1
|
Sperling D, Stepanova H, Smits H, Diesing AK, Faldyna M. Shiga Toxin, Stx2e, Influences the Activity of Porcine Lymphocytes In Vitro. Int J Mol Sci 2023; 24:8009. [PMID: 37175714 PMCID: PMC10178452 DOI: 10.3390/ijms24098009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Oedema disease (OD) in piglets is one of the most important pathologies, as it causes significant losses due to the high mortality because of the Shiga toxin family, which produces Escherichia coli (STEC) strains. The main toxin responsible for the characteristic pathologies in pigs is Shiga toxin 2 subtype e (Stx2e). Moreover, there is growing evidence that Stx's family of toxins also targets immune cells. Therefore, this study evaluated the effect of different concentrations of Stx2e on porcine immune cells. Porcine peripheral blood mononuclear cells were pre-incubated with Stx2e, at three different concentrations (final concentrations of 10, 500, and 5000 CD50/mL) and with a negative control group. Cells were then stimulated with polyclonal mitogens: concanavalin A, phytohemagglutinin, pokeweed mitogen, or lipopolysaccharides. Cell proliferation was assessed by BrdU (or EdU) incorporation into newly created DNA. The activation of the lymphocyte subsets was assessed by the detection of CD25, using flow cytometry. The toxin significantly decreased mitogen-driven proliferation activity, and the effect was partially dose-dependent, with a significant impact on both T and B populations. The percentage of CD25+ cells was slightly lower in the presence of Stx2e in all the defined T cell subpopulations (CD4+, CD8+, and γδTCR+)-in a dose-dependent manner. B cells seemed to be the most affected populations. The negative effects of different concentrations of Stx2e on the immune cells in this study may explain the negative impact of the subclinical course of OD.
Collapse
Affiliation(s)
| | - Hana Stepanova
- Veterinary Research Institute Brno, 621 00 Brno, Czech Republic
| | - Han Smits
- SID—Science and Investigation Department, 33500 Libourne, France
| | | | - Martin Faldyna
- Veterinary Research Institute Brno, 621 00 Brno, Czech Republic
| |
Collapse
|
2
|
Targeting the Inside of Cells with Biologicals: Toxin Routes in a Therapeutic Context. BioDrugs 2023; 37:181-203. [PMID: 36729328 PMCID: PMC9893211 DOI: 10.1007/s40259-023-00580-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2023] [Indexed: 02/03/2023]
Abstract
Numerous toxins translocate to the cytosol in order to fulfil their function. This demonstrates the existence of routes for proteins from the extracellular space to the cytosol. Understanding these routes is relevant to multiple aspects related to therapeutic applications. These include the development of anti-toxin treatments, the potential use of toxins as shuttles for delivering macromolecular cargo to the cytosol or the use of drugs based on toxins. Compared with other strategies for delivery, such as chemicals as carriers for macromolecular delivery or physical methods like electroporation, toxin routes present paths into the cell that potentially cause less damage and can be specifically targeted. The efficiency of delivery via toxin routes is limited. However, low-delivery efficiencies can be entirely sufficient, if delivered cargoes possess an amplification effect or if very few molecules are sufficient for inducing the desired effects. This is known for example from RNA-based vaccines that have been developed during the coronavirus disease 2019 pandemic as well as for other approved RNA-based drugs, which elicited the desired effect despite their typically low delivery efficiencies. The different mechanisms by which toxins enter cells may have implications for their technological utility. We review the mechanistic principles of the translocation pathway of toxins from the extracellular space to the cytosol, the delivery efficiencies, and therapeutic strategies or applications that exploit toxin routes for intracellular delivery.
Collapse
|
3
|
Citores L, Iglesias R, Ferreras JM. Antiviral Activity of Ribosome-Inactivating Proteins. Toxins (Basel) 2021; 13:80. [PMID: 33499086 PMCID: PMC7912582 DOI: 10.3390/toxins13020080] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022] Open
Abstract
Ribosome-inactivating proteins (RIPs) are rRNA N-glycosylases from plants (EC 3.2.2.22) that inactivate ribosomes thus inhibiting protein synthesis. The antiviral properties of RIPs have been investigated for more than four decades. However, interest in these proteins is rising due to the emergence of infectious diseases caused by new viruses and the difficulty in treating viral infections. On the other hand, there is a growing need to control crop diseases without resorting to the use of phytosanitary products which are very harmful to the environment and in this respect, RIPs have been shown as a promising tool that can be used to obtain transgenic plants resistant to viruses. The way in which RIPs exert their antiviral effect continues to be the subject of intense research and several mechanisms of action have been proposed. The purpose of this review is to examine the research studies that deal with this matter, placing special emphasis on the most recent findings.
Collapse
Affiliation(s)
| | | | - José M. Ferreras
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, E-47011 Valladolid, Spain; (L.C.); (R.I.)
| |
Collapse
|
4
|
Menge C. The Role of Escherichia coli Shiga Toxins in STEC Colonization of Cattle. Toxins (Basel) 2020; 12:toxins12090607. [PMID: 32967277 PMCID: PMC7551371 DOI: 10.3390/toxins12090607] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 11/20/2022] Open
Abstract
Many cattle are persistently colonized with Shiga toxin-producing Escherichia coli (STEC) and represent a major source of human infections with human-pathogenic STEC strains (syn. enterohemorrhagic E. coli (EHEC)). Intervention strategies most effectively protecting humans best aim at the limitation of bovine STEC shedding. Mechanisms enabling STEC to persist in cattle are only partialy understood. Cattle were long believed to resist the detrimental effects of Shiga toxins (Stxs), potent cytotoxins acting as principal virulence factors in the pathogenesis of human EHEC-associated diseases. However, work by different groups, summarized in this review, has provided substantial evidence that different types of target cells for Stxs exist in cattle. Peripheral and intestinal lymphocytes express the Stx receptor globotriaosylceramide (Gb3syn. CD77) in vitro and in vivo in an activation-dependent fashion with Stx-binding isoforms expressed predominantly at early stages of the activation process. Subpopulations of colonic epithelial cells and macrophage-like cells, residing in the bovine mucosa in proximity to STEC colonies, are also targeted by Stxs. STEC-inoculated calves are depressed in mounting appropriate cellular immune responses which can be overcome by vaccination of the animals against Stxs early in life before encountering STEC. Considering Stx target cells and the resulting effects of Stxs in cattle, which significantly differ from effects implicated in human disease, may open promising opportunities to improve existing yet insufficient measures to limit STEC carriage and shedding by the principal reservoir host.
Collapse
Affiliation(s)
- Christian Menge
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, D-07743 Jena, Germany
| |
Collapse
|
5
|
Villa TG, Feijoo-Siota L, Rama JLR, Ageitos JM. Antivirals against animal viruses. Biochem Pharmacol 2017; 133:97-116. [PMID: 27697545 PMCID: PMC7092833 DOI: 10.1016/j.bcp.2016.09.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/29/2016] [Indexed: 01/19/2023]
Abstract
Antivirals are compounds used since the 1960s that can interfere with viral development. Some of these antivirals can be isolated from a variety of sources, such as animals, plants, bacteria or fungi, while others must be obtained by chemical synthesis, either designed or random. Antivirals display a variety of mechanisms of action, and while some of them enhance the animal immune system, others block a specific enzyme or a particular step in the viral replication cycle. As viruses are mandatory intracellular parasites that use the host's cellular machinery to survive and multiply, it is essential that antivirals do not harm the host. In addition, viruses are continually developing new antiviral resistant strains, due to their high mutation rate, which makes it mandatory to continually search for, or develop, new antiviral compounds. This review describes natural and synthetic antivirals in chronological order, with an emphasis on natural compounds, even when their mechanisms of action are not completely understood, that could serve as the basis for future development of novel and/or complementary antiviral treatments.
Collapse
Affiliation(s)
- T G Villa
- Department of Microbiology, Biotechnology Unit, Faculty of Pharmacy, University of Santiago de Compostela 15706, Spain
| | - L Feijoo-Siota
- Department of Microbiology, Biotechnology Unit, Faculty of Pharmacy, University of Santiago de Compostela 15706, Spain
| | - J L R Rama
- Department of Microbiology, Biotechnology Unit, Faculty of Pharmacy, University of Santiago de Compostela 15706, Spain
| | - J M Ageitos
- Department of Microbiology, Biotechnology Unit, Faculty of Pharmacy, University of Santiago de Compostela 15706, Spain.
| |
Collapse
|
6
|
Venegas-Vargas C, Manning SD, Coussens PM, Roussey JA, Bartlett P, Grooms D. Bovine Leukemia Virus and Mycobacterium avium subsp. paratuberculosis Are Not Associated with Shiga Toxin-Producing Escherichia coli Shedding in Cattle. J Food Prot 2017; 80:86-89. [PMID: 28221870 DOI: 10.4315/0362-028x.jfp-16-090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bovine leukemia virus (BLV) is a retrovirus that causes enzootic bovine leukosis in cattle, and Mycobacterium avium subsp. paratuberculosis (MAP) is the etiologic agent of Johne's disease in cattle. Both diseases are chronic in nature and can lead to the disruption of normal immunological or physiological processes. Cattle are the major reservoir of Shiga toxin-producing Escherichia coli (STEC), a cause of foodborne illness in humans. We tested the hypothesis that cattle infected with BLV or MAP are more likely to shed STEC. We conducted a cross-sectional study during the summers of 2011 and 2012 in 11 Michigan cattle herds. A fecal sample from each animal was collected for STEC culture, and multiplex PCR for stx1, stx2, and eaeA was used to screen suspect colonies for STEC confirmation. Antibody detection enzyme-linked immunosorbent assays for BLV and MAP were used to screen serum from each animal. Flow cytometry was used to quantify the percentage of lymphocytes, monocytes, and neutrophils in a subsample (n =497) of blood samples. Of the animals sampled, 34.9% were BLV positive, 2.7% were MAP positive, and 16% were shedding STEC. Cattle in the dairy herds had a higher frequency of BLV and MAP than did those in beef herds, but more cattle in beef herds were shedding STEC. Neither BLV nor MAP was associated with STEC shedding (P values of 0.6838 and 0.3341, respectively). We also observed no association between STEC status and the percentage of neutrophils (P value of 0.3565), lymphocytes (P value of 0.8422), or the lymphocyte-to-monocyte ratio (P value of 0.1800). Although controlling both BLV and MAP is important for overall herd health and productivity, we found no evidence that controlling BLV and MAP has an impact on STEC shedding in cattle.
Collapse
Affiliation(s)
- Cristina Venegas-Vargas
- Department of Large Animal Clinical Sciences, College Veterinary Medicine, Michigan State University, East Lansing, Michigan 48824, USA
| | - Shannon D Manning
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, USA
| | - Paul M Coussens
- Department of Animal Science, Michigan State University, East Lansing, Michigan 48824, USA
| | - Jonathan A Roussey
- Department of Animal Science, Michigan State University, East Lansing, Michigan 48824, USA
| | - Paul Bartlett
- Department of Large Animal Clinical Sciences, College Veterinary Medicine, Michigan State University, East Lansing, Michigan 48824, USA
| | - Daniel Grooms
- Department of Large Animal Clinical Sciences, College Veterinary Medicine, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
7
|
Abstract
The Shiga toxins (Stxs), also known as Vero toxins and previously called Shiga-like toxins, are a family of potent protein synthesis inhibitors made by Shigella dysenteriae type 1 and some serogroups of Escherichia coli that cause bloody diarrhea in humans. Stxs act as virulence factors for both S. dysenteriae and E. coli and contribute to the disease process initiated by those organisms both directly and indirectly. A handful of methods exist for toxin purification, and the toxins can now even be purchased commercially. However, the Stxs are now classified as select agents, and specific rules govern the distribution of both the toxin and clones of the toxin. Toxin delivery into the host in S. dysenteriae type 1 is most likely aided by the invasiveness of that organism. Although the Stxs are made and produced by bacteria, they do not appear to act against either their host organism or other bacteria under normal circumstances, most likely because the A subunit is secreted from the cytoplasm as soon as it is synthesized and because the holotoxin cannot enter intact bacterial cells. The effectiveness of antibiotic therapy in patients infected with Stx-producing E. coli (STEC) such as O157:H7 as well as the potential risks of such treatment are areas of controversy. Several studies indicate that the course of the diarrhea stage of the disease is unaltered by antibiotic treatment. Several groups anticipate that a therapy that targets the Stxs is an important component of trying to alleviate disease caused by Stx-producing bacteria.
Collapse
|
8
|
Kolenda R, Burdukiewicz M, Schierack P. A systematic review and meta-analysis of the epidemiology of pathogenic Escherichia coli of calves and the role of calves as reservoirs for human pathogenic E. coli. Front Cell Infect Microbiol 2015; 5:23. [PMID: 25815276 PMCID: PMC4357325 DOI: 10.3389/fcimb.2015.00023] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 02/23/2015] [Indexed: 01/08/2023] Open
Abstract
Escherichia coli bacteria are the most common causes of diarrhea and septicemia in calves. Moreover, calves form a major reservoir for transmission of pathogenic E. coli to humans. Systematic reviews and meta-analyses of publications on E. coli as calf pathogens and the role of calves as reservoir have not been done so far. We reviewed studies between 1951 and 2013 reporting the presence of virulence associated factors (VAFs) in calf E. coli and extracted the following information: year(s) and country of sampling, animal number, health status, isolate number, VAF prevalence, serotypes, diagnostic methods, and biological assays. The prevalence of VAFs or E. coli pathotypes was compared between healthy and diarrheic animals and was analyzed for time courses. Together, 106 papers with 25,982 E. coli isolates from 27 countries tested for VAFs were included. F5, F17, and F41 fimbriae and heat-stable enterotoxin (ST) – VAFs of enterotoxigenic E. coli (ETEC) were significantly associated with calf diarrhea. On the contrary, ETEC VAF F4 fimbriae and heat-labile enterotoxin as well as enteropathogenic (EPEC), Shiga toxin-producing (STEC), and enterohemorrhagic E. coli (EHEC) were not associated with diarrhea. The prevalence increased overtime for ST-positive isolates, but decreased for F5- and STEC-positive isolates. Our study provides useful information about the history of scientific investigations performed in this domain so far, and helps to define etiological agents of calf disease, and to evaluate calves as reservoir hosts for human pathogenic E. coli.
Collapse
Affiliation(s)
- Rafał Kolenda
- Faculty of Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg Senftenberg, Germany
| | - Michał Burdukiewicz
- Department of Genomics, Faculty of Biotechnology, University of Wrocław Wrocław, Poland
| | - Peter Schierack
- Faculty of Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg Senftenberg, Germany
| |
Collapse
|
9
|
Crossland WL, Callaway TR, Tedeschi LO. Shiga Toxin-Producing E. coli and Ruminant Diets. Food Saf (Tokyo) 2015. [DOI: 10.1016/b978-0-12-800245-2.00010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
10
|
Kolenda R, Burdukiewicz M, Schierack P. A systematic review and meta-analysis of the epidemiology of pathogenic Escherichia coli of calves and the role of calves as reservoirs for human pathogenic E. coli. Front Cell Infect Microbiol 2015. [PMID: 25815276 DOI: 10.3389/fcimb.2015.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023] Open
Abstract
Escherichia coli bacteria are the most common causes of diarrhea and septicemia in calves. Moreover, calves form a major reservoir for transmission of pathogenic E. coli to humans. Systematic reviews and meta-analyses of publications on E. coli as calf pathogens and the role of calves as reservoir have not been done so far. We reviewed studies between 1951 and 2013 reporting the presence of virulence associated factors (VAFs) in calf E. coli and extracted the following information: year(s) and country of sampling, animal number, health status, isolate number, VAF prevalence, serotypes, diagnostic methods, and biological assays. The prevalence of VAFs or E. coli pathotypes was compared between healthy and diarrheic animals and was analyzed for time courses. Together, 106 papers with 25,982 E. coli isolates from 27 countries tested for VAFs were included. F5, F17, and F41 fimbriae and heat-stable enterotoxin (ST) - VAFs of enterotoxigenic E. coli (ETEC) were significantly associated with calf diarrhea. On the contrary, ETEC VAF F4 fimbriae and heat-labile enterotoxin as well as enteropathogenic (EPEC), Shiga toxin-producing (STEC), and enterohemorrhagic E. coli (EHEC) were not associated with diarrhea. The prevalence increased overtime for ST-positive isolates, but decreased for F5- and STEC-positive isolates. Our study provides useful information about the history of scientific investigations performed in this domain so far, and helps to define etiological agents of calf disease, and to evaluate calves as reservoir hosts for human pathogenic E. coli.
Collapse
Affiliation(s)
- Rafał Kolenda
- Faculty of Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg Senftenberg, Germany
| | - Michał Burdukiewicz
- Department of Genomics, Faculty of Biotechnology, University of Wrocław Wrocław, Poland
| | - Peter Schierack
- Faculty of Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg Senftenberg, Germany
| |
Collapse
|
11
|
Potential applications for antiviral therapy and prophylaxis in bovine medicine. Anim Health Res Rev 2014; 15:102-17. [PMID: 24810855 DOI: 10.1017/s1466252314000048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Viral disease is one of the major causes of financial loss and animal suffering in today's cattle industry. Increases in global commerce and average herd size, urbanization, vertical integration within the industry and alterations in global climate patterns have allowed the spread of pathogenic viruses, or the introduction of new viral species, into regions previously free of such pathogens, creating the potential for widespread morbidity and mortality in naïve cattle populations. Despite this, no antiviral products are currently commercially licensed for use in bovine medicine, although significant progress has been made in the development of antivirals for use against bovine viral diarrhea virus (BVDV), foot and mouth disease virus (FMDV) and bovine herpesvirus (BHV). BVDV is extensively studied as a model virus for human antiviral studies. Consequently, many compounds with efficacy have been identified and a few have been successfully used to prevent infection in vivo although commercial development is still lacking. FMDV is also the subject of extensive antiviral testing due to the importance of outbreak containment for maintenance of export markets. Thirdly, BHV presents an attractive target for antiviral development due to its worldwide presence. Antiviral studies for other bovine viral pathogens are largely limited to preliminary studies. This review summarizes the current state of knowledge of antiviral compounds against several key bovine pathogens and the potential for commercial antiviral applications in the prevention and control of several selected bovine diseases.
Collapse
|
12
|
Shi PL, Binnington B, Sakac D, Katsman Y, Ramkumar S, Gariepy J, Kim M, Branch DR, Lingwood C. Verotoxin A subunit protects lymphocytes and T cell lines against X4 HIV infection in vitro. Toxins (Basel) 2012; 4:1517-34. [PMID: 23242319 PMCID: PMC3528260 DOI: 10.3390/toxins4121517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 11/24/2012] [Accepted: 12/06/2012] [Indexed: 11/23/2022] Open
Abstract
Our previous genetic, pharmacological and analogue protection studies identified the glycosphingolipid, Gb3 (globotriaosylceramide, Pk blood group antigen) as a natural resistance factor for HIV infection. Gb3 is a B cell marker (CD77), but a fraction of activated peripheral blood mononuclear cells (PBMCs) can also express Gb3. Activated PBMCs predominantly comprise CD4+ T-cells, the primary HIV infection target. Gb3 is the sole receptor for Escherichia coli verotoxins (VTs, Shiga toxins). VT1 contains a ribosome inactivating A subunit (VT1A) non-covalently associated with five smaller receptor-binding B subunits. The effect of VT on PHA/IL2-activated PBMC HIV susceptibility was determined. Following VT1 (or VT2) PBMC treatment during IL2/PHA activation, the small Gb3+/CD4+ T-cell subset was eliminated but, surprisingly, remaining CD4+ T-cell HIV-1IIIB (and HIV-1Ba-L) susceptibility was significantly reduced. The Gb3-Jurkat T-cell line was similarly protected by brief VT exposure prior to HIV-1IIIB infection. The efficacy of the VT1A subunit alone confirmed receptor independent protection. VT1 showed no binding or obvious Jurkat cell/PBMC effect. Protective VT1 concentrations reduced PBMC (but not Jurkat cell) proliferation by 50%. This may relate to the mechanism of action since HIV replication requires primary T-cell proliferation. Microarray analysis of VT1A-treated PBMCs indicated up regulation of 30 genes. Three of the top four were histone genes, suggesting HIV protection via reduced gene activation. VT blocked HDAC inhibitor enhancement of HIV infection, consistent with a histone-mediated mechanism. We speculate that VT1A may provide a benign approach to reduction of (X4 or R5) HIV cell susceptibility.
Collapse
Affiliation(s)
- Pei Lin Shi
- Department of Biochemistry, University of Toronto, Ontario M5G 1X8, Canada; E-Mail:
- Division of Molecular Structure and Function and Research Institute, The Hospital for Sick Children, Ontario M5G 1X8, Canada; E-Mail:
| | - Beth Binnington
- Division of Molecular Structure and Function and Research Institute, The Hospital for Sick Children, Ontario M5G 1X8, Canada; E-Mail:
| | - Darinka Sakac
- Canadian Blood Services, Toronto, Ontario M5G 2M1, Canada; E-Mails: (D.S.); (Y.K.)
| | - Yulia Katsman
- Canadian Blood Services, Toronto, Ontario M5G 2M1, Canada; E-Mails: (D.S.); (Y.K.)
| | - Stephanie Ramkumar
- Laboratory Medicine & Pathology, University of Toronto, Ontario M5G 1X8, Canada; E-Mails: (S.R.); (M.K.); (D.R.B.)
| | - Jean Gariepy
- Department of Medical Biophysics & Pharmaceutical Sciences, University of Toronto, Ontario M5G 1X8, Canada; E-Mail:
- Sunnybrook Research Institute, Sunnybrook Health Science Centre, Toronto M4N 3M5, Canada
| | - Minji Kim
- Canadian Blood Services, Toronto, Ontario M5G 2M1, Canada; E-Mails: (D.S.); (Y.K.)
- Laboratory Medicine & Pathology, University of Toronto, Ontario M5G 1X8, Canada; E-Mails: (S.R.); (M.K.); (D.R.B.)
| | - Donald R. Branch
- Canadian Blood Services, Toronto, Ontario M5G 2M1, Canada; E-Mails: (D.S.); (Y.K.)
- Laboratory Medicine & Pathology, University of Toronto, Ontario M5G 1X8, Canada; E-Mails: (S.R.); (M.K.); (D.R.B.)
- Department of Medicine, University of Toronto, Ontario M5G 1X8, Canada
- Division of Cell and Molecular Biology, Toronto General Research Institute of the University Health Network, Toronto, Ontario M5G 2M9, Canada
| | - Clifford Lingwood
- Department of Biochemistry, University of Toronto, Ontario M5G 1X8, Canada; E-Mail:
- Division of Molecular Structure and Function and Research Institute, The Hospital for Sick Children, Ontario M5G 1X8, Canada; E-Mail:
- Laboratory Medicine & Pathology, University of Toronto, Ontario M5G 1X8, Canada; E-Mails: (S.R.); (M.K.); (D.R.B.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-416-813-5998; Fax: +1-416-813-5993
| |
Collapse
|
13
|
Reyes AG, Anné J, Mejía A. Ribosome-inactivating proteins with an emphasis on bacterial RIPs and their potential medical applications. Future Microbiol 2012; 7:705-17. [PMID: 22702525 DOI: 10.2217/fmb.12.39] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Ribosome-inactivating proteins (RIPs) are toxic due to their N-glycosidase activity catalyzing depurination at the universally conserved α-sarcin loop of the 60S ribosomal subunit. In addition, RIPs have been shown to also have other enzymatic activities, including polynucleotide:adenosine glycosidase activity. RIPs are mainly produced by different plant species, but are additionally found in a number of bacteria, fungi, algae and some mammalian tissues. This review describes the occurrence of RIPs, with special emphasis on bacterial RIPs, including the Shiga toxin and RIP in Streptomyces coelicolor recently identified in S. coelicolor. The properties of RIPs, such as enzymatic activity and targeting specificity, and how their unique biological activity could be potentially turned into medical or agricultural tools to combat tumors, viruses and fungi, are highlighted.
Collapse
Affiliation(s)
- Ana G Reyes
- Departamento de Biotecnología, División de Ciencias Biológicas & de la Salud, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | | | | |
Collapse
|
14
|
Attempts to express the A1-GMCSF immunotoxin in the baculovirus expression vector system. Biosci Biotechnol Biochem 2012; 76:749-54. [PMID: 22484943 DOI: 10.1271/bbb.110862] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Immunotoxins are fusion proteins consisting of two elements, a targeting and a toxin moiety, and are designed for specific elimination of tumor cells. Previously we expressed a recombinant fusion protein consisting of the toxic fragment of Shiga toxin (A1) and GMCSF (A1-GMCSF) in Escherichia coli, and evaluated its cytotoxic properties in acute myeloid leukemia and colon carcinoma cell lines. In view of the specific cytotoxic effects of this immunotoxin, further detailed in-vitro and preclinical studies were undertaken. Large amounts of the recombinant protein of high purity and free of unwanted side products, such as lipopolysaccharides (LPS), were required. Since GMCSF is of mammalian origin and it requires proper disulfide bond formation, we intended to use the baculovirus expression vector system (BEVS) for the expression of the recombinant fusion protein. However, despite previous reports on the expression of several other immunotoxins by this system, the A1 derived fusion proteins revealed an inhibitory effect on baculoviral particle formation and even caused cell death in insect cells. This observation was further pursued and confirmed by the use of other baculoviral specific promoters. The salient features of this finding are described below.
Collapse
|
15
|
Escherichia coli serotype O55:H7 diversity supports parallel acquisition of bacteriophage at Shiga toxin phage insertion sites during evolution of the O157:H7 lineage. J Bacteriol 2012; 194:1885-96. [PMID: 22328665 DOI: 10.1128/jb.00120-12] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) continues to be a leading cause of mortality and morbidity in children around the world. Two EPEC genomes have been fully sequenced: those of EPEC O127:H6 strain E2348/69 (United Kingdom, 1969) and EPEC O55:H7 strain CB9615 (Germany, 2003). The O55:H7 serotype is a recent precursor to the virulent enterohemorrhagic E. coli O157:H7. To explore the diversity of O55:H7 and better understand the clonal evolution of O157:H7, we fully sequenced EPEC O55:H7 strain RM12579 (California, 1974), which was collected 1 year before the first U.S. isolate of O157:H7 was identified in California. Phage-related sequences accounted for nearly all differences between the two O55:H7 strains. Additionally, O55:H7 and O157:H7 strains were tested for the presence and insertion sites of Shiga toxin gene (stx)-containing bacteriophages. Analysis of non-phage-associated genes supported core elements of previous O157:H7 stepwise evolutionary models, whereas phage composition and insertion analyses suggested a key refinement. Specifically, the placement and presence of lambda-like bacteriophages (including those containing stx) should not be considered stable evolutionary markers or be required in placing O55:H7 and O157:H7 strains within the stepwise evolutionary models. Additionally, we suggest that a 10.9-kb region (block 172) previously believed unique to O55:H7 strains can be used to identify early O157:H7 strains. Finally, we defined two subsets of O55:H7 strains that share an as-yet-unobserved or extinct common ancestor with O157:H7 strains. Exploration of O55:H7 diversity improved our understanding of the evolution of E. coli O157:H7 and suggested a key revision to accommodate existing and future configurations of stx-containing bacteriophages into current models.
Collapse
|
16
|
Abstract
Ricin and Shiga toxins designated as ribosome inactivating proteins (RIPs) are RNA N-glycosidases that depurinate a specific adenine (A₄₃₂₄ in rat 28S rRNA) in the conserved α-sarcin/ricin loop of the large rRNA, inhibiting protein synthesis. Evidence obtained from a number of studies suggests that interaction with ribosomal proteins plays an important role in the catalytic activity and ribosome specificity of RIPs. This review summarizes the recent developments in identification of the ribosomal proteins that interact with ricin and Shiga toxins and the principles governing these interactions.
Collapse
Affiliation(s)
- Nilgun E Tumer
- Department of Plant Biology and Pathology, School of Environmental and Biological Sciences, Rutgers University, 59 Dudley Road, New Brunswick, NJ 08901-8520, USA.
| | | |
Collapse
|
17
|
Baines D, Erb S, Lowe R, Turkington K, Sabau E, Kuldau G, Juba J, Masson L, Mazza A, Roberts R. A prebiotic, Celmanax™, decreases Escherichia coli O157:H7 colonization of bovine cells and feed-associated cytotoxicity in vitro. BMC Res Notes 2011; 4:110. [PMID: 21473767 PMCID: PMC3090735 DOI: 10.1186/1756-0500-4-110] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 04/07/2011] [Indexed: 11/20/2022] Open
Abstract
Background Escherichia coli O157:H7 is the most common serovar of enterohemorrhagic E. coli associated with serious human disease outbreaks. Cattle are the main reservoir with E. coli O157:H7 inducing hemorrhagic enteritis in persistent shedding beef cattle, however little is known about how this pathogen affects cattle health. Jejunal Hemorrhage Syndrome (JHS) has unclear etiology but the pathology is similar to that described for E. coli O157:H7 challenged beef cattle suggestive that E. coli O157:H7 could be involved. There are no effective treatments for JHS however new approaches to managing pathogen issues in livestock using prebiotics and probiotics are gaining support. The first objective of the current study was to characterize pathogen colonization in hemorrhaged jejunum of dairy cattle during natural JHS outbreaks. The second objective was to confirm the association of mycotoxigenic fungi in feeds with the development of JHS and also to identify the presence of potential mycotoxins. The third objective was to determine the impact of a prebiotic, Celmanax™, or probiotic, Dairyman's Choice™ paste, on the cytotoxicity associated with feed extracts in vitro. The fourth objective was to determine the impact of a prebiotic or a probiotic on E. coli O157:H7 colonization of mucosal explants and a bovine colonic cell line in vitro. The final objective was to determine if prebiotic and probiotic feed additives could modify the symptoms that preceded JHS losses and the development of new JHS cases. Findings Dairy cattle developed JHS after consuming feed containing several types of mycotoxigenic fungi including Fusarium culmorum, F. poae, F. verticillioides, F. sporotrichioides, Aspergillusflavus, Penicillium roqueforti, P. crustosum, P. paneum and P. citrinum. Mixtures of Shiga toxin - producing Escherichia coli (STEC) colonized the mucosa in the hemorrhaged tissues of the cattle and no other pathogen was identified. The STECs expressed Stx1 and Stx2, but more significantly, Stxs were also present in the blood clot blocking the jejunum. Mycotoxin analysis of the corn crop confirmed the presence of fumonisin, NIV, ZEAR, DON, 15-ADON, 3-ADON, NEO, DAS, HT-2 and T-2. Feed extracts were toxic to enterocytes and 0.1% Celmanax™ removed the cytotoxicity in vitro. There was no effect of Dairyman's Choice™ paste on feed-extract activity in vitro. Fumonisin, T-2, ZEAR and DON were toxic to bovine cells and 0.1% Celmanax™ removed the cytotoxicity in vitro. Celmanax™ also directly decreased E. coli O157:H7 colonization of mucosal explants and a colonic cell line in a dose-dependent manner. There was no effect of Dairyman's Choice™ paste on E. coli O157:H7 colonization in vitro. The inclusion of the prebiotic and probiotic in the feed was associated with a decline in disease. Conclusion The current study confirmed an association between mycotoxigenic fungi in the feed and the development of JHS in cattle. This association was further expanded to include mycotoxins in the feed and mixtures of STECs colonizing the severely hemorrhaged tissues. Future studies should examine the extent of involvement of the different STEC in the infection process. The prebiotic, Celmanax™, acted as an anti-adhesive for STEC colonization and a mycotoxin binder in vitro. Future studies should determine the extent of involvement of the prebiotic in altering disease.
Collapse
Affiliation(s)
- Danica Baines
- Lethbridge Research Centre, 5403 1 Avenue South, P,O, Box 3000, Lethbridge, AB, T1J 4B1, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Subtilase cytotoxin (SubAB) is the prototype of a new family of AB(5) cytotoxins produced by Shiga-toxigenic Escherichia coli. Its cytotoxicity is due to its capacity to enter cells and specifically cleave the essential endoplasmic reticulum chaperone BiP. Previous studies have shown that intraperitoneal injection of mice with purified SubAB causes a pathology that overlaps with that seen in human cases of hemolytic-uremic syndrome, as well as dramatic splenic atrophy, suggesting that leukocytes are targeted. Here we investigated SubAB-induced leukocyte changes in the peritoneal cavity, blood, and spleen. After intraperitoneal injection, SubAB bound peritoneal leukocytes (including T and B lymphocytes, neutrophils, and macrophages). SubAB elicited marked leukocytosis, which peaked at 24 h, and increased neutrophil activation in the blood and peritoneal cavity. It also induced a marked redistribution of leukocytes among the three compartments: increases in leukocyte subpopulations in the blood and peritoneal cavity coincided with a significant decline in splenic cells. SubAB treatment also elicited significant increases in the apoptosis rates of CD4(+) T cells, B lymphocytes, and macrophages. These findings indicate that apart from direct cytotoxic effects, SubAB interacts with cellular components of both the innate and the adaptive arm of the immune system, with potential consequences for disease pathogenesis.
Collapse
|
19
|
Bolton DJ. Verocytotoxigenic (Shiga toxin-producing) Escherichia coli: virulence factors and pathogenicity in the farm to fork paradigm. Foodborne Pathog Dis 2010; 8:357-65. [PMID: 21114423 DOI: 10.1089/fpd.2010.0699] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Verocytotoxigenic Escherichia coli (VTEC) are a good example of the evolution and emergence of pathogenic E. coli. Unknown before the late 1970s, these bacteria are a major cause of hemorrhagic colitis and hemolytic uremic syndrome worldwide. The production of verocytotoxins is the main virulence feature of VTEC but cannot be solely responsible for full pathogenicity. VTEC associated with severe human disease are usually capable of colonizing the intestinal mucosa with a characteristic attaching-and-effacing mechanism, genetically governed by the locus of enterocyte effacement, and possess other mobile genetic elements carrying additional virulence genes such as plasmids, phages, and pathogenicity islands (e.g., O-I 122). Despite the huge amount of data collected after the sequencing of the full genome of VTEC O157, the virulence and the evolution of the different VTEC serotypes have only been partially unraveled. A greater understanding of the factors governing the development of severe disease in humans and the colonization of animal hosts must be achieved before effective intervention strategies aimed at the reduction of the burden of infection can be developed. Defining all the factors characterizing a fully pathogenic VTEC strain will be crucial to improve the efficacy of the diagnosis of human infections, the surveillance of animal reservoirs, the assessment of public health risks, and the development of control interventions. An overview of the VTEC virulence factors, including their genetic basis and function, would start this process and is the objective of this article.
Collapse
Affiliation(s)
- Declan J Bolton
- Food Safety Department, Teagasc Food Research Centre, Dublin, Republic of Ireland.
| |
Collapse
|
20
|
Fang K, Bruce M, Pattillo CB, Zhang S, Stone R, Clifford J, Kevil CG. Temporal genomewide expression profiling of DSS colitis reveals novel inflammatory and angiogenesis genes similar to ulcerative colitis. Physiol Genomics 2010; 43:43-56. [PMID: 20923862 DOI: 10.1152/physiolgenomics.00138.2010] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Dextran sodium sulfate (DSS)-induced colitis is widely used to study pathological mechanisms and potential treatments of inflammatory bowel disease. Because temporal changes in genome expression profiles remain unknown in this model, we performed whole genome expression profile analysis during the development of DSS colitis in comparison with ulcerative colitis (UC) specimens to identify novel and common responses during disease. Colon tissue from DSS-treated mice was collected at days 0, 2, 4, and 6. Half of each specimen was used for histopathological analysis and half for Affymetrix whole genome expression profiling and qRT-PCR validation. Genesifter and Ingenuity software analysis was used to identify differentially expressed genes and perform interactive network analysis. Identified DSS-associated genes in mice were also compared with UC patient data. We identified 1,609 genes that were significantly altered during DSS colitis; the majority were functionally related to inflammation, angiogenesis, metabolism, biological adhesion, cellular growth and proliferation, and cell-to-cell signaling responses. Five hundred and one genes were progressively upregulated, while one hundred seventy-three genes were progressively downregulated. Changes in gene expression were validated in a subset of 33 genes by qRT-PCR, with r(2) = 0.925. Ingenuity gene interaction network analysis revealed novel relationships among antigen presentation, cell morphology, and other biological functions in the DSS mouse. Finally, DSS colitis gene array data were compared with UC patient array data: 152 genes were similarly upregulated, and 22 genes were downregulated. Temporal genomewide expression profile analysis of DSS-induced colitis revealed novel associations with various immune responses and tissue remodeling events such as angiogenesis similar to those in UC patients. This study provides a comprehensive view of DSS colitis changes in colon gene expression and identifies common molecules with clinical specimens that are interesting targets for further investigation.
Collapse
Affiliation(s)
- Kai Fang
- Department of Pathology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana 71103, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Dowd SE, Crippen TL, Sun Y, Gontcharova V, Youn E, Muthaiyan A, Wolcott RD, Callaway TR, Ricke SC. Microarray Analysis and Draft Genomes of TwoEscherichia coliO157:H7 Lineage II Cattle Isolates FRIK966 and FRIK2000 Investigating Lack of Shiga Toxin Expression. Foodborne Pathog Dis 2010; 7:763-73. [DOI: 10.1089/fpd.2009.0482] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
| | - Tawni L. Crippen
- Food and Feed Safety Research Unit, Agricultural Research Service, U.S. Department of Agriculture, College Station, Texas
| | - Yan Sun
- Research and Testing Laboratory, Lubbock, Texas
| | | | - Eun Youn
- Computer Science Department, Texas Tech University, Lubbock, Texas
| | - Arunachalam Muthaiyan
- Center for Food Safety—IFSE and Department of Food Science, University of Arkansas, Fayetteville, Arkansas
| | | | - Todd R. Callaway
- Food and Feed Safety Research Unit, Agricultural Research Service, U.S. Department of Agriculture, College Station, Texas
| | - Steven C. Ricke
- Center for Food Safety—IFSE and Department of Food Science, University of Arkansas, Fayetteville, Arkansas
- Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas
| |
Collapse
|
22
|
Escherichia coli O157:H7 strain origin, lineage, and Shiga toxin 2 expression affect colonization of cattle. Appl Environ Microbiol 2009; 75:5074-81. [PMID: 19525271 DOI: 10.1128/aem.00391-09] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Enterohemorrhagic Escherichia coli O157:H7 has evolved into an important human pathogen with cattle as the main reservoir. The recent discovery of E. coli O157:H7-induced pathologies in challenged cattle has suggested that previously discounted bacterial virulence factors may contribute to the colonization of cattle. The objective of the present study was to examine the impact of lineage type, cytotoxin activity, and cytotoxin expression on the amount of E. coli O157:H7 colonization of cattle tissue and cells in vitro. Using selected bovine- and human-origin strains, we determined that lineage type predicted the amount of E. coli O157:H7 strain colonization: lineage I > intermediate lineages > lineage II. All E. coli O157:H7 strain colonization was dose dependent, with threshold colonization at 10(3) to 10(5) CFU and maximum colonization at 10(7) CFU. We also determined that an as-yet-unknown factor of strain origin was the most dominant predictor of the amount of strain colonization in vitro. The amount of E. coli O157:H7 colonization was also influenced by strain cytotoxin activity and the inclusion of cytotoxins from lineage I or intermediate lineage strains increased colonization of a lineage II strain. There was a higher level of expression of the Shiga toxin 1 gene (stx(1)) in human-origin strains than in bovine-origin strains. In addition, lineage I strains expressed higher levels of the Shiga toxin 2 gene (stx(2)). The present study supports a role for strain origin, lineage type, cytotoxin activity, and stx(2) expression in modulating the amount of E. coli O157:H7 colonization of cattle.
Collapse
|
23
|
Ferens WA, Haruna J, Cobbold R, Hovde CJ. Low numbers of intestinal Shiga toxin-producing E. coli correlate with a poor prognosis in sheep infected with bovine leukemia virus. J Vet Sci 2009; 9:375-9. [PMID: 19043312 PMCID: PMC2811778 DOI: 10.4142/jvs.2008.9.4.375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Healthy ruminants carry intestinal Shiga toxin (Stx)-producing Escherichia coli (STEC). Stx has antiviral activities in vitro and STEC numbers correlate with reduced early viremia in sheep experimentally infected with bovine leukemia virus (BLV). This study assessed the impact of intestinal STEC on BLV-induced disease for one year post-BLV-challenge. High STEC scores (CFU/g feces × frequency of STEC-positive samples) correlated with good health, whereas poor weight gain, distress, and tumor development occurred only among animals with low STEC scores. STEC carriage was associated with increased percentages of B cells in peripheral blood.
Collapse
Affiliation(s)
- Witold A Ferens
- Department of Microbiology, Molecular Biology and Biochemistry, University of Idaho, Moscow, ID 83844-3052, USA
| | | | | | | |
Collapse
|
24
|
Baines D, Lee B, McAllister T. Heterogeneity in enterohemorrhagicEscherichia coliO157:H7 fecal shedding in cattle is related toEscherichia coliO157:H7 colonization of the small and large intestine. Can J Microbiol 2008; 54:984-95. [DOI: 10.1139/w08-090] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the last decade, Escherichia coli O157:H7 have emerged as important pathogens of the gastrointestinal tract of humans. Healthy cattle have been identified as the primary reservoir, however, the factors affecting heterogeneous E. coli O157:H7 fecal shedding are not fully understood. The aim of this study was to investigate the contribution of E. coli O157:H7 colonization of small and large intestinal sites to the heterogeneity of fecal shedding in cattle. There was a dose-dependant E. coli O157:H7 E318N colonization of duodenum, jejunum, ileum, cecum, ascending colon, spiral colon, descending colon, and the rectoanal junction in vitro with no difference in E. coli O157:H7 colonization of the rectoanal junction and other intestinal sites. There were 10–100 times greater E. coli O157:H7 colonization of intestinal sites from persistent shedding cattle compared with nonpersistent shedding cattle. Novel pathologies were associated with E. coli O157:H7 colonization sites in the small and large intestine. The first pathology, focal petechiae, was present throughout the intestinal tract of cattle that ceased shedding E. coli O157:H7 for 5–12 weeks or in the jejunum, ileum, cecum, and ascending colon of cattle shedding E. coli O157:H7 for 4–5 months. The second pathology, mucosal hemorrhages, was present in the same sites as the focal petechiae in cattle shedding for 5 months and these hemorrhages were in the final stages of repair. Several features of these hemorrhages support this conclusion including the brown appearance, low amount of classic E. coli O157:H7 induced A/E lesions, flattened epithelium, and blunted villi. Although mucosal hemorrhages were present in the jejunum, ileum, cecum, and ascending colon in cattle shedding for 4 months, many other pathologies were also present that were indicative of hemorrhagic enteritis as evidenced by the blood red appearance of hemorrhages, severe edema, and dark red erythema. Escherichia coli O157:H7 were associated with both pathologies suggesting it is the causative agent. The current study supports a relationship between the amount of E. coli O157:H7 colonization in intestinal sites and heterogeneous fecal shedding by cattle.
Collapse
Affiliation(s)
- Danica Baines
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Byron Lee
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Tim McAllister
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| |
Collapse
|
25
|
Abstract
Enterohemorrhagic Escherichia coli serotype O157:H7 is a pathotype of diarrheagenic E. coli that produces one or more Shiga toxins, forms a characteristic histopathology described as attaching and effacing lesions, and possesses the large virulence plasmid pO157. The bacterium is recognized worldwide, especially in developed countries, as an emerging food-borne bacterial pathogen, which causes disease in humans and in some animals. Healthy cattle are the principal and natural reservoir of E. coli O157:H7, and most disease outbreaks are, therefore, due to consumption of fecally contaminated bovine foods or dairy products. In this review, we provide a general overview of E. coli O157:H7 infection, especially focusing on the bacterial characteristics rather than on the host responses during infection.
Collapse
Affiliation(s)
- Jang W Yoon
- Division of Molecular and Life Science, Hanyang University, Ansan 426-791, Korea
| | | |
Collapse
|
26
|
Ferens WA, Hovde CJ. The non-toxic A subunit of Shiga toxin type 1 prevents replication of bovine immunodeficiency virus in infected cells. Virus Res 2007; 125:29-41. [PMID: 17197048 DOI: 10.1016/j.virusres.2006.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2006] [Revised: 11/18/2006] [Accepted: 12/05/2006] [Indexed: 11/30/2022]
Abstract
Shiga toxins are ribosome-inactivating proteins many of which are antiviral. Shiga toxin-producing Escherichia coli (STEC) may be pathogenic to humans, but are carried without ill effects by ruminants. We hypothesize that STEC have antiviral activity in ruminants, and showed previously that the non-toxic subunit A of Shiga toxin 1 (StxA1) acts selectively on cells infected with bovine leukemia virus, without harming normal cells, and that the numbers of intestinal STEC are inversely correlated with viral load in bovine leukemia virus-infected sheep. The purpose of the present study was to characterize StxA1 activity against a second bovine retrovirus, bovine immunodeficiency virus (BIV). Flow cytometry showed that StxA1 treatment induced apoptosis in BIV-infected cells but not in uninfected cells and immunoblot analysis showed that StxA1 curtailed synthesis of Gag p26 protein. A systematic electron microscopy description of BIV infection in fetal bovine lung fibroblasts showed an orderly sequence of changes in cell membrane, endoplasmic reticulum, Golgi, nucleus, and mitochondria, and suggested that the infected cells produce the virus within multivesicular bodies (MVBs). StxA1 interfered with all manifestations of BIV-induced transformation of infected cells into BIV-producing units. BIV-infected cells provided a suitable experimental system for investigation of the mechanism of Stx-antiviral activity.
Collapse
Affiliation(s)
- Witold A Ferens
- Department of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, ID 83844-3052, USA
| | | |
Collapse
|
27
|
Ferens WA, Halver M, Gustin KE, Ott T, Hovde CJ. Differential sensitivity of viruses to the antiviral activity of Shiga toxin 1 A subunit. Virus Res 2007; 125:104-8. [PMID: 17197049 DOI: 10.1016/j.virusres.2006.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2006] [Revised: 11/16/2006] [Accepted: 12/05/2006] [Indexed: 11/19/2022]
Abstract
The non-toxic enzymic A subunit of Shiga toxin 1 (StxA1) reduces expression and replication of the bovine retroviruses, bovine leukemia virus and bovine immunodeficiency virus (BIV). Here, the impact of StxA1 on representative positive and negative stranded RNA viruses was compared. BIV and equine infectious anemia virus were sensitive to picomolar concentrations of StxA1 while poliovirus, rhinovirus, and vesicular stomatitis virus were only marginally sensitive to nanomolar concentrations of toxin. Thus, the length of the reproductive cycle and/or other factors, but not viral encapsulation may play a role in determining sensitivity to StxA1. The effects of StxA1 at concentrations from 0.01 to 10 microg/ml on the most sensitive virus (BIV-infected cultures of fetal bovine lung cells) were analyzed by electron microscopy 48 h post challenge. Cells treated with 0.1 microg StxA1/ml or higher toxin concentrations were similar in appearance and showed progressively fewer viral factories with increasing toxin concentration. However, cells treated with 0.01 microg/ml StxA1 had a radically different appearance, exhibiting smooth cell membranes and high vacuolization. These results showed that complex retroviruses were more sensitive to StxA1 than single-stranded RNA viruses and that StxA1 interfered with retroviral replication in a concentration-dependent manner.
Collapse
Affiliation(s)
- Witold A Ferens
- Department of Microbiology, Molecular Biology and Biochemistry, University of Idaho, Moscow, ID 83844-3052, USA
| | | | | | | | | |
Collapse
|
28
|
Cornick NA, Helgerson AF, Sharma V. Shiga toxin and Shiga toxin-encoding phage do not facilitate Escherichia coli O157:H7 colonization in sheep. Appl Environ Microbiol 2006; 73:344-6. [PMID: 17085690 PMCID: PMC1797108 DOI: 10.1128/aem.01328-06] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Isogenic strains of Escherichia coli O157:H7, missing either stx(2) or the entire Stx2-encoding phage, were compared with the parent strain for their abilities to colonize sheep. The absence of the phage or of the Shiga toxin did not significantly impact the magnitude or duration of shedding of E. coli O157:H7.
Collapse
Affiliation(s)
- Nancy A Cornick
- Department of Veterinary Microbiology and Preventative Medicine, 2130 Vet Med Building, Iowa State University, Ames, IA 50010, USA.
| | | | | |
Collapse
|
29
|
Hoffman MA, Menge C, Casey TA, Laegreid W, Bosworth BT, Dean-Nystrom EA. Bovine immune response to shiga-toxigenic Escherichia coli O157:H7. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2006; 13:1322-7. [PMID: 17050743 PMCID: PMC1694447 DOI: 10.1128/cvi.00205-06] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although cattle develop humoral immune responses to Shiga-toxigenic (Stx+) Escherichia coli O157:H7, infections often result in long-term shedding of these human pathogenic bacteria. The objective of this study was to compare humoral and cellular immune responses to Stx+ and Stx- E. coli O157:H7. Three groups of calves were inoculated intrarumenally, twice in a 3-week interval, with different strains of E. coli: a Stx2-producing E. coli O157:H7 strain (Stx2+ O157), a Shiga toxin-negative E. coli O157:H7 strain (Stx- O157), or a nonpathogenic E. coli strain (control). Fecal shedding of Stx2+ O157 was significantly higher than that of Stx- O157 or the control. Three weeks after the second inoculation, all calves were challenged with Stx2+ O157. Following the challenge, levels of fecal shedding of Stx2+ O157 were similar in all three groups. Both groups inoculated with an O157 strain developed antibodies to O157 LPS. Calves initially inoculated with Stx- O157, but not those inoculated with Stx2+ O157, developed statistically significant lymphoproliferative responses to heat-killed Stx2+ O157. These results provide evidence that infections with STEC can suppress the development of specific cellular immune responses in cattle, a finding that will need to be addressed in designing vaccines against E. coli O157:H7 infections in cattle.
Collapse
Affiliation(s)
- Mark A Hoffman
- Enteric Diseases and Food Safety Research, National Disease Center, USDA, Agriculture Research Service, Ames, IA 50010, USA
| | | | | | | | | | | |
Collapse
|
30
|
Moussay E, Stamm I, Taubert A, Baljer G, Menge C. Escherichia coli Shiga toxin 1 enhances il-4 transcripts in bovine ileal intraepithelial lymphocytes. Vet Immunol Immunopathol 2006; 113:367-82. [PMID: 16879873 DOI: 10.1016/j.vetimm.2006.06.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2006] [Revised: 04/04/2006] [Accepted: 06/19/2006] [Indexed: 11/27/2022]
Abstract
Shiga toxin 1 (Stx1) blocks the activation of bovine peripheral and intraepithelial lymphocytes (IEL), implying that the toxin has the potential to retard the host's immune response during intestinal colonization of cattle with human pathogenic Stx-producing Escherichia coli (STEC). Since Stx1 does not eliminate affected lymphocytes by causing cellular death, we assumed that Stx1 disturbs the integrity of the immune regulatory network. We therefore assessed the impact of Stx1 on the expression of selected chemokine and cytokine genes in vitro by real-time RT-PCR and by quantitation of intracellular cytokine proteins. While Stx1 did not alter the amount of mRNA specific for interleukin (IL)-2, IL-10, gamma interferon (IFN-gamma), transforming growth factor beta (TGF-beta), IL-8, 10kDa interferon inducible protein (IP-10), and monocyte chemoattractant protein 1 (MCP-1) in cultured ileal IEL (iIEL), minute concentrations of Stx1 led to an up to 40-fold increase of il-4 transcripts within 6-8h of incubation. Comparative experiments with peripheral lymphocytes revealed that the effect was specific for iIEL. The enhancement of il-4 transcripts in iIEL was not accompanied by apoptosis but required the enzymatic activity of the holotoxin. Nevertheless, iIEL retained their ability to synthesize proteins in the presence of Stx1: 40% of iIEL could be stimulated to synthesize IFN-gamma while less than 10% expressed IL-4 or TGF-beta. Furthermore, iIEL were found to produce granulocyte chemoattractants, but the release of these substances was not different in iIEL cultures incubated with or without Stx1. Although Stx1 did not affect the numbers of iIEL producing either cytokine, these findings point to an altered responsiveness of IEL during bovine STEC infections and shed light on the initial effects Stx1 exerts on the local adaptive immune system.
Collapse
Affiliation(s)
- Etienne Moussay
- Institute for Hygiene and Infectious Diseases of Animals, Frankfurter Strasse 85-89, Justus-Liebig-University, D-35392 Giessen, Germany
| | | | | | | | | |
Collapse
|
31
|
Sheng H, Lim JY, Knecht HJ, Li J, Hovde CJ. Role of Escherichia coli O157:H7 virulence factors in colonization at the bovine terminal rectal mucosa. Infect Immun 2006; 74:4685-93. [PMID: 16861656 PMCID: PMC1539576 DOI: 10.1128/iai.00406-06] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 04/17/2006] [Accepted: 05/17/2006] [Indexed: 12/30/2022] Open
Abstract
The human pathogen Escherichia coli O157:H7 causes hemorrhagic colitis and life-threatening sequelae and transiently colonizes healthy cattle at the terminal rectal mucosa. This study analyzed virulence factors important for the clinical manifestations of human E. coli O157:H7 infection for their contribution to the persistence of E. coli in cattle. The colonizing ability of E. coli O157:H7 was compared with those of nonpathogenic E. coli K-12 and isogenic deletion mutants missing Shiga toxin (Stx), the adhesin intimin, its receptor Tir, hemolysin, or the approximately 92-kb pO157. Fully ruminant steers received a single rectal application of one E. coli strain so that effects of mucosal attachment and survival at the terminal rectum could be measured without the impact of bacterial passage through the entire gastrointestinal tract. Colonization was monitored by sensitive recto-anal junction mucosal swab culture. Nonpathogenic E. coli K-12 did not colonize as well as E. coli O157:H7 at the bovine terminal rectal mucosa. The E. coli O157:H7 best able to persist had intimin, Tir, and the pO157. Strains missing even one of these factors were recovered in lower numbers and were cleared faster than the wild type. In contrast, E. coli O157:H7 strains that were missing Stx or hemolysin colonized like the wild type. For these three strains, the number of bacteria increased between days 1 and 4 postapplication and then decreased slowly. In contrast, the numbers of noncolonizing strains (K-12, delta tir, and delta eae) decreased from the day of application. These patterns consistently predicted long-term colonization or clearance of the bacteria from the bovine terminal rectal mucosa.
Collapse
Affiliation(s)
- Haiqing Sheng
- University of Idaho, Department of Microbiology, Molecular Biology, and Biochemistry, Moscow, Idaho 83844-3052, USA
| | | | | | | | | |
Collapse
|
32
|
Ferens WA, Cobbold R, Hovde CJ. Intestinal Shiga toxin-producing Escherichia coli bacteria mitigate bovine leukemia virus infection in experimentally infected sheep. Infect Immun 2006; 74:2906-16. [PMID: 16622229 PMCID: PMC1459712 DOI: 10.1128/iai.74.5.2906-2916.2006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Revised: 02/08/2006] [Accepted: 02/22/2006] [Indexed: 11/20/2022] Open
Abstract
Ruminants often carry gastrointestinal Shiga toxin (Stx)-producing Escherichia coli (STEC). Stxs belong to a large family of ribosome-inactivating proteins (RIPs), found in many plants and some bacteria. Plant RIPs, secreted into extracellular spaces, limit the spread of viruses through plant tissues by penetrating and killing virally infected cells. Previously, we showed Stx activity against bovine leukemia virus (BLV)-infected cells in vitro and hypothesized that STEC bacteria have antiviral activity in ruminant hosts. Here, we investigated the impact of STEC on the initial phases of BLV infection in sheep. Sheep were treated with biweekly oral doses of E. coli O157:H7 (an STEC) or an isogenic stx mutant strain. A different group of sheep were similarly treated with five naturally occurring ovine STEC isolates or stx-negative E. coli. Intestinal STEC bacteria were enumerated and identified by standard fecal culture and DNA hybridization. Oral STEC treatment did not always result in carriage of STEC, although many animals consistently presented with >10(4) CFU/g feces. BLV viremia was assessed by spontaneous lymphocyte proliferation (SLP) in cultures of blood mononuclear cells and by syncytium formation in cocultures of the same with F-81 indicator cells. SLP was lower (P < 0.05) and syncytia were fewer (P < 0.05) in STEC-treated sheep than in untreated sheep. Both lower SLP and fewer syncytia positively correlated with fecal STEC numbers. Average weight gain post-BLV challenge was higher in STEC-treated sheep than in untreated sheep (P < 0.05). These results support the hypothesis that in ruminants, intestinal STEC bacteria have antiviral activity and mitigate BLV-induced disease.
Collapse
Affiliation(s)
- Witold A Ferens
- Department of Microbiology, Molecular Biology and Biochemistry, University of Idaho, Moscow, ID 83844-3052, USA
| | | | | |
Collapse
|
33
|
Konnai S, Usui T, Ikeda M, Kohara J, Hirata TI, Okada K, Ohashi K, Onuma M. Imbalance of tumor necrosis factor receptors during progression in bovine leukemia virus infection. Virology 2005; 339:239-48. [PMID: 15993916 DOI: 10.1016/j.virol.2005.06.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Revised: 05/06/2005] [Accepted: 06/02/2005] [Indexed: 10/25/2022]
Abstract
Previously, we found an up-regulation of tumor necrosis factor alpha (TNF)-alpha and an imbalance of TNF receptors in sheep experimentally infected with bovine leukemia virus (BLV). In order to investigate the different TNF-alpha-induced responses, in this study we examined the TNF-alpha-induced proliferative response and the expression levels of two distinct TNF receptors on peripheral blood mononuclear cells (PBMC) derived from BLV-uninfected cattle and BLV-infected cattle that were aleukemic (AL) or had persistent lymphocytosis (PL). The proliferative response of PBMC isolated from those cattle with PL in the presence of recombinant bovine TNF-alpha (rTNF-alpha) was significantly higher than those from AL cattle and uninfected cattle and the cells from PL cattle expressed significantly higher mRNA levels of TNF receptor type II (TNF-RII) than those from AL and BLV-uninfected cattle. No difference was found in TNF-RI mRNA levels. Most cells expressing TNF-RII in PL cattle were CD5+ or sIgM+ cells and these cells showed resistance to TNF-alpha-induced apoptosis. Additionally, there were significant positive correlations between the changes in provirus load and TNF-RII mRNA levels, and TNF-alpha-induced proliferation and TNF-RII mRNA levels. These data suggest that imbalance in the expression of TNF receptors could at least in part contribute to the progression of lymphocytosis in BLV infection.
Collapse
Affiliation(s)
- Satoru Konnai
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Yoon JW, Lim JY, Park YH, Hovde CJ. Involvement of the Escherichia coli O157:H7(pO157) ecf operon and lipid A myristoyl transferase activity in bacterial survival in the bovine gastrointestinal tract and bacterial persistence in farm water troughs. Infect Immun 2005; 73:2367-78. [PMID: 15784583 PMCID: PMC1087426 DOI: 10.1128/iai.73.4.2367-2378.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli O157:H7 is an important food-borne pathogen that causes hemorrhagic colitis and the hemolytic-uremic syndrome in humans. Recently, we reported that the pO157 ecf (E. coli attaching and effacing gene-positive conserved fragments) operon is thermoregulated by an intrinsically curved DNA and contains the genes for bacterial surface-associated proteins, including a second copy of lipid A myristoyl transferase, whose chromosomal copy is the lpxM gene product. E. coli O157:H7 survives and persists well in diverse environments from the human and bovine gastrointestinal tracts (GIT) to nutrient-dilute farm water troughs. Transcriptional regulation of the ecf operon by intrinsic DNA curvature and the genetic redundancy of lpxM that is associated with lipid A modification led us to hypothesize that the pO157 ecf operon and lpxM are associated with bacterial survival and persistence in various in vivo and ex vivo environments by optimizing bacterial membrane structure and/or integrity. To test this hypothesis, three isogenic ecf operon and/or lpxM deletion mutants of E. coli O157:H7 ATCC 43894 were constructed and analyzed in vitro and in vivo. The results showed that a double mutant carrying deletions in the ecf and lpxM genes had an altered lipid A structure and membrane fatty acid composition, did not survive passage through the bovine GIT, did not persist well in farm water troughs, had increased susceptibility to a broad spectrum of antibiotics and detergents, and had impaired motility. Electron microscopic analyses showed gross changes in bacterial membrane structure.
Collapse
Affiliation(s)
- Jang W Yoon
- Department of Microbiology, Molecular Biology and Biochemistry, University of Idaho, Moscow, ID 83844-3052, USA
| | | | | | | |
Collapse
|
35
|
Winter KRK, Stoffregen WC, Dean-Nystrom EA. Shiga toxin binding to isolated porcine tissues and peripheral blood leukocytes. Infect Immun 2004; 72:6680-4. [PMID: 15501802 PMCID: PMC523021 DOI: 10.1128/iai.72.11.6680-6684.2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shiga toxin (Stx) binding sites in porcine tissues and leukocytes were identified by the use of Stx overlay and anti-CD77/Gb3 immunoassays. Stx1 and Stx2 bound to similar tissue locations and leukocytes, although some differences were noted. Previously unreported Stx binding sites were identified in kidney tubules, intestinal lymphoid aggregates, sinusoidal liver cells, alveolar macrophages, and peripheral blood leukocytes.
Collapse
Affiliation(s)
- Kellie R K Winter
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, USDA Agricultural Research Service, National Animal Disease Center, Ames 50010-0070, USA
| | | | | |
Collapse
|
36
|
Menge C, Stamm I, van Diemen PM, Sopp P, Baljer G, Wallis TS, Stevens MP. Phenotypic and functional characterization of intraepithelial lymphocytes in a bovine ligated intestinal loop model of enterohaemorrhagic Escherichia coli infection. J Med Microbiol 2004; 53:573-579. [PMID: 15150340 DOI: 10.1099/jmm.0.45530-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Ruminants are a major reservoir of enterohaemorrhagic Escherichia coli (EHEC), which cause acute gastroenteritis in humans with potentially life-threatening sequelae. The mechanisms underlying EHEC persistence in ruminant hosts are poorly understood. EHEC produce several cytotoxins that inhibit the proliferation of bovine lymphocytes in vitro and influence EHEC persistence in calves, suggesting that bacterial suppression of mucosal inflammation may be important in vivo. In order to address this hypothesis, intraepithelial lymphocytes (IEL) obtained from ligated intestinal loops of five 9-14 day old calves were characterized 12 h after inoculation with E. coli strains. Loops were inoculated with an EHEC O103 : H2 strain, an isogenic Deltastx1 mutant incapable of producing Shiga toxin 1 (Stx1) and a porcine non-pathogenic E. coli strain. The IEL mainly comprised activated CD2(+) CD3(+) CD6(+) CD8alpha(+) T cells and resembled IEL obtained from the intestinal mucosa of orally challenged calves. Forty per cent of all IEL were potentially sensitive to Stx1 in that they expressed the receptor for Stx1. Nevertheless, analysis of IEL from inoculated loops failed to detect a significant effect of the different E. coli strains on proliferative capacity, natural killer cell activity or the cytokine mRNA profile. However, the EHEC wild-type strain reduced the percentage of CD8alpha(+) T cells in the ileal mucosa compared with loops inoculated with the Deltastx1 mutant. This shift in IEL composition was not associated with inhibition of IEL proliferation in situ, since the majority of the IEL from all loops were in the G(0)/G(1) phase of the cell cycle. These studies indicate that the ligated ileal loop model will be a useful tool to dissect the mechanisms underlying suppression of mucosal inflammation by EHEC in the reservoir host.
Collapse
Affiliation(s)
- Christian Menge
- Institute for Hygiene and Infectious Diseases of Animals, Justus-Liebig-University, D-35392 Giessen, Germany 2,3Division of Microbiology2 and Division of Immunology & Pathology3, Institute for Animal Health, Compton Laboratory, Compton, Berkshire RG20 7NN, UK
| | - Ivonne Stamm
- Institute for Hygiene and Infectious Diseases of Animals, Justus-Liebig-University, D-35392 Giessen, Germany 2,3Division of Microbiology2 and Division of Immunology & Pathology3, Institute for Animal Health, Compton Laboratory, Compton, Berkshire RG20 7NN, UK
| | - Pauline M van Diemen
- Institute for Hygiene and Infectious Diseases of Animals, Justus-Liebig-University, D-35392 Giessen, Germany 2,3Division of Microbiology2 and Division of Immunology & Pathology3, Institute for Animal Health, Compton Laboratory, Compton, Berkshire RG20 7NN, UK
| | - Paul Sopp
- Institute for Hygiene and Infectious Diseases of Animals, Justus-Liebig-University, D-35392 Giessen, Germany 2,3Division of Microbiology2 and Division of Immunology & Pathology3, Institute for Animal Health, Compton Laboratory, Compton, Berkshire RG20 7NN, UK
| | - Georg Baljer
- Institute for Hygiene and Infectious Diseases of Animals, Justus-Liebig-University, D-35392 Giessen, Germany 2,3Division of Microbiology2 and Division of Immunology & Pathology3, Institute for Animal Health, Compton Laboratory, Compton, Berkshire RG20 7NN, UK
| | - Timothy S Wallis
- Institute for Hygiene and Infectious Diseases of Animals, Justus-Liebig-University, D-35392 Giessen, Germany 2,3Division of Microbiology2 and Division of Immunology & Pathology3, Institute for Animal Health, Compton Laboratory, Compton, Berkshire RG20 7NN, UK
| | - Mark P Stevens
- Institute for Hygiene and Infectious Diseases of Animals, Justus-Liebig-University, D-35392 Giessen, Germany 2,3Division of Microbiology2 and Division of Immunology & Pathology3, Institute for Animal Health, Compton Laboratory, Compton, Berkshire RG20 7NN, UK
| |
Collapse
|
37
|
Abstract
Direct evidence that Escherichia coli Shiga toxin (Stx) acts against bovine leukemia virus (BLV)-expressing cells was obtained. The active A subunit of Stx type 1 (StxA1) targeted a selected population of permeable cells expressing BLV and inhibited BLV replication in a culture of bovine peripheral blood mononuclear cells. Cells were cultured with and without StxA1, and at various times cells expressing BLV were identified by being stained with MW1 monoclonal antibody specific for the BLV protein gp51. Before culture, permeable cells were tagged by uptake of one of the following: acetoxymethyl of 2',7'-bis-(2-carboxyethyl)-5-(and 6)-carboxyfluorescein (BCECF), BCECF conjugated to 70-kDa dextran, or 70-kDa dextran conjugated to fluorescein. The tagged cells costaining with anti-gp51 were selectively eliminated in StxA1-treated cultures. Electron microscopy analysis of purified B lymphocytes showed sharply reduced numbers of BLV particles in StxA1-treated cultures.
Collapse
Affiliation(s)
- Witold A Ferens
- Department of Microbiology, Molecular Biology and Biochemistry, University of Idaho, Moscow, Idaho 83844-3052, USA
| | | | | |
Collapse
|
38
|
Menge C, Stamm I, Blessenohl M, Wieler LH, Baljer G. Verotoxin 1 from Escherichia coli affects Gb3/CD77+ bovine lymphocytes independent of interleukin-2, tumor necrosis factor-alpha, and interferon-alpha. Exp Biol Med (Maywood) 2003; 228:377-86. [PMID: 12671182 DOI: 10.1177/153537020322800408] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Verotoxin (VT)-induced immunomodulation has been implicated in the ability of VT-producing Escherichia coli (VTEC) to cause persistent infections in cattle. VT1, also referred to as Shiga toxin 1, is a potent cytotoxin that modulates cytokine secretions and functions. This prompted the current investigation to examine whether the inhibiting effect of VT1 on bovine lymphocytes correlates with the expression of the cellular VT1 receptor Gb3/CD77 or is mediated instead via perturbation of cytokine secretion. Using blood mononuclear cells stimulated by mitogens as a model, VT1 significantly blocked lymphoblast transformation and proliferation in the BoCD8+ T cell and BoCD21+ B cell population. In contrast, VT1 dramatically reduced the number of viable Gb3/CD77+ blast cells within all subpopulations identified (BoCD2+, BoCD4+, BoCD8+, WC1+ [i.e., gammadelta T cells] BoCD21+, and BoCD25+). Similar effects of VT1 were observed when the culture medium was supplemented with selected cytokines: tumor necrosis factor-alpha-sensitizing endothelial cells against VT1, interferon-alpha (IFN-alpha) as bovine IFN-alpha receptors are partially homologous to the B-subunit of VT1, and interleukin-2 that is critical for lymphocyte proliferation in vitro. The addition of these cytokines was neither able to mimic nor to overcome the effects of VT1. Therefore, it is concluded that VT1 directly acts on bovine lymphocytes rather than inducing a cytokine-mediated effect. VT1 considerably affects all main bovine lymphocyte subpopulations, implicating that the immune system is a predominant target for VT1 in cattle.
Collapse
Affiliation(s)
- Christian Menge
- Institut für Hygiene und Infektionskrankheiten der Tiere, Justus-Liebig-Universität, D-35392 Giessen, Germany.
| | | | | | | | | |
Collapse
|
39
|
Brett KN, Ramachandran V, Hornitzky MA, Bettelheim KA, Walker MJ, Djordjevic SP. stx1c Is the most common Shiga toxin 1 subtype among Shiga toxin-producing Escherichia coli isolates from sheep but not among isolates from cattle. J Clin Microbiol 2003; 41:926-36. [PMID: 12624011 PMCID: PMC150265 DOI: 10.1128/jcm.41.3.926-936.2003] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2002] [Revised: 11/06/2002] [Accepted: 12/15/2002] [Indexed: 11/20/2022] Open
Abstract
Unlike Shiga toxin 2 (stx(2)) genes, most nucleotide sequences of Shiga toxin 1 (stx(1)) genes from Shiga toxin-producing Escherichia coli (STEC), Shigella dysenteriae, and several bacteriophages (H19B, 933J, and H30) are highly conserved. Consequently, there has been little incentive to investigate variants of stx(1) among STEC isolates derived from human or animal sources. However stx(1OX3), originally identified in an OX3:H8 isolate from a healthy sheep in Germany, differs from other stx(1) subtypes by 43 nucleotides, resulting in changes to 12 amino acid residues, and has been renamed stx(1c). In this study we describe the development of a PCR-restriction fragment length polymorphism (RFLP) assay that distinguishes stx(1c) from other stx(1) subtypes. The PCR-RFLP assay was used to study 378 stx(1)-containing STEC isolates. Of these, 207 were isolated from sheep, 104 from cattle, 45 from humans, 11 from meat, 5 from swine, 5 from unknown sources, and 1 from a cattle water trough. Three hundred fifty-five of the 378 isolates (93.9%) also possessed at least one other associated virulence gene (ehxA, eaeA, and/or stx(2)); the combination stx(1), stx(2), and ehxA was the most common (175 of 355 [49.3%]), and 90 of 355 (25.4%) isolates possessed eaeA. One hundred thirty-six of 207 (65.7%) ovine isolates possessed stx(1c) alone and belonged to 41 serotypes. Seventy-one of 136 (52.2%) comprised the common ovine serotypes O5:H(-), O128:H2, and O123:H(-). Fifty-two of 207 isolates (25.1%) possessed an stx(1) subtype; 27 (51.9%) of these belonged to serotype O91:H(-). Nineteen of 207 isolates (9.2%) contained both stx(1c) and stx(1) subtypes, and 14 belonged to serotype O75:H8. In marked contrast, 97 of 104 (93.3%) bovine isolates comprising 44 serotypes possessed an stx(1) subtype, 6 isolates possessed stx(1c), and the remaining isolate possessed both stx(1c) and stx(1) subtypes. Ten of 11 (91%) isolates cultured from meat in New Zealand possessed stx(1c) (serotypes O5:H(-), O75:H8/H40, O81:H26, O88:H25, O104:H(-)/H7, O123:H(-)/H10, and O128:H2); most of these serotypes are commonly recovered from the feces of healthy sheep. Serotypes containing stx(1) recovered from cattle rarely were the same as those isolated from sheep. Although an stx(1c) subtype was never associated with the typical enterohemorrhagic E. coli serogroups O26, O103, O111, O113, and O157, 13 human isolates possessed stx(1c). Of these, six isolates with serotype O128:H2 (from patients with diarrhea), four O5:H(-) isolates (from patients with hemolytic-uremic syndrome), and three isolates with serotypes O123:H(-) (diarrhea), OX3:H8 (hemolytic-uremic syndrome), and O81:H6 (unknown health status) represent serotypes that are commonly isolated from sheep.
Collapse
Affiliation(s)
- Kim N Brett
- Cooperative Research Centre for Cattle and Beef Quality, Elizabeth Macarthur Agricultural Institute, Camden, New South Wales 2570, Australia
| | | | | | | | | | | |
Collapse
|
40
|
Basu I, Ferens WA, Stone DM, Hovde CJ. Antiviral activity of shiga toxin requires enzymatic activity and is associated with increased permeability of the target cells. Infect Immun 2003; 71:327-34. [PMID: 12496182 PMCID: PMC143405 DOI: 10.1128/iai.71.1.327-334.2003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study expanded our earlier finding that Shiga toxin type 1 (Stx1) has activity against bovine leukemia virus (BLV) (W. A. Ferens and C. J. Hovde, Infect. Immun. 68:4462-4469, 2000). The Stx molecular motifs required for antiviral activity were identified, and a mechanism of Stx action on virally infected cells is suggested. Using inhibition of BLV-dependent spontaneous lymphocyte proliferation as a measure of antiviral activity, we showed that Stx2 had antiviral activity similar to that of Stx1. Enzymatic and antiviral activities of three StxA1 chain mutants deficient in enzymatic activity or aspects of receptor-mediated cytotoxicity were compared. Using protein synthesis inhibition to measure enzymatic activity, the mutant E167D was 300-fold less catalytically active than wild-type StxA1, was minimally active in antiviral assays, and did not inhibit synthesis of viral proteins. Two StxA1 mutants, A231D-G234E and StxA(1)1 (enzymatically active but unable to kill cells via the classical receptor-mediated route), had undiminished antiviral activity. Although binding of radiolabeled StxA1 to bovine blood cells or to free virus was not detected, flow cytometric analysis showed that the number of BLV-expressing cells were specifically reduced in cultures treated with Stx. These unique and rare lymphocytes were highly permeable to 40- and 70-kDa fluorescent dextrans, indicating that direct absorption of toxins by virus-expressing cells is a potential mechanism of target cell intoxication. These results support the hypothesis that Stx-producing Escherichia coli colonization of the gastrointestinal tract may benefit ruminant hosts by the ability of Stxs to exert antiviral activity.
Collapse
Affiliation(s)
- Indira Basu
- Department of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, Idaho 83844-3052, USA
| | | | | | | |
Collapse
|
41
|
Stevens MP, van Diemen PM, Dziva F, Jones PW, Wallis TS. Options for the control of enterohaemorrhagic Escherichia coli in ruminants. MICROBIOLOGY (READING, ENGLAND) 2002; 148:3767-3778. [PMID: 12480881 DOI: 10.1099/00221287-148-12-3767] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Mark P Stevens
- Division of Environmental Microbiology, Institute for Animal Health, Compton Laboratory, Compton, Newbury RG20 7NN, UK1
| | - Pauline M van Diemen
- Division of Environmental Microbiology, Institute for Animal Health, Compton Laboratory, Compton, Newbury RG20 7NN, UK1
| | - Francis Dziva
- Division of Environmental Microbiology, Institute for Animal Health, Compton Laboratory, Compton, Newbury RG20 7NN, UK1
| | - Philip W Jones
- Division of Environmental Microbiology, Institute for Animal Health, Compton Laboratory, Compton, Newbury RG20 7NN, UK1
| | - Timothy S Wallis
- Division of Environmental Microbiology, Institute for Animal Health, Compton Laboratory, Compton, Newbury RG20 7NN, UK1
| |
Collapse
|
42
|
Stevens MP, Marchès O, Campbell J, Huter V, Frankel G, Phillips AD, Oswald E, Wallis TS. Intimin, tir, and shiga toxin 1 do not influence enteropathogenic responses to shiga toxin-producing Escherichia coli in bovine ligated intestinal loops. Infect Immun 2002; 70:945-52. [PMID: 11796630 PMCID: PMC127712 DOI: 10.1128/iai.70.2.945-952.2002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shiga toxin-producing Escherchia coli (STEC) comprises a group of attaching and effacing (A/E) enteric pathogens of animals and humans. Natural and experimental infection of calves with STEC may result in acute enteritis or subclinical infection, depending on serotype- and host-specific factors. To quantify intestinal secretory and inflammatory responses to STEC in the bovine intestine, serotypes that are associated with human disease (O103:H2 and O157:H7) were introduced into ligated mid-ileal loops in gnotobiotic and conventional calves, and fluid accumulation and recruitment of radiolabeled neutrophils were measured after 12 h. STEC serotype O103:H2, but not serotype O157:H7, elicited strong enteropathogenic responses. To determine if the inflammatory response to STEC O103:H2 in calves requires Shiga toxin 1 or intimate bacterial attachment to the intestinal epithelium, defined mutations were made in the stx1, eae, and tir genes. Our data indicate that some STEC induce intestinal inflammatory responses in calves by a mechanism that is independent of A/E-lesion formation, intimin, or Shiga toxin 1. This may have implications for strategies to reduce STEC carriage in cattle.
Collapse
Affiliation(s)
- Mark P Stevens
- Division of Environmental Microbiology, Institute for Animal Health, Compton Laboratory, Berkshire, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Shiga toxin and Shiga-like toxins belong to the group of protein toxins which have a moiety that binds to the cell surface and another enzymatically active moiety that after entry into the cytosol inhibits protein synthesis enzymatically. The toxins can also cause apoptosis by mechanisms that may be different from the effect on the protein synthesis machinery. Shigella dysenteriae, some strains of Escherichia coli as well as other bacteria can secrete such toxins which cause serious complications during infections. An increasing knowledge about the toxins and their interactions with cells is important both for treatment of disease, and for elucidation of pathways of intracellular transport.
Collapse
Affiliation(s)
- K Sandvig
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway.
| |
Collapse
|