1
|
Tuffs SW, Dufresne K, Rishi A, Walton NR, McCormick JK. Novel insights into the immune response to bacterial T cell superantigens. Nat Rev Immunol 2024; 24:417-434. [PMID: 38225276 DOI: 10.1038/s41577-023-00979-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2023] [Indexed: 01/17/2024]
Abstract
Bacterial T cell superantigens (SAgs) are a family of microbial exotoxins that function to activate large numbers of T cells simultaneously. SAgs activate T cells by direct binding and crosslinking of the lateral regions of MHC class II molecules on antigen-presenting cells with T cell receptors (TCRs) on T cells; these interactions alter the normal TCR-peptide-MHC class II architecture to activate T cells in a manner that is independent of the antigen specificity of the TCR. SAgs have well-recognized, central roles in human diseases such as toxic shock syndrome and scarlet fever through their quantitative effects on the T cell response; in addition, numerous other consequences of SAg-driven T cell activation are now being recognized, including direct roles in the pathogenesis of endocarditis, bloodstream infections, skin disease and pharyngitis. In this Review, we summarize the expanding family of bacterial SAgs and how these toxins can engage highly diverse adaptive immune receptors. We highlight recent findings regarding how SAg-driven manipulation of the adaptive immune response may operate in multiple human diseases, as well as contributing to the biology and life cycle of SAg-producing bacterial pathogens.
Collapse
Affiliation(s)
- Stephen W Tuffs
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Karine Dufresne
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Aanchal Rishi
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Nicholas R Walton
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - John K McCormick
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
2
|
Schlievert PM. Staphylococcal Enterotoxin B and C Mutants and Vaccine Toxoids. Microbiol Spectr 2023; 11:e0444622. [PMID: 36815779 PMCID: PMC10101070 DOI: 10.1128/spectrum.04446-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/26/2023] [Indexed: 02/24/2023] Open
Abstract
Three mutants individually of both staphylococcal enterotoxins B and C were prepared by site-specific mutagenesis of enterotoxin amino acids that contact host T lymphocyte immune cell receptor sites (N23A, Q210A, and N23A/Q210A); these amino acids are shared between the two enterotoxins, and mutations reduce the interaction with the variable part of the β-chain of the T lymphocyte receptor. The mutant proteins, as expressed in Staphylococcus aureus RN4220, lacked biological toxicity as measured by the loss of (i) stimulation of rabbit splenocyte proliferation, (ii) pyrogenicity, and (iii) the ability to enhance the lethality of endotoxin shock, compared to wild-type enterotoxins. In addition, the mutants were able to vaccinate rabbits against pyrogenicity, the enhancement of endotoxin shock, and lethality in a pneumonia model when animals were challenged with methicillin-resistant S. aureus. Three vaccine injections (one primary and two boosters) protected rabbits for at least 3.5 months postvaccination when challenged with wild-type enterotoxins (last time point tested). These mutant proteins have the potential to function as toxoid vaccines against these two causes of nonmenstrual toxic shock syndrome (TSS). IMPORTANCE Toxic shock syndrome toxin 1 (TSST-1) and staphylococcal enterotoxins B and C cause the majority of cases of staphylococcal toxic shock syndrome. Previously, vaccine toxoids of TSST-1 have been prepared. In this study, vaccine toxoids of enterotoxins B and C were prepared. The toxoids lost biological toxicity but were able to vaccinate rabbits against lethal TSS.
Collapse
Affiliation(s)
- Patrick M. Schlievert
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
3
|
Abstract
Streptococcus pyogenes (group A Streptococcus) is a globally disseminated and human-adapted bacterial pathogen that causes a wide range of infections, including scarlet fever. Scarlet fever is a toxin-mediated disease characterized by the formation of an erythematous, sandpaper-like rash that typically occurs in children aged 5 to 15. This infectious disease is caused by toxins called superantigens, a family of highly potent immunomodulators. Although scarlet fever had largely declined in both prevalence and severity since the late 19th century, outbreaks have now reemerged in multiple geographical regions over the past decade. Here, we review recent findings that address the role of superantigens in promoting a fitness advantage for S. pyogenes within human populations and discuss how superantigens may be suitable targets for vaccination strategies.
Collapse
Affiliation(s)
- Jacklyn R. Hurst
- Department of Microbiology and Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Stephan Brouwer
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Mark J. Walker
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
- * E-mail: (MJW); (JKM)
| | - John K. McCormick
- Department of Microbiology and Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
- * E-mail: (MJW); (JKM)
| |
Collapse
|
4
|
Castro SA, Dorfmueller HC. A brief review on Group A Streptococcus pathogenesis and vaccine development. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201991. [PMID: 33959354 PMCID: PMC8074923 DOI: 10.1098/rsos.201991] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Streptococcus pyogenes, also known as Group A Streptococcus (GAS), is a Gram-positive human-exclusive pathogen, responsible for more than 500 000 deaths annually worldwide. Upon infection, GAS commonly triggers mild symptoms such as pharyngitis, pyoderma and fever. However, recurrent infections or prolonged exposure to GAS might lead to life-threatening conditions. Necrotizing fasciitis, streptococcal toxic shock syndrome and post-immune mediated diseases, such as poststreptococcal glomerulonephritis, acute rheumatic fever and rheumatic heart disease, contribute to very high mortality rates in non-industrialized countries. Though an initial reduction in GAS infections was observed in high-income countries, global outbreaks of GAS, causing rheumatic fever and acute poststreptococcal glomerulonephritis, have been reported over the last decade. At the same time, our understanding of GAS pathogenesis and transmission has vastly increased, with detailed insight into the various stages of infection, beginning with adhesion, colonization and evasion of the host immune system. Despite deeper knowledge of the impact of GAS on the human body, the development of a successful vaccine for prophylaxis of GAS remains outstanding. In this review, we discuss the challenges involved in identifying a universal GAS vaccine and describe several potential vaccine candidates that we believe warrant pursuit.
Collapse
Affiliation(s)
- Sowmya Ajay Castro
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Helge C. Dorfmueller
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| |
Collapse
|
5
|
SpeS: A Novel Superantigen and Its Potential as a Vaccine Adjuvant against Strangles. Int J Mol Sci 2020; 21:ijms21124467. [PMID: 32586031 PMCID: PMC7352279 DOI: 10.3390/ijms21124467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 11/16/2022] Open
Abstract
Bacterial superantigens (sAgs) are powerful activators of the immune response that trigger unspecific T cell responses accompanied by the release of proinflammatory cytokines. Streptococcus equi (S. equi) and Streptococcus zooepidemicus (S. zooepidemicus) produce sAgs that play an important role in their ability to cause disease. Strangles, caused by S. equi, is one of the most common infectious diseases of horses worldwide. Here, we report the identification of a new sAg of S. zooepidemicus, SpeS, and show that mutation of the putative T cell receptor (TCR)-binding motif (YAY to IAY) abrogated TCR-binding, whilst maintaining interaction with major histocompatibility complex (MHC) class II molecules. The fusion of SpeS and SpeSY39I to six S. equi surface proteins using two different peptide linkers was conducted to determine if MHC class II-binding properties were maintained. Proliferation assays, qPCR and flow cytometry analysis showed that SpeSY39I and its fusion proteins induced less mitogenic activity and interferon gamma expression when compared to SpeS, whilst retaining Antigen-Presenting Cell (APC)-binding properties. Our data suggest that SpeSY39I-surface protein fusions could be used to direct vaccine antigens towards antigen-presenting cells in vivo with the potential to enhance antigen presentation and improve immune responses.
Collapse
|
6
|
Pandey M, Calcutt A, Ozberk V, Chen Z, Croxen M, Powell J, Langshaw E, Mills JL, Jen FEC, McCluskey J, Robson J, Tyrrell GJ, Good MF. Antibodies to the conserved region of the M protein and a streptococcal superantigen cooperatively resolve toxic shock-like syndrome in HLA-humanized mice. SCIENCE ADVANCES 2019; 5:eaax3013. [PMID: 31517054 PMCID: PMC6726444 DOI: 10.1126/sciadv.aax3013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/07/2019] [Indexed: 05/04/2023]
Abstract
Invasive streptococcal disease (ISD) and toxic shock syndrome (STSS) result in over 160,000 deaths each year. We modelled these in HLA-transgenic mice infected with a clinically lethal isolate expressing Streptococcal pyrogenic exotoxin (Spe) C and demonstrate that both SpeC and streptococcal M protein, acting cooperatively, are required for disease. Vaccination with a conserved M protein peptide, J8, protects against STSS by causing a dramatic reduction in bacterial burden associated with the absence of SpeC and inflammatory cytokines in the blood. Furthermore, passive immunotherapy with antibodies to J8 quickly resolves established disease by clearing the infection and ablating the inflammatory activity of the M protein, which is further enhanced by addition of SpeC antibodies. Analysis of 77 recent isolates of Streptococcus pyogenes causing ISD, demonstrated that anti-J8 antibodies theoretically recognize at least 73, providing strong support for using antibodies to J8, with or without antibodies to SpeC, as a therapeutic approach.
Collapse
Affiliation(s)
- Manisha Pandey
- Institute for Glycomics, Griffith University, Gold Coast, Australia
- Corresponding author. (M.F.G.); (M.P.)
| | - Ainslie Calcutt
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Victoria Ozberk
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Zhenjun Chen
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Matthew Croxen
- Division of Diagnostic and Applied Microbiology, Department of Laboratory Medicine and Pathology, University of Alberta and ProvLab, Edmonton, Canada
| | - Jessica Powell
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Emma Langshaw
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Jamie-Lee Mills
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Freda E.-C. Jen
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Jenny Robson
- Sullivan and Nicolaides Pathology, Brisbane, Australia
| | - Gregory J. Tyrrell
- Division of Diagnostic and Applied Microbiology, Department of Laboratory Medicine and Pathology, University of Alberta and ProvLab, Edmonton, Canada
| | - Michael F. Good
- Institute for Glycomics, Griffith University, Gold Coast, Australia
- Corresponding author. (M.F.G.); (M.P.)
| |
Collapse
|
7
|
Shannon BA, McCormick JK, Schlievert PM. Toxins and Superantigens of Group A Streptococci. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0054-2018. [PMID: 30737912 PMCID: PMC11590448 DOI: 10.1128/microbiolspec.gpp3-0054-2018] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Indexed: 02/07/2023] Open
Abstract
Streptococcus pyogenes (i.e., the group A Streptococcus) is a human-restricted and versatile bacterial pathogen that produces an impressive arsenal of both surface-expressed and secreted virulence factors. Although surface-expressed virulence factors are clearly vital for colonization, establishing infection, and the development of disease, the secreted virulence factors are likely the major mediators of tissue damage and toxicity seen during active infection. The collective exotoxin arsenal of S. pyogenes is rivaled by few bacterial pathogens and includes extracellular enzymes, membrane active proteins, and a variety of toxins that specifically target both the innate and adaptive arms of the immune system, including the superantigens; however, despite their role in S. pyogenes disease, each of these virulence factors has likely evolved with humans in the context of asymptomatic colonization and transmission. In this article, we focus on the biology of the true secreted exotoxins of the group A Streptococcus, as well as their roles in the pathogenesis of human disease.
Collapse
Affiliation(s)
- Blake A Shannon
- Department of Microbiology and Immunology, Western University and The Lawson Health Research Institute, London, Ontario, Canada N6A 4V2
| | - John K McCormick
- Department of Microbiology and Immunology, Western University and The Lawson Health Research Institute, London, Ontario, Canada N6A 4V2
| | - Patrick M Schlievert
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
8
|
Ozberk V, Pandey M, Good MF. Contribution of cryptic epitopes in designing a group A streptococcal vaccine. Hum Vaccin Immunother 2018; 14:2034-2052. [PMID: 29873591 PMCID: PMC6150013 DOI: 10.1080/21645515.2018.1462427] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A successful vaccine needs to target multiple strains of an organism. Streptococcus pyogenes is an organism that utilizes antigenic strain variation as a successful defence mechanism to circumvent the host immune response. Despite numerous efforts, there is currently no vaccine available for this organism. Here we review and discuss the significant obstacles to vaccine development, with a focus on how cryptic epitopes may provide a strategy to circumvent the obstacles of antigenic variation.
Collapse
Affiliation(s)
- Victoria Ozberk
- a Griffith University, Institute for Glycomics , Gold Coast Campus, Queensland , Australia
| | - Manisha Pandey
- a Griffith University, Institute for Glycomics , Gold Coast Campus, Queensland , Australia
| | - Michael F Good
- a Griffith University, Institute for Glycomics , Gold Coast Campus, Queensland , Australia
| |
Collapse
|
9
|
Streptococcal pharyngitis and rheumatic heart disease: the superantigen hypothesis revisited. INFECTION GENETICS AND EVOLUTION 2018. [PMID: 29530660 DOI: 10.1016/j.meegid.2018.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Streptococcus pyogenes is a human-specific and globally prominent bacterial pathogen that despite causing numerous human infections, this bacterium is normally found in an asymptomatic carrier state. This review provides an overview of both bacterial and human factors that likely play an important role in nasopharyngeal colonization and pharyngitis, as well as the development of acute rheumatic fever and rheumatic heart disease. Here we highlight a recently described role for bacterial superantigens in promoting acute nasopharyngeal infection, and discuss how these immune system activating toxins could be crucial to initiate the autoimmune process in rheumatic heart disease.
Collapse
|
10
|
Nasopharyngeal infection by Streptococcus pyogenes requires superantigen-responsive Vβ-specific T cells. Proc Natl Acad Sci U S A 2017; 114:10226-10231. [PMID: 28794279 DOI: 10.1073/pnas.1700858114] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The globally prominent pathogen Streptococcus pyogenes secretes potent immunomodulatory proteins known as superantigens (SAgs), which engage lateral surfaces of major histocompatibility class II molecules and T-cell receptor (TCR) β-chain variable domains (Vβs). These interactions result in the activation of numerous Vβ-specific T cells, which is the defining activity of a SAg. Although streptococcal SAgs are known virulence factors in scarlet fever and toxic shock syndrome, mechanisms by how SAgs contribute to the life cycle of S. pyogenes remain poorly understood. Herein, we demonstrate that passive immunization against the Vβ8-targeting SAg streptococcal pyrogenic exotoxin A (SpeA), or active immunization with either wild-type or a nonfunctional SpeA mutant, protects mice from nasopharyngeal infection; however, only passive immunization, or vaccination with inactive SpeA, resulted in high-titer SpeA-specific antibodies in vivo. Mice vaccinated with wild-type SpeA rendered Vβ8+ T cells poorly responsive, which prevented infection. This phenotype was reproduced with staphylococcal enterotoxin B, a heterologous SAg that also targets Vβ8+ T cells, and rendered mice resistant to infection. Furthermore, antibody-mediated depletion of T cells prevented nasopharyngeal infection by S. pyogenes, but not by Streptococcus pneumoniae, a bacterium that does not produce SAgs. Remarkably, these observations suggest that S. pyogenes uses SAgs to manipulate Vβ-specific T cells to establish nasopharyngeal infection.
Collapse
|
11
|
Burlet E, HogenEsch H, Dunham A, Morefield G. Evaluation of the Potency, Neutralizing Antibody Response, and Stability of a Recombinant Fusion Protein Vaccine for Streptococcus pyogenes. AAPS J 2017; 19:875-881. [PMID: 28283948 DOI: 10.1208/s12248-017-0069-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/25/2017] [Indexed: 11/30/2022] Open
Abstract
Streptococcus pyogenes or group A streptococcus (GAS) is a Gram-positive bacterium that can cause a wide range of diseases, including pharyngitis, impetigo, scarlet fever, necrotizing fasciitis, rheumatic fever, and streptococcal toxic shock syndrome. Despite the increasing burden on global health caused by GAS, there is currently no licensed vaccine available. In this study, we evaluated immunogenicity, induction of neutralizing antibodies, and stability of a new recombinant fusion protein vaccine that targets infections from GAS. The recombinant fusion protein (SpeAB) combines inactive mutant forms of streptococcal pyrogenic exotoxin A (SpeA) and streptococcal pyrogenic exotoxin B (SpeB). The SpeAB vaccine evaluated in this study was adsorbed to an aluminum adjuvant and demonstrated robust immunogenicity, eliciting production of specific neutralizing antibodies against SpeA and SpeB, two major virulence factors of S. pyogenes. Stability studies suggest that the vaccine will retain immunogenicity for at least 2 years when stored at refrigerated temperatures. This novel vaccine shows great potential to provide protection against GAS infections and to reduce the burden of GAS disease globally.
Collapse
Affiliation(s)
- E Burlet
- VaxForm, LLC, Bethlehem, Pennsylvania, USA
| | - H HogenEsch
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, USA
| | - A Dunham
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, USA
| | | |
Collapse
|
12
|
Gandhi GD, Krishnamoorthy N, Motal UMA, Yacoub M. Towards developing a vaccine for rheumatic heart disease. Glob Cardiol Sci Pract 2017; 2017:e201704. [PMID: 28971103 PMCID: PMC5621712 DOI: 10.21542/gcsp.2017.4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Rheumatic heart disease (RHD) is the most serious manifestations of rheumatic fever, which is caused by group A Streptococcus (GAS or Streptococcus pyogenes) infection. RHD is an auto immune sequelae of GAS pharyngitis, rather than the direct bacterial infection of the heart, which leads to chronic heart valve damage. Although antibiotics like penicillin are effective against GAS infection, improper medical care such as poor patient compliance, overcrowding, poverty, and repeated exposure to GAS, leads to acute rheumatic fever and RHD. Thus, efforts have been put forth towards developing a vaccine. However, a potential global vaccine is yet to be identified due to the widespread diversity of S. pyogenes strains and cross reactivity of streptococcal proteins with host tissues. In this review, we discuss the available vaccine targets of S. pyogenes and the significance of in silico approaches in designing a vaccine for RHD.
Collapse
Affiliation(s)
- Geethanjali Devadoss Gandhi
- Division of Cardiovascular Research, Sidra Medical and Research Center, Qatar Foundation, Doha, Qatar.,Division of Experimental Genetics, Sidra Medical and Research Center, Doha, Qatar
| | - Navaneethakrishnan Krishnamoorthy
- Division of Cardiovascular Research, Sidra Medical and Research Center, Qatar Foundation, Doha, Qatar.,Division of Experimental Genetics, Sidra Medical and Research Center, Doha, Qatar.,Heart Science Centre, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Ussama M Abdel Motal
- Division of Cardiovascular Research, Sidra Medical and Research Center, Qatar Foundation, Doha, Qatar
| | - Magdi Yacoub
- Division of Cardiovascular Research, Sidra Medical and Research Center, Qatar Foundation, Doha, Qatar.,Heart Science Centre, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
13
|
Status of research and development of vaccines for Streptococcus pyogenes. Vaccine 2016; 34:2953-2958. [DOI: 10.1016/j.vaccine.2016.03.073] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 03/09/2016] [Indexed: 11/23/2022]
|
14
|
Chronic superantigen exposure induces systemic inflammation, elevated bloodstream endotoxin, and abnormal glucose tolerance in rabbits: possible role in diabetes. mBio 2015; 6:e02554. [PMID: 25714716 PMCID: PMC4358007 DOI: 10.1128/mbio.02554-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Excessive weight and obesity are associated with the development of diabetes mellitus type 2 (DMII) in humans. They also pose high risks of Staphylococcus aureus colonization and overt infections. S. aureus causes a wide range of severe illnesses in both healthy and immunocompromised individuals. Among S. aureus virulence factors, superantigens are essential for pathogenicity. In this study, we show that rabbits that are chronically exposed to S. aureus superantigen toxic shock syndrome toxin-1 (TSST-1) experience impaired glucose tolerance, systemic inflammation, and elevated endotoxin levels in the bloodstream, all of which are common findings in DMII. Additionally, such DMII-associated findings are also seen through effects of TSST-1 on isolated adipocytes. Collectively, our findings suggest that chronic exposure to S. aureus superantigens facilitates the development of DMII, which may lead to therapeutic targeting of S. aureus and its superantigens. Obesity has a strong correlation with type 2 diabetes, in which fatty tissue, containing adipocytes, contributes to the development of the illness through altered metabolism and chronic inflammation. The human microbiome changes in persons with obesity and type 2 diabetes, including increases in Staphylococcus aureus colonization and overt infections. While the microbiome is essential for human wellness, there is little understanding of the role of microbes in obesity or the development of diabetes. Here, we demonstrate that the S. aureus superantigen toxic shock syndrome toxin-1 (TSST-1), an essential exotoxin in pathogenesis, induces inflammation, lipolysis, and insulin resistance in adipocytes both in vitro and in vivo. Chronic stimulation of rabbits with TSST-1 results in impaired systemic glucose tolerance, the hallmark finding in type 2 diabetes in humans, suggesting a role of S. aureus and its superantigens in the progression to type 2 diabetes.
Collapse
|
15
|
Moreland NJ, Waddington CS, Williamson DA, Sriskandan S, Smeesters PR, Proft T, Steer AC, Walker MJ, Baker EN, Baker MG, Lennon D, Dunbar R, Carapetis J, Fraser JD. Working towards a Group A Streptococcal vaccine: Report of a collaborative Trans-Tasman workshop. Vaccine 2014; 32:3713-20. [DOI: 10.1016/j.vaccine.2014.05.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 05/01/2014] [Indexed: 11/25/2022]
|
16
|
Kasper KJ, Zeppa JJ, Wakabayashi AT, Xu SX, Mazzuca DM, Welch I, Baroja ML, Kotb M, Cairns E, Cleary PP, Haeryfar SMM, McCormick JK. Bacterial superantigens promote acute nasopharyngeal infection by Streptococcus pyogenes in a human MHC Class II-dependent manner. PLoS Pathog 2014; 10:e1004155. [PMID: 24875883 PMCID: PMC4038607 DOI: 10.1371/journal.ppat.1004155] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 04/17/2014] [Indexed: 11/19/2022] Open
Abstract
Establishing the genetic determinants of niche adaptation by microbial pathogens to specific hosts is important for the management and control of infectious disease. Streptococcus pyogenes is a globally prominent human-specific bacterial pathogen that secretes superantigens (SAgs) as 'trademark' virulence factors. SAgs function to force the activation of T lymphocytes through direct binding to lateral surfaces of T cell receptors and class II major histocompatibility complex (MHC-II) molecules. S. pyogenes invariably encodes multiple SAgs, often within putative mobile genetic elements, and although SAgs are documented virulence factors for diseases such as scarlet fever and the streptococcal toxic shock syndrome (STSS), how these exotoxins contribute to the fitness and evolution of S. pyogenes is unknown. Here we show that acute infection in the nasopharynx is dependent upon both bacterial SAgs and host MHC-II molecules. S. pyogenes was rapidly cleared from the nasal cavity of wild-type C57BL/6 (B6) mice, whereas infection was enhanced up to ∼10,000-fold in B6 mice that express human MHC-II. This phenotype required the SpeA superantigen, and vaccination with an MHC -II binding mutant toxoid of SpeA dramatically inhibited infection. Our findings indicate that streptococcal SAgs are critical for the establishment of nasopharyngeal infection, thus providing an explanation as to why S. pyogenes produces these potent toxins. This work also highlights that SAg redundancy exists to avoid host anti-SAg humoral immune responses and to potentially overcome host MHC-II polymorphisms.
Collapse
Affiliation(s)
- Katherine J. Kasper
- Department of Microbiology and Immunology and the Centre for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Joseph J. Zeppa
- Department of Microbiology and Immunology and the Centre for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Adrienne T. Wakabayashi
- Department of Microbiology and Immunology and the Centre for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Stacey X. Xu
- Department of Microbiology and Immunology and the Centre for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Delfina M. Mazzuca
- Department of Microbiology and Immunology and the Centre for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Ian Welch
- Department of Animal Care and Veterinary Services, Western University, London, Ontario, Canada
| | - Miren L. Baroja
- Department of Microbiology and Immunology and the Centre for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| | - Malak Kotb
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Ewa Cairns
- Department of Microbiology and Immunology and the Centre for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- Department of Medicine, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - P. Patrick Cleary
- Department of Microbiology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - S. M. Mansour Haeryfar
- Department of Microbiology and Immunology and the Centre for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| | - John K. McCormick
- Department of Microbiology and Immunology and the Centre for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
17
|
Abstract
SUMMARY This review begins with a discussion of the large family of Staphylococcus aureus and beta-hemolytic streptococcal pyrogenic toxin T lymphocyte superantigens from structural and immunobiological perspectives. With this as background, the review then discusses the major known and possible human disease associations with superantigens, including associations with toxic shock syndromes, atopic dermatitis, pneumonia, infective endocarditis, and autoimmune sequelae to streptococcal illnesses. Finally, the review addresses current and possible novel strategies to prevent superantigen production and passive and active immunization strategies.
Collapse
|
18
|
Olive C, Batzloff MR, Toth I. Lipid core peptide technology and group A streptococcal vaccine delivery. Expert Rev Vaccines 2014; 3:43-58. [PMID: 14761243 DOI: 10.1586/14760584.3.1.43] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The antiphagocytic surface M protein of group A streptococcus has been widely studied as the major candidate antigen for a vaccine to prevent group A streptococcus infection. Approaches that have proven to be effective in animal models include the use of multi-epitope vaccines incorporating highly variable amino terminal serotypic determinants, those based on the carboxy terminal conserved region and combination vaccines incorporating both serotypic and conserved region determinants of the M protein. The use of lipid core peptide technology is at the forefront of this research in the quest to develop a broad-strain protective vaccine that can be delivered via the mucosal route, stimulating mucosal and systemic immunity. This review aims to cover the various strategies and technologies that have been investigated with regard to group A streptococcus vaccine design and development.
Collapse
Affiliation(s)
- Colleen Olive
- Co-operative Research Centre for Vaccine Technology, The Queensland Institute of Medical Research, PO Royal Brisbane Hospital, Brisbane, Queensland 4029, Australia.
| | | | | |
Collapse
|
19
|
Kotloff KL. Streptococcus group A vaccines. Vaccines (Basel) 2013. [DOI: 10.1016/b978-1-4557-0090-5.00061-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
20
|
Cole JN, Henningham A, Gillen CM, Ramachandran V, Walker MJ. Human pathogenic streptococcal proteomics and vaccine development. Proteomics Clin Appl 2012; 2:387-410. [PMID: 21136841 DOI: 10.1002/prca.200780048] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Gram-positive streptococci are non-motile, chain-forming bacteria commonly found in the normal oral and bowel flora of warm-blooded animals. Over the past decade, a proteomic approach combining 2-DE and MS has been used to systematically map the cellular, surface-associated and secreted proteins of human pathogenic streptococcal species. The public availability of complete streptococcal genomic sequences and the amalgamation of proteomic, genomic and bioinformatic technologies have recently facilitated the identification of novel streptococcal vaccine candidate antigens and therapeutic agents. The objective of this review is to examine the constituents of the streptococcal cell wall and secreted proteome, the mechanisms of transport of surface and secreted proteins, and describe the current methodologies employed for the identification of novel surface-displayed proteins and potential vaccine antigens.
Collapse
Affiliation(s)
- Jason N Cole
- School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | | | | | | | | |
Collapse
|
21
|
Spaulding AR, Lin YC, Merriman JA, Brosnahan AJ, Peterson ML, Schlievert PM. Immunity to Staphylococcus aureus secreted proteins protects rabbits from serious illnesses. Vaccine 2012; 30:5099-109. [PMID: 22691432 DOI: 10.1016/j.vaccine.2012.05.067] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Revised: 05/23/2012] [Accepted: 05/25/2012] [Indexed: 10/28/2022]
Abstract
Staphylococcus aureus causes significant illnesses throughout the world, including toxic shock syndrome (TSS), pneumonia, and infective endocarditis. Major contributors to S. aureus illnesses are secreted virulence factors it produces, including superantigens and cytolysins. This study investigates the use of superantigens and cytolysins as staphylococcal vaccine candidates. Importantly, 20% of humans and 50% of rabbits in our TSS model cannot generate antibody responses to native superantigens. We generated three TSST-1 mutants; G31S/S32P, H135A, and Q136A. All rabbits administered these TSST-1 toxoids generated strong antibody responses (titers>10,000) that neutralized native TSST-1 in TSS models, both in vitro and in vivo. These TSST-1 mutants lacked detectable residual toxicity. Additionally, the TSST-1 mutants exhibited intrinsic adjuvant activity, increasing antibody responses to a second staphylococcal antigen (β-toxin). This effect may be due to TSST-1 mutants binding to the immune co-stimulatory molecule CD40. The superantigens TSST-1 and SEC and the cytolysin α-toxin are known to contribute to staphylococcal pneumonia. Immunization of rabbits against these secreted toxins provided complete protection from highly lethal challenge with a USA200 S. aureus strain producing all three exotoxins; USA200 strains are common causes of staphylococcal infections. The same three exotoxins plus the cytolysins β-toxin and γ-toxin contribute to infective endocarditis and sepsis caused by USA200 strains. Immunization against these five exotoxins protected rabbits from infective endocarditis and lethal sepsis. These data suggest that immunization against toxoid proteins of S. aureus exotoxins protects from serious illnesses, and concurrently superantigen toxoid mutants provide endogenous adjuvant activity.
Collapse
Affiliation(s)
- Adam R Spaulding
- Department of Microbiology, Medical School, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Ogawa T, Terao Y, Sakata H, Okuni H, Ninomiya K, Ikebe K, Maeda Y, Kawabata S. Epidemiological characterization of Streptococcus pyogenes isolated from patients with multiple onsets of pharyngitis. FEMS Microbiol Lett 2011; 318:143-51. [DOI: 10.1111/j.1574-6968.2011.02252.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
23
|
Progress in the development of effective vaccines to prevent selected gram-positive bacterial infections. Am J Med Sci 2010; 340:218-25. [PMID: 20697258 DOI: 10.1097/maj.0b013e3181e939ab] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Infections caused by virulent Gram-positive bacteria, such as Staphylococcus aureus, group B streptococci and group A streptococci, remain significant causes of morbidity and mortality despite progress in antimicrobial therapy. Despite significant advances in the understanding of the pathogenesis of infection caused by these organisms, there are only limited strategies to prevent infection. In this article, we review efforts to develop safe and effective vaccines that would prevent infections caused by these 3 pathogens.
Collapse
|
24
|
A single, engineered protein therapeutic agent neutralizes exotoxins from both Staphylococcus aureus and Streptococcus pyogenes. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:1781-9. [PMID: 20861327 DOI: 10.1128/cvi.00277-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Staphylococcus aureus and Streptococcus pyogenes secrete exotoxins that act as superantigens, proteins that cause hyperimmune reactions by binding the variable domain of the T-cell receptor beta chain (Vβ), leading to stimulation of a large fraction of the T-cell repertoire. To develop potential neutralizing agents, we engineered Vβ mutants with high affinity for the superantigens staphylococcal enterotoxin B (SEB), SEC3, and streptococcal pyrogenic exotoxin A (SpeA). Unexpectedly, the high-affinity Vβ mutants generated against SEB cross-reacted with SpeA to a greater extent than they did with SEC3, despite greater sequence similarity between SEB and SEC3. Likewise, the Vβ mutants generated against SpeA cross-reacted with SEB to a greater extent than with SEC3. The structural basis of the high affinity and cross-reactivity was examined by single-site mutational analyses. The cross-reactivity seems to involve only one or two toxin residues. Soluble forms of the cross-reactive Vβ regions neutralized both SEB and SpeA in vivo, suggesting structure-based strategies for generating high-affinity neutralizing agents that can cross-react with multiple exotoxins.
Collapse
|
25
|
Steer AC, Batzloff MR, Mulholland K, Carapetis JR. Group A streptococcal vaccines: facts versus fantasy. Curr Opin Infect Dis 2010; 22:544-52. [PMID: 19797947 DOI: 10.1097/qco.0b013e328332bbfe] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW This review provides an overview of progress of the development of group A streptococcal (GAS) vaccines with a focus on recent advances. RECENT FINDINGS Historically, GAS vaccine development has focused on the N-terminus of the M protein, which ultimately led to successful phase I/II clinical trials of a 26-valent recombinant M protein vaccine in 2004-2005. More recently, interest in antigens conserved among most, if not all, group A streptococci has increased. However, no vaccines containing these antigens have reached clinical trials. Three strategies have been used to develop conserved antigen vaccine candidates: use of the conserved region of the M protein; use of well described virulence factors as antigens, including streptococcal C5a peptidase, streptococcal carbohydrate, fibronectin-binding proteins, cysteine protease and streptococcal pili; and use of reverse vaccinology to identify novel antigens. SUMMARY Several vaccine candidates against GAS infection are in varying stages of preclinical and clinical development. Although there is great hope that one of these vaccine candidates will reach licensure in the next decade, only one, the multivalent N-terminal vaccine, has entered clinical trials in the last 30 years. Although strong advocacy for GAS vaccine development is important, there remains an urgent need to institute available public health control measures against GAS diseases globally, particularly in developing countries.
Collapse
Affiliation(s)
- Andrew C Steer
- Centre for International Child Health, University of Melbourne, Melbourne, Victoria, Australia.
| | | | | | | |
Collapse
|
26
|
Kotloff KL. The prospect of vaccination against group A beta-hemolytic streptococci. Curr Infect Dis Rep 2008; 10:192-9. [PMID: 18510880 DOI: 10.1007/s11908-008-0032-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Group A streptococcus is a widespread human pathogen that causes a broad spectrum of human disease. The persistent high burden and severity of illness in developing and industrialized countries speaks to the need for a safe and effective vaccine. Modern approaches to vaccine construction include M protein type-specific vaccines, vaccines utilizing conserved M antigens, and vaccines based on other conserved surface-expressed or secreted antigens. Vaccine candidates in various stages of development offer promise for prevention of Group A streptococcal infections and their sequelae.
Collapse
Affiliation(s)
- Karen L Kotloff
- Division of Infectious Disease and Tropical Pediatrics, Department of Pediatrics, Division of Geographic Medicine, Department of Medicine, Center for Vaccine Development, University of Maryland School of Medicine, 685 West Baltimore Street, HSF 480, Baltimore, MD 21201, USA.
| |
Collapse
|
27
|
Dale JB. Current status of group A streptococcal vaccine development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 609:53-63. [PMID: 18193657 DOI: 10.1007/978-0-387-73960-1_5] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
We now have a much more detailed understanding of the molecular pathogenesis of GAS infections. These discoveries have led to the identification of several vaccine candidates which are in various stages of development. One of the leading candidate antigens is the surface M protein, which confers protection against infection in animal models. In addition, M antibodies in human serum correlate with protection against infection with the homologous serotype of GAS. Molecular techniques have been used to genetically engineer highly complex multivalent M protein-based vaccines that appear to be free of potentially harmful tissue crossreactive epitopes. A 26-valent vaccine has been shown to be well-tolerated and immunogenic in adult volunteers and is now being considered for pediatric trials, which is the primary target group for the vaccine. Ongoing efforts are now addressing the epidemiology of GAS infections in developing countries so that new vaccines can be designed to prevent the infections that may trigger ARF and RHD. Successful deployment of safe and effective vaccines to prevent GAS infections and their complications could potentially have a significant impact on the health of millions of people around the world.
Collapse
Affiliation(s)
- James B Dale
- University of Tennessee Health Science Center, Memphis 38104, USA.
| |
Collapse
|
28
|
Kotloff KL. Streptococcus group A vaccines. Vaccines (Basel) 2008. [DOI: 10.1016/b978-1-4160-3611-1.50062-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
29
|
Lloyd C, Menon T. speA and speC toxin genes among group A streptococcus isolates from school children in Chennai, India. J Med Microbiol 2007; 56:1574-1575. [PMID: 17965365 DOI: 10.1099/jmm.0.47147-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Charmaine Lloyd
- Department of Microbiology, Dr A. L. Mudaliar Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai 600113, Tamil Nadu, India
| | - Thangam Menon
- Department of Microbiology, Dr A. L. Mudaliar Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai 600113, Tamil Nadu, India
| |
Collapse
|
30
|
Liu M, Zhu H, Zhang J, Lei B. Active and passive immunizations with the streptococcal esterase Sse protect mice against subcutaneous infection with group A streptococci. Infect Immun 2007; 75:3651-7. [PMID: 17502395 PMCID: PMC1932925 DOI: 10.1128/iai.00038-07] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The human pathogen group A Streptococcus (GAS) produces many secreted proteins that play important roles in GAS pathogenesis, including hydrolases that degrade proteins and nucleic acids. This study targets another kind of hydrolase, carboxylic esterase, with the objectives of identifying GAS esterase and determining whether it is a protective antigen. The putative esterase gene SPy1718 was cloned, and the recombinant protein (Sse) was prepared. Sse was detected in GAS culture supernatant, and patients with streptococcal pharyngitis seroconverted to Sse, indicating that Sse was produced in vivo and in vitro. Sse hydrolyzes p-nitrophenyl butyrate, and the residue (178)Ser is critical for this esterase activity. There are two Sse variant complexes according to the available genome databases, consistent with the previous finding of two antigenic Sse variants. Complex I includes serotypes M1, M2, M3, M5, M6, M12, and M18, whereas M4, M28, and M49 belong to complex II. Sse variants share >98% identity in amino acid sequence within each complex but have about 37% variation between the two groups. Active immunization with M1 Sse significantly protects mice against lethal subcutaneous infection with virulent M1 and M3 strains and inhibits GAS invasion of mouse skin tissue. Passive immunization with anti-Sse antiserum also significantly protects mice against subcutaneous GAS infection, indicating that the protection is mediated by Sse-specific antibodies. The results suggest that Sse plays an important role in tissue invasion and is an antigen protective in subcutaneous infection against GAS strains of more than one serotype.
Collapse
Affiliation(s)
- Mengyao Liu
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, MT 59717, USA
| | | | | | | |
Collapse
|
31
|
Maripuu L, Eriksson A, Eriksson B, Pauksen K, Holm S, Norgren M. Dynamics of the immune response against extracellular products of group A streptococci during infection. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2006; 14:44-51. [PMID: 17093101 PMCID: PMC1797706 DOI: 10.1128/cvi.00271-06] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The immune response against the infecting group A streptococcus (GAS) extracellular products (EP) was determined in acute- and convalescent-phase sera from 75 patients with different clinical manifestations of GAS infection. All EP elicited a high proliferative response in human peripheral blood mononuclear cells. In patients with bacteremia, low neutralization in acute-phase sera was associated with development of streptococcal toxic shock syndrome. Lack of neutralization in acute-phase sera was more common in patients infected with the T1emm1 serotype. The majority of patients did not develop the ability to neutralize the mitogenic activity of their infecting isolate despite a significant increase in enzyme-linked immunosorbent assay titer in early convalescent-phase sera. In patients with the ability to neutralize GAS EP, the immune response remained high over at least 3 years. In contrast, the neutralization capacity conferred by intravenous immunoglobulin and/or plasma treatment disappeared within 3 months.
Collapse
Affiliation(s)
- Linda Maripuu
- Department of Clinical Bacteriology, Umeå University, 901 85 Umeå, Sweden
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Necrotising fasciitis is a rare but life-threatening infectious disease emergency. Delays in diagnosis and treatment are common, and mortality rates often exceed 30%. Successful management of this disease requires high clinical suspicion and aggressive action. The mainstays of therapy include early and wide surgical debridement, antibiotics and supportive care, with prompt surgical intervention. Adjunctive modalities, such as protein synthesis inhibitors, hyperbaric oxygen and intravenous immunoglobulin, may have a role, but their effectiveness remains unproven. New rapid diagnostic tools are emerging that promise to revolutionize early detection of necrotising fasciitis. Research into the molecular microbiology, especially regarding group A streptococcus, are providing novel insights into the pathogenesis of necrotising soft tissue infections and identifying future targets for rationally designed interventions.
Collapse
|
33
|
Young MH, Aronoff DM, Engleberg NC. Necrotizing fasciitis: pathogenesis and treatment. Expert Rev Anti Infect Ther 2006; 3:279-94. [PMID: 15918785 DOI: 10.1586/14787210.3.2.279] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Necrotizing fasciitis is a rapidly progressive, life-threatening infection and a true infectious disease emergency. Despite much clinical experience, the management of this disease remains suboptimal, with mortality rates remaining approximately 30%. Necrotizing fasciitis rarely presents with obvious signs and symptoms and delays in diagnosis enhance mortality. Therefore, successful patient care depends on the physician's acumen and index of suspicion. Prompt surgical debridement, intravenous antibiotics, fluid and electrolyte management, and analgesia are mainstays of therapy. Adjunctive clindamycin, hyperbaric oxygen therapy and intravenous immunoglobulin are frequently employed in the treatment of necrotizing fasciitis, but their efficacy has not been rigorously established. Improved understanding of the pathogenesis of necrotizing fasciitis has revealed new targets for rationally designed therapies to improve morbidity and mortality.
Collapse
Affiliation(s)
- Michael H Young
- Ann Arbor Veterans Affairs Hospital, Division of Infectious Diseases, Department of Internal Medicine, Ann Arbor, MI, USA.
| | | | | |
Collapse
|
34
|
Rodríguez-Ortega MJ, Norais N, Bensi G, Liberatori S, Capo S, Mora M, Scarselli M, Doro F, Ferrari G, Garaguso I, Maggi T, Neumann A, Covre A, Telford JL, Grandi G. Characterization and identification of vaccine candidate proteins through analysis of the group A Streptococcus surface proteome. Nat Biotechnol 2006; 24:191-7. [PMID: 16415855 DOI: 10.1038/nbt1179] [Citation(s) in RCA: 331] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Accepted: 11/18/2005] [Indexed: 11/08/2022]
Abstract
We describe a proteomic approach for identifying bacterial surface-exposed proteins quickly and reliably for their use as vaccine candidates. Whole cells are treated with proteases to selectively digest protruding proteins that are subsequently identified by mass spectrometry analysis of the released peptides. When applied to the sequenced M1_SF370 group A Streptococcus strain, 68 PSORT-predicted surface-associated proteins were identified, including most of the protective antigens described in the literature. The number of surface-exposed proteins varied from strain to strain, most likely as a consequence of different capsule content. The surface-exposed proteins of the highly virulent M23_DSM2071 strain included 17 proteins, 15 in common with M1_SF370. When 14 of the 17 proteins were expressed in E. coli and tested in the mouse for their capacity to confer protection against a lethal dose of M23_DSM2071, one new protective antigen (Spy0416) was identified. This strategy overcomes the difficulties so far encountered in surface protein characterization and has great potential in vaccine discovery.
Collapse
|
35
|
|
36
|
&NA;. Early identification and treatment fundamental for good outcome in children with toxic shock syndrome. DRUGS & THERAPY PERSPECTIVES 2005. [DOI: 10.2165/00042310-200521120-00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
37
|
Bisno AL, Rubin FA, Cleary PP, Dale JB. Prospects for a group A streptococcal vaccine: rationale, feasibility, and obstacles--report of a National Institute of Allergy and Infectious Diseases workshop. Clin Infect Dis 2005; 41:1150-6. [PMID: 16163634 DOI: 10.1086/444505] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Accepted: 06/22/2005] [Indexed: 11/03/2022] Open
Abstract
Infections due to group A streptococci (GAS) represent a public health problem of major proportions in both developing and developed countries. Currently available methods of prevention are either inadequate or ineffective, as attested to by the morbidity and mortality associated with this ubiquitous pathogen worldwide. Advances in molecular biology have shed new light on the pathogenesis of GAS infections and have identified a number of virulence factors as potential vaccine targets. Therefore, the National Institute of Allergy and Infectious Diseases convened an expert workshop in March 2004 to review the available data and to explore the microbiologic, immunologic, epidemiologic, and economic issues involved in development and implementation of a safe and effective GAS vaccine. Participants included scientists and clinicians involved in GAS research, as well as representatives of United States federal agencies (Centers for Disease Control and Prevention, Food and Drug Administration, Department of Defense, and National Institute of Allergy and Infectious Diseases), the World Health Organization, and the pharmaceutical industry. This report summarizes the deliberations of the workshop.
Collapse
Affiliation(s)
- Alan L Bisno
- University of Miami Miller School of Medicine, Miami, Florida 33125, USA.
| | | | | | | |
Collapse
|
38
|
Crum NF, Russell KL, Kaplan EL, Wallace MR, Wu J, Ashtari P, Morris DJ, Hale BR. Pneumonia outbreak associated with group a Streptococcus species at a military training facility. Clin Infect Dis 2005; 40:511-8. [PMID: 15712072 DOI: 10.1086/427502] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Accepted: 09/17/2004] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Although group A streptococci (GAS) infections are a major cause of morbidity and mortality, outbreaks of associated pneumonia are rare. We report an outbreak of GAS pneumonia that occurred at a US military training camp. METHODS Standard epidemiologic and laboratory procedures were used to characterize the outbreak and causative organism(s). A case-control study and determination of the prevalence of GAS infection among camp personnel were also performed. RESULTS A total of 162 of 4500 Marine Corps personnel were hospitalized for respiratory symptoms during the period of 1 November and 20 December 2002, and 127 (78%) had radiographically confirmed pneumonia. The attack rate was 1.6 cases per 100 person-months. Thirty-four (27%) of 127 patients with pneumonitis had definite or probable GAS pneumonia; an additional 22 (17.3%) were coinfected with GAS and another pathogen. Pathogens, in addition to GAS, included Chlamydia pneumoniae (27 patients), Mycoplasma pneumoniae (19), adenovirus (5), and Streptococcus pneumoniae (2). A survey revealed that the pharyngeal carriage rate of GAS among camp personnel was 16%. Molecular characterization of the GAS isolates found emm type 3, multilocus sequence type 15. The epidemic ended after administration of additional prophylaxis with a single dose of intramuscular benzathine penicillin (1.2 million U) or azithromycin (1 g orally). Because the number of days from the last penicillin injection was correlated with a positive throat culture result and the occurrence of pneumonia, the dosing interval of benzathine penicillin was shortened from every 28-35 days to every 21 days. CONCLUSIONS This is the largest outbreak of GAS pneumonia reported in >30 years. This outbreak emphasizes the potential for GAS to cause epidemics of severe infection and demonstrates the need for surveillance and consideration of appropriate antibiotic prophylaxis among particularly high-risk populations.
Collapse
Affiliation(s)
- Nancy F Crum
- Infectious Diseases Division, Clinical Investigation Dept., Naval Medical Center San Diego, CA 92134-1005, USA.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Toxic shock syndrome (TSS) is an acute, toxin-mediated illness, like endotoxic shock, and is characterized by fever, rash, hypotension, multiorgan involvement, and desquamation. TSS reflects the most severe form of the disease caused by Staphylococcus aureus and Streptococcus pyogenes. A case definition for staphylococcal TSS was well established in the early 1980s and helped in defining the epidemiology. Since the late 1980s, a resurgence of highly invasive streptococcal infections, including a toxic shock-like syndrome, was noted worldwide and a consensus case definition for streptococcal TSS was subsequently proposed in 1993. Both TSS and the toxic shock-like syndrome occur at a lower incidence in children than in adults. Changes in the manufacturing and use of tampons led to a decline in staphylococcal TSS over the past decade, while the incidence of nonmenstrual staphylococcal TSS increased. Nonmenstrual TSS and menstrual TSS are now reported with almost equal frequency. The incidence of streptococcal TSS remains constant after its resurgence, but varies with geographic location. Streptococcal TSS occurs most commonly following varicella or during the use of NSAIDs. Sites of infection in streptococcal TSS are much deeper than in staphylococcal TSS, such as infection caused by blunt trauma, and necrotizing fasciitis. Bacteremia is more common in streptococcal TSS than in staphylococcal TSS. Mortality associated with streptococcal TSS is 5-10% in children, much lower than in adults (30-80%), and is 3-5% for staphylococcal TSS in children.TSS is thought to be a superantigen-mediated disease. Toxins produced by staphylococci and streptococci act as superantigens that can activate the immune system by bypassing the usual antigen-mediated immune-response sequence. The host-pathogen interaction, virulence factors, and the absence or presence of host immunity determines the epidemiology, clinical syndrome, and outcome. Early recognition of this disease is important, because the clinical course is fulminant and the outcome depends on the prompt institution of therapy. Management of a child with TSS includes hemodynamic stabilization and appropriate antimicrobial therapy to eradicate the bacteria. Supportive therapy, aggressive fluid resuscitation, and vasopressors remain the main elements. An adjuvant therapeutic strategy may include agents that can block superantigens, such as intravenous immunoglobulin that contains superantigen neutralizing antibodies.
Collapse
Affiliation(s)
- Yu-Yu Chuang
- Department of Pediatrics, St. Mary's Hospital, LoTung, Taiwan.
| | | | | |
Collapse
|
40
|
Rajagopalan G, Sen MM, David CS. In vitro and in vivo evaluation of staphylococcal superantigen peptide antagonists. Infect Immun 2004; 72:6733-7. [PMID: 15501813 PMCID: PMC522998 DOI: 10.1128/iai.72.11.6733-6737.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Superantigen peptide antagonists failed to block T-cell activation and cytokine production as well as toxic shock induced by staphylococcal enterotoxin B (SEB) in HLA class II transgenic mice. They also failed to inhibit the binding of SEB to HLA class II molecules as well as activation of human T lymphocytes in vitro.
Collapse
Affiliation(s)
- Govindarajan Rajagopalan
- Department of Immunology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | |
Collapse
|
41
|
Affiliation(s)
- Karen L Kotloff
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
42
|
Han DP. Intravitreal human immune globulin in a rabbit model of Staphylococcus aureus toxin-mediated endophthalmitis: a potential adjunct in the treatment of endophthalmitis. TRANSACTIONS OF THE AMERICAN OPHTHALMOLOGICAL SOCIETY 2004; 102:305-20. [PMID: 15747765 PMCID: PMC1280107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
OBJECTIVES To test the feasibility of human immune globulin (IG, Gamimune N, 10%) as a new treatment for endophthalmitis, the ocular tolerance, distribution, and ability of intravitreal IG to attenuate the toxic effects of Staphylococcus aureus culture supernatant were evaluated in a rabbit model. METHODS Effects of intravitreally injected IG were assessed histologically and with Western blot analysis performed 1 to 5 days after injection. IG reactivity to products of S. aureus strain RN4220 was tested by Western blotting, using known toxins (beta hemolysin and toxic shock syndrome toxin-1) and a concentrated culture supernatant containing S. aureus exotoxins (pooled toxin, PT). Endophthalmitis was induced by intravitreal PT injection. For treatment, IG and PT were mixed and injected simultaneously, or IG was injected immediately after, or 6 hours after, PT injection. PT toxicity was graded clinically and histologically over 9 days. RESULTS IG persisted intravitreally at least 5 days, inducing no clinical inflammation and minimal mononuclear cell infiltration. In the endophthalmitis model, toxicity from PT was significantly reduced when IG was mixed with PT and injected simultaneously, or when IG was delivered immediately after PT. Only minimal clinically detectable reductions were observed when IG delivery was delayed 6 hours. CONCLUSIONS Intravitreal IG is well tolerated in the rabbit eye and attenuates the toxicity of culture supernatant containing S. aureus exotoxins. Because toxin elaboration likely occurs gradually in true infection, reduced effects observed with delayed treatment in this toxin-injected model do not preclude clinical application. IG may represent a novel adjunct in endophthalmitis treatment.
Collapse
Affiliation(s)
- Dennis P Han
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
43
|
Courtney HS, Hasty DL, Dale JB. Serum opacity factor (SOF) of Streptococcus pyogenes evokes antibodies that opsonize homologous and heterologous SOF-positive serotypes of group A streptococci. Infect Immun 2003; 71:5097-103. [PMID: 12933852 PMCID: PMC187301 DOI: 10.1128/iai.71.9.5097-5103.2003] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Serum opacity factor (SOF) is a protein expressed by Streptococcus pyogenes that opacifies mammalian serum. SOF is also a virulence factor of S. pyogenes, but it has not been previously shown to elicit a protective immune response. Herein, we report that SOF evokes bactericidal antibodies against S. pyogenes in humans, rabbits, and mice. Rabbit antiserum against purified recombinant SOF2 opsonized SOF-positive M type 2, 4, and 28 S. pyogenes in human blood but had no effect on SOF-negative M type 5 S. pyogenes. Furthermore, affinity-purified human antibodies against SOF2 also opsonized SOF-positive streptococci. A combination of antisera against M2 and SOF2 proteins was dramatically more effective in killing streptococci than either antiserum alone, indicating that antibodies against SOF2 enhance the opsonic efficiency of M protein antibodies. Mice tolerated an intravenous injection of 100 microg of SOF without overt signs of toxicity, and immunization with SOF protected mice against challenge infections with M type 2 S. pyogenes. These data indicate that SOF evokes opsonic antibodies that may protect against infections by SOF-positive serotypes of group A streptococci and suggest that different serotypes of SOF have common epitopes that may be useful vaccine candidates to protect against group A streptococcal infections.
Collapse
Affiliation(s)
- Harry S Courtney
- Veterans Affairs Medical Center and Department of Medicine, University of Tennessee, Memphis, Tennessee 38104, USA.
| | | | | |
Collapse
|
44
|
Carra JH, Welcher BC, Schokman RD, David CS, Bavari S. Mutational effects on protein folding stability and antigenicity: the case of streptococcal pyrogenic exotoxin A. Clin Immunol 2003; 108:60-8. [PMID: 12865072 DOI: 10.1016/s1521-6616(03)00058-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The influence of mutationally induced changes in protein folding on development of effective neutralizing antibodies during vaccination remains largely unexplored. In this study, we probed how mutational substitutions of streptococcal pyrogenic exotoxin A (SPEA), a model bacterial superantigen, affect native conformational stability and antigenicity. Stability changes for the toxin variants were determined using circular dichroism and fluorescence measurements, and scanning calorimetry. Self-association was assayed by dynamic light scattering. Inactivated SPEA proteins containing particular combinations of mutations elicited antibodies in HLA-DQ8 transgenic mice that neutralized SPEA superantigenicity in vitro, and protected animals from lethal toxin challenge. However, a highly destabilized cysteine-free mutant of SPEA did not provide effective immunity, nor did an irreversibly denatured version of an otherwise effective mutant protein. These results suggest that protein conformation plays a significant role in generating effective neutralizing antibodies to this toxin, and may be an important factor to consider in vaccine design.
Collapse
Affiliation(s)
- John H Carra
- United States Army Medical Research Institute of Infectious Diseases, Department of Cell Biology and Biochemistry, 1425 Porter Street, Frederick, MD 21702, USA.
| | | | | | | | | |
Collapse
|
45
|
O'Brien KL, Beall B, Barrett NL, Cieslak PR, Reingold A, Farley MM, Danila R, Zell ER, Facklam R, Schwartz B, Schuchat A. Epidemiology of invasive group a streptococcus disease in the United States, 1995-1999. Clin Infect Dis 2002; 35:268-76. [PMID: 12115092 DOI: 10.1086/341409] [Citation(s) in RCA: 274] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2002] [Revised: 03/15/2002] [Indexed: 11/04/2022] Open
Abstract
Severe invasive group A streptococcal (GAS) disease is believed to have reemerged during the past 10-20 years. We conducted active, laboratory, population-based surveillance in 5 US states (total population, 13,214,992). From 1 July 1995 through 31 December 1999, we identified 2002 episodes of invasive GAS (3.5 cases per 100,000 persons). Rates varied by age (higher among those <2 or >/=65 years old), surveillance area, and race (higher among black individuals) but did not increase during the study period. The 5 most common emm types (1, 28, 12, 3, and 11) accounted for 49.2% of isolates; newly characterized emm types accounted for 8.9% of isolates. Older age; presence of streptococcal toxic shock syndrome, meningitis, or pneumonia; and infection with emm1 or emm3 were all independent predictors of death. We estimate that 9600-9700 cases of invasive GAS disease occur in the United States each year, resulting in 1100-1300 deaths.
Collapse
Affiliation(s)
- Katherine L O'Brien
- Respiratory Diseases Branch, Division of Bacterial and Mycotic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Artiushin SC, Timoney JF, Sheoran AS, Muthupalani SK. Characterization and immunogenicity of pyrogenic mitogens SePE-H and SePE-I of Streptococcus equi. Microb Pathog 2002; 32:71-85. [PMID: 11812213 DOI: 10.1006/mpat.2001.0482] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two pyrogenic mitogens, SePE-H and SePE-I, were characterized in Streptococcus equi, the cause of equine strangles. SePE-H and SePE-I have molecular masses of 27.5 and 29.5 kDa, respectively, and each is almost identical to its counterpart in Streptococcus pyogenes M1. Both genes are adjacent to a gene encoding a phage muramidase of 49.7 kDa and are located immediately downstream from a phage genomic sequence almost identical to a similar phage sequence in S. pyogenes M1. Strong mitogenic responses were elicited by both proteins from horse peripheral blood mononuclear cells. However, although both were pyrogenic for rabbits, only SePE-I was pyrogenic in ponies. Convalescent sera contained antibody to each mitogen and horses recovered from strangles or immunized with SePE-I were resistant to the pyrogenic effect of SePE-I. The immunogenicity of SePE-I suggests that it should be included in new generation strangles vaccines. In isolates of S. equi sepe-I and sepe-H were consistently present but they were absent from the closely related Streptococcus zooepidemicus, suggesting that phage mediated transfer was an important event in the formation of the clonal, more virulent, S. equi from its putative S. zooepidemicus ancestor.
Collapse
Affiliation(s)
- S C Artiushin
- Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA
| | | | | | | |
Collapse
|
47
|
McCormick JK, Yarwood JM, Schlievert PM. Toxic shock syndrome and bacterial superantigens: an update. Annu Rev Microbiol 2002; 55:77-104. [PMID: 11544350 DOI: 10.1146/annurev.micro.55.1.77] [Citation(s) in RCA: 485] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Toxic shock syndrome (TSS) is an acute onset illness characterized by fever, rash formation, and hypotension that can lead to multiple organ failure and lethal shock, as well as desquamation in patients that recover. The disease is caused by bacterial superantigens (SAGs) secreted from Staphylococcus aureus and group A streptococci. SAGs bypass normal antigen presentation by binding to class II major histocompatibility complex molecules on antigen-presenting cells and to specific variable regions on the beta-chain of the T-cell antigen receptor. Through this interaction, SAGs activate T cells at orders of magnitude above antigen-specific activation, resulting in massive cytokine release that is believed to be responsible for the most severe features of TSS. This review focuses on clinical and epidemiological aspects of TSS, as well as important developments in the genetics, biochemistry, immunology, and structural biology of SAGs. From the evolutionary relationships between these important toxins, we propose that there are five distinct groups of SAGs.
Collapse
Affiliation(s)
- J K McCormick
- Department of Microbiology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA.
| | | | | |
Collapse
|
48
|
Kazmi SU, Kansal R, Aziz RK, Hooshdaran M, Norrby-Teglund A, Low DE, Halim AB, Kotb M. Reciprocal, temporal expression of SpeA and SpeB by invasive M1T1 group a streptococcal isolates in vivo. Infect Immun 2001; 69:4988-95. [PMID: 11447177 PMCID: PMC98591 DOI: 10.1128/iai.69.8.4988-4995.2001] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The streptococcal pyrogenic exotoxins (Spes) play a central role in the pathogenesis of invasive group A streptococcal (GAS) infections. The majority of recent invasive GAS infections have been caused by an M1T1 strain that harbors the genes for several streptococcal superantigens, including speA, speB, speF, speG, and smeZ. However, considerable variation in the expression of Spe proteins among clonal M1 isolates has been found, and many of the speA-positive M1 strains do not produce detectable amounts of SpeA in vitro. This study was designed to test the hypothesis that speA gene expression can be induced in vivo. A mouse infection chamber model that allows sequential sampling of GAS isolates at various time points postinfection was developed and used to monitor the kinetics of Spe production in vivo. Micropore Teflon diffusion chambers were implanted subcutaneously in BALB/c mice, and after 3 weeks the pores became sealed with connective tissue and sterile fluid containing a white blood cell infiltrate accumulated inside the infection chambers. Representative clonal M1T1 isolates expressing no detectable SpeA were inoculated into the implanted chambers, and the expression of SpeA in the aspirated aliquots of the chamber fluid was analyzed on successive days postinfection. Expression of SpeA was detected in the chamber fluid as early as days 3 to 5 postinfection in most animals, with a significant increase in expression by day 7 in all infected mice. Isolates recovered from the chamber and grown in vitro continued to produce SpeA even after 21 passages in vitro, suggesting stable switch on of the speA gene. A temporal relation between the upregulation of SpeA expression and the downregulation of SpeB expression was observed in vivo. These data suggest that in vivo host and/or environmental signals induced speA gene expression and suppressed speB gene expression. This underscores the role of the host-pathogen interaction in regulating the expression of streptococcal virulence factors in vivo. The model described here should facilitate such studies.
Collapse
Affiliation(s)
- S U Kazmi
- Research Service, Veterans Affairs Medical Center, Memphis, Tennessee 38104, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
McCormick JK, Pragman AA, Stolpa JC, Leung DY, Schlievert PM. Functional characterization of streptococcal pyrogenic exotoxin J, a novel superantigen. Infect Immun 2001; 69:1381-8. [PMID: 11179302 PMCID: PMC98031 DOI: 10.1128/iai.69.3.1381-1388.2001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Streptococcal toxic shock syndrome (STSS) is a highly lethal, acute-onset illness that is a subset of invasive streptococcal disease. The majority of clinical STSS cases have been associated with the pyrogenic toxin superantigens (PTSAgs) streptococcal pyrogenic exotoxin A or C (SPE A or C), although cases have been reported that are not associated with either of these exotoxins. Recent genome sequencing projects have revealed a number of open reading frames that potentially encode proteins with similarity to SPEs A and C and to other PTSAgs. Here, we describe the cloning, expression, purification, and functional characterization of a novel exotoxin termed streptococcal pyrogenic exotoxin J (SPE J). Purified recombinant SPE J (rSPE J) expressed from Escherichia coli stimulated the expansion of both rabbit splenocytes and human peripheral blood lymphocytes, preferentially expanded human T cells displaying Vbeta2, -3, -12, -14, and -17 on their T-cell receptors, and was active at concentrations as low as 5 x 10(-6) microg/ml. Furthermore, rSPE J induced fevers in rabbits and was lethal in two models of STSS. Biochemically, SPE J had a predicted molecular weight of 24,444 and an isoelectric point of 7.7 and lacked the ability to form the cystine loop structure characteristic of many PTSAgs. SPE J shared 19.6, 47.1, 38.8, 18.1, 19.6, and 24.4% identity with SPEs A, C, G, and H, streptococcal superantigen, and streptococcal mitogenic exotoxin Z-2, respectively, and was immunologically cross-reactive with SPE C. The characterization of a seventh functional streptococcal PTSAg raises important questions relating to the evolution of the streptococcal superantigens.
Collapse
Affiliation(s)
- J K McCormick
- Department of Microbiology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
50
|
Abstract
The production of superantigenic exotoxins by Gram positive bacteria underlies the pathology of toxic shock syndrome. Future treatment strategies for superantigen-mediated diseases are likely to be directed at blocking the three-way interaction between superantigen, T cell receptor and major histocompatibility class II molecule, which inititates an excessive and disordered inflammatory response. In this article, we review the first published data to address one such strategy in the context of other recognised and experimental treatments.
Collapse
Affiliation(s)
- Martin Llewelyn
- Department of Infectious Diseases, Imperial College School of Medicine, Hammersmith Hospital, London, UK
| | - Jonathan Cohen
- Department of Infectious Diseases, Imperial College School of Medicine, Hammersmith Hospital, London, UK
| |
Collapse
|