1
|
Millman A, Melamed S, Leavitt A, Doron S, Bernheim A, Hör J, Garb J, Bechon N, Brandis A, Lopatina A, Ofir G, Hochhauser D, Stokar-Avihail A, Tal N, Sharir S, Voichek M, Erez Z, Ferrer JLM, Dar D, Kacen A, Amitai G, Sorek R. An expanded arsenal of immune systems that protect bacteria from phages. Cell Host Microbe 2022; 30:1556-1569.e5. [DOI: 10.1016/j.chom.2022.09.017] [Citation(s) in RCA: 206] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/15/2022] [Accepted: 09/28/2022] [Indexed: 01/16/2023]
|
2
|
Zhang Y, Tan P, Zhao Y, Ma X. Enterotoxigenic Escherichia coli: intestinal pathogenesis mechanisms and colonization resistance by gut microbiota. Gut Microbes 2022; 14:2055943. [PMID: 35358002 PMCID: PMC8973357 DOI: 10.1080/19490976.2022.2055943] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a major cause of diarrhea in children and travelers in developing countries. ETEC is characterized by the ability to produce major virulence factors including colonization factors (CFs) and enterotoxins, that bind to specific receptors on epithelial cells and induce diarrhea. The gut microbiota is a stable and sophisticated ecosystem that performs a range of beneficial functions for the host, including protection against pathogen colonization. Understanding the pathogenic mechanisms of ETEC and the interaction between the gut microbiota and ETEC represents not only a research need but also an opportunity and challenge to develop precautions for ETEC infection. Herein, this review focuses on recent discoveries about ETEC etiology, pathogenesis and clinical manifestation, and discusses the colonization resistances mediated by gut microbiota, as well as preventative strategies against ETEC with an aim to provide novel insights that can reduce the adverse effect on human health.
Collapse
Affiliation(s)
- Yucheng Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Peng Tan
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Ying Zhao
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China,CONTACT Xi Ma State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Mondal I, Bhakat D, Chowdhury G, Manna A, Samanta S, Deb AK, Mukhopadhyay AK, Chatterjee NS. Distribution of virulence factors and its relatedness towards the antimicrobial response of enterotoxigenic Escherichia coli strains isolated from patients in Kolkata, India. J Appl Microbiol 2021; 132:675-686. [PMID: 34242448 DOI: 10.1111/jam.15206] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/11/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022]
Abstract
AIM Enterotoxigenic Escherichia coli (ETEC) is one of the most widely recognized diarrhoeal pathogens in developing countries. The advancement of ETEC vaccine development depends on the antigenic determinants of the ETEC isolates from a particular geographical region. So, the aim here was to comprehend the distribution of virulence determinants of the clinical ETEC strains of this region. Additionally, an attempt was made to find any correlation with the antimicrobial response pattern. METHODS AND RESULTS Multiplex PCR was employed to identify virulence determinants followed by confirmatory singleplex PCR. For observation of antibiotic response, the Kirby-Bauer method was used. Out of 379 strains, 46% of strains harboured both the enterotoxins ST and LT, whereas 15% were LT only. Among the major colonization factors (CFs), CS6 (41%) was the most prevalent followed by CFA/I (35%) and CFA/III was the lowest (3%). Among the minor CFs, CS21 (25%) was most prevalent, while CS15 showed the lowest (3%) presence. Among the non-classical virulence factors, EatA (69%) was predominant. ETEC strains harbouring CS6 showed resistance towards the commonly used drug Ciprofloxacin (70%). CONCLUSION CS6 and elt+est toxin genes co-occurred covering 51% of the isolates. CS21 was found in most strains with est genes (43%). EatA was found to occur frequently when ST was present alone or with LT. CS6-harbouring strains showed an independent correlation to antimicrobial resistance. SIGNIFICANCE AND IMPACT OF THE STUDY This study would aid in identifying the commonly circulating ETEC isolates of Kolkata, India, and their prevalent virulence determinants. Knowledge of antibiotic resistance patterns would also help in the appropriate use of antibiotics. Furthermore, the study would aid in identifying the multivalent antigens suitable for region-specific ETEC vaccines with maximum coverage.
Collapse
Affiliation(s)
- Indranil Mondal
- Division of Biochemistry, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Debjyoti Bhakat
- Division of Biochemistry, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Goutam Chowdhury
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Asis Manna
- Infectious Diseases and Beliaghata General Hospital, Kolkata, India
| | - Sandip Samanta
- Dr. B.C.Roy Post Graduate Institute of Pediatric Sciences, Kolkata, India
| | - Alok Kumar Deb
- Division of Epidemiology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Asish Kumar Mukhopadhyay
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | | |
Collapse
|
4
|
Roussel C, De Paepe K, Galia W, De Bodt J, Chalancon S, Leriche F, Ballet N, Denis S, Alric M, Van de Wiele T, Blanquet-Diot S. Spatial and temporal modulation of enterotoxigenic E. coli H10407 pathogenesis and interplay with microbiota in human gut models. BMC Biol 2020; 18:141. [PMID: 33054775 PMCID: PMC7559199 DOI: 10.1186/s12915-020-00860-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/31/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Enterotoxigenic Escherichia coli (ETEC) substantially contributes to the burden of diarrheal illnesses in developing countries. With the use of complementary in vitro models of the human digestive environment, TNO gastrointestinal model (TIM-1), and Mucosal Simulator of the Human Intestinal Microbial Ecosystem (M-SHIME), we provided the first detailed report on the spatial-temporal modulation of ETEC H10407 survival, virulence, and its interplay with gut microbiota. These systems integrate the main physicochemical parameters of the human upper digestion (TIM-1) and simulate the ileum vs ascending colon microbial communities and luminal vs mucosal microenvironments, captured from six fecal donors (M-SHIME). RESULTS A loss of ETEC viability was noticed upon gastric digestion, while a growth renewal was found at the end of jejunal and ileal digestion. The remarkable ETEC mucosal attachment helped to maintain luminal concentrations above 6 log10 mL-1 in the ileum and ascending colon up to 5 days post-infection. Seven ETEC virulence genes were monitored. Most of them were switched on in the stomach and switched off in the TIM-1 ileal effluents and in a late post-infectious stage in the M-SHIME ascending colon. No heat-labile enterotoxin production was measured in the stomach in contrast to the ileum and ascending colon. Using 16S rRNA gene-based amplicon sequencing, ETEC infection modulated the microbial community structure of the ileum mucus and ascending colon lumen. CONCLUSIONS This study provides a better understanding of the interplay between ETEC and gastrointestinal cues and may serve to complete knowledge on ETEC pathogenesis and inspire novel prophylactic strategies for diarrheal diseases.
Collapse
Affiliation(s)
- Charlène Roussel
- Université Clermont Auvergne, UMR UCA-INRA 454 MEDIS, Microbiology Digestive Environment and Health, Clermont-Ferrand, France.,CMET, Center for Microbial Ecology and Technology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kim De Paepe
- CMET, Center for Microbial Ecology and Technology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Wessam Galia
- UMR 5557 Microbial Ecology, Research Group on Bacterial Opportunistic Pathogens and Environment, CNRS, VetAgro Sup, Lyon, France
| | - Jana De Bodt
- CMET, Center for Microbial Ecology and Technology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Sandrine Chalancon
- Université Clermont Auvergne, UMR UCA-INRA 454 MEDIS, Microbiology Digestive Environment and Health, Clermont-Ferrand, France
| | | | - Nathalie Ballet
- Lesaffre International, Lesaffre Group, Marcq-en-Baroeul, France
| | - Sylvain Denis
- Université Clermont Auvergne, UMR UCA-INRA 454 MEDIS, Microbiology Digestive Environment and Health, Clermont-Ferrand, France
| | - Monique Alric
- Université Clermont Auvergne, UMR UCA-INRA 454 MEDIS, Microbiology Digestive Environment and Health, Clermont-Ferrand, France
| | - Tom Van de Wiele
- CMET, Center for Microbial Ecology and Technology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| | - Stéphanie Blanquet-Diot
- Université Clermont Auvergne, UMR UCA-INRA 454 MEDIS, Microbiology Digestive Environment and Health, Clermont-Ferrand, France.
| |
Collapse
|
5
|
Desvaux M, Dalmasso G, Beyrouthy R, Barnich N, Delmas J, Bonnet R. Pathogenicity Factors of Genomic Islands in Intestinal and Extraintestinal Escherichia coli. Front Microbiol 2020; 11:2065. [PMID: 33101219 PMCID: PMC7545054 DOI: 10.3389/fmicb.2020.02065] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/05/2020] [Indexed: 12/20/2022] Open
Abstract
Escherichia coli is a versatile bacterial species that includes both harmless commensal strains and pathogenic strains found in the gastrointestinal tract in humans and warm-blooded animals. The growing amount of DNA sequence information generated in the era of "genomics" has helped to increase our understanding of the factors and mechanisms involved in the diversification of this bacterial species. The pathogenic side of E. coli that is afforded through horizontal transfers of genes encoding virulence factors enables this bacterium to become a highly diverse and adapted pathogen that is responsible for intestinal or extraintestinal diseases in humans and animals. Many of the accessory genes acquired by horizontal transfers form syntenic blocks and are recognized as genomic islands (GIs). These genomic regions contribute to the rapid evolution, diversification and adaptation of E. coli variants because they are frequently subject to rearrangements, excision and transfer, as well as to further acquisition of additional DNA. Here, we review a subgroup of GIs from E. coli termed pathogenicity islands (PAIs), a concept defined in the late 1980s by Jörg Hacker and colleagues in Werner Goebel's group at the University of Würzburg, Würzburg, Germany. As with other GIs, the PAIs comprise large genomic regions that differ from the rest of the genome by their G + C content, by their typical insertion within transfer RNA genes, and by their harboring of direct repeats (at their ends), integrase determinants, or other mobility loci. The hallmark of PAIs is their contribution to the emergence of virulent bacteria and to the development of intestinal and extraintestinal diseases. This review summarizes the current knowledge on the structure and functional features of PAIs, on PAI-encoded E. coli pathogenicity factors and on the role of PAIs in host-pathogen interactions.
Collapse
Affiliation(s)
- Mickaël Desvaux
- Université Clermont Auvergne, INRAE, MEDiS, Clermont-Ferrand, France
| | - Guillaume Dalmasso
- UMR Inserm 1071, USC-INRAE 2018, M2iSH, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Racha Beyrouthy
- UMR Inserm 1071, USC-INRAE 2018, M2iSH, Université Clermont Auvergne, Clermont-Ferrand, France
- Laboratoire de Bactériologie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Nicolas Barnich
- UMR Inserm 1071, USC-INRAE 2018, M2iSH, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Julien Delmas
- UMR Inserm 1071, USC-INRAE 2018, M2iSH, Université Clermont Auvergne, Clermont-Ferrand, France
- Laboratoire de Bactériologie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Richard Bonnet
- UMR Inserm 1071, USC-INRAE 2018, M2iSH, Université Clermont Auvergne, Clermont-Ferrand, France
- Laboratoire de Bactériologie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| |
Collapse
|
6
|
Loc NH, Tung NV, Kim PTA, Yang MS. Expression of Escherichia coli Heat-Labile Enterotoxin B Subunit in Centella (Centella asiatica (L.) Urban) via Biolistic Transformation. Curr Pharm Biotechnol 2020; 21:973-979. [PMID: 32101119 DOI: 10.2174/1389201021666200226094150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/16/2019] [Accepted: 01/11/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Heat-Labile enterotoxin B subunit (LTB) produced by Escherichia coli, a non-toxic protein subunit with potential biological properties, is a powerful mucosal and parenteral adjuvant which can induce a strong immune response against co-administered antigens. OBJECTIVE In the present study, LTB protein, encoded by the optimized ltb (also known synthetic ltb, s-ltb) gene in centella plant (Centella asiatica) for use as an antigen, has been discussed. METHODS The s-ltb gene was cloned into a plant expression vector, pMYO51, adjacent to the CaMV 35S promoter and was then introduced into centella plant by biolistic transformation. PCR amplification was conducted to determine the presence of s-ltb gene in the transgenic centella plant. The expression of s-ltb gene was analyzed by immunoblotting and quantified by ELISA. In vitro activity of LTB protein was determined by GM1-ELISA. RESULTS PCR amplification has found seven transgenic centella individuals. However, only five of them produced LTB protein. ELISA analysis showed that the highest amount of LTB protein detected in transgenic centella leaves was about 0.8% of the total soluble protein. GM1-ELISA assay indicated that plant LTB protein bound specifically to GM1-ganglioside, suggesting that the LTB subunits formed active pentamers. CONCLUSION The s-ltb gene that was successfully transformed into centella plants by the biolistic method has produced a relatively high amount of plant LTB protein in the pentameric quaternary structure that has GM1-ganglioside binding affinity, a receptor on the intestinal epithelial membrane.
Collapse
Affiliation(s)
- Nguyen H Loc
- Institute of Bioactive Compounds and Department of Biotechnology, University of Sciences, Hue University, Hue, Thua Thien Hue 530000, Vietnam
| | - Nghiem V Tung
- Institute of Bioactive Compounds and Department of Biotechnology, University of Sciences, Hue University, Hue, Thua Thien Hue 530000, Vietnam
| | - Phan T A Kim
- Institute of Bioactive Compounds and Department of Biotechnology, University of Sciences, Hue University, Hue, Thua Thien Hue 530000, Vietnam
| | - Moon S Yang
- Division of Biological Sciences and Research Center of Bioactive Materials, Chonbuk National University, Jeonju, Chonbuk 561-756, Korea
| |
Collapse
|
7
|
Canizalez-Roman A, Velazquez-Roman J, Valdez-Flores MA, Flores-Villaseñor H, Vidal JE, Muro-Amador S, Guadrón-Llanos AM, Gonzalez-Nuñez E, Medina-Serrano J, Tapia-Pastrana G, León-Sicairos N. Detection of antimicrobial-resistance diarrheagenic Escherichia coli strains in surface water used to irrigate food products in the northwest of Mexico. Int J Food Microbiol 2019; 304:1-10. [DOI: 10.1016/j.ijfoodmicro.2019.05.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 01/16/2023]
|
8
|
Response of the Biocontrol Agent Pseudomonas pseudoalcaligenes AVO110 to Rosellinia necatrix Exudate. Appl Environ Microbiol 2019; 85:AEM.01741-18. [PMID: 30478234 PMCID: PMC6344628 DOI: 10.1128/aem.01741-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/17/2018] [Indexed: 01/08/2023] Open
Abstract
Diseases associated with fungal root invasion cause a significant loss of fruit tree production worldwide. The bacterium Pseudomonas pseudoalcaligenes AVO110 controls avocado white root rot disease caused by Rosellinia necatrix by using mechanisms involving competition for nutrients and niches. Here, a functional genomics approach was conducted to identify the bacterial traits involved in the interaction with this fungal pathogen. Our results contribute to a better understanding of the multitrophic interactions established among bacterial biocontrol agents, the plant rhizosphere, and the mycelia of soilborne pathogens. The rhizobacterium Pseudomonas pseudoalcaligenes AVO110, isolated by the enrichment of competitive avocado root tip colonizers, controls avocado white root rot disease caused by Rosellinia necatrix. Here, we applied signature-tagged mutagenesis (STM) during the growth and survival of AVO110 in fungal exudate-containing medium with the goal of identifying the molecular mechanisms linked to the interaction of this bacterium with R. necatrix. A total of 26 STM mutants outcompeted by the parental strain in fungal exudate, but not in rich medium, were selected and named growth-attenuated mutants (GAMs). Twenty-one genes were identified as being required for this bacterial-fungal interaction, including membrane transporters, transcriptional regulators, and genes related to the metabolism of hydrocarbons, amino acids, fatty acids, and aromatic compounds. The bacterial traits identified here that are involved in the colonization of fungal hyphae include proteins involved in membrane maintenance (a dynamin-like protein and ColS) or cyclic-di-GMP signaling and chemotaxis. In addition, genes encoding a DNA helicase (recB) and a regulator of alginate production (algQ) were identified as being required for efficient colonization of the avocado rhizosphere. IMPORTANCE Diseases associated with fungal root invasion cause a significant loss of fruit tree production worldwide. The bacterium Pseudomonas pseudoalcaligenes AVO110 controls avocado white root rot disease caused by Rosellinia necatrix by using mechanisms involving competition for nutrients and niches. Here, a functional genomics approach was conducted to identify the bacterial traits involved in the interaction with this fungal pathogen. Our results contribute to a better understanding of the multitrophic interactions established among bacterial biocontrol agents, the plant rhizosphere, and the mycelia of soilborne pathogens.
Collapse
|
9
|
Bhakat D, Debnath A, Naik R, Chowdhury G, Deb A, Mukhopadhyay A, Chatterjee N. Identification of common virulence factors present in enterotoxigenicEscherichia coliisolated from diarrhoeal patients in Kolkata, India. J Appl Microbiol 2018; 126:255-265. [DOI: 10.1111/jam.14090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 07/17/2018] [Accepted: 08/23/2018] [Indexed: 12/25/2022]
Affiliation(s)
- D. Bhakat
- Division of Biochemistry; ICMR-National Institute of Cholera and Enteric Diseases; Kolkata India
| | - A. Debnath
- Division of Biochemistry; ICMR-National Institute of Cholera and Enteric Diseases; Kolkata India
| | - R. Naik
- Division of Biochemistry; ICMR-National Institute of Cholera and Enteric Diseases; Kolkata India
| | - G. Chowdhury
- Division of Bacteriology; ICMR-National Institute of Cholera and Enteric Diseases; Kolkata India
| | - A.K. Deb
- Division of Epidemiology; ICMR-National Institute of Cholera and Enteric Diseases; Kolkata India
| | - A.K. Mukhopadhyay
- Division of Bacteriology; ICMR-National Institute of Cholera and Enteric Diseases; Kolkata India
| | - N.S. Chatterjee
- Division of Biochemistry; ICMR-National Institute of Cholera and Enteric Diseases; Kolkata India
| |
Collapse
|
10
|
Saile N, Schuh E, Semmler T, Eichhorn I, Wieler LH, Bauwens A, Schmidt H. Determination of virulence and fitness genes associated with the pheU, pheV and selC integration sites of LEE-negative food-borne Shiga toxin-producing Escherichia coli strains. Gut Pathog 2018; 10:43. [PMID: 30337962 PMCID: PMC6174562 DOI: 10.1186/s13099-018-0271-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/01/2018] [Indexed: 01/22/2023] Open
Abstract
Background In the current study, nine foodborne “Locus of Enterocyte Effacement” (LEE)-negative Shiga toxin-producing Escherichia coli (STEC) strains were selected for whole genome sequencing and analysis for yet unknown genetic elements within the already known LEE integration sites selC, pheU and pheV. Foreign DNA ranging in size from 3.4 to 57 kbp was detected and further analyzed. Five STEC strains contained an insertion of foreign DNA adjacent to the selC tRNA gene and five and seven strains contained foreign DNA adjacent to the pheU and pheV tRNA genes, respectively. We characterized the foreign DNA insertion associated with selC (STEC O91:H21 strain 17584/1), pheU (STEC O8:H4 strain RF1a and O55:Hnt strain K30) and pheV (STEC O91:H21 strain 17584/1 and O113:H21 strain TS18/08) as examples. Results In total, 293 open reading frames partially encoding putative virulence factors such as TonB-dependent receptors, DNA helicases, a hemolysin activator protein precursor, antigen 43, anti-restriction protein KlcA, ShiA, and phosphoethanolamine transferases were detected. A virulence type IV toxin-antitoxin system was detected in three strains. Additionally, the ato system was found in one strain. In strain 17584/1 we were able to define a new genomic island which we designated GIselC17584/1. The island contained integrases and mobile elements in addition to genes for increased fitness and those playing a putative role in pathogenicity. Conclusion The data presented highlight the important role of the three tRNAs selC, pheU, and pheV for the genomic flexibility of E. coli. Electronic supplementary material The online version of this article (10.1186/s13099-018-0271-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nadja Saile
- 1Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstr. 28, 70599 Stuttgart, Germany
| | - Elisabeth Schuh
- 1Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstr. 28, 70599 Stuttgart, Germany.,2Department Biological Safety, National Reference Laboratory for Escherichia coli, Federal Institute for Risk Assessment (BfR), Diedersdorfer Weg 1, 12277 Berlin, Germany
| | | | - Inga Eichhorn
- 4Institute of Microbiology and Epizootics, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany
| | | | - Andreas Bauwens
- 5Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
| | - Herbert Schmidt
- 1Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstr. 28, 70599 Stuttgart, Germany
| |
Collapse
|
11
|
Abstract
Uropathogenic Escherichia coli (UPEC) are opportunistic human pathogens that primarily circulate as part of commensal intestinal microbiota. Though they have the ability to survive and proliferate in various urinary tract compartments, the urinary tract is a transient, occasional habitat for UPEC. Because of this, most of the UPEC traits have originally evolved to serve in intestinal colonization and transmission. Some of these bacterial traits serve as virulence factors - they are critical to or assist in survival of UPEC as pathogens, and the structure and/or function may be specialized for the infection. Other traits could serve as anti-virulence factors - they represent liability in the urinary tract and are under selection to be lost or inactivated during the infection. Inactivation, variation, or other changes of the bacterial genes that increase the pathogen's fitness during the infection are called pathoadaptive mutations. This chapter describes examples of pathoadaptive mutations in UPEC and provides rationale for their further in-depth study.
Collapse
|
12
|
Sahl JW, Sistrunk JR, Baby NI, Begum Y, Luo Q, Sheikh A, Qadri F, Fleckenstein JM, Rasko DA. Insights into enterotoxigenic Escherichia coli diversity in Bangladesh utilizing genomic epidemiology. Sci Rep 2017; 7:3402. [PMID: 28611468 PMCID: PMC5469772 DOI: 10.1038/s41598-017-03631-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/28/2017] [Indexed: 11/08/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) cause more than 500,000 deaths each year in the developing world and are characterized on a molecular level by the presence of genes that encode the heat-stable (ST) and/or heat-labile (LT) enterotoxins, as well as surface structures, known as colonization factors (CFs). Genome sequencing and comparative genomic analyses of 94 previously uncharacterized ETEC isolates demonstrated remarkable genomic diversity, with 28 distinct sequence types identified in three phylogenomic groups. Interestingly, there is a correlation between the genomic sequence type and virulence factor profiles based on prevalence of the isolate, suggesting that there is an optimal combination of genetic factors required for survival, virulence and transmission in the most successful clones. A large-scale BLAST score ratio (LS-BSR) analysis was further applied to identify ETEC-specific genomic regions when compared to non-ETEC genomes, as well as genes that are more associated with clinical presentations or other genotypic markers. Of the strains examined, 21 of 94 ETEC isolates lacked any previously identified CF. Homology searches with the structural subunits of known CFs identified 6 new putative CF variants. These studies provide a roadmap to exploit genomic analyses by directing investigations of pathogenesis, virulence regulation and vaccine development.
Collapse
Affiliation(s)
- Jason W Sahl
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, 801 W. Baltimore Street, Suite 600, Baltimore, MD, 21201, USA
- Translational Genomics Research Institute, Flagstaff, AZ, 86001, USA
| | - Jeticia R Sistrunk
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, 801 W. Baltimore Street, Suite 600, Baltimore, MD, 21201, USA
| | - Nabilah Ibnat Baby
- Centre for Vaccine Sciences, Immunology Laboratory, International Centre Center for Diarrhoeal Disease Research, Mohakhali, Dhaka, 1212, Bangladesh
| | - Yasmin Begum
- Centre for Vaccine Sciences, Immunology Laboratory, International Centre Center for Diarrhoeal Disease Research, Mohakhali, Dhaka, 1212, Bangladesh
| | - Qingwei Luo
- Department of Medicine, Division of Infectious Diseases, Washington, USA
| | - Alaullah Sheikh
- Centre for Vaccine Sciences, Immunology Laboratory, International Centre Center for Diarrhoeal Disease Research, Mohakhali, Dhaka, 1212, Bangladesh
- The Molecular Microbiology and Microbial Pathogenesis Program, Division of Biology and Biomedical Sciences, Washington University in St. Louis, Washington, USA
| | - Firdausi Qadri
- Centre for Vaccine Sciences, Immunology Laboratory, International Centre Center for Diarrhoeal Disease Research, Mohakhali, Dhaka, 1212, Bangladesh
| | - James M Fleckenstein
- Department of Medicine, Division of Infectious Diseases, Washington, USA
- The Molecular Microbiology and Microbial Pathogenesis Program, Division of Biology and Biomedical Sciences, Washington University in St. Louis, Washington, USA
- Medicine Service, Veterans Affairs Medical Center, St. Louis, MO, USA
| | - David A Rasko
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, 801 W. Baltimore Street, Suite 600, Baltimore, MD, 21201, USA.
| |
Collapse
|
13
|
Sheikh A, Rashu R, Begum YA, Kuhlman FM, Ciorba MA, Hultgren SJ, Qadri F, Fleckenstein JM. Highly conserved type 1 pili promote enterotoxigenic E. coli pathogen-host interactions. PLoS Negl Trop Dis 2017; 11:e0005586. [PMID: 28531220 PMCID: PMC5456409 DOI: 10.1371/journal.pntd.0005586] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/02/2017] [Accepted: 04/21/2017] [Indexed: 12/22/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC), defined by their elaboration of heat-labile (LT) and/or heat-stable (ST) enterotoxins, are a common cause of diarrheal illness in developing countries. Efficient delivery of these toxins requires ETEC to engage target host enterocytes. This engagement is accomplished using a variety of pathovar-specific and conserved E. coli adhesin molecules as well as plasmid encoded colonization factors. Some of these adhesins undergo significant transcriptional modulation as ETEC encounter intestinal epithelia, perhaps suggesting that they cooperatively facilitate interaction with the host. Among genes significantly upregulated on cell contact are those encoding type 1 pili. We therefore investigated the role played by these pili in facilitating ETEC adhesion, and toxin delivery to model intestinal epithelia. We demonstrate that type 1 pili, encoded in the E. coli core genome, play an essential role in ETEC virulence, acting in concert with plasmid-encoded pathovar specific colonization factor (CF) fimbriae to promote optimal bacterial adhesion to cultured intestinal epithelium (CIE) and to epithelial monolayers differentiated from human small intestinal stem cells. Type 1 pili are tipped with the FimH adhesin which recognizes mannose with stereochemical specificity. Thus, enhanced production of highly mannosylated proteins on intestinal epithelia promoted FimH-mediated ETEC adhesion, while conversely, interruption of FimH lectin-epithelial interactions with soluble mannose, anti-FimH antibodies or mutagenesis of fimH effectively blocked ETEC adhesion. Moreover, fimH mutants were significantly impaired in delivery of both heat-stable and heat-labile toxins to the target epithelial cells in vitro, and these mutants were substantially less virulent in rabbit ileal loop assays, a classical model of ETEC pathogenesis. Collectively, our data suggest that these highly conserved pili play an essential role in virulence of these diverse pathogens.
Collapse
Affiliation(s)
- Alaullah Sheikh
- Molecular Microbiology and Microbial Pathogenesis Program, Division of Biology and Biomedical Sciences, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Rasheduzzaman Rashu
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddrb), Mohakhali, Dhaka, Bangladesh
| | - Yasmin Ara Begum
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddrb), Mohakhali, Dhaka, Bangladesh
| | - F. Matthew Kuhlman
- Division of Infectious Disease, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Matthew A. Ciorba
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Scott J. Hultgren
- Department of Molecular Microbiology, Washington University in Saint Louis, Saint Louis, Missouri, United States of America
- Center for Women’s Infectious Disease Research (CWIDR), Washington University in Saint Louis, Saint Louis, Missouri, United States of America
| | - Firdausi Qadri
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddrb), Mohakhali, Dhaka, Bangladesh
| | - James M. Fleckenstein
- Molecular Microbiology and Microbial Pathogenesis Program, Division of Biology and Biomedical Sciences, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- Division of Infectious Disease, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- Medicine Service, Veterans Affairs Medical Center, Saint Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
14
|
Bohuszewicz O, Liu J, Low HH. Membrane remodelling in bacteria. J Struct Biol 2016; 196:3-14. [PMID: 27265614 PMCID: PMC6168058 DOI: 10.1016/j.jsb.2016.05.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/20/2016] [Accepted: 05/26/2016] [Indexed: 01/10/2023]
Abstract
In bacteria the ability to remodel membrane underpins basic cell processes such as growth, and more sophisticated adaptations like inter-cell crosstalk, organelle specialisation, and pathogenesis. Here, selected examples of membrane remodelling in bacteria are presented and the diverse mechanisms for inducing membrane fission, fusion, and curvature discussed. Compared to eukaryotes, relatively few curvature-inducing proteins have been characterised so far. Whilst it is likely that many such proteins remain to be discovered, it also reflects the importance of alternative membrane remodelling strategies in bacteria where passive mechanisms for generating curvature are utilised.
Collapse
Affiliation(s)
- Olga Bohuszewicz
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | - Jiwei Liu
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK
| | - Harry H Low
- Department of Life Sciences, Imperial College, London SW7 2AZ, UK.
| |
Collapse
|
15
|
Dubreuil JD, Isaacson RE, Schifferli DM. Animal Enterotoxigenic Escherichia coli. EcoSal Plus 2016; 7:10.1128/ecosalplus.ESP-0006-2016. [PMID: 27735786 PMCID: PMC5123703 DOI: 10.1128/ecosalplus.esp-0006-2016] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Indexed: 12/13/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is the most common cause of E. coli diarrhea in farm animals. ETEC are characterized by the ability to produce two types of virulence factors: adhesins that promote binding to specific enterocyte receptors for intestinal colonization and enterotoxins responsible for fluid secretion. The best-characterized adhesins are expressed in the context of fimbriae, such as the F4 (also designated K88), F5 (K99), F6 (987P), F17, and F18 fimbriae. Once established in the animal small intestine, ETEC produce enterotoxin(s) that lead to diarrhea. The enterotoxins belong to two major classes: heat-labile toxins that consist of one active and five binding subunits (LT), and heat-stable toxins that are small polypeptides (STa, STb, and EAST1). This review describes the disease and pathogenesis of animal ETEC, the corresponding virulence genes and protein products of these bacteria, their regulation and targets in animal hosts, as well as mechanisms of action. Furthermore, vaccines, inhibitors, probiotics, and the identification of potential new targets by genomics are presented in the context of animal ETEC.
Collapse
Affiliation(s)
- J Daniel Dubreuil
- Faculté de Médecine Vétérinaire, Université de Montréal, Québec J2S 7C6, Canada
| | - Richard E Isaacson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108
| | - Dieter M Schifferli
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
16
|
Bekal S, Vincent A, Lin A, Harel J, Côté JC, Tremblay C. A Fatal Case of Necrotizing Fasciitis Caused by a Highly Virulent Escherichia coli Strain. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2016; 2016:2796412. [PMID: 27366162 PMCID: PMC4906195 DOI: 10.1155/2016/2796412] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 05/12/2016] [Indexed: 12/17/2022]
Abstract
Necrotizing fasciitis is a serious disease characterized by the necrosis of the subcutaneous tissues and fascia. E. coli as the etiologic agent of necrotizing fasciitis is a rare occurrence. A 66-year-old woman underwent total abdominal hysterectomy with bilateral salpingo-oophorectomy. She rapidly developed necrotizing fasciitis which led to her death 68 hours following surgery. An E. coli strain was isolated from blood and fascia cultures. DNA microarray revealed the presence of 20 virulence genes.
Collapse
Affiliation(s)
- Sadjia Bekal
- Laboratoire de Santé Publique du Québec, Sainte-Anne-de-Bellevue, QC, Canada H9X 3R5
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada H3T 1J4
| | - André Vincent
- Centre Hospitalier Affilié Universitaire, Hôtel-Dieu de Lévis, Lévis, QC, Canada G6V 3Z1
| | - Alex Lin
- Laboratoire de Santé Publique du Québec, Sainte-Anne-de-Bellevue, QC, Canada H9X 3R5
| | - Josée Harel
- Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada J2S 2M2
| | - Jean-Charles Côté
- Laboratoire de Santé Publique du Québec, Sainte-Anne-de-Bellevue, QC, Canada H9X 3R5
| | - Cécile Tremblay
- Laboratoire de Santé Publique du Québec, Sainte-Anne-de-Bellevue, QC, Canada H9X 3R5
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada H3T 1J4
| |
Collapse
|
17
|
Boysen A, Borch J, Krogh TJ, Hjernø K, Møller-Jensen J. SILAC-based comparative analysis of pathogenic Escherichia coli secretomes. J Microbiol Methods 2015; 116:66-79. [DOI: 10.1016/j.mimet.2015.06.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/26/2015] [Accepted: 06/26/2015] [Indexed: 01/08/2023]
|
18
|
IscR Regulates Synthesis of Colonization Factor Antigen I Fimbriae in Response to Iron Starvation in Enterotoxigenic Escherichia coli. J Bacteriol 2015; 197:2896-907. [PMID: 26124243 DOI: 10.1128/jb.00214-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/23/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Iron availability functions as an environmental cue for enteropathogenic bacteria, signaling arrival within the human host. As enterotoxigenic Escherichia coli (ETEC) is a major cause of human diarrhea, the effect of iron on ETEC virulence factors was evaluated here. ETEC pathogenicity is directly linked to production of fimbrial colonization factors and secretion of heat-labile enterotoxin (LT) and/or heat-stable enterotoxin (ST). Efficient colonization of the small intestine further requires at least the flagellin binding adhesin EtpA. Under iron starvation, production of the CFA/I fimbriae was increased in the ETEC H10407 prototype strain. In contrast, LT secretion was inhibited. Furthermore, under iron starvation, gene expression of the cfa (CFA/I) and etp (EtpBAC) operons was induced, whereas transcription of toxin genes was either unchanged or repressed. Transcriptional reporter fusion experiments focusing on the cfa operon further showed that iron starvation stimulated cfaA promoter activity in ETEC, indicating that the impact of iron on CFA/I production was mediated by transcriptional regulation. Evaluation of cfaA promoter activity in heterologous E. coli single mutant knockout strains identified IscR as the regulator responsible for inducing cfa fimbrial gene expression in response to iron starvation, and this was confirmed in an ETEC ΔiscR strain. The global iron response regulator, Fur, was not implicated. IscR binding sites were identified in silico within the cfaA promoter and fixation confirmed by DNase I footprinting, indicating that IscR directly binds the promoter region to induce CFA/I. IMPORTANCE Pathogenic enterobacteria modulate expression of virulence genes in response to iron availability. Although the Fur transcription factor represents the global regulator of iron homeostasis in Escherichia coli, we show that several ETEC virulence factors are modulated by iron, with expression of the major fimbriae under the control of the iron-sulfur cluster regulator, IscR. Furthermore, we demonstrate that the apo form of IscR, lacking an Fe-S cluster, is able to directly fix the corresponding promoter region. These results provide further evidence implicating IscR in bacterial virulence and suggest that IscR may represent a more general regulator mediating the iron response in enteropathogens.
Collapse
|
19
|
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a major cause of life-threatening diarrheal disease around the world. The major aspects of ETEC virulence are colonization of the small intestine and the secretion of enterotoxins which elicit diarrhea. Intestinal colonization is mediated, in part, by adhesins displayed on the bacterial cell surface. As colonization of the intestine is the critical first step in the establishment of an infection, it represents a potential point of intervention for the prevention of infections. Therefore, colonization factors (CFs) have been important subjects of research in the field of ETEC virulence. Research in this field has revealed that ETEC possesses a large array of serologically distinct CFs that differ in composition, structure, and function. Most ETEC CFs are pili (fimbriae) or related fibrous structures, while other adhesins are simple outer membrane proteins lacking any macromolecular structure. This chapter reviews the genetics, structure, function, and regulation of ETEC CFs and how such studies have contributed to our understanding of ETEC virulence and opened up potential opportunities for the development of preventive and therapeutic interventions.
Collapse
|
20
|
Michie KA, Boysen A, Low HH, Møller-Jensen J, Löwe J. LeoA, B and C from enterotoxigenic Escherichia coli (ETEC) are bacterial dynamins. PLoS One 2014; 9:e107211. [PMID: 25203511 PMCID: PMC4159319 DOI: 10.1371/journal.pone.0107211] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 08/13/2014] [Indexed: 11/30/2022] Open
Abstract
Escherichia coli (ETEC) strain H10407 contains a GTPase virulence factor, LeoA, which is encoded on a pathogenicity island and has been shown to enhance toxin release, potentially through vesicle secretion. By sequence comparisons and X-ray structure determination we now identify LeoA as a bacterial dynamin-like protein (DLP). Proteins of the dynamin family remodel membranes and were once thought to be restricted to eukaryotes. In ETEC H10407 LeoA localises to the periplasm where it forms a punctate localisation pattern. Bioinformatic analyses of leoA and the two upstream genes leoB and leoC suggest that LeoA works in concert with a second dynamin-like protein, made up of LeoB and LeoC. Disruption of the leoAB genes leads to a reduction in secretion of periplasmic Tat-GFP and outer membrane OmpA. Our data suggest a role for LeoABC dynamin-like proteins in potentiating virulence through membrane vesicle associated toxin secretion.
Collapse
Affiliation(s)
- Katharine A. Michie
- MRC Laboratory of Molecular Biology, Structural Studies Division, Cambridge, United Kingdom
| | - Anders Boysen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Harry H. Low
- MRC Laboratory of Molecular Biology, Structural Studies Division, Cambridge, United Kingdom
| | - Jakob Møller-Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Jan Löwe
- MRC Laboratory of Molecular Biology, Structural Studies Division, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
21
|
Phenotypic and genotypic characterization of enterotoxigenic Escherichia coli clinical isolates from northern Colombia, South America. BIOMED RESEARCH INTERNATIONAL 2014; 2014:236260. [PMID: 24877071 PMCID: PMC4022111 DOI: 10.1155/2014/236260] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/07/2014] [Accepted: 04/08/2014] [Indexed: 12/13/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) are major causes of childhood diarrhea in low and middle income countries including Colombia, South America. To understand the diversity of ETEC strains in the region, clinical isolates obtained from northern Colombia children were evaluated for multiple locus sequencing typing, serotyping, classical and nonclassical virulence genes, and antibiotic susceptibility. Among 40 ETEC clinical isolates evaluated, 21 (52.5%) were positive for LT gene, 13 (32.5%) for ST gene, and 6 (15%) for both ST and LT. The most prevalent colonization surface antigens (CS) were CS21 and CFA/I identified in 21 (50%) and 13 (32.5%) isolates, respectively. The eatA, irp2, and fyuA were the most common nonclassical virulence genes present in more than 60% of the isolates. Ampicillin resistance (80% of the strains) was the most frequent phenotype among ETEC strains followed by trimethoprim-sulfamethoxazole resistance (52.5%). Based on multiple locus sequencing typing (MLST), we recognize that 6 clonal groups of ETEC clinical isolates circulate in Colombia. ETEC clinical isolates from children in northern Colombia are highly diverse, yet some isolates circulating in the community belong to well-defined clonal groups that share a unique set of virulence factors, serotypes, and MLST sequence types.
Collapse
|
22
|
Molecular characterization of enterotoxigenic Escherichia coli isolates recovered from children with diarrhea during a 4-year period (2007 to 2010) in Bolivia. J Clin Microbiol 2013; 51:1219-25. [PMID: 23390275 DOI: 10.1128/jcm.02971-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is an important cause of childhood diarrhea. This study aimed to characterize ETEC strains isolated from Bolivian children aged <5 years according to enterotoxin profile, colonization factors (CFs), suggested virulence genes, and severity of disease. A total of 299 ETEC isolates recovered from children with diarrhea and 55 ETEC isolates from children without diarrhea (controls) were isolated over a period of 4 years. Strains expressing heat-labile toxin (LT) or heat-stable toxin (ST) alone were about equally common and twice as common as ETEC producing both toxins (20%). ETEC strains expressing human ST (STh) were more common in children aged <2 years, while ETEC strains expressing LT plus STh (LT/STh) were more frequent in 2- to 5-year-old children. Severity of disease was not related to the toxin profile of the strains. CF-positive isolates were more frequently identified in diarrheal samples than in control samples (P = 0.02). The most common CFs were CFA/I and CS14. CFA/I ETEC strains were more frequent in children aged <2 years than CS1+CS3 isolates and CS14 isolates, which were more prevalent in 2- to 5-year-old children. The presence of suggested ETEC virulence genes (clyA, eatA, tia, tibC, leoA, and east-1) was not associated with disease. However, east-1 was associated with LT/STh strains (P < 0.001), eatA with STh strains (P < 0.001), and tia with LT/STh strains (P < 0.001). A minor seasonal peak of ETEC infections was identified in May during the cold-dry season and coincided with the peak of rotavirus infections; this pattern is unusual for ETEC and may be important for vaccination strategies in Bolivia.
Collapse
|
23
|
Distribution of classical and nonclassical virulence genes in enterotoxigenic Escherichia coli isolates from Chilean children and tRNA gene screening for putative insertion sites for genomic islands. J Clin Microbiol 2011; 49:3198-203. [PMID: 21775541 DOI: 10.1128/jcm.02473-10] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is an important cause of diarrhea. Three adhesins (Tia, TibA, EtpA), an iron acquisition system (Irp1, Irp2, and FyuA), a GTPase (LeoA), and an autotransporter (EatA) are ETEC virulence-related proteins that, in contrast to the classical virulence factors (enterotoxins and fimbrial colonization factors) have not heretofore been targets in characterizing isolates from epidemiological studies. Here, we determined the occurrence of these nonclassical virulence genes in 103 ETEC isolates from Chilean children with diarrhea and described their association with O serogroups and classical virulence determinants. Because tia, leoA, irp2, and fyuA are harbored by pathogenicity islands inserted into the selC and asnT tRNA genes (tDNAs), we analyzed the regions flanking these loci. Ten additional tDNAs were also screened to identify hot spots for genetic insertions. Associations between the most frequent serogroups and classical colonization factor (CF)-toxin profiles included O6/LT-STh/CS1-CS3-CS21 (i.e., O6 serogroup, heat-labile [LT] and human heat-stable [STh] enterotoxins, and CFs CS1, -3 and -21), O6/LT-STh/CS2-CS3-CS21, and O104-O127/STh/CFAI-CS21. The eatA and etpA genes were detected in more than 70% of the collection, including diverse serogroups and virulence profiles. Sixteen percent of the ETEC strains were negative for classical and nonclassical adhesins, suggesting the presence of unknown determinants of adhesion. The leuX, thrW, and asnT tDNAs were disrupted in more than 65% of strains, suggesting they are hot spots for the insertion of mobile elements. Sequences similar to integrase genes were identified next to the thrW, asnT, pheV, and selC tDNAs. We propose that the eatA and etpA genes should be included in characterizations of ETEC isolates in future epidemiological studies to determine their prevalence in other geographical regions. Sequencing of tDNA-associated genetic insertions might identify new ETEC virulence determinants.
Collapse
|
24
|
Porter CK, Riddle MS, Tribble DR, Louis Bougeois A, McKenzie R, Isidean SD, Sebeny P, Savarino SJ. A systematic review of experimental infections with enterotoxigenic Escherichia coli (ETEC). Vaccine 2011; 29:5869-85. [PMID: 21616116 DOI: 10.1016/j.vaccine.2011.05.021] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 05/04/2011] [Accepted: 05/09/2011] [Indexed: 10/18/2022]
Abstract
Volunteer challenge with enterotoxigenic Escherichia coli (ETEC) has been used for four decades to elucidate the pathogenesis and immune responses and assess efficacy of various interventions. We performed a systematic review of these studies and a meta-analysis of individual patient-level data (IPD) from a subset of studies using standard methodology. We identified 27 studies of 11 ETEC strains administered to 443 naive subjects at doses from 1×10(6) to 1×10(10) colony forming units (cfu). Diarrhea attack rates varied by strain, dose and enterotoxin. Similar rates were seen at doses of 5×10(8) to 1×10(10)cfu with the three most commonly used strains B7A, E24377A, H10407. In IPD analysis, the highest diarrhea attack rates were seen with strains B7A, H10407 and E24377A. The H10407 induced significantly higher stool output than the other strains. Additionally, the rate of output was different across strains. The risk of diarrhea, abdominal cramps, nausea and headaches differed significantly by ETEC strain. An increased risk of nausea, abdominal cramps and headaches was seen for females. Baseline anti-LT IgG titers appeared to be associated with a decrease risk of diarrhea outcomes, a trend not seen with anti-LT IgA or seen consistently with anti-colonization factor antibodies. Neither early antibiotic treatment nor diarrhea duration significantly affected the frequency or magnitude of serologic responses. These studies have served as an invaluable tool in understanding disease course, pathogenicity, innate immune responses and an early assessment of product efficacy. When designing and planning experimental ETEC infection studies in this age of increased ethical scrutiny and growing appreciation of post-infectious sequelae, better understanding of available data is essential.
Collapse
Affiliation(s)
- Chad K Porter
- Naval Medical Research Center, Enteric Diseases Department, Silver Spring, MD, United States.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Sahl JW, Steinsland H, Redman JC, Angiuoli SV, Nataro JP, Sommerfelt H, Rasko DA. A comparative genomic analysis of diverse clonal types of enterotoxigenic Escherichia coli reveals pathovar-specific conservation. Infect Immun 2011; 79:950-60. [PMID: 21078854 PMCID: PMC3028850 DOI: 10.1128/iai.00932-10] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 10/06/2010] [Accepted: 11/01/2010] [Indexed: 11/20/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a major cause of diarrheal illness in children less than 5 years of age in low- and middle-income nations, whereas it is an emerging enteric pathogen in industrialized nations. Despite being an important cause of diarrhea, little is known about the genomic composition of ETEC. To address this, we sequenced the genomes of five ETEC isolates obtained from children in Guinea-Bissau with diarrhea. These five isolates represent distinct and globally dominant ETEC clonal groups. Comparative genomic analyses utilizing a gene-independent whole-genome alignment method demonstrated that sequenced ETEC strains share approximately 2.7 million bases of genomic sequence. Phylogenetic analysis of this "core genome" confirmed the diverse history of the ETEC pathovar and provides a finer resolution of the E. coli relationships than multilocus sequence typing. No identified genomic regions were conserved exclusively in all ETEC genomes; however, we identified more genomic content conserved among ETEC genomes than among non-ETEC E. coli genomes, suggesting that ETEC isolates share a genomic core. Comparisons of known virulence and of surface-exposed and colonization factor genes across all sequenced ETEC genomes not only identified variability but also indicated that some antigens are restricted to the ETEC pathovar. Overall, the generation of these five genome sequences, in addition to the two previously generated ETEC genomes, highlights the genomic diversity of ETEC. These studies increase our understanding of ETEC evolution, as well as provide insight into virulence factors and conserved proteins, which may be targets for vaccine development.
Collapse
Affiliation(s)
- Jason W. Sahl
- Institute for Genome Sciences, Department of Pediatrics, Center for Vaccine Development, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, Centre for International Health, Department of Biomedicine, University of Bergen, Bergen, Norway, Division of Infectious Disease Control, Norwegian Institute of Public Health, Oslo, Norway
| | - Hans Steinsland
- Institute for Genome Sciences, Department of Pediatrics, Center for Vaccine Development, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, Centre for International Health, Department of Biomedicine, University of Bergen, Bergen, Norway, Division of Infectious Disease Control, Norwegian Institute of Public Health, Oslo, Norway
| | - Julia C. Redman
- Institute for Genome Sciences, Department of Pediatrics, Center for Vaccine Development, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, Centre for International Health, Department of Biomedicine, University of Bergen, Bergen, Norway, Division of Infectious Disease Control, Norwegian Institute of Public Health, Oslo, Norway
| | - Samuel V. Angiuoli
- Institute for Genome Sciences, Department of Pediatrics, Center for Vaccine Development, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, Centre for International Health, Department of Biomedicine, University of Bergen, Bergen, Norway, Division of Infectious Disease Control, Norwegian Institute of Public Health, Oslo, Norway
| | - James P. Nataro
- Institute for Genome Sciences, Department of Pediatrics, Center for Vaccine Development, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, Centre for International Health, Department of Biomedicine, University of Bergen, Bergen, Norway, Division of Infectious Disease Control, Norwegian Institute of Public Health, Oslo, Norway
| | - Halvor Sommerfelt
- Institute for Genome Sciences, Department of Pediatrics, Center for Vaccine Development, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, Centre for International Health, Department of Biomedicine, University of Bergen, Bergen, Norway, Division of Infectious Disease Control, Norwegian Institute of Public Health, Oslo, Norway
| | - David A. Rasko
- Institute for Genome Sciences, Department of Pediatrics, Center for Vaccine Development, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, Centre for International Health, Department of Biomedicine, University of Bergen, Bergen, Norway, Division of Infectious Disease Control, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
26
|
Crossman LC, Chaudhuri RR, Beatson SA, Wells TJ, Desvaux M, Cunningham AF, Petty NK, Mahon V, Brinkley C, Hobman JL, Savarino SJ, Turner SM, Pallen MJ, Penn CW, Parkhill J, Turner AK, Johnson TJ, Thomson NR, Smith SGJ, Henderson IR. A commensal gone bad: complete genome sequence of the prototypical enterotoxigenic Escherichia coli strain H10407. J Bacteriol 2010; 192:5822-31. [PMID: 20802035 PMCID: PMC2953697 DOI: 10.1128/jb.00710-10] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 08/17/2010] [Indexed: 02/07/2023] Open
Abstract
In most cases, Escherichia coli exists as a harmless commensal organism, but it may on occasion cause intestinal and/or extraintestinal disease. Enterotoxigenic E. coli (ETEC) is the predominant cause of E. coli-mediated diarrhea in the developing world and is responsible for a significant portion of pediatric deaths. In this study, we determined the complete genomic sequence of E. coli H10407, a prototypical strain of enterotoxigenic E. coli, which reproducibly elicits diarrhea in human volunteer studies. We performed genomic and phylogenetic comparisons with other E. coli strains, revealing that the chromosome is closely related to that of the nonpathogenic commensal strain E. coli HS and to those of the laboratory strains E. coli K-12 and C. Furthermore, these analyses demonstrated that there were no chromosomally encoded factors unique to any sequenced ETEC strains. Comparison of the E. coli H10407 plasmids with those from several ETEC strains revealed that the plasmids had a mosaic structure but that several loci were conserved among ETEC strains. This study provides a genetic context for the vast amount of experimental and epidemiological data that have been published.
Collapse
Affiliation(s)
- Lisa C. Crossman
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia, School of Immunity and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom, Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, Dublin, Ireland, Department of Enteric Infections, Walter Reed Army Institute of Research, Enteric Disease Department, Naval Medical Research, Silver Spring, Maryland, School of Biosciences, The University of Nottingham, Sutton Bonington, United Kingdom, Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota
| | - Roy R. Chaudhuri
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia, School of Immunity and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom, Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, Dublin, Ireland, Department of Enteric Infections, Walter Reed Army Institute of Research, Enteric Disease Department, Naval Medical Research, Silver Spring, Maryland, School of Biosciences, The University of Nottingham, Sutton Bonington, United Kingdom, Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota
| | - Scott A. Beatson
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia, School of Immunity and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom, Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, Dublin, Ireland, Department of Enteric Infections, Walter Reed Army Institute of Research, Enteric Disease Department, Naval Medical Research, Silver Spring, Maryland, School of Biosciences, The University of Nottingham, Sutton Bonington, United Kingdom, Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota
| | - Timothy J. Wells
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia, School of Immunity and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom, Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, Dublin, Ireland, Department of Enteric Infections, Walter Reed Army Institute of Research, Enteric Disease Department, Naval Medical Research, Silver Spring, Maryland, School of Biosciences, The University of Nottingham, Sutton Bonington, United Kingdom, Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota
| | - Mickael Desvaux
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia, School of Immunity and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom, Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, Dublin, Ireland, Department of Enteric Infections, Walter Reed Army Institute of Research, Enteric Disease Department, Naval Medical Research, Silver Spring, Maryland, School of Biosciences, The University of Nottingham, Sutton Bonington, United Kingdom, Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota
| | - Adam F. Cunningham
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia, School of Immunity and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom, Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, Dublin, Ireland, Department of Enteric Infections, Walter Reed Army Institute of Research, Enteric Disease Department, Naval Medical Research, Silver Spring, Maryland, School of Biosciences, The University of Nottingham, Sutton Bonington, United Kingdom, Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota
| | - Nicola K. Petty
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia, School of Immunity and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom, Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, Dublin, Ireland, Department of Enteric Infections, Walter Reed Army Institute of Research, Enteric Disease Department, Naval Medical Research, Silver Spring, Maryland, School of Biosciences, The University of Nottingham, Sutton Bonington, United Kingdom, Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota
| | - Vivienne Mahon
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia, School of Immunity and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom, Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, Dublin, Ireland, Department of Enteric Infections, Walter Reed Army Institute of Research, Enteric Disease Department, Naval Medical Research, Silver Spring, Maryland, School of Biosciences, The University of Nottingham, Sutton Bonington, United Kingdom, Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota
| | - Carl Brinkley
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia, School of Immunity and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom, Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, Dublin, Ireland, Department of Enteric Infections, Walter Reed Army Institute of Research, Enteric Disease Department, Naval Medical Research, Silver Spring, Maryland, School of Biosciences, The University of Nottingham, Sutton Bonington, United Kingdom, Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota
| | - Jon L. Hobman
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia, School of Immunity and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom, Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, Dublin, Ireland, Department of Enteric Infections, Walter Reed Army Institute of Research, Enteric Disease Department, Naval Medical Research, Silver Spring, Maryland, School of Biosciences, The University of Nottingham, Sutton Bonington, United Kingdom, Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota
| | - Stephen J. Savarino
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia, School of Immunity and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom, Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, Dublin, Ireland, Department of Enteric Infections, Walter Reed Army Institute of Research, Enteric Disease Department, Naval Medical Research, Silver Spring, Maryland, School of Biosciences, The University of Nottingham, Sutton Bonington, United Kingdom, Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota
| | - Susan M. Turner
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia, School of Immunity and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom, Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, Dublin, Ireland, Department of Enteric Infections, Walter Reed Army Institute of Research, Enteric Disease Department, Naval Medical Research, Silver Spring, Maryland, School of Biosciences, The University of Nottingham, Sutton Bonington, United Kingdom, Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota
| | - Mark J. Pallen
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia, School of Immunity and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom, Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, Dublin, Ireland, Department of Enteric Infections, Walter Reed Army Institute of Research, Enteric Disease Department, Naval Medical Research, Silver Spring, Maryland, School of Biosciences, The University of Nottingham, Sutton Bonington, United Kingdom, Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota
| | - Charles W. Penn
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia, School of Immunity and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom, Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, Dublin, Ireland, Department of Enteric Infections, Walter Reed Army Institute of Research, Enteric Disease Department, Naval Medical Research, Silver Spring, Maryland, School of Biosciences, The University of Nottingham, Sutton Bonington, United Kingdom, Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota
| | - Julian Parkhill
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia, School of Immunity and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom, Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, Dublin, Ireland, Department of Enteric Infections, Walter Reed Army Institute of Research, Enteric Disease Department, Naval Medical Research, Silver Spring, Maryland, School of Biosciences, The University of Nottingham, Sutton Bonington, United Kingdom, Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota
| | - A. Keith Turner
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia, School of Immunity and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom, Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, Dublin, Ireland, Department of Enteric Infections, Walter Reed Army Institute of Research, Enteric Disease Department, Naval Medical Research, Silver Spring, Maryland, School of Biosciences, The University of Nottingham, Sutton Bonington, United Kingdom, Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota
| | - Timothy J. Johnson
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia, School of Immunity and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom, Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, Dublin, Ireland, Department of Enteric Infections, Walter Reed Army Institute of Research, Enteric Disease Department, Naval Medical Research, Silver Spring, Maryland, School of Biosciences, The University of Nottingham, Sutton Bonington, United Kingdom, Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota
| | - Nicholas R. Thomson
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia, School of Immunity and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom, Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, Dublin, Ireland, Department of Enteric Infections, Walter Reed Army Institute of Research, Enteric Disease Department, Naval Medical Research, Silver Spring, Maryland, School of Biosciences, The University of Nottingham, Sutton Bonington, United Kingdom, Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota
| | - Stephen G. J. Smith
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia, School of Immunity and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom, Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, Dublin, Ireland, Department of Enteric Infections, Walter Reed Army Institute of Research, Enteric Disease Department, Naval Medical Research, Silver Spring, Maryland, School of Biosciences, The University of Nottingham, Sutton Bonington, United Kingdom, Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota
| | - Ian R. Henderson
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, United Kingdom, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia, School of Immunity and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom, Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, Dublin, Ireland, Department of Enteric Infections, Walter Reed Army Institute of Research, Enteric Disease Department, Naval Medical Research, Silver Spring, Maryland, School of Biosciences, The University of Nottingham, Sutton Bonington, United Kingdom, Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota
| |
Collapse
|
27
|
Abstract
The type II secretion system (T2SS) is used by Escherichia coli and other gram-negative bacteria to translocate many proteins, including toxins and proteases, across the outer membrane of the cell and into the extracellular space. Depending on the bacterial species, between 12 and 15 genes have been identified that make up a T2SS operon. T2SSs are widespread among gram-negative bacteria, and most E. coli appear to possess one or two complete T2SS operons. Once expressed, the multiple protein components that form the T2S system are localized in both the inner and outer membranes, where they assemble into an apparatus that spans the cell envelope. This apparatus supports the secretion of numerous virulence factors; and therefore secretion via this pathway is regarded in many organisms as a major virulence mechanism. Here, we review several of the known E. coli T2S substrates that have proven to be critical for the survival and pathogenicity of these bacteria. Recent structural and biochemical information is also reviewed that has improved our current understanding of how the T2S apparatus functions; also reviewed is the role that individual proteins play in this complex system.
Collapse
|
28
|
Shen H, Qian B, Chen W, Liu Z, Yang L, Zhang D, Liang W. Immunogenicity of recombinant F4 (K88) fimbrial adhesin FaeG expressed in tobacco chloroplast. Acta Biochim Biophys Sin (Shanghai) 2010; 42:558-67. [PMID: 20705597 DOI: 10.1093/abbs/gmq060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
To test the possibility of producing the novel vaccine in plants against diarrhea normally found in neonatal and newly weaned piglets, the faeG gene, encoding a major F4ac fimbrial subunit protein, was introduced into the tobacco chloroplast genome. After two rounds of selection under spectinomycin, we obtained the transgenic plants nearly homoplasmic. RNA gel blot analysis indicated that faeG and the antibiotic selective gene aminoglycoside 3' adenylyltransferase (aadA) were highly transcribed as a dicistron, while the translational level of recombinant FaeG in transplastomic tobacco was about 0.15% of total soluble protein. The immunogenicity of recombinant FaeG produced in tobacco chloroplasts was confirmed by the observation that FaeG-specific antibodies were elicited in mice immunized with total soluble protein of transgenic plants, as well as the result that mouse sera stimulated by chloroplast-derived recombinant FaeG could neutralize F4ac enterotoxigenic Escherichia coli (ETEC) in vivo. This study provides a new alternative for producing the ETEC vaccine using the chloroplast expression system.
Collapse
MESH Headings
- Adhesins, Escherichia coli/genetics
- Adhesins, Escherichia coli/immunology
- Adhesins, Escherichia coli/metabolism
- Animals
- Antibodies, Bacterial/blood
- Antibodies, Bacterial/immunology
- Blotting, Northern
- Blotting, Western
- Chloroplasts/metabolism
- DNA, Chloroplast/genetics
- Enterotoxigenic Escherichia coli/immunology
- Escherichia coli Infections/blood
- Escherichia coli Infections/immunology
- Escherichia coli Infections/microbiology
- Escherichia coli Vaccines/genetics
- Escherichia coli Vaccines/immunology
- Escherichia coli Vaccines/metabolism
- Female
- Gene Expression
- Immunization
- Mice
- Mice, Inbred BALB C
- Nucleotidyltransferases/genetics
- Nucleotidyltransferases/metabolism
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Rabbits
- Nicotiana/genetics
- Nicotiana/metabolism
Collapse
Affiliation(s)
- Huifeng Shen
- School of life Sciences and Biotechnology, Shanghai Jiao tong University, China
| | | | | | | | | | | | | |
Collapse
|
29
|
Steinsland H, Lacher DW, Sommerfelt H, Whittam TS. Ancestral lineages of human enterotoxigenic Escherichia coli. J Clin Microbiol 2010; 48:2916-24. [PMID: 20534806 PMCID: PMC2916599 DOI: 10.1128/jcm.02432-09] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 01/18/2010] [Accepted: 05/29/2010] [Indexed: 11/20/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a common cause of diarrhea among children living in and among travelers visiting developing countries. Human ETEC strains represent an epidemiologically and phenotypically diverse group of pathogens, and there is a need to identify natural groupings of these organisms that may help to explain this diversity. Here, we sought to identify most of the important human ETEC lineages that exist in the E. coli population, because strains that originate from the same lineage may also have inherited many of the same epidemiological and phenotypic traits. We performed multilocus sequence typing (MLST) on 1,019 ETEC isolates obtained from humans in different countries and analyzed the data against a backdrop of MLST data from 1,250 non-ETEC E. coli and eight ETEC isolates from pigs. A total of 42 different lineages were identified, 15 of which, representing 792 (78%) of the strains, were estimated to have emerged >900 years ago. Twenty of the lineages were represented in more than one country. There was evidence of extensive exchange of enterotoxin and colonization factor genes between different lineages. Human and porcine ETEC have probably emerged from the same ancestral ETEC lineage on at least three occasions. Our findings suggest that most ETEC strains circulating in the human population today originate from well-established, globally widespread ETEC lineages. Some of the more important lineages identified here may represent a smaller and more manageable target for the ongoing efforts to develop effective ETEC vaccines.
Collapse
Affiliation(s)
- Hans Steinsland
- University of Bergen, Centre for International Health, P.O. Box 7804, N-5020 Bergen, Norway.
| | | | | | | |
Collapse
|
30
|
Loc NH, Bach NH, Kim TG, Yang MS. Tissue culture and expression of Escherichia coli heat-labile enterotoxin B subunit in transgenic Peperomia pellucida. Protein Expr Purif 2010; 72:82-6. [DOI: 10.1016/j.pep.2010.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 02/16/2010] [Accepted: 02/16/2010] [Indexed: 10/19/2022]
|
31
|
Mudrak B, Kuehn MJ. Heat-labile enterotoxin: beyond G(m1) binding. Toxins (Basel) 2010; 2:1445-70. [PMID: 22069646 PMCID: PMC3153253 DOI: 10.3390/toxins2061445] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 05/22/2010] [Accepted: 06/07/2010] [Indexed: 01/07/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a significant source of morbidity and mortality worldwide. One major virulence factor released by ETEC is the heat-labile enterotoxin LT, which is structurally and functionally similar to cholera toxin. LT consists of five B subunits carrying a single catalytically active A subunit. LTB binds the monosialoganglioside GM1, the toxin’s host receptor, but interactions with A-type blood sugars and E. coli lipopolysaccharide have also been identified within the past decade. Here, we review the regulation, assembly, and binding properties of the LT B-subunit pentamer and discuss the possible roles of its numerous molecular interactions.
Collapse
Affiliation(s)
- Benjamin Mudrak
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA;
| | - Meta J. Kuehn
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
- Author to whom correspondence should be addressed; ; Tel.: +1-919-684-2545; Fax: +1-919-684-8885
| |
Collapse
|
32
|
Fleckenstein JM, Hardwidge PR, Munson GP, Rasko DA, Sommerfelt H, Steinsland H. Molecular mechanisms of enterotoxigenic Escherichia coli infection. Microbes Infect 2010; 12:89-98. [PMID: 19883790 PMCID: PMC10647112 DOI: 10.1016/j.micinf.2009.10.002] [Citation(s) in RCA: 215] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 10/22/2009] [Accepted: 10/24/2009] [Indexed: 10/20/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) are a major cause of diarrheal illness in developing countries, and perennially the most common cause of traveller's diarrhea. ETEC constitute a diverse pathotype that elaborate heat-labile and/or heat-stable enterotoxins. Recent molecular pathogenesis studies reveal sophisticated pathogen-host interactions that might be exploited in efforts to prevent these important infections. While vaccine development for these important pathogens remains a formidable challenge, extensive efforts that attempt to exploit new genomic and proteomic technology platforms in discovery of novel targets are presently ongoing.
Collapse
|
33
|
The EtpA exoprotein of enterotoxigenic Escherichia coli promotes intestinal colonization and is a protective antigen in an experimental model of murine infection. Infect Immun 2008; 76:2106-12. [PMID: 18285493 DOI: 10.1128/iai.01304-07] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The enterotoxigenic Escherichia coli (ETEC) strains are major causes of morbidity and mortality due to diarrheal illness in developing countries. At present, there is no broadly protective vaccine for this diverse group of pathogens. The EtpA protein, identified in ETEC H10407 in a recent search for candidate immunogens, is a large glycosylated exoprotein secreted via two-partner secretion (TPS). Similar to structurally related molecules, EtpA functions in vitro as an adhesin. The studies reported here use a recently developed murine model of ETEC intestinal colonization to examine the immunogenicity and protective efficacy of EtpA. We report that mice repeatedly exposed to ETEC are protected from subsequent colonization and that they mount immune responses to both EtpA and its presumed two-partner secretion transporter (EtpB) during the course of experimental infection. Furthermore, isogenic etpA deletion mutants were impaired in the colonization of mice, and intranasal immunization of mice with recombinant EtpA conferred protection against ETEC H10407 in this model. Together, these data suggest that EtpA is required for optimal colonization of the intestine, findings paralleling those of previous in vitro studies demonstrating its role in adherence. EtpA and other TPS proteins may be viable targets for ETEC vaccine development.
Collapse
|
34
|
Brown EA, Hardwidge PR. Biochemical characterization of the enterotoxigenic Escherichia coli LeoA protein. MICROBIOLOGY-SGM 2008; 153:3776-3784. [PMID: 17975086 DOI: 10.1099/mic.0.2007/009084-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) causes enterotoxin-induced diarrhoea and significant mortality. The molecular mechanisms underlying how the heat-labile enterotoxin (LT) is secreted during infection are poorly understood. ETEC produce outer-membrane vesicles (OMVs) containing LT that are endocytosed into host cells. Although OMV production and protein content may be a regulated component of ETEC pathogenesis, how LT loading into OMVs is regulated is unknown. The LeoA protein plays a role in secreting LT from the bacterial periplasm. To begin to understand the function of LeoA and its role in ETEC H10407 pathogenesis, a site-directed mutant lacking the putative GTP-binding domain was constructed. The ability of wild-type and mutant LeoA to hydrolyse GTP in vitro was quantified. This domain was found to be responsible for GTP binding; it is important to LeoA's function in LT secretion, and may play a modest role in the formation and protein content of OMVs. Deletion of leoA reduced the abundance of OmpX in outer-membrane protein preparations and of LT in OMVs. Immunoprecipitation experiments revealed that LeoA interacts directly with OmpA, but that the GTP-binding domain is non-essential for this interaction. Deletion of leoA rendered ETEC H10407 non-motile, through apparent periplasmic accumulation of FliC.
Collapse
Affiliation(s)
- Eric A Brown
- Center for Infectious Disease Research and Vaccinology, South Dakota State University, Brookings, SD 57007, USA
| | - Philip R Hardwidge
- Center for Infectious Disease Research and Vaccinology, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
35
|
Turner SM, Chaudhuri RR, Jiang ZD, DuPont H, Gyles C, Penn CW, Pallen MJ, Henderson IR. Phylogenetic comparisons reveal multiple acquisitions of the toxin genes by enterotoxigenic Escherichia coli strains of different evolutionary lineages. J Clin Microbiol 2006; 44:4528-36. [PMID: 17050815 PMCID: PMC1698409 DOI: 10.1128/jcm.01474-06] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 08/29/2006] [Accepted: 10/09/2006] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli is a diverse bacterial species which is widely distributed in the environment but also exists as a commensal and pathogen of different host species. Human intestinal pathogenic E. coli causes over 160 million cases of diarrhea and an estimated 1 million deaths per year. The majority of deaths are attributable to one pathovar of E. coli, namely, enterotoxigenic E. coli. The pathogenesis of enterotoxigenic E. coli is dependent on the production of a colonization factor to promote adhesion to the intestinal epithelium and the elaboration of heat-labile or heat-stable toxins which induce a secretory diarrhea. Despite the high morbidity and mortality associated with enterotoxigenic E. coli infection, little is known of the genetic background of this global pathogen. Here we demonstrate by multilocus sequence typing that enterotoxigenic E. coli isolates are present in all phylogenetic lineages of E. coli, indicating that acquisition of the toxin genes may be sufficient to generate an enterotoxigenic E. coli strain. In addition, screening of diarrheal isolates for the presence of additional genes previously associated with the virulence of enterotoxigenic E. coli revealed that they were not abundant. These observations have significant implications for disease epidemiology and for the design of effective vaccines.
Collapse
Affiliation(s)
- Sue M Turner
- Division of Immunity and Infection, The Medical School, The University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom, and St. Luke's Episcopal Hospital, Houston, TX 77083, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Lasaro MAS, Rodrigues JF, Mathias-Santos C, Guth BEC, Régua-Mangia A, Piantino Ferreira AJ, Takagi M, Cabrera-Crespo J, Sbrogio-Almeida ME, de Souza Ferreira LC. Production and release of heat-labile toxin by wild-type human-derived enterotoxigenic Escherichia coli. ACTA ACUST UNITED AC 2006; 48:123-31. [PMID: 16965360 DOI: 10.1111/j.1574-695x.2006.00134.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Production and release of heat-labile toxin (LT) by wild-type enterotoxigenic Escherichia coli (ETEC) strains, isolated from diarrheic and asymptomatic Brazilian children, was studied under in vitro and in vivo conditions. Based on a set of 26 genetically diverse LT(+) enterotoxigenic E. coli strains, cell-bound LT concentrations varied from 49.8 to 2415 ng mL(-1). The amounts of toxin released in culture supernatants ranged from 0% to 50% of the total synthesized toxin. The amount of LT associated with secreted membrane vesicles represented <5% of the total toxin detected in culture supernatants. ETEC strains secreting higher amounts of LT, but not those producing high intracellular levels of cell-bound toxin, elicited enhanced fluid accumulation in tied rabbit ileal loops, suggesting that the strain-specific differences in production and secretion of LT correlates with symptoms induced in vivo. However, no clear correlation was established between the ability to produce and secrete LT and the clinical symptoms of the infected individuals. The present results indicate that production and release of LT by wild-type human-derived ETEC strains are heterogeneous traits under both in vitro and in vivo growth conditions and may impact the clinical outcomes of infected individuals.
Collapse
Affiliation(s)
- Melissa Ang Simões Lasaro
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Coster TS, Wolf MK, Hall ER, Cassels FJ, Taylor DN, Liu CT, Trespalacios FC, DeLorimier A, Angleberger DR, McQueen CE. Immune response, ciprofloxacin activity, and gender differences after human experimental challenge by two strains of enterotoxigenic Escherichia coli. Infect Immun 2006; 75:252-9. [PMID: 17074855 PMCID: PMC1828404 DOI: 10.1128/iai.01131-06] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to test vaccines against enterotoxigenic Escherichia coli (ETEC)-induced diarrhea, challenge models are needed. In this study we compared clinical and immunological responses after North American volunteers were orally challenged by two ETEC strains. Groups of approximately eight volunteers received 10(9) or 10(10) CFU of E. coli B7A (LT+ ST+ CS6+) or 10(8) or 10(9) CFU of E. coli H10407 (LT+ ST+ CFA/I+). About 75% of the volunteers developed diarrhea after challenge with 10(10) CFU B7A or either dose of H10407. B7A had a shorter incubation period than H10407 (P = 0.001) and caused milder illness; the mean diarrheal output after H10407 challenge was nearly twice that after B7A challenge (P = 0.01). Females had more abdominal complaints, and males had a higher incidence of fever. Ciprofloxacin generally diminished or stopped symptoms and shedding by the second day of antibiotic treatment, but four subjects shed for one to four additional days. The immune responses to colonization factors CS6 and colonization factor antigen I (CFA/I) and to heat-labile toxin (LT) were measured. The responses to CFA/I were the most robust responses; all volunteers who received H10407 had serum immunoglobulin A (IgA) and IgG responses, and all but one volunteer had antibody-secreting cell (ASC) responses. One-half the volunteers who received B7A had an ASC response to CS6, and about one-third had serum IgA or IgG responses. Despite the differences in clinical illness and immune responses to colonization factors, the immune responses to LT were similar in all groups and were intermediate between the CFA/I and CS6 responses. These results provide standards for immune responses after ETEC vaccination.
Collapse
Affiliation(s)
- T S Coster
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland 21702, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Dorsey FC, Fischer JF, Fleckenstein JM. Directed delivery of heat-labile enterotoxin by enterotoxigenic Escherichia coli. Cell Microbiol 2006; 8:1516-27. [PMID: 16922869 DOI: 10.1111/j.1462-5822.2006.00736.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC), leading causes of diarrhoeal morbidity and mortality in developing countries, are heterogenous pathogens that elaborate heat-labile (LT) and/or heat-stable (ST) enterotoxins which elicit watery, cholera-like diarrhoea. The molecular events permitting efficient delivery of LT remain undefined. Here, we characterize the role of host-pathogen interaction as it relates to the delivery of LT by ETEC. Separation of bacteria from target intestinal epithelial monolayers by semipermeable filters prevented activation of adenylate cyclase suggesting that pathogen-host cell contact is required for efficient toxin delivery. Likewise, a non-motile strain bearing a mutation in the flagellar fliD gene was deficient in delivery of LT relative to the ETEC (H10407) prototype. Although LT secretion via the type II secretion system (T2SS) was responsive to a variety of environmental factors, neither toxin release nor delivery depended on transcriptional activation of genes encoding LT or the T2SS. Fusions of green fluorescent protein to GspM (a component of the T2SS system for LT) and to LT demonstrated that both T2SS and toxin are distributed at one pole of the ETEC bacterium. Optimal LT delivery may occur in a polarized fashion with transfer of preformed toxin upon close interaction with host cells, preventing neutralization of LT.
Collapse
Affiliation(s)
- F Chuck Dorsey
- Research Service, Veterans Affairs Medical Center, Memphis, TN, USA
| | | | | |
Collapse
|
39
|
Turner SM, Scott-Tucker A, Cooper LM, Henderson IR. Weapons of mass destruction: virulence factors of the global killer enterotoxigenic Escherichia coli. FEMS Microbiol Lett 2006; 263:10-20. [PMID: 16958845 DOI: 10.1111/j.1574-6968.2006.00401.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is the most common cause of food and water-borne E. coli-mediated human diarrhoea worldwide. The incidence in developing countries is estimated at 650 million cases per year, resulting in 800 000 deaths, primarily in children under the age of five. ETEC is also the most common cause of diarrhoea among travellers, including the military, from industrialized nations to less developed countries. In addition, ETEC is a major pathogen of animals, being responsible for scours in cattle and neonatal and postweaning diarrhoea in pigs and resulting in significant financial losses. Studies on the pathogenesis of ETEC infections have concentrated on the plasmid-encoded heat-stable and heat-labile enterotoxins and on the plasmid-encoded antigenically variable colonization factors. Relatively little work has been carried out on chromosomally encoded virulence factors. Here, we review the known virulence factors of ETEC and highlight the future for combating this major disease.
Collapse
Affiliation(s)
- Susan M Turner
- Division of Immunity and Infection, University of Birmingham, Edgbaston, Birmingham, UK
| | | | | | | |
Collapse
|
40
|
Chen Q, Savarino SJ, Venkatesan MM. Subtractive hybridization and optical mapping of the enterotoxigenic Escherichia coli H10407 chromosome: isolation of unique sequences and demonstration of significant similarity to the chromosome of E. coli K-12. MICROBIOLOGY-SGM 2006; 152:1041-1054. [PMID: 16549668 DOI: 10.1099/mic.0.28648-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a primary cause of diarrhoea in infants in developing countries and in travellers to endemic regions. While several virulence genes have been identified on ETEC plasmids, little is known about the ETEC chromosome, although it is expected to share significant homology in backbone sequences with E. coli K-12. In the absence of genomic sequence information, the subtractive hybridization method and the more recently described optical mapping technique were carried out to determine the degree of genomic variation between virulent ETEC strain H10407 and the non-pathogenic E. coli K-12 strain MG1655. In one round of PCR-based suppression subtractive hybridization, 153 fragments representing sequences unique to strain H10407 were identified. blast searches indicated that few unique sequences showed homology to known pathogenicity island genes identified in related E. coli pathogens. A total of 65 fragments contained sequences that were either linked to hypothetical proteins or showed no homology to any known sequence in the database. The remaining sequences were either phage or prophage related or displayed homology to classifiable genes that function in various aspects of bacterial metabolism. The 153 unique sequences showed variable distribution across different ETEC strains including ETEC strain B7A, which is attenuated in virulence and lacked several H10407-specific sequences. Restriction-enzyme-based optical maps of strain H10407 were compared to in silico restriction maps of strain MG1655 and related E. coli pathogens. The 5.1 Mb ETEC chromosome was approximately 500 kb greater in length than the chromosome of E. coli K-12, collinear with it and indicated several discrete regions where insertions and/or deletions had occurred relative to the chromosome of strain MG1655. No major inversions, transpositions or gross rearrangements were observed on the ETEC chromosome. Based on comparisons with known genomic sequences and related optical-map-based restriction site similarity, the sequence of the H10407 chromosome is expected to demonstrate approximately 96 % identity with that of E. coli K-12.
Collapse
Affiliation(s)
- Qing Chen
- Department of Enteric Infections, Division of Communicable Diseases and Immunology, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Stephen J Savarino
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD, USA
| | - Malabi M Venkatesan
- Department of Enteric Infections, Division of Communicable Diseases and Immunology, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| |
Collapse
|
41
|
Chouikha I, Germon P, Brée A, Gilot P, Moulin-Schouleur M, Schouler C. A selC-associated genomic island of the extraintestinal avian pathogenic Escherichia coli strain BEN2908 is involved in carbohydrate uptake and virulence. J Bacteriol 2006; 188:977-87. [PMID: 16428402 PMCID: PMC1347334 DOI: 10.1128/jb.188.3.977-987.2006] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The complete nucleotide sequence and genetic organization of a new genomic island (AGI-3) isolated from the extraintestinal avian pathogenic Escherichia coli strain BEN2908 is reported. This 49,600-bp island is inserted at the selC locus and contains putative mobile genetic elements such as a phage-related integrase gene, transposase genes, and direct repeats. AGI-3 shows a mosaic structure of five modules. Some of these modules are present in other E. coli strains and in other pathogenic bacterial species. The gene cluster aec-35 to aec-37 of module 1 encodes proteins associated with carbohydrates assimilation such as a major facilitator superfamily transporter (Aec-36), a glycosidase (Aec-37), and a putative transcriptional regulator of the LacI family (Aec-35). The aec-35 to aec-37 cluster was found in 11.6% of the tested pathogenic and nonpathogenic E. coli strains. When present, the aec-35 to aec-37 cluster is strongly associated with the selC locus (97%). Deletion of the aec-35-aec-37 region affects the assimilation of seven carbohydrates, decreases the growth rate of the strain in minimal medium containing galacturonate or trehalose, and attenuates the virulence of E. coli BEN2908 for chickens.
Collapse
Affiliation(s)
- Iman Chouikha
- Equipe de Pathologie Bactérienne, UR86, INRA, 37380 Nouzilly, France
| | | | | | | | | | | |
Collapse
|
42
|
Sánchez J, Holmgren J. Virulence factors, pathogenesis and vaccine protection in cholera and ETEC diarrhea. Curr Opin Immunol 2005; 17:388-98. [PMID: 15963708 DOI: 10.1016/j.coi.2005.06.007] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Accepted: 06/03/2005] [Indexed: 11/18/2022]
Abstract
Recent work has provided new insights into the pathogenesis of the potentially life-threatening diarrheas caused by Vibrio cholerae and enterotoxigenic Escherichia coli (ETEC): a new mechanism (post-translational degradation), which is involved in the control of cholera toxin expression, has been discovered. Recent evidence also suggests that vibrios upregulate cholera toxin expression in response to intestinal fluid components, and enterotoxin-carrying bacterial outer membrane vesicles might have a function in ETEC pathogenesis. An important role of the environment is supported by the correlation between cholera incidence and elevated sea surface temperature, which supports the notion that the zooplankton is a V. cholerae reservoir. Additionally, environmental lytic cholera phages could influence cholera seasonality by 'terminating' the seasonal epidemic. Finally, the strong herd immunity elicited by an oral cholera vaccine indicates that cholera vaccination could have a significant public health impact.
Collapse
Affiliation(s)
- Joaquín Sánchez
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, CP62210, Cuernavaca, Morelos, Mexico
| | | |
Collapse
|
43
|
Fairbrother JM, Nadeau E, Gyles CL. Escherichia coli in postweaning diarrhea in pigs: an update on bacterial types, pathogenesis, and prevention strategies. Anim Health Res Rev 2005; 6:17-39. [PMID: 16164007 DOI: 10.1079/ahr2005105] [Citation(s) in RCA: 622] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Escherichia coli is one of the most important causes of postweaning diarrhea in pigs. This diarrhea is responsible for economic losses due to mortality, morbidity, decreased growth rate, and cost of medication. The E. coli causing postweaning diarrhea mostly carry the F4 (K88) or the F18 adhesin. Recently, an increase in incidence of outbreaks of severe E. coli-associated diarrhea has been observed worldwide. The factors contributing to the increased number of outbreaks of this more severe form of E. coli-associated diarrhea are not yet fully understood. These could include the emergence of more virulent E. coli clones, such as the 0149:LT:STa:STb:EAST1:F4ac, or recent changes in the management of pigs. Development of multiple bacterial resistance to a wide range of commonly used antibiotics and a recent increase in the prevalence and severity of the postweaning syndromes will necessitate the use of alternative measures for their control. New vaccination strategies include the oral immunization of piglets with live avirulent E. coli strains carrying the fimbrial adhesins or oral administration of purified F4 (K88) fimbriae. Other approaches to control this disease include supplementation of the feed with egg yolk antibodies from chickens immunized with F4 or F18 adhesins, breeding of F18- and F4-resistant animals, supplementation with zinc and/ or spray-dried plasma, dietary acidification, phage therapy, or the use of probiotics. To date, not a single strategy has proved to be totally effective and it is probable that the most successful approach on a particular farm will involve a combination of diet modification and other preventive measures.
Collapse
Affiliation(s)
- John M Fairbrother
- The Escherichia coli Laboratory, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, QC, Canada J2S 2M2.
| | | | | |
Collapse
|
44
|
Patel SK, Dotson J, Allen KP, Fleckenstein JM. Identification and molecular characterization of EatA, an autotransporter protein of enterotoxigenic Escherichia coli. Infect Immun 2004; 72:1786-94. [PMID: 14977988 PMCID: PMC356008 DOI: 10.1128/iai.72.3.1786-1794.2004] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) strains remain a formidable cause of diarrheal disease. To identify novel surface proteins of ETEC, we performed TnphoA mutagenesis of prototype ETEC strain H10407 and discovered a secreted protein not previously recognized in ETEC. DNA sequencing of the interrupted locus in mutant TnphoA.977 revealed a candidate 4,095-bp open reading frame without significant homology to commensal E. coli K-12 genomic DNA. Translation of this sequence revealed that it encoded a predicted peptide of 147.7 kDa that bears significant homology to members of the autotransporter family of bacterial virulence factors, particularly the serine protease autotransporters of the Enterobacteriaceae proteins. The gene identified in H10407, eatA (ETEC autotransporter A), encodes a potential serine protease motif (GDSGSP) in the secreted amino-terminal domain, and the predicted peptide shows more than 80% homology with SepA, a virulence protein secreted by Shigella flexneri. DNA hybridization and PCR demonstrated that eatA resides on the 92-kDa pCS1 virulence plasmid of H10407 and that it is present in multiple clinical ETEC strains. Immunoblots with antisera directed against a recombinant EatA passenger protein fragment identified a 110-kDa protein in supernatants purified from H10407 but not from the TnphoA.977 mutant or H10407-P, which lacks pCS1. EatA possesses serine protease activity that is abolished by mutations within a serine protease catalytic triad formed by residues H(134), D(162), and S(267). Finally, interruption of the eatA gene retarded fluid accumulation in the rabbit ileal loop model, suggesting that this autotransporter contributes to the virulence of ETEC.
Collapse
Affiliation(s)
- Seema K Patel
- Department of Medicine, University of Tennessee Health Science Center, Veterans Affairs Medical Center, Memphis, Tennessee, USA
| | | | | | | |
Collapse
|
45
|
Abstract
In this review, we focus on a group of mobile genetic elements designated pathogenicity islands (PAI). These elements play a pivotal role in the virulence of bacterial pathogens of humans and are also essential for virulence in pathogens of animals and plants. Characteristic molecular features of PAI of important human pathogens and their role in pathogenesis are described. The availability of a large number of genome sequences of pathogenic bacteria and their benign relatives currently offers a unique opportunity for the identification of novel pathogen-specific genomic islands. However, this knowledge has to be complemented by improved model systems for the analysis of virulence functions of bacterial pathogens. PAI apparently have been acquired during the speciation of pathogens from their nonpathogenic or environmental ancestors. The acquisition of PAI not only is an ancient evolutionary event that led to the appearance of bacterial pathogens on a timescale of millions of years but also may represent a mechanism that contributes to the appearance of new pathogens within a human life span. The acquisition of knowledge about PAI, their structure, their mobility, and the pathogenicity factors they encode not only is helpful in gaining a better understanding of bacterial evolution and interactions of pathogens with eukaryotic host cells but also may have important practical implications such as providing delivery systems for vaccination, tools for cell biology, and tools for the development of new strategies for therapy of bacterial infections.
Collapse
Affiliation(s)
- Herbert Schmidt
- Institut für Medizinische Mikrobiologie und Hygiene, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| | | |
Collapse
|
46
|
Huang Y, Liang W, Pan A, Zhou Z, Huang C, Chen J, Zhang D. Production of FaeG, the major subunit of K88 fimbriae, in transgenic tobacco plants and its immunogenicity in mice. Infect Immun 2003; 71:5436-9. [PMID: 12933900 PMCID: PMC187361 DOI: 10.1128/iai.71.9.5436-5439.2003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2002] [Revised: 01/07/2003] [Accepted: 05/27/2003] [Indexed: 11/20/2022] Open
Abstract
Transgenic tobacco plants stably expressing recombinant FaeG, which is the major subunit and adhesin of K88ad fimbriae, were obtained. Analysis of sera from immunized mice indicates that in mice, the immunogenicity induced by plant-derived FaeG protein is comparable to that generated with traditional approaches.
Collapse
Affiliation(s)
- Yahong Huang
- The Department of Biological Science and Technology, School of Life Science of Nanjing University, Nanjing. People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
47
|
López-Saucedo C, Cerna JF, Villegas-Sepulveda N, Thompson R, Velazquez FR, Torres J, Tarr PI, Estrada-García T. Single multiplex polymerase chain reaction to detect diverse loci associated with diarrheagenic Escherichia coli. Emerg Infect Dis 2003. [PMID: 12533296 PMCID: PMC2873745 DOI: 10.3201/eid0901.01-0507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
We developed and tested a single multiplex polymerase chain reaction (PCR) that detects enterotoxigenic, enteropathogenic, enteroinvasive, and Shiga-toxin–producing Escherichia coli. This PCR is specific, sensitive, and rapid in detecting target isolates in stool and food. Because of its simplicity, economy, and efficiency, this protocol warrants further evaluation in large, prospective studies of polymicrobial substances.
Collapse
|
48
|
Demuth DR, James D, Kowashi Y, Kato S. Interaction of Actinobacillus actinomycetemcomitans outer membrane vesicles with HL60 cells does not require leukotoxin. Cell Microbiol 2003; 5:111-21. [PMID: 12580947 DOI: 10.1046/j.1462-5822.2003.00259.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Outer membrane derived vesicles (MVs) secreted by Actinobacillus actinomycetemcomitans JP2 contain a membranolytic leukotoxin and are toxic to human HL60 cells. To determine how MVs interact with human target cells, HL60 cells were incubated with vesicles, reacted with anti-vesicle antibodies and a FITC-labelled reporter, and visualized by confocal scanning laser microscopy. Target cells rapidly became reactive with anti-vesicle antibodies upon exposure to vesicles. Confocal microscopy showed that labelling occurred primarily in the cytoplasmic membrane and that very little internal fluorescence was observed. The cytoplasmic membrane of HL60 cells was also strongly labelled after exposure to MVs that contained the fluorescent phospholipid, SP-DiOC18. In contrast, incubation of cells with free SP-DiOC18 resulted primarily in the labelling of internal structures of HL60 cells. These results suggest that A. actinomycetemcomitans MVs associate with, or are incorporated into the cytoplasmic membrane of HL60 cells. The leukotoxin is a membranolytic cytotoxin and cells exposed to MVs were lysed by vesicle-associated toxin in a time and dose-dependent manner. However, cells became reactive with anti-vesicle antibodies when MVs were added in the presence of inhibitors of leukotoxin-mediated lysis or when sublytic doses of MVs were analysed. In addition, MVs produced by an isogenic leukotoxin-deficient strain of A. actinomycetemcomitans JP2 were non-toxic but rapidly interacted with HL60 cells. These results suggest that A. actinomycetemcomitans MVs can deliver leukotoxin to HL60 cells but that the association of vesicles with the cytoplasmic membrane occurs independently of the leukotoxin polypeptide.
Collapse
Affiliation(s)
- Donald R Demuth
- Department of Biochemistry, Levy Research Building, Room 540, University of Pennsylvania School of Dental Medicine, 4010 Locust Street, Philadelphia, PA 19104-6002, USA.
| | | | | | | |
Collapse
|
49
|
López-Saucedo C, Cerna JF, Villegas-Sepulveda N, Thompson R, Velazquez FR, Torres J, Tarr PI, Estrada-García T. Single multiplex polymerase chain reaction to detect diverse loci associated with diarrheagenic Escherichia coli. Emerg Infect Dis 2003; 9:127-31. [PMID: 12533296 PMCID: PMC2873745 DOI: 10.3201/eid0901.010507] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We developed and tested a single multiplex polymerase chain reaction (PCR) that detects enterotoxigenic, enteropathogenic, enteroinvasive, and Shiga toxin-producing Escherichia coli. This PCR is specific, sensitive, and rapid in detecting target isolates in stool and food. Because of its simplicity, economy, and efficiency, this protocol warrants further evaluation in large, prospective studies of polymicrobial substances.
Collapse
Affiliation(s)
- Catalina López-Saucedo
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México D.F., México
| | - Jorge F. Cerna
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México D.F., México
| | | | - Rocío Thompson
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México D.F., México
| | | | | | - Phillip I. Tarr
- Children’s Hospital and Regional Medical Center, Seattle, Washington, USA
- University of Washington School of Medicine, Seattle, Washington, USA
| | - Teresa Estrada-García
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México D.F., México
| |
Collapse
|
50
|
Srinivasan U, Foxman B, Marrs CF. Identification of a gene encoding heat-resistant agglutinin in Escherichia coli as a putative virulence factor in urinary tract infection. J Clin Microbiol 2003; 41:285-9. [PMID: 12517862 PMCID: PMC149612 DOI: 10.1128/jcm.41.1.285-289.2003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli causes the vast majority of urinary tract infections (UTI) in both ambulatory and hospital patients. Several uropathogenic virulence factors have been identified, but half of all E. coli isolates that cause UTI have none or only one of the known virulence factors. Thus, it is reasonable to presume that other bacterial factors may be important in UTI pathogenesis. In order to find additional uropathogenic E. coli genes, we used genomic subtraction to identify DNA regions present in a uropathogenic strain of E. coli (1128-11). Genomic subtraction yielded 40 tester-specific fragments, including a novel heat-resistant agglutinin (hra) gene fragment. hra occurred in 55% of 486 UTI strains compared to 28% of 165 rectal strains (P = 0.001). The hra gene in 1128-11 was cloned, sequenced, and found to have 91% homology to the hra gene from E. coli meningitis strain RS218. The genetic organization of genes flanking hra in 1128-11 is distinct from the hra found in E. coli strains J96 and RS218. In our UTI and rectal specimen collections, hra was positively associated with a number of known virulence genes, including pathogenicity island genes hly and cnf, which are absent in 1128-11. The presence of hra in 1128-11 independent of hly/cnf suggests multiple mechanisms by which hra can be acquired by pathogenic E. coli strains. The flanking genes suggest that in 1128-11, hra may be part of a novel variant of a pathogenicity island V.
Collapse
Affiliation(s)
- Usha Srinivasan
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|