1
|
Wimmi S, Fleck M, Helbig C, Brianceau C, Langenfeld K, Szymanski WG, Angelidou G, Glatter T, Diepold A. Pilotins are mobile T3SS components involved in assembly and substrate specificity of the bacterial type III secretion system. Mol Microbiol 2024; 121:304-323. [PMID: 38178634 DOI: 10.1111/mmi.15223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 12/17/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024]
Abstract
In animal pathogens, assembly of the type III secretion system injectisome requires the presence of so-called pilotins, small lipoproteins that assist the formation of the secretin ring in the outer membrane. Using a combination of functional assays, interaction studies, proteomics, and live-cell microscopy, we determined the contribution of the pilotin to the assembly, function, and substrate selectivity of the T3SS and identified potential new downstream roles of pilotin proteins. In absence of its pilotin SctG, Yersinia enterocolitica forms few, largely polar injectisome sorting platforms and needles. Accordingly, most export apparatus subcomplexes are mobile in these strains, suggesting the absence of fully assembled injectisomes. Remarkably, while absence of the pilotin all but prevents export of early T3SS substrates, such as the needle subunits, it has little effect on secretion of late T3SS substrates, including the virulence effectors. We found that although pilotins interact with other injectisome components such as the secretin in the outer membrane, they mostly localize in transient mobile clusters in the bacterial membrane. Together, these findings provide a new view on the role of pilotins in the assembly and function of type III secretion injectisomes.
Collapse
Affiliation(s)
- Stephan Wimmi
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Moritz Fleck
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Carlos Helbig
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Corentin Brianceau
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Katja Langenfeld
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Witold G Szymanski
- Mass Spectrometry and Proteomics Facility, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Georgia Angelidou
- Mass Spectrometry and Proteomics Facility, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Timo Glatter
- Mass Spectrometry and Proteomics Facility, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Andreas Diepold
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
2
|
Gerson TM, Ott AM, Karney MMA, Socea JN, Ginete DR, Iyer LM, Aravind L, Gary RK, Wing HJ. VirB, a key transcriptional regulator of Shigella virulence, requires a CTP ligand for its regulatory activities. mBio 2023; 14:e0151923. [PMID: 37728345 PMCID: PMC10653881 DOI: 10.1128/mbio.01519-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/25/2023] [Indexed: 09/21/2023] Open
Abstract
IMPORTANCE Shigella species cause bacillary dysentery, the second leading cause of diarrheal deaths worldwide. There is a pressing need to identify novel molecular drug targets. Shigella virulence phenotypes are controlled by the transcriptional regulator, VirB. We show that VirB belongs to a fast-evolving, plasmid-borne clade of the ParB superfamily, which has diverged from versions with a distinct cellular role-DNA partitioning. We report that, like classic members of the ParB family, VirB binds a highly unusual ligand, CTP. Mutants predicted to be defective in CTP binding are compromised in a variety of virulence attributes controlled by VirB, likely because these mutants cannot engage DNA. This study (i) reveals that VirB binds CTP, (ii) provides a link between VirB-CTP interactions and Shigella virulence phenotypes, (iii) provides new insight into VirB-CTP-DNA interactions, and (iv) broadens our understanding of the ParB superfamily, a group of bacterial proteins that play critical roles in many bacteria.
Collapse
Affiliation(s)
- Taylor M. Gerson
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - Audrey M. Ott
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - Monika M. A. Karney
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - Jillian N. Socea
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - Daren R. Ginete
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | | | - L. Aravind
- Computational Biology Branch, National Library of Medicine, Bethesda, Maryland, USA
| | - Ronald K. Gary
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - Helen J. Wing
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| |
Collapse
|
3
|
Gerson TM, Ott AM, Karney MMA, Socea JN, Ginete DR, Iyer LM, Aravind L, Gary RK, Wing HJ. VirB, a key transcriptional regulator of Shigella virulence, requires a CTP ligand for its regulatory activities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.16.541010. [PMID: 37293012 PMCID: PMC10245682 DOI: 10.1101/2023.05.16.541010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The VirB protein, encoded by the large virulence plasmid of Shigella spp., is a key transcriptional regulator of virulence genes. Without a functional virB gene, Shigella cells are avirulent. On the virulence plasmid, VirB functions to offset transcriptional silencing mediated by the nucleoid structuring protein, H-NS, which binds and sequesters AT-rich DNA, making it inaccessible for gene expression. Thus, gaining a mechanistic understanding of how VirB counters H-NS-mediated silencing is of considerable interest. VirB is unusual in that it does not resemble classic transcription factors. Instead, its closest relatives are found in the ParB superfamily, where the best-characterized members function in faithful DNA segregation before cell division. Here, we show that VirB is a fast-evolving member of this superfamily and report for the first time that the VirB protein binds a highly unusual ligand, CTP. VirB binds this nucleoside triphosphate preferentially and with specificity. Based on alignments with the best-characterized members of the ParB family, we identify amino acids of VirB likely to bind CTP. Substitutions in these residues disrupt several well-documented activities of VirB, including its anti-silencing activity at a VirB-dependent promoter, its role in generating a Congo red positive phenotype in Shigella , and the ability of the VirB protein to form foci in the bacterial cytoplasm when fused to GFP. Thus, this work is the first to show that VirB is a bona fide CTP-binding protein and links Shigella virulence phenotypes to the nucleoside triphosphate, CTP. Importance Shigella species cause bacillary dysentery (shigellosis), the second leading cause of diarrheal deaths worldwide. With growing antibiotic resistance, there is a pressing need to identify novel molecular drug targets. Shigella virulence phenotypes are controlled by the transcriptional regulator, VirB. We show that VirB belongs to a fast-evolving, primarily plasmid-borne clade of the ParB superfamily, which has diverged from versions that have a distinct cellular role - DNA partitioning. We are the first to report that, like classic members of the ParB family, VirB binds a highly unusual ligand, CTP. Mutants predicted to be defective in CTP binding are compromised in a variety of virulence attributes controlled by VirB. This study i) reveals that VirB binds CTP, ii) provides a link between VirB-CTP interactions and Shigella virulence phenotypes, and iii) broadens our understanding of the ParB superfamily, a group of bacterial proteins that play critical roles in many different bacteria.
Collapse
Affiliation(s)
- Taylor M. Gerson
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154-4004, USA
| | - Audrey M. Ott
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154-4004, USA
| | - Monika MA. Karney
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154-4004, USA
| | - Jillian N. Socea
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154-4004, USA
| | - Daren R. Ginete
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154-4004, USA
| | - Lakshminarayan M. Iyer
- Computational Biology Branch, 8600 Rockville Pike, Building 38A, Room 5N505, National Library of Medicine, Bethesda, MD 20894
| | - L. Aravind
- Computational Biology Branch, 8600 Rockville Pike, Building 38A, Room 5N505, National Library of Medicine, Bethesda, MD 20894
| | - Ronald K. Gary
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas, Las Vegas, NV 89154-4003
| | - Helen J. Wing
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154-4004, USA
| |
Collapse
|
4
|
Schott S, Scheuer R, Ermoli F, Glatter T, Evguenieva-Hackenberg E, Diepold A. A ParDE toxin-antitoxin system is responsible for the maintenance of the Yersinia virulence plasmid but not for type III secretion-associated growth inhibition. Front Cell Infect Microbiol 2023; 13:1166077. [PMID: 37228670 PMCID: PMC10203498 DOI: 10.3389/fcimb.2023.1166077] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
Many Gram-negative pathogens utilize the type III secretion system (T3SS) to translocate virulence-promoting effector proteins into eukaryotic host cells. The activity of this system results in a severe reduction of bacterial growth and division, summarized as secretion-associated growth inhibition (SAGI). In Yersinia enterocolitica, the T3SS and related proteins are encoded on a virulence plasmid. We identified a ParDE-like toxin-antitoxin system on this virulence plasmid in genetic proximity to yopE, encoding a T3SS effector. Effectors are strongly upregulated upon activation of the T3SS, indicating a potential role of the ParDE system in the SAGI or maintenance of the virulence plasmid. Expression of the toxin ParE in trans resulted in reduced growth and elongated bacteria, highly reminiscent of the SAGI. Nevertheless, the activity of ParDE is not causal for the SAGI. T3SS activation did not influence ParDE activity; conversely, ParDE had no impact on T3SS assembly or activity itself. However, we found that ParDE ensures the presence of the T3SS across bacterial populations by reducing the loss of the virulence plasmid, especially under conditions relevant to infection. Despite this effect, a subset of bacteria lost the virulence plasmid and regained the ability to divide under secreting conditions, facilitating the possible emergence of T3SS-negative bacteria in late acute and persistent infections.
Collapse
Affiliation(s)
- Saskia Schott
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Robina Scheuer
- Department of Microbiology and Molecular Biology, Justus Liebig University Gießen, Gießen, Germany
| | - Francesca Ermoli
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Timo Glatter
- Core Facility for Mass spectrometry & Proteomics, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | | | - Andreas Diepold
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
5
|
Gaudreau C, Bernaquez I, Pilon PA, Goyette A, Yared N, Bekal S. Clinical and Genomic Investigation of an International Ceftriaxone- and Azithromycin-Resistant Shigella sonnei Cluster among Men Who Have Sex with Men, Montréal, Canada 2017-2019. Microbiol Spectr 2022; 10:e0233721. [PMID: 35647695 PMCID: PMC9241791 DOI: 10.1128/spectrum.02337-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 05/06/2022] [Indexed: 12/29/2022] Open
Abstract
Multidrug-resistant (MDR) Shigella sonnei have become prevalent among men who have sex with men and have become a global public health concern. From June 2017 to April 2019, 32 men were infected with MDR S. sonnei acquired locally, in Montréal, which was suggestive of an outbreak. Antimicrobial susceptibility testing, whole-genome sequencing (WGS), phylogenetic analysis, antimicrobial resistance and virulence characterization, and association to international clusters were performed. The outbreak strain was ceftriaxone- and azithromycin-resistant due to the acquisition of blaCTX-M-27, and mphA and ermB genes, respectively, with reduced susceptibility to ciprofloxacin due to a single point mutation (gyrA S83L). One out of 27 patients treated with a fluoroquinolone experienced microbiological failure. Epidemiological evidence first supported by a rare unique MDR Shigella sonnei documented only in men in 2017 followed by similar pulsed-field gel electrophoresis profiles was confirmed by WGS. A core genome high-quality single-nucleotide variant (hqSNV)-based phylogeny found a median of 6 hqSNV differences among isolates. Virulence gene content was investigated, but no Shiga toxins were detected. An international cluster of highly related isolates was identified (PDS000019750.208) and belonged to the 3.7.29.1.4.1 S. sonnei genotype (Global III VN2.KH1.Aus). Genomic analysis revealed that this Montréal cluster was connected to other documented outbreaks in Australia, the United States, and the United Kingdom. This study highlights the urgent need for public health measures to focus on the prevention and the early detection of S. sonnei, since global transmission patterns of MDR strains is concerning and few antimicrobial treatment options are available. IMPORTANCE Shigella sonnei, an important foodborne pathogen, recently became a frequent sexually transmitted agent involved in large and persistent outbreaks globally among men who have sex with men. Most strains also harbor several multidrug-resistant (MDR) determinants of particular concern. This study characterizes an outbreak strain at the source of an important MDR cluster identified in Montréal in 2017. Associations were made to many high-profile international outbreaks, and the causative S. sonnei lineage of these clusters was identified, which was not evident in past reports. The worldwide occurrence of this strain is of concern since treatment with antimicrobials like ceftriaxone and azithromycin may not be effective, and rare microbiological failures have been documented in patients treated with ciprofloxacin. Our investigation highlights the threats of Shigella spp. infection and the necessity for antimicrobial susceptibility monitoring in order to mitigate S. sonnei's impact on public health and to avoid transmission to other at-risk communities.
Collapse
Affiliation(s)
- Christiane Gaudreau
- Microbiologie médicale et infectiologie, Centre Hospitalier de l’Université de Montréal (CHUM), Montréal, Quebec, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Quebec, Canada
| | - Isabelle Bernaquez
- Laboratoire de santé publique du Québec/Institut national de santé publique du Québec, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Pierre A. Pilon
- Direction régionale de santé publique, Centre intégré universitaire de santé et de services sociaux du Centre-Sud-de–l’île-de-Montréal, Montréal, Quebec, Canada
- Département de médecine sociale et préventive, Université de Montréal, Montréal, Quebec, Canada
| | - Alexandre Goyette
- Direction régionale de santé publique, Centre intégré universitaire de santé et de services sociaux du Centre-Sud-de–l’île-de-Montréal, Montréal, Quebec, Canada
| | - Nada Yared
- Microbiologie médicale et infectiologie, Hôpital Charles-Lemoyne, Greenfield Park, Quebec, Canada
| | - Sadjia Bekal
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Quebec, Canada
- Laboratoire de santé publique du Québec/Institut national de santé publique du Québec, Sainte-Anne-de-Bellevue, Quebec, Canada
| |
Collapse
|
6
|
Skovajsová E, Colonna B, Prosseda G, Sellin ME, Di Martino ML. The VirF21:VirF30 protein ratio is affected by temperature and impacts Shigella flexneri host cell invasion. FEMS Microbiol Lett 2022; 369:fnac043. [PMID: 35521699 PMCID: PMC9217107 DOI: 10.1093/femsle/fnac043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/21/2022] [Accepted: 05/04/2022] [Indexed: 11/23/2022] Open
Abstract
Shigella spp, the etiological agents of bacillary dysentery in humans, have evolved an intricate regulatory strategy to ensure fine-tuned expression of virulence genes in response to environmental stimuli. A key component in this regulation is VirF, an AraC-like transcription factor, which at the host temperature (37°C) triggers, directly or indirectly, the expression of > 30 virulence genes important for invasion of the intestinal epithelium. Previous work identified two different forms of VirF with distinct functions: VirF30 activates virulence gene expression, while VirF21 appears to negatively regulate virF itself. Moreover, VirF21 originates from either differential translation of the virF mRNA or from a shorter leaderless mRNA (llmRNA). Here we report that both expression of the virF21 llmRNA and the VirF21:VirF30 protein ratio are higher at 30°C than at 37°C, suggesting a possible involvement of VirF21 in minimizing virulence gene expression outside the host (30°C). Ectopic elevation of VirF21 levels at 37°C indeed suppresses Shigella´s ability to infect epithelial cells. Finally, we find that the VirF21 C-terminal portion, predicted to contain a Helix-Turn-Helix motif (HTH2), is required for the functionality of this negative virulence regulator.
Collapse
Affiliation(s)
- Eva Skovajsová
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 75123, Sweden
| | - Bianca Colonna
- Department of Biology and Biotechnology “C. Darwin”, Istituto Pasteur Italia, Sapienza Università di Roma, Rome, 00185, Italy
| | - Gianni Prosseda
- Department of Biology and Biotechnology “C. Darwin”, Istituto Pasteur Italia, Sapienza Università di Roma, Rome, 00185, Italy
| | - Mikael E Sellin
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 75123, Sweden
| | - Maria Letizia Di Martino
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 75123, Sweden
| |
Collapse
|
7
|
Unni R, Pintor KL, Diepold A, Unterweger D. Presence and absence of type VI secretion systems in bacteria. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35467500 DOI: 10.1099/mic.0.001151] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The type VI secretion system (T6SS) is a molecular puncturing device that enables Gram-negative bacteria to kill competitors, manipulate host cells and take up nutrients. Who would want to miss such superpowers? Indeed, many studies show how widespread the secretion apparatus is among microbes. However, it is becoming evident that, on multiple taxonomic levels, from phyla to species and strains, some bacteria lack a T6SS. Here, we review who does and does not have a type VI secretion apparatus and speculate on the dynamic process of gaining and losing the secretion system to better understand its spread and distribution across the microbial world.
Collapse
Affiliation(s)
- Rahul Unni
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, 24306 Plön, Germany.,Institute for Experimental Medicine, Kiel University, Michaelisstraße 5, 24105 Kiel, Germany
| | - Katherine L Pintor
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Andreas Diepold
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Daniel Unterweger
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, 24306 Plön, Germany.,Institute for Experimental Medicine, Kiel University, Michaelisstraße 5, 24105 Kiel, Germany
| |
Collapse
|
8
|
A Highly Unstable and Elusive Plasmid That Encodes the Type III Secretion System Is Necessary for Full Virulence in the Marine Fish Pathogen Photobacterium damselae subsp. piscicida. Int J Mol Sci 2022; 23:ijms23094729. [PMID: 35563122 PMCID: PMC9105992 DOI: 10.3390/ijms23094729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 01/27/2023] Open
Abstract
The marine bacterium Photobacterium damselae subsp. piscicida (Pdp) causes photobacteriosis in fish and important financial losses in aquaculture, but knowledge of its virulence factors is still scarce. We here demonstrate that an unstable plasmid (pPHDPT3) that encodes a type III secretion system (T3SS) is highly prevalent in Pdp strains from different geographical origins and fish host species. We found that pPHDPT3 undergoes curing upon in vitro cultivation, and this instability constitutes a generalized feature of pPHDPT3-like plasmids in Pdp strains. pPHDPT3 markers were detected in tissues of naturally-infected moribund fish and in the Pdp colonies grown directly from the fish tissues but were undetectable in a fraction of the colonies produced upon the first passage of the primeval colonies on agar plates. Notably, cured strains exhibited a marked reduction in virulence for fish, demonstrating that pPHDPT3 is a major virulence factor of Pdp. The attempts to stabilize pPHDPT3 by insertion of antibiotic resistance markers by allelic exchange caused an even greater reduction in virulence. We hypothesize that the existence of a high pressure to shed pPHDPT3 plasmid in vitro caused the selection of clones with off-target mutations and gene rearrangements during the process of genetic modification. Collectively, these results show that pPHDPT3 constitutes a novel, hitherto unreported virulence factor of Pdp that shows a high instability in vitro and warn that the picture of Pdp virulence genes has been historically underestimated, since the loss of the T3SS and other plasmid-borne genes may have occurred systematically in laboratories for decades.
Collapse
|
9
|
Maintenance of the Shigella sonnei virulence plasmid is dependent on its repertoire and amino acid sequence of toxin:antitoxin systems. J Bacteriol 2022; 204:e0051921. [PMID: 34978459 PMCID: PMC8923223 DOI: 10.1128/jb.00519-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shigella sonnei is a major cause of bacillary dysentery and an increasing concern due to the spread of multidrug resistance. S. sonnei harbors pINV, an ∼210 kb plasmid that encodes a type III secretion system (T3SS), which is essential for virulence. During growth in the laboratory, avirulence arises spontaneously in S. sonnei at high frequency, hampering studies on and vaccine development against this important pathogen. Here, we investigated the molecular basis for the emergence of avirulence in S. sonnei and showed that avirulence mainly results from pINV loss, which is consistent with previous findings. Ancestral deletions have led to the loss from S. sonnei pINV of two toxin-antitoxin (TA) systems involved in plasmid maintenance, CcdAB and GmvAT, which are found on pINV in Shigella flexneri. We showed that the introduction of these TA systems into S. sonnei pINV reduced but did not eliminate pINV loss, while the single amino acid polymorphisms found in the S. sonnei VapBC TA system compared with S. flexneri VapBC also contributed to pINV loss. Avirulence also resulted from deletions of T3SS-associated genes in pINV through recombination between insertion sequences (ISs) on the plasmid. These events differed from those observed in S. flexneri due to the different distribution and repertoire of ISs. Our findings demonstrated that TA systems and ISs influenced plasmid dynamics and loss in S. sonnei and could be exploited for the design and evaluation of vaccines. IMPORTANCEShigella sonnei is the major cause of shigellosis in high-income and industrializing countries and is an emerging, multidrug-resistant pathogen. A significant challenge when studying this bacterium is that it spontaneously becomes avirulent during growth in the laboratory through loss of its virulence plasmid (pINV). Here, we deciphered the mechanisms leading to avirulence in S. sonnei and how the limited repertoire and amino acid sequences of plasmid-encoded toxin-antitoxin (TA) systems make the maintenance of pINV in this bacterium less efficient compared with Shigella flexneri. Our findings highlighted how subtle differences in plasmids in closely related species have marked effects and could be exploited to reduce plasmid loss in S. sonnei. This should facilitate research on this bacterium and vaccine development.
Collapse
|
10
|
Hajra D, Nair AV, Chakravortty D. An elegant nano-injection machinery for sabotaging the host: Role of Type III secretion system in virulence of different human and animal pathogenic bacteria. Phys Life Rev 2021; 38:25-54. [PMID: 34090822 DOI: 10.1016/j.plrev.2021.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 05/23/2021] [Indexed: 01/22/2023]
Abstract
Various Gram-negative bacteria possess a specialized membrane-bound protein secretion system known as the Type III secretion system (T3SS), which transports the bacterial effector proteins into the host cytosol thereby helping in bacterial pathogenesis. The T3SS has a special needle-like translocon that can sense the contact with the host cell membrane and translocate effectors. The export apparatus of T3SS recognizes these effector proteins bound to chaperones and translocates them into the host cell. Once in the host cell cytoplasm, these effector proteins result in modulation of the host system and promote bacterial localization and infection. Using molecular biology, bioinformatics, genetic techniques, electron microscopic studies, and mathematical modeling, the structure and function of the T3SS and the corresponding effector proteins in various bacteria have been studied. The strategies used by different human pathogenic bacteria to modulate the host system and thereby enhance their virulence mechanism using T3SS have also been well studied. Here we review the history, evolution, and general structure of the T3SS, highlighting the details of its comparison with the flagellar export machinery. Also, this article provides mechanistic details about the common role of T3SS in subversion and manipulation of host cellular processes. Additionally, this review describes specific T3SS apparatus and the role of their specific effectors in bacterial pathogenesis by considering several human and animal pathogenic bacteria.
Collapse
Affiliation(s)
- Dipasree Hajra
- Department of Microbiology & Cell Biology, Indian Institute of Science, India
| | - Abhilash Vijay Nair
- Department of Microbiology & Cell Biology, Indian Institute of Science, India
| | | |
Collapse
|
11
|
Abstract
The history of Shigella, the causative agent of bacillary dysentery, is a long and fascinating one. This brief historical account starts with descriptions of the disease and its impact on human health from ancient time to the present. Our story of the bacterium starts just before the identification of the dysentery bacillus by Kiyoshi Shiga in 1898 and follows the scientific discoveries and principal scientists who contributed to the elucidation of Shigella pathogenesis in the first 100 years. Over the past century, Shigella has proved to be an outstanding model of an invasive bacterial pathogen and has served as a paradigm for the study of other bacterial pathogens. In addition to invasion of epithelial cells, some of those shared virulence traits include toxin production, multiple-antibiotic resistance, virulence genes encoded on plasmids and bacteriophages, global regulation of virulence genes, pathogenicity islands, intracellular motility, remodeling of host cytoskeleton, inflammation/polymorphonuclear leukocyte signaling, apoptosis induction/inhibition, and "black holes" and antivirulence genes. While there is still much to learn from studying Shigella pathogenesis, what we have learned so far has also contributed greatly to our broader understanding of bacterial pathogenesis.
Collapse
|
12
|
McVicker G, Hollingshead S, Pilla G, Tang CM. Maintenance of the virulence plasmid in Shigella flexneri is influenced by Lon and two functional partitioning systems. Mol Microbiol 2019; 111:1355-1366. [PMID: 30767313 PMCID: PMC6519299 DOI: 10.1111/mmi.14225] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2019] [Indexed: 11/30/2022]
Abstract
Members of the genus Shigella carry a large plasmid, pINV, which is essential for virulence. In Shigella flexneri, pINV harbours three toxin‐antitoxin (TA) systems, CcdAB, GmvAT and VapBC that promote vertical transmission of the plasmid. Type II TA systems, such as those on pINV, consist of a toxic protein and protein antitoxin. Selective degradation of the antitoxin by proteases leads to the unopposed action of the toxin once genes encoding a TA system have been lost, such as following failure to inherit a plasmid harbouring a TA system. Here, we investigate the role of proteases in the function of the pINV TA systems and demonstrate that Lon, but not ClpP, is required for their activity during plasmid stability. This provides the first evidence that acetyltransferase family TA systems, such as GmvAT, can be regulated by Lon. Interestingly, S. flexneri pINV also harbours two putative partitioning systems, ParAB and StbAB. We show that both systems are functional for plasmid maintenance although their activity is masked by other systems on pINV. Using a model vector based on the pINV replicon, we observe temperature‐dependent differences between the two partitioning systems that contribute to our understanding of the maintenance of virulence in Shigella species.
Collapse
Affiliation(s)
- Gareth McVicker
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Sarah Hollingshead
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Giulia Pilla
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Christoph M Tang
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| |
Collapse
|
13
|
Davod J, Fatemeh DN, Honari H, Hosseini R. Constructing and transient expression of a gene cassette containing edible vaccine elements and shigellosis, anthrax and cholera recombinant antigens in tomato. Mol Biol Rep 2018; 45:2237-2246. [PMID: 30244396 PMCID: PMC7088786 DOI: 10.1007/s11033-018-4385-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 09/12/2018] [Indexed: 12/04/2022]
Abstract
Shigella dysenteriae causing shigellosis is one of the diseases that threaten the health of human society in the developing countries. In Shigella, IpaD gene is one of the key pathogenic genes causing strong mucosal immune system reactions. Anthrax disease is caused by Bacillus anthracis. PA protective antigen is one of the subunits in anthrax toxin complex responsible for the transfer of other subunits into the cytosol of host cells. The 20 kDa subunit of PA (PA20) has the property of immunogenicity. CTxB or B subunit of Vibrio cholerae toxin (CT) is a non-toxic protein and has the function to transfer toxic subunit into cytosol of the host cells by binding to GM1 receptor. The aim of this study was to fuse PA20, ipaD and CTxB and transform tomato plants by this cassette in order to produce an oral vaccine against shigellosis, anthrax and cholera. CTxB was used for these two antigens as an immune adjuvant. IpaD and PA20 genes were cloned in pBI121 containing the CTxB gene and Extensin signal peptide. In order to evaluate the transient expression of Shigellosis, Anthrax and Cholera antigens, agro-infiltrated tomato tissues were inoculated with Agrobacterium tumefaciens containing the gene cassette. Cloning was confirmed by PCR, enzymatic digestion and sequencing techniques. Expression of the antigens was examined by SDS-PAGE, dot blot and ELISA. Maturate green fruits demonstrated the highest expression of the recombinant proteins. The first phase of this study was carried out for cloning and expressing of CtxB, ipaD and PA20 antigens in tomato. In the next phase, we aim to analyze the immunogenicity of this vaccine candidate in laboratory animals.
Collapse
Affiliation(s)
- Jafari Davod
- Medical Biotechnology Department, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- Biotechnology Department, Faculty of Agricultural and Natural Sciences, Imam Khomeini International University (IKIU), Qazvin, Iran
| | - Dehghan Nayeri Fatemeh
- Biotechnology Department, Faculty of Agricultural and Natural Sciences, Imam Khomeini International University (IKIU), Qazvin, Iran
| | - Hossein Honari
- Faculty of Basic Science, Imam Hussein University, Tehran, Iran
| | - Ramin Hosseini
- Biotechnology Department, Faculty of Agricultural and Natural Sciences, Imam Khomeini International University (IKIU), Qazvin, Iran
| |
Collapse
|
14
|
Suzuki S, Suzuki T, Mimuro H, Mizushima T, Sasakawa C. Shigella hijacks the glomulin-cIAPs-inflammasome axis to promote inflammation. EMBO Rep 2017; 19:89-101. [PMID: 29191979 DOI: 10.15252/embr.201643841] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 10/25/2017] [Accepted: 11/06/2017] [Indexed: 11/09/2022] Open
Abstract
Shigella deploys a unique mechanism to manipulate macrophage pyroptosis by delivering the IpaH7.8 E3 ubiquitin ligase via its type III secretion system. IpaH7.8 ubiquitinates glomulin (GLMN) and elicits its degradation, thereby inducing inflammasome activation and pyroptotic cell death of macrophages. Here, we show that GLMN specifically binds cellular inhibitor of apoptosis proteins 1 and 2 (cIAP1 and cIAP2), members of the inhibitor of apoptosis (IAP) family of RING-E3 ligases, which results in reduced E3 ligase activity, and consequently inflammasome-mediated death of macrophages. Importantly, reducing the levels of GLMN in macrophages via IpaH7.8, or siRNA-mediated knockdown, enhances inflammasome activation in response to infection by Shigella, Salmonella, or Pseudomonas, stimulation with NLRP3 inflammasome activators (including SiO2, alum, or MSU), or stimulation of the AIM2 inflammasome by poly dA:dT GLMN binds specifically to the RING domain of both cIAPs, which inhibits their self-ubiquitination activity. These findings suggest that GLMN is a negative regulator of cIAP-mediated inflammasome activation, and highlight a unique Shigella stratagem to kill macrophages, promoting severe inflammation.
Collapse
Affiliation(s)
- Shiho Suzuki
- Division of Bacterial Infection Biology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan .,Department of Bacterial Infection and Host Response, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshihiko Suzuki
- Department of Bacterial Infection and Host Response, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hitomi Mimuro
- Division of Bacteriology, Department of Infectious Diseases Control, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Department of Infection Microbiology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Tsunehiro Mizushima
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Hyogo, Japan
| | - Chihiro Sasakawa
- Division of Bacterial Infection Biology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan .,Medical Mycology Research Center, Chiba University, Chiba, Japan.,Nippon Institute for Biological Science, Tokyo, Japan
| |
Collapse
|
15
|
Pilla G, McVicker G, Tang CM. Genetic plasticity of the Shigella virulence plasmid is mediated by intra- and inter-molecular events between insertion sequences. PLoS Genet 2017; 13:e1007014. [PMID: 28945748 PMCID: PMC5629016 DOI: 10.1371/journal.pgen.1007014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/05/2017] [Accepted: 09/08/2017] [Indexed: 11/18/2022] Open
Abstract
Acquisition of a single copy, large virulence plasmid, pINV, led to the emergence of Shigella spp. from Escherichia coli. The plasmid encodes a Type III secretion system (T3SS) on a 30 kb pathogenicity island (PAI), and is maintained in a bacterial population through a series of toxin:antitoxin (TA) systems which mediate post-segregational killing (PSK). The T3SS imposes a significant cost on the bacterium, and strains which have lost the plasmid and/or genes encoding the T3SS grow faster than wild-type strains in the laboratory, and fail to bind the indicator dye Congo Red (CR). Our aim was to define the molecular events in Shigella flexneri that cause loss of Type III secretion (T3S), and to examine whether TA systems exert positional effects on pINV. During growth at 37°C, we found that deletions of regions of the plasmid including the PAI lead to the emergence of CR-negative colonies; deletions occur through intra-molecular recombination events between insertion sequences (ISs) flanking the PAI. Furthermore, by repositioning MvpAT (which belongs to the VapBC family of TA systems) near the PAI, we demonstrate that the location of this TA system alters the rearrangements that lead to loss of T3S, indicating that MvpAT acts both globally (by reducing loss of pINV through PSK) as well as locally (by preventing loss of adjacent sequences). During growth at environmental temperatures, we show for the first time that pINV spontaneously integrates into different sites in the chromosome, and this is mediated by inter-molecular events involving IS1294. Integration leads to reduced PAI gene expression and impaired secretion through the T3SS, while excision of pINV from the chromosome restores T3SS function. Therefore, pINV integration provides a reversible mechanism for Shigella to circumvent the metabolic burden imposed by pINV. Intra- and inter-molecular events between ISs, which are abundant in Shigella spp., mediate plasticity of S. flexneri pINV.
Collapse
Affiliation(s)
- Giulia Pilla
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Gareth McVicker
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Christoph M. Tang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
16
|
Monira S, Shabnam SA, Ali SI, Sadique A, Johura FT, Rahman KZ, Alam NH, Watanabe H, Alam M. Multi-drug resistant pathogenic bacteria in the gut of young children in Bangladesh. Gut Pathog 2017; 9:19. [PMID: 28439298 PMCID: PMC5399343 DOI: 10.1186/s13099-017-0170-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/10/2017] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The gut of human harbors diverse commensal microbiota performing an array of beneficial role for the hosts. In the present study, the major commensal gut bacteria isolated by culturing methods from 15 children of moderate income families, aged between 10 and 24 months, were studied for their response to different antibiotics, and the molecular basis of drug resistance. RESULTS Of 122 bacterial colonies primarily selected from Luria-Bertani agar, bacterial genera confirmed by analytical profile index (API) 20E® system included Escherichia as the predominant (52%) organism, followed by Enterobacter (16%), Pseudomonas (12%), Klebsiella (6%), Pantoea (6%), Vibrio (3%), and Citrobacter (3%); while Aeromonas and Raoultella were identified as the infrequently occurring genera. An estimated 11 and 22% of the E. coli isolates carried virulence marker genes stx-2 and eae, respectively. Antimicrobial susceptibility assay revealed 78% of the gut bacteria to be multidrug resistant (MDR) with highest resistance to erythromycin (96%), followed by ampicillin (63%), tetracycline (59%), azithromycin (53%), sulfamethoxazole-trimethoprim (43%), cefixime (39%), and ceftriaxone (33%). PCR assay results revealed 56% of the gut bacteria to possess gene cassette Class 1 integron; while 8, 17.5 and 6% of the strains carried tetracycline resistance-related genes tetA, tetB, and tetD, respectively. The macrolide (erythromycin and azithromycin) resistance marker genes mphA, ereB, and ermB were found in 28, 3 and 5% of bacterial isolates, respectively; while 26, 12, 17, 32, 7, 4 and 3% of the MDR bacterial isolates carried the extended spectrum β-lactamase (ESBL)-related genes e.g., blaTEM, blaSHV, blaCMY-9, blaCTX-M1, blaCTX-M2, blaCMY-2 and blaOXA respectively. Majority of the MDR gut bacteria harbored large plasmids [e.g., 140 MDa (43%), 105 MDa (30%), 90 MDa (14%)] carrying invasion and related antibiotic resistance marker genes. CONCLUSIONS Our results suggest gut of young Bangladeshi children to be an important reservoir for multi-drug resistant pathogenic bacteria carrying ESBL related genes.
Collapse
Affiliation(s)
- Shirajum Monira
- International Center for Diarrheal Disease Research, Bangladesh (icddr,b), 68 Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, 1212 Bangladesh
| | - Syeda Antara Shabnam
- International Center for Diarrheal Disease Research, Bangladesh (icddr,b), 68 Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, 1212 Bangladesh
| | - Sk Imran Ali
- International Center for Diarrheal Disease Research, Bangladesh (icddr,b), 68 Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, 1212 Bangladesh
| | - Abdus Sadique
- International Center for Diarrheal Disease Research, Bangladesh (icddr,b), 68 Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, 1212 Bangladesh
| | - Fatema-Tuz Johura
- International Center for Diarrheal Disease Research, Bangladesh (icddr,b), 68 Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, 1212 Bangladesh
| | - Kazi Zillur Rahman
- International Center for Diarrheal Disease Research, Bangladesh (icddr,b), 68 Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, 1212 Bangladesh
| | - Nur Haque Alam
- International Center for Diarrheal Disease Research, Bangladesh (icddr,b), 68 Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, 1212 Bangladesh
| | | | - Munirul Alam
- International Center for Diarrheal Disease Research, Bangladesh (icddr,b), 68 Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, 1212 Bangladesh
| |
Collapse
|
17
|
McVicker G, Tang CM. Deletion of toxin–antitoxin systems in the evolution of Shigella sonnei as a host-adapted pathogen. Nat Microbiol 2016; 2:16204. [DOI: 10.1038/nmicrobiol.2016.204] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 09/14/2016] [Indexed: 11/09/2022]
|
18
|
Lobato-Márquez D, Molina-García L, Moreno-Córdoba I, García-Del Portillo F, Díaz-Orejas R. Stabilization of the Virulence Plasmid pSLT of Salmonella Typhimurium by Three Maintenance Systems and Its Evaluation by Using a New Stability Test. Front Mol Biosci 2016; 3:66. [PMID: 27800482 PMCID: PMC5065971 DOI: 10.3389/fmolb.2016.00066] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 09/27/2016] [Indexed: 12/27/2022] Open
Abstract
Certain Salmonella enterica serovars belonging to subspecies I carry low-copy-number virulence plasmids of variable size (50–90 kb). All of these plasmids share the spv operon, which is important for systemic infection. Virulence plasmids are present at low copy numbers. Few copies reduce metabolic burden but suppose a risk of plasmid loss during bacterial division. This drawback is counterbalanced by maintenance modules that ensure plasmid stability, including partition systems and toxin-antitoxin (TA) loci. The low-copy number virulence pSLT plasmid of Salmonella enterica serovar Typhimurium encodes three auxiliary maintenance systems: one partition system (parAB) and two TA systems (ccdABST and vapBC2ST). The TA module ccdABST has previously been shown to contribute to pSLT plasmid stability and vapBC2ST to bacterial virulence. Here we describe a novel assay to measure plasmid stability based on the selection of plasmid-free cells following elimination of plasmid-containing cells by ParE toxin, a DNA gyrase inhibitor. Using this new maintenance assay we confirmed a crucial role of parAB in pSLT maintenance. We also showed that vapBC2ST, in addition to contribute to bacterial virulence, is important for plasmid stability. We have previously shown that ccdABST encodes an inactive CcdBST toxin. Using our new stability assay we monitored the contribution to plasmid stability of a ccdABST variant containing a single mutation (R99W) that restores the toxicity of CcdBST. The “activation” of CcdBST (R99W) did not increase pSLT stability by ccdABST. In contrast, ccdABST behaves as a canonical type II TA system in terms of transcriptional regulation. Of interest, ccdABST was shown to control the expression of a polycistronic operon in the pSLT plasmid. Collectively, these results show that the contribution of the CcdBST toxin to pSLT plasmid stability may depend on its role as a co-repressor in coordination with CcdAST antitoxin more than on its toxic activity.
Collapse
Affiliation(s)
- Damián Lobato-Márquez
- Section of Microbiology, Department of Medicine, Centre for Molecular Bacteriology and Infection, Imperial College London London, UK
| | - Laura Molina-García
- Department of Cell and Developmental Biology, University College London London, UK
| | - Inma Moreno-Córdoba
- Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas-Spanish National Research Council Madrid, Spain
| | - Francisco García-Del Portillo
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología-Spanish National Research Council Madrid, Spain
| | - Ramón Díaz-Orejas
- Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas-Spanish National Research Council Madrid, Spain
| |
Collapse
|
19
|
Abstract
Shigella species are the causative agents of bacillary dysentery in humans, an invasive disease in which the bacteria enter the cells of the epithelial layer of the large intestine, causing extensive tissue damage and inflammation. They rely on a plasmid-encoded type III secretion system (TTSS) to cause disease; this system and its regulation have been investigated intensively at the molecular level for decades. The lessons learned have not only deepened our knowledge of Shigella biology but also informed in important ways our understanding of the mechanisms used by other pathogenic bacteria to cause disease and to control virulence gene expression. In addition, the Shigella story has played a central role in the development of our appreciation of the contribution of horizontal DNA transfer to pathogen evolution.A 30-kilobase-pair "Entry Region" of the 230-kb virulence plasmid lies at the heart of the Shigella pathogenesis system. Here are located the virB and mxiE regulatory genes and most of the structural genes involved in the expression of the TTSS and its effector proteins. Expression of the virulence genes occurs in response to an array of environmental signals, including temperature, osmolarity, and pH.At the top of the regulatory hierarchy and lying on the plasmid outside the Entry Region isvirF, encoding an AraC-like transcription factor.Virulence gene expression is also controlled by chromosomal genes,such as those encoding the nucleoid-associated proteins H-NS, IHF, and Fis, the two-component regulators OmpR/EnvZ and CpxR/CpxA, the anaerobic regulator Fnr, the iron-responsive regulator Fur, and the topoisomerases of the cell that modulate DNA supercoiling. Small regulatory RNAs,the RNA chaperone Hfq,and translational modulation also affect the expression of the virulence phenotypetranscriptionally and/orposttranscriptionally.
Collapse
|
20
|
Lluque A, Mosquito S, Gomes C, Riveros M, Durand D, Tilley DH, Bernal M, Prada A, Ochoa TJ, Ruiz J. Virulence factors and mechanisms of antimicrobial resistance in Shigella strains from periurban areas of Lima (Peru). Int J Med Microbiol 2015; 305:480-90. [PMID: 25998616 DOI: 10.1016/j.ijmm.2015.04.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 04/22/2015] [Accepted: 04/28/2015] [Indexed: 12/25/2022] Open
Abstract
The study was aimed to describe the serotype, mechanisms of antimicrobial resistance, and virulence determinants in Shigella spp. isolated from Peruvian children. Eighty three Shigella spp. were serogrouped and serotyped being established the antibiotic susceptibility. The presence of 12 virulence factors (VF) and integrase 1 and 2, along with commonly found antibiotic resistance genes was established by PCR. S. flexneri was the most relevant serogroup (55 isolates, 66%), with serotype 2a most frequently detected (27 of 55, 49%), followed by S. boydii and S. sonnei at 12 isolates each (14%) and S. dysenteriae (four isolates, 5%). Fifty isolates (60%) were multi-drug resistant (MDR) including 100% of S. sonnei and 64% of S. flexneri. Resistance levels were high to trimethoprim-sulfamethoxazole (86%), tetracycline (74%), ampicillin (67%), and chloramphenicol (65%). Six isolates showed decreased azithromycin susceptibility. No isolate was resistant to nalidixic acid, ciprofloxacin, nitrofurantoin, or ceftriaxone. The most frequent resistance genes were sul2 (95%), tet(B) (92%), cat (80%), dfrA1 (47%), blaOXA-1like (40%), with intl1 and intl2 detected in 51 and 52% of the isolates, respectively. Thirty-one different VF profiles were observed, being the ipaH (100%), sen (77%), virA and icsA (75%) genes the most frequently found. Differences in the prevalence of VF were observed between species with S. flexneri isolates, particularly serotype 2a, possessing high numbers of VF. In conclusion, this study highlights the high heterogeneity of Shigella VF and resistance genes, and prevalence of MDR organisms within this geographic region.
Collapse
Affiliation(s)
- Angela Lluque
- Universidad Peruana Cayetano Heredia, Instituto de Medicina Tropical Alexander Von Humboldt, Lima, Peru
| | - Susan Mosquito
- Universidad Peruana Cayetano Heredia, Instituto de Medicina Tropical Alexander Von Humboldt, Lima, Peru
| | - Cláudia Gomes
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Maribel Riveros
- Universidad Peruana Cayetano Heredia, Instituto de Medicina Tropical Alexander Von Humboldt, Lima, Peru
| | - David Durand
- Universidad Peruana Cayetano Heredia, Instituto de Medicina Tropical Alexander Von Humboldt, Lima, Peru
| | | | - María Bernal
- U.S Naval Medical Research Unit No.6, Callao, Peru
| | - Ana Prada
- Universidad Peruana Cayetano Heredia, Instituto de Medicina Tropical Alexander Von Humboldt, Lima, Peru
| | - Theresa J Ochoa
- Universidad Peruana Cayetano Heredia, Instituto de Medicina Tropical Alexander Von Humboldt, Lima, Peru; Center for Infectious Disease, University of Texas School of Public Health, Houston, USA.
| | - Joaquim Ruiz
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
21
|
RANJBAR R, AFSHAR D, MEHRABI TAVANA A, NAJAFI A, POURALI F, SAFIRI Z, SOROURI ZANJANI R, JONAIDI JAFARI N. Development of Multiplex PCR for Simultaneous Detection of Three Pathogenic Shigella Species. IRANIAN JOURNAL OF PUBLIC HEALTH 2014; 43:1657-63. [PMID: 26171358 PMCID: PMC4499087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 10/10/2014] [Indexed: 11/27/2022]
Abstract
BACKGROUND Shigella species are among the common causes of bacterial diarrhoeal diseases. Traditional detection methods are time-consuming resulting in delay in treatment and control of Shigella infections thus there is a need to develop molecular methods for rapid and simultaneous detection of Shigella spp. In this study a rapid multiplex PCR were developed for simultaneous detection of three pathogenic Shigella species. METHODS For detection of Shigella spp., a pair of primers was used to replicate a chromosomal sequence. Three other sets of primers were also designed to amplify the target genes of three most common species of Shigella in Iran including S. sonnei, S. flexneri and S. boydii. The multiplex PCR assay was optimized for simultaneous detection and differentiation of three pathogenic Shigella species. The assay specificity was investigated by testing different strains of Shigella and other additional strains belonging to non Shigella species, but responsible for foodborne diseases. RESULTS The Shigella genus specific PCR yielded the expected DNA band of 159 bp in all tested strains belonging to four Shigella species. The standard and multiplex PCR assays also produced the expected fragments of 248 bp, 503 bp, and 314 bp, for S. boydii, S. sonnei and S. flexneri, respectively. Each species-specific primer pair did not show any cross-reactivity. CONCLUSION Both standard and multiplex PCR protocols had a good specificity. They can provide a valuable tool for the rapid and simultaneous detection and differentiation of three most prevalent Shigella species in Iran.
Collapse
Affiliation(s)
- Reza RANJBAR
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Davoud AFSHAR
- Dept. of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran,Corresponding Author:
| | - Ali MEHRABI TAVANA
- Health Management Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali NAJAFI
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Fatemeh POURALI
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Zahra SAFIRI
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Rahim SOROURI ZANJANI
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
22
|
Chen Y, Liu L, Fu H, Wei C, Jin Q. Comparative proteomic analysis of outer membrane vesicles from Shigella flexneri under different culture conditions. Biochem Biophys Res Commun 2014; 453:696-702. [PMID: 25445584 DOI: 10.1016/j.bbrc.2014.09.142] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 09/23/2014] [Indexed: 01/13/2023]
Abstract
The production of outer membrane vesicles (OMVs) is a common and regulated process of gram-negative bacteria. Nonetheless, the processes of Shigella flexneri OMV production still remain unclear. S. flexneri is the causative agent of endemic shigellosis in developing countries. The Congo red binding of strains is associated with increased infectivity of S. flexneri. Therefore, understanding the modulation pattern of OMV protein expression induced by Congo red will help to elucidate the bacterial pathogenesis. In the present study, we investigated the proteomic composition of OMVs and the change in OMV protein expression induced by Congo red using mTRAQ-based quantitative comparative proteomics. mTRAQ labelling increased the confidence in protein identification, and 148 total proteins were identified in S. flexneri-derived OMVs. These include a variety of important virulence factors, including Ipa proteins, TolC family, murein hydrolases, and members of the serine protease autotransporters of Enterobacteriaceae (SPATEs) family. Among the identified proteins, 28 and five proteins are significantly up- and down-regulated in the Congo red-induced OMV, respectively. Additionally, by comprehensive comparison with previous studies focused on DH5a-derived OMV, we identified some key node proteins in the protein-protein interaction network that may be involved in OMV biogenesis and are common to all gram-negative bacteria.
Collapse
Affiliation(s)
- Yong Chen
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Liguo Liu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Hua Fu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Candong Wei
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China.
| | - Qi Jin
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China.
| |
Collapse
|
23
|
Shigella IpaH7.8 E3 ubiquitin ligase targets glomulin and activates inflammasomes to demolish macrophages. Proc Natl Acad Sci U S A 2014; 111:E4254-63. [PMID: 25246571 DOI: 10.1073/pnas.1324021111] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
When nucleotide-binding oligomerization domain-like receptors (NLRs) sense cytosolic-invading bacteria, they induce the formation of inflammasomes and initiate an innate immune response. In quiescent cells, inflammasome activity is tightly regulated to prevent excess inflammation and cell death. Many bacterial pathogens provoke inflammasome activity and induce inflammatory responses, including cell death, by delivering type III secreted effectors, the rod component flagellin, and toxins. Recent studies indicated that Shigella deploy multiple mechanisms to stimulate NLR inflammasomes through type III secretion during infection. Here, we show that Shigella induces rapid macrophage cell death by delivering the invasion plasmid antigen H7.8 (IpaH7.8) enzyme 3 (E3) ubiquitin ligase effector via the type III secretion system, thereby activating the NLR family pyrin domain-containing 3 (NLRP3) and NLR family CARD domain-containing 4 (NLRC4) inflammasomes and caspase-1 and leading to macrophage cell death in an IpaH7.8 E3 ligase-dependent manner. Mice infected with Shigella possessing IpaH7.8, but not with Shigella possessing an IpaH7.8 E3 ligase-null mutant, exhibited enhanced bacterial multiplication. We defined glomulin/flagellar-associated protein 68 (GLMN) as an IpaH7.8 target involved in IpaH7.8 E3 ligase-dependent inflammasome activation. This protein originally was identified through its association with glomuvenous malformations and more recently was described as a member of a Cullin ring ligase inhibitor. Modifying GLMN levels through overexpression or knockdown led to reduced or augmented inflammasome activation, respectively. Macrophages stimulated with lipopolysaccharide/ATP induced GLMN puncta that localized with the active form of caspase-1. Macrophages from GLMN(+/-) mice were more responsive to inflammasome activation than those from GLMN(+/+) mice. Together, these results highlight a unique bacterial adaptation that hijacks inflammasome activation via interactions between IpaH7.8 and GLMN.
Collapse
|
24
|
Chowdhury FM, Rahman MZ, Khan SI, Ahsan CR, Birkeland NK. An environmental Escherichia albertii strain, DM104, induces protective immunity to Shigella dysenteriae in guinea pig eye model. Curr Microbiol 2014; 68:642-7. [PMID: 24452425 DOI: 10.1007/s00284-014-0522-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 11/28/2013] [Indexed: 10/25/2022]
Abstract
The environmental Escherichia albertii strain DM104, which cross-reacts serologically with Shigella dysenteriae was assessed for pathogenic properties, immunogenicity, and protective efficacy in different animal models to evaluate it as a vaccine candidate against S. dysenteriae, which causes the severe disease, shigellosis. The DM104 isolate was found to be non-invasive and did not produce any entero- or cyto-toxins. The strain also showed negative results in the mouse lethal activity assay. The non-pathogenic DM104 strain gave, however, a high protective efficacy as an ocularly administered vaccine in the guinea pig eye model against S. dysenteriae type 4 challenge. It also induced a high titer of serum IgG against S. dysenteriae type 4 whole cell lysate and lipopolysaccharide. Taken together, all these results indicate a good potential for the use of the DM104 as a live vaccine candidate against shigellosis.
Collapse
|
25
|
Suzuki S, Franchi L, He Y, Muñoz-Planillo R, Mimuro H, Suzuki T, Sasakawa C, Núñez G. Shigella type III secretion protein MxiI is recognized by Naip2 to induce Nlrc4 inflammasome activation independently of Pkcδ. PLoS Pathog 2014; 10:e1003926. [PMID: 24516390 PMCID: PMC3916413 DOI: 10.1371/journal.ppat.1003926] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 12/28/2013] [Indexed: 01/16/2023] Open
Abstract
Recognition of intracellular pathogenic bacteria by members of the nucleotide-binding domain and leucine-rich repeat containing (NLR) family triggers immune responses against bacterial infection. A major response induced by several Gram-negative bacteria is the activation of caspase-1 via the Nlrc4 inflammasome. Upon activation, caspase-1 regulates the processing of proIL-1β and proIL-18 leading to the release of mature IL-1β and IL-18, and induction of pyroptosis. The activation of the Nlrc4 inflammasome requires the presence of an intact type III or IV secretion system that mediates the translocation of small amounts of flagellin or PrgJ-like rod proteins into the host cytosol to induce Nlrc4 activation. Using the Salmonella system, it was shown that Naip2 and Naip5 link flagellin and the rod protein PrgJ, respectively, to Nlrc4. Furthermore, phosphorylation of Nlrc4 at Ser533 by Pkcδ was found to be critical for the activation of the Nlrc4 inflammasome. Here, we show that Naip2 recognizes the Shigella T3SS inner rod protein MxiI and induces Nlrc4 inflammasome activation. The expression of MxiI in primary macrophages was sufficient to induce pyroptosis and IL-1β release, which were prevented in macrophages deficient in Nlrc4. In the presence of MxiI or Shigella infection, MxiI associated with Naip2, and Naip2 interacted with Nlrc4. siRNA-mediated knockdown of Naip2, but not Naip5, inhibited Shigella-induced caspase-1 activation, IL-1β maturation and Asc pyroptosome formation. Notably, the Pkcδ kinase was dispensable for caspase-1 activation and secretion of IL-1β induced by Shigella or Salmonella infection. These results indicate that activation of caspase-1 by Shigella is triggered by the rod protein MxiI that interacts with Naip2 to induce activation of the Nlrc4 inflammasome independently of the Pkcδ kinase. Shigella are bacterial pathogens that are the cause of bacillary dysentery. An important feature of Shigella is their ability to invade the cytoplasm of host epithelial cells and macrophages. A major component of host recognition of Shigella invasion is the activation of the inflammasome, a molecular platform that drives the activation of caspase-1 in macrophages. Although Shigella is known to induce the activation of the Nlrc4 inflammasome, the mechanism by which the bacterium activates Nlrc4 is largely unknown. We discovered that the Shigella T3SS inner rod protein MxiI induces Nlrc4 inflammasome activation through the interaction with host Naip2, which promoted the association of Naip2 with Nlrc4 in macrophages. Expression of MxiI induced caspase-1 activation, Asc oligomerization, pyroptosis and IL-1β release which required Naip2, but not Naip5. Significantly, caspase-1 activation induced by Shigella infection was unaffected by deficiency of the Pkcδ kinase. This study elucidates the microbial-host interactions that drive the activation of the Nlrc4 inflammasome in Shigella-infected macrophages.
Collapse
Affiliation(s)
- Shiho Suzuki
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Division of Bacterial Infection Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Luigi Franchi
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Lycera Corp., Ann Arbor, Michigan, United States of America
| | - Yuan He
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Raul Muñoz-Planillo
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Hitomi Mimuro
- Division of Bacteriology, Department of Infectious Diseases Control, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Toshihiko Suzuki
- Department of Molecular Bacteriology and Immunology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Chihiro Sasakawa
- Division of Bacterial Infection Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Nippon Institute for Biological Science, Tokyo, Japan
| | - Gabriel Núñez
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
26
|
Sone Y, Mochizuki Y, Koizawa K, Nakamura R, Pan-Hou H, Itoh T, Kiyono M. Mercurial-resistance determinants in Pseudomonas strain K-62 plasmid pMR68. AMB Express 2013; 3:41. [PMID: 23890172 PMCID: PMC3737084 DOI: 10.1186/2191-0855-3-41] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 07/24/2013] [Indexed: 11/10/2022] Open
Abstract
We report the complete nucleotide sequence of plasmid pMR68, isolated from Pseudomonas strain K-62, two plasmids contribute to broad-spectrum mercury resistance and that the mer operon from one of them (pMR26) has been previously characterized. The plasmid was 71,020 bp in length and contained 75 coding regions. Three mer gene clusters were identified. The first comprised merR-orf4-orf5-merT1-merP1-merF-merA-merB1, which confers bacterial resistance to mercuric ions and organomercury. The second and third clusters comprised merT2-merP2, which encodes a mercury transport system, and merB2, which encodes an organomercurial lyase, respectively. The deduced amino acid sequences for the proteins encoded by each of the mer genes identified in pMR68 bore greater similarity to sequences from Methylobacterium extorquens AM1 than to those from pMR26, a second mercury-resistance plasmid from Pseudomonas strain K-62. Escherichia coli cells carrying pMKY12 (containing merR-orf4-orf5-merT1-merP1-merF-merA-merB1 cloned from pMR68) and cells carrying pMRA114 (containing merR-merT-merP-merA-merG-merB1 cloned from plasmid pMR26) were more resistant to, and volatilized more, mercury from mercuric ions and phenylmercury than the control cells. The present results, together with our earlier findings, indicate that the high phenylmercury resistance noted for Pseudomonas strain K-62 seems to be achieved by multiple genes, particularly by the multiple merB encoding organomercurial lyase and one merG encoding cellular permeability to phenylmercury. The novel mer gene identified in pMR68 may help us to design new strategies aimed at the bioremediation of mercurials.
Collapse
|
27
|
Dwidar M, Leung BM, Yaguchi T, Takayama S, Mitchell RJ. Patterning bacterial communities on epithelial cells. PLoS One 2013; 8:e67165. [PMID: 23785519 PMCID: PMC3681762 DOI: 10.1371/journal.pone.0067165] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 05/15/2013] [Indexed: 11/23/2022] Open
Abstract
Micropatterning of bacteria using aqueous two phase system (ATPS) enables the localized culture and formation of physically separated bacterial communities on human epithelial cell sheets. This method was used to compare the effects of Escherichia coli strain MG1655 and an isogenic invasive counterpart that expresses the invasin (inv) gene from Yersinia pseudotuberculosis on the underlying epithelial cell layer. Large portions of the cell layer beneath the invasive strain were killed or detached while the non-invasive E. coli had no apparent effect on the epithelial cell layer over a 24 h observation period. In addition, simultaneous testing of the localized effects of three different bacterial species; E. coli MG1655, Shigella boydii KACC 10792 and Pseudomonas sp DSM 50906 on an epithelial cell layer is also demonstrated. The paper further shows the ability to use a bacterial predator, Bdellovibriobacteriovorus HD 100, to selectively remove the E. coli, S. boydii and P. sp communities from this bacteria-patterned epithelial cell layer. Importantly, predation and removal of the P. Sp was critical for maintaining viability of the underlying epithelial cells. Although this paper focuses on a few specific cell types, the technique should be broadly applicable to understand a variety of bacteria-epithelial cell interactions.
Collapse
Affiliation(s)
- Mohammed Dwidar
- School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Brendan M. Leung
- School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Toshiyuki Yaguchi
- School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
- Nagoya Institute of Technology, Biomechanics Laboratory, Gokiso-cho, Showa-ku, Nagoya, Japan
| | - Shuichi Takayama
- School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
- Department Biomedical Engineering and Macromolecular Science & Engineering Program, University of Michigan, Ann Arbor, United States of America
| | - Robert J. Mitchell
- School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| |
Collapse
|
28
|
Takamitsu I, Fukui Y, Ono N, Ikeda F, Kanayama A, Kobayashi I. [Examination of metallo-beta-lactamase-producing different types of Serratia marcescens detected in the same patient]. KANSENSHOGAKU ZASSHI. THE JOURNAL OF THE JAPANESE ASSOCIATION FOR INFECTIOUS DISEASES 2013; 87:189-194. [PMID: 23713329 DOI: 10.11150/kansenshogakuzasshi.87.189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Metallo-beta-lactamase (MBL) producing Serratia marcescens isolate was recovered from a study patient in September, 2007 in whom MBL non-producing S. marcescens had been isolated 2 months previously. Two S. marcescens isolates recovered from the study patient showed the same pulsed-field gel electrophoresis (PFGE) pattern. Seven S. marcescens isolates were recovered from other patients in our hospital during August, 2007 and November, 2007. Five of the seven isolates produced MBL. All of the MBL-producing isolates showed the same PFGE pattern and harbored plasmids of the same size and bla(IMP) genes. The bla(IMP) genes were easily transferred to Escherichia coli DH5alpha by transformation of a plasmid purified from the MBL-producing isolate. Those transformation experiments suggested that bla(IMP) genes were encoded by the plasmid. From these observations, it was speculated that the MBL non-producing S. marcescens isolate recovered from the study patient had acquired the plasmid which encoded bla(IMP) genes and a monoclone of MBL-producing S. marcescens spread horizontally in our hospital.
Collapse
Affiliation(s)
- Ito Takamitsu
- Laboratory of Microbiology, Kochi Prefectural Hata Kenmin Hospital
| | | | | | | | | | | |
Collapse
|
29
|
Zhang J, Qian L, Wu Y, Cai X, Li X, Cheng X, Qu D. Deletion of pic results in decreased virulence for a clinical isolate of Shigella flexneri 2a from China. BMC Microbiol 2013; 13:31. [PMID: 23391153 PMCID: PMC3626585 DOI: 10.1186/1471-2180-13-31] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Accepted: 01/30/2013] [Indexed: 11/28/2022] Open
Abstract
Background Shigella is a major pathogen responsible for bacillary dysentery, a severe form of shigellosis. Severity of the disease depends on the virulence of the infecting strain. Shigella pathogenicity is a multi-gene phenomenon, involving the participation of genes on an unstable large virulence plasmid and chromosomal pathogenicity islands. Results A multiplex PCR (mPCR) assay was developed to detect S. flexneri 2a from rural regions of Zhengding (Hebei Province, China). We isolated and tested 86 strains using our mPCR assay, which targeted the ipaH, ial and set1B genes. A clinical strain of S. flexneri 2a 51 (SF51) containing ipaH and ial, but lacking set1B was found. The virulence of this strain was found to be markedly decreased. Further testing showed that the SF51 strain lacked pic. To investigate the role of pic in S. flexneri 2a infections, a pic knockout mutant (SF301-∆ pic) and two complementation strains, SF301-∆ pic/pPic and SF51/pPic, were created. Differences in virulence for SF51, SF301-∆ pic, SF301-∆ pic/pPic, SF51/pPic and S. flexneri 2a 301 (SF301) were compared. Compared with SF301, both SF51 and SF301-∆ pic exhibited lower levels of Hela cell invasion and resulted in reduced keratoconjunctivitis, with low levels of tissue damage seen in murine eye sections. The virulence of SF301-∆ pic and SF51 was partially recovered in vitro and in vivo through the addition of a complementary pic gene. Conclusions The pic gene appears to be involved in an increase in pathogenicity of S. flexneri 2a. This gene assists with bacterial invasion into host cells and alters inflammatory reactions.
Collapse
Affiliation(s)
- Junqi Zhang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | | | | | | | | | | | | |
Collapse
|
30
|
The Shigella flexneri effector OspI deamidates UBC13 to dampen the inflammatory response. Nature 2012; 483:623-6. [PMID: 22407319 DOI: 10.1038/nature10894] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 01/24/2012] [Indexed: 12/12/2022]
Abstract
Many bacterial pathogens can enter various host cells and then survive intracellularly, transiently evade humoral immunity, and further disseminate to other cells and tissues. When bacteria enter host cells and replicate intracellularly, the host cells sense the invading bacteria as damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs) by way of various pattern recognition receptors. As a result, the host cells induce alarm signals that activate the innate immune system. Therefore, bacteria must modulate host inflammatory signalling and dampen these alarm signals. How pathogens do this after invading epithelial cells remains unclear, however. Here we show that OspI, a Shigella flexneri effector encoded by ORF169b on the large plasmid and delivered by the type ΙΙΙ secretion system, dampens acute inflammatory responses during bacterial invasion by suppressing the tumour-necrosis factor (TNF)-receptor-associated factor 6 (TRAF6)-mediated signalling pathway. OspI is a glutamine deamidase that selectively deamidates the glutamine residue at position 100 in UBC13 to a glutamic acid residue. Consequently, the E2 ubiquitin-conjugating activity required for TRAF6 activation is inhibited, allowing S. flexneri OspI to modulate the diacylglycerol-CBM (CARD-BCL10-MALT1) complex-TRAF6-nuclear-factor-κB signalling pathway. We determined the 2.0 Å crystal structure of OspI, which contains a putative cysteine-histidine-aspartic acid catalytic triad. A mutational analysis showed this catalytic triad to be essential for the deamidation of UBC13. Our results suggest that S. flexneri inhibits acute inflammatory responses in the initial stage of infection by targeting the UBC13-TRAF6 complex.
Collapse
|
31
|
The iron-responsive Fur/RyhB regulatory cascade modulates the Shigella outer membrane protease IcsP. Infect Immun 2011; 79:4543-9. [PMID: 21859852 DOI: 10.1128/iai.05340-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Actin-based motility is central to the pathogenicity of the intracellular bacterial pathogen Shigella. Two Shigella outer membrane proteins, IcsA and IcsP, are required for efficient actin-based motility in the host cell cytoplasm, and the genes encoding both proteins are carried on the large virulence plasmid. IcsA triggers actin polymerization on the surface of the bacterium, leading to the formation of an actin tail that allows both intra- and intercellular spread. IcsP, an outer membrane protease, modulates the amount and distribution of the IcsA protein on the bacterial surface through proteolytic cleavage of IcsA. Transcription of icsP is increased in the presence of VirB, a DNA-binding protein that positively regulates many genes carried on the large virulence plasmid. In Shigella dysenteriae, the small regulatory RNA RyhB, which is a member of the iron-responsive Fur regulon, suppresses several virulence-associated phenotypes by downregulating levels of virB in response to iron limitation. Here we show that the Fur/RyhB regulatory pathway downregulates IcsP levels in response to low iron concentrations in Shigella flexneri and that this occurs at the level of transcription through the RyhB-dependent regulation of VirB. These observations demonstrate that in Shigella species the Fur/RyhB regulatory pathway provides a mechanism to finely tune the expression of icsP in response to the low concentrations of free iron predicted to be encountered within colonic epithelial cells.
Collapse
|
32
|
Abstract
Shigella flexneri is a facultative intracellular pathogen that invades and disrupts the colonic epithelium. In order to thrive in the host, S. flexneri must adapt to environmental conditions in the gut and within the eukaryotic cytosol, including variability in the available carbon sources and other nutrients. We examined the roles of the carbon consumption regulators CsrA and Cra in a cell culture model of S. flexneri virulence. CsrA is an activator of glycolysis and a repressor of gluconeogenesis, and a csrA mutant had decreased attachment and invasion of cultured cells. Conversely, Cra represses glycolysis and activates gluconeogenesis, and the cra mutant had an increase in both attachment and invasion compared to the wild-type strain. Both mutants were defective in plaque formation. The importance of the glycolytic pathway in invasion and plaque formation was confirmed by testing the effect of a mutation in the glycolysis gene pfkA. The pfkA mutant was noninvasive and had cell surface alterations as indicated by decreased sensitivity to SDS and an altered lipopolysaccharide profile. The loss of invasion by the csrA and pfkA mutants was due to decreased expression of the S. flexneri virulence factor regulators virF and virB, resulting in decreased production of Shigella invasion plasmid antigens (Ipa). These data indicate that regulation of carbon metabolism and expression of the glycolysis gene pfkA are critical for synthesis of the virulence gene regulators VirF and VirB, and both the glycolytic and gluconeogenic pathways influence steps in S. flexneri invasion and plaque formation.
Collapse
|
33
|
Durand JMB, Björk GR. Metabolic control through ornithine and uracil of epithelial cell invasion by Shigella flexneri. Microbiology (Reading) 2009; 155:2498-2508. [DOI: 10.1099/mic.0.028191-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
This paper shows that compounds in defined growth media strongly influence the expression of the effectors of virulence in the human invasive pathogen Shigella flexneri. Ornithine in conjunction with uracil reduces the haemolytic ability of wild-type cultures more than 20-fold and the expression of the type III secretion system more than 8-fold, as monitored by an mxiC : : lacZ transcriptional reporter. mxiC gene expression is further decreased by the presence of methionine or branched-chain amino acids (15-fold or 25-fold at least, respectively). Lysine and a few other aminated metabolites (cadaverine, homoserine and diaminopimelate) counteract the ornithine-mediated inhibition of haemolytic activity and of the expression of a transcriptional activator virF reporter. The complete abolition of invasion of HeLa cells by wild-type bacteria by ornithine, uracil, methionine or branched-chain amino acids establishes that these metabolites are powerful effectors of virulence. These findings provide a direct connection between metabolism and virulence in S. flexneri. The inhibitory potential exhibited by the nutritional environment is stronger than temperature, the classical environmental effector of virulence. The implications and practical application of this finding in prophylaxis and treatment of shigellosis are discussed.
Collapse
Affiliation(s)
| | - Glenn R. Björk
- Department of Molecular Biology, Umeå University, S-90 187 Umeå, Sweden
| |
Collapse
|
34
|
Kim M, Ogawa M, Fujita Y, Yoshikawa Y, Nagai T, Koyama T, Nagai S, Lange A, Fässler R, Sasakawa C. Bacteria hijack integrin-linked kinase to stabilize focal adhesions and block cell detachment. Nature 2009; 459:578-82. [PMID: 19489119 DOI: 10.1038/nature07952] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The rapid turnover and exfoliation of mucosal epithelial cells provides an innate defence system against bacterial infection. Nevertheless, many pathogenic bacteria, including Shigella, are able to surmount exfoliation and colonize the epithelium efficiently. Here we show that the Shigella flexneri effector OspE (consisting of OspE1 and OspE2 proteins), which is highly conserved among enteropathogenic Escherichia coli, enterohaemorrhagic E. coli, Citrobacter rodentium and Salmonella strains, reinforces host cell adherence to the basement membrane by interacting with integrin-linked kinase (ILK). The number of focal adhesions was augmented along with membrane fraction ILK by ILK-OspE binding. The interaction between ILK and OspE increased cell surface levels of 1 integrin and suppressed phosphorylation of focal adhesion kinase and paxillin, which are required for rapid turnover of focal adhesion in cell motility. Nocodazole-washout-induced focal adhesion disassembly was blocked by expression of OspE. Polarized epithelial cells infected with a Shigella mutant lacking the ospE gene underwent more rapid cell detachment than cells infected with wild-type Shigella. Infection of guinea pig colons with Shigella corroborated the pivotal role of the OspE-ILK interaction in suppressing epithelial detachment, increasing bacterial cell-to-cell spreading, and promoting bacterial colonization. These results indicate that Shigella sustain their infectious foothold by using special tactics to prevent detachment of infected cells.
Collapse
Affiliation(s)
- Minsoo Kim
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Molecular pathogenesis of Shigella spp.: controlling host cell signaling, invasion, and death by type III secretion. Clin Microbiol Rev 2008; 21:134-56. [PMID: 18202440 DOI: 10.1128/cmr.00032-07] [Citation(s) in RCA: 411] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Shigella spp. are gram-negative pathogenic bacteria that evolved from harmless enterobacterial relatives and may cause devastating diarrhea upon ingestion. Research performed over the last 25 years revealed that a type III secretion system (T3SS) encoded on a large plasmid is a key virulence factor of Shigella flexneri. The T3SS determines the interactions of S. flexneri with intestinal cells by consecutively translocating two sets of effector proteins into the target cells. Thus, S. flexneri controls invasion into EC, intra- and intercellular spread, macrophage cell death, as well as host inflammatory responses. Some of the translocated effector proteins show novel biochemical activities by which they intercept host cell signal transduction pathways. An understanding of the molecular mechanisms underlying Shigella pathogenesis will foster the development of a safe and efficient vaccine, which, in parallel with improved hygiene, should curb infections by this widespread pathogen.
Collapse
|
36
|
Suzuki T, Franchi L, Toma C, Ashida H, Ogawa M, Yoshikawa Y, Mimuro H, Inohara N, Sasakawa C, Nuñez G. Differential regulation of caspase-1 activation, pyroptosis, and autophagy via Ipaf and ASC in Shigella-infected macrophages. PLoS Pathog 2007; 3:e111. [PMID: 17696608 PMCID: PMC1941748 DOI: 10.1371/journal.ppat.0030111] [Citation(s) in RCA: 428] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Accepted: 06/14/2007] [Indexed: 02/07/2023] Open
Abstract
Shigella infection, the cause of bacillary dysentery, induces caspase-1 activation and cell death in macrophages, but the precise mechanisms of this activation remain poorly understood. We demonstrate here that caspase-1 activation and IL-1β processing induced by Shigella are mediated through Ipaf, a cytosolic pattern-recognition receptor of the nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family, and the adaptor protein apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (ASC). We also show that Ipaf was critical for pyroptosis, a specialized form of caspase-1-dependent cell death induced in macrophages by bacterial infection, whereas ASC was dispensable. Unlike that observed in Salmonella and Legionella, caspase-1 activation induced by Shigella infection was independent of flagellin. Notably, infection of macrophages with Shigella induced autophagy, which was dramatically increased by the absence of caspase-1 or Ipaf, but not ASC. Autophagy induced by Shigella required an intact bacterial type III secretion system but not VirG protein, a bacterial factor required for autophagy in epithelial-infected cells. Treatment of macrophages with 3-methyladenine, an inhibitor of autophagy, enhanced pyroptosis induced by Shigella infection, suggesting that autophagy protects infected macrophages from pyroptosis. Thus, Ipaf plays a critical role in caspase-1 activation induced by Shigella independently of flagellin. Furthermore, the absence of Ipaf or caspase-1, but not ASC, regulates pyroptosis and the induction of autophagy in Shigella-infected macrophages, providing a novel function for NLR proteins in bacterial–host interactions. Shigella are bacterial pathogens that are the cause of bacillary dysentery known as shigellosis. A crucial aspect of the propensity of Shigella to cause diseases lies in its ability to invade the cytoplasm of epithelial cells as well as macrophages. The bacterial invasion of macrophages induces pyroptosis, the proinflammatory cell death associated with caspase-1 activation. Activated caspase-1 then cleaves and activates prointerleukin (proIL)-1β and proIL-18, which are proinflammatory cytokines involved in host inflammatory responses. However, the precise mechanisms of caspase-1 activation induced by Shigella infection remain poorly understood. Ipaf, a cytosolic pattern-recognition receptor of the nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family, is a crucial host factor that activates caspase-1 through the sensing of flagellin produced by some bacteria, such as Salmonella or Legionella. We discovered that Ipaf and the adaptor protein ASC are required for caspase-1 activation induced by non-flagellated Shigella infection. Thus, Ipaf and ASC mediate caspase-1 activation by sensing an unknown bacterial factor, but not flagellin. Autophagy, a cellular system for eliminating intracellular pathogens, was dramatically enhanced in Shigella-infected macrophages by the absence of caspase-1 or Ipaf, but not ASC. The inhibition of autophagy promoted Shigella-induced cell death, suggesting that autophagy protects infected macrophages from pyroptosis. This study provides evidence that in Shigella-infected macrophages, autophagy is inhibited by Ipaf and caspase-1, but positively regulated by ASC, providing a novel function for NLR proteins in bacterial–host interactions.
Collapse
Affiliation(s)
- Toshihiko Suzuki
- Division of Bacterial Pathogenesis, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
- * To whom correspondence should be addressed. E-mail: (TS), (GN)
| | - Luigi Franchi
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Claudia Toma
- Division of Bacterial Pathogenesis, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Hiroshi Ashida
- Department of Microbiology and Immunology, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Michinaga Ogawa
- Department of Microbiology and Immunology, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yuko Yoshikawa
- Department of Microbiology and Immunology, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Hitomi Mimuro
- Department of Microbiology and Immunology, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Naohiro Inohara
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Chihiro Sasakawa
- Department of Microbiology and Immunology, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Gabriel Nuñez
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * To whom correspondence should be addressed. E-mail: (TS), (GN)
| |
Collapse
|
37
|
Talukder KA, Mondol AS, Islam MA, Islam Z, Dutta DK, Khajanchi BK, Azmi IJ, Hossain MA, Rahman M, Cheasty T, Cravioto A, Nair GB, Sack DA. A novel serovar of Shigella dysenteriae from patients with diarrhoea in Bangladesh. J Med Microbiol 2007; 56:654-658. [PMID: 17446289 DOI: 10.1099/jmm.0.46999-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Every year, around 3 % of isolates from patients with diarrhoea at Dhaka Hospital, ICDDR,B, are identified as Shigella-like organisms (SLOs) based on their activity in biochemical tests. These isolates do not react with any of the current Shigella antisera including all existing and provisional serotypes. Among these SLOs, a unique cluster of seven isolates with an identical plasmid profile was found and these isolates were further characterized by phenotypic and genotypic techniques. All were nonlactose fermenters, with an identical biochemical pattern typical of Shigella dysenteriae. They were classified as invasive since they harboured the 140 MDa invasive plasmid, were able to bind Congo red, produced keratoconjunctivitis in the guinea pig eye, and were positive by PCR for the ipaH gene and Shigella enterotoxin 2 [ShET-2] gene. All isolates were resistant to ampicillin, tetracycline and sulfamethoxazole-trimethoprim but were susceptible to mecillinam, nalidixic acid, ceftriaxone and ciprofloxacin. Six of the isolates were identical in DNA pattern by PFGE with the seventh exhibiting a closely related pattern; both patterns were distinguishable from all other Shigella and Escherichia coli patterns. An antiserum prepared against one of the isolates reacted with all isolates and did not cross-react with other Shigella and E. coli serotype reference strains. It is therefore proposed that these isolates represent a new provisional serovar of S. dysenteriae, type strain KIVI 162.
Collapse
Affiliation(s)
- Kaisar A Talukder
- ICDDR,B: Centre for Health and Population Research, GPO Box 128, Dhaka 1000, Bangladesh
| | - Abdus S Mondol
- ICDDR,B: Centre for Health and Population Research, GPO Box 128, Dhaka 1000, Bangladesh
| | - M Aminul Islam
- ICDDR,B: Centre for Health and Population Research, GPO Box 128, Dhaka 1000, Bangladesh
| | - Zhahirul Islam
- ICDDR,B: Centre for Health and Population Research, GPO Box 128, Dhaka 1000, Bangladesh
| | - Dilip K Dutta
- ICDDR,B: Centre for Health and Population Research, GPO Box 128, Dhaka 1000, Bangladesh
| | - Bijay K Khajanchi
- ICDDR,B: Centre for Health and Population Research, GPO Box 128, Dhaka 1000, Bangladesh
| | - Ishrat J Azmi
- ICDDR,B: Centre for Health and Population Research, GPO Box 128, Dhaka 1000, Bangladesh
| | - M A Hossain
- ICDDR,B: Centre for Health and Population Research, GPO Box 128, Dhaka 1000, Bangladesh
| | - M Rahman
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Thomas Cheasty
- Laboratory of Enteric Pathogens, Health Protection Agency, Centre for Infections, Colindale, London NW9, UK
| | - Alejandro Cravioto
- ICDDR,B: Centre for Health and Population Research, GPO Box 128, Dhaka 1000, Bangladesh
| | - G B Nair
- ICDDR,B: Centre for Health and Population Research, GPO Box 128, Dhaka 1000, Bangladesh
| | - David A Sack
- ICDDR,B: Centre for Health and Population Research, GPO Box 128, Dhaka 1000, Bangladesh
| |
Collapse
|
38
|
Ashida H, Toyotome T, Nagai T, Sasakawa C. Shigella chromosomal IpaH proteins are secreted via the type III secretion system and act as effectors. Mol Microbiol 2007; 63:680-93. [PMID: 17214743 DOI: 10.1111/j.1365-2958.2006.05547.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Shigella possess 220 kb plasmid, and the major virulence determinants, called effectors, and the type III secretion system (TTSS) are exclusively encoded by the plasmid. The genome sequences of S. flexneri strains indicate that several ipaH family genes are located on both the plasmid and the chromosome, but whether their chromosomal IpaH cognates can be secreted from Shigella remains unknown. Here we report that S. flexneri strain, YSH6000 encodes seven ipaH cognate genes on the chromosome and that the IpaH proteins are secreted via the TTSS. The secretion kinetics of IpaH proteins by bacteria, however, showed delay compared with those of IpaB, IpaC and IpaD. Expression of the each mRNA of ipaH in Shigella was increased after bacterial entry into epithelial cells, and the IpaH proteins were secreted by intracellular bacteria. Although individual chromosomal ipaH deletion mutants showed no appreciable changes in the pathogenesis in a mouse pulmonary infection model, the DeltaipaH-null mutant, whose chromosome lacks all ipaH genes, was attenuated to mice lethality. Indeed, the histological examination for mouse lungs infected with the DeltaipaH-null showed a greater inflammatory response than induced by wild-type Shigella, suggesting that the chromosomal IpaH proteins act synergistically as effectors to modulate the host inflammatory responses.
Collapse
Affiliation(s)
- Hiroshi Ashida
- Department of Microbiology and Immunology, International Research Center for Infectious Disease, Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Tokyo 108-8639, Japan
| | | | | | | |
Collapse
|
39
|
Talukder KA, Islam Z, Dutta DK, Islam MA, Khajanchi BK, Azmi IJ, Iqbal MS, Hossain MA, Faruque ASG, Nair GB, Sack DA. Antibiotic resistance and genetic diversity of Shigella sonnei isolated from patients with diarrhoea between 1999 and 2003 in Bangladesh. J Med Microbiol 2006; 55:1257-1263. [PMID: 16914657 DOI: 10.1099/jmm.0.46641-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Shigella sonnei is a significant cause of diarrhoeal infection in both developing and industrialized countries. From 1999 to 2003, 445 strains of Shigella sonnei were isolated from patients admitted to the diarrhoea treatment centre of the International Center for Diarrhoeal Disease Research, Bangladesh. More than 60% of the isolates were resistant to nalidixic acid, 89% to sulfamethoxazole-trimethoprim and 9.5% to ampicillin. In addition, 4% of strains were resistant to multiple antibiotics (AmpR TetR SxtR StrR) and 4.2% of strains were sensitive to all antibiotics tested. None of the strains were positive for the set1 gene, whereas 46% were positive for the sen gene. Forty-six per cent of the strains (stored at -70 degrees C) harboured the 120 MDa invasive plasmid and representative strains produced keratoconjunctivitis in the guinea pig eye. In addition, three plasmids of approximately 5, 1.8 and 1.4 MDa were found to be present in more than 90% of the strains. A self-transmissible, middle-ranged plasmid (35-80 MDa) carrying the multiple antibiotic resistance gene was found in some strains. PFGE analysis of the strains identified five unique types with many subtypes, which were characterized into four unique types by ribotyping analysis. It can be concluded that endemic strains of Shigella sonnei isolated from patients in Bangladesh are diverse in their genetic pattern.
Collapse
Affiliation(s)
- Kaisar A Talukder
- ICDDR, B, Centre for Health and Population Research, GPO Box-128, Dhaka-1000, Bangladesh
| | - Zhahirul Islam
- ICDDR, B, Centre for Health and Population Research, GPO Box-128, Dhaka-1000, Bangladesh
| | - Dilip K Dutta
- ICDDR, B, Centre for Health and Population Research, GPO Box-128, Dhaka-1000, Bangladesh
| | - M Aminul Islam
- ICDDR, B, Centre for Health and Population Research, GPO Box-128, Dhaka-1000, Bangladesh
| | - Bijay K Khajanchi
- ICDDR, B, Centre for Health and Population Research, GPO Box-128, Dhaka-1000, Bangladesh
| | - Ishrat J Azmi
- ICDDR, B, Centre for Health and Population Research, GPO Box-128, Dhaka-1000, Bangladesh
| | - Mohd S Iqbal
- ICDDR, B, Centre for Health and Population Research, GPO Box-128, Dhaka-1000, Bangladesh
| | - M A Hossain
- ICDDR, B, Centre for Health and Population Research, GPO Box-128, Dhaka-1000, Bangladesh
| | - A S G Faruque
- ICDDR, B, Centre for Health and Population Research, GPO Box-128, Dhaka-1000, Bangladesh
| | - G Balakrish Nair
- ICDDR, B, Centre for Health and Population Research, GPO Box-128, Dhaka-1000, Bangladesh
| | - David A Sack
- ICDDR, B, Centre for Health and Population Research, GPO Box-128, Dhaka-1000, Bangladesh
| |
Collapse
|
40
|
Suzuki T, Yoshikawa Y, Ashida H, Iwai H, Toyotome T, Matsui H, Sasakawa C. High Vaccine Efficacy against Shigellosis of Recombinant NoninvasiveShigellaMutant That ExpressesYersiniaInvasin. THE JOURNAL OF IMMUNOLOGY 2006; 177:4709-17. [PMID: 16982910 DOI: 10.4049/jimmunol.177.7.4709] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Live attenuated Shigella vaccines elicit protective immune responses, but involve a potential risk of inducing a strong inflammatory reaction. The bacterial invasiveness that is crucial for Ag delivery causes inflammatory destruction of infected epithelial cells and proinflammatory cell death of infected macrophages. In this study, the noninvasive Shigella mutant DeltaipaB was equipped with Yersinia invasin protein, which has been shown to mediate bacterial invasion and targeting to M cells located in follicle-associated epithelium. Invasin-expressing DeltaipaB (DeltaipaB/inv) was internalized into epithelial cells and retained in the intraphagosomal space. DeltaipaB/inv did not induce necrotic cell death of infected macrophages nor cause symptomatic damage after intranasal vaccination of mice. DeltaipaB/inv was safer and more effective than the conventional live vaccine, DeltavirG. Infection by DeltaipaB/inv caused polymorphonuclear neutrophil infiltration in the lung, but did not induce production of large amounts of proinflammatory cytokines. We concluded that the low experimental morbidity and high vaccine efficacy of DeltaipaB/inv are primarily based on high protective immune responses, which may be enhanced by the polymorphonuclear neutrophil infiltration unaccompanied by tissue injury.
Collapse
Affiliation(s)
- Toshihiko Suzuki
- Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| | | | | | | | | | | | | |
Collapse
|
41
|
Kubota K. A novel functional T cell hybridoma recognizes macrophage cell death induced by bacteria: a possible role for innate lymphocytes in bacterial infection. THE JOURNAL OF IMMUNOLOGY 2006; 176:7576-88. [PMID: 16751404 DOI: 10.4049/jimmunol.176.12.7576] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have established a novel TCRalphabeta (TCRVbeta6)(+)CD4(-)CD8(-) T cell hybridoma designated B6HO3. When the B6HO3 cells were cocultured with bacterial-infected J774 macrophage-like cells, IFN-gamma production by B6HO3 cells was triggered through direct cell-cell contact with dying J774 cells infected with Listeria monocytogenes (LM), Shigella flexneri, or Salmonella typhimurium that expressed the type III secretion system, but not with intact J774 cells infected with heat-killed LM, nonhemolytic lysteriolysin O-deficient (Hly(-)) LM, plasmid-cured Shigella, or stationary-phase Salmonella. However, the triggering of B6HO3 cells for IFN-gamma production involved neither dying hepatoma cells infected with LM nor dying J774 cells caused by gliotoxin treatment or freeze thawing. Cycloheximide and Abs to H-2K(d), H-2D(d), Ia(d), CD1d, TCRVbeta6, and IL-12 did not inhibit the contact-dependent IFN-gamma response, indicating that this IFN-gamma response did not require de novo protein synthesis in bacterial-infected J774 cells and was TCR and IL-12 independent. Thus, in an as yet undefined way, B6HO3 hybridoma recognizes a specialized form of macrophage cell death resulting from bacterial infection and consequently produces IFN-gamma. Moreover, contact-dependent interaction of minor subsets of splenic alphabeta T cells, including NKT cells with dying LM-infected J774 and bone marrow-derived macrophage (BMM) cells, proved to provide an IFN-gamma-productive stimulus for these minor T cell populations, to which the parental T cell of the B6HO3 hybridoma appeared to belong. Unexpectedly, subsets of gammadelta T and NK cells similarly responded to dying LM-infected macrophage cells. These results propose that innate lymphocytes may possess a recognition system sensing macrophage cell "danger" resulting from bacterial infection.
Collapse
MESH Headings
- Animals
- Antibody-Dependent Cell Cytotoxicity/immunology
- Carcinoma, Hepatocellular/microbiology
- Carcinoma, Hepatocellular/pathology
- Cell Communication/immunology
- Cell Death/immunology
- Cell Line, Tumor
- Coculture Techniques
- Cross-Linking Reagents/metabolism
- Cross-Priming/immunology
- Freezing
- Gliotoxin/immunology
- Hybridomas
- Immunophenotyping
- Interferon-gamma/biosynthesis
- Listeriosis/immunology
- Listeriosis/microbiology
- Lymphoma, T-Cell/immunology
- Lymphoma, T-Cell/microbiology
- Lymphoma, T-Cell/pathology
- Macrophages/immunology
- Macrophages/microbiology
- Macrophages/pathology
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Receptor-CD3 Complex, Antigen, T-Cell/immunology
- Receptor-CD3 Complex, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/microbiology
Collapse
Affiliation(s)
- Koichi Kubota
- Department of Microbiology, Kitasato University School of Medicine, Sagamihara, Japan. shinubo@soley
| |
Collapse
|
42
|
Talukder KA, Khajanchi BK, Islam MA, Dutta DK, Islam Z, Khan SI, Nair GB, Sack DA. The emerging strains of Shigella dysenteriae type 2 in Bangladesh are clonal. Epidemiol Infect 2006; 134:1249-56. [PMID: 16684401 PMCID: PMC2870502 DOI: 10.1017/s0950268806006029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2005] [Indexed: 11/07/2022] Open
Abstract
A total of 113 strains of Shigella dysenteriae type 2 isolated from patients attending the Dhaka diarrhoea treatment centre of ICDDR,B: Centre for Health and Population Research during the period 1999-2004 were studied. Serotype of the isolates was confirmed using commercially available antisera. Except for arabinose fermentation, all the strains had similar biochemical reactions. More than 60% of the strains were sensitive to commonly used antibiotics; only 6% (n=7) of the strains were resistant to nalidixic acid, and none of the strains were resistant to mecillinam and ciprofloxacin. All strains were invasive as demonstrated by the presence of a 140 MDa plasmid, ial, sen and ipaH genes, Congo Red absorption ability and by the Sereny test performed on representative strains. Plasmid patterns were heterogeneous but more than 50% of strains were confined to a single pattern. All strains possessed a 1.6 MDa plasmid and 87% of the strains contained a 4 MDa plasmid. Middle-range plasmids (90 MDa to 30 MDa) present in 36% of the strains were not associated with antibiotic resistance. All the strains were clustered within a single type with four subtypes by pulsed-field gel electrophoresis while ribotyping patterns of all the strains were identical.
Collapse
Affiliation(s)
- K A Talukder
- ICDDR, B: Centre for Health and Population Research, Dhaka, Bangladesh.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Hens DK, Chatterjee NC, Kumar R. New temperate DNA phage BcP15 acts as a drug resistance vector. Arch Virol 2006; 151:1345-53. [PMID: 16463125 DOI: 10.1007/s00705-005-0713-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2005] [Accepted: 12/16/2005] [Indexed: 10/25/2022]
Abstract
This study was designed to determine the role of a new temperate DNA phage BcP15 in relation to drug resistance. The multidrug resistant Shigella flexneri NK1925 was isolated from a patient of Infectious Diseases Hospital, Kolkata, India. This strain contained five plasmids ranging in size from 3 to 212 kb. After curing of five plasmids, this strain became sensitive to antibiotics. A plasmidless multidrug-resistant strain Burkholderia cepacia DR11 was isolated during the survey of microorganisms from coastal waters of deltaic Sunderbans. This strain always released a temperate phage BcP15 into culture supernatant. Turbid plaque formation was observed on the lawn of a plasmidless version (Pl(-)35) of Shigella flexneri NK1925. A few distinct clones (Pl(-)35R) appeared within the region of each plaque after 18 h incubation. S. flexneri NK1925, Pl(-)35, and Pl(-)35R clones showed the same PFGE band pattern of XbaI-digested chromosomal DNA. However, Pl(-)35R clones were resistant to co-trimoxazole, trimethoprim, and eryth- romycin, to which B. cepacia DR11 was also resistant. Southern hybridization results indicated that these three antibiotic resistances in Pl(-)35R clones were due to a BcP15 phage lysogen in the Pl(-)35 version of S. flexneri NK1925.
Collapse
MESH Headings
- Anti-Bacterial Agents/pharmacology
- Bacteriophages/genetics
- Blotting, Southern
- Burkholderia cepacia/drug effects
- Burkholderia cepacia/virology
- DNA Fingerprinting
- DNA, Bacterial/genetics
- DNA, Viral/analysis
- Deoxyribonucleases, Type II Site-Specific
- Drug Resistance, Multiple, Bacterial/genetics
- Dysentery, Bacillary/microbiology
- Electrophoresis, Gel, Pulsed-Field
- Erythromycin/pharmacology
- Gene Transfer, Horizontal
- Humans
- India
- Plasmids/genetics
- Polymorphism, Restriction Fragment Length
- Prophages/genetics
- Shigella flexneri/drug effects
- Shigella flexneri/isolation & purification
- Shigella flexneri/virology
- Trimethoprim/pharmacology
- Trimethoprim, Sulfamethoxazole Drug Combination/pharmacology
- Viral Plaque Assay
Collapse
Affiliation(s)
- D K Hens
- Sonamukhi College, Sonamukhi, Bankura, India
| | | | | |
Collapse
|
44
|
Imamura S, Kido N, Kato M, Kawase H, Miyama A, Tsuji T. A unique DNA sequence of human enterotoxigenic Escherichia coli enterotoxin encoded by chromosomal DNA. FEMS Microbiol Lett 2006. [DOI: 10.1111/j.1574-6968.1997.tb10200.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
45
|
|
46
|
Ohya K, Handa Y, Ogawa M, Suzuki M, Sasakawa C. IpgB1 is a novel Shigella effector protein involved in bacterial invasion of host cells. Its activity to promote membrane ruffling via Rac1 and Cdc42 activation. J Biol Chem 2005; 280:24022-34. [PMID: 15849186 DOI: 10.1074/jbc.m502509200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Shigella, the causative agent of bacillary dysentery, is capable of inducing the large scale membrane ruffling required for the bacterial invasion of host cells. Shigella secrete a subset of effectors via the type III secretion system (TTSS) into the host cells to induce membrane ruffling. Here, we show that IpgB1 is secreted via the TTSS into epithelial cells and plays a major role in producing membrane ruffles via stimulation of Rac1 and Cdc42 activities, thus promoting bacterial invasion of epithelial cells. The invasiveness of the ipgB1 mutant was decreased to less than 50% of the wild-type level (100%) in a gentamicin protection or plaque forming assay. HeLa cells infected with the wild-type or a IpgB1-hyperproducing strain developed membrane ruffles, with the invasiveness and the scale of membrane ruffles being comparable with the level of IpgB1 production in bacteria. Upon expression of EGFP-IpgB1 in HeLa cells, large membrane ruffles are extended, where the EGFP-IpgB1 was predominantly associated with the cytoplasmic membrane. The IpgB1-mediated formation of ruffles was significantly diminished by expressing Rac1 small interfering RNA and Cdc42 small interfering RNA or by treatment with GGTI-298, an inhibitor of the geranylgeranylation of Rho GTPases. When IpgB1 was expressed in host cells or wild-type Shigella-infected host cells, Rac1 and Cdc42 were activated. The results thus indicate that IpgB1 is a novel Shigella effector involved in bacterial invasion of epithelial cells via the activation of Rho GTPases.
Collapse
Affiliation(s)
- Kenji Ohya
- Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | |
Collapse
|
47
|
Thong KL, Hoe SLL, Puthucheary SD, Md Yasin R. Detection of virulence genes in Malaysian Shigella species by multiplex PCR assay. BMC Infect Dis 2005; 5:8. [PMID: 15707504 PMCID: PMC551607 DOI: 10.1186/1471-2334-5-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Accepted: 02/14/2005] [Indexed: 11/10/2022] Open
Abstract
Background In Malaysia, Shigella spp. was reported to be the third commonest bacterial agent responsible for childhood diarrhoea. Currently, isolation of the bacterium and confirmation of the disease by microbiological and biochemical methods remain as the "gold standard". This study aimed to detect the prevalence of four Shigella virulence genes present concurrently, in randomly selected Malaysian strains via a rapid multiplex PCR (mPCR) assay. Methods A mPCR assay was designed for the simultaneous detection of chromosomal- and plasmid-encoded virulence genes (set1A, set1B, ial and ipaH) in Shigella spp. One hundred and ten Malaysian strains (1997–2000) isolated from patients from various government hospitals were used. Reproducibility and sensitivity of the assay were also evaluated. Applicability of the mPCR in clinical settings was tested with spiked faeces following preincubation in brain heart infusion (BHI) broth. Results The ipaH sequence was present in all the strains, while each of the set1A, set1B and ial gene was present in 40% of the strains tested. Reproducibility of the mPCR assay was 100% and none of the non-Shigella pathogens tested in this study were amplified. The mPCR could detect 100 colony-forming units (cfu) of shigellae per reaction mixture in spiked faeces following preincubation. Conclusions The mPCR system is reproducible, sensitive and is able to identify pathogenic strains of shigellae irrespective of the locality of the virulence genes. It can be easily performed with a high throughput to give a presumptive identification of the causal pathogen.
Collapse
Affiliation(s)
- Kwai Lin Thong
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Susan Ling Ling Hoe
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - SD Puthucheary
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Rohani Md Yasin
- Institute for Medical Research, Jalan Pahang, 50588 Kuala Lumpur, Malaysia
| |
Collapse
|
48
|
Suzuki T, Nakanishi K, Tsutsui H, Iwai H, Akira S, Inohara N, Chamaillard M, Nuñez G, Sasakawa C. A novel caspase-1/toll-like receptor 4-independent pathway of cell death induced by cytosolic Shigella in infected macrophages. J Biol Chem 2005; 280:14042-50. [PMID: 15695506 DOI: 10.1074/jbc.m414671200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Shigella-induced macrophage cell death is an important step in the induction of acute inflammatory responses that ultimately lead to bacillary dysentery. Cell death was previously reported to be dependent upon the activation of caspase-1 via interaction with IpaB secreted by intracellular Shigella, but in this study, we show that Shigella infection of macrophages can also induce cell death independent of caspase-1 or IpaB activity. Time-lapse imaging and electron microscopic analyses indicated that caspase-1-dependent and -independent cell death is morphologically indistinguishable and that both resemble necrosis. Analyses of Shigella mutants or Escherichia coli using co-infection with Listeria suggested that a component common to Gram-negative bacteria is involved in inducing caspase-1-independent cell death. Further studies revealed that translocation of bacterial lipid A into the cytosol of macrophages potentially mediates cell death. Notably, cell death induced by cytosolic bacteria was TLR4-independent. These results identify a novel cell death pathway induced by intracellular Gram-negative bacteria that may play a role in microbial-host interactions and inflammatory responses.
Collapse
Affiliation(s)
- Toshihiko Suzuki
- Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Miki T, Okada N, Shimada Y, Danbara H. Characterization of Salmonella pathogenicity island 1 type III secretion-dependent hemolytic activity in Salmonella enterica serovar Typhimurium. Microb Pathog 2004; 37:65-72. [PMID: 15312846 DOI: 10.1016/j.micpath.2004.04.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2004] [Accepted: 04/30/2004] [Indexed: 12/24/2022]
Abstract
A number of bacteria that are pathogenic for animals and plants possess a type III secretion system (TTSS) to translocate virulence-associated proteins into host cells. In several bacteria, it has been reported that the TTSS is correlated with an ability to cause contact-dependent hemolysis in vitro. Here, we showed that the Salmonella enterica serovar Typhimurium strain SL1344 exhibited Salmonella pathogenicity island 1 type III secretion-dependent, contact-mediated, hemolytic activity. Mutations with a single deletion in genes encoding putative pore-forming proteins, SipB and SipC, secreted by the TTSS abolished hemolytic activity. In addition, the osmoprotection studies revealed that molecules larger than PEG2000 conferred significant protection against lysis induced by Salmonella. These results indicate that the hemolysis generated by Salmonella is due to the formation of pores within the erythrocyte membrane.
Collapse
Affiliation(s)
- Tsuyoshi Miki
- Department of Microbiology, School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-Ku, Tokyo 108-8641, Japan
| | | | | | | |
Collapse
|
50
|
Sakellaris H, Luck SN, Al-Hasani K, Rajakumar K, Turner SA, Adler B. Regulated site-specific recombination of the she pathogenicity island of Shigella flexneri. Mol Microbiol 2004; 52:1329-36. [PMID: 15165236 DOI: 10.1111/j.1365-2958.2004.04048.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The she pathogenicity island (PAI) is a chromosomal, laterally acquired, integrative element of Shigella flexneri that carries genes with established or putative roles in virulence. We demonstrate that spontaneous, precise excision of the element from its integration site in the 3' terminus of the pheV tRNA gene is mediated by an integrase gene (int) and a gene designated rox (regulator of excision), both of which are carried on the she PAI. Integrase-mediated excision occurs via recombination between a 22 bp sequence at the 3' terminus of pheV and an imperfect direct repeat at the pheV-distal boundary of the PAI. Excision leads to the formation of a circular episomal form of the PAI, reminiscent of circular excision intermediates of other mobile elements that are substrates for lateral transfer processes such as conjugation, packaging into phage particles and recombinase-mediated integration into the chromosome. The circle junction consists of the pheV-proximal and pheV-distal boundaries of the PAI converging on a sequence identical to 22 bp at the 3' terminus of pheV. The isolated circle was transferred to Escherichia coli where it integrated specifically into phe tRNA genes, as it does in S. flexneri, independently of recA. We also demonstrate that Rox stimulates, but is not essential for, excision of the she PAI in an integrase-dependent manner. However, Rox does not stimulate excision by activating the transcription of the she PAI integrase gene, suggesting that it has an excisionase function similar to that of a related protein from the P4 satellite element of phage P2.
Collapse
Affiliation(s)
- Harry Sakellaris
- Australian Bacterial Pathogenesis Program, Department of Microbiology, School of Biomedical Sciences, Monash University, Victoria, 3800, Australia.
| | | | | | | | | | | |
Collapse
|