of microbes with their mammalian hosts. J Biosci 2021. [PMID: 34728591 PMCID: PMC8550911 DOI: 10.1007/s12038-021-00215-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The interaction of microbiota with its host has the ability to alter the cellular functions of both, through several mechanisms. Recent work, from many laboratories including our own, has shown that epigenetic mechanisms play an important role in the alteration of these cellular functions. Epigenetics broadly refers to change in the phenotype without a corresponding change in the DNA sequence. This change is usually brought by epigenetic modifications of the DNA itself, the histone proteins associated with the DNA in the chromatin, non-coding RNA or the modifications of the transcribed RNA. These modifications, also known as epigenetic code, do not change the DNA sequence but alter the expression level of specific genes. Microorganisms seem to have learned how to modify the host epigenetic code and modulate the host transcriptome in their favour. In this review, we explore the literature that describes the epigenetic interaction of bacteria, fungi and viruses, with their mammalian hosts.
Collapse
|
18
|
Zhu B, McBride JW. Alpha Enolase 1 Ubiquitination and Degradation Mediated by Ehrlichia chaffeensis TRP120 Disrupts Glycolytic Flux and Promotes Infection. Pathogens 2021; 10:962. [PMID: 34451426 PMCID: PMC8400980 DOI: 10.3390/pathogens10080962] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 11/17/2022] Open
Abstract
Ehrlichia chaffeensis modulates numerous host cell processes, including gene transcription to promote infection of the mononuclear phagocyte. Modulation of these host cell processes is directed through E. chaffeensis effectors, including TRP120. We previously reported that TRP120 moonlights as a HECT E3 Ub ligase that ubiquitinates host cell transcription and fate regulators (PCGF5 and FBW7) to promote infection. In this study, we identified a novel TRP120 substrate and examined the relationship between TRP120 and α-enolase (ENO1), a metalloenzyme that catalyzes glycolytic pathway substrate dehydration. Immunofluorescence microscopy and coimmunoprecipitation demonstrated interaction between ENO1 and TRP120, and ubiquitination of ENO-1 by TRP120 was detected in vivo and in vitro. Further, ENO-1 degradation was observed during infection and was inhibited by the proteasomal inhibitor bortezomib. A direct role of TRP120 Ub ligase activity in ENO-1 degradation was demonstrated and confirmed by ectopic expression of TRP120 HECT Ub ligase catalytic site mutant. siRNA knockdown of ENO-1 coincided with increased E. chaffeensis infection and ENO-1 knockdown disrupted glycolytic flux by decreasing the levels of pyruvate and lactate that may contribute to changes in host cell metabolism that promote infection. In addition, we elucidated a functional role of TRP120 auto-ubiquitination as an activating event that facilitates the recruitment of the UbcH5 E2 ubiquitin-conjugating enzyme. This investigation further expands the repertoire of TRP120 substrates and extends the potential role of TRP120 Ub ligase in infection to include metabolic reprogramming.
Collapse
Affiliation(s)
- Bing Zhu
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA;
| | - Jere W. McBride
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA;
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| |
Collapse
|
19
|
K. ST, Joshi G, Arya P, Mahajan V, Chaturvedi A, Mishra RK. SUMO and SUMOylation Pathway at the Forefront of Host Immune Response. Front Cell Dev Biol 2021; 9:681057. [PMID: 34336833 PMCID: PMC8316833 DOI: 10.3389/fcell.2021.681057] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/11/2021] [Indexed: 01/14/2023] Open
Abstract
Pathogens pose a continuous challenge for the survival of the host species. In response to the pathogens, the host immune system mounts orchestrated defense responses initiating various mechanisms both at the cellular and molecular levels, including multiple post-translational modifications (PTMs) leading to the initiation of signaling pathways. The network of such pathways results in the recruitment of various innate immune components and cells at the site of infection and activation of the adaptive immune cells, which work in synergy to combat the pathogens. Ubiquitination is one of the most commonly used PTMs. Host cells utilize ubiquitination for both temporal and spatial regulation of immune response pathways. Over the last decade, ubiquitin family proteins, particularly small ubiquitin-related modifiers (SUMO), have been widely implicated in host immune response. SUMOs are ubiquitin-like (Ubl) proteins transiently conjugated to a wide variety of proteins through SUMOylation. SUMOs primarily exert their effect on target proteins by covalently modifying them. However, SUMO also engages in a non-covalent interaction with the SUMO-interacting motif (SIM) in target proteins. Unlike ubiquitination, SUMOylation alters localization, interactions, functions, or stability of target proteins. This review provides an overview of the interplay of SUMOylation and immune signaling and development pathways in general. Additionally, we discuss in detail the regulation exerted by covalent SUMO modifications of target proteins, and SIM mediated non-covalent interactions with several effector proteins. In addition, we provide a comprehensive review of the literature on the importance of the SUMO pathway in the development and maintenance of a robust immune system network of the host. We also summarize how pathogens modulate the host SUMO cycle to sustain infectability. Studies dealing mainly with SUMO pathway proteins in the immune system are still in infancy. We anticipate that the field will see a thorough and more directed analysis of the SUMO pathway in regulating different cells and pathways of the immune system. Our current understanding of the importance of the SUMO pathway in the immune system necessitates an urgent need to synthesize specific inhibitors, bioactive regulatory molecules, as novel therapeutic targets.
Collapse
Affiliation(s)
- Sajeev T. K.
- Nups and SUMO Biology Group, Department of Biological Sciences, IISER Bhopal, Bhopal, India
| | - Garima Joshi
- Nups and SUMO Biology Group, Department of Biological Sciences, IISER Bhopal, Bhopal, India
| | - Pooja Arya
- National Centre for Cell Science, Savitribai Phule Pune University, Pune, India
| | - Vibhuti Mahajan
- National Centre for Cell Science, Savitribai Phule Pune University, Pune, India
| | - Akanksha Chaturvedi
- National Centre for Cell Science, Savitribai Phule Pune University, Pune, India
| | - Ram Kumar Mishra
- Nups and SUMO Biology Group, Department of Biological Sciences, IISER Bhopal, Bhopal, India
| |
Collapse
|
20
|
Mutations in Ehrlichia chaffeensis Genes ECH_0660 and ECH_0665 Cause Transcriptional Changes in Response to Zinc or Iron Limitation. J Bacteriol 2021; 203:e0002721. [PMID: 33875547 PMCID: PMC8316085 DOI: 10.1128/jb.00027-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ehrlichia chaffeensis causes human monocytic ehrlichiosis by replicating within phagosomes of monocytes/macrophages. A function disruption mutation within the pathogen's ECH_0660 gene, which encodes a phage head-to-tail connector protein, resulted in the rapid clearance of the pathogen in vivo, while aiding in induction of sufficient immunity in a host to protect against wild-type infection challenge. In this study, we describe the characterization of a cluster of seven genes spanning from ECH_0659 to ECH_0665, which contained four genes encoding bacterial phage proteins, including the ECH_0660 gene. Assessment of the promoter region upstream of the first gene of the seven genes (ECH_0659) in Escherichia coli demonstrated transcriptional enhancement under zinc and iron starvation conditions. Furthermore, transcription of the seven genes was significantly higher under zinc and iron starvation conditions for E. chaffeensis carrying a mutation in the ECH_0660 gene compared to the wild-type pathogen. In contrast, for the ECH_0665 gene mutant with the function disruption, transcription from the genes was mostly similar to that of the wild type or was moderately downregulated. Recently, we reported that this mutation caused a minimal impact on the pathogen's in vivo growth, as it persisted similarly to the wild type. The current study is the first to describe how zinc and iron contribute to E. chaffeensis biology. Specifically, we demonstrated that the functional disruption in the gene encoding the phage head-to-tail connector protein in E. chaffeensis results in the enhanced transcription of seven genes, including those encoding phage proteins, under zinc and iron limitation. IMPORTANCE Ehrlichia chaffeensis, a tick-transmitted bacterium, causes human monocytic ehrlichiosis by replicating within phagosomes of monocytes/macrophages. A function disruption mutation within the pathogen's gene encoding a phage head-to-tail connector protein resulted in the rapid clearance of the pathogen in vivo, while aiding in induction of sufficient immunity in a host to protect against wild-type infection challenge. In the current study, we investigated if the functional disruption in the phage head-to-tail connector protein gene caused transcriptional changes resulting from metal ion limitations. This is the first study describing how zinc and iron may contribute to E. chaffeensis replication.
Collapse
|
21
|
Byerly CD, Patterson LL, McBride JW. Ehrlichia TRP effectors: moonlighting, mimicry and infection. Pathog Dis 2021; 79:6261440. [PMID: 33974702 PMCID: PMC8112483 DOI: 10.1093/femspd/ftab026] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/29/2021] [Indexed: 12/24/2022] Open
Abstract
Intracellular bacteria have evolved various strategies to evade host defense mechanisms. Remarkably, the obligately intracellular bacterium, Ehrlichia chaffeensis, hijacks host cell processes of the mononuclear phagocyte to evade host defenses through mechanisms executed in part by tandem repeat protein (TRP) effectors secreted by the type 1 secretion system. In the past decade, TRP120 has emerged as a model moonlighting effector, acting as a ligand mimetic, nucleomodulin and ubiquitin ligase. These defined functions illuminate the diverse roles TRP120 plays in exploiting and manipulating host cell processes, including cytoskeletal organization, vesicle trafficking, cell signaling, transcriptional regulation, post-translational modifications, autophagy and apoptosis. This review will focus on TRP effectors and their expanding roles in infection and provide perspective on Ehrlichia chaffeensis as an invaluable model organism for understanding infection strategies of obligately intracellular bacteria.
Collapse
Affiliation(s)
- Caitlan D Byerly
- Departments of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - LaNisha L Patterson
- Departments of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jere W McBride
- Departments of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA.,Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
22
|
Rogan MR, Patterson LL, Byerly CD, Luo T, Paessler S, Veljkovic V, Quade B, McBride JW. Ehrlichia chaffeensis TRP120 Is a Wnt Ligand Mimetic That Interacts with Wnt Receptors and Contains a Novel Repetitive Short Linear Motif That Activates Wnt Signaling. mSphere 2021; 6:6/2/e00216-21. [PMID: 33883266 PMCID: PMC8546699 DOI: 10.1128/msphere.00216-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ehrlichia chaffeensis expresses the TRP120 multifunctional effector, which is known to play a role in phagocytic entry, on the surface of infectious dense-cored ehrlichiae, but a cognate host receptor has not been identified. We recently reported that E. chaffeensis activates canonical Wnt signaling in monocytes to promote bacterial uptake and intracellular survival and that TRP120 was involved in this activation event. To identify the specific mechanism of pathway activation, we hypothesized that TRP120 is a Wnt signaling ligand mimetic that initiates Wnt pathway activity through direct interaction with the Wnt pathway Frizzled family of receptors. In this study, we used confocal immunofluorescence microscopy to demonstrate very strong colocalization between E. chaffeensis and Fzd2, 4, 5, 7, and 9 as well as coreceptor LRP5 at 1 to 3 h postinfection. Direct binding between TRP120 and multiple Fzd receptors was further confirmed by enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR). Interfering RNA knockdown of Wnt receptors, coreceptors, and signaling pathway components significantly reduced E. chaffeensis infection, demonstrating that complex and redundant interactions are involved in Wnt pathway exploitation. We utilized in silico approaches to identify a repetitive short linear motif (SLiM) in TRP120 that is homologous to Wnt ligands and used mutant SLiM peptides and an α-TRP120-Wnt-SLiM antibody to demonstrate that the TRP120 Wnt SLiM activates the canonical Wnt pathway and promotes E. chaffeensis infection. This study reports the first example of bacterial mimicry of Wnt pathway ligands and highlights a pathogenic mechanism with potential for targeting by antimicrobial therapeutics.IMPORTANCE Upon infecting mammalian hosts, Ehrlichia chaffeensis establishes a replicative niche in microbe-eating immune system cells where it expertly orchestrates infection and spread. One of the ways Ehrlichia survives within these phagocytes is by activating evolutionarily conserved signaling pathways including the Wnt pathway; however, the molecular details of pathway hijacking have not been defined. This study is significant because it identifies an ehrlichial protein that directly interacts with components of the Wnt receptor complex, influencing pathway activity and promoting infection. Consequentially, Ehrlichia serves as a unique tool to investigate the intricacies of how pathogens repurpose human immune cell signaling and provides an opportunity to better understand many cellular processes in health and disease. Furthermore, understanding how this bacterium utilizes its small genome to survive within cells that evolved to destroy pathogens will facilitate the development of antibacterial therapeutics that could target Ehrlichia as well as other intracellular agents of human disease.
Collapse
Affiliation(s)
- Madison R Rogan
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - LaNisha L Patterson
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Caitlan D Byerly
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Tian Luo
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Slobodan Paessler
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- BiomedProtection, LLC, Galveston, Texas, USA
| | | | - Bethany Quade
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jere W McBride
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
23
|
Patterson LL, Byerly CD, McBride JW. Anaplasmataceae: Dichotomous Autophagic Interplay for Infection. Front Immunol 2021; 12:642771. [PMID: 33912170 PMCID: PMC8075259 DOI: 10.3389/fimmu.2021.642771] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/15/2021] [Indexed: 12/19/2022] Open
Abstract
Autophagy is a vital conserved degradative process that maintains cellular homeostasis by recycling or eliminating dysfunctional cellular organelles and proteins. More recently, autophagy has become a well-recognized host defense mechanism against intracellular pathogens through a process known as xenophagy. On the host-microbe battlefield many intracellular bacterial pathogens have developed the ability to subvert xenophagy to establish infection. Obligately intracellular bacterial pathogens of the Anaplasmataceae family, including Ehrlichia chaffeensis, Anaplasma phaogocytophilium and Orientia tsutsugamushi have developed a dichotomous strategy to exploit the host autophagic pathway to obtain nutrients while escaping lysosomal destruction for intracellular survival within the host cell. In this review, the recent findings regarding how these master manipulators engage and inhibit autophagy for infection are explored. Future investigation to understand mechanisms used by Anaplasmataceae to exploit autophagy may advance novel antimicrobial therapies and provide new insights into how intracellular microbes exploit autophagy to survive.
Collapse
Affiliation(s)
- LaNisha L Patterson
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Caitlan D Byerly
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Jere W McBride
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States.,Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States.,Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, United States.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
24
|
Salje J. Cells within cells: Rickettsiales and the obligate intracellular bacterial lifestyle. Nat Rev Microbiol 2021; 19:375-390. [PMID: 33564174 DOI: 10.1038/s41579-020-00507-2] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2020] [Indexed: 01/01/2023]
Abstract
The Rickettsiales are a group of obligate intracellular vector-borne Gram-negative bacteria that include many organisms of clinical and agricultural importance, including Anaplasma spp., Ehrlichia chaffeensis, Wolbachia, Rickettsia spp. and Orientia tsutsugamushi. This Review provides an overview of the current state of knowledge of the biology of these bacteria and their interactions with host cells, with a focus on pathogenic species or those that are otherwise important for human health. This includes a description of rickettsial genomics, bacterial cell biology, the intracellular lifestyles of Rickettsiales and the mechanisms by which they induce and evade the innate immune response.
Collapse
Affiliation(s)
- Jeanne Salje
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK. .,Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. .,Public Health Research Institute, Rutgers University, Newark, NJ, USA.
| |
Collapse
|
25
|
Rajeev R, Dwivedi AP, Sinha A, Agarwaal V, Dev RR, Kar A, Khosla S. Epigenetic interaction of microbes with their mammalian hosts. J Biosci 2021; 46:94. [PMID: 34728591 PMCID: PMC8550911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/20/2021] [Indexed: 02/11/2023]
Abstract
The interaction of microbiota with its host has the ability to alter the cellular functions of both, through several mechanisms. Recent work, from many laboratories including our own, has shown that epigenetic mechanisms play an important role in the alteration of these cellular functions. Epigenetics broadly refers to change in the phenotype without a corresponding change in the DNA sequence. This change is usually brought by epigenetic modifications of the DNA itself, the histone proteins associated with the DNA in the chromatin, non-coding RNA or the modifications of the transcribed RNA. These modifications, also known as epigenetic code, do not change the DNA sequence but alter the expression level of specific genes. Microorganisms seem to have learned how to modify the host epigenetic code and modulate the host transcriptome in their favour. In this review, we explore the literature that describes the epigenetic interaction of bacteria, fungi and viruses, with their mammalian hosts.
Collapse
Affiliation(s)
- Ramisetti Rajeev
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
- Graduate Studies, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Ambey Prasad Dwivedi
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
- Graduate Studies, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Anunay Sinha
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
- Graduate Studies, Regional Centre for Biotechnology (RCB), Faridabad, India
| | - Viplove Agarwaal
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| | | | - Anjana Kar
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| | - Sanjeev Khosla
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
- Institute of Microbial Technology (IMTech), Chandigarh, India
| |
Collapse
|
26
|
Khan AU, Qu R, Fan T, Ouyang J, Dai J. A glance on the role of actin in osteogenic and adipogenic differentiation of mesenchymal stem cells. Stem Cell Res Ther 2020; 11:283. [PMID: 32678016 PMCID: PMC7364498 DOI: 10.1186/s13287-020-01789-2] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/13/2020] [Accepted: 06/23/2020] [Indexed: 12/24/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have the capacity to differentiate into multiple lineages including osteogenic and adipogenic lineages. An increasing number of studies have indicated that lineage commitment by MSCs is influenced by actin remodeling. Moreover, actin has roles in determining cell shape, nuclear shape, cell spreading, and cell stiffness, which eventually affect cell differentiation. Osteogenic differentiation is promoted in MSCs that exhibit a large spreading area, increased matrix stiffness, higher levels of actin polymerization, and higher density of stress fibers, whereas adipogenic differentiation is prevalent in MSCs with disrupted actin networks. In addition, the mechanical properties of F-actin empower cells to sense and transduce mechanical stimuli, which are also reported to influence differentiation. Various biomaterials, mechanical, and chemical interventions along with pathogen-induced actin alteration in the form of polymerization and depolymerization in MSC differentiation were studied recently. This review will cover the role of actin and its modifications through the use of different methods in inducing osteogenic and adipogenic differentiation.
Collapse
Affiliation(s)
- Asmat Ullah Khan
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Rongmei Qu
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Tingyu Fan
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Jun Ouyang
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Jingxing Dai
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| |
Collapse
|
27
|
Wang JY, Zhu B, Patterson LL, Rogan MR, Kibler CE, McBride JW. Ehrlichia chaffeensis TRP120-mediated ubiquitination and proteasomal degradation of tumor suppressor FBW7 increases oncoprotein stability and promotes infection. PLoS Pathog 2020; 16:e1008541. [PMID: 32353058 PMCID: PMC7217479 DOI: 10.1371/journal.ppat.1008541] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 05/12/2020] [Accepted: 04/14/2020] [Indexed: 11/20/2022] Open
Abstract
Ehrlichia chaffeensis (E. chaffeensis) exploits evolutionarily conserved Notch and Wnt host cell signaling pathways to downregulate innate immune host defenses and promote infection. The multifunctional E. chaffeensis TRP120 effector which has HECT E3 ubiquitin ligase activity, interacts with the host nuclear tumor suppressor F-BOX and WD domain repeating-containing 7 (FBW7). FBW7 is the substrate recognition subunit of the Skp1-cullin-1-FBOX E3 ubiquitin (Ub) ligase complex (SCF) known to negatively regulate a network of oncoproteins (Notch, cyclin E, c-Jun, MCL1 and cMYC). In this study, we demonstrate that TRP120 and FBW7 colocalize strongly in the nucleus by confocal immunofluorescent microscopy and interactions between TRP120 and FBW7 FBOX and WD40 domains were demonstrated by ectopic expression and co-immunoprecipitation. Although FBW7 gene expression increased during E. chaffeensis infection, FBW7 levels significantly decreased (>70%) by 72 h post infection. Moreover, an iRNA knockdown of FBW7 coincided with increased E. chaffeensis infection and levels of Notch intracellular domain (NICD), phosphorylated c-Jun, MCL-1 and cMYC, which are negatively regulated by FBW7. An increase in FBW7 K48 ubiquitination was detected during infection by co-IP, and FBW7 degradation was inhibited in infected cells treated with the proteasomal inhibitor bortezomib. Direct TRP120 ubiquitination of native and recombinant FBW7 was demonstrated in vitro and confirmed by ectopic expression of TRP120 HECT Ub ligase catalytic site mutant. This study identifies the tumor suppressor, FBW7, as a TRP120 HECT E3 Ub ligase substrate, and demonstrates that TRP120 ligase activity promotes ehrlichial infection by degrading FBW7 to maintain stability of Notch and other oncoproteins involved in cell survival and apoptosis.
Collapse
Affiliation(s)
- Jennifer Y. Wang
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Bing Zhu
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - LaNisha L. Patterson
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Madison R. Rogan
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Clayton E. Kibler
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jere W. McBride
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
28
|
Bacterial Factors Targeting the Nucleus: The Growing Family of Nucleomodulins. Toxins (Basel) 2020; 12:toxins12040220. [PMID: 32244550 PMCID: PMC7232420 DOI: 10.3390/toxins12040220] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/23/2020] [Accepted: 03/29/2020] [Indexed: 12/18/2022] Open
Abstract
Pathogenic bacteria secrete a variety of proteins that manipulate host cell function by targeting components of the plasma membrane, cytosol, or organelles. In the last decade, several studies identified bacterial factors acting within the nucleus on gene expression or other nuclear processes, which has led to the emergence of a new family of effectors called “nucleomodulins”. In human and animal pathogens, Listeria monocytogenes for Gram-positive bacteria and Anaplasma phagocytophilum, Ehrlichia chaffeensis, Chlamydia trachomatis, Legionella pneumophila, Shigella flexneri, and Escherichia coli for Gram-negative bacteria, have led to pioneering discoveries. In this review, we present these paradigms and detail various mechanisms and core elements (e.g., DNA, histones, epigenetic regulators, transcription or splicing factors, signaling proteins) targeted by nucleomodulins. We particularly focus on nucleomodulins interacting with epifactors, such as LntA of Listeria and ankyrin repeat- or tandem repeat-containing effectors of Rickettsiales, and nucleomodulins from various bacterial species acting as post-translational modification enzymes. The study of bacterial nucleomodulins not only generates important knowledge about the control of host responses by microbes but also creates new tools to decipher the dynamic regulations that occur in the nucleus. This research also has potential applications in the field of biotechnology. Finally, this raises questions about the epigenetic effects of infectious diseases.
Collapse
|
29
|
Bekebrede H, Lin M, Teymournejad O, Rikihisa Y. Discovery of in vivo Virulence Genes of Obligatory Intracellular Bacteria by Random Mutagenesis. Front Cell Infect Microbiol 2020; 10:2. [PMID: 32117791 PMCID: PMC7010607 DOI: 10.3389/fcimb.2020.00002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/06/2020] [Indexed: 11/13/2022] Open
Abstract
Ehrlichia spp. are emerging tick-borne obligatory intracellular bacteria that cause febrile and sometimes fatal diseases with abnormal blood cell counts and signs of hepatitis. Ehrlichia HF strain provides an excellent mouse disease model of fatal human ehrlichiosis. We recently obtained and established stable culture of Ehrlichia HF strain in DH82 canine macrophage cell line, and obtained its whole genome sequence and annotation. To identify genes required for in vivo virulence of Ehrlichia, we constructed random insertional HF strain mutants by using Himar1 transposon-based mutagenesis procedure. Of total 158 insertional mutants isolated via antibiotic selection in DH82 cells, 74 insertions were in the coding regions of 55 distinct protein-coding genes, including TRP120 and multi-copy genes, such as p28/omp-1, virB2, and virB6. Among 84 insertions mapped within the non-coding regions, seven are located in the putative promoter region since they were within 50 bp upstream of the seven distinct genes. Using limited dilution methods, nine stable clonal mutants that had no apparent defect for multiplication in DH82 cells, were obtained. Mouse virulence of seven mutant clones was similar to that of wild-type HF strain, whereas two mutant clones showed significantly retarded growth in blood, livers, and spleens, and the mice inoculated with them lived longer than mice inoculated with wild-type. The two clones contained mutations in genes encoding a conserved hypothetical protein and a staphylococcal superantigen-like domain protein, respectively, and both genes are conserved among Ehrlichia spp., but lack homology to other bacterial genes. Inflammatory cytokine mRNA levels in the liver of mice infected with the two mutants were significantly diminished than those infected with HF strain wild-type, except IL-1β and IL-12 p40 in one clone. Thus, we identified two Ehrlichia virulence genes responsible for in vivo infection, but not for infection and growth in macrophages.
Collapse
Affiliation(s)
| | | | | | - Yasuko Rikihisa
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
30
|
Ehrlichia chaffeensis Outer Membrane Protein 1-Specific Human Antibody-Mediated Immunity Is Defined by Intracellular TRIM21-Dependent Innate Immune Activation and Extracellular Neutralization. Infect Immun 2019; 87:IAI.00383-19. [PMID: 31548319 PMCID: PMC6867850 DOI: 10.1128/iai.00383-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/18/2019] [Indexed: 01/05/2023] Open
Abstract
Antibodies are essential for immunity against Ehrlichia chaffeensis, and protective mechanisms involve blocking of ehrlichial attachment or complement and Fcγ-receptor-dependent destruction. In this study, we determined that major outer membrane protein 1 (OMP-19) hypervariable region 1 (HVR1)-specific human monoclonal antibodies (huMAbs) are protective through conventional extracellular neutralization and, more significantly, through a novel intracellular TRIM21-mediated mechanism. Antibodies are essential for immunity against Ehrlichia chaffeensis, and protective mechanisms involve blocking of ehrlichial attachment or complement and Fcγ-receptor-dependent destruction. In this study, we determined that major outer membrane protein 1 (OMP-19) hypervariable region 1 (HVR1)-specific human monoclonal antibodies (huMAbs) are protective through conventional extracellular neutralization and, more significantly, through a novel intracellular TRIM21-mediated mechanism. Addition of OMP-1-specific huMAb EHRL-15 (IgG1) prevented infection by blocking attachment/entry, a mechanism previously reported; conversely, OMP-1-specific huMAb EHRL-4 (IgG3) engaged intracellular TRIM21 and initiated an immediate innate immune response and rapid intracellular degradation of ehrlichiae. EHRL-4-TRIM21-mediated inhibition was significantly impaired in TRIM21 knockout THP-1 cells. EHRL-4 interacted with cytosolic Fc receptor TRIM21, observed by confocal microscopy and confirmed by co-immunoprecipitation. E. chaffeensis-EHRL-4-TRIM21 complexes caused significant upregulation of proinflammatory cytokine/chemokine transcripts and resulted in rapid (<30 min) nuclear accumulation of NF-κB and TRIM21 and ehrlichial destruction. We investigated the role of TRIM21 in the autophagic clearance of ehrlichiae in the presence of EHRL-4. Colocalization between EHRL-4-opsonized ehrlichiae, polyubiquitinated TRIM21, autophagy regulators (ULK1 and beclin 1) and effectors (LC3 and p62), and lysosome-associated membrane protein 2 (LAMP2) was observed. Moreover, autophagic flux defined by conversion of LC3I to LC3II and accumulation and degradation of p62 was detected, and EHRL-4-mediated degradation of E. chaffeensis was abrogated by the autophagy inhibitor 3-methyladenine. Our results demonstrate that huMAbs are capable of inhibiting E. chaffeensis infection by distinct effector mechanisms: extracellularly by neutralization and intracellularly by engaging TRIM21, which mediates a rapid innate immune response that mobilizes the core autophagy components, triggering localized selective autophagic degradation of ehrlichiae.
Collapse
|
31
|
Tominello TR, Oliveira ERA, Hussain SS, Elfert A, Wells J, Golden B, Ismail N. Emerging Roles of Autophagy and Inflammasome in Ehrlichiosis. Front Immunol 2019; 10:1011. [PMID: 31134081 PMCID: PMC6517498 DOI: 10.3389/fimmu.2019.01011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/23/2019] [Indexed: 12/16/2022] Open
Abstract
Human monocytic ehrlichiosis (HME) is a potentially life-threatening tick-borne rickettsial disease (TBRD) caused by the obligate intracellular Gram-negative bacteria, Ehrlichia. Fatal HME presents with acute ailments of sepsis and toxic shock-like symptoms that can evolve to multi-organ failure and death. Early clinical and laboratory diagnosis of HME are problematic due to non-specific flu-like symptoms and limitations in the current diagnostic testing. Several studies in murine models showed that cell-mediated immunity acts as a “double-edged sword” in fatal ehrlichiosis. Protective components are mainly formed by CD4 Th1 and NKT cells, in contrast to deleterious effects originated from neutrophils and TNF-α-producing CD8 T cells. Recent research has highlighted the central role of the inflammasome and autophagy as part of innate immune responses also leading to protective or pathogenic scenarios. Recognition of pathogen-associated molecular patterns (PAMPS) or damage-associated molecular patterns (DAMPS) triggers the assembly of the inflammasome complex that leads to multiple outcomes. Recognition of PAMPs or DAMPs by such complexes can result in activation of caspase-1 and -11, secretion of the pro-inflammatory cytokines IL-1β and IL-18 culminating into dysregulated inflammation, and inflammatory cell death known as pyroptosis. The precise functions of inflammasomes and autophagy remain unexplored in infections with obligate intracellular rickettsial pathogens, such as Ehrlichia. In this review, we discuss the intracellular innate immune surveillance in ehrlichiosis involving the regulation of inflammasome and autophagy, and how this response influences the innate and adaptive immune responses against Ehrlichia. Understanding such mechanisms would pave the way in research for novel diagnostic, preventative and therapeutic approaches against Ehrlichia and other rickettsial diseases.
Collapse
Affiliation(s)
- Tyler R Tominello
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Edson R A Oliveira
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Shah S Hussain
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Amr Elfert
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Jakob Wells
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Brandon Golden
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Nahed Ismail
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
32
|
Role and Function of the Type IV Secretion System in Anaplasma and Ehrlichia Species. Curr Top Microbiol Immunol 2019; 413:297-321. [PMID: 29536364 DOI: 10.1007/978-3-319-75241-9_12] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The obligatory intracellular pathogens Anaplasma phagocytophilum and Ehrlichia chaffeensis proliferate within membrane-bound vacuoles of human leukocytes and cause potentially fatal emerging infectious diseases. Despite the reductive genome evolution in this group of bacteria, genes encoding the type IV secretion system (T4SS), which is homologous to the VirB/VirD4 system of the plant pathogen Agrobacterium tumefaciens, have been expanded and are highly expressed in A. phagocytophilum and E. chaffeensis in human cells. Of six T4SS effector proteins identified in them, roles and functions have been described so far only for ankyrin repeat domain-containing protein A (AnkA), Anaplasma translocated substrate 1 (Ats-1), and Ehrlichia translocated factor 1 (Etf-1, ECH0825). These effectors are abundantly produced and secreted into the host cytoplasm during infection, but not toxic to host cells. They contain eukaryotic protein motifs or organelle localization signals and have distinct subcellular localization, target to specific host cell molecules to promote infection. Ats-1 and Etf-1 are orthologous proteins, subvert two important innate immune mechanisms against intracellular infection, cellular apoptosis and autophagy, and manipulate autophagy to gain nutrients from host cells. Although Ats-1 and Etf-1 have similar functions and roles in obligatory intracellular infection, they are specifically adapted to the distinct membrane-bound intracellular niche of A. phagocytophilum and E. chaffeensis, respectively. Ectopic expression of these effectors enhances respective bacterial infection, whereas intracellular delivery of antibodies against these effectors or targeted knockdown of the effector with antisense peptide nucleic acid significantly impairs bacterial infection. Thus, both T4SSs have evolved as important survival and nutritional virulence mechanism in these obligatory intracellular bacteria. Future studies on the functions of Anaplasma and Ehrlichia T4SS effector molecules and signaling pathways will undoubtedly advance our understanding of the complex interplay between obligatory intracellular pathogens and their hosts. Such data can be applied toward the treatment and control of anaplasmosis and ehrlichiosis.
Collapse
|
33
|
Dalmasso G, Nguyen HTT, Faïs T, Massier S, Barnich N, Delmas J, Bonnet R. Crohn's Disease-Associated Adherent-Invasive Escherichia coli Manipulate Host Autophagy by Impairing SUMOylation. Cells 2019; 8:cells8010035. [PMID: 30634511 PMCID: PMC6357120 DOI: 10.3390/cells8010035] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 12/30/2018] [Accepted: 01/02/2019] [Indexed: 12/19/2022] Open
Abstract
The intestinal mucosa of Crohn’s disease (CD) patients is abnormally colonized with adherent-invasive Escherichia coli (AIEC) that are able to adhere to and to invade intestinal epithelial cells (IECs), to survive in macrophages, and to induce a pro-inflammatory response. AIEC persist in the intestine, and induce inflammation in CEABAC10 transgenic mice expressing human CAECAM6, the receptor for AIEC. SUMOylation is a eukaryotic-reversible post-translational modification, in which SUMO, an ubiquitin-like polypeptide, is covalently linked to target proteins. Here, we investigated the role of SUMOylation in host responses to AIEC infection. We found that infection with the AIEC LF82 reference strain markedly decreased the levels of SUMO-conjugated proteins in human intestinal epithelial T84 cells. This was also observed in IECs from LF82-infected CEABAC10 transgenic mice. LF82-induced deSUMOylation in IECs was due in part to increased level of microRNA (miR)-18, which targets PIAS3 mRNA encoding a protein involved in SUMOylation. Over-expression of SUMOs in T84 cells induced autophagy, leading to a significant decrease in the number of intracellular LF82. Consistently, a decreased expression of UBC9, a protein necessary for SUMOylation, was accompanied with a decrease of LF82-induced autophagy, increasing bacterial intracellular proliferation and inflammation. Finally, the inhibition of miR-18 significantly decreased the number of intracellular LF82. In conclusion, our results suggest that AIEC inhibits the autophagy response to replicate intracellularly by manipulating host SUMOylation.
Collapse
Affiliation(s)
- Guillaume Dalmasso
- UMR 1071 Inserm, University of Clermont Auvergne, 28 place Henri Dunant, Clermont-Ferrand 63000, France.
- INRA, USC 2018, University of Clermont Auvergne, 28 place Henri Dunant, Clermont-Ferrand 63000, France.
| | - Hang T T Nguyen
- UMR 1071 Inserm, University of Clermont Auvergne, 28 place Henri Dunant, Clermont-Ferrand 63000, France.
- INRA, USC 2018, University of Clermont Auvergne, 28 place Henri Dunant, Clermont-Ferrand 63000, France.
| | - Tiphanie Faïs
- UMR 1071 Inserm, University of Clermont Auvergne, 28 place Henri Dunant, Clermont-Ferrand 63000, France.
- INRA, USC 2018, University of Clermont Auvergne, 28 place Henri Dunant, Clermont-Ferrand 63000, France.
- Centre Hospitalier Universitaire, 58 place Montalembert, Clermont-Ferrand 63000, France.
| | - Sébastien Massier
- UMR 1071 Inserm, University of Clermont Auvergne, 28 place Henri Dunant, Clermont-Ferrand 63000, France.
- INRA, USC 2018, University of Clermont Auvergne, 28 place Henri Dunant, Clermont-Ferrand 63000, France.
| | - Nicolas Barnich
- UMR 1071 Inserm, University of Clermont Auvergne, 28 place Henri Dunant, Clermont-Ferrand 63000, France.
- INRA, USC 2018, University of Clermont Auvergne, 28 place Henri Dunant, Clermont-Ferrand 63000, France.
| | - Julien Delmas
- UMR 1071 Inserm, University of Clermont Auvergne, 28 place Henri Dunant, Clermont-Ferrand 63000, France.
- INRA, USC 2018, University of Clermont Auvergne, 28 place Henri Dunant, Clermont-Ferrand 63000, France.
- Centre Hospitalier Universitaire, 58 place Montalembert, Clermont-Ferrand 63000, France.
| | - Richard Bonnet
- UMR 1071 Inserm, University of Clermont Auvergne, 28 place Henri Dunant, Clermont-Ferrand 63000, France.
- INRA, USC 2018, University of Clermont Auvergne, 28 place Henri Dunant, Clermont-Ferrand 63000, France.
- Centre Hospitalier Universitaire, 58 place Montalembert, Clermont-Ferrand 63000, France.
| |
Collapse
|
34
|
Ubiquitin, SUMO, and NEDD8: Key Targets of Bacterial Pathogens. Trends Cell Biol 2018; 28:926-940. [PMID: 30107971 DOI: 10.1016/j.tcb.2018.07.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 01/09/2023]
Abstract
Manipulation of host protein post-translational modifications (PTMs) is used by various pathogens to interfere with host cell functions. Among these modifications, ubiquitin (UBI) and ubiquitin-like proteins (UBLs) constitute key targets because they are regulators of pathways essential for the host cell. In particular, these PTM modifiers control pathways that have been described as crucial for infection such as pathogen entry, replication, propagation, or detection by the host. Although bacterial pathogens lack eucaryotic-like UBI or UBL systems, many of them produce proteins that specifically interfere with these host PTMs during infection. In this review we discuss the different mechanisms used by bacteria to interfere with host UBI and the two UBLs, SUMO and NEDD8.
Collapse
|
35
|
Ehrlichia chaffeensis TRP75 Interacts with Host Cell Targets Involved in Homeostasis, Cytoskeleton Organization, and Apoptosis Regulation To Promote Infection. mSphere 2018; 3:3/2/e00147-18. [PMID: 29643078 PMCID: PMC5909120 DOI: 10.1128/msphere.00147-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 03/24/2018] [Indexed: 01/06/2023] Open
Abstract
Human monocytic ehrlichiosis (HME) is caused by an obligatory intracellular bacterium, E. chaffeensis, and is one of the most prevalent, life-threatening emerging infectious zoonoses in the United States. The mechanisms through which E. chaffeensis invades and establishes an intracellular niche are not well understood but are dependent on secreted ehrlichial effector proteins. The significance of this study is in addressing how intracellular pathogens, particularly those with small genomes such as Ehrlichia, exploit a limited number of secreted effector proteins such as tandem repeat proteins (TRPs) to manipulate complex eukaryotes and to regulate host cell processes through molecular pathogen-host interplay. The results of our studies highlight the broader role of ehrlichial TRPs in promoting infection and help define the mechanisms through which obligately intracellular bacteria modulate host cell function for survival. Ehrlichia chaffeensis is an obligately intracellular bacterium that exhibits tropism for mononuclear phagocytes. The mechanisms involved in E. chaffeensis infection of the host cell and evasion of host defenses are not fully defined, but a subset of type 1 secreted tandem repeat protein (TRP) effectors play important roles. Recently, we determined molecular interactions of TRP120, TRP47, and TRP32 with the eukaryotic host cell. In this investigation, we used yeast two-hybrid analysis to reveal that another E. chaffeensis tandem repeat protein, TRP75, interacts with a diverse group of human proteins associated with organismal and tissue homeostasis, multiple metabolic processes and regulation, response to reactive oxygen species, signal transduction, and protein modifications. Thirteen identified host target proteins associated with actin cytoskeleton reorganization or apoptosis were examined in detail and confirmed to interact with TRP75 at different levels as determined by coimmunoprecipitation assays. These protein interactions were visualized by immunofluorescence confocal microscopy during infection and colocalized with Ehrlichia morulae with different intensities. Moreover, small interfering RNAs (siRNAs) (n = 86) were used to knock down identified TRP75-interacting host proteins separately, and their influence on ehrlichial infection was investigated by real-time quantitative PCR (qPCR). Knockdown of 74/86 (86%) TRP75 target proteins had a significant negative effect on ehrlichial infection. The results of this study further support the idea of a role of Ehrlichia TRPs as effectors that interact with a complex array of host proteins to promote ehrlichial infection. IMPORTANCE Human monocytic ehrlichiosis (HME) is caused by an obligatory intracellular bacterium, E. chaffeensis, and is one of the most prevalent, life-threatening emerging infectious zoonoses in the United States. The mechanisms through which E. chaffeensis invades and establishes an intracellular niche are not well understood but are dependent on secreted ehrlichial effector proteins. The significance of this study is in addressing how intracellular pathogens, particularly those with small genomes such as Ehrlichia, exploit a limited number of secreted effector proteins such as tandem repeat proteins (TRPs) to manipulate complex eukaryotes and to regulate host cell processes through molecular pathogen-host interplay. The results of our studies highlight the broader role of ehrlichial TRPs in promoting infection and help define the mechanisms through which obligately intracellular bacteria modulate host cell function for survival.
Collapse
|
36
|
Ehrlichia chaffeensis TRP120 Effector Targets and Recruits Host Polycomb Group Proteins for Degradation To Promote Intracellular Infection. Infect Immun 2018; 86:IAI.00845-17. [PMID: 29358333 DOI: 10.1128/iai.00845-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/12/2018] [Indexed: 02/08/2023] Open
Abstract
Ehrlichia chaffeensis has a group of well-characterized type I secreted tandem repeat protein (TRP) effectors that have moonlighting capabilities. TRPs modulate various cellular processes, reprogram host gene transcription as nucleomodulins, function as ubiquitin ligases, and directly activate conserved host cell signaling pathways to promote E. chaffeensis infection. One TRP-interacting host target is polycomb group ring finger protein 5 (PCGF5), a member of the polycomb group (PcG) protein family and a component of the polycomb repressive complex 1 (PRC1). The current study demonstrates that during early infection, PCGF5 strongly colocalizes with TRP120 in the nucleus and later dramatically redistributes to the ehrlichial vacuole along with other PCGF isoforms. Ectopic expression and immunoprecipitation of TRP120 confirmed the interaction of TRP120 with multiple different PCGF isoforms. At 48 h postinfection, a dramatic redistribution of PCGF isoforms from the nucleus to the ehrlichial vacuole was observed, which also temporally coincided with proteasomal degradation of PCGF isoforms and TRP120 expression on the vacuole. A decrease in PRC1-mediated repressive chromatin mark and an altered transcriptional activity in PRC1-associated Hox genes primarily from HOXB and HOXC clusters were observed along with the degradation of PCGF isoforms, suggesting disruption of the PRC1 in E. chaffeensis-infected cells. Notably, small interfering RNA (siRNA)-mediated knockdown of PCGF isoforms resulted in significantly increased E. chaffeensis infection. This study demonstrates a novel strategy in which E. chaffeensis manipulates PRC complexes through interactions between TRP120 and PCGF isoforms to promote infection.
Collapse
|
37
|
Farris TR, Zhu B, Wang JY, McBride JW. Ehrlichia chaffeensis TRP32 Nucleomodulin Function and Localization Is Regulated by NEDD4L-Mediated Ubiquitination. Front Cell Infect Microbiol 2018; 7:534. [PMID: 29376035 PMCID: PMC5768648 DOI: 10.3389/fcimb.2017.00534] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 12/22/2017] [Indexed: 12/13/2022] Open
Abstract
Ehrlichia chaffeensis is an obligately intracellular bacterium that reprograms the mononuclear phagocyte through diverse effector-host interactions to modulate various host cell processes. In a previous study, we reported that the E. chaffeensis nucleomodulin TRP32 regulates transcription of host genes in several biologically relevant categories, including cell differentiation and proliferation. In this study, we investigate the effect of ubiquitination on TRP32 function and localization within the host cell. TRP32 is both mono- and polyubiquitinated on multiple lysine residues during infection and when ectopically expressed. Despite lacking a canonical PPxY motif, TRP32 interacted with, and was modified by the human HECT E3 ubiquitin (Ub) ligase NEDD4L. TRP32 ubiquitination was not by K48-linked polyUb chains, nor was it degraded by the proteasome; however, TRP32 was modified by K63-linked polyUb chains detected both in the cytosol and nucleus. HECT ligase inhibitor, heclin, altered the subnuclear localization of ectopically expressed TRP32 from a diffuse nuclear pattern to a lacy, punctate pattern with TRP32 distributed around the periphery of the nucleus and nucleoli. When a TRP32 lysine null (K-null) mutant was ectopically expressed, it exhibited a similar phenotype as single lysine mutants (K63R, K93R, and K123R). However, the K-null mutant showed increased amounts of cytoplasmic TRP32 compared to single lysine mutants or heclin-treated cells ectopically expressing TRP32. These alterations in localization corresponded to changes in TRP32 transcriptional repressor function with heclin-treated and single lysine mutants unable to repress transcription of a TRP32 target genes in a luciferase assay.
Collapse
Affiliation(s)
- Tierra R Farris
- Departments of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Bing Zhu
- Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Jennifer Y Wang
- Cell Biology, University of Texas Medical Branch, Galveston, TX, United States
| | - Jere W McBride
- Departments of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States.,Pathology, University of Texas Medical Branch, Galveston, TX, United States.,Cell Biology, University of Texas Medical Branch, Galveston, TX, United States.,Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States.,Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, United States.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
38
|
Lapaquette P, Fritah S, Lhocine N, Andrieux A, Nigro G, Mounier J, Sansonetti P, Dejean A. Shigella entry unveils a calcium/calpain-dependent mechanism for inhibiting sumoylation. eLife 2017; 6:27444. [PMID: 29231810 PMCID: PMC5745084 DOI: 10.7554/elife.27444] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 12/11/2017] [Indexed: 12/28/2022] Open
Abstract
Disruption of the sumoylation/desumoylation equilibrium is associated with several disease states such as cancer and infections, however the mechanisms regulating the global SUMO balance remain poorly defined. Here, we show that infection by Shigella flexneri, the causative agent of human bacillary dysentery, switches off host sumoylation during epithelial cell infection in vitro and in vivo and that this effect is mainly mediated by a calcium/calpain-induced cleavage of the SUMO E1 enzyme SAE2, thus leading to sumoylation inhibition. Furthermore, we describe a mechanism by which Shigella promotes its own invasion by altering the sumoylation state of RhoGDIα, a master negative regulator of RhoGTPase activity and actin polymerization. Together, our data suggest that SUMO modification is essential to restrain pathogenic bacterial entry by limiting cytoskeletal rearrangement induced by bacterial effectors. Moreover, these findings identify calcium-activated calpains as powerful modulators of cellular sumoylation levels with potentially broad implications in several physiological and pathological situations.
Collapse
Affiliation(s)
- Pierre Lapaquette
- Nuclear Organization and Oncogenesis Unit, Institut Pasteur, Paris, France.,INSERM, U993, Paris, France
| | - Sabrina Fritah
- Nuclear Organization and Oncogenesis Unit, Institut Pasteur, Paris, France.,INSERM, U993, Paris, France
| | - Nouara Lhocine
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France.,INSERM, U786, Paris, France
| | - Alexandra Andrieux
- Nuclear Organization and Oncogenesis Unit, Institut Pasteur, Paris, France.,INSERM, U993, Paris, France
| | - Giulia Nigro
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France.,INSERM, U786, Paris, France
| | - Joëlle Mounier
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France.,INSERM, U786, Paris, France
| | - Philippe Sansonetti
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France.,INSERM, U786, Paris, France
| | - Anne Dejean
- Nuclear Organization and Oncogenesis Unit, Institut Pasteur, Paris, France.,INSERM, U993, Paris, France
| |
Collapse
|
39
|
Ehrlichia Activation of Wnt-PI3K-mTOR Signaling Inhibits Autolysosome Generation and Autophagic Destruction by the Mononuclear Phagocyte. Infect Immun 2017; 85:IAI.00690-17. [PMID: 28993455 DOI: 10.1128/iai.00690-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 09/29/2017] [Indexed: 01/07/2023] Open
Abstract
In multicellular organisms, autophagy is induced as an innate defense mechanism. Notably, the obligate intracellular bacterium Ehrlichia chaffeensis resides in early endosome-like vacuoles and circumvents lysosomal fusion through an unknown mechanism, thereby avoiding destruction in the autophagolysosome. In this report, we reveal that Wnt signaling plays a crucial role in inhibition of lysosomal fusion and autolysosomal destruction of ehrlichiae. During early infection, autophagosomes fuse with ehrlichial vacuoles to form an amphisome indicated by the presence of autophagy markers such as LC3 (microtubule-associated protein 1 light chain 3), Beclin-1, and p62. LC3 colocalized with ehrlichial morulae on days 1, 2, and 3 postinfection, and increased LC3II levels were detected during infection, reaching a maximal level on day 3. Ehrlichial vacuoles did not colocalize with the lysosomal marker LAMP2, and lysosomes were redistributed and dramatically reduced in level in the infected cells. An inhibitor specific for the Wnt receptor signaling component Dishevelled induced lysosomal fusion with ehrlichial inclusions corresponding to p62 degradation and promoted transcription factor EB (TFEB) nuclear localization. E. chaffeensis infection activated the phosphatidylinositol 3-kinase (PI3K)-Akt-mTOR (mechanistic target of rapamycin) pathway, and activation was induced by three ehrlichial tandem repeat protein (TRP) effectors, with TRP120 inducing the strongest activation. Moreover, induction of glycogen synthase kinase-3 (GSK3) performed using a Wnt inhibitor and small interfering RNA (siRNA) knockdown of critical components of PI3K-GSK3-mTOR signaling decreased ehrlichial survival. This report reveals Ehrlichia exploitation of the evolutionarily conserved Wnt pathway to inhibit autolysosome generation, thereby leading to evasion of this important innate immune defense mechanism.
Collapse
|
40
|
Kader M, Alaoui-EL-Azher M, Vorhauer J, Kode BB, Wells JZ, Stolz D, Michalopoulos G, Wells A, Scott M, Ismail N. MyD88-dependent inflammasome activation and autophagy inhibition contributes to Ehrlichia-induced liver injury and toxic shock. PLoS Pathog 2017; 13:e1006644. [PMID: 29049365 PMCID: PMC5663626 DOI: 10.1371/journal.ppat.1006644] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 10/31/2017] [Accepted: 09/11/2017] [Indexed: 01/19/2023] Open
Abstract
Severe hepatic inflammation is a common cause of acute liver injury following systemic infection with Ehrlichia, obligate Gram-negative intracellular bacteria that lack lipopolysaccharide (LPS). We have previously shown that type I IFN (IFN-I) and inflammasome activation are key host-pathogenic mediators that promote excessive inflammation and liver damage following fatal Ehrlichia infection. However, the underlying signals and mechanisms that regulate protective immunity and immunopathology during Ehrlichia infection are not well understood. To address this issue, we compared susceptibility to lethal Ixodes ovatus Ehrlichia (IOE) infection between wild type (WT) and MyD88-deficient (MyD88-/-) mice. We show here that MyD88-/- mice exhibited decreased inflammasome activation, attenuated liver injury, and were more resistant to lethal infection than WT mice, despite suppressed protective immunity and increased bacterial burden in the liver. MyD88-dependent inflammasome activation was also dependent on activation of the metabolic checkpoint kinase mammalian target of rapamycin complex 1 (mTORC1), inhibition of autophagic flux, and defective mitophagy in macrophages. Blocking mTORC1 signaling in infected WT mice and primary macrophages enhanced bacterial replication and attenuated inflammasome activation, suggesting autophagy promotes bacterial replication while inhibiting inflammasome activation. Finally, our data suggest TLR9 and IFN-I are upstream signaling mechanisms triggering MyD88-mediated mTORC1 and inflammasome activation in macrophages following Ehrlichia infection. This study reveals that Ehrlichia-induced liver injury and toxic shock are mediated by MyD88-dependent inflammasome activation and autophagy inhibition.
Collapse
MESH Headings
- Animals
- Autophagy/immunology
- Blotting, Western
- Disease Models, Animal
- Ehrlichia/immunology
- Ehrlichiosis/immunology
- Ehrlichiosis/metabolism
- Enzyme-Linked Immunosorbent Assay
- Female
- Flow Cytometry
- Fluorescent Antibody Technique
- Image Processing, Computer-Assisted
- In Situ Nick-End Labeling
- Inflammasomes/immunology
- Inflammasomes/metabolism
- Liver Failure, Acute/immunology
- Liver Failure, Acute/metabolism
- Liver Failure, Acute/microbiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Confocal
- Microscopy, Electron, Transmission
- Myeloid Differentiation Factor 88/immunology
- Myeloid Differentiation Factor 88/metabolism
- Real-Time Polymerase Chain Reaction
- Shock, Septic/immunology
- Shock, Septic/metabolism
Collapse
Affiliation(s)
- Muhamuda Kader
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Mounia Alaoui-EL-Azher
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jennie Vorhauer
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Bhushan B Kode
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jakob Z. Wells
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Donna Stolz
- Center for Biologic Imaging, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania, United States of America
| | - George Michalopoulos
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Alan Wells
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Melanie Scott
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Nahed Ismail
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
41
|
Ehrlichia chaffeensis TRP120 Moonlights as a HECT E3 Ligase Involved in Self- and Host Ubiquitination To Influence Protein Interactions and Stability for Intracellular Survival. Infect Immun 2017. [PMID: 28630068 DOI: 10.1128/iai.00290-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ehrlichia chaffeensis secretes tandem repeat protein (TRP) effectors that are involved in a diverse array of host cell interactions, some of which directly activate cell signaling pathways and reprogram host gene transcription to promote survival in the mononuclear phagocyte. However, the molecular details of these effector-host interactions and roles in pathobiology are incompletely understood. In this study, we determined that the E. chaffeensis effector TRP120 is posttranslationally modified by ubiquitin (Ub) and that ubiquitination occurs through intrinsic and host-mediated HECT ligase activity. A functional HECT E3 ligase domain with a conserved catalytic site was identified in the C-terminal region of TRP120, and TRP120 autoubiquitination occurred in vitro in the presence of host UbcH5b/c E2 enzymes. TRP120 ubiquitination sites were mapped using a high-density microfluidic peptide array and confirmed by ectopic expression of TRP120 lysine mutants in cells. Moreover, we determined that the HECT E3 ubiquitin ligase, Nedd4L, interacts with TRP120 during infection and also mediates TRP120 ubiquitination. Nedd4L knockdown resulted in the reduction of TRP120-Ub, decreased ehrlichial infection, and reduced recruitment of a known TRP120-interacting host protein, PCGF5, to ehrlichial inclusions. TRP120-mediated PCGF5 polyubiquitination was associated with a reduction in PCGF5 levels. Inhibition of ubiquitination with small molecules also significantly decreased ehrlichial infection, indicating that the Ub pathway is critical for ehrlichial intracellular replication and survival. The current study identified a novel E. chaffeensis ubiquitin ligase and revealed an important role for the ubiquitin pathway in effector-host interactions and pathogen-mediated host protein stability in order to promote intracellular survival.
Collapse
|
42
|
Rolhion N, Cossart P. How the study of Listeria monocytogenes has led to new concepts in biology. Future Microbiol 2017; 12:621-638. [PMID: 28604108 DOI: 10.2217/fmb-2016-0221] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The opportunistic intracellular bacterial pathogen Listeria monocytogenes has in 30 years emerged as an exceptional bacterial model system in infection biology. Research on this bacterium has provided considerable insight into how pathogenic bacteria adapt to mammalian hosts, invade eukaryotic cells, move intracellularly, interfere with host cell functions and disseminate within tissues. It also contributed to unveil features of normal host cell pathways and unsuspected functions of previously known cellular proteins. This review provides an updated overview of our knowledge on this pathogen. In many examples, findings on L. monocytogenes provided the basis for new concepts in bacterial regulation, cell biology and infection processes.
Collapse
Affiliation(s)
- Nathalie Rolhion
- Département de Biologie Cellulaire et Infection, Unité des Interactions Bactéries-Cellules, Institut Pasteur, F-75015 Paris, France.,INSERM, U604, F-75015 Paris, France.,INRA, Unité sous-contrat 2020, F-75015 Paris, France
| | - Pascale Cossart
- Département de Biologie Cellulaire et Infection, Unité des Interactions Bactéries-Cellules, Institut Pasteur, F-75015 Paris, France.,INSERM, U604, F-75015 Paris, France.,INRA, Unité sous-contrat 2020, F-75015 Paris, France
| |
Collapse
|
43
|
|
44
|
Luo T, Dunphy PS, McBride JW. Ehrlichia chaffeensis Tandem Repeat Effector Targets Differentially Influence Infection. Front Cell Infect Microbiol 2017; 7:178. [PMID: 28553621 PMCID: PMC5427065 DOI: 10.3389/fcimb.2017.00178] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 04/24/2017] [Indexed: 01/11/2023] Open
Abstract
Ehrlichia chaffeensis infects mononuclear phagocytes and survives intracellularly by exploiting host cell processes to evade host defenses. The mechanisms involved are not fully defined, but appear to rely largely on a subset of tandem repeat proteins (TRP) effectors. E. chaffeensis TRPs are type 1 secreted effectors that interact with a functionally diverse group of host cell targets associated with various biological processes. In this study, we investigated the influence of TRP host target proteins on ehrlichial infection by RNA interference. In total, 138 TRP-interacting host proteins identified by yeast two-hybrid were targeted by siRNA and the infection level determined by real-time qPCR. Knockdown of 124 (89%) TRP target proteins had significant influence on infection either by inhibiting (85%) or promoting (15%) ehrlichial infection. Notably, knockdown of 18 host proteins which interacted with TRP120 promoted the infection, suggesting that these targets may be degraded to promote infection. Host proteins that interact with TRPs are involved in cellular processes, including cell signaling, vesicle trafficking and intracellular transport, transcriptional regulation, metabolism, protein posttranslational modification, and apoptosis. Selected host targets were examined by immunofluorescent microscopy during infection and were found to localize with the morulae, or in the host cell cytoplasm adjacent to morulae. This study confirms that the majority of host proteins known to interact with TRP effectors influence infection and further extends the current knowledge that E. chaffeensis TRPs participate in a complex array of host protein interactions in order to reprogram the host cell and promote intracellular survival.
Collapse
Affiliation(s)
- Tian Luo
- Department of Pathology, University of Texas Medical BranchGalveston, TX, USA
| | - Paige S Dunphy
- Department of Pathology, University of Texas Medical BranchGalveston, TX, USA
| | - Jere W McBride
- Department of Pathology, University of Texas Medical BranchGalveston, TX, USA.,Department of Microbiology and Immunology, University of Texas Medical BranchGalveston, TX, USA.,Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical BranchGalveston, TX, USA.,Sealy Center for Vaccine Development, University of Texas Medical BranchGalveston, TX, USA.,Institute for Human Infections and Immunity, University of Texas Medical BranchGalveston, TX, USA
| |
Collapse
|
45
|
Abstract
Human ehrlichiosis and anaplasmosis are acute febrile tick-borne infectious diseases caused by various members from the genera Ehrlichia and Anaplasma. Ehrlichia chaffeensis is the major etiologic agent of human monocytotropic ehrlichiosis (HME), while Anaplasma phagocytophilum is the major cause of human granulocytic anaplasmosis (HGA). The clinical manifestations of HME and HGA ranges from subclinical to potentially life-threatening diseases associated with multi-organ failure. Macrophages and neutrophils are the major target cells for Ehrlichia and Anaplasma, respectively. The threat to public health is increasing with newly emerging ehrlichial and anaplasma agents, yet vaccines for human ehrlichioses and anaplasmosis are not available, and therapeutic options are limited. This article reviews recent advances in the understanding of HME and HGA.
Collapse
|
46
|
Sumoylation as an Integral Mechanism in Bacterial Infection and Disease Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 963:389-408. [DOI: 10.1007/978-3-319-50044-7_22] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
47
|
Sosa-Gutierrez CG, Solorzano-Santos F, Walker DH, Torres J, Serrano CA, Gordillo-Perez G. Fatal Monocytic Ehrlichiosis in Woman, Mexico, 2013. Emerg Infect Dis 2016; 22:871-4. [PMID: 27088220 PMCID: PMC4861511 DOI: 10.3201/eid2205.151217] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Human monocytic ehrlichiosis is a febrile illness caused by Ehrlichia chaffeensis, an intracellular bacterium transmitted by ticks. In Mexico, a case of E. chaffeensis infection in an immunocompetent 31-year-old woman without recognized tick bite was fatal. This diagnosis should be considered for patients with fever, leukopenia, thrombocytopenia, and elevated liver enzyme levels.
Collapse
|
48
|
Colonne PM, Winchell CG, Voth DE. Hijacking Host Cell Highways: Manipulation of the Host Actin Cytoskeleton by Obligate Intracellular Bacterial Pathogens. Front Cell Infect Microbiol 2016; 6:107. [PMID: 27713866 PMCID: PMC5031698 DOI: 10.3389/fcimb.2016.00107] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/05/2016] [Indexed: 12/31/2022] Open
Abstract
Intracellular bacterial pathogens replicate within eukaryotic cells and display unique adaptations that support key infection events including invasion, replication, immune evasion, and dissemination. From invasion to dissemination, all stages of the intracellular bacterial life cycle share the same three-dimensional cytosolic space containing the host cytoskeleton. For successful infection and replication, many pathogens hijack the cytoskeleton using effector proteins introduced into the host cytosol by specialized secretion systems. A subset of effectors contains eukaryotic-like motifs that mimic host proteins to exploit signaling and modify specific cytoskeletal components such as actin and microtubules. Cytoskeletal rearrangement promotes numerous events that are beneficial to the pathogen, including internalization of bacteria, structural support for bacteria-containing vacuoles, altered vesicular trafficking, actin-dependent bacterial movement, and pathogen dissemination. This review highlights a diverse group of obligate intracellular bacterial pathogens that manipulate the host cytoskeleton to thrive within eukaryotic cells and discusses underlying molecular mechanisms that promote these dynamic host-pathogen interactions.
Collapse
Affiliation(s)
- Punsiri M Colonne
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences Little Rock, AR, USA
| | - Caylin G Winchell
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences Little Rock, AR, USA
| | - Daniel E Voth
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences Little Rock, AR, USA
| |
Collapse
|
49
|
Oki AT, Huang B, Beyer AR, May LJ, Truchan HK, Walker NJ, Galloway NL, Borjesson DL, Carlyon JA. Anaplasma phagocytophilum APH0032 Is Exposed on the Cytosolic Face of the Pathogen-Occupied Vacuole and Co-opts Host Cell SUMOylation. Front Cell Infect Microbiol 2016; 6:108. [PMID: 27713867 PMCID: PMC5031783 DOI: 10.3389/fcimb.2016.00108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/05/2016] [Indexed: 12/31/2022] Open
Abstract
Anaplasma phagocytophilum, a member of the family Anaplasmataceae and the obligate intracellular bacterium that causes granulocytic anaplasmosis, resides in a host cell-derived vacuole. Bacterial proteins that localize to the A. phagocytophilum-occupied vacuole membrane (AVM) are critical host-pathogen interfaces. Of the few bacterial AVM proteins that have been identified, the domains responsible for AVM localization and the host cell pathways that they co-opt are poorly defined. APH0032 is an effector that is expressed and localizes to the AVM late during the infection cycle. Herein, the APH0032 domain that is essential for associating with host cell membranes was mapped. Immunofluorescent labeling of infected cells that had been differentially permeabilized confirmed that APH0032 is exposed on the AVM's cytosolic face, signifying its potential to interface with host cell processes. SUMOylation is the covalent attachment of a member of the small ubiquitin-like modifier (SUMO) family of proteins to lysines in target substrates. Previous work from our laboratory determined that SUMOylation is important for A. phagocytophilum survival and that SUMOylated proteins decorate the AVM. Algorithmic prediction analyses identified APH0032 as a candidate for SUMOylation. Endogenous APH0032 was precipitated from infected cells using a SUMO affinity matrix, confirming that the effector co-opts SUMOylation during infection. APH0032 pronouncedly colocalized with SUMO1, but not SUMO2/3 moieties on the AVM. Ectopic expression of APH0032 in A. phagocytophilum infected host cells significantly boosted the bacterial load. This study delineates the first domain of any Anaplasmataceae protein that is essential for associating with the pathogen-occupied vacuole membrane, demonstrates the importance of APH0032 to infection, and identifies it as the second A. phagocytophilum effector that co-opts SUMOylation, thus underscoring the relevance of this post-translational modification to infection.
Collapse
Affiliation(s)
- Aminat T Oki
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine Richmond, VA, USA
| | - Bernice Huang
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine Richmond, VA, USA
| | - Andrea R Beyer
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine Richmond, VA, USA
| | - Levi J May
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine Richmond, VA, USA
| | - Hilary K Truchan
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine Richmond, VA, USA
| | - Naomi J Walker
- Department of Pathology, Microbiology, and Immunology, University of California School of Veterinary Medicine Davis, CA, USA
| | - Nathan L Galloway
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine Richmond, VA, USA
| | - Dori L Borjesson
- Department of Pathology, Microbiology, and Immunology, University of California School of Veterinary Medicine Davis, CA, USA
| | - Jason A Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine Richmond, VA, USA
| |
Collapse
|
50
|
Truchan HK, Cockburn CL, May LJ, VieBrock L, Carlyon JA. Anaplasma phagocytophilum-Occupied Vacuole Interactions with the Host Cell Cytoskeleton. Vet Sci 2016; 3:vetsci3030025. [PMID: 29056733 PMCID: PMC5606578 DOI: 10.3390/vetsci3030025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 09/08/2016] [Accepted: 09/13/2016] [Indexed: 01/09/2023] Open
Abstract
Anaplasma phagocytophilum is an obligate intracellular bacterial pathogen of humans and animals. The A. phagocytophium-occupied vacuole (ApV) is a critical host-pathogen interface. Here, we report that the intermediate filaments, keratin and vimentin, assemble on the ApV early and remain associated with the ApV throughout infection. Microtubules localize to the ApV to a lesser extent. Vimentin, keratin-8, and keratin-18 but not tubulin expression is upregulated in A. phagocytophilum infected cells. SUMO-2/3 but not SUMO-1 colocalizes with vimentin filaments that surround ApVs. PolySUMOylation of vimentin by SUMO-2/3 but not SUMO-1 decreases vimentin solubility. Consistent with this, more vimentin exists in an insoluble state in A. phagocytophilum infected cells than in uninfected cells. Knocking down the SUMO-conjugating enzyme, Ubc9, abrogates vimentin assembly at the ApV but has no effect on the bacterial load. Bacterial protein synthesis is dispensable for maintaining vimentin and SUMO-2/3 at the ApV. Withaferin A, which inhibits soluble vimentin, reduces vimentin recruitment to the ApV, optimal ApV formation, and the bacterial load when administered prior to infection but is ineffective once vimentin has assembled on the ApV. Thus, A. phagocytophilum modulates cytoskeletal component expression and co-opts polySUMOylated vimentin to aid construction of its vacuolar niche and promote optimal survival.
Collapse
Affiliation(s)
- Hilary K Truchan
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA.
| | - Chelsea L Cockburn
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA.
| | - Levi J May
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA.
| | - Lauren VieBrock
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA.
| | - Jason A Carlyon
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA.
| |
Collapse
|