1
|
Lee J, McClure S, Weichselbaum RR, Mimee M. Designing live bacterial therapeutics for cancer. Adv Drug Deliv Rev 2025; 221:115579. [PMID: 40228606 PMCID: PMC12067981 DOI: 10.1016/j.addr.2025.115579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/26/2025] [Accepted: 04/09/2025] [Indexed: 04/16/2025]
Abstract
Humans are home to a diverse community of bacteria, many of which form symbiotic relationships with their host. Notably, tumors can also harbor their own unique bacterial populations that can influence tumor growth and progression. These bacteria, which selectively colonize hypoxic and acidic tumor microenvironments, present a novel therapeutic strategy to combat cancer. Advancements in synthetic biology enable us to safely and efficiently program therapeutic drug production in bacteria, further enhancing their potential. This review provides a comprehensive guide to utilizing bacteria for cancer treatment. We discuss key considerations for selecting bacterial strains, emphasizing their colonization efficiency, the delicate balance between safety and anti-tumor efficacy, and the availability of tools for genetic engineering. We also delve into strategies for precise spatiotemporal control of drug delivery to minimize adverse effects and maximize therapeutic impact, exploring recent examples of engineered bacteria designed to combat tumors. Finally, we address the underlying challenges and future prospects of bacterial cancer therapy. This review underscores the versatility of bacterial therapies and outlines strategies to fully harness their potential in the fight against cancer.
Collapse
Affiliation(s)
- Jaehyun Lee
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA
| | - Sandra McClure
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA; Duchoissois Family Institute, University of Chicago, Chicago, IL 60637, USA; Committee On Molecular Metabolism and Nutrition, University of Chicago, Chicago, IL 60637, USA
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago 60637, USA; The Ludwig Center for Metastasis Research, University of Chicago, Chicago 60637, USA
| | - Mark Mimee
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA; Duchoissois Family Institute, University of Chicago, Chicago, IL 60637, USA; Committee On Molecular Metabolism and Nutrition, University of Chicago, Chicago, IL 60637, USA; Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
2
|
Worley MJ. Salmonella Type III Secretion System Effectors. Int J Mol Sci 2025; 26:2611. [PMID: 40141253 PMCID: PMC11942329 DOI: 10.3390/ijms26062611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/05/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Salmonella is estimated to infect between 200 million and over 1 billion people per year. The exact number is not known, as many cases go unreported. Integral to the pathogenesis of Salmonella, as well as numerous other Gram-negative pathogens, is its type III effectors. Salmonella possesses two distinct type III secretion systems, encoded by Salmonella pathogenicity island-1 and Salmonella pathogenicity island-2. Together, they secrete at least 49 type III effectors into host cells that are collectively responsible for many of the virulence attributes of this pathogen. These virulence factors facilitate the invasion of host cells, induce and attenuate inflammation, and change the migratory properties of infected phagocytes, among other things. The effects of all type III effectors on Salmonella virulence are discussed.
Collapse
Affiliation(s)
- Micah J Worley
- Department of Biology, University of Louisville, Louisville, KY 40292, USA
| |
Collapse
|
3
|
Brady A, Mora Martinez LC, Hammond B, Whitefoot-Keliin KM, Haribabu B, Uriarte SM, Lawrenz MB. Distinct mechanisms of type 3 secretion system recognition control LTB4 synthesis in neutrophils and macrophages. PLoS Pathog 2024; 20:e1012651. [PMID: 39423229 PMCID: PMC11524448 DOI: 10.1371/journal.ppat.1012651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/30/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024] Open
Abstract
Leukotriene B4 (LTB4) is an inflammatory lipid produced in response to pathogens that is critical for initiating the inflammatory cascade needed to control infection. However, during plague, Yersinia pestis inhibits the timely synthesis of LTB4 and subsequent inflammation. Using bacterial mutants, we previously determined that Y. pestis inhibits LTB4 synthesis via the action of the Yop effector proteins that are directly secreted into host cells through a type 3 secretion system (T3SS). Here, we show that the T3SS is the primary pathogen associated molecular pattern (PAMP) required for production of LTB4 in response to both Yersinia and Salmonella. However, we also unexpectantly discovered that T3SS-mediated LTB4 synthesis by neutrophils and macrophages require the activation of two distinctly different host signaling pathways. We identified that phagocytosis and the NLRP3/CASP1 inflammasome significantly impact LTB4 synthesis by macrophages but not neutrophils. Instead, the SKAP2/PLC signaling pathway is required for T3SS-mediated LTB4 production by neutrophils. Finally, while recognition of the T3SS is required for LTB4 production, we also discovered that a second unrelated PAMP-mediated signal activates the MAP kinase pathway needed for synthesis. Together, these data demonstrate significant differences in the host factors and signaling pathways required by macrophages and neutrophils to quickly produce LTB4 in response to bacteria. Moreover, while macrophages and neutrophils might rely on different signaling pathways for T3SS-dependent LTB4 synthesis, Y. pestis has evolved virulence mechanisms to counteract this response by either leukocyte to inhibit LTB4 synthesis and colonize the host.
Collapse
Affiliation(s)
- Amanda Brady
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Leonardo C. Mora Martinez
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Benjamin Hammond
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Kaitlyn M. Whitefoot-Keliin
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Bodduluri Haribabu
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
- Center for Microbiomics, Inflammation and Pathogenicity, Louisville, Kentucky, United States of America
| | - Silvia M. Uriarte
- Deptartment of Oral Immunology & Infectious Diseases, University of Louisville, Louisville, Kentucky, United States of America
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, Louisville, Kentucky, United States of America
| | - Matthew B. Lawrenz
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, Louisville, Kentucky, United States of America
| |
Collapse
|
4
|
Miki T, Uemura T, Kinoshita M, Ami Y, Ito M, Okada N, Furuchi T, Kurihara S, Haneda T, Minamino T, Kim YG. Salmonella Typhimurium exploits host polyamines for assembly of the type 3 secretion machinery. PLoS Biol 2024; 22:e3002731. [PMID: 39102375 DOI: 10.1371/journal.pbio.3002731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/02/2024] [Indexed: 08/07/2024] Open
Abstract
Bacterial pathogens utilize the factors of their hosts to infect them, but which factors they exploit remain poorly defined. Here, we show that a pathogenic Salmonella enterica serovar Typhimurium (STm) exploits host polyamines for the functional expression of virulence factors. An STm mutant strain lacking principal genes required for polyamine synthesis and transport exhibited impaired infectivity in mice. A polyamine uptake-impaired strain of STm was unable to inject effectors of the type 3 secretion system into host cells due to a failure of needle assembly. STm infection stimulated host polyamine production by increasing arginase expression. The decline in polyamine levels caused by difluoromethylornithine, which inhibits host polyamine production, attenuated STm colonization, whereas polyamine supplementation augmented STm pathogenesis. Our work reveals that host polyamines are a key factor promoting STm infection, and therefore a promising therapeutic target for bacterial infection.
Collapse
Affiliation(s)
- Tsuyoshi Miki
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Takeshi Uemura
- Laboratory of Bio-analytical Chemistry, Faculty of Pharmaceutical Sciences, Josai University, Saitama, Japan
| | - Miki Kinoshita
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Yuta Ami
- Faculty of Biology-Oriented Science and Technology, Kindai University, Wakayama, Japan
| | - Masahiro Ito
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Nobuhiko Okada
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Takemitsu Furuchi
- Laboratory of Bio-analytical Chemistry, Faculty of Pharmaceutical Sciences, Josai University, Saitama, Japan
| | - Shin Kurihara
- Faculty of Biology-Oriented Science and Technology, Kindai University, Wakayama, Japan
| | - Takeshi Haneda
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Yun-Gi Kim
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| |
Collapse
|
5
|
Brady A, Mora-Martinez LC, Hammond B, Haribabu B, Uriarte SM, Lawrenz MB. Distinct Mechanisms of Type 3 Secretion System Recognition Control LTB 4 Synthesis in Neutrophils versus Macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.601466. [PMID: 39005373 PMCID: PMC11244889 DOI: 10.1101/2024.07.01.601466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Leukotriene B4 (LTB4) is critical for initiating the inflammatory cascade in response to infection. However, Yersinia pestis colonizes the host by inhibiting the timely synthesis of LTB4 and inflammation. Here, we show that the bacterial type 3 secretion system (T3SS) is the primary pathogen associated molecular pattern (PAMP) responsible for LTB4 production by leukocytes in response to Yersinia and Salmonella, but synthesis is inhibited by the Yop effectors during Yersinia interactions. Moreover, we unexpectedly discovered that T3SS-mediated LTB4 synthesis by neutrophils and macrophages require two distinct host signaling pathways. We show that the SKAP2/PLC signaling pathway is essential for LTB4 production by neutrophils but not macrophages. Instead, phagocytosis and the NLRP3/CASP1 inflammasome are needed for LTB4 synthesis by macrophages. Finally, while recognition of the T3SS is required for LTB4 production, we also discovered a second unrelated PAMP-mediated signal independently activates the MAP kinase pathway needed for LTB4 synthesis. Together, these data demonstrate significant differences in the signaling pathways required by macrophages and neutrophils to quickly respond to bacterial infections.
Collapse
Affiliation(s)
- Amanda Brady
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Leonardo C. Mora-Martinez
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Benjamin Hammond
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Bodduluri Haribabu
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
- Center for Microbiomics, Inflammation and Pathogenicity, Louisville, Kentucky, United States of America
| | - Silvia M. Uriarte
- Deptartment of Oral Immunology & Infectious Diseases, University of Louisville, Louisville, Kentucky, United States of America
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, Louisville, Kentucky, United States of America
| | - Matthew B. Lawrenz
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, Louisville, Kentucky, United States of America
| |
Collapse
|
6
|
Stepien TA, Singletary LA, Guerra FE, Karlinsey JE, Libby SJ, Jaslow SL, Gaggioli MR, Gibbs KD, Ko DC, Brehm MA, Greiner DL, Shultz LD, Fang FC. Nuclear factor kappa B-dependent persistence of Salmonella Typhi and Paratyphi in human macrophages. mBio 2024; 15:e0045424. [PMID: 38497655 PMCID: PMC11005419 DOI: 10.1128/mbio.00454-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 03/19/2024] Open
Abstract
Salmonella serovars Typhi and Paratyphi cause a prolonged illness known as enteric fever, whereas other serovars cause acute gastroenteritis. Mechanisms responsible for the divergent clinical manifestations of nontyphoidal and enteric fever Salmonella infections have remained elusive. Here, we show that S. Typhi and S. Paratyphi A can persist within human macrophages, whereas S. Typhimurium rapidly induces apoptotic macrophage cell death that is dependent on Salmonella pathogenicity island 2 (SPI2). S. Typhi and S. Paratyphi A lack 12 specific SPI2 effectors with pro-apoptotic functions, including nine that target nuclear factor κB (NF-κB). Pharmacologic inhibition of NF-κB or heterologous expression of the SPI2 effectors GogA or GtgA restores apoptosis of S. Typhi-infected macrophages. In addition, the absence of the SPI2 effector SarA results in deficient signal transducer and activator of transcription 1 (STAT1) activation and interleukin 12 production, leading to impaired TH1 responses in macrophages and humanized mice. The absence of specific nontyphoidal SPI2 effectors may allow S. Typhi and S. Paratyphi A to cause chronic infections. IMPORTANCE Salmonella enterica is a common cause of gastrointestinal infections worldwide. The serovars Salmonella Typhi and Salmonella Paratyphi A cause a distinctive systemic illness called enteric fever, whose pathogenesis is incompletely understood. Here, we show that enteric fever Salmonella serovars lack 12 specific virulence factors possessed by nontyphoidal Salmonella serovars, which allow the enteric fever serovars to persist within human macrophages. We propose that this fundamental difference in the interaction of Salmonella with human macrophages is responsible for the chronicity of typhoid and paratyphoid fever, suggesting that targeting the nuclear factor κB (NF-κB) complex responsible for macrophage survival could facilitate the clearance of persistent bacterial infections.
Collapse
Affiliation(s)
- Taylor A. Stepien
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | | | - Fermin E. Guerra
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Joyce E. Karlinsey
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Stephen J. Libby
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Sarah L. Jaslow
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Margaret R. Gaggioli
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Kyle D. Gibbs
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Dennis C. Ko
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Michael A. Brehm
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Dale L. Greiner
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | - Ferric C. Fang
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
7
|
Mikolajczyk-Martinez A, Ugorski M. Unraveling the role of type 1 fimbriae in Salmonella pathogenesis: insights from a comparative analysis of Salmonella Enteritidis and Salmonella Gallinarum. Poult Sci 2023; 102:102833. [PMID: 37356296 PMCID: PMC10404763 DOI: 10.1016/j.psj.2023.102833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/21/2023] [Accepted: 05/31/2023] [Indexed: 06/27/2023] Open
Abstract
Significant differences in pathogenicity between Salmonella Enteritidis and Salmonella Gallinarum exist despite the fact that S. Gallinarum is a direct descendant of S. Enteritidis. It was hypothesized that such various properties may be in part the result of differences in structure and functions of type 1 fimbriae (T1Fs). In S. Enteritidis, T1Fs bind to oligomannosidic structures carried by host cell glycoproteins and are called mannose-sensitive T1Fs (MST1F). In S. Gallinarum, T1Fs lost ability to bind such carbohydrate chains, and were named mannose-resistant MRT1Fs (MRT1F). Therefore, the present study was undertaken to evaluate the role of MST1Fs and MRT1Fs in the adhesion, invasion, intracellular survival and cytotoxicity of S. Enteritidis and S. Gallinarum toward chicken intestinal CHIC8-E11cells and macrophage-like HD11 cells. Using mutant strains: S. Enteritidis fimH::kan and S. Gallinarum fimH::kan devoid of T1Fs and in vitro assays the following observations were made. MST1Fs have a significant impact on the chicken cell invasion by S. Enteritidis as MST1F-mediated adhesion facilitates direct and stable contact of bacteria with host cells, in contrast to MRT1Fs expressed by S. Gallinarum. MST1Fs as well as MRT1Fs did not affected intracellular viability of S. Enteritidis and S. Gallinarum. However, absolute numbers of intracellular viable wild-type S. Enteritidis were significantly higher than S. Enteritidis fimH::kan mutant and wild-type S. Gallinarum and S. Gallinarum fimH::kan mutant. These differences, reflecting the numbers of adherent and invading bacteria, underline the importance of MST1Fs in the pathogenicity of S. Enteritidis infections. The cytotoxicity of wild-type S. Enteritidis and its mutant devoid of MST1Fs to HD11 cells was essentially the same, despite the fact that the number of viable intracellular bacteria was significantly lower in the mutated strain. Using HD11 cells with similar number of intracellular wild-type S. Enteritidis and S. Enteritidis fimH::kan mutant, it was found that the lack of MST1Fs did not affect directly the cytotoxicity, suggesting that the increase in cytotoxicity of S. Enteritidis devoid of MST1Fs may be associated with crosstalk between T1Fs and other virulence factors.
Collapse
Affiliation(s)
- Agata Mikolajczyk-Martinez
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Maciej Ugorski
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland.
| |
Collapse
|
8
|
Xiong D, Song L, Chen Y, Jiao X, Pan Z. Salmonella Enteritidis activates inflammatory storm via SPI-1 and SPI-2 to promote intracellular proliferation and bacterial virulence. Front Cell Infect Microbiol 2023; 13:1158888. [PMID: 37325511 PMCID: PMC10266283 DOI: 10.3389/fcimb.2023.1158888] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/18/2023] [Indexed: 06/17/2023] Open
Abstract
Salmonella Enteritidis is an important intracellular pathogen, which can cause gastroenteritis in humans and animals and threaten life and health. S. Enteritidis proliferates in host macrophages to establish systemic infection. In this study, we evaluated the effects of Salmonella pathogenicity island-1 (SPI-1) and SPI-2 to S. Enteritidis virulence in vitro and in vivo, as well as the host inflammatory pathways affected by SPI-1 and SPI-2. Our results show that S. Enteritidis SPI-1 and SPI-2 contributed to bacterial invasion and proliferation in RAW264.7 macrophages, and induced cytotoxicity and cellular apoptosis of these cells. S. Enteritidis infection induced multiple inflammatory responses, including mitogen-activated protein kinase (ERK-mediated) and Janus kinase-signal transducer and activator of transcript (STAT) (STAT2-mediated) pathways. Both SPI-1 and SPI-2 were necessary to induce robust inflammatory responses and ERK/STAT2 phosphorylation in macrophages. In a mouse infection model, both SPIs, especially SPI-2, resulted in significant production of inflammatory cytokines and various interferon-stimulated genes in the liver and spleen. Activation of the ERK- and STAT2-mediated cytokine storm was largely affected by SPI-2. S. Enteritidis ΔSPI-1-infected mice displayed moderate histopathological damage and drastically reduced bacterial loads in tissues, whereas only slight damage and no bacteria were observed in ΔSPI-2- and ΔSPI-1/SPI-2-infected mice. A survival assay showed that ΔSPI-1 mutant mice maintained a medium level of virulence, while SPI-2 plays a decisive role in bacterial virulence. Collectively, our findings indicate that both SPIs, especially SPI-2, profoundly contributed to S. Enteritidis intracellular localization and virulence by activating multiple inflammatory pathways.
Collapse
Affiliation(s)
- Dan Xiong
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
| | - Li Song
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
| | - Yushan Chen
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
| | - Zhiming Pan
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
| |
Collapse
|
9
|
Wang BX, Butler DS, Hamblin M, Monack DM. One species, different diseases: the unique molecular mechanisms that underlie the pathogenesis of typhoidal Salmonella infections. Curr Opin Microbiol 2023; 72:102262. [PMID: 36640585 PMCID: PMC10023398 DOI: 10.1016/j.mib.2022.102262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 01/15/2023]
Abstract
Salmonella enterica is one of the most widespread bacterial pathogens found worldwide, resulting in approximately 100 million infections and over 200 000 deaths per year. Salmonella isolates, termed 'serovars', can largely be classified as either nontyphoidal or typhoidal Salmonella, which differ in regard to disease manifestation and host tropism. Nontyphoidal Salmonella causes gastroenteritis in many hosts, while typhoidal Salmonella is human-restricted and causes typhoid fever, a systemic disease with a mortality rate of up to 30% without treatment. There has been considerable interest in understanding how different Salmonella serovars cause different diseases, but the molecular details that underlie these infections have not yet been fully characterized, especially in the case of typhoidal Salmonella. In this review, we highlight the current state of research into understanding the pathogenesis of both nontyphoidal and typhoidal Salmonella, with a specific interest in serovar-specific traits that allow human-adapted strains of Salmonella to cause enteric fever. Overall, a more detailed molecular understanding of how different Salmonella isolates infect humans will provide critical insights into how we can eradicate these dangerous enteric pathogens.
Collapse
Affiliation(s)
- Benjamin X Wang
- Department of Microbiology & Immunology, Stanford University, Stanford, CA, USA
| | - Daniel Sc Butler
- Department of Microbiology & Immunology, Stanford University, Stanford, CA, USA
| | - Meagan Hamblin
- Department of Microbiology & Immunology, Stanford University, Stanford, CA, USA
| | - Denise M Monack
- Department of Microbiology & Immunology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
10
|
Abstract
The major function of the mammalian immune system is to prevent and control infections caused by enteropathogens that collectively have altered human destiny. In fact, as the gastrointestinal tissues are the major interface of mammals with the environment, up to 70% of the human immune system is dedicated to patrolling them The defenses are multi-tiered and include the endogenous microflora that mediate colonization resistance as well as physical barriers intended to compartmentalize infections. The gastrointestinal tract and associated lymphoid tissue are also protected by sophisticated interleaved arrays of active innate and adaptive immune defenses. Remarkably, some bacterial enteropathogens have acquired an arsenal of virulence factors with which they neutralize all these formidable barriers to infection, causing disease ranging from mild self-limiting gastroenteritis to in some cases devastating human disease.
Collapse
Affiliation(s)
- Micah J. Worley
- Department of Biology, University of Louisville, Louisville, Kentucky, USA,CONTACT Micah J. Worley Department of Biology, University of Louisville, 139 Life Sciences Bldg, Louisville, Kentucky, USA
| |
Collapse
|
11
|
Delfini M, Stakenborg N, Viola MF, Boeckxstaens G. Macrophages in the gut: Masters in multitasking. Immunity 2022; 55:1530-1548. [PMID: 36103851 DOI: 10.1016/j.immuni.2022.08.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/17/2022] [Accepted: 08/09/2022] [Indexed: 11/05/2022]
Abstract
The gastrointestinal tract has the important task of absorbing nutrients, a complex process that requires an intact barrier allowing the passage of nutrients but that simultaneously protects the host against invading microorganisms. To maintain and regulate intestinal homeostasis, the gut is equipped with one of the largest populations of macrophages in the body. Here, we will discuss our current understanding of intestinal macrophage heterogeneity and describe their main functions in the different anatomical niches of the gut during steady state. In addition, their role in inflammatory conditions such as infection, inflammatory bowel disease, and postoperative ileus are discussed, highlighting the roles of macrophages in immune defense. To conclude, we describe the interaction between macrophages and the enteric nervous system during development and adulthood and highlight their contribution to neurodegeneration in the context of aging and diabetes.
Collapse
Affiliation(s)
- Marcello Delfini
- Translational Research Center for GI Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven-University of Leuven, Leuven, Belgium
| | - Nathalie Stakenborg
- Translational Research Center for GI Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven-University of Leuven, Leuven, Belgium
| | - Maria Francesca Viola
- Translational Research Center for GI Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven-University of Leuven, Leuven, Belgium
| | - Guy Boeckxstaens
- Translational Research Center for GI Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven-University of Leuven, Leuven, Belgium.
| |
Collapse
|
12
|
Yin J, Cheng Z, Xu Z, Zhi L, Zhang Y, Yuan X, Pan P, Sun W, Yu T, Liu T. Contribution of prgH gene for Salmonella Pullorum to virulence and the expression of NLRP3, Caspase-1 and IL-1β in chickens. Microb Pathog 2022; 171:105744. [PMID: 36049651 DOI: 10.1016/j.micpath.2022.105744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 10/14/2022]
Abstract
Type III secretion system 1 (T3SS1) encoded by Salmonella pathogenicity island 1 (SPI1) is associated with invasion of host cells by Salmonella, PrgH encoded by prgH gene is an important component of T3SS1. This study aimed to explore the contribution of prgH gene for Salmonella Pullorum to virulence and the expression of NLRP3, Caspase-1 and IL-1β in chickens. A prgH gene deletion mutant (C79-13ΔprgH) was firstly generated, and the result of LD50 showed that deletion of prgH significantly decreased the virulence of Salmonella Pullorum in one-day-old HY-line white chickens, and the colonization also decreased in chickens after loss of prgH. Next, the expressions of NLRP3, Caspase-1, and IL-1β were detected in acute infection model of chickens by qRT-PCR and/or ELISA, respectively, and the results showed that the mutant strain C79-13ΔprgH reduced the expression levels of NLRP3, Caspase-1, and IL-1β in chickens compared to the group infected with the wild type strain C79-13. Taken together, all of these findings indicated that prgH promotes the virulence and the expression of NLRP3, Caspase-1, and IL-1β for Salmonella Pullorum in chickens.
Collapse
Affiliation(s)
- Junlei Yin
- Medical College, Xinxiang University, Xinxiang, China
| | - Zhao Cheng
- School of Life Science and Basic Medicine, Xinxiang University, Xinxiang, China.
| | - Zhenyu Xu
- Medical College, Xinxiang University, Xinxiang, China
| | - Lijuan Zhi
- Medical College, Xinxiang University, Xinxiang, China
| | - Yige Zhang
- Medical College, Xinxiang University, Xinxiang, China
| | - Xinzhong Yuan
- Medical College, Xinxiang University, Xinxiang, China
| | - Pengtao Pan
- Medical College, Xinxiang University, Xinxiang, China
| | - Weiwei Sun
- Medical College, Xinxiang University, Xinxiang, China
| | - Tao Yu
- School of Life Science and Basic Medicine, Xinxiang University, Xinxiang, China
| | - Tiantian Liu
- Medical College, Xinxiang University, Xinxiang, China
| |
Collapse
|
13
|
Liu YL, He TT, Jiang XL, Sun SS, Wang LK, Nie P, Xie HX. Development of a hyper-adhesive and attenuated Edwardsiella ictaluri strain as a novel immersion vaccine candidate in yellow catfish (Pelteobagrus fulvidraco). Microb Pathog 2022; 167:105577. [PMID: 35561979 DOI: 10.1016/j.micpath.2022.105577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/05/2022] [Accepted: 05/08/2022] [Indexed: 10/18/2022]
Abstract
Edwardsiella ictaluri, a Gram-negative intracellular pathogen, is the causative agent of enteric septicemia in channel catfish, and catfish aquaculture in China suffers heavy economic losses due to E. ictaluri infection. Vaccination is an effective control measure for this disease. In this study, an attenuated E. ictaluri strain was acquired through deletion mutation of the T3SS protein eseJei, and the ΔeseJei strain fails to replicate in the epithelioma papillosum of carp cells. The type 1 fimbria plays a pivotal role in the adhesion of E. ictaluri, and it was found in this study that deletion of -245 to -50 nt upstream of fimA increases its adhesion to around five times that of the WT strain. A hyper-adhesive and highly attenuated double mutant (ΔeseJeiΔfimA-245--50 strain) was constructed, and it was used as a vaccine candidate in yellow catfish via bath immersion at a dosage of 1 × 105 CFU/mL. It was found that this vaccine candidate can stimulate protection when challenged with E. ictaluri HSN-1 at 5 × 107 CFU/mL (∼20 × LD50). The survival rate was 83.61% for the vaccinated group and 33.33% for the sham-vaccinated group. The RPS (relative percent of survival) of the vaccination trial reached 75.41%. In conclusion, the ΔeseJeiΔfimA-245--50 strain developed in this study can be used as a vaccine candidate. It excels in terms of ease of delivery (via bath immersion) and is highly efficient in stimulating protection against E. ictaluri infection.
Collapse
Affiliation(s)
- Ying Li Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Tian Tian He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Xiu Long Jiang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shan Shan Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Long Kun Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Hai Xia Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province, China.
| |
Collapse
|
14
|
Pozdeev G, Beckett MC, Mogre A, Thomson NR, Dorman CJ. Reciprocally rewiring and repositioning the Integration Host Factor (IHF) subunit genes in Salmonella enterica serovar Typhimurium: impacts on physiology and virulence. Microb Genom 2022; 8. [PMID: 35166652 PMCID: PMC8942017 DOI: 10.1099/mgen.0.000768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The Integration Host Factor (IHF) is a heterodimeric nucleoid-associated protein that plays roles in bacterial nucleoid architecture and genome-wide gene regulation. The ihfA and ihfB genes encode the subunits and are located 350 kbp apart, in the Right replichore of the Salmonella chromosome. IHF is composed of one IhfA and one IhfB subunit. Despite this 1 : 1 stoichiometry, MS revealed that IhfB is produced in 2-fold excess over IhfA. We re-engineered Salmonella to exchange reciprocally the protein-coding regions of ihfA and ihfB, such that each relocated protein-encoding region was driven by the expression signals of the other's gene. MS showed that in this 'rewired' strain, IhfA is produced in excess over IhfB, correlating with enhanced stability of the hybrid ihfB-ihfA mRNA that was expressed from the ihfB promoter. Nevertheless, the rewired strain grew at a similar rate to the wild-type and was similar in competitive fitness. However, compared to the wild-type, it was less motile, had growth-phase-specific reductions in SPI-1 and SPI-2 gene expression, and was engulfed at a higher rate by RAW macrophage. Our data show that while exchanging the physical locations of its ihf genes and the rewiring of their regulatory circuitry are well tolerated in Salmonella, genes involved in the production of type 3 secretion systems exhibit dysregulation accompanied by altered phenotypes.
Collapse
Affiliation(s)
- German Pozdeev
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Michael C Beckett
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Aalap Mogre
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland
| | | | - Charles J Dorman
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
15
|
Hiyoshi H, English BC, Diaz-Ochoa VE, Wangdi T, Zhang LF, Sakaguchi M, Haneda T, Tsolis RM, Bäumler AJ. Virulence factors perforate the pathogen-containing vacuole to signal efferocytosis. Cell Host Microbe 2022; 30:163-170.e6. [PMID: 34951948 PMCID: PMC8831471 DOI: 10.1016/j.chom.2021.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/20/2021] [Accepted: 11/30/2021] [Indexed: 12/11/2022]
Abstract
Intracellular pathogens commonly reside within macrophages to find shelter from humoral defenses, but host cell death can expose them to the extracellular milieu. We find intracellular pathogens solve this dilemma by using virulence factors to generate a complement-dependent find-me signal that initiates uptake by a new phagocyte through efferocytosis. During macrophage death, Salmonella uses a type III secretion system to perforate the membrane of the pathogen-containing vacuole (PCV), thereby triggering complement deposition on bacteria entrapped in pore-induced intracellular traps (PITs). In turn, complement activation signals neutrophil efferocytosis, a process that shelters intracellular bacteria from the respiratory burst. Similarly, Brucella employs its type IV secretion system to perforate the PCV membrane, which induces complement deposition on bacteria entrapped in PITs. Collectively, this work identifies virulence factor-induced perforation of the PCV as a strategy of intracellular pathogens to generate a find-me signal for efferocytosis.
Collapse
Affiliation(s)
- Hirotaka Hiyoshi
- Department of Bacteriology, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Department of Medical Microbiology and Immunology, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Bevin C English
- Department of Medical Microbiology and Immunology, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Vladimir E Diaz-Ochoa
- Department of Medical Microbiology and Immunology, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Tamding Wangdi
- Department of Medical Microbiology and Immunology, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Lillian F Zhang
- Department of Medical Microbiology and Immunology, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Miako Sakaguchi
- Central Laboratory, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Takeshi Haneda
- Laboratory of Microbiology, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Renée M Tsolis
- Department of Medical Microbiology and Immunology, University of California at Davis, One Shields Ave, Davis, CA 95616, USA
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, University of California at Davis, One Shields Ave, Davis, CA 95616, USA.
| |
Collapse
|
16
|
Groisman EA, Duprey A, Choi J. How the PhoP/PhoQ System Controls Virulence and Mg 2+ Homeostasis: Lessons in Signal Transduction, Pathogenesis, Physiology, and Evolution. Microbiol Mol Biol Rev 2021; 85:e0017620. [PMID: 34191587 PMCID: PMC8483708 DOI: 10.1128/mmbr.00176-20] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The PhoP/PhoQ two-component system governs virulence, Mg2+ homeostasis, and resistance to a variety of antimicrobial agents, including acidic pH and cationic antimicrobial peptides, in several Gram-negative bacterial species. Best understood in Salmonella enterica serovar Typhimurium, the PhoP/PhoQ system consists o-regulated gene products alter PhoP-P amounts, even under constant inducing conditions. PhoP-P controls the abundance of hundreds of proteins both directly, by having transcriptional effects on the corresponding genes, and indirectly, by modifying the abundance, activity, or stability of other transcription factors, regulatory RNAs, protease regulators, and metabolites. The investigation of PhoP/PhoQ has uncovered novel forms of signal transduction and the physiological consequences of regulon evolution.
Collapse
Affiliation(s)
- Eduardo A. Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Microbial Sciences Institute, West Haven, Connecticut, USA
| | - Alexandre Duprey
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jeongjoon Choi
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
17
|
Microbes exploit death-induced nutrient release by gut epithelial cells. Nature 2021; 596:262-267. [PMID: 34349263 DOI: 10.1038/s41586-021-03785-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 06/30/2021] [Indexed: 01/13/2023]
Abstract
Regulated cell death is an integral part of life, and has broad effects on organism development and homeostasis1. Malfunctions within the regulated cell death process, including the clearance of dying cells, can manifest in diverse pathologies throughout various tissues including the gastrointestinal tract2. A long appreciated, yet elusively defined relationship exists between cell death and gastrointestinal pathologies with an underlying microbial component3-6, but the direct effect of dying mammalian cells on bacterial growth is unclear. Here we advance a concept that several Enterobacteriaceae, including patient-derived clinical isolates, have an efficient growth strategy to exploit soluble factors that are released from dying gut epithelial cells. Mammalian nutrients released after caspase-3/7-dependent apoptosis boosts the growth of multiple Enterobacteriaceae and is observed using primary mouse colonic tissue, mouse and human cell lines, several apoptotic triggers, and in conventional as well as germ-free mice in vivo. The mammalian cell death nutrients induce a core transcriptional response in pathogenic Salmonella, and we identify the pyruvate formate-lyase-encoding pflB gene as a key driver of bacterial colonization in three contexts: a foodborne infection model, a TNF- and A20-dependent cell death model, and a chemotherapy-induced mucositis model. These findings introduce a new layer to the complex host-pathogen interaction, in which death-induced nutrient release acts as a source of fuel for intestinal bacteria, with implications for gut inflammation and cytotoxic chemotherapy treatment.
Collapse
|
18
|
The potential of Akkermansia muciniphila in inflammatory bowel disease. Appl Microbiol Biotechnol 2021; 105:5785-5794. [PMID: 34312713 DOI: 10.1007/s00253-021-11453-1] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/19/2022]
Abstract
Akkermansia muciniphila is a next-generation probiotic with significant application prospects. The role of A. muciniphila in metabolic diseases and tumor immunotherapy has been widely recognized. Recent clinical trials further confirmed its safety and therapeutic value in human metabolic diseases. A. muciniphila also shows potential in the treatment of intestinal inflammatory diseases, especially for inflammatory bowel disease (IBD). The improvement in the efficacy of washed microbiota transplantation (WMT) in treating IBD is closely related to the increase in the abundance of A. muciniphila in patients' gut. However, there is still controversy regarding the pro-inflammatory or anti-inflammatory effect of A. muciniphila on IBD. Currently, several studies targeting the correlation between A. muciniphila and IBD have demonstrated opposite conclusions. Similarly, the interventional studies exploring causality between them also come to conflicting results. This article therefore aims to review the relationship between A. muciniphila and IBD, the effect of intervention of A. muciniphila on IBD, and the possible reasons for the contradictory role of A. muciniphila in the treatment of IBD. KEY POINTS: The effect of A. muciniphila on inflammatory bowel disease is controversy. A. muciniphila shows anti-inflammatory potential in IBD. The colitogenicity of A. muciniphila is context dependent.
Collapse
|
19
|
Wang ST, Kuo CJ, Huang CW, Lee TM, Chen JW, Chen CS. OmpR coordinates the expression of virulence factors of Enterohemorrhagic Escherichia coli in the alimentary tract of Caenorhabditis elegans. Mol Microbiol 2021; 116:168-183. [PMID: 33567149 DOI: 10.1111/mmi.14698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/21/2021] [Accepted: 02/09/2021] [Indexed: 11/30/2022]
Abstract
Enterohemorrhagic Escherichia coli (EHEC), an enteropathogen that colonizes in the intestine, causes severe diarrhea and hemorrhagic colitis in humans by the expression of the type III secretion system (T3SS) and Shiga-like toxins (Stxs). However, how EHEC can sense and respond to the changes in the alimentary tract and coordinate the expression of these virulence genes remains elusive. The T3SS-related genes are known to be regulated by the locus of enterocyte effacement (LEE)-encoded regulators, such as Ler, as well as non-LEE-encoded regulators in response to different environmental cues. Herein, we report that OmpR, which participates in the adaptation of E. coli to osmolarity and pH alterations, is required for EHEC infection in Caenorhabditis elegans. OmpR protein was able to directly bind to the promoters of ler and stx1 (Shiga-like toxin 1) and regulate the expression of T3SS and Stx1, respectively, at the transcriptional level. Moreover, we demonstrated that the expression of ler in EHEC is in response to the intestinal environment and is regulated by OmpR in C. elegans. Taken together, we reveal that OmpR is an important regulator of EHEC which coordinates the expression of virulence factors during gastrointestinal infection in vivo.
Collapse
Affiliation(s)
- Sin-Tian Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Ju Kuo
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Wen Huang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tzer-Min Lee
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jenn-Wei Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chang-Shi Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
20
|
Kong W. Development of Antiviral Vaccine Utilizing Self-Destructing Salmonella for Antigen and DNA Vaccine Delivery. Methods Mol Biol 2021; 2225:39-61. [PMID: 33108656 DOI: 10.1007/978-1-0716-1012-1_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Vaccines are the most effective means to prevent infectious diseases, especially for viral infection. The key to an excellent antiviral vaccine is the ability to induce long-term protective immunity against a specific virus. Bacterial vaccine vectors have been used to impart protection against self, as well as heterologous antigens. One significant benefit of using live bacterial vaccine vectors is their ability to invade and colonize deep effector lymphoid tissues after mucosal delivery. The bacterium Salmonella is considered the best at this deep colonization. This is critically essential for inducing protective immunity. This chapter describes the methodology for developing genetically modified self-destructing Salmonella (GMS) vaccine delivery systems targeting influenza infection. Specifically, the methods covered include the procedures for the development of GMSs for protective antigen delivery to induce cellular immune responses and DNA vaccine delivery to induce systemic immunity against the influenza virus. These self-destructing GMS could be modified to provide effective biological containment for genetically engineered bacteria used for a diversity of purposes in addition to vaccines.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/biosynthesis
- Antibodies, Viral/biosynthesis
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Female
- Genes, Lethal
- Genetic Engineering/methods
- Humans
- Immunity, Cellular/drug effects
- Immunity, Mucosal/drug effects
- Immunization/methods
- Influenza Vaccines/genetics
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Mice
- Mice, Inbred BALB C
- Nucleoproteins/genetics
- Nucleoproteins/immunology
- Organisms, Genetically Modified
- Plasmids/chemistry
- Plasmids/metabolism
- Salmonella typhimurium/genetics
- Salmonella typhimurium/immunology
- Transgenes
- Vaccines, DNA/genetics
Collapse
Affiliation(s)
- Wei Kong
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
21
|
Ma S, Liu X, Ma S, Jiang L. SopA inactivation or reduced expression is selected in intracellular Salmonella and contributes to systemic Salmonella infection. Res Microbiol 2020; 172:103795. [PMID: 33347947 DOI: 10.1016/j.resmic.2020.103795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 11/17/2022]
Abstract
Pseudogenes are accumulated in host-restricted Salmonella enterica serovars, while pseudogenization is primarily regarded as a process that purges unnecessary genes from the genome. Here we showed that the inactivation of sopA, which encodes an effector of Salmonella Pathogenicity Island 1, in human-restricted S. enterica serovar Typhi (S. Ty) and Paratyphi A (S. PA) is under positive selection and aimed to reduce bacterial cytotoxicity toward host macrophages. Moreover, we found that the expression of sopA in Salmonella Typhimurium (S. Tm), a broad-host-range serovar which causes systemic disease in mice, was negatively regulated during mice infection and survival in murine macrophages. The sopA repression in S. Tm is mediated by IsrM, a small RNA absent from the genome of S. Ty and S. PA. Due to the lack of IsrM, sopA expression was unregulated in S. Ty and S. PA, which might have facilitated the convergent inactivation of sopA in these two serovars. In conclusion, our findings demonstrate that sopA inactivation or intracellular repression is the target of positive selection during the systemic infection caused by S. enterica serovars.
Collapse
Affiliation(s)
- Shuangshuang Ma
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, China.
| | - Xiaoqian Liu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, China.
| | - Shuai Ma
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, China.
| | - Lingyan Jiang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China; TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, China.
| |
Collapse
|
22
|
Type I interferon remodels lysosome function and modifies intestinal epithelial defense. Proc Natl Acad Sci U S A 2020; 117:29862-29871. [PMID: 33172989 DOI: 10.1073/pnas.2010723117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Organelle remodeling is critical for cellular homeostasis, but host factors that control organelle function during microbial infection remain largely uncharacterized. Here, a genome-scale CRISPR/Cas9 screen in intestinal epithelial cells with the prototypical intracellular bacterial pathogen Salmonella led us to discover that type I IFN (IFN-I) remodels lysosomes. Even in the absence of infection, IFN-I signaling modified the localization, acidification, protease activity, and proteomic profile of lysosomes. Proteomic and genetic analyses revealed that multiple IFN-I-stimulated genes including IFITM3, SLC15A3, and CNP contribute to lysosome acidification. IFN-I-dependent lysosome acidification was associated with elevated intracellular Salmonella virulence gene expression, rupture of the Salmonella-containing vacuole, and host cell death. Moreover, IFN-I signaling promoted in vivo Salmonella pathogenesis in the intestinal epithelium where Salmonella initiates infection, indicating that IFN-I signaling can modify innate defense in the epithelial compartment. We propose that IFN-I control of lysosome function broadly impacts host defense against diverse viral and microbial pathogens.
Collapse
|
23
|
RIPK3-Dependent Recruitment of Low-Inflammatory Myeloid Cells Does Not Protect from Systemic Salmonella Infection. mBio 2020; 11:mBio.02588-20. [PMID: 33024046 PMCID: PMC7542371 DOI: 10.1128/mbio.02588-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Macrophages employ multiple strategies to limit pathogen infection. For example, macrophages may undergo regulated cell death, including RIPK3-dependent necroptosis, as a means of combatting intracellular bacterial pathogens. However, bacteria have evolved mechanisms to evade or exploit immune responses. Salmonella is an intracellular pathogen that avoids and manipulates immune detection within macrophages. We examined the contribution of RIPK3 to Salmonella-induced macrophage death. Our findings indicate that noninvasive Salmonella does not naturally induce necroptosis, but it does so when caspases are inhibited. Moreover, RIPK3 induction (following caspase inhibition) does not impact host survival following Salmonella systemic infection. Finally, our data show that RIPK3 induction results in recruitment of low-inflammatory myeloid cells, which was unexpected, as necroptosis is typically described as highly inflammatory. Collectively, these data improve our understanding of pathogen-macrophage interactions, including outcomes of regulated cell death during infection in vivo, and reveal a potential new role for RIPK3 in resolving inflammation. Regulated macrophage death has emerged as an important mechanism to defend against intracellular pathogens. However, the importance and consequences of macrophage death during bacterial infection are poorly resolved. This is especially true for the recently described RIPK3-dependent lytic cell death, termed necroptosis. Salmonella enterica serovar Typhimurium is an intracellular pathogen that precisely regulates virulence expression within macrophages to evade and manipulate immune responses, which is a key factor in its ability to cause severe systemic infections. We combined genetic and pharmacological approaches to examine the importance of RIPK3 for S. Typhimurium-induced macrophage death using conditions that recapitulate bacterial gene expression during systemic infection in vivo. Our findings indicate that noninvasive S. Typhimurium does not naturally induce macrophage necroptosis but does so in the presence of pan-caspase inhibition. Moreover, our data suggest that RIPK3 induction (following caspase inhibition) does not impact host survival following S. Typhimurium infection, which differs from previous findings based on inert lipopolysaccharide (LPS) injections. Finally, although necroptosis is typically characterized as highly inflammatory, our data suggest that RIPK3 skews the peritoneal myeloid population away from an inflammatory profile to that of a classically noninflammatory profile. Collectively, these data improve our understanding of S. Typhimurium-macrophage interactions, highlight the possibility that purified bacterial components may not accurately recapitulate the complexity of host-pathogen interactions, and reveal a potential and unexpected role for RIPK3 in resolving inflammation.
Collapse
|
24
|
Gao R, Wang L, Ogunremi D. Virulence Determinants of Non-typhoidal Salmonellae. Microorganisms 2020. [DOI: 10.5772/intechopen.88904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
25
|
Spatiotemporal proteomics uncovers cathepsin-dependent macrophage cell death during Salmonella infection. Nat Microbiol 2020; 5:1119-1133. [PMID: 32514074 PMCID: PMC7610801 DOI: 10.1038/s41564-020-0736-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 05/06/2020] [Indexed: 01/02/2023]
Abstract
The interplay between host and pathogen relies heavily on rapid protein synthesis and accurate protein targeting to ensure pathogen destruction. To gain insight into this dynamic interface, we combined click-chemistry with pulsed stable isotope labeling of amino acids in cell culture (pSILAC-AHA) to quantify the host proteome response during macrophage infection with the intracellular bacterial pathogen, Salmonella enterica Typhimurium (STm). We monitored newly synthesised proteins across different host cell compartments and infection stages. Within this rich resource, we detected aberrant trafficking of lysosomal proteases to the extracellular space and the nucleus. We verified active cathepsins re-traffic to the nucleus and are linked to cell death. Pharmacological cathepsin inhibition and nuclear-targeting of a cellular cathepsin inhibitor (Stefin B) suppressed STm-induced cell death. We demonstrate that cathepsin activity is required for pyroptotic cell death via the non-canonical inflammasome, and that LPS transfection into the host cytoplasm is sufficient to trigger active cathepsin accumulation in the host nucleus and cathepsin-dependent cell death. Finally, cathepsin inhibition reduced Gasdermin D expression, thus revealing an unexpected role for cathepsin activity in non-canonical inflammasome regulation. Overall, our study illustrates how resolving host proteome dynamics during infection can drive the discovery of biological mechanisms at the host-microbe interface.
Collapse
|
26
|
Yang M, Cousineau A, Liu X, Luo Y, Sun D, Li S, Gu T, Sun L, Dillow H, Lepine J, Xu M, Zhang B. Direct Metatranscriptome RNA-seq and Multiplex RT-PCR Amplicon Sequencing on Nanopore MinION - Promising Strategies for Multiplex Identification of Viable Pathogens in Food. Front Microbiol 2020; 11:514. [PMID: 32328039 PMCID: PMC7160302 DOI: 10.3389/fmicb.2020.00514] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/10/2020] [Indexed: 12/20/2022] Open
Abstract
Viable pathogenic bacteria are major biohazards that pose a significant threat to food safety. Despite the recent developments in detection platforms, multiplex identification of viable pathogens in food remains a major challenge. A novel strategy is developed through direct metatranscriptome RNA-seq and multiplex RT-PCR amplicon sequencing on Nanopore MinION to achieve real-time multiplex identification of viable pathogens in food. Specifically, this study reports an optimized universal Nanopore sample extraction and library preparation protocol applicable to both Gram-positive and Gram-negative pathogenic bacteria, demonstrated using a cocktail culture of E. coli O157:H7, Salmonella enteritidis, and Listeria monocytogenes, which were selected based on their impact on economic loss or prevalence in recent outbreaks. Further evaluation and validation confirmed the accuracy of direct metatranscriptome RNA-seq and multiplex RT-PCR amplicon sequencing using Sanger sequencing and selective media. The study also included a comparison of different bioinformatic pipelines for metatranscriptomic and amplicon genomic analysis. MEGAN without rRNA mapping showed the highest accuracy of multiplex identification using the metatranscriptomic data. EPI2ME also demonstrated high accuracy using multiplex RT-PCR amplicon sequencing. In addition, a systemic comparison was drawn between Nanopore sequencing of the direct metatranscriptome RNA-seq and RT-PCR amplicons. Both methods are comparable in accuracy and time. Nanopore sequencing of RT-PCR amplicons has higher sensitivity, but Nanopore metatranscriptome sequencing excels in read length and dealing with complex microbiome and non-bacterial transcriptome backgrounds.
Collapse
Affiliation(s)
- Manyun Yang
- Department of Biomedical and Nutritional Sciences, University of Massachusetts, Lowell, MA, United States
| | | | - Xiaobo Liu
- Department of Biomedical and Nutritional Sciences, University of Massachusetts, Lowell, MA, United States
| | - Yaguang Luo
- Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, United States
| | - Daniel Sun
- New England Biolabs, Inc., Ipswich, MA, United States
- Department of Chemistry, Brandeis University, Waltham, MA, United States
| | - Shaohua Li
- New England Biolabs, Inc., Ipswich, MA, United States
- U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Tingting Gu
- Department of Biomedical and Nutritional Sciences, University of Massachusetts, Lowell, MA, United States
| | - Luo Sun
- New England Biolabs, Inc., Ipswich, MA, United States
| | - Hayden Dillow
- Department of Biomedical and Nutritional Sciences, University of Massachusetts, Lowell, MA, United States
| | - Jack Lepine
- Biomolecular Characterization Lab, University of Massachusetts Lowell, Lowell, MA, United States
| | - Mingqun Xu
- New England Biolabs, Inc., Ipswich, MA, United States
| | - Boce Zhang
- Department of Biomedical and Nutritional Sciences, University of Massachusetts, Lowell, MA, United States
| |
Collapse
|
27
|
Wang M, Qazi IH, Wang L, Zhou G, Han H. Salmonella Virulence and Immune Escape. Microorganisms 2020; 8:microorganisms8030407. [PMID: 32183199 PMCID: PMC7143636 DOI: 10.3390/microorganisms8030407] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/02/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023] Open
Abstract
Salmonella genus represents the most common foodborne pathogens causing morbidity, mortality, and burden of disease in all regions of the world. The introduction of antimicrobial agents and Salmonella-specific phages has been considered as an effective intervention strategy to reduce Salmonella contamination. However, data from the United States, European countries, and low- and middle-income countries indicate that Salmonella cases are still a commonly encountered cause of bacterial foodborne diseases globally. The control programs have not been successful and even led to the emergence of some multidrug-resistant Salmonella strains. It is known that the host immune system is able to effectively prevent microbial invasion and eliminate microorganisms. However, Salmonella has evolved mechanisms of resisting host physical barriers and inhibiting subsequent activation of immune response through their virulence factors. There has been a high interest in understanding how Salmonella interacts with the host. Therefore, in the present review, we characterize the functions of Salmonella virulence genes and particularly focus on the mechanisms of immune escape in light of evidence from the emerging mainstream literature.
Collapse
Affiliation(s)
- Mengyao Wang
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.W.); (L.W.)
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Izhar Hyder Qazi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China;
- Department of Veterinary Anatomy and Histology, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand 67210, Pakistan
| | - Linli Wang
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.W.); (L.W.)
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Guangbin Zhou
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China;
- Correspondence: (H.H.); (G.Z.)
| | - Hongbing Han
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.W.); (L.W.)
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Correspondence: (H.H.); (G.Z.)
| |
Collapse
|
28
|
Lin HH, Chen HL, Weng CC, Janapatla RP, Chen CL, Chiu CH. Activation of apoptosis by Salmonella pathogenicity island-1 effectors through both intrinsic and extrinsic pathways in Salmonella-infected macrophages. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2020; 54:616-626. [PMID: 32127288 DOI: 10.1016/j.jmii.2020.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/20/2020] [Accepted: 02/10/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Salmonella enterica serovar Typhimurium, a non-typhoidal food-borne pathogen, causes acute enterocolitis, bacteremia, extraintestinal focal infections in humans. Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2) contribute to invading into host cellular cytosol, residing in Salmonella-containing vacuoles for intracellular survival, and inducing cellular apoptosis. This study aimed to better understand the mechanism underlying apoptosis in Salmonella-infected macrophages. METHODS S. Typhimurium SL1344 was used to evaluate extrinsic and intrinsic apoptosis pathways in THP-1 monocyte-derived macrophages in response to Salmonella infection. RESULTS Activated caspase-3-induced apoptosis pathways, including extrinsic (caspase-8-mediated) and intrinsic (caspase-9-mediated) pathways, in Salmonella-infected macrophages were verified. THP-1 cells with dysfunction of TLR-4 and TLR-5 and Salmonella SPI-1 and SPI-2 mutants were constructed to identify the roles of the genes associated with programmed cell death in the macrophages. Caspase-3 activation in THP-1 macrophages was induced by Salmonella through TLR-4 and TLR-5 signaling pathways. We also identified that SPI-1 structure protein PrgH and effectors SipB and SipD, but not SPI-2 structure protein SsaV, could induce apoptosis via caspase-3 activation and reduce the secretion of inflammation marker TNF-α in the Salmonella-infected cells. The two effectors also reduced the translocation of the p65 subunit of NF-κB into the nucleus and the expression of TNF-α, and then inflammation was diminished. CONCLUSION Non-typhoid Salmonella induced apoptosis of macrophages and thereby reduced inflammatory cytokine production through the expression of SPI-1. This mechanism in host-pathogen interaction may explain why Salmonella usually manifests as occult bacteremia with less systemic inflammatory response syndrome in the bloodstream infection of children.
Collapse
Affiliation(s)
- Hsin-Hung Lin
- Graduate Institute of Biomedical Sciences, Chang Gung University College of Medicine, Taoyuan, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hsiu-Ling Chen
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chang-Ching Weng
- Graduate Institute of Biomedical Sciences, Chang Gung University College of Medicine, Taoyuan, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | | | - Chyi-Liang Chen
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| | - Cheng-Hsun Chiu
- Graduate Institute of Biomedical Sciences, Chang Gung University College of Medicine, Taoyuan, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| |
Collapse
|
29
|
Salmonella enterica Effectors SifA, SpvB, SseF, SseJ, and SteA Contribute to Type III Secretion System 1-Independent Inflammation in a Streptomycin-Pretreated Mouse Model of Colitis. Infect Immun 2019; 87:IAI.00872-18. [PMID: 31235639 DOI: 10.1128/iai.00872-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 06/11/2019] [Indexed: 01/13/2023] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) induces inflammatory changes in the ceca of streptomycin-pretreated mice. In this mouse model of colitis, the type III secretion system 1 (T3SS-1) has been shown to induce rapid inflammatory change in the cecum at early points, 10 to 24 h after infection. Five proteins, SipA, SopA, SopB, SopD, and SopE2, have been identified as effectors involved in eliciting intestinal inflammation within this time range. In contrast, a T3SS-1-deficient strain was shown to exhibit inflammatory changes in the cecum at 72 to 120 h postinfection. However, the effectors eliciting T3SS-1-independent inflammation remain to be clarified. In this study, we focused on two T3SS-2 phenotypes, macrophage proliferation and cytotoxicity, to identify the T3SS-2 effectors involved in T3SS-1-independent inflammation. We identified a mutant strain that could not induce cytotoxicity in a macrophage-like cell line and that reduced intestinal inflammation in streptomycin-pretreated mice. We also identified five T3SS-2 effectors, SifA, SpvB, SseF, SseJ, and SteA, associated with T3SS-1-independent macrophage cytotoxicity. We then constructed a strain lacking T3SS-1 and all the five T3SS-2 effectors, termed T1S5. The S. Typhimurium T1S5 strain significantly reduced cytotoxicity in macrophages in the same manner as a mutant invA spiB strain (T1T2). Finally, the T1S5 strain elicited no inflammatory changes in the ceca of streptomycin-pretreated mice. We conclude that these five T3SS-2 effectors contribute to T3SS-1-independent inflammation.
Collapse
|
30
|
Inflammatory monocytes provide a niche for Salmonella expansion in the lumen of the inflamed intestine. PLoS Pathog 2019; 15:e1007847. [PMID: 31306468 PMCID: PMC6658010 DOI: 10.1371/journal.ppat.1007847] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/25/2019] [Accepted: 05/17/2019] [Indexed: 12/22/2022] Open
Abstract
Salmonella exploit host-derived nitrate for growth in the lumen of the inflamed intestine. The generation of host-derived nitrate is dependent on Nos2, which encodes inducible nitric oxide synthase (iNOS), an enzyme that catalyzes nitric oxide (NO) production. However, the cellular sources of iNOS and, therefore, NO-derived nitrate used by Salmonella for growth in the lumen of the inflamed intestine remain unidentified. Here, we show that iNOS-producing inflammatory monocytes infiltrate ceca of mice infected with Salmonella. In addition, we show that inactivation of type-three secretion system (T3SS)-1 and T3SS-2 renders Salmonella unable to induce CC- chemokine receptor-2- and CC-chemokine ligand-2-dependent inflammatory monocyte recruitment. Furthermore, we show that the severity of the pathology of Salmonella- induced colitis as well as the nitrate-dependent growth of Salmonella in the lumen of the inflamed intestine are reduced in mice that lack Ccr2 and, therefore, inflammatory monocytes in the tissues. Thus, inflammatory monocytes provide a niche for Salmonella expansion in the lumen of the inflamed intestine. Salmonella exploit gut inflammation to edge out competing microbes in the intestinal lumen and establish infection. Notably, Salmonella use inflammation-derived nitrate for growth in the intestinal lumen. The generation of inflammation-derived nitrate is dependent on Nos2, which encodes inducible nitric oxide synthase (iNOS), an enzyme that catalyzes nitric oxide production. However, the cellular sources of iNOS and, therefore, the nitric oxide-derived nitrate used by Salmonella for growth in the inflamed intestine remain unidentified, presenting an important, long-standing open question. Here, we show that iNOS-producing inflammatory monocytes, which are phagocyte precursors that play a critical role in immunity and host defense, promote nitrate-dependent Salmonella expansion in the inflamed intestine, providing new insights into how Salmonella exploit gut inflammation to establish infection.
Collapse
|
31
|
Understanding the multifaceted roles of the phosphoenolpyruvate: Phosphotransferase system in regulation of Salmonella virulence using a mutant defective in ptsI and crr expression. Microbiol Res 2019; 223-225:63-71. [PMID: 31178053 DOI: 10.1016/j.micres.2019.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 03/23/2019] [Accepted: 04/11/2019] [Indexed: 11/22/2022]
Abstract
The phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS) catalyzes the translocation of sugar substrates with their concomitant phosphorylation in bacteria. In addition to its intrinsic role in sugar transport and metabolism, numerous recent studies report the versatility of the PTS to interconnect energy and signal transduction in response to sugar availability. In this study, the role of PTS in Salmonella virulence regulation was explored. To decipher the regulatory network coordinated by the PTS during Salmonella infection, a transcriptomic approach was applied to a transposon insertion mutant with defective expression of ptsI and crr, which encode enzyme I and enzyme IIAGlc of the PTS, respectively. There were 114 differentially expressed genes (DEGs) exhibiting two-fold or higher expression changes in the transposon mutant strain, with 13 up-regulated genes versus 101 down-regulated genes. One-third of the DEGs were associated with energy production and carbohydrate/amino acid metabolism pathways, implicating the prominent role of the PTS in carbohydrate transport. With regard to regulation of virulence, the tested mutant decreased the expression of genes associated with quorum sensing, Salmonella pathogenicity islands, flagella, and the PhoPQ regulon. We investigated the possibility of PTS-mediated regulation of virulence determinants identified in the transcriptomic analysis and proposed a regulatory circuit orchestrated by the PTS in Salmonella infection of host cells. These results suggest that Salmonella divergently controls virulence attributes in accordance with the availability of carbohydrates in the environment.
Collapse
|
32
|
Abstract
Signal transduction systems dictate various cellular behaviors in response to environmental changes. To operate cellular programs appropriately, organisms have sophisticated regulatory factors to optimize the signal response. The PhoP/PhoQ master virulence regulatory system of the intracellular pathogen Salmonella enterica is activated inside acidic macrophage phagosomes. Here we report that Salmonella delays the activation of this system inside macrophages using an inhibitory protein, EIIANtr (a component of the nitrogen-metabolic phosphotransferase system). We establish that EIIANtr directly restrains PhoP binding to its target promoter, thereby negatively controlling the expression of PhoP-activated genes. PhoP furthers its activation by promoting Lon-mediated degradation of EIIANtr at acidic pH. These results suggest that Salmonella ensures robust activation of its virulence system by suspending the activation of PhoP until a sufficient level of active PhoP is present to overcome the inhibitory effect of EIIANtr Our findings reveal how a pathogen precisely and efficiently operates its virulence program during infection.IMPORTANCE To accomplish successful infection, pathogens must operate their virulence programs in a precise, time-sensitive, and coordinated manner. A major question is how pathogens control the timing of virulence gene expression during infection. Here we report that the intracellular pathogen Salmonella controls the timing and level of virulence gene expression by using an inhibitory protein, EIIANtr A DNA binding master virulence regulator, PhoP, controls various virulence genes inside acidic phagosomes. Salmonella decreases EIIANtr amounts at acidic pH in a Lon- and PhoP-dependent manner. This, in turn, promotes expression of the PhoP-activated virulence program because EIIANtr hampers activation of PhoP-regulated genes by interfering with PhoP binding to DNA. EIIANtr enables Salmonella to impede the activation of PhoP-regulated gene expression inside macrophages. Our findings suggest that Salmonella achieves programmed delay of virulence gene activation by adjusting levels of an inhibitory factor.
Collapse
|
33
|
Gal-Mor O. Persistent Infection and Long-Term Carriage of Typhoidal and Nontyphoidal Salmonellae. Clin Microbiol Rev 2019; 32:e00088-18. [PMID: 30487167 PMCID: PMC6302356 DOI: 10.1128/cmr.00088-18] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The ability of pathogenic bacteria to affect higher organisms and cause disease is one of the most dramatic properties of microorganisms. Some pathogens can establish transient colonization only, but others are capable of infecting their host for many years or even for a lifetime. Long-term infection is called persistence, and this phenotype is fundamental for the biology of important human pathogens, including Helicobacter pylori, Mycobacterium tuberculosis, and Salmonella enterica Both typhoidal and nontyphoidal serovars of the species Salmonella enterica can cause persistent infection in humans; however, as these two Salmonella groups cause clinically distinct diseases, the characteristics of their persistent infections in humans differ significantly. Here, following a general summary of Salmonella pathogenicity, host specificity, epidemiology, and laboratory diagnosis, I review the current knowledge about Salmonella persistence and discuss the relevant epidemiology of persistence (including carrier rate, duration of shedding, and host and pathogen risk factors), the host response to Salmonella persistence, Salmonella genes involved in this lifestyle, as well as genetic and phenotypic changes acquired during prolonged infection within the host. Additionally, I highlight differences between the persistence of typhoidal and nontyphoidal Salmonella strains in humans and summarize the current gaps and limitations in our understanding, diagnosis, and curing of persistent Salmonella infections.
Collapse
Affiliation(s)
- Ohad Gal-Mor
- Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
34
|
Nascimento DDO, Vieira-de-Abreu A, Arcanjo AF, Bozza PT, Zimmerman GA, Castro-Faria-Neto HC. Integrin α Dβ 2 (CD11d/CD18) Modulates Leukocyte Accumulation, Pathogen Clearance, and Pyroptosis in Experimental Salmonella Typhimurium Infection. Front Immunol 2018; 9:1128. [PMID: 29881383 PMCID: PMC5977906 DOI: 10.3389/fimmu.2018.01128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/04/2018] [Indexed: 12/14/2022] Open
Abstract
β2 integrins are critical in host defense responses to invading pathogens and inflammation. Previously, we reported that genetic deficiency of integrin αDβ2 in mice altered outcomes in experimental systemic infections including accelerated mortality in animals infected with Salmonella enterica serovar Typhimurium. Here, we show that deficiency of αDβ2 results in impaired accumulation of leukocytes in response to peritoneal infection by S. Typhimurium, impaired pathogen clearance in vivo, defective bacterial elimination by cultured peritoneal macrophages, and enhanced pyroptosis, a cell death process triggered by Salmonella. Salmonella-infected animals deficient in αDβ2 had increased levels of peritoneal cytokines in addition to other markers of pyroptosis, which may contribute to inflammatory injury and increased mortality in the context of impaired bacterial killing. These observations indicate important contributions of leukocyte integrins to the host response in experimental Salmonella infection and reveal previous activities of αDβ2 in bacterial infection.
Collapse
Affiliation(s)
| | - Adriana Vieira-de-Abreu
- Laboratório de Immunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Angélica F Arcanjo
- Laboratório de Immunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Patricia Torres Bozza
- Laboratório de Immunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Guy A Zimmerman
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, United States
| | | |
Collapse
|
35
|
Anderson CJ, Kendall MM. Salmonella enterica Serovar Typhimurium Strategies for Host Adaptation. Front Microbiol 2017; 8:1983. [PMID: 29075247 PMCID: PMC5643478 DOI: 10.3389/fmicb.2017.01983] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 09/26/2017] [Indexed: 12/21/2022] Open
Abstract
Bacterial pathogens must sense and respond to newly encountered host environments to regulate the expression of critical virulence factors that allow for niche adaptation and successful colonization. Among bacterial pathogens, non-typhoidal serovars of Salmonella enterica, such as serovar Typhimurium (S. Tm), are a primary cause of foodborne illnesses that lead to hospitalizations and deaths worldwide. S. Tm causes acute inflammatory diarrhea that can progress to invasive systemic disease in susceptible patients. The gastrointestinal tract and intramacrophage environments are two critically important niches during S. Tm infection, and each presents unique challenges to limit S. Tm growth. The intestinal tract is home to billions of commensal microbes, termed the microbiota, which limits the amount of available nutrients for invading pathogens such as S. Tm. Therefore, S. Tm encodes strategies to manipulate the commensal population and side-step this nutritional competition. During subsequent stages of disease, S. Tm resists host immune cell mechanisms of killing. Host cells use antimicrobial peptides, acidification of vacuoles, and nutrient limitation to kill phagocytosed microbes, and yet S. Tm is able to subvert these defense systems. In this review, we discuss recently described molecular mechanisms that S. Tm uses to outcompete the resident microbiota within the gastrointestinal tract. S. Tm directly eliminates close competitors via bacterial cell-to-cell contact as well as by stimulating a host immune response to eliminate specific members of the microbiota. Additionally, S. Tm tightly regulates the expression of key virulence factors that enable S. Tm to withstand host immune defenses within macrophages. Additionally, we highlight the chemical and physical signals that S. Tm senses as cues to adapt to each of these environments. These strategies ultimately allow S. Tm to successfully adapt to these two disparate host environments. It is critical to better understand bacterial adaptation strategies because disruption of these pathways and mechanisms, especially those shared by multiple pathogens, may provide novel therapeutic intervention strategies.
Collapse
Affiliation(s)
- Christopher J Anderson
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine,, Charlottesville, VA, United States
| | - Melissa M Kendall
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine,, Charlottesville, VA, United States
| |
Collapse
|
36
|
Lai XH, Xu Y, Chen XM, Ren Y. Macrophage cell death upon intracellular bacterial infection. ACTA ACUST UNITED AC 2015; 2:e779. [PMID: 26690967 DOI: 10.14800/macrophage.779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Macrophage-pathogen interaction is a complex process and the outcome of this tag-of-war for both sides is to live or die. Without attempting to be comprehensive, this review will discuss the complexity and significance of the interaction outcomes between macrophages and some facultative intracellular bacterial pathogens as exemplified by Francisella, Salmonella, Shigella and Yersinia. Upon bacterial infection, macrophages can die by a variety of ways, such as apoptosis, autophagic cell death, necrosis, necroptosis, oncosis, pyronecrosis, pyroptosis etc, which is the focus of this review.
Collapse
Affiliation(s)
- Xin-He Lai
- Institute of Inflammation and Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China ; Institute of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yunsheng Xu
- Institute of Inflammation and Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China ; Institute of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China ; Department of Dermato-venerology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao-Ming Chen
- Institute of Inflammation and Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China ; Institute of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China ; Department of Pediatric Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi Ren
- Institute of Inflammation and Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China ; Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA)
| |
Collapse
|
37
|
Replication of Salmonella enterica Serovar Typhimurium in Human Monocyte-Derived Macrophages. Infect Immun 2015; 83:2661-71. [PMID: 25895967 DOI: 10.1128/iai.00033-15] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/10/2015] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Typhimurium is a common cause of food-borne gastrointestinal illness, but additionally it causes potentially fatal bacteremia in some immunocompromised patients. In mice, systemic spread and replication of the bacteria depend upon infection of and replication within macrophages, but replication in human macrophages is not widely reported or well studied. In order to assess the ability of Salmonella Typhimurium to replicate in human macrophages, we infected primary monocyte-derived macrophages (MDM) that had been differentiated under conditions known to generate different phenotypes. We found that replication in MDM depends greatly upon the phenotype of the cells, as M1-skewed macrophages did not allow replication, while M2a macrophages and macrophages differentiated with macrophage colony-stimulating factor (M-CSF) alone (termed M0) did. We describe how additional conditions that alter the macrophage phenotype or the gene expression of the bacteria affect the outcome of infection. In M0 MDM, the temporal expression of representative genes from Salmonella pathogenicity islands 1 and 2 (SPI1 and SPI2) and the importance of the PhoP/Q two-component regulatory system are similar to what has been shown in mouse macrophages. However, in contrast to mouse macrophages, where replication is SPI2 dependent, we observed early SPI2-independent replication in addition to later SPI2-dependent replication in M0 macrophages. Only SPI2-dependent replication was associated with death of the host cell at later time points. Altogether, our results reveal a very nuanced interaction between Salmonella and human macrophages.
Collapse
|
38
|
Murine Gammaherpesvirus 68 Pathogenesis Is Independent of Caspase-1 and Caspase-11 in Mice and Impairs Interleukin-1β Production upon Extrinsic Stimulation in Culture. J Virol 2015; 89:6562-74. [PMID: 25855746 DOI: 10.1128/jvi.00658-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/02/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Gammaherpesviruses establish lifelong infections that are associated with the development of cancer. These viruses subvert many aspects of the innate and adaptive immune response of the host. The inflammasome, a macromolecular protein complex that controls inflammatory responses to intracellular danger signals generated by pathogens, is both activated and subverted during human gammaherpesvirus infection in culture. The impact of the inflammasome response on gammaherpesvirus replication and latency in vivo is not known. Caspase-1 is the inflammasome effector protease that cleaves the proinflammatory cytokines interleukin-1β (IL-1β) and IL-18. We infected caspase-1-deficient mice with murine gammaherpesvirus 68 (MHV68) and observed no impact on acute replication in the lung or latency and reactivation from latency in the spleen. This led us to examine the effect of viral infection on inflammasome responses in bone marrow-derived macrophages. We determined that infection of macrophages with MHV68 led to a robust interferon response but failed to activate caspase-1 or induce the secretion of IL-1β. In addition, MHV68 infection led to a reduction in IL-1β production after extrinsic lipopolysaccharide stimulation or upon coinfection with Salmonella enterica serovar Typhimurium. Interestingly, this impairment occurred at the proIL-1β transcript level and was independent of the RTA, the viral lytic replication and transcription activator. Taken together, MHV68 impairs the inflammasome response by inhibiting IL-1β production during the initial stages of infection. IMPORTANCE Gammaherpesviruses persist for the lifetime of the host. To accomplish this, they must evade recognition and clearance by the immune system. The inflammasome consists of proteins that detect foreign molecules in the cell and respond by secreting proinflammatory signaling proteins that recruit immune cells to clear the infection. Unexpectedly, we found that murine gammaherpesvirus pathogenesis was not enhanced in mice lacking caspase-1, a critical inflammasome component. This led us to investigate whether the virus actively impairs the inflammasome response. We found that the inflammasome was not activated upon macrophage cell infection with murine gammaherpesvirus 68. Infection also prevented the host cell inflammasome response to other pathogen-associated molecular patterns, indicated by reduced production of the proinflammatory cytokine IL-1β upon bacterial coinfection. Taken together, murine gammaherpesvirus impairment of the inflammatory cytokine IL-1β in macrophages identifies one mechanism by which the virus may inhibit caspase-1-dependent immune responses in the infected animal.
Collapse
|
39
|
Williams K, Gokulan K, Shelman D, Akiyama T, Khan A, Khare S. Cytotoxic Mechanism ofCytolethal Distending Toxinin NontyphoidalSalmonellaSerovar (SalmonellaJaviana) During Macrophage Infection. DNA Cell Biol 2015; 34:113-24. [DOI: 10.1089/dna.2014.2602] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Katherine Williams
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Kuppan Gokulan
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Diamond Shelman
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Tatsuya Akiyama
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Ashraf Khan
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Sangeeta Khare
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| |
Collapse
|
40
|
Wu J, Pugh R, Laughlin RC, Andrews-Polymenis H, McClelland M, Bäumler AJ, Adams LG. High-throughput assay to phenotype Salmonella enterica Typhimurium association, invasion, and replication in macrophages. J Vis Exp 2014:e51759. [PMID: 25146526 DOI: 10.3791/51759] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Salmonella species are zoonotic pathogens and leading causes of food borne illnesses in humans and livestock. Understanding the mechanisms underlying Salmonella-host interactions are important to elucidate the molecular pathogenesis of Salmonella infection. The Gentamicin protection assay to phenotype Salmonella association, invasion and replication in phagocytic cells was adapted to allow high-throughput screening to define the roles of deletion mutants of Salmonella enterica serotype Typhimurium in host interactions using RAW 264.7 murine macrophages. Under this protocol, the variance in measurements is significantly reduced compared to the standard protocol, because wild-type and multiple mutant strains can be tested in the same culture dish and at the same time. The use of multichannel pipettes increases the throughput and enhances precision. Furthermore, concerns related to using less host cells per well in 96-well culture dish were addressed. Here, the protocol of the modified in vitro Salmonella invasion assay using phagocytic cells was successfully employed to phenotype 38 individual Salmonella deletion mutants for association, invasion and intracellular replication. The in vitro phenotypes are presented, some of which were subsequently confirmed to have in vivo phenotypes in an animal model. Thus, the modified, standardized assay to phenotype Salmonella association, invasion and replication in macrophages with high-throughput capacity could be utilized more broadly to study bacterial-host interactions.
Collapse
Affiliation(s)
- Jing Wu
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University
| | - Roberta Pugh
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University
| | - Richard C Laughlin
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University
| | - Helene Andrews-Polymenis
- Department of Microbial and Molecular Pathogenesis, College of Medicine, Texas A&M University System Health Science Center
| | | | - Andreas J Bäumler
- Department of Medical Microbiology & Immunology, School of Medicine, University of California, Davis
| | - L Garry Adams
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University;
| |
Collapse
|
41
|
DelGiorno KE, Tam JW, Hall JC, Thotakura G, Crawford HC, van der Velden AWM. Persistent salmonellosis causes pancreatitis in a murine model of infection. PLoS One 2014; 9:e92807. [PMID: 24717768 PMCID: PMC3981665 DOI: 10.1371/journal.pone.0092807] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 02/25/2014] [Indexed: 12/29/2022] Open
Abstract
Pancreatitis, a known risk factor for the development of pancreatic ductal adenocarcinoma, is a serious, widespread medical condition usually caused by alcohol abuse or gallstone-mediated ductal obstruction. However, many cases of pancreatitis are of an unknown etiology. Pancreatitis has been linked to bacterial infection, but causality has yet to be established. Here, we found that persistent infection of mice with the bacterial pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) was sufficient to induce pancreatitis reminiscent of the human disease. Specifically, we found that pancreatitis induced by persistent S. Typhimurium infection was characterized by a loss of pancreatic acinar cells, acinar-to-ductal metaplasia, fibrosis and accumulation of inflammatory cells, including CD11b+ F4/80+, CD11b+ Ly6Cint Ly6G+ and CD11b+ Ly6Chi Ly6G- cells. Furthermore, we found that S. Typhimurium colonized and persisted in the pancreas, associated with pancreatic acinar cells in vivo, and could invade cultured pancreatic acinar cells in vitro. Thus, persistent infection of mice with S. Typhimurium may serve as a useful model for the study of pancreatitis as it relates to bacterial infection. Increased knowledge of how pathogenic bacteria can cause pancreatitis will provide a more integrated picture of the etiology of the disease and could lead to the development of new therapeutic approaches for treatment and prevention of pancreatitis and pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Kathleen E. DelGiorno
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, United States of America
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States of America
| | - Jason W. Tam
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Stony Brook University, Stony Brook, New York, United States of America
| | - Jason C. Hall
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, United States of America
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States of America
| | - Gangadaar Thotakura
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States of America
| | - Howard C. Crawford
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, United States of America
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States of America
| | - Adrianus W. M. van der Velden
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
- Department of Pathology, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Stony Brook University, Stony Brook, New York, United States of America
| |
Collapse
|
42
|
Salmonella enterica serovar Typhimurium skills to succeed in the host: virulence and regulation. Clin Microbiol Rev 2013; 26:308-41. [PMID: 23554419 DOI: 10.1128/cmr.00066-12] [Citation(s) in RCA: 498] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Typhimurium is a primary enteric pathogen infecting both humans and animals. Infection begins with the ingestion of contaminated food or water so that salmonellae reach the intestinal epithelium and trigger gastrointestinal disease. In some patients the infection spreads upon invasion of the intestinal epithelium, internalization within phagocytes, and subsequent dissemination. In that case, antimicrobial therapy, based on fluoroquinolones and expanded-spectrum cephalosporins as the current drugs of choice, is indicated. To accomplish the pathogenic process, the Salmonella chromosome comprises several virulence mechanisms. The most important virulence genes are those located within the so-called Salmonella pathogenicity islands (SPIs). Thus far, five SPIs have been reported to have a major contribution to pathogenesis. Nonetheless, further virulence traits, such as the pSLT virulence plasmid, adhesins, flagella, and biofilm-related proteins, also contribute to success within the host. Several regulatory mechanisms which synchronize all these elements in order to guarantee bacterial survival have been described. These mechanisms govern the transitions from the different pathogenic stages and drive the pathogen to achieve maximal efficiency inside the host. This review focuses primarily on the virulence armamentarium of this pathogen and the extremely complicated regulatory network controlling its success.
Collapse
|
43
|
Ganesh BP, Klopfleisch R, Loh G, Blaut M. Commensal Akkermansia muciniphila exacerbates gut inflammation in Salmonella Typhimurium-infected gnotobiotic mice. PLoS One 2013; 8:e74963. [PMID: 24040367 PMCID: PMC3769299 DOI: 10.1371/journal.pone.0074963] [Citation(s) in RCA: 362] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 08/13/2013] [Indexed: 12/24/2022] Open
Abstract
Excessive mucin degradation by intestinal bacteria may contribute to inflammatory bowel diseases because access of luminal antigens to the intestinal immune system is facilitated. This study investigated how the presence of a mucin degrading commensal bacterium affects the severity of an intestinal Salmonella enterica Typhimurium-induced gut inflammation. Using a gnotobiotic C3H mouse model with a background microbiota of eight bacterial species (SIHUMI) the impact of the mucin-degrading commensal bacterium Akkermansia muciniphila (SIHUMI-A) on inflammatory and infectious symptoms caused by S. Typhimurium was investigated. Presence of A. muciniphila in S. Typhimurium-infected SIHUMI mice caused significantly increased histopathology scores and elevated mRNA levels of IFN-γ, IP-10, TNF-α, IL-12, IL-17 and IL-6 in cecal and colonic tissue. The increase in pro-inflammatory cytokines was accompanied by 10-fold higher S. Typhimurium cell numbers in mesenteric lymph nodes of SIHUMI mice associated with A. muciniphila and S. Typhimurium (SIHUMI-AS) compared to SIHUMI mice with S. Typhimurium only (SIHUMI-S). The number of mucin filled goblet cells was 2- to 3- fold lower in cecal tissue of SIHUMI-AS mice compared to SIHUMI-S, SIHUMI-A or SIHUMI mice. Reduced goblet cell numbers significantly correlated with increased IFN-γ mRNA levels (r2 = −0.86, ***P<0.001) in all infected mice. In addition, loss of cecal mucin sulphation was observed in SIHUMI mice containing both A. muciniphila and S. Typhimurium compared to other mouse groups. Concomitant presence of A. muciniphila and S. Typhimurium resulted in a drastic change in microbiota composition of SIHUMI mice: the proportion of B. thetaiotaomicron in SIHUMI-AS mice was 0.02% of total bacteria compared to 78% – 88% in the other mouse groups and the proportion of S. Typhimurium was 94% in SIHUMI-AS mice but only 2.2% in the SIHUMI-S mice. These results indicate that A. muciniphila exacerbates S. Typhimurium-induced intestinal inflammation by its ability to disturb host mucus homeostasis.
Collapse
Affiliation(s)
- Bhanu Priya Ganesh
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Robert Klopfleisch
- Institute of Veterinary Pathology, Free University Berlin, Berlin, Germany
| | - Gunnar Loh
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
- * E-mail:
| | - Michael Blaut
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| |
Collapse
|
44
|
The lipopolysaccharide modification regulator PmrA limits Salmonella virulence by repressing the type three-secretion system Spi/Ssa. Proc Natl Acad Sci U S A 2013; 110:9499-504. [PMID: 23690578 DOI: 10.1073/pnas.1303420110] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The regulatory protein PmrA controls expression of lipopolysaccharide (LPS) modification genes in Salmonella enterica serovar Typhimurium, the etiologic agent of human gastroenteritis and murine typhoid fever. PmrA-dependent LPS modifications confer resistance to serum, Fe(3+), and several antimicrobial peptides, suggesting that the pmrA gene is required for Salmonella virulence. We now report that, surprisingly, a pmrA null mutant is actually hypervirulent when inoculated i.p. into C3H/HeN mice. We establish that the PmrA protein binds to the promoter and represses transcription of ssrB, a virulence regulatory gene required for expression of the Spi/Ssa type three-secretion system inside macrophages. The pmrA mutant displayed heightened expression of SsrB-dependent genes and faster Spi/Ssa-dependent macrophage killing than wild-type Salmonella. A mutation in the ssrB promoter that abolished repression by the PmrA protein rendered Salmonella as hypervirulent as the pmrA null mutant. The antivirulence function of the PmrA protein may limit the acute phase of Salmonella infection, thereby enhancing pathogen persistence in host tissues.
Collapse
|
45
|
Ramos-Morales F. Impact of Salmonella enterica Type III Secretion System Effectors on the Eukaryotic Host Cell. ACTA ACUST UNITED AC 2012. [DOI: 10.5402/2012/787934] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Type III secretion systems are molecular machines used by many Gram-negative bacterial pathogens to inject proteins, known as effectors, directly into eukaryotic host cells. These proteins manipulate host signal transduction pathways and cellular processes to the pathogen’s advantage. Salmonella enterica possesses two virulence-related type III secretion systems that deliver more than forty effectors. This paper reviews our current knowledge about the functions, biochemical activities, host targets, and impact on host cells of these effectors. First, the concerted action of effectors at the cellular level in relevant aspects of the interaction between Salmonella and its hosts is analyzed. Then, particular issues that will drive research in the field in the near future are discussed. Finally, detailed information about each individual effector is provided.
Collapse
Affiliation(s)
- Francisco Ramos-Morales
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes 6, 41012 Sevilla, Spain
| |
Collapse
|
46
|
Kong W, Brovold M, Koeneman BA, Clark-Curtiss J, Curtiss R. Turning self-destructing Salmonella into a universal DNA vaccine delivery platform. Proc Natl Acad Sci U S A 2012; 109:19414-9. [PMID: 23129620 PMCID: PMC3511069 DOI: 10.1073/pnas.1217554109] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We previously developed a biological containment system using recombinant Salmonella Typhimurium strains that are attenuated yet capable of synthesizing protective antigens. The regulated delayed attenuation and programmed self-destructing features designed into these S. Typhimurium strains enable them to efficiently colonize host tissues and allow release of the bacterial cell contents after lysis. To turn such a recombinant attenuated Salmonella vaccine (RASV) strain into a universal DNA vaccine-delivery vehicle, our approach was to genetically modify RASV strains to display a hyperinvasive phenotype to maximize Salmonella host entry and host cell internalization, to enable Salmonella endosomal escape to release a DNA vaccine into the cytosol, and to decrease Salmonella-induced pyroptosis/apoptosis that allows the DNA vaccine time to traffic to the nucleus for efficient synthesis of encoded protective antigens. A DNA vaccine vector that encodes a domain that contributes to the arabinose-regulated lysis phenotype but has a eukaryotic promoter was constructed. The vector was then improved by insertion of multiple DNA nuclear-targeting sequences for efficient nuclear trafficking and gene expression, and by increasing nuclease resistance to protect the plasmid from host degradation. A DNA vaccine encoding influenza WSN virus HA antigen delivered by the RASV strain with the best genetic attributes induced complete protection to mice against a lethal influenza virus challenge. Adoption of these technological improvements will revolutionize means for effective delivery of DNA vaccines to stimulate mucosal, systemic, and cellular protective immunities, and lead to a paradigm shift in cost-effective control and prevention of a diversity of diseases.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Animals
- Antibodies, Bacterial/immunology
- Antibody Formation/immunology
- Apoptosis
- Base Sequence
- Deoxyribonucleases/metabolism
- Gene Transfer Techniques
- Genes, Bacterial/genetics
- Genetic Engineering
- Genetic Vectors/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Immunization
- Mice
- Molecular Sequence Data
- Plasmids/genetics
- Salmonella/genetics
- Salmonella/immunology
- Salmonella Infections, Animal/immunology
- Salmonella Infections, Animal/microbiology
- Salmonella Infections, Animal/prevention & control
- Salmonella Vaccines/immunology
- Vaccines, Attenuated/immunology
- Vaccines, DNA/immunology
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Wei Kong
- Center for Infectious Diseases and Vaccinology at the Biodesign Institute, and
| | - Matthew Brovold
- Center for Infectious Diseases and Vaccinology at the Biodesign Institute, and
| | | | - Josephine Clark-Curtiss
- Center for Infectious Diseases and Vaccinology at the Biodesign Institute, and
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-5401; and
| | - Roy Curtiss
- Center for Infectious Diseases and Vaccinology at the Biodesign Institute, and
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-5401; and
| |
Collapse
|
47
|
Thornbrough JM, Hundley T, Valdivia R, Worley MJ. Human genome-wide RNAi screen for host factors that modulate intracellular Salmonella growth. PLoS One 2012; 7:e38097. [PMID: 22701604 PMCID: PMC3372477 DOI: 10.1371/journal.pone.0038097] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 05/03/2012] [Indexed: 01/19/2023] Open
Abstract
Salmonella enterica is a bacterial pathogen of humans that can proliferate within epithelial cells as well as professional phagocytes of the immune system. While much has been learned about the microbial genes that influence the infectious process through decades of intensive research, relatively little is known about the host factors that affect infection. We performed a genome-wide siRNA screen to identify host genes that Salmonella enterica serovar Typhimurium (S. typhimurium) utilizes to facilitate growth within human epithelial cells. In this screen, with siRNAs targeting every predicted gene in the human genome, we identified 252 new human-host-susceptibility factors (HSFs) for S. typhimurium. We also identified 39 genes whose silencing results in increased intracellular growth of S. typhimurium. The HSFs identified are regulated most centrally by NFκB and associate with each other through an extremely dense network of interactions that center around a group of kinases. Most genes identified were not previously appreciated as playing roles in the intracellular lifecycle of S. enterica. Numerous HSFs identified with interesting characteristics that could play plausible roles in mediating intracellular microbial growth are discussed. Importantly, this study reveals significant overlap between the host network that supports S. typhimurium growth within human epithelial cells and the one that promotes the growth of Mycobacterium tuberculosis within human macrophages. In addition to providing much new information about the molecular mechanisms underlying S. enterica-host cell interplay, all 252 HSFs identified are candidates for new anti-microbial targets for controlling S. enterica infections, and some may provide broad-spectrum anti-microbial activity.
Collapse
Affiliation(s)
- Joshua M. Thornbrough
- Department of Biology, University of Louisville, Louisville, Kentucky, United States of America
| | - Tom Hundley
- Department of Biology, University of Louisville, Louisville, Kentucky, United States of America
| | - Raphael Valdivia
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, United States of America
| | - Micah J. Worley
- Department of Biology, University of Louisville, Louisville, Kentucky, United States of America
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
48
|
Figueira R, Holden DW. Functions of the Salmonella pathogenicity island 2 (SPI-2) type III secretion system effectors. Microbiology (Reading) 2012; 158:1147-1161. [DOI: 10.1099/mic.0.058115-0] [Citation(s) in RCA: 253] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Rita Figueira
- Section of Microbiology, Centre for Molecular Microbiology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK
| | - David W. Holden
- Section of Microbiology, Centre for Molecular Microbiology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK
| |
Collapse
|
49
|
Association of a protective monoclonal IgA with the O antigen of Salmonella enterica serovar Typhimurium impacts type 3 secretion and outer membrane integrity. Infect Immun 2012; 80:2454-63. [PMID: 22473607 DOI: 10.1128/iai.00018-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Invasion of intestinal epithelial cells by Salmonella enterica serovar Typhimurium is an energetically demanding process, involving the transfer of effector proteins from invading bacteria into host cells via a specialized organelle known as the Salmonella pathogenicity island 1 (SPI-1) type 3 secretion system (T3SS). By a mechanism that remains poorly understood, entry of S. Typhimurium into epithelial cells is inhibited by Sal4, a monoclonal, polymeric IgA antibody that binds an immunodominant epitope within the O-antigen (O-Ag) component of lipopolysaccharide. In this study, we investigated how the binding of Sal4 to the surface of S. Typhimurium influences T3SS activity, bacterial energetics, and outer membrane integrity. We found that Sal4 treatment impaired T3SS-mediated translocon formation and attenuated the delivery of tagged effector proteins into epithelial cells. Sal4 treatment coincided with a partial reduction in membrane energetics and intracellular ATP levels, possibly explaining the impairment in T3SS activity. Sal4's effects on bacterial secretion and energetics occurred concurrently with an increase in O-Ag levels in culture supernatants, alterations in outer membrane permeability, and changes in surface ultrastructure, as revealed by transmission electron microscopy and cryo-electron microscopy. We propose that Sal4, by virtue of its ability to bind and cross-link the O-Ag, induces a form of outer membrane stress that compromises the integrity of the S. Typhimurium cell envelope and temporarily renders the bacterium avirulent.
Collapse
|
50
|
Morrison CM, Dial SM, Day WA, Joens LA. Investigations of Salmonella enterica serovar newport infections of oysters by using immunohistochemistry and knockout mutagenesis. Appl Environ Microbiol 2012; 78:2867-73. [PMID: 22307286 PMCID: PMC3318786 DOI: 10.1128/aem.07456-11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 01/23/2012] [Indexed: 11/20/2022] Open
Abstract
The consumption of raw oysters is an important risk factor in the acquisition of food-borne disease, with Salmonella being one of a number of pathogens that have been found in market oysters. Previous work by our lab found that Salmonella was capable of surviving in oysters for over 2 months under laboratory conditions, and this study sought to further investigate Salmonella's tissue affinity and mechanism of persistence within the oysters. Immunohistochemistry was used to show that Salmonella was capable of breaching the epithelial barriers, infecting the deeper connective tissues of the oysters, and evading destruction by the oysters' phagocytic hemocytes. To further investigate the mechanism of these infections, genes vital to the function of Salmonella's two main type III secretion systems were disrupted and the survivability of these knockout mutants within oysters was assayed. When the Salmonella pathogenicity island 1 and 2 mutant strains were exposed to oysters, there were no detectable deficiencies in their abilities to survive, suggesting that Salmonella's long-term infection of oysters does not rely upon these two important pathogenicity islands and must be due to some other, currently unknown, mechanism.
Collapse
Affiliation(s)
- Christopher M Morrison
- Department of Veterinary Science and Microbiology, The University of Arizona, Tucson, Arizona, USA
| | | | | | | |
Collapse
|