1
|
Yoshimura M, Honda Y, Yonemitsu E, Takahashi R, Suenaga K, Waki T. Induction of antitoxic antibody and preventive effect against porcine edema disease by the pentameric Stx2eB subunit vaccine. Vet Res 2023; 54:29. [PMID: 36973816 PMCID: PMC10044737 DOI: 10.1186/s13567-023-01161-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/16/2023] [Indexed: 03/29/2023] Open
Abstract
Porcine edema disease (ED) is an enterotoxaemia that frequently occurs in 4-12 week-old piglets and results in high mortality. ED is caused by Shiga toxin 2e (Stx2e), produced by host-adapted Shiga toxin-producing Escherichia coli (STEC) strains. We constructed a recombinant protein in which the B subunit of Stx2e (Stx2eB) was linked to Cartilage Oligomeric Matrix Protein (COMP)'s pentameric domain to enhance antigenicity to induce neutralizing antibodies against Stx2e. We evaluated the efficacy of this antigen as a vaccine on the farm where ED had occurred. The suckling piglets were divided into two groups. The pigs in the vaccinated group were intramuscularly immunized with the vaccine containing 30 µg/head of Stx2eB-COMP at 1 and 4 weeks of age. The control pigs were injected with saline instead of the vaccine. The neutralizing antibody titer to Stx2e, mortality, clinical score, and body weight was evaluated up to 11 weeks after the first vaccination. In the vaccinated group, the Stx2e neutralizing antibody was detected 3 weeks after the first vaccination, its titer increased during the following weeks. The antibody was not detected in the control group during the test period. The STEC gene was detected in both groups during the test period, but a typical ED was observed only in control pigs; the mortality and clinical score were significantly lower in the vaccinated group than in the control group. These data indicate that the pentameric B subunit vaccine is effective for preventing ED and offers a promising tool for pig health control.
Collapse
Affiliation(s)
- Masaya Yoshimura
- Meiji Animal Health Co., Ltd., 1-6-1 Okubo, Kita-Ku, Kumamoto-Shi, Kumamoto, 860-0083, Japan.
| | - Youko Honda
- Meiji Animal Health Co., Ltd., 1-6-1 Okubo, Kita-Ku, Kumamoto-Shi, Kumamoto, 860-0083, Japan
| | - Emi Yonemitsu
- Meiji Animal Health Co., Ltd., 1-6-1 Okubo, Kita-Ku, Kumamoto-Shi, Kumamoto, 860-0083, Japan
| | - Ryota Takahashi
- Meiji Animal Health Co., Ltd., 1-6-1 Okubo, Kita-Ku, Kumamoto-Shi, Kumamoto, 860-0083, Japan
| | - Kiyotaka Suenaga
- Meiji Animal Health Co., Ltd., 1-6-1 Okubo, Kita-Ku, Kumamoto-Shi, Kumamoto, 860-0083, Japan
| | - Takashi Waki
- KM Biologics Co., Ltd., 1-6-1 Okubo, Kita-Ku, Kumamoto-Shi, Kumamoto, 860-8568, Japan
| |
Collapse
|
2
|
Menge C. The Role of Escherichia coli Shiga Toxins in STEC Colonization of Cattle. Toxins (Basel) 2020; 12:toxins12090607. [PMID: 32967277 PMCID: PMC7551371 DOI: 10.3390/toxins12090607] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 11/20/2022] Open
Abstract
Many cattle are persistently colonized with Shiga toxin-producing Escherichia coli (STEC) and represent a major source of human infections with human-pathogenic STEC strains (syn. enterohemorrhagic E. coli (EHEC)). Intervention strategies most effectively protecting humans best aim at the limitation of bovine STEC shedding. Mechanisms enabling STEC to persist in cattle are only partialy understood. Cattle were long believed to resist the detrimental effects of Shiga toxins (Stxs), potent cytotoxins acting as principal virulence factors in the pathogenesis of human EHEC-associated diseases. However, work by different groups, summarized in this review, has provided substantial evidence that different types of target cells for Stxs exist in cattle. Peripheral and intestinal lymphocytes express the Stx receptor globotriaosylceramide (Gb3syn. CD77) in vitro and in vivo in an activation-dependent fashion with Stx-binding isoforms expressed predominantly at early stages of the activation process. Subpopulations of colonic epithelial cells and macrophage-like cells, residing in the bovine mucosa in proximity to STEC colonies, are also targeted by Stxs. STEC-inoculated calves are depressed in mounting appropriate cellular immune responses which can be overcome by vaccination of the animals against Stxs early in life before encountering STEC. Considering Stx target cells and the resulting effects of Stxs in cattle, which significantly differ from effects implicated in human disease, may open promising opportunities to improve existing yet insufficient measures to limit STEC carriage and shedding by the principal reservoir host.
Collapse
Affiliation(s)
- Christian Menge
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, D-07743 Jena, Germany
| |
Collapse
|
3
|
Sapountzis P, Segura A, Desvaux M, Forano E. An Overview of the Elusive Passenger in the Gastrointestinal Tract of Cattle: The Shiga Toxin Producing Escherichia coli. Microorganisms 2020; 8:microorganisms8060877. [PMID: 32531983 PMCID: PMC7355788 DOI: 10.3390/microorganisms8060877] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 02/07/2023] Open
Abstract
For approximately 10,000 years, cattle have been our major source of meat and dairy. However, cattle are also a major reservoir for dangerous foodborne pathogens that belong to the Shiga toxin-producing Escherichia coli (STEC) group. Even though STEC infections in humans are rare, they are often lethal, as treatment options are limited. In cattle, STEC infections are typically asymptomatic and STEC is able to survive and persist in the cattle GIT by escaping the immune defenses of the host. Interactions with members of the native gut microbiota can favor or inhibit its persistence in cattle, but research in this direction is still in its infancy. Diet, temperature and season but also industrialized animal husbandry practices have a profound effect on STEC prevalence and the native gut microbiota composition. Thus, exploring the native cattle gut microbiota in depth, its interactions with STEC and the factors that affect them could offer viable solutions against STEC carriage in cattle.
Collapse
Affiliation(s)
- Panagiotis Sapountzis
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, 63000 Clermont-Ferrand, France; (A.S.); (M.D.); (E.F.)
- Correspondence:
| | - Audrey Segura
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, 63000 Clermont-Ferrand, France; (A.S.); (M.D.); (E.F.)
- Chr. Hansen Animal Health & Nutrition, 2970 Hørsholm, Denmark
| | - Mickaël Desvaux
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, 63000 Clermont-Ferrand, France; (A.S.); (M.D.); (E.F.)
| | - Evelyne Forano
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, 63000 Clermont-Ferrand, France; (A.S.); (M.D.); (E.F.)
| |
Collapse
|
4
|
Schmidt N, Barth SA, Frahm J, Meyer U, Dänicke S, Geue L, Menge C. Decreased STEC shedding by cattle following passive and active vaccination based on recombinant Escherichia coli Shiga toxoids. Vet Res 2018. [PMID: 29514704 PMCID: PMC5842637 DOI: 10.1186/s13567-018-0523-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The principal virulence factor of Shiga toxin (Stx)-producing Escherichia coli (STEC), the eponymous Stx, modulates cellular immune responses in cattle, the primary STEC reservoir. We examined whether immunization with genetically inactivated recombinant Shiga toxoids (rStx1MUT/rStx2MUT) influences STEC shedding in a calf cohort. A group of 24 calves was passively (colostrum from immunized cows) and actively (intra-muscularly at 5th and 8th week) vaccinated. Twenty-four calves served as unvaccinated controls (fed with low anti-Stx colostrum, placebo injected). Each group was divided according to the vitamin E concentration they received by milk replacer (moderate and high supplemented). The effective transfer of Stx-neutralizing antibodies from dams to calves via colostrum was confirmed by Vero cell assay. Serum antibody titers in calves differed significantly between the vaccinated and the control group until the 16th week of life. Using the expression of activation marker CD25 on CD4+CD45RO+ cells and CD8αhiCD45RO+ cells as flow cytometry based read-out, cells from vaccinated animals responded more pronounced than those of control calves to lysates of STEC and E. coli strains isolated from the farm as well as to rStx2MUT in the 16th week. Summarized for the entire observation period, less fecal samples from vaccinated calves were stx1 and/or stx2 positive than samples from control animals when calves were fed a moderate amount of vitamin E. This study provides first evidence, that transfer to and induction in young calves of Stx-neutralizing antibodies by Shiga toxoid vaccination offers the opportunity to reduce the incidence of stx-positive fecal samples in a calf cohort.
Collapse
Affiliation(s)
- Nadine Schmidt
- Friedrich-Loeffler-Institut (FLI)/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Jena, Germany. .,Justus Liebig Universität Giessen, Institute for Hygiene and Infectious Diseases of Animals, Giessen, Germany.
| | - Stefanie A Barth
- Friedrich-Loeffler-Institut (FLI)/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Jena, Germany
| | - Jana Frahm
- Friedrich-Loeffler-Institut (FLI), Institute of Animal Nutrition, Brunswick, Germany
| | - Ulrich Meyer
- Friedrich-Loeffler-Institut (FLI), Institute of Animal Nutrition, Brunswick, Germany
| | - Sven Dänicke
- Friedrich-Loeffler-Institut (FLI), Institute of Animal Nutrition, Brunswick, Germany
| | - Lutz Geue
- Friedrich-Loeffler-Institut (FLI)/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Jena, Germany
| | - Christian Menge
- Friedrich-Loeffler-Institut (FLI)/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Jena, Germany
| |
Collapse
|
5
|
Yamamoto BB, Luz D, Abreu PAE, Gotti TB, Vasconcellos SA, Piazza RMF, Horton DSPQ. Antibodies to Shiga toxins in Brazilian cattle. Toxicon 2017; 133:58-62. [PMID: 28454739 DOI: 10.1016/j.toxicon.2017.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 11/17/2022]
Abstract
Cattle are considered a reservoir of Shiga toxin-producing Escherichia coli (STEC). There is no information about the presence of antibodies against Shiga toxins in Brazilian bovine serum. Using ELISA, all sera tested showed antibodies against the two main STEC virulence factors; Stx1 and Stx2. Neutralizing antibodies against Stx1 and/or Stx2 were detected in all but one serum. In conclusion, our results indicated that these animals had been exposed to STEC producing both toxins.
Collapse
Affiliation(s)
- Bruno B Yamamoto
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | - Daniela Luz
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | | | - Tatiana B Gotti
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | - Silvio A Vasconcellos
- Laboratório de Zoonoses Bacterianas, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - Roxane M F Piazza
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil.
| | | |
Collapse
|
6
|
Cornick NA, Pitzer J, Helgerson AF, Madsen ML, Kurth KT, Xiao Q, Minion FC. Use of signature-tagged mutagenesis to identify genes associated with colonization of sheep by E. coli O157:H7. Vet Microbiol 2017; 201:177-182. [PMID: 28284606 DOI: 10.1016/j.vetmic.2017.01.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 01/24/2017] [Accepted: 01/27/2017] [Indexed: 10/20/2022]
Abstract
Outbreaks of Escherichia coli O157:H7 in the United States due to contaminated foods are a public health issue and a continuing problem. The major reservoir for these organisms is the gastrointestinal tract of ruminants where they are a member of the resident microbiota. Several factors that contribute to the colonization of cattle have been identified, but a systematic screen of genes that might contribute to the colonization and persistence phenotype in mature ruminants has not been reported. Using a sheep model of persistence, signature tagged mutagenesis (STM) was used to screen 1326 mutants for a persistence-negative phenotype of E. coli O157:H7. We identified 9 genes by STM that appeared to be required for colonization and/or survival in sheep. Three of the genes had functions associated with central metabolism (thiK, ftrA and nrdB), one was involved with LPS formation (wbdP), one encodes a non-LEE encoded effector protein (nleB) and one was a methyltransferase encoded on a prophage (Z2389). The remaining three genes did not have homology with any known genes. Six sheep given ΔwbdP and 2 sheep each were given mutants (ΔthiK (Z1745), ΔftrA (Z2164) and Z2389). The ΔwbdP mutant was recovered from the feces of 4/6 sheep at 6 days pi with a mean number of 1.42log10CFU/g feces compared to 4.6log10CFU/g feces for the wild type strain. This difference was significant (P<0.001) over the time course of the experiment (days 6-23). Both ΔthiK and ΔftrA mutants were recovered from 1 of 2 sheep at 9 days PI by enrichment procedures (<50CFU/g feces) whereas mutant Z2389 was not recovered from either animal past 2 days pi. The roles of all of these gene products require further study to determine how the persistence phenotype of a given strain of E. coli O157:H7 interacts with host factors.
Collapse
Affiliation(s)
- Nancy A Cornick
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, 50011, United States.
| | - Josh Pitzer
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, 50011, United States
| | - Amy F Helgerson
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, 50011, United States
| | - Melissa L Madsen
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, 50011, United States
| | - Kathy T Kurth
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, 50011, United States
| | - Qianjun Xiao
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, 50011, United States
| | - F Chris Minion
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, 50011, United States
| |
Collapse
|
7
|
Martorelli L, Garbaccio S, Vilte DA, Albanese AA, Mejías MP, Palermo MS, Mercado EC, Ibarra CE, Cataldi AA. Immune Response in Calves Vaccinated with Type Three Secretion System Antigens and Shiga Toxin 2B Subunit of Escherichia coli O157:H7. PLoS One 2017; 12:e0169422. [PMID: 28046078 PMCID: PMC5207737 DOI: 10.1371/journal.pone.0169422] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 12/17/2016] [Indexed: 12/03/2022] Open
Abstract
Ruminants are the primary reservoir of Shiga-toxin producing Escherichia coli (STEC) O157:H7 and the main source of infection for humans. The aim of this study was to assess the immunogenic properties of a candidate vaccine consisting on the recombinant proteins of E. coli O157:H7 IntiminC280, the carboxy-terminal fraction of Intimin γ, EspB and the fusion protein between the B subunit of Stx2 and Brucella Lumazine Synthase (BLS)(BLS-Stx2B), in Holstein Fresian calves.To accomplish this goal we vaccinated calves with two doses of different vaccine formulations: 2 antigens (IntiminC280, EspB), 3 antigens (IntiminC280, EspB, BLS-Stx2B), BLS-Stx2B alone and a control non-vaccinated group. All antigens were expressed as recombinant proteins in E. coli. Specific IgG titres increased in vaccinated calves and the inclusion of BLS-Stx2B in the formulation seems to have a stimulatory effect on the humoral response to IntiminC280 and EspB after the booster. The neutralizing activity of antibodies against these two antigens was assessed in Red Blood Cell lysis assays and adherence to Hep-2 cells as a correlate of T3SS activity. Both sera from animals vaccinated with 2 or 3 antigens inhibited both virulence properties. Serological response to Stx2 was observed in animals vaccinated only with BLS-Stx2B and with 3 antigens and neutralization of Stx2 cytotoxicity was also observed in both groups. In conclusion, immunization of calves with BLS-Stx2B, IntiminC280 and EspB elicited a potent humoral response able to neutralize Shiga toxin 2 cytotoxity and the T3SS virulence properties in vitro. These results suggest that this formulation is a good candidate vaccine to reduce STEC shedding in cattle and needs to be further assessed in vivo.
Collapse
Affiliation(s)
- Luisina Martorelli
- Instituto de Patobiología, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Argentina
| | - Sergio Garbaccio
- Instituto de Patobiología, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Argentina
| | - Daniel A. Vilte
- Instituto de Patobiología, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Argentina
| | - Adriana A. Albanese
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María P. Mejías
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental, (IMEX), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Marina S. Palermo
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental, (IMEX), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Elsa C. Mercado
- Instituto de Patobiología, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Argentina
| | - Cristina E. Ibarra
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Angel A. Cataldi
- Instituto de Biotecnología, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Argentina
| |
Collapse
|
8
|
Kerner K, Bridger PS, Köpf G, Fröhlich J, Barth S, Willems H, Bauerfeind R, Baljer G, Menge C. Evaluation of biological safety in vitro and immunogenicity in vivo of recombinant Escherichia coli Shiga toxoids as candidate vaccines in cattle. Vet Res 2015; 46:38. [PMID: 25889651 PMCID: PMC4391668 DOI: 10.1186/s13567-015-0175-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 03/26/2015] [Indexed: 12/18/2022] Open
Abstract
Cattle are the most important reservoir for enterohemorrhagic Escherichia coli (EHEC), a subset of shigatoxigenic E. coli (STEC) capable of causing life-threatening infectious diseases in humans. In cattle, Shiga toxins (Stx) suppress the immune system thereby promoting long-term STEC shedding. First infections of animals at calves’ age coincide with the lack of Stx-specific antibodies. We hypothesize that vaccination of calves against Shiga toxins prior to STEC infection may help to prevent the establishment of a persistent type of infection. The objectives of this study were to generate recombinant Shiga toxoids (rStx1mut & rStx2mut) by site-directed mutagenesis and to assess their immunomodulatory, antigenic, and immunogenic properties. Cultures of bovine primary immune cells were used as test systems. In ileal intraepithelial lymphocytes both, recombinant wild type Stx1 (rStx1WT) and rStx2WT significantly induced transcription of IL-4 mRNA. rStx1WT and rStx2WT reduced the expression of Stx-receptor CD77 (syn. Globotriaosylceramide, Gb3) on B and T cells from peripheral blood and of CD14 on monocyte-derived macrophages. At the same concentrations, rStx1mut and rStx2mut exhibited neither of these effects. Antibodies in sera of cattle naturally infected with STEC recognized the rStxmut toxoids equally well as the recombinant wild type toxins. Immunization of calves with rStx1mut plus rStx2mut led to induction of antibodies neutralizing Stx1 and Stx2. While keeping their antigenicity and immunogenicity recombinant Shiga toxoids are devoid of the immunosuppressive properties of the corresponding wild type toxins in cattle and candidate vaccines to mitigate long-term STEC shedding by the reservoir host.
Collapse
Affiliation(s)
- Katharina Kerner
- Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University, Frankfurter Str. 85-89, 35392, Giessen, Germany.
| | - Philip S Bridger
- Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University, Frankfurter Str. 85-89, 35392, Giessen, Germany.
| | - Gabriele Köpf
- Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University, Frankfurter Str. 85-89, 35392, Giessen, Germany.
| | - Julia Fröhlich
- Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University, Frankfurter Str. 85-89, 35392, Giessen, Germany.
| | - Stefanie Barth
- Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University, Frankfurter Str. 85-89, 35392, Giessen, Germany. .,Current Address: Friedrich-Loeffler-Institut, Institute of Molecular Pathogenesis, Naumburger Str. 96a, 07743, Jena, Germany.
| | - Hermann Willems
- Clinic for Ruminants and Swine (Internal Medicine & Surgery), Justus Liebig University, Giessen, Germany.
| | - Rolf Bauerfeind
- Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University, Frankfurter Str. 85-89, 35392, Giessen, Germany.
| | - Georg Baljer
- Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University, Frankfurter Str. 85-89, 35392, Giessen, Germany.
| | - Christian Menge
- Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University, Frankfurter Str. 85-89, 35392, Giessen, Germany. .,Current Address: Friedrich-Loeffler-Institut, Institute of Molecular Pathogenesis, Naumburger Str. 96a, 07743, Jena, Germany.
| |
Collapse
|
9
|
Strain-dependent cellular immune responses in cattle following Escherichia coli O157:H7 colonization. Infect Immun 2014; 82:5117-31. [PMID: 25267838 DOI: 10.1128/iai.02462-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 causes hemorrhagic diarrhea and potentially fatal renal failure in humans. Ruminants are considered to be the primary reservoir for human infection. Vaccines that reduce shedding in cattle are only partially protective, and their underlying protective mechanisms are unknown. Studies investigating the response of cattle to colonization generally focus on humoral immunity, leaving the role of cellular immunity unclear. To inform future vaccine development, we studied the cellular immune responses of cattle during EHEC O157:H7 colonization. Calves were challenged either with a phage type 21/28 (PT21/28) strain possessing the Shiga toxin 2a (Stx2a) and Stx2c genes or with a PT32 strain possessing the Stx2c gene only. T-helper cell-associated transcripts at the terminal rectum were analyzed by reverse transcription-quantitative PCR (RT-qPCR). Induction of gamma interferon (IFN-γ) and T-bet was observed with peak expression of both genes at 7 days in PT32-challenged calves, while upregulation was delayed, peaking at 21 days, in PT21/28-challenged calves. Cells isolated from gastrointestinal lymph nodes demonstrated antigen-specific proliferation and IFN-γ release in response to type III secreted proteins (T3SPs); however, responsiveness was suppressed in cells isolated from PT32-challenged calves. Lymph node cells showed increased expression of the proliferation marker Ki67 in CD4(+) T cells from PT21/28-challenged calves, NK cells from PT32-challenged calves, and CD8(+) and γδ T cells from both PT21/28- and PT32-challenged calves following ex vivo restimulation with T3SPs. This study demonstrates that cattle mount cellular immune responses during colonization with EHEC O157:H7, the temporality of which is strain dependent, with further evidence of strain-specific immunomodulation.
Collapse
|
10
|
Physiopathological effects of Escherichia coli O157:H7 inoculation in weaned calves fed with colostrum containing antibodies to EspB and Intimin. Vaccine 2014; 32:3823-9. [DOI: 10.1016/j.vaccine.2014.04.073] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/18/2014] [Accepted: 04/22/2014] [Indexed: 11/22/2022]
|
11
|
Rabinovitz BC, Gerhardt E, Tironi Farinati C, Abdala A, Galarza R, Vilte DA, Ibarra C, Cataldi A, Mercado EC. Vaccination of pregnant cows with EspA, EspB, γ-intimin, and Shiga toxin 2 proteins from Escherichia coli O157:H7 induces high levels of specific colostral antibodies that are transferred to newborn calves. J Dairy Sci 2012; 95:3318-26. [PMID: 22612965 DOI: 10.3168/jds.2011-5093] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 02/05/2012] [Indexed: 01/09/2023]
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a major cause of intestinal disease and hemolytic uremic syndrome, a serious systemic complication that particularly affects children. Cattle are primary reservoirs for EHEC O157:H7 and the main source of infection for humans. Vaccination of cattle with different combinations of bacterial virulence factors has shown efficacy in decreasing EHEC O157:H7 shedding. It is, therefore, important to demonstrate whether vaccination of pregnant cows with EHEC O157:H7 induces high titers of transferable antibodies to avoid early colonization of calves by the bacteria. In this study we evaluated the ability of EspA, EspB, the C-terminal fragment of 280 amino acids of γ-intimin (γ-intimin C₂₈₀) and inactivated Shiga toxin (Stx) 2 proteins to induce specific antibodies in colostrum and their passive transference to colostrum-fed calves. Friesian pregnant cows immunized by the intramuscular route mounted significantly high serum and colostrum IgG responses against EspB and γ-intimin C₂₈₀ that were efficiently transferred to their calves. Antibodies to EspB and γ-intimin C₂₈₀ were detected in milk samples of vaccinated cows at d 40 postparturition. Significant Stx2-neutralizing titers were also observed in colostrum from Stx2-vaccinated cows and sera from colostrum-fed calves. The results presented showed that bovine colostrum with increased levels of antibodies against EHEC O157:H7 may be obtained by systemic immunization of pregnant cows, and that these specific antibodies are efficiently transferred to newborn calves by feeding colostrum. Hyperimmune colostrum and milk may be an alternative to protect calves from early colonization by EHEC O157:H7 and a possible key source of antibodies to block colonization and toxic activity of this bacterium.
Collapse
Affiliation(s)
- B C Rabinovitz
- Instituto de Patobiología, Instituto Nacional de Tecnología Agropecuaria-INTA, Nicolás Repetto y De los Reseros, 1686 Hurlingham, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Vande Walle K, Vanrompay D, Cox E. Bovine innate and adaptive immune responses against Escherichia coli O157:H7 and vaccination strategies to reduce faecal shedding in ruminants. Vet Immunol Immunopathol 2012; 152:109-20. [PMID: 23084625 DOI: 10.1016/j.vetimm.2012.09.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Enterohaemorrhagic E. coli (EHEC) O157:H7 is a zoonotic pathogen of worldwide importance causing foodborne infections with possibly life-threatening consequences in humans, such as haemorrhagic colitis and in a small percentage of zoonotic cases, haemolytic-uremic syndrome (HUS). Ruminants are an important reservoir of EHEC and human infections are most frequently associated with direct or indirect contact with ruminant faeces. A thorough understanding of the host-bacterium interaction in ruminants could lead to the development of novel interventions strategies, including innovative vaccines. This review aims to present the current knowledge regarding innate and adaptive immune responses in EHEC colonized ruminants. In addition, results on vaccination strategies in ruminants aiming at reduction of EHEC shedding are reviewed.
Collapse
Affiliation(s)
- Kris Vande Walle
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9860 Merelbeke, Belgium
| | | | | |
Collapse
|
13
|
Vilte D, Larzábal M, Mayr U, Garbaccio S, Gammella M, Rabinovitz B, Delgado F, Meikle V, Cantet R, Lubitz P, Lubitz W, Cataldi A, Mercado E. A systemic vaccine based on Escherichia coli O157:H7 bacterial ghosts (BGs) reduces the excretion of E. coli O157:H7 in calves. Vet Immunol Immunopathol 2012; 146:169-76. [DOI: 10.1016/j.vetimm.2012.03.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 03/02/2012] [Accepted: 03/04/2012] [Indexed: 11/24/2022]
|
14
|
Tildesley MJ, Gally DL, McNeilly TN, Low JC, Mahajan A, Savill NJ. Insights into mucosal innate responses to Escherichia coli O157 : H7 colonization of cattle by mathematical modelling of excretion dynamics. J R Soc Interface 2011; 9:518-27. [PMID: 21849385 DOI: 10.1098/rsif.2011.0293] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mathematical model-based statistical inference applied to within-host dynamics of infectious diseases can help dissect complex interactions between hosts and microbes. This work has applied advances in model-based inference to understand colonization of cattle by enterohaemorrhagic Escherichia coli O157 : H7 at the terminal rectum. A mathematical model was developed based on niche replication and transition rates at this site. A nested-model comparison, applied to excretion curves from 25 calves, was used to reduce complexity while maintaining integrity. We conclude that, 5-9 days post inoculation, the innate immune response negates bacterial replication on the epithelium and either reduces attachment to or increases detachment from the epithelium of the terminal rectum. Thus, we provide a broadly applicable model that gives novel insights into bacterial replication rates in vivo and the timing and impact of host responses.
Collapse
Affiliation(s)
- Michael J Tildesley
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Kings Buildings, West Mains Road, Edinburgh EH9 3JT, UK.
| | | | | | | | | | | |
Collapse
|
15
|
Vilte DA, Larzábal M, Garbaccio S, Gammella M, Rabinovitz BC, Elizondo AM, Cantet RJ, Delgado F, Meikle V, Cataldi A, Mercado EC. Reduced faecal shedding of Escherichia coli O157:H7 in cattle following systemic vaccination with γ-intimin C280 and EspB proteins. Vaccine 2011; 29:3962-8. [DOI: 10.1016/j.vaccine.2011.03.079] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 03/07/2011] [Accepted: 03/22/2011] [Indexed: 10/18/2022]
|
16
|
Vande Walle K, Yekta MA, Verdonck F, De Zutter L, Cox E. Rectal inoculation of sheep with E. coli O157:H7 results in persistent infection in the absence of a protective immune response. Vet Microbiol 2010; 147:376-82. [PMID: 20675082 DOI: 10.1016/j.vetmic.2010.06.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 06/07/2010] [Accepted: 06/29/2010] [Indexed: 11/16/2022]
Abstract
Escherichia coli (E. coli) O157:H7 can cause haemorrhagic colitis and the haemolytic uremic syndrome in humans. Ruminants are the main reservoir for this bacterium: they can harbour the bacteria in the gastrointestinal tract without showing clinical symptoms. The reason for this persistence is still unclear, although it has been suggested that E. coli O157:H7 can suppress the immune system. To investigate the effects on the immune system of ruminants, an infection model is needed that mimics a long-term infection as it can occur in both sheep and cattle. As the terminal rectum has recently been identified as a primary colonisation site in cattle, we developed a rectal inoculation model for sheep and used this model to study immune responses against selected virulence factors of E. coli O157:H7 (intimin, EspA and EspB). Sheep were infected and re-infected when E. coli O157:H7 excretion was no longer detectable. The animals did not develop serum or local antibody responses but showed a cellular response against EspA and intimin respectively 9 and 16 days after infection. This response was also present 5 days after re-infection, albeit lower, and did not prevent animals from being re-infected. These results demonstrate that E. coli O157:H7 can be persistently present in the large intestine of sheep without inducing a clear protective immune response.
Collapse
Affiliation(s)
- Kris Vande Walle
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | | | | | | | | |
Collapse
|
17
|
Maternally and naturally acquired antibodies to Shiga toxins in a cohort of calves shedding Shiga-toxigenic Escherichia coli. Appl Environ Microbiol 2009; 75:3695-704. [PMID: 19363081 DOI: 10.1128/aem.02869-08] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Calves become infected with Shiga toxin-producing Escherichia coli (STEC) early in life, which frequently results in long-term shedding of the zoonotic pathogen. Little is known about the animals' immunological status at the time of infection. We assessed the quantity and dynamics of maternal and acquired antibodies to Shiga toxins (Stx1 and Stx2), the principal STEC virulence factors, in a cohort of 27 calves. Fecal and serum samples were taken repeatedly from birth until the 24th week of age. Sera, milk, and colostrums of dams were also assessed. STEC shedding was confirmed by detection of stx in fecal cultures. Stx1- and Stx2-specific antibodies were quantified by Vero cell neutralization assay and further analyzed by immunoblotting. By the eighth week of age, 13 and 15 calves had at least one stx(1)-type and at least one stx(2)-type positive culture, respectively. Eleven calves had first positive cultures only past that age. Sera and colostrums of all dams and postcolostral sera of all newborn calves contained Stx1-specific antibodies. Calf serum titers decreased rapidly within the first 6 weeks of age. Only five calves showed Stx1-specific seroconversion. Maternal and acquired Stx1-specific antibodies were mainly directed against the StxA1 subunit. Sparse Stx2-specific titers were detectable in sera and colostrums of three dams and in postcolostral sera of their calves. None of the calves developed Stx2-specific seroconversion. The results indicate that under natural conditions of exposure, first STEC infections frequently coincide with an absence of maternal and acquired Stx-specific antibodies in the animals' sera.
Collapse
|
18
|
Efficient immune responses against Intimin and EspB of enterohaemorragic Escherichia coli after intranasal vaccination using the TLR2/6 agonist MALP-2 as adjuvant. Vaccine 2008; 26:5662-7. [DOI: 10.1016/j.vaccine.2008.07.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 07/06/2008] [Accepted: 07/14/2008] [Indexed: 01/07/2023]
|
19
|
Turner J, Bowers RG, Clancy D, Behnke MC, Christley RM. A network model of E. coli O157 transmission within a typical UK dairy herd: the effect of heterogeneity and clustering on the prevalence of infection. J Theor Biol 2008; 254:45-54. [PMID: 18582901 DOI: 10.1016/j.jtbi.2008.05.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 03/22/2008] [Accepted: 05/08/2008] [Indexed: 10/22/2022]
Abstract
Cattle are considered to be the main reservoir for Vero cytotoxin-producing Escherichia coli (VTEC) O157, a cause of food-poisoning (and even death) in humans. Here, the transmission of E. coli O157 within a typical UK dairy herd is modelled using a semi-stochastic network model. The model incorporates demographic as well as infection processes. Indirect transmission is modelled homogeneously, while direct transmission is modelled via a dynamic contact network. The aim was to investigate the effects of heterogeneity and clustering on the prevalence of infection within the herd and discover whether, particularly in terms of choosing an intervention strategy, it is necessary to include heterogeneity in direct contacts when modelling this sort of system. Results show that heterogeneity in direct contacts can make it more difficult for the pathogen to persist, particularly when the average number of contacts (per animal) in each group is small. They also show that the relationship between clustering and prevalence is not simple. For example, increasing the average number of contacts can increase clustering and prevalence. However, when the average number of contacts in each group is sufficiently high, higher clustering leads to lower prevalence. It would seem that clustering can aid the flow of infection under certain circumstances, but hinder it under others (probably by preventing wider dissemination). Further results show that indirect transmission (as it is modelled here) effectively removes the effect of heterogeneity in direct contacts. In terms of investigating proposed interventions, the results suggest that a network model would only be required if there was evidence to suggest that direct transmission was the major source of infection.
Collapse
Affiliation(s)
- J Turner
- Department of Veterinary Clinical Science, The University of Liverpool, Leahurst, Neston, South Wirral CH64 7TE, UK.
| | | | | | | | | |
Collapse
|
20
|
Henderson H. Direct and indirect zoonotic transmission of Shiga toxin–producingEscherichia coli. J Am Vet Med Assoc 2008; 232:848-59. [DOI: 10.2460/javma.232.6.848] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Nart P, Holden N, McAteer SP, Wang D, Flockhart AF, Naylor SW, Low JC, Gally DL, Huntley JF. Mucosal antibody responses of colonized cattle to Escherichia coli O157-secreted proteins, flagellin, outer membrane proteins and lipopolysaccharide. ACTA ACUST UNITED AC 2007; 52:59-68. [PMID: 17995963 DOI: 10.1111/j.1574-695x.2007.00341.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The aim of this work was to characterize adaptive mucosal immune responses to Escherichia coli O157:H7 at the principal site of colonization in the bovine species. Following experimental infection, extracts from terminal rectum mucosal samples were tested for IgA antibodies by immunoblotting against different bacterial antigens including: whole-cell E. coli O157:H7 with and without proteinase treatment, outer membrane and cytoplasmic preparations, secreted protein supernatants and purified E. coli O157 lipopolysaccharide and H7 flagellin. Lipopolysaccharide and H7 flagellin preparations were also used to coat enzyme-linked immunosorbent assay plates to determine mucosal IgG1 and IgA antibody titers. In this work, evidence is presented of strong local IgA immune responses induced following infection at the bovine terminal rectal mucosa directed against multiple antigens including type III secretion-dependent proteins, O157 lipopolysaccharide, H7 flagellin and OmpC.
Collapse
Affiliation(s)
- Pablo Nart
- Centre for Infectious Diseases, School of Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Peterson RE, Klopfenstein TJ, Moxley RA, Erickson GE, Hinkley S, Bretschneider G, Berberov EM, Rogan D, Smith DR. Effect of a vaccine product containing type III secreted proteins on the probability of Escherichia coli O157:H7 fecal shedding and mucosal colonization in feedlot cattle. J Food Prot 2007; 70:2568-77. [PMID: 18044436 DOI: 10.4315/0362-028x-70.11.2568] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Preharvest intervention strategies to reduce Escherichia coli O157:H7 in cattle have been sought as a means to reduce human foodborne illness. A blinded clinical trial was conducted to test the effect of a vaccine product on the probability that feedlot steers, under conditions of natural exposure, shed E. coli O157:H7 in feces, are colonized by this organism in the terminal rectum, or develop a humoral response to the respective antigens. Steers (n = 288) were assigned randomly to 36 pens (eight head per pen), and pens were randomized to vaccination treatment in a balanced fashion within six dietary treatments of an unrelated nutrition study. Treatments included vaccination or placebo (three doses at 3-week intervals). Fecal samples for culture (n = 1,410) were collected from the rectum of each steer on pretreatment day 0 and posttreatment days 14, 28, 42, and 56. Terminal rectum mucosal (TRM) cells were aseptically collected for culture at harvest (day 57 posttreatment) by scraping the mucosa 3.0 to 5.5 cm proximal to the rectoanal junction. E. coli O157:H7 was isolated and identified with selective enrichment, immunomagnetic separation, and PCR confirmation. Vaccinated cattle were 98.3% less likely to be colonized by E. coli O157:H7 in TRM cells (odds ratio = 0.014, P < 0.0001). Diet was also associated with the probability of cattle being colonized (P = 0.04). Vaccinated cattle demonstrated significant humoral responses to Tir and O157 lipopolysaccharide. These results provide evidence that this vaccine product reduces E. coli O157:H7 colonization of the terminal rectum of feedlot beef cattle under conditions of natural exposure, a first step in its evaluation as an effective intervention for food and environmental safety.
Collapse
Affiliation(s)
- R E Peterson
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0905, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Cristancho L, Johnson RP, McEwen SA, Gyles CL. Escherichia coli O157:H7 and other Shiga toxin-producing E. coli in white veal calves. Vet Microbiol 2007; 126:200-9. [PMID: 17656044 DOI: 10.1016/j.vetmic.2007.06.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Revised: 06/14/2007] [Accepted: 06/15/2007] [Indexed: 11/30/2022]
Abstract
The aims of the study were to determine the prevalence of enterohemorrhagic Escherichia coli O157:H7 (EHEC O157) and other Shiga toxin-producing E. coli (STEC) in feces of white veal calves in an operation in Ontario, to evaluate exposure of the calves to EHEC O157, and to investigate the milk replacer diet and antimicrobial resistance as factors that might influence the prevalence of EHEC O157. Feces from three cohorts of 20-21 calves were collected weekly for 20 weeks and processed for isolation of EHEC O157:H7 and detection of STEC by an ELISA. Exposure to EHEC O157 was also investigated by measuring IgG and IgM antibodies to the O157 lipopolysaccharide (O157 Ab) in sera by ELISA. The prevalences of EHEC O157 were 0.17% of 1151 fecal samples and 3.2% of 62 calves, and for STEC were 68% of 1005 fecal samples and 100% of 62 calves. Seroconversion to active IgG and IgM O157 Ab responses in some calves was not associated with isolation of EHEC O157. The milk replacer contained low levels of antibodies to EHEC antigens and without antimicrobial drugs, it did not inhibit the growth of EHEC O157 in vitro. Two E. coli O157:H7 that were isolated were totally drug sensitive whereas 60 commensal E. coli isolates that were examined were highly resistant. Antibodies in milk replacer that might be protective in vivo, and susceptibility to antimicrobial agents in the milk replacer may contribute to the low prevalence of EHEC O157 in white veal calves.
Collapse
Affiliation(s)
- Laura Cristancho
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | |
Collapse
|
24
|
Bretschneider G, Berberov EM, Moxley RA. Isotype-specific antibody responses against Escherichia coli O157:H7 locus of enterocyte effacement proteins in adult beef cattle following experimental infection. Vet Immunol Immunopathol 2007; 118:229-38. [PMID: 17617472 DOI: 10.1016/j.vetimm.2007.06.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 05/15/2007] [Accepted: 06/08/2007] [Indexed: 01/02/2023]
Abstract
Escherichia coli O157:H7 is an important food-borne pathogen and cause of hemorrhagic colitis and hemolytic uremic syndrome in humans. Cattle are an important reservoir of E. coli O157:H7, in which the organism colonizes the intestinal tract and is shed in the feces. Vaccination of cattle has significant potential as a pre-harvest intervention strategy for E. coli O157:H7; however, basic information about the bovine immune responses to important bacterial colonization factors resulting from infection has not been reported. The serum and fecal IgG and IgA antibody responses of adult cattle to E. coli O157:H7 intimin, translocated intimin receptor (Tir), E. coli-secreted proteins (Esp)A, EspB and O157 lipopolysaccharide (LPS) in response to infection were determined. All animals were seropositive for all five antigens prior to inoculation, with antibody titers to EspB and O157 LPS significantly higher (P<0.05) than those to Tir, intimin and EspA. After inoculation, the cattle became colonized and developed significant increases in their serum antibody titers to intimin, Tir, EspB, EspA and O157 LPS (P<0.05); however, by 42 days post-inoculation the titers to all except EspB were on the decline. In contrast, pre- and post-inoculation fecal IgG and IgA antibodies to these same antigens were not detected (<1:5). These results indicate that cattle respond serologically to E. coli O157:H7 type III secreted proteins, intimin and O157 LPS during the course of infection and the response is correlated with the extent of fecal shedding.
Collapse
Affiliation(s)
- G Bretschneider
- Department of Veterinary and Biomedical Sciences, University of Nebraska, Fair Street and East Campus Loop, Lincoln, NE 68583-0905, USA
| | | | | |
Collapse
|
25
|
Naylor SW, Flockhart A, Nart P, Smith DGE, Huntley J, Gally DL, Low JC. Shedding of Escherichia coli O157:H7 in calves is reduced by prior colonization with the homologous strain. Appl Environ Microbiol 2007; 73:3765-7. [PMID: 17449700 PMCID: PMC1932681 DOI: 10.1128/aem.02670-06] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterohemorrhagic Escherichia coli O157:H7 has a natural reservoir in the intestinal tracts of cattle. Colonization is asymptomatic and transient, but it is not clear if protective immunity is induced. This study demonstrates that prior colonization induces humoral immune responses to bacterial antigens and reduces bacterial shedding after experimental challenge with the homologous strain.
Collapse
Affiliation(s)
- Stuart W Naylor
- Animal Health Group, Scottish Agricultural College, Edinburgh EH9 3JG, UK.
| | | | | | | | | | | | | |
Collapse
|
26
|
van Diemen PM, Dziva F, Abu-Median A, Wallis TS, van den Bosch H, Dougan G, Chanter N, Frankel G, Stevens MP. Subunit vaccines based on intimin and Efa-1 polypeptides induce humoral immunity in cattle but do not protect against intestinal colonisation by enterohaemorrhagic Escherichia coli O157:H7 or O26:H-. Vet Immunol Immunopathol 2007; 116:47-58. [PMID: 17258324 PMCID: PMC2656997 DOI: 10.1016/j.vetimm.2006.12.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 12/19/2006] [Accepted: 12/29/2006] [Indexed: 11/17/2022]
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) infections in humans are an important public health concern and are commonly acquired via contact with ruminant faeces. Cattle are a key control point however cross-protective vaccines for the control of EHEC in the bovine reservoir do not yet exist. The EHEC serogroups that are predominantly associated with human infection in Europe and North America are O157 and O26. Intimin and EHEC factor for adherence (Efa-1) play important roles in intestinal colonisation of cattle by EHEC and are thus attractive candidates for the development of subunit vaccines. Immunisation of calves with the cell-binding domain of intimin subtypes β or γ via the intramuscular route induced antigen-specific serum IgG1 and, in some cases salivary IgA responses, but did not reduce the magnitude or duration of faecal excretion of EHEC O26:H- (Int280-β) or EHEC O157:H7 (Int280-γ) upon subsequent experimental challenge. Similarly, immunisation of calves via the intramuscular route with the truncated Efa-1 protein (Efa-1′) from EHEC O157:H7 or a mixture of the amino-terminal and central thirds of the full-length protein (Efa-1-N and M) did not protect against intestinal colonisation by EHEC O157:H7 (Efa-1′) or EHEC O26:H- (Efa-1-N and M) despite the induction of humoral immunity. A portion of the serum IgG1 elicited by the truncated recombinant antigens in calves was confirmed to recognise native protein exposed on the bacterial surface. Calves immunised with a mixture of Int280-γ and Efa-1′ or an EHEC O157:H7 bacterin via the intramuscular route then boosted via the intranasal route with the same antigens using cholera toxin B subunit as an adjuvant were also not protected against intestinal colonisation by EHEC O157:H7. These studies highlight the need for further studies to develop and test novel vaccines or treatments for control of this important foodborne pathogen.
Collapse
Affiliation(s)
- P M van Diemen
- Institute for Animal Health, Compton, Berkshire RG20 7NN, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Snider TA, Fabich AJ, Washburn KE, Sims WP, Blair JL, Cohen PS, Conway T, Clinkenbeard KD. Evaluation of a model forEscherichia coliO157:H7 colonization in streptomycin-treated adult cattle. Am J Vet Res 2006; 67:1914-20. [PMID: 17078755 DOI: 10.2460/ajvr.67.11.1914] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To develop a repeatable model for studying colonization with streptomycin-resistant Escherichia coli O157:H7 in adult cattle. ANIMALS 5 adult mixed-breed beef cattle. PROCEDURES Cattle were surgically cannulated in the duodenum, treated daily with streptomycin (33 mg/kg) via the duodenal cannula prior to and during experimental colonizations, and colonized with 10(10) CFUs of streptomycin-resistant E coli O157:H7 via the duodenal cannula. Colonization of rectal mucus and shedding in feces were monitored. Antimicrobials were administered to eliminate the colonizing strain so that 5 repeated colonization experiments could be performed. A comprehensive analysis of colonization was performed at necropsy. RESULTS Streptomycin treatment resulted in improved experimental colonization variables, compared with untreated controls, during initiation (days 2 to 6) and early maintenance (days 7 to 12) of colonization. Elimination of the colonizing strain followed by 5 repeated colonizations in the same animals indicated the repeatability of the protocol. Positive results of bacteriologic culture of feces 7 and 12 days after colonization were obtained in 100% and 84% of samples, respectively, across all animals and trials. At necropsy, highest magnitude recovery was in terminal rectal mucus. CONCLUSIONS AND CLINICAL RELEVANCE The model was highly repeatable and novel with respect to streptomycin treatment, use of duodenal cannulas, and repeated colonizations of the same animals. Its use in adult cattle, from which most bovine-derived food originates, is critical to the study of preharvest food safety. The findings have implications for understanding intermittency of shedding in the field and for proposed vaccine-based interventions.
Collapse
Affiliation(s)
- Timothy A Snider
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Hoffman MA, Menge C, Casey TA, Laegreid W, Bosworth BT, Dean-Nystrom EA. Bovine immune response to shiga-toxigenic Escherichia coli O157:H7. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2006; 13:1322-7. [PMID: 17050743 PMCID: PMC1694447 DOI: 10.1128/cvi.00205-06] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although cattle develop humoral immune responses to Shiga-toxigenic (Stx+) Escherichia coli O157:H7, infections often result in long-term shedding of these human pathogenic bacteria. The objective of this study was to compare humoral and cellular immune responses to Stx+ and Stx- E. coli O157:H7. Three groups of calves were inoculated intrarumenally, twice in a 3-week interval, with different strains of E. coli: a Stx2-producing E. coli O157:H7 strain (Stx2+ O157), a Shiga toxin-negative E. coli O157:H7 strain (Stx- O157), or a nonpathogenic E. coli strain (control). Fecal shedding of Stx2+ O157 was significantly higher than that of Stx- O157 or the control. Three weeks after the second inoculation, all calves were challenged with Stx2+ O157. Following the challenge, levels of fecal shedding of Stx2+ O157 were similar in all three groups. Both groups inoculated with an O157 strain developed antibodies to O157 LPS. Calves initially inoculated with Stx- O157, but not those inoculated with Stx2+ O157, developed statistically significant lymphoproliferative responses to heat-killed Stx2+ O157. These results provide evidence that infections with STEC can suppress the development of specific cellular immune responses in cattle, a finding that will need to be addressed in designing vaccines against E. coli O157:H7 infections in cattle.
Collapse
Affiliation(s)
- Mark A Hoffman
- Enteric Diseases and Food Safety Research, National Disease Center, USDA, Agriculture Research Service, Ames, IA 50010, USA
| | | | | | | | | | | |
Collapse
|
29
|
TOSHIMA H, HACHIO M, IKEMOTO Y, OGASAWARA J, HASE A, TAKAHASHI K, MASAKI H, NISHIKAWA Y. Prevalence of enteric bacteria that inhibit growth of enterohaemorrhagic Escherichia coli O157 in humans. Epidemiol Infect 2006; 135:110-7. [PMID: 16740195 PMCID: PMC2870543 DOI: 10.1017/s0950268806006510] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2006] [Indexed: 11/07/2022] Open
Abstract
Enterohaemorrhagic Escherichia coli O157 (O157) is infectious to humans, particularly children, at very low doses and causes not only haemorrhagic colitis but also other serious symptoms. To investigate an association between intestinal bacterial flora and resistance to such infections, we screened faecal samples for the presence of enteric bacteria that are able to suppress the growth of O157. Samples from 303 individuals, 35 children (aged < or =6 years) and 268 adults (aged 20-59 years), were examined. Colonies with different appearances on sorbitol MacConkey agar medium were screened for the production of bacteriocins inhibitory for O157 in an overlay agar plate assay. O157-inhibiting strains were isolated from 52 individuals. The prevalence of these bacteria tended to rise with age, and was significantly higher among 40- to 59-year-old adults (23/101, 22.8%) than among children (3/35, 8.6%; P<0.05). To test the hypothesis that these bacteriocin-producing strains contribute to resistance against O157 in human adults, we examined faecal samples of 25 healthy O157 carriers. Inhibitory bacteria were more prevalent among the latter (9/25, 36.0%) than among age-matched subjects who did not carry O157 (49/268, 18.3%). It appears, therefore, that inhibitory bacteria in the human gut may play a role in inhibiting propagation of O157 and/or suppressing expression of virulence factors by this pathogen.
Collapse
Affiliation(s)
- H. TOSHIMA
- Graduate School of Human Life Science, Osaka City University, Japan
| | - M. HACHIO
- Graduate School of Human Life Science, Osaka City University, Japan
| | - Y. IKEMOTO
- Graduate School of Human Life Science, Osaka City University, Japan
| | - J. OGASAWARA
- Department of Microbiology, Osaka City Institute of Public Health and Environmental Sciences, Japan
| | - A. HASE
- Department of Microbiology, Osaka City Institute of Public Health and Environmental Sciences, Japan
| | | | - H. MASAKI
- Department of Biotechnology, The University of Tokyo, Japan
| | - Y. NISHIKAWA
- Graduate School of Human Life Science, Osaka City University, Japan
- Author for correspondence: Professor Y. Nishikawa, Graduate School of Human Life Science, Osaka City University, 558-8585, Japan. ()
| |
Collapse
|
30
|
Turner J, Bowers RG, Begon M, Robinson SE, French NP. A semi-stochastic model of the transmission of Escherichia coli O157 in a typical UK dairy herd: dynamics, sensitivity analysis and intervention/prevention strategies. J Theor Biol 2006; 241:806-22. [PMID: 16515798 DOI: 10.1016/j.jtbi.2006.01.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Revised: 01/13/2006] [Accepted: 01/13/2006] [Indexed: 10/25/2022]
Abstract
When modelling the transmission of infection within small populations, it is necessary to consider the possibility of stochastic fade-out of infection. We present a semi-stochastic model for the transmission of a microparasite, in this case Escherichia coli O157, within a multigroup system, namely a typical UK dairy herd. The model includes birth, death, maturation, the dry/lactating cycle and various types of transmission (i.e. direct, pseudovertical (representing direct faecal-oral transmission between dam and calf within the first 48 h) and indirect (via free-living infectious units in the environment)). We present the results of our simulation study alongside data from empirical studies and also compare simulation results with those for the corresponding deterministic model. We then examine the effects of reducing shedding in the food-producing groups on outbreak size and prevalence of infection. A sensitivity analysis of herd prevalence reveals that, for both the deterministic and the semi-stochastic model, the prevalence within the herd is most sensitive to two parameters relating to the weaned group. This supports our previously reported conclusions for the deterministic model, which were based on an analysis of the next-generation matrix. The sensitivity analysis also indicates that herd prevalence is greatly affected by two other parameters relating to the lactating group. We conclude by discussing the possible efficacy of suggested intervention strategies.
Collapse
Affiliation(s)
- Joanne Turner
- Department of Veterinary Clinical Science and Animal Husbandry, The University of Liverpool, Leahurst, Neston, South Wirral CH64 7TE, UK.
| | | | | | | | | |
Collapse
|
31
|
Matthews L, Low JC, Gally DL, Pearce MC, Mellor DJ, Heesterbeek JAP, Chase-Topping M, Naylor SW, Shaw DJ, Reid SWJ, Gunn GJ, Woolhouse MEJ. Heterogeneous shedding of Escherichia coli O157 in cattle and its implications for control. Proc Natl Acad Sci U S A 2006; 103:547-52. [PMID: 16407143 PMCID: PMC1325964 DOI: 10.1073/pnas.0503776103] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Identification of the relative importance of within- and between-host variability in infectiousness and the impact of these heterogeneities on the transmission dynamics of infectious agents can enable efficient targeting of control measures. Cattle, a major reservoir host for the zoonotic pathogen Escherichia coli O157, are known to exhibit a high degree of heterogeneity in bacterial shedding densities. By relating bacterial count to infectiousness and fitting dynamic epidemiological models to prevalence data from a cross-sectional survey of cattle farms in Scotland, we identify a robust pattern: approximately 80% of the transmission arises from the 20% most infectious individuals. We examine potential control options under a range of assumptions about within- and between-host variability in infection dynamics. Our results show that the within-herd basic reproduction ratio, R(0), could be reduced to <1 with targeted measures aimed at preventing infection in the 5% of individuals with the highest overall infectiousness. Alternatively, interventions such as vaccination or the use of probiotics that aim to reduce bacterial carriage could produce dramatic reductions in R(0) by preventing carriage at concentrations corresponding to the top few percent of the observed range of counts. We conclude that a greater understanding of the cause of the heterogeneity in bacterial carriage could lead to highly efficient control measures to reduce the prevalence of E. coli O157.
Collapse
Affiliation(s)
- L Matthews
- Centre for Infectious Diseases, College of Medicine and Veterinary Medicine, University of Edinburgh, Easter Bush, Roslin, Midlothian EH25 9RG, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Scott L, McGee P, Sheridan JJ, Earley B, Leonard N. A comparison of the survival in feces and water of Escherichia coli O157:H7 grown under laboratory conditions or obtained from cattle feces. J Food Prot 2006; 69:6-11. [PMID: 16416893 DOI: 10.4315/0362-028x-69.1.6] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Escherichia coli O157:H7 is an important foodborne pathogen that can cause hemorrhagic colitis and hemolytic uremic syndrome. Cattle feces and fecally contaminated water are important in the transmission of this organism on the farm. In this study, the survival of E. coli O157:H7 in feces and water was compared following passage through the animal digestive tract or preparation in the laboratory. Feces were collected from steers before and after oral inoculation with a marked strain of E. coli O157:H7. Fecal samples collected before cattle inoculation were subsequently inoculated with the marked strain of E. coli O157:H7 prepared in the laboratory. Subsamples were taken from both animal and laboratory-inoculated feces to inoculate 5-liter volumes of water. E. coli O157:H7 in feces survived up to 97 days, and survival was not affected by the method used to prepare the inoculating strain. E. coli O157:H7 survived up to 109 days in water, and the bacteria collected from inoculated cattle were detected up to 10 weeks longer than the laboratory-prepared culture. This study suggests that pathogen survival in low-nutrient conditions may be enhanced by passage through the gastrointestinal tract.
Collapse
Affiliation(s)
- L Scott
- Faculty of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | | | | | | |
Collapse
|
33
|
Schouten JM, Graat EAM, Frankena K, van de Giessen AW, van der Zwaluw WK, de Jong MCM. A longitudinal study of Escherichia coli O157 in cattle of a Dutch dairy farm and in the farm environment. Vet Microbiol 2005; 107:193-204. [PMID: 15863278 DOI: 10.1016/j.vetmic.2005.01.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2004] [Revised: 12/24/2004] [Accepted: 01/20/2005] [Indexed: 11/23/2022]
Abstract
From July 1999 till November 2000, a longitudinal study was conducted on a dairy farm in The Netherlands to study within herd prevalence and types of verocytotoxin producing Escherichia coli (VTEC) of serogroup O157 over time, and determine environmental reservoirs and possible transmission routes. Faeces, blood, milk and environmental samples were collected 14 times with intervals varying from 4 to 10 weeks during the study period. Faecal samples were selectively cultured for Escherichia coli O157. Isolates were tested by PCR for the most common virulence genes, VTI, VTII and eae, and typed by pulsed field gel electrophoresis. In total, 71 isolates were obtained, of which 49 from dairy cows, 8 from young stock, 5 from other animals and 9 from the environment. Positive samples were all detected in summer and early fall. VT- and eae-genes were found in all tested isolates, except in one. DNA typing showed that three clusters of O157 isolates could be identified. One of these clusters contained samples of two shedding seasons, indicating persistence on the farm during winter and spring. Repeated measures analysis of variance showed that cows with O157 VTEC infection had higher daily milk production in the period preceding sampling (p = 0.0055). There was no significant association between the results of the LPS-ELISA on serum samples from dairy cows and their O157 status.
Collapse
Affiliation(s)
- J M Schouten
- Quantitative Veterinary Epidemiology, Wageningen Institute of Animal Sciences, Wageningen University and Research Centre, P.O. Box 338, 6700 AH Wageningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
34
|
McGee P, Scott L, Sheridan JJ, Earley B, Leonard N. Horizontal transmission of Escherichia coli O157:H7 during cattle housing. J Food Prot 2004; 67:2651-6. [PMID: 15633666 DOI: 10.4315/0362-028x-67.12.2651] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ruminant livestock, particularly cattle, is considered the primary reservoir of Escherichia coli O157:H7. This study examines the transmission of E. coli O157:H7 within groups of cattle during winter housing. Holstein Friesian steers were grouped in six pens of five animals. An animal inoculated with and proven to be shedding a marked strain of E. coli O157: H7 was introduced into each pen. Fecal (rectal swabs) and hide samples (900 cm2 from the right rump) were taken from the 36 animals throughout the study. Water, feed, and gate or partition samples from each pen were also examined. Within 24 h of introducing the inoculated animals into the pens, samples collected from the drinking water, pen barriers, and animal hides were positive for the pathogen. Within 48 h, the hides of 20 (66%) of 30 cohort animals from the six pens were contaminated with E. coli O157:H7. The first positive fecal samples from the noninoculated cohort animals were detected 3 days after the introduction of the inoculated steers. During the 23 days of the study, 15 of 30 cohort animals shed the marked E. coli O157:H7 strain in their feces on at least one occasion. Animal behavior in the pens was monitored during a 12-h period using closed circuit television cameras. The camera footage showed an average of 13 instances of animal grooming in each pen per hour. The study suggests that transmission of E. coli O157:H7 between animals may occur following ingestion of the pathogen at low levels and that animal hide may be an important source of transmission.
Collapse
Affiliation(s)
- P McGee
- Teagasc, The National Food Centre, Ashtown, Dublin, Ireland.
| | | | | | | | | |
Collapse
|
35
|
Menge C, Stamm I, van Diemen PM, Sopp P, Baljer G, Wallis TS, Stevens MP. Phenotypic and functional characterization of intraepithelial lymphocytes in a bovine ligated intestinal loop model of enterohaemorrhagic Escherichia coli infection. J Med Microbiol 2004; 53:573-579. [PMID: 15150340 DOI: 10.1099/jmm.0.45530-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Ruminants are a major reservoir of enterohaemorrhagic Escherichia coli (EHEC), which cause acute gastroenteritis in humans with potentially life-threatening sequelae. The mechanisms underlying EHEC persistence in ruminant hosts are poorly understood. EHEC produce several cytotoxins that inhibit the proliferation of bovine lymphocytes in vitro and influence EHEC persistence in calves, suggesting that bacterial suppression of mucosal inflammation may be important in vivo. In order to address this hypothesis, intraepithelial lymphocytes (IEL) obtained from ligated intestinal loops of five 9-14 day old calves were characterized 12 h after inoculation with E. coli strains. Loops were inoculated with an EHEC O103 : H2 strain, an isogenic Deltastx1 mutant incapable of producing Shiga toxin 1 (Stx1) and a porcine non-pathogenic E. coli strain. The IEL mainly comprised activated CD2(+) CD3(+) CD6(+) CD8alpha(+) T cells and resembled IEL obtained from the intestinal mucosa of orally challenged calves. Forty per cent of all IEL were potentially sensitive to Stx1 in that they expressed the receptor for Stx1. Nevertheless, analysis of IEL from inoculated loops failed to detect a significant effect of the different E. coli strains on proliferative capacity, natural killer cell activity or the cytokine mRNA profile. However, the EHEC wild-type strain reduced the percentage of CD8alpha(+) T cells in the ileal mucosa compared with loops inoculated with the Deltastx1 mutant. This shift in IEL composition was not associated with inhibition of IEL proliferation in situ, since the majority of the IEL from all loops were in the G(0)/G(1) phase of the cell cycle. These studies indicate that the ligated ileal loop model will be a useful tool to dissect the mechanisms underlying suppression of mucosal inflammation by EHEC in the reservoir host.
Collapse
Affiliation(s)
- Christian Menge
- Institute for Hygiene and Infectious Diseases of Animals, Justus-Liebig-University, D-35392 Giessen, Germany 2,3Division of Microbiology2 and Division of Immunology & Pathology3, Institute for Animal Health, Compton Laboratory, Compton, Berkshire RG20 7NN, UK
| | - Ivonne Stamm
- Institute for Hygiene and Infectious Diseases of Animals, Justus-Liebig-University, D-35392 Giessen, Germany 2,3Division of Microbiology2 and Division of Immunology & Pathology3, Institute for Animal Health, Compton Laboratory, Compton, Berkshire RG20 7NN, UK
| | - Pauline M van Diemen
- Institute for Hygiene and Infectious Diseases of Animals, Justus-Liebig-University, D-35392 Giessen, Germany 2,3Division of Microbiology2 and Division of Immunology & Pathology3, Institute for Animal Health, Compton Laboratory, Compton, Berkshire RG20 7NN, UK
| | - Paul Sopp
- Institute for Hygiene and Infectious Diseases of Animals, Justus-Liebig-University, D-35392 Giessen, Germany 2,3Division of Microbiology2 and Division of Immunology & Pathology3, Institute for Animal Health, Compton Laboratory, Compton, Berkshire RG20 7NN, UK
| | - Georg Baljer
- Institute for Hygiene and Infectious Diseases of Animals, Justus-Liebig-University, D-35392 Giessen, Germany 2,3Division of Microbiology2 and Division of Immunology & Pathology3, Institute for Animal Health, Compton Laboratory, Compton, Berkshire RG20 7NN, UK
| | - Timothy S Wallis
- Institute for Hygiene and Infectious Diseases of Animals, Justus-Liebig-University, D-35392 Giessen, Germany 2,3Division of Microbiology2 and Division of Immunology & Pathology3, Institute for Animal Health, Compton Laboratory, Compton, Berkshire RG20 7NN, UK
| | - Mark P Stevens
- Institute for Hygiene and Infectious Diseases of Animals, Justus-Liebig-University, D-35392 Giessen, Germany 2,3Division of Microbiology2 and Division of Immunology & Pathology3, Institute for Animal Health, Compton Laboratory, Compton, Berkshire RG20 7NN, UK
| |
Collapse
|
36
|
Menge C, Blessenohl M, Eisenberg T, Stamm I, Baljer G. Bovine ileal intraepithelial lymphocytes represent target cells for Shiga toxin 1 from Escherichia coli. Infect Immun 2004; 72:1896-905. [PMID: 15039308 PMCID: PMC375150 DOI: 10.1128/iai.72.4.1896-1905.2004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The discovery that bovine peripheral lymphocytes are sensitive to Stx1 identified a possible mechanism for the persistence of infections with Shiga toxin (Stx)-producing Escherichia coli (STEC) in the bovine reservoir host. If intraepithelial lymphocytes (IEL) are also sensitive to Stx1, the idea that Stx1 affects inflammation in the bovine intestine is highly attractive. To prove this hypothesis, ileal IEL (iIEL) were prepared from adult cattle, characterized by flow cytometry, and subjected to functional assays in the presence and absence of purified Stx1. We found that 14.9% of all iIEL expressed Gb(3)/CD77, the Stx1 receptor on bovine lymphocytes, and 7.9% were able to bind the recombinant B subunit of Stx1. The majority of Gb(3)/CD77(+) cells were activated CD3(+) CD6(+) CD8 alpha(+) T cells, whereas only some CD4(+) T cells and B cells expressed Gb(3)/CD77. However, Stx1 blocked the mitogen-induced transformation to enlarged blast cells within all subpopulations to a similar extent and significantly reduced the percentage of Gb(3)/CD77(+) cells. Although Stx1 did not affect the natural killer cell activity of iIEL, the toxin accelerated the synthesis of interleukin-4 (IL-4) mRNA and reduced the amount of IL-8 mRNA in bovine iIEL cultures. Because the intestinal system comprises a rich network of interactions between different types of cells and any dysfunction may influence the course of intestinal infections, this demonstration that Stx1 can target bovine IEL may be highly relevant for our understanding of the interplay between STEC and its reservoir host.
Collapse
Affiliation(s)
- Christian Menge
- Institut für Hygiene und Infektionskrankheiten der Tiere der Justus-Liebig-Universität Giessen, D-35392 Giessen, Germany.
| | | | | | | | | |
Collapse
|
37
|
Rugbjerg H, Nielsen EM, Andersen JS. Risk factors associated with faecal shedding of verocytotoxin-producing Escherichia coli O157 in eight known-infected Danish dairy herds. Prev Vet Med 2003; 58:101-13. [PMID: 12706052 DOI: 10.1016/s0167-5877(03)00023-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A risk-factor study was performed in eight dairy herds found to excrete verocytotoxin-producing Escherichia coli (VTEC) O157 in a former prevalence study. Associations between excretion of VTEC O157 and management factors such as housing and feeding were analysed in a generalised linear mixed model. The animals were stratified in three age groups and sampled four times during 1 year. The risk of excreting VTEC O157 was higher among weaned calves than non-weaned calves. Among the calves aged 1-4 months, the risk was reduced if the calf had suckled colostrum from the mother or if the calf had stayed >2 days with the mother after calving. Calves aged 5-24 months that had been moved within the last 2 weeks had a higher risk, but risk was reduced if fed barley silage. Cows fed grain or molasses had a higher risk of excreting VTEC O157.
Collapse
Affiliation(s)
- Helene Rugbjerg
- Danish Veterinary Institute, Danish Zoonosis Center, Bülowsvej 27, DK-1790, Copenhagen V, Denmark.
| | | | | |
Collapse
|
38
|
Turner J, Begon M, Bowers RG, French NP. A model appropriate to the transmission of a human food-borne pathogen in a multigroup managed herd. Prev Vet Med 2003; 57:175-98. [PMID: 12609464 DOI: 10.1016/s0167-5877(03)00006-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We describe a model of microparasite transmission within a multigroup managed farming system. The model was formulated to represent transmission of Escherichia coli O157 within a typical UK dairy herd and was used to suggest possible on-farm control strategies. The model includes birth, death, maturation, the dry/lactating cycle and various types of transmission (i.e. direct, pseudovertical (representing direct faecal-oral transmission between dam and calf within the first 48 h) and indirect (via free-living infectious units in the environment)). A combination of numerical and analytical techniques was used to analyse the model. We found that pseudovertical transmission and indirect transmission via infectious units in the 'general' environment can lead to more groups being affected, but otherwise have relatively little effect on the invasion criteria. To reduce infection within the herd, we suggest that efforts be directed at reducing the opportunity for group-specific indirect transmission-particularly within the weaned group.
Collapse
Affiliation(s)
- Joanne Turner
- DEFRA Epidemiology Fellowship Unit, Department of Veterinary Clinical Science and Animal Husbandry, The University of Liverpool, Leahurst, Neston, South Wirral CH64 7TE, UK.
| | | | | | | |
Collapse
|
39
|
Basu I, Ferens WA, Stone DM, Hovde CJ. Antiviral activity of shiga toxin requires enzymatic activity and is associated with increased permeability of the target cells. Infect Immun 2003; 71:327-34. [PMID: 12496182 PMCID: PMC143405 DOI: 10.1128/iai.71.1.327-334.2003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study expanded our earlier finding that Shiga toxin type 1 (Stx1) has activity against bovine leukemia virus (BLV) (W. A. Ferens and C. J. Hovde, Infect. Immun. 68:4462-4469, 2000). The Stx molecular motifs required for antiviral activity were identified, and a mechanism of Stx action on virally infected cells is suggested. Using inhibition of BLV-dependent spontaneous lymphocyte proliferation as a measure of antiviral activity, we showed that Stx2 had antiviral activity similar to that of Stx1. Enzymatic and antiviral activities of three StxA1 chain mutants deficient in enzymatic activity or aspects of receptor-mediated cytotoxicity were compared. Using protein synthesis inhibition to measure enzymatic activity, the mutant E167D was 300-fold less catalytically active than wild-type StxA1, was minimally active in antiviral assays, and did not inhibit synthesis of viral proteins. Two StxA1 mutants, A231D-G234E and StxA(1)1 (enzymatically active but unable to kill cells via the classical receptor-mediated route), had undiminished antiviral activity. Although binding of radiolabeled StxA1 to bovine blood cells or to free virus was not detected, flow cytometric analysis showed that the number of BLV-expressing cells were specifically reduced in cultures treated with Stx. These unique and rare lymphocytes were highly permeable to 40- and 70-kDa fluorescent dextrans, indicating that direct absorption of toxins by virus-expressing cells is a potential mechanism of target cell intoxication. These results support the hypothesis that Stx-producing Escherichia coli colonization of the gastrointestinal tract may benefit ruminant hosts by the ability of Stxs to exert antiviral activity.
Collapse
Affiliation(s)
- Indira Basu
- Department of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, Idaho 83844-3052, USA
| | | | | | | |
Collapse
|
40
|
Stevens MP, van Diemen PM, Dziva F, Jones PW, Wallis TS. Options for the control of enterohaemorrhagic Escherichia coli in ruminants. MICROBIOLOGY (READING, ENGLAND) 2002; 148:3767-3778. [PMID: 12480881 DOI: 10.1099/00221287-148-12-3767] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Mark P Stevens
- Division of Environmental Microbiology, Institute for Animal Health, Compton Laboratory, Compton, Newbury RG20 7NN, UK1
| | - Pauline M van Diemen
- Division of Environmental Microbiology, Institute for Animal Health, Compton Laboratory, Compton, Newbury RG20 7NN, UK1
| | - Francis Dziva
- Division of Environmental Microbiology, Institute for Animal Health, Compton Laboratory, Compton, Newbury RG20 7NN, UK1
| | - Philip W Jones
- Division of Environmental Microbiology, Institute for Animal Health, Compton Laboratory, Compton, Newbury RG20 7NN, UK1
| | - Timothy S Wallis
- Division of Environmental Microbiology, Institute for Animal Health, Compton Laboratory, Compton, Newbury RG20 7NN, UK1
| |
Collapse
|
41
|
Stamm I, Wuhrer M, Geyer R, Baljer G, Menge C. Bovine lymphocytes express functional receptors for Escherichia coli Shiga toxin 1. Microb Pathog 2002; 33:251-64. [PMID: 12495672 DOI: 10.1006/mpat.2002.0527] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interactions of Shiga toxins (Stxs) and immune cells contribute to the pathogenesis of diseases due to Stx-producing Escherichia coli (STEC) infections in humans and facilitate the persistence of infection in asymptomatically infected cattle. Our recent findings that bovine B and T lymphocytes express Gb(3)/CD77, the human Stx-receptor, prompted us to determine whether the bovine homologue also mediates binding and internalization of Stx1. In fact, Stx1 holotoxin and recombinant B subunit (rStxB1) bound to stimulated bovine peripheral blood mononuclear cells, especially to those subpopulations (B cells, BoCD8(+) T cells) that are highly sensitive to Stx1. Competition and HPTLC-binding studies confirmed that Stx1 binds to bovine Gb(3), but different receptor isoforms with varying affinities for rStxB1 were expressed during the course of lymphocyte activation. At least one of these isoforms mediated toxin uptake. An anti-StxB1 mouse monoclonal antibody, used as a model for bovine serum antibodies specific for Stx1, modulated rather than generally prevented rStxB1 binding to and internalization by the receptors. The presence of functional Stx1-receptors on bovine lymphocytes explains the immunomodulatory effect of Stx1 observed in cattle at a molecular level. Furthermore, expression of such receptors by bovine but not human T cells enlightens the background for the differential outcome of STEC infections in cattle and man, i.e., persistent infection and development of disease, respectively.
Collapse
Affiliation(s)
- Ivonne Stamm
- Institut für Hygiene und Infektionskrankheiten der Tiere der Justus-Liebig-Universität, Giessen, Germany
| | | | | | | | | |
Collapse
|
42
|
Smith DGE, Naylor SW, Gally DL. Consequences of EHEC colonisation in humans and cattle. Int J Med Microbiol 2002; 292:169-83. [PMID: 12398208 DOI: 10.1078/1438-4221-00202] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
While many factors have been associated with human EHEC infection, the full role these play in both human and ruminant hosts are not yet clear despite much investigation. It is hoped that the continued intense international research effort into EHEC will provide further insights into the commensal versus pathogenic lifestyles of E. coli and lead to approaches to reduce EHEC carriage in ruminants as well as prevent or treat human disease.
Collapse
Affiliation(s)
- David G E Smith
- Medical Microbiology, Royal (Dick) School of Veterinary Studies, University of Edinburgh, United Kingdom
| | | | | |
Collapse
|
43
|
Shere JA, Kaspar CW, Bartlett KJ, Linden SE, Norell B, Francey S, Schaefer DM. Shedding of Escherichia coli O157:H7 in dairy cattle housed in a confined environment following waterborne inoculation. Appl Environ Microbiol 2002; 68:1947-54. [PMID: 11916717 PMCID: PMC123869 DOI: 10.1128/aem.68.4.1947-1954.2002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2001] [Accepted: 01/16/2002] [Indexed: 11/20/2022] Open
Abstract
A study of Escherichia coli O157:H7 transmission and shedding was conducted with bull calves housed in individual pens within a confined environment. For comparative purposes, the numbers and duration of E. coli O157:H7 shedding in naturally infected calves were monitored after a single purchased calf (calf 156) tested positive prior to inoculation. During the next 8 days, the calves in adjacent pens and a pen directly across a walkway from calf 156 began to shed this serotype O157:H7 strain. Five of the eight calves in this room shed this O157:H7 strain at some time during the following 8 weeks. The numbers of E. coli O157:H7 isolates shed in these calves varied from 60 to 10(5) CFU/g of feces, and the duration of shedding ranged from 17 to >31 days. The genomic DNAs from isolates recovered from these calves were indistinguishable when compared by using XbaI digestion and pulsed-field gel electrophoresis. Inoculation of calves with 1 liter of water containing ca. 10(3) to 10(4) CFU of E. coli O157:H7/ml resulted in shedding in 10 of 12 calves (trial 1, 4 of 4 calves; trial 2, 6 of 8 calves). The inoculated calves shed the inoculation strain (FRIK 1275) as early as 24 h after administration. The duration of shedding varied from 18 to >43 days at levels from 10(2) to 10(6) CFU/g of feces. The numbers of doses necessary to initiate shedding varied among calves, and two calves in trial 2 never shed FRIK 1275 after four doses (ca. 10(6) CFU per dose). Results from this study confirm previous reports of animal-to-animal and waterborne dissemination of E. coli O157:H7 and highlight the need for an effective water treatment to reduce the spread of this pathogen in cattle.
Collapse
Affiliation(s)
- J A Shere
- United States Department of Agriculture, Animal, Plant Health Inspection Service, Veterinary Services, Madison, Wisconsin 53719, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
LeJeune JT, Besser TE, Hancock DD. Cattle water troughs as reservoirs of Escherichia coli O157. Appl Environ Microbiol 2001; 67:3053-7. [PMID: 11425721 PMCID: PMC92980 DOI: 10.1128/aem.67.7.3053-3057.2001] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Environmental survival of Escherichia coli O157 may play an important role in the persistence and dissemination of this organism on farms. The survival of culturable and infectious E. coli O157 was studied using microcosms simulating cattle water troughs. Culturable E. coli O157 survived for at least 245 days in the microcosm sediments. Furthermore, E. coli O157 strains surviving more than 6 months in contaminated microcosms were infectious to a group of 10-week-old calves. Fecal excretion of E. coli O157 by these calves persisted for 87 days after challenge. Water trough sediments contaminated with feces from cattle excreting E. coli O157 may serve as a long-term reservoir of this organism on farms and a source of infection for cattle.
Collapse
Affiliation(s)
- J T LeJeune
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington 99164, USA
| | | | | |
Collapse
|
45
|
Fischer JR, Zhao T, Doyle MP, Goldberg MR, Brown CA, Sewell CT, Kavanaugh DM, Bauman CD. Experimental and field studies of Escherichia coli O157:H7 in white-tailed deer. Appl Environ Microbiol 2001; 67:1218-24. [PMID: 11229913 PMCID: PMC92716 DOI: 10.1128/aem.67.3.1218-1224.2001] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies were conducted to evaluate fecal shedding of Escherichia coli O157:H7 in a small group of inoculated deer, determine the prevalence of the bacterium in free-ranging white-tailed deer, and elucidate relationships between E. coli O157:H7 in wild deer and domestic cattle at the same site. Six young, white-tailed deer were orally administered 10(8) CFU of E. coli O157:H7. Inoculated deer were shedding E. coli O157:H7 by 1 day postinoculation (DPI) and continued to shed decreasing numbers of the bacteria throughout the 26-day trial. Horizontal transmission to an uninoculated deer was demonstrated. Although E. coli O157:H7 bacteria were recovered from the gastrointestinal tracts of deer necropsied from 4 to 26 DPI, attaching and effacing lesions were not apparent in any deer. Results are similar to those of inoculation studies in calves and sheep. In field studies, E. coli O157 was not detected in 310 fresh deer fecal samples collected from the ground. It was detected in feces, but not in meat, from 3 of 469 free-ranging deer in 1997. In 1998, E. coli O157 was not detected in 140 deer at the single positive site found in 1997; however, it was recovered from 13 of 305 dairy and beef cattle at the same location. Isolates of E. coli O157:H7 from deer and cattle at this site differed with respect to pulsed-field gel electrophoresis patterns and genes encoding Shiga toxins. The low overall prevalence of E. coli O157:H7 and the identification of only one site with positive deer suggest that wild deer are not a major reservoir of E. coli O157:H7 in the southeastern United States. However, there may be individual locations where deer sporadically harbor the bacterium, and venison should be handled with the same precautions recommended for beef, pork, and poultry.
Collapse
Affiliation(s)
- J R Fischer
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602, USA.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Cornick NA, Booher SL, Casey TA, Moon HW. Persistent colonization of sheep by Escherichia coli O157:H7 and other E. coli pathotypes. Appl Environ Microbiol 2000; 66:4926-34. [PMID: 11055945 PMCID: PMC92401 DOI: 10.1128/aem.66.11.4926-4934.2000] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2000] [Accepted: 08/29/2000] [Indexed: 11/20/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is an important cause of food-borne illness in humans. Ruminants appear to be more frequently colonized by STEC than are other animals, but the reason(s) for this is unknown. We compared the frequency, magnitude, duration, and transmissibility of colonization of sheep by E. coli O157:H7 to that by other pathotypes of E. coli. Young adult sheep were simultaneously inoculated with a cocktail consisting of two strains of E. coli O157:H7, two strains of enterotoxigenic E. coli (ETEC), and one strain of enteropathogenic E. coli. Both STEC strains and ETEC 2041 were given at either 10(7) or 10(10) CFU/strain/animal. The other strains were given only at 10(10) CFU/strain. We found no consistent differences among pathotypes in the frequency, magnitude, and transmissibility of colonization. However, the STEC strains tended to persist to 2 weeks and 2 months postinoculation more frequently than did the other pathotypes. The tendency for persistence of the STEC strains was apparent following an inoculation dose of either 10(7) or 10(10) CFU. One of the ETEC strains also persisted when inoculated at 10(10) CFU. However, in contrast to the STEC strains, it did not persist when inoculated at 10(7) CFU. These results support the hypothesis that STEC is better adapted to persist in the alimentary tracts of sheep than are other pathotypes of E. coli.
Collapse
Affiliation(s)
- N A Cornick
- Veterinary Medical Research Institute, Iowa State University, Ames, Iowa 50011, USA.
| | | | | | | |
Collapse
|
47
|
Wray C, McLaren IM, Randall LP, Pearson GR. Natural and experimental infection of normal cattle with Escherichia coli O157. Vet Rec 2000; 147:65-8. [PMID: 10958486 DOI: 10.1136/vr.147.3.65] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The objective of the study was to determine the effects of inoculating cattle orally with a strain of Escherichia coli O157:H7 (A84/92). However, before they were challenged two of the six calves were found to be infected naturally with a wild-type strain of E coli O157 and two more of them became infected later. The number of daily faeces samples from which the wild-type E coli O157 was isolated ranged from one to 10. After they were inoculated, A84/92 was detected in all the calves' faeces on one to six of the next 14 days, and later from the faeces samples of three calves on two, three, and 11 occasions, the last occasion being between 19 and 51 days after inoculation. Two calves were redosed with A84/92, and the organism was isolated on a further five and 15 occasions, the last being after 20 and 58 days. In three dry cows, A84/92 was isolated from the faeces on three to 11 of the 14 days after they were inoculated. Two of the cows were redosed and from one of them it was isolated on 15 occasions, the last being 44 days after the initial infection; in the other cow no further isolation was made. In three lactating cows, it was detected on three to four of the 14 days after they were inoculated, and similar results were obtained after they were reinoculated. None of the animals showed clinical signs and no lesions were detected in the intestines of the calves. Three calves had a serological response to E coli O157 but, with the exception of one cow which had a slight increase to IgM levels, no serological changes were observed in the adult cattle.
Collapse
Affiliation(s)
- C Wray
- Veterinary Laboratories Agency-Weybridge, New Haw, Addlestone, UK
| | | | | | | |
Collapse
|
48
|
Van Donkersgoed J, Graham T, Gannon V. The prevalence of verotoxins, Escherichia coli O157:H7, and Salmonella in the feces and rumen of cattle at processing. THE CANADIAN VETERINARY JOURNAL = LA REVUE VETERINAIRE CANADIENNE 1999; 40:332-8. [PMID: 10340094 PMCID: PMC1539799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Fecal samples collected from cattle at processing during a 1-year period were tested for verotoxins (VT1, VT2), Escherichia coli O157:H7, and Salmonella. Verotoxins were detected in 42.6% (95% CI, 39.8% to 45.4%), E. coli O157:H7 in 7.5% (95% CI, 6.1% to 9.1%), and Salmonella in 0.08% (95% CI, 0.004% to 0.5%) of the fecal samples. In yearling cattle, the median within-lot prevalence (percentage of positive samples within a lot) was 40% (range, 0% to 100%) for verotoxins and 0% for E. coli O157:H7 (range, 0% to 100%) and Salmonella (range, 0% to 17%). One or more fecal samples were positive for verotoxins in 80.4% (95% CI, 72.8% to 86.4%) of the lots of yearling cattle, whereas E. coli O157:H7 were detected in 33.6% (95% CI, 26.0% to 42.0%) of the lots. In cull cows, the median within-lot prevalence was 50% (range, 0% to 100%) for verotoxins and 0% (range, 0% to 100%) for E. coli O157:H7 and Salmonella (range, 0% to 0%). Verotoxins were detected in one or more fecal samples from 78.0% (95% CI, 70.4% to 84.2%) of the lots of cull cows, whereas E. coli O157:H7 were detected in only 6.0% (95% CI, 3.0% to 11.4%) of the lots of cull cows. The prevalence of verotoxins in fecal samples was lower in yearling cattle than in cull cows, whereas the prevalence of E. coli O157:H7 in fecal samples was higher in yearling cattle than in cull cows. The prevalence of E. coli O157:H7 in fecal samples was highest in the summer months. Rumen fill, body condition score, sex, type of cattle (dairy, beef), and distance travelled to the plant were not associated with the fecal prevalence of verotoxins or E. coli O157:H7. The prevalence of verotoxins in fecal samples of cull cows was associated with the source of the cattle. It was highest in cows from the auction market (52%) and farm/ranch (47%) and lowest in cows from the feedlot (31%). In rumen samples, the prevalence of verotoxins was 6.4% (95% CI, 4.2% to 9.4%), and it was 0.8% (95% CI, 0.2% to 2.3%) for E. coli O157:H7, and 0.3% (95% CI, 0.007% to 1.5%) for Salmonella.
Collapse
|
49
|
Laegreid W, Hoffman M, Keen J, Elder R, Kwang J. Development of a blocking enzyme-linked immunosorbent assay for detection of serum antibodies to O157 antigen of Escherichia coli. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 1998; 5:242-6. [PMID: 9521150 PMCID: PMC121365 DOI: 10.1128/cdli.5.2.242-246.1998] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The O157 antigen of Escherichia coli shares structural elements with lipopolysaccharide (LPS) antigens of other bacterial species, notably Brucella abortus and Yersinia enterocolitica 09, a fact that confounds the interpretation of assays for anti-O157 antibodies. To address this problem, a blocking enzyme-linked immunosorbent assay (bELISA) was designed with E. coli O157:H7 LPS as the antigen and a monoclonal antibody specific for E. coli O157, designated 13B3, as the competing antibody. The bELISA had equivalent sensitivity to, and significantly higher specificity than, the indirect ELISA (iELISA), detecting anti-O157 antibodies in sera from cattle experimentally inoculated with O157:H7. Only 13% of sera from naive heifers vaccinated for or experimentally infected with B. abortus had increased anti-O157 bELISA titers, while 61% of anti-O157 iELISA titers were increased. The bELISA is a sensitive and specific method for the detection of serum antibodies resulting from exposure to E. coli O157.
Collapse
Affiliation(s)
- W Laegreid
- U.S. Meat Animal Research Center, USDA Agricultural Research Service, Clay Center, Nebraska 68933, USA.
| | | | | | | | | |
Collapse
|