1
|
Caven L, Carabeo R. Chlamydial YAP activation in host endocervical epithelial cells mediates pro-fibrotic paracrine stimulation of fibroblasts. mSystems 2023; 8:e0090423. [PMID: 37874141 PMCID: PMC10734534 DOI: 10.1128/msystems.00904-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/15/2023] [Indexed: 10/25/2023] Open
Abstract
IMPORTANCE Chronic or repeated infection of the female upper genital tract by C. trachomatis can lead to severe fibrotic sequelae, including tubal factor infertility and ectopic pregnancy. However, the molecular mechanisms underlying this effect are unclear. In this report, we define a transcriptional program specific to C. trachomatis infection of the upper genital tract, identifying tissue-specific induction of host YAP-a pro-fibrotic transcriptional cofactor-as a potential driver of infection-mediated fibrotic gene expression. Furthermore, we show that infected endocervical epithelial cells stimulate collagen production by fibroblasts and implicate chlamydial induction of YAP in this effect. Our results define a mechanism by which infection mediates tissue-level fibrotic pathology via paracrine signaling and identify YAP as a potential therapeutic target for the prevention of Chlamydia-associated scarring of the female genital tract.
Collapse
Affiliation(s)
- Liam Caven
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Rey Carabeo
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
2
|
Caven L, Carabeo R. Chlamydial YAP activation in host endocervical epithelial cells mediates pro-fibrotic paracrine stimulation of fibroblasts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542940. [PMID: 37398163 PMCID: PMC10312526 DOI: 10.1101/2023.05.30.542940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Infection of the female genital tract by Chlamydia trachomatis can produce severe fibrotic sequelae, including tubal factor infertility and ectopic pregnancy. While infection demonstrably mediates a pro-fibrotic response in host cells, it remains unclear if intrinsic properties of the upper genital tract exacerbate chlamydial fibrosis. The relatively sterile environment of the upper genital tract is primed for a pro-inflammatory response to infection, potentially enhancing fibrosis - however, subclinical C. trachomatis infections still develop fibrosis-related sequelae. Here, we compare infection-associated and steady-state gene expression of primary human cervical and vaginal epithelial cells. In the former, we observe enhanced baseline expression and infection-mediated induction of fibrosis-associated signal factors (e.g. TGFA , IL6 , IL8 , IL20 ), implying predisposition to Chlamydia -associated pro-fibrotic signaling. Transcription factor enrichment analysis identified regulatory targets of YAP, a transcriptional cofactor induced by infection of cervical epithelial cells, but not vaginal epithelial cells. YAP target genes induced by infection include secreted fibroblast-activating signal factors; therefore, we developed an in vitro model involving coculture of infected endocervical epithelial cells with uninfected fibroblasts. Coculture enhanced fibroblast expression of type I collagen, as well as prompting reproducible (albeit statistically insignificant) induction of α-smooth muscle actin. Fibroblast collagen induction was sensitive to siRNA-mediated YAP knockdown in infected epithelial cells, implicating chlamydial YAP activation in this effect. Collectively, our results present a novel mechanism of fibrosis initiated by Chlamydia, wherein infection-mediated induction of host YAP facilitates pro-fibrotic intercellular communication. Chlamydial YAP activation in cervical epithelial cells is thus a determinant of this tissue's susceptibility to fibrosis. Importance Chronic or repeated infection of the female upper genital tract by C. trachomatis can lead to severe fibrotic sequelae, including tubal factor infertility and ectopic pregnancy. However, the molecular mechanisms underlying this effect are unclear. In this report, we define a transcriptional program specific to C. trachomatis infection of the upper genital tract, identifying tissue-specific induction of host YAP - a pro-fibrotic transcriptional cofactor - as a potential driver of infection-mediated fibrotic gene expression. Further, we show that infected endocervical epithelial cells stimulate collagen production by fibroblasts, and implicate chlamydial induction of YAP in this effect. Our results define a mechanism by which infection mediates tissue-level fibrotic pathology via paracrine signaling, and identify YAP as a potential therapeutic target for prevention of Chlamydia -associated scarring of the female genital tract.
Collapse
|
3
|
Caven LT, Carabeo RA. The role of infected epithelial cells in Chlamydia-associated fibrosis. Front Cell Infect Microbiol 2023; 13:1208302. [PMID: 37265500 PMCID: PMC10230099 DOI: 10.3389/fcimb.2023.1208302] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 06/03/2023] Open
Abstract
Ocular, genital, and anogenital infection by the obligate intracellular pathogen Chlamydia trachomatis have been consistently associated with scar-forming sequelae. In cases of chronic or repeated infection of the female genital tract, infection-associated fibrosis of the fallopian tubes can result in ectopic pregnancy or infertility. In light of this urgent concern to public health, the underlying mechanism of C. trachomatis-associated scarring is a topic of ongoing study. Fibrosis is understood to be an outcome of persistent injury and/or dysregulated wound healing, in which an aberrantly activated myofibroblast population mediates hypertrophic remodeling of the basement membrane via deposition of collagens and other components of the extracellular matrix, as well as induction of epithelial cell proliferation via growth factor signaling. Initial study of infection-associated immune cell recruitment and pro-inflammatory signaling have suggested the cellular paradigm of chlamydial pathogenesis, wherein inflammation-associated tissue damage and fibrosis are the indirect result of an immune response to the pathogen initiated by host epithelial cells. However, recent work has revealed more direct routes by which C. trachomatis may induce scarring, such as infection-associated induction of growth factor signaling and pro-fibrotic remodeling of the extracellular matrix. Additionally, C. trachomatis infection has been shown to induce an epithelial-to-mesenchymal transition in host epithelial cells, prompting transdifferentiation into a myofibroblast-like phenotype. In this review, we summarize the field's current understanding of Chlamydia-associated fibrosis, reviewing key new findings and identifying opportunities for further research.
Collapse
Affiliation(s)
- Liam T. Caven
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Rey A. Carabeo
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
4
|
Dual Host-Intracellular Parasite Transcriptome of Enucleated Cells Hosting Leishmania amazonensis: Control of Half-Life of Host Cell Transcripts by the Parasite. Infect Immun 2020; 88:IAI.00261-20. [PMID: 32817329 DOI: 10.1128/iai.00261-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/10/2020] [Indexed: 12/20/2022] Open
Abstract
Enucleated cells or cytoplasts (cells whose nucleus is removed in vitro) represent an unexplored biological model for intracellular infection studies due to the abrupt interruption of nuclear processing and new RNA synthesis by the host cell in response to pathogen entry. Using enucleated fibroblasts hosting the protozoan parasite Leishmania amazonensis, we demonstrate that parasite multiplication and biogenesis of large parasitophorous vacuoles in which parasites multiply are independent of the host cell nucleus. Dual RNA sequencing of both host cytoplast and intracellular parasite transcripts identified host transcripts that are more preserved or degraded upon interaction with parasites and also parasite genes that are differentially expressed when hosted by nucleated or enucleated cells. Cytoplasts are suitable host cells, which persist in culture for more than 72 h and display functional enrichment of transcripts related to mitochondrial functions and mRNA translation. Crosstalk between nucleated host de novo gene expression in response to intracellular parasitism and the parasite gene expression to counteract or benefit from these host responses induces a parasite transcriptional profile favoring parasite multiplication and aerobic respiration, and a host-parasite transcriptional landscape enriched in host cell metabolic functions related to NAD, fatty acid, and glycolytic metabolism. Conversely, interruption of host nucleus-parasite cross talk by infection of enucleated cells generates a host-parasite transcriptional landscape in which cytoplast transcripts are enriched in phagolysosome-related pathway, prosurvival, and SerpinB-mediated immunomodulation. In addition, predictive in silico analyses indicated that parasite transcript products secreted within cytoplasts interact with host transcript products conserving the host V-ATPase proton translocation function and glutamine/proline metabolism. The collective evidence indicates parasite-mediated control of host cell transcripts half-life that is beneficial to parasite intracellular multiplication and escape from host immune responses. These findings will contribute to improved drug targeting and serve as database for L. amazonensis-host cell interactions.
Collapse
|
5
|
Li B, Xia Y, Hu B. Infection and atherosclerosis: TLR-dependent pathways. Cell Mol Life Sci 2020; 77:2751-2769. [PMID: 32002588 PMCID: PMC7223178 DOI: 10.1007/s00018-020-03453-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 12/15/2022]
Abstract
Atherosclerotic vascular disease (ASVD) is a chronic process, with a progressive course over many years, but it can cause acute clinical events, including acute coronary syndromes (ACS), myocardial infarction (MI) and stroke. In addition to a series of typical risk factors for atherosclerosis, like hyperlipidemia, hypertension, smoking and obesity, emerging evidence suggests that atherosclerosis is a chronic inflammatory disease, suggesting that chronic infection plays an important role in the development of atherosclerosis. Toll-like receptors (TLRs) are the most characteristic members of pattern recognition receptors (PRRs), which play an important role in innate immune mechanism. TLRs play different roles in different stages of infection of atherosclerosis-related pathogens such as Chlamydia pneumoniae (C. pneumoniae), periodontal pathogens including Porphyromonas gingivalis (P. gingivalis), Helicobacter pylori (H. pylori) and human immunodeficiency virus (HIV). Overall, activation of TLR2 and 4 seems to have a profound impact on infection-related atherosclerosis. This article reviews the role of TLRs in the process of atherosclerosis after C. pneumoniae and other infections and the current status of treatment, with a view to providing a new direction and potential therapeutic targets for the study of ASVD.
Collapse
Affiliation(s)
- Bowei Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuanpeng Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
6
|
Dyer DP, Salanga CL, Johns SC, Valdambrini E, Fuster MM, Milner CM, Day AJ, Handel TM. The Anti-inflammatory Protein TSG-6 Regulates Chemokine Function by Inhibiting Chemokine/Glycosaminoglycan Interactions. J Biol Chem 2016; 291:12627-12640. [PMID: 27044744 PMCID: PMC4933465 DOI: 10.1074/jbc.m116.720953] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Indexed: 12/14/2022] Open
Abstract
TNF-stimulated gene-6 (TSG-6) is a multifunctional protein secreted in response to pro-inflammatory stimuli by a wide range of cells, including neutrophils, monocytes, and endothelial cells. It has been shown to mediate anti-inflammatory and protective effects when administered in disease models, in part, by reducing neutrophil infiltration. Human TSG-6 inhibits neutrophil migration by binding CXCL8 through its Link module (Link_TSG6) and interfering with the presentation of CXCL8 on cell-surface glycosaminoglycans (GAGs), an interaction that is vital for the function of many chemokines. TSG-6 was also found to interact with chemokines CXCL11 and CCL5, suggesting the possibility that it may function as a broad specificity chemokine-binding protein, functionally similar to those encoded by viruses. This study was therefore undertaken to explore the ability of TSG-6 to regulate the function of other chemokines. Herein, we demonstrate that Link_TSG6 binds chemokines from both the CXC and CC families, including CXCL4, CXCL12, CCL2, CCL5, CCL7, CCL19, CCL21, and CCL27. We also show that the Link_TSG6-binding sites on chemokines overlap with chemokine GAG-binding sites, and that the affinities of Link_TSG6 for these chemokines (KD values 1–85 nm) broadly correlate with chemokine-GAG affinities. Link_TSG6 also inhibits chemokine presentation on endothelial cells not only through a direct interaction with chemokines but also by binding and therefore masking the availability of GAGs. Along with previous work, these findings suggest that TSG-6 functions as a pluripotent regulator of chemokines by modulating chemokine/GAG interactions, which may be a major mechanism by which TSG-6 produces its anti-inflammatory effects in vivo.
Collapse
Affiliation(s)
- Douglas P Dyer
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0684; Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, Scotland, United Kingdom
| | - Catherina L Salanga
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0684
| | - Scott C Johns
- Medical and Research Sections, Veterans Affairs San Diego Healthcare System, La Jolla, California 92093; Department of Medicine, Division of Pulmonary and Critical Care, University of California, San Diego, La Jolla, California 92093
| | - Elena Valdambrini
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, United Kingdom; Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Mark M Fuster
- Medical and Research Sections, Veterans Affairs San Diego Healthcare System, La Jolla, California 92093; Department of Medicine, Division of Pulmonary and Critical Care, University of California, San Diego, La Jolla, California 92093
| | - Caroline M Milner
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, United Kingdom.
| | - Anthony J Day
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, United Kingdom; Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom.
| | - Tracy M Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093-0684.
| |
Collapse
|
7
|
Abstract
Chlamydia pneumoniae, an obligate intracellular bacterial pathogen, has long been investigated as a potential developmental or exacerbating factor in various pathologies. Its unique lifestyle and ability to disseminate throughout the host while persisting in relative safety from the immune response has placed this obligate intracellular pathogen in the crosshairs as a potentially mitigating factor in chronic inflammatory diseases. Many animal model and human correlative studies have been performed to confirm or deny a role for C. pneumoniae infection in these disorders. In some cases, antibiotic clinical trials were conducted to prove a link between bacterial infections and atherosclerosis. In this review, we detail the latest information regarding the potential role that C. pneumoniae infection may have in chronic inflammatory diseases.
Collapse
Affiliation(s)
- Rebecca A Porritt
- Division of Pediatric Infectious Diseases and Immunology, Burns and Allen Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Timothy R Crother
- Division of Pediatric Infectious Diseases and Immunology, Burns and Allen Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| |
Collapse
|
8
|
Bernard Q, Gallo RL, Jaulhac B, Nakatsuji T, Luft B, Yang X, Boulanger N. Ixodes tick saliva suppresses the keratinocyte cytokine response to TLR2/TLR3 ligands during early exposure to Lyme borreliosis. Exp Dermatol 2015; 25:26-31. [PMID: 26307945 DOI: 10.1111/exd.12853] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2015] [Indexed: 12/28/2022]
Abstract
Ixodes hard tick induces skin injury by its sophisticated biting process. Its saliva plays a key role to enable an efficient blood meal that lasts for several days. We hypothesized that this feeding process may also be exploited by pathogens to facilitate their transmission, especially in the context of arthropod-borne diseases. To test this, we used Lyme borreliosis as a model. This bacterial infection is caused by Borrelia burgdorferi sensu lato transmitted by Ixodes. We co-incubated Borrelia with human keratinocytes in the presence of poly (I: C), a dsRNA TLR3 agonist generated by skin injury. This induced a strong cytokine response from human primary keratinocytes that was much greater than that induced by Borrelia alone. OspC, a TLR2/1 agonist and a major surface lipoprotein of Borrelia also amplified the process. Interestingly, tick saliva inhibited cytokine responses by keratinocytes to these TLR agonists. We propose that Borrelia uses the immunoprivileged site produced by tick saliva to facilitate its transmission.
Collapse
Affiliation(s)
- Quentin Bernard
- EA7290 Virulence bactérienne précoce: groupe borréliose de Lyme, Fédération de médecine Translationnelle et Faculté de Pharmacie de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Richard L Gallo
- Department of Dermatology, University of California, San Diego, CA, USA
| | - Benoît Jaulhac
- EA7290 Virulence bactérienne précoce: groupe borréliose de Lyme, Fédération de médecine Translationnelle et Faculté de Pharmacie de Strasbourg, Université de Strasbourg, Strasbourg, France.,Centre National de Reference Borrelia, Centre Hospitalier Universitaire, Strasbourg, France
| | - Teruaki Nakatsuji
- Department of Dermatology, University of California, San Diego, CA, USA
| | - Benjamin Luft
- Department of Medicine, State University of New York, Stony Brook, NY, USA
| | - Xiahoua Yang
- Department of Medicine, State University of New York, Stony Brook, NY, USA
| | - Nathalie Boulanger
- EA7290 Virulence bactérienne précoce: groupe borréliose de Lyme, Fédération de médecine Translationnelle et Faculté de Pharmacie de Strasbourg, Université de Strasbourg, Strasbourg, France.,Centre National de Reference Borrelia, Centre Hospitalier Universitaire, Strasbourg, France
| |
Collapse
|
9
|
Grayston JT, Belland RJ, Byrne GI, Kuo CC, Schachter J, Stamm WE, Zhong G. Infection with Chlamydia pneumoniae as a cause of coronary heart disease: the hypothesis is still untested. Pathog Dis 2015; 73:1-9. [PMID: 25854002 PMCID: PMC4492408 DOI: 10.1093/femspd/ftu015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/26/2014] [Accepted: 11/12/2014] [Indexed: 11/13/2022] Open
Abstract
Review of the possible role of Chlamydia pneumoniae infection in the pathogenesis of heart disease.
Collapse
Affiliation(s)
- J Thomas Grayston
- Department of Epidemiology, University of Washington, Box 357236, Seattle, WA 98195-7326, USA
| | - Robert J Belland
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee, Health Science Center, Memphis, TN 38163, USA
| | - Gerald I Byrne
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee, Health Science Center, Memphis, TN 38163, USA
| | - Cho Chou Kuo
- Department of Epidemiology, University of Washington, Box 357236, Seattle, WA 98195-7326, USA
| | - Julius Schachter
- Department of Laboratory Medicine, UCSF, San Francisco, CA 94143, USA
| | - Walter E Stamm
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Guangming Zhong
- Department of Microbiology and Immunology, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
10
|
Dlugosz A, Muschiol S, Zakikhany K, Assadi G, D'Amato M, Lindberg G. Human enteroendocrine cell responses to infection with Chlamydia trachomatis: a microarray study. Gut Pathog 2014; 6:24. [PMID: 24959205 PMCID: PMC4067063 DOI: 10.1186/1757-4749-6-24] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 06/12/2014] [Indexed: 12/20/2022] Open
Abstract
Background Enteroendocrine cells (EEC) are highly specialized cells producing signalling molecules vital to the normal functions of the gut. Recently, we showed altered protein distribution in Chlamydia infected EEC in vitro. The aim of this study was to perform a microarray analysis of the response pattern of EEC from both large and small bowel to infection in vitro, using Chlamydia trachomatis infection as a model. Methods Two human EEC lines: LCC-18, derived from a neuroendocrine colonic tumour, and CNDT-2, derived from a small intestinal carcinoid, were infected using cultured C. trachomatis serovar LGV II strain 434 (ATCC VR-902B). Penicillin G was used to induce persistent infection. We used microarray analysis (Affymetrix GeneChip®) for studying changes in gene expression at different stages of infection. Results Twenty-four hours after active and persistent infection, 66 and 411 genes in LCC-18 and 68 and 170 genes in CNDT-2 cells, respectively showed mean expression ratios >2-fold compared to non-infected cells. These genes encoded factors regulating apoptosis, cell differentiation, transcription regulation, cytokine activity, amine biosynthesis and vesicular transport. We found significant differences in gene transcription levels between persistently infected and non-infected cells in 10 genes coding for different solute carrier transporters (SLC) and in 5 genes related to endocrine function (GABARAPL1, GRIP1, DRD2, SYT5 and SYT7). Conclusions Infected EEC cells exhibit cell-type specific patterns related to vesicular transport, secretion and neurotransmitters. EEC play a pivotal role in regulation of gut motility and an impairment of enteroendocrine function can contribute to motility disorders.
Collapse
Affiliation(s)
- Aldona Dlugosz
- Karolinska Institutet, Department of Medicine, Division of Gastroenterology and Hepatology, Karolinska University Hospital, Gastrocentrum Huddinge K63, Stockholm, Sweden
| | - Sandra Muschiol
- Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology (MTC), Stockholm, Sweden
| | | | - Ghazaleh Assadi
- Karolinska Institutet, Department of Biosciences and Nutrition, Stockholm, Sweden
| | - Mauro D'Amato
- Karolinska Institutet, Department of Biosciences and Nutrition, Stockholm, Sweden
| | - Greger Lindberg
- Karolinska Institutet, Department of Medicine, Division of Gastroenterology and Hepatology, Karolinska University Hospital, Gastrocentrum Huddinge K63, Stockholm, Sweden
| |
Collapse
|
11
|
Hanski L, Vuorela PM. Recent advances in technologies for developing drugs againstChlamydia pneumoniae. Expert Opin Drug Discov 2014; 9:791-802. [DOI: 10.1517/17460441.2014.915309] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Humphrys MS, Creasy T, Sun Y, Shetty AC, Chibucos MC, Drabek EF, Fraser CM, Farooq U, Sengamalay N, Ott S, Shou H, Bavoil PM, Mahurkar A, Myers GSA. Simultaneous transcriptional profiling of bacteria and their host cells. PLoS One 2013; 8:e80597. [PMID: 24324615 PMCID: PMC3851178 DOI: 10.1371/journal.pone.0080597] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 10/14/2013] [Indexed: 02/06/2023] Open
Abstract
We developed an RNA-Seq-based method to simultaneously capture prokaryotic and eukaryotic expression profiles of cells infected with intracellular bacteria. As proof of principle, this method was applied to Chlamydia trachomatis-infected epithelial cell monolayers in vitro, successfully obtaining transcriptomes of both C. trachomatis and the host cells at 1 and 24 hours post-infection. Chlamydiae are obligate intracellular bacterial pathogens that cause a range of mammalian diseases. In humans chlamydiae are responsible for the most common sexually transmitted bacterial infections and trachoma (infectious blindness). Disease arises by adverse host inflammatory reactions that induce tissue damage & scarring. However, little is known about the mechanisms underlying these outcomes. Chlamydia are genetically intractable as replication outside of the host cell is not yet possible and there are no practical tools for routine genetic manipulation, making genome-scale approaches critical. The early timeframe of infection is poorly understood and the host transcriptional response to chlamydial infection is not well defined. Our simultaneous RNA-Seq method was applied to a simplified in vitro model of chlamydial infection. We discovered a possible chlamydial strategy for early iron acquisition, putative immune dampening effects of chlamydial infection on the host cell, and present a hypothesis for Chlamydia-induced fibrotic scarring through runaway positive feedback loops. In general, simultaneous RNA-Seq helps to reveal the complex interplay between invading bacterial pathogens and their host mammalian cells and is immediately applicable to any bacteria/host cell interaction.
Collapse
Affiliation(s)
- Michael S. Humphrys
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Todd Creasy
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Yezhou Sun
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Amol C. Shetty
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Marcus C. Chibucos
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Elliott F. Drabek
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Claire M. Fraser
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Umar Farooq
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Naomi Sengamalay
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Sandy Ott
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Huizhong Shou
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Patrik M. Bavoil
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, Maryland, United States of America
| | - Anup Mahurkar
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Garry S. A. Myers
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbial Pathogenesis, University of Maryland Dental School, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
13
|
Katara GK, Raj A, Kumar R, Avishek K, Kaushal H, Ansari NA, Bumb RA, Salotra P. Analysis of localized immune responses reveals presence of Th17 and Treg cells in cutaneous leishmaniasis due to Leishmania tropica. BMC Immunol 2013; 14:52. [PMID: 24267152 PMCID: PMC3840658 DOI: 10.1186/1471-2172-14-52] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 11/13/2013] [Indexed: 12/26/2022] Open
Abstract
Purpose The interaction between the Leishmania parasite and the host cell involves complex, multifaceted processes. The disease severity in cutaneous leishmaniasis (CL) is largely dependent on the causative species. Most of the information on immune responses in human CL is available with respect to L. major infection and is lacking for L. tropica species. In this study, we employed cytokine/chemokine/receptor membrane cDNA array to capture comprehensive picture of immuno-determinants in localized human tissue during L. tropica infection. Expression of selected molecules was evaluated by real time PCR in dermal lesion tissues at pre- and post treatment stages. Plasma IL-17 level was estimated by sandwich ELISA. Results The cDNA array analysis identified several immuno-determinants in tissue lesions of Indian CL including cytokines (IFN-γ, TNF-α, IL-1β, IL-10, IL-13), chemokines (IL-8, CCL2, CCL3, CCL4) and apoptotic molecules (Fas, TRAIL, IRF-1). Elevated mRNA levels of Th17 (IL-17, IL-23 and RORγt) and Treg (CD25, CTLA-4 and Foxp3) markers were observed in lesion tissues of CL patients compared to the control group, which subsided post treatment. Plasma IL-17 levels were found to be significantly higher in CL samples compared to controls. Conclusions In addition to defining comprehensive immunological responses inside lesion tissues of CL patients, our study demonstrated the presence of Th17 and Treg cells in CL caused by L. tropica.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Poonam Salotra
- National Institute of Pathology (ICMR), Safdarjung Hospital Campus, New Delhi 110029, India.
| |
Collapse
|
14
|
Seidl K, Solis NV, Bayer AS, Hady WA, Ellison S, Klashman MC, Xiong YQ, Filler SG. Divergent responses of different endothelial cell types to infection with Candida albicans and Staphylococcus aureus. PLoS One 2012; 7:e39633. [PMID: 22745797 PMCID: PMC3382135 DOI: 10.1371/journal.pone.0039633] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 05/27/2012] [Indexed: 01/18/2023] Open
Abstract
Endothelial cells are important in the pathogenesis of bloodstream infections caused by Candida albicans and Staphylococcus aureus. Numerous investigations have used human umbilical vein endothelial cells (HUVECs) to study microbial-endothelial cell interactions in vitro. However, the use of HUVECs requires a constant supply of umbilical cords, and there are significant donor-to-donor variations in these endothelial cells. The use of an immortalized endothelial cell line would obviate such difficulties. One candidate in this regard is HMEC-1, an immortalized human dermal microvascular endothelial cell line. To determine if HMEC-1 cells are suitable for studying the interactions of C. albicans and S. aureus with endothelial cells in vitro, we compared the interactions of these organisms with HMEC-1 cells and HUVECs. We found that wild-type C. albicans had significantly reduced adherence to and invasion of HMEC-1 cells as compared to HUVECs. Although wild-type S. aureus adhered to and invaded HMEC-1 cells similarly to HUVECs, an agr mutant strain had significantly reduced invasion of HMEC-1 cells, but not HUVECs. Furthermore, HMEC-1 cells were less susceptible to damage induced by C. albicans, but more susceptible to damage caused by S. aureus. In addition, HMEC-1 cells secreted very little IL-8 in response to infection with either organism, whereas infection of HUVECs induced substantial IL-8 secretion. This weak IL-8 response was likely due to the anatomic site from which HMEC-1 cells were obtained because infection of primary human dermal microvascular endothelial cells with C. albicans and S. aureus also induced little increase in IL-8 production above basal levels. Thus, C. albicans and S. aureus interact with HMEC-1 cells in a substantially different manner than with HUVECs, and data obtained with one type of endothelial cell cannot necessarily be extrapolated to other types.
Collapse
Affiliation(s)
- Kati Seidl
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
- University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Norma V. Solis
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Arnold S. Bayer
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
- David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Wessam Abdel Hady
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Steven Ellison
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
- Department of Biology, California State University-Dominguez Hills, Carson, California, United States of America
| | - Meredith C. Klashman
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Yan Q. Xiong
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
- David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Scott G. Filler
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
- David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
15
|
Karim AF, Chandra P, Chopra A, Siddiqui Z, Bhaskar A, Singh A, Kumar D. Express path analysis identifies a tyrosine kinase Src-centric network regulating divergent host responses to Mycobacterium tuberculosis infection. J Biol Chem 2011; 286:40307-19. [PMID: 21953458 PMCID: PMC3220550 DOI: 10.1074/jbc.m111.266239] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Global gene expression profiling has emerged as a major tool in understanding complex response patterns of biological systems to perturbations. However, a lack of unbiased analytical approaches has restricted the utility of complex microarray data to gain novel system level insights. Here we report a strategy, express path analysis (EPA), that helps to establish various pathways differentially recruited to achieve specific cellular responses under contrasting environmental conditions in an unbiased manner. The analysis superimposes differentially regulated genes between contrasting environments onto the network of functional protein associations followed by a series of iterative enrichments and network analysis. To test the utility of the approach, we infected THP1 macrophage cells with a virulent Mycobacterium tuberculosis strain (H37Rv) or the attenuated non-virulent strain H37Ra as contrasting perturbations and generated the temporal global expression profiles. EPA of the results provided details of response-specific and time-dependent host molecular network perturbations. Further analysis identified tyrosine kinase Src as the major regulatory hub discriminating the responses between wild-type and attenuated Mtb infection. We were then able to verify this novel role of Src experimentally and show that Src executes its role through regulating two vital antimicrobial processes of the host cells (i.e. autophagy and acidification of phagolysosome). These results bear significant potential for developing novel anti-tuberculosis therapy. We propose that EPA could prove extremely useful in understanding complex cellular responses for a variety of perturbations, including pathogenic infections.
Collapse
Affiliation(s)
- Ahmad Faisal Karim
- Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | | | | | | | | | |
Collapse
|
16
|
Human conjunctival transcriptome analysis reveals the prominence of innate defense in Chlamydia trachomatis infection. Infect Immun 2010; 78:4895-911. [PMID: 20823212 DOI: 10.1128/iai.00844-10] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Trachoma is the leading infectious cause of blindness and is endemic in 52 countries. There is a critical need to further our understanding of the host response during disease and infection, as millions of individuals are still at risk of developing blinding sequelae. Infection of the conjunctival epithelial cells by the causative bacterium, Chlamydia trachomatis, stimulates an acute host response. The main clinical feature is a follicular conjunctivitis that is incompletely defined at the tissue-specific gene expression and molecular levels. To explore the features of disease and the response to infection, we measured host gene expression in conjunctival samples from Gambian children with active trachoma and healthy controls. Genome-wide expression and transcription network analysis identified signatures characteristic of the expected infiltrating immune cell populations, such as neutrophils and T/B lymphocytes. The expression signatures were also significantly enriched for genes in pathways which regulate NK cell activation and cytotoxicity, antigen processing and presentation, chemokines, cytokines, and cytokine receptors. The data suggest that in addition to polymorph and adaptive cellular responses, NK cells may contribute to a significant component of the conjunctival inflammatory response to chlamydial infection.
Collapse
|
17
|
Gérard HC, Whittum-Hudson JA, Carter JD, Hudson AP. Molecular biology of infectious agents in chronic arthritis. Rheum Dis Clin North Am 2009; 35:1-19. [PMID: 19480994 DOI: 10.1016/j.rdc.2009.03.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Severe and chronic inflammatory arthritis sometimes follows urogenital infection with Chlamydia trachomatis or gastrointestinal infection with enteric bacterial pathogens. A similar clinical entity can be elicited by the respiratory pathogen Chlamydophila (Chlamydia) pneumoniae. Arthritogenesis does not universally require viable enteric bacteria in the joint. In arthritis induced by either of the chlamydial species, organisms are viable and metabolically active in the synovium. They exist in a "persistent" state of infection. Conventional antibiotic treatment of patients with Chlamydia-induced arthritis is largely ineffective. The authors outline the current understanding of the molecular genetic and biologic aspects underlying bacterially-induced joint pathogenesis, available information regarding host-pathogen interaction at that site, and several directions for future study to inform development of more effective therapies.
Collapse
Affiliation(s)
- Hervé C Gérard
- Department of Immunology and Microbiology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
18
|
Gene expression signatures characterizing the development of lymphocyte response during experimental Chlamydia pneumoniae infection. Microb Pathog 2009; 46:235-42. [PMID: 19486640 DOI: 10.1016/j.micpath.2009.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 01/21/2009] [Accepted: 01/22/2009] [Indexed: 01/18/2023]
Abstract
In this study experimental mouse model for Chlamydia pneumoniae infection was used to elucidate the nature of immune response developing during primary and secondary infection. First we examined the mononuclear cells from different lymphoid organs in BALB/c mice during C. pneumoniae infection and detected a strong lymphocyte influx into mediastinal lymph nodes (MLN). To further characterize the C. pneumoniae induced immune response the gene expression profiles of MLN derived lymphocytes was studied. To identify genes characteristic for reinfection we compared gene expression profiles during reinfection and primary infection and found 148 genes to be differentially regulated in CD19+ cells, 7 in CD4+ cells and 12 in CD8+ cells. A panel of these genes was selected to be confirmed by real-time RT-PCR. Genes related to interferon signaling like Ifit1, Ifit3, Gbp2, Irf7 and Usp18 were found to be upregulated when reinfection was compared to primary infection. In our study we were able to identify 8 genes that were differentially expressed between reinfection and primary infection in lymphocytes. These novel gene expression signatures provide new insights and clues to the nature of protective immunity established during experimental C. pneumoniae immunity.
Collapse
|
19
|
Savijoki K, Alvesalo J, Vuorela P, Leinonen M, Kalkkinen N. Proteomic analysis ofChlamydia pneumoniae-infected HL cells reveals extensive degradation of cytoskeletal proteins. ACTA ACUST UNITED AC 2008; 54:375-84. [DOI: 10.1111/j.1574-695x.2008.00488.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Müller N, Sattelmacher F, Lugert R, Gross U. Characterization and intracellular localization of putative Chlamydia pneumoniae effector proteins. Med Microbiol Immunol 2008; 197:387-96. [PMID: 18449565 PMCID: PMC2525848 DOI: 10.1007/s00430-008-0097-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Indexed: 11/27/2022]
Abstract
We here describe four proteins of Chlamydia pneumoniae, which might play a role in host-pathogen interaction. The hypothetical bacterial proteins CPn0708 and CPn0712 were detected in Chlamydia pneumoniae-infected host cells by indirect immunofluorescence tests with polyclonal antisera raised against the respective proteins. While CPn0708 was localized within the inclusion body, CPn0712 was identified in the inclusion membrane and in the surrounding host cell cytosol. CPn0712 colocalizes with actin, indicating its possible interaction with components of the cytoskeleton. Investigations on CPn0809 and CPn1020, two Chlamydia pneumoniae proteins previously described to be secreted into the host cell cytosol, revealed colocalization with calnexin, a marker for the ER. Neither CPn0712, CPn0809 nor CPn1020 were able to inhibit host cell apoptosis. Furthermore, transient expression of CPn0712, CPn0809 and CPn1020 by the host cell itself had no effect on subsequent infection with Chlamydia pneumoniae. However, microarray analysis of CPn0712-expressing host cells revealed six host cell genes which were regulated as in host cells infected with Chlamydia pneumoniae, indicating the principal usefulness of heterologous expression to study the effect of Chlamydia pneumoniae proteins on host cell modulation.
Collapse
Affiliation(s)
- Nicole Müller
- Institute for Medical Microbiology, University of Göttingen, Kreuzbergring 57, 37075, Göttingen, Germany
| | | | | | | |
Collapse
|
21
|
Abstract
Cardiovascular disease, resulting from atherosclerosis, is a leading cause of global morbidity and mortality. Genetic predisposition and classical environmental risk factors explain much of the attributable risk for cardiovascular events in populations, but other risk factors for the development and progression of atherosclerosis, which can be identified and modified, may be important therapeutic targets. Infectious agents, such as Chlamydia pneumoniae, have been proposed as contributory factors in the pathogenesis of atherosclerosis. In the present review, we consider the experimental evidence that has accumulated over the last 20 years evaluating the role of C. pneumoniae in atherosclerosis and suggest areas for future research in this field.
Collapse
|
22
|
Sahni SK. Endothelial cell infection and hemostasis. Thromb Res 2007; 119:531-49. [PMID: 16875715 DOI: 10.1016/j.thromres.2006.06.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 06/09/2006] [Accepted: 06/09/2006] [Indexed: 01/24/2023]
Abstract
As an important component of the vasculature, endothelial cell lining covers the inner surface of blood vessels and provides an active barrier interface between the vascular and perivascular compartments. In addition to maintaining vasomotor equilibrium and organ homeostasis and communicating with circulating blood cells, the vascular endothelium also serves as the preferred target for a number of infectious agents. This review article focuses on the roles of interactions between vascular endothelial cells and invading pathogens and resultant endothelial activation in the pathogenesis of important human diseases with viral and bacterial etiologies. In this perspective, the signal transduction events that regulate vascular inflammation and basis for endothelial cell tropism exhibited by certain specific viruses and pathogenic bacteria are also discussed.
Collapse
Affiliation(s)
- Sanjeev K Sahni
- Department of Medicine, Hematology-Oncology Unit, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| |
Collapse
|
23
|
Pappaert K, Ottevaere H, Thienpont H, Van Hummelen P, Desmet G. Diffusion limitation: a possible source for the occurrence of doughnut patterns on DNA microarrays. Biotechniques 2006; 41:609-16. [PMID: 17140119 DOI: 10.2144/000112293] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Doughnut shaped hybridization patterns on DNA microarrays are mainly allocated to spotting or drying artifacts. The present study reports on results obtained from four different approaches that when combined generate a better view on the occurrence of these patterns. This study points out that doughnuts are not only formed during the spotting and drying process, but the hybridization process itself can be considered as an important cause. A combination of computer simulations, theoretical, optical, and experimental techniques shows how ring-shaped hybridization patterns occur when diffusion-limited conditions are present during the hybridization process. The theoretical assumptions as well as the simulations indicate that, for the basic geometry of a microarray hybridization experiment, a large amount of binding molecules reach the spot from the sides (and not from above the spot), leading to a preferential binding on the rims of the spot. These patterns seem to occur especially during hybridization with short oligonucleotides that have a very high binding probability and fast hybridization kinetics. Longer target DNA molecules lead to a more evenly distributed intensity signal. Furthermore, the diffusion-limited conditions also lead to pronounced hybridization intensity patterns on the scale of a whole spot block, where larger intensities are obtained on the edges of the block compared with the spots laying in the center of the block.
Collapse
Affiliation(s)
- Kris Pappaert
- Department of Chemical Engineering, Transport Modeling & Bioanalytical Separation Science Group, Vrije Universiteit Brussels, Belgium.
| | | | | | | | | |
Collapse
|
24
|
Mehta PK, Karls RK, White EH, Ades EW, Quinn FD. Entry and intracellular replication of Mycobacterium tuberculosis in cultured human microvascular endothelial cells. Microb Pathog 2006; 41:119-24. [PMID: 16860530 DOI: 10.1016/j.micpath.2006.05.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Revised: 05/18/2006] [Accepted: 05/22/2006] [Indexed: 11/25/2022]
Abstract
Establishment of pulmonary Mycobacterium tuberculosis infection requires evasion of host innate defenses. In the lung alveoli, epithelial cells naturally resist uptake by the inhaled bacilli while macrophages patrol the epithelial surface and phagocytose foreign microbes. Alveolar microvascular endothelial cells, however, have not been examined as a potential point of direct interaction with the bacilli. It has been shown with other bacterial and viral lung pathogens that the lung endothelial cells are not only a point of interaction, but a source for intracellular replication and chronic infection by the pathogen. To investigate if endothelial cells are susceptible to M. tuberculosis infection, we examined attachment, internalization, and intracellular replication of M. tuberculosis bacilli in an immortalized human lung microvascular endothelial cell line (HULEC). By 6 h post-infection, 12% of infecting bacilli were associated with the HULEC monolayer cells. This was twice the association observed following a similar infection with cells from a human foreskin microvascular endothelial cell line (HMEC-1). As measured by survival after the addition of a high extracellular concentration of the aminoglycoside amikacin, approximately one-third of the associated bacilli were internalized and unavailable to the drug in both cell lines. Using electron microscopy, large numbers of bacilli were visible in the vacuoles of HULEC cells after 48 h post-infection; the presence of bacterial septa between adjacent mycobacteria suggests intracellular replication. These in vitro findings support the hypothesis that lung endothelial cells have the potential to participate in in vivo lung infections.
Collapse
Affiliation(s)
- Parmod K Mehta
- Division of Tuberculosis Elimination, National Center for AIDS, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | | | | | | | | |
Collapse
|
25
|
Chute JP, Muramoto GG, Dressman HK, Wolfe G, Chao NJ, Lin S. Molecular Profile and Partial Functional Analysis of Novel Endothelial Cell-Derived Growth Factors that Regulate Hematopoiesis. Stem Cells 2006; 24:1315-27. [PMID: 16373696 DOI: 10.1634/stemcells.2005-0029] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recent progress has been made in the identification of the osteoblastic cellular niche for hematopoietic stem cells (HSCs) within the bone marrow (BM). Attempts to identify the soluble factors that regulate HSC self-renewal have been less successful. We have demonstrated that primary human brain endothelial cells (HUBECs) support the ex vivo amplification of primitive human BM and cord blood cells capable of repopulating non-obese diabetic/severe combined immunodeficient repopulating (SCID) mice (SCID repopulating cells [SRCs]). In this study, we sought to characterize the soluble hematopoietic activity produced by HUBECs and to identify the growth factors secreted by HUBECs that contribute to this HSC-supportive effect. Extended noncontact HUBEC cultures supported an eight-fold increase in SRCs when combined with thrombopoietin, stem cell factor, and Flt-3 ligand compared with input CD34(+) cells or cytokines alone. Gene expression analysis of HUBEC biological replicates identified 65 differentially expressed, nonredundant transcripts without annotated hematopoietic activity. Gene ontology studies of the HUBEC transcriptome revealed a high concentration of genes encoding extracellular proteins with cell-cell signaling function. Functional analyses demonstrated that adrenomedullin, a vasodilatory hormone, synergized with stem cell factor and Flt-3 ligand to induce the proliferation of primitive human CD34(+)CD38(-)lin(-) cells and promoted the expansion of CD34(+) progenitors in culture. These data demonstrate the potential of primary HUBECs as a reservoir for the discovery of novel secreted proteins that regulate human hematopoiesis.
Collapse
Affiliation(s)
- John P Chute
- Division of Cellular Therapy, Department of Internal Medicine, Duke University, Durham, North Carolina 27710, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Chou HH, Yumoto H, Davey M, Takahashi Y, Miyamoto T, Gibson FC, Genco CA. Porphyromonas gingivalis fimbria-dependent activation of inflammatory genes in human aortic endothelial cells. Infect Immun 2005; 73:5367-78. [PMID: 16113252 PMCID: PMC1231143 DOI: 10.1128/iai.73.9.5367-5378.2005] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epidemiological and pathological studies have suggested that infection with the oral pathogen Porphyromonas gingivalis can potentiate atherosclerosis and human coronary heart disease. Furthermore, infection with invasive, but not noninvasive P. gingivalis has been demonstrated to accelerate atherosclerosis in apolipoprotein E-deficient (ApoE(-/-)) mice and to accelerate local inflammatory responses in aortic tissue. In the present study, using high-density oligonucleotide microarrays, we have defined the gene expression profile of human aortic endothelial cells (HAEC) after infection with invasive and noninvasive P. gingivalis. After infection of HAEC with invasive P. gingivalis strain 381, we observed the upregulation of 68 genes. Genes coding for the cytokines Gro2 and Gro3; the adhesion molecules intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule (VCAM)-1, and ELAM-1 (E-selectin); the chemokine interleukin-8 (IL-8); and the proinflammatory molecules IL-6 and cyclooxygenase-2 were among the most highly upregulated genes in P. gingivalis 381-infected HAEC compared to uninfected HAEC control. Increased mRNA levels for signaling molecules, transcriptional regulators, and cell surface receptors were also observed. Of note, only 4 of these 68 genes were also upregulated in HAEC infected with the noninvasive P. gingivalis fimA mutant. Reverse transcription-PCR, enzyme-linked immunosorbent assay, and fluorescence-activated cell sorting analysis confirmed the expression of ICAM-1, VCAM-1, E-/P-selectins, IL-6, and IL-8 in HAEC infected with invasive P. gingivalis. We also demonstrated that increased expression of ICAM-1 and VCAM-1 in aortic tissue of ApoE(-/-) mice orally challenged with invasive P. gingivalis but not with the noninvasive P. gingivalis fimA mutant by immunohistochemical analysis. Taken together, these results demonstrate that P. gingivalis fimbria-mediated invasion upregulates inflammatory gene expression in HAEC and in aortic tissue and indicates that invasive P. gingivalis infection accelerates inflammatory responses directly in the aorta.
Collapse
Affiliation(s)
- Hsin-Hua Chou
- School of Dentistry, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
High throughput and automation of nucleic acid analysis are required in order to exploit the information that has been accumulated from the Human Genome Project. Microfabricated analytical systems enable parallel sample processing, reduced analysis-times, low consumption of sample and reagents, portability, integration of various analytical procedures and automation. This review article discusses miniaturized analytical systems for nucleic acid amplification, separation by capillary electrophoresis, sequencing and hybridization. Microarrays are also covered as a new analytical tool for global analysis of gene expression. Thus. instead of studying the expression of a single gene or a few genes at a time we can now obtain the expression profiles of thousands of genes in a single experiment.
Collapse
Affiliation(s)
- Pierre J Obeid
- Department of Chemistry, University of Patras, Patras, Greece
| | | |
Collapse
|
28
|
Abstract
Cardiovascular disease is the most important cause of morbidity and mortality in developed countries, causing twice as many deaths as cancer in the USA. The major cardiovascular diseases, including coronary artery disease (CAD), myocardial infarction (MI), congestive heart failure (CHF) and common congenital heart disease (CHD), are caused by multiple genetic and environmental factors, as well as the interactions between them. The underlying molecular pathogenic mechanisms for these disorders are still largely unknown, but gene expression may play a central role in the development and progression of cardiovascular disease. Microarrays are high-throughput genomic tools that allow the comparison of global expression changes in thousands of genes between normal and diseased cells/tissues. Microarrays have recently been applied to CAD/MI, CHF and CHD to profile changes in gene expression patterns in diseased and non-diseased patients. This same technology has also been used to characterise endothelial cells, vascular smooth muscle cells and inflammatory cells, with or without various treatments that mimic disease processes involved in CAD/MI. These studies have led to the identification of unique subsets of genes associated with specific diseases and disease processes. Ongoing microarray studies in the field will provide insights into the molecular mechanism of cardiovascular disease and may generate new diagnostic and therapeutic markers.
Collapse
Affiliation(s)
- Stephen Archacki
- Center for Molecular Genetics, Department of Molecular Cardiology, Lerner Research Institute; Center for Cardiovascular Genetics, Department of Cardiovascular Medicine, The Cleveland Clinic Foundation, Cleveland, OH, USA
- Department of Biological, Geological and Environmental Sciences Cleveland State University, Cleveland, OH 44115, USA
| | - Qing Wang
- Center for Molecular Genetics, Department of Molecular Cardiology, Lerner Research Institute; Center for Cardiovascular Genetics, Department of Cardiovascular Medicine, The Cleveland Clinic Foundation, Cleveland, OH, USA
- Department of Biological, Geological and Environmental Sciences Cleveland State University, Cleveland, OH 44115, USA
| |
Collapse
|
29
|
Coombes BK, Hardwidge PR, Finlay BB. Interpreting the host-pathogen dialogue through microarrays. ADVANCES IN APPLIED MICROBIOLOGY 2004; 54:291-331. [PMID: 15251285 DOI: 10.1016/s0065-2164(04)54011-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Brian K Coombes
- Biotechnology Laboratory, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | |
Collapse
|
30
|
Tsirpanlis G. Chlamydia pneumoniae and Atherosclerosis: No Way-Out or Long Way? Kidney Blood Press Res 2004; 27:134-42. [PMID: 15114030 DOI: 10.1159/000078146] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Recently, Chlamydia pneumoniae is the microorganism frequently implicated in the infection-based inflammatory atherogenous hypothesis. Although in vitro experimental data and initial sero-epidemiologic, pathology-based studies and antibiotic trials supported this interesting hypothesis, later data are conflicting. Some confounding factors are the causes of uncertainty; lacking of standard methods for C. pneumoniae detection, co-existence of other atherosclerotic risk factors and anti-inflammatory effects of antibiotics used in clinical trials seem to be the principal ones. Standardization of methodology used, antibiotic trials with a different orientation-design and a vaccine preparation that eventually will be tested in clinical trials with a long follow-up, should provide a definite answer regarding the probability C. pneumoniae to be a main, a secondary or an irrelevant factor to atherosclerosis. Studies linking C. pneumoniae to inflammation and accelerated atherosclerosis in renal failure patients are accumulated but limitations are similar to the above mentioned.
Collapse
|
31
|
Prochnau D, Rödel J, Hartmann M, Straube E, Figulla HR. Growth factor production in human endothelial cells after Chlamydia pneumoniae infection. Int J Med Microbiol 2004; 294:53-7. [PMID: 15293454 DOI: 10.1016/j.ijmm.2003.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Seroepidemiological and histopathological studies have suggested a link of atherosclerosis with chronic Chlamydia pneumoniae infection. The present study was designed to examine the effect of C. pneumoniae on expression of basic fibroblast growth factor (bFGF) and platelet-derived growth factor (PDGF) in human endothelial cells. Using reverse transcription-polymerase chain reaction, immunoblotting and enzyme-linked immunosorbent assay we found stimulation of bFGF expression depending on the number of infecting bacteria and the time of infection as well. This stimulatory effect was diminished by heat and UV light treatment of the chlamydial inoculum, suggesting that viable bacteria but not bacterial LPS may be essential for eliciting this growth factor. In contrast, the expression of both PDGF-A and PDGF-B was not increased following C. pneumoniae infection. This study demonstrates that C. pneumoniae activates endothelial cells to produce bFGF, a growth factor which is linked to the development of atherosclerotic plaques.
Collapse
Affiliation(s)
- Dirk Prochnau
- Department of Internal Medicine/Cardiology, Friedrich-Schiller-University of Jena, Jena, Germany.
| | | | | | | | | |
Collapse
|
32
|
Campbell LA, Kuo CC. Chlamydia pneumoniae--an infectious risk factor for atherosclerosis? Nat Rev Microbiol 2004; 2:23-32. [PMID: 15035006 DOI: 10.1038/nrmicro796] [Citation(s) in RCA: 207] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cardiovascular disease, of which atherosclerosis is an important component, is the leading cause of death in the western world. Although there are well-defined risk factors for atherosclerosis, these factors do not account for all incidences of the disease. Because atherosclerotic processes are typified by chronic inflammatory responses, which are similar to those that are elicited by chronic infection, the role of infection in promoting or accelerating atherosclerosis has received renewed attention. This review focuses on the accumulating evidence that chronic infection with Chlamydia pneumoniae, a ubiquitous human respiratory pathogen, might contribute to atherosclerotic lesion progression.
Collapse
Affiliation(s)
- Lee Ann Campbell
- Department of Pathobiology, Box 357238, University of Washington, Seattle, Washington 98155, USA.
| | | |
Collapse
|
33
|
Gencay MMC, Tamm M, Glanville A, Perruchoud AP, Roth M. Chlamydia pneumoniae activates epithelial cell proliferation via NF-kappaB and the glucocorticoid receptor. Infect Immun 2003; 71:5814-22. [PMID: 14500503 PMCID: PMC201036 DOI: 10.1128/iai.71.10.5814-5822.2003] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chlamydia pneumoniae is an obligate intracellular eubacterium and a common cause of acute and chronic respiratory tract infections. This study was designed to show the effect of C. pneumoniae on transcription factor activation in epithelial cells. The activation of transcription factors by C. pneumoniae was determined in human epithelial cell lines (HL and Calu3) by electrophoretic DNA mobility shift assay, Western blotting, and luciferase reporter gene assay. The activation of transcription factors was further confirmed by immunostaining of C. pneumoniae-infected HL cells and mock-infected controls. The effect of transcription factors on C. pneumoniae-induced host cell proliferation was assessed by [(3)H]thymidine incorporation and direct cell counting in the presence and absence of antisense oligonucleotides targeting transcription factors or the glucocorticoid receptor (GR) antagonist RU486. The activation of the GR, CCAAT-enhancer binding protein (C/EBP), and NF-kappaB was induced within 1 to 6 h by C. pneumoniae. While the interleukin-6 promoter was not activated by C. pneumoniae, the GR-driven p21((Waf1/Cip1)) promoter was increased 2.5- to 3-fold over controls 24 h after infection. C. pneumoniae dose-dependently increased the DNA synthesis of the host cells 2.5- to 2.9-fold, which was partly inhibited either by RU486 or by NF-kappaB antisense oligonucleotides. Furthermore, we provide evidence that heat-inactivated C. pneumoniae does not cause a significant increase in cell proliferation. Our results demonstrate that C. pneumoniae activates C/EBP-beta, NF-kappaB, and the GR in infected cells. However, only NF-kappaB and the GR were involved in C. pneumoniae-induced proliferation of epithelial cells.
Collapse
Affiliation(s)
- Mikael M Cornelsen Gencay
- Department of Research, Pulmonary Cell Research, University Hospital Basel, Hebelstrasse 20, CH-40321 Basel, Switzerland.
| | | | | | | | | |
Collapse
|
34
|
Lugert R, Kuhns M, Polch T, Gross U. Expression and localization of type III secretion-related proteins of Chlamydia pneumoniae. Med Microbiol Immunol 2003; 193:163-71. [PMID: 14593477 DOI: 10.1007/s00430-003-0206-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2003] [Indexed: 11/28/2022]
Abstract
The entire developmental cycle of the obligate intracellular bacteria Chlamydia pneumoniae takes place within the inclusion body. As many gram negative bacteria, Chlamydia possess a type III-secretion system (TTSS), which allows them to target effector molecules into the host cell. The expression and localization of several proteins constituting the TTSS apparatus and of proteins supposed to be secreted by the TTSS have been investigated. For the TTSS-constituting proteins, we selected representatives such as YscN (ATPase), LcrE (putative "lid" of the TTSS) and LcrH1 (postulated to be a chaperone). Furthermore, we focused on the putative effector proteins IncA, IncB, IncC, Cpn0809 and Cpn1020. Expression of these proteins was detected by reverse transcriptase-PCR followed by immunoblot analysis using antisera that were generated against the corresponding recombinant proteins. Thereby, expression could be detected on the RNA and/or protein level. Intracellular localization of proteins under investigation was determined by immunofluorescence assays using the respective antisera. YscN was shown to be distributed equally throughout the inclusion body, whereas LcrE gave a more prominent staining of the inclusion membrane. IncA was detected mainly on the membrane of the inclusion body, whereas IncB and IncC were shown to be located within the inclusion. Immunofluorescence assays with antisera raised against Cpn0809 and Cpn1020 showed completely different labeling. Signals corresponding to Cpn0809 and Cpn1020 were distributed within the host cell rather than inside the inclusions. Taken together, the different localization patterns of the effector proteins indicate differences in function and interplay with the host cell.
Collapse
Affiliation(s)
- R Lugert
- Department of Bacteriology, University of Göttingen, Kreuzbergring 57, 37075 Göttingen, Germany
| | | | | | | |
Collapse
|
35
|
Abstract
TSG-6 expression is upregulated in many cell types in response to a variety of proinflammatory mediators and growth factors. This protein is detected in several inflammatory disease states (e.g. rheumatoid arthritis) and in the context of inflammation-like processes, such as ovulation, and is often associated with extracellular matrix remodelling. TSG-6 has anti-inflammatory and chondroprotective effects in various models of inflammation and arthritis, which suggest that it is a component of a negative feedback loop capable of downregulating the inflammatory response. Growing evidence also indicates that TSG-6 acts as a crucial factor in ovulation by influencing the expansion of the hyaluronan-rich cumulus extracellular matrix in the preovulatory follicle. TSG-6 is a member of the Link module superfamily and binds to hyaluronan (a vital component of extracellular matrix), as well as other glycosaminoglycans, via its Link module. In addition, TSG-6 forms both covalent and non-covalent complexes with inter-alpha-inhibitor (a serine protease inhibitor present at high levels in serum) and potentiates its anti-plasmin activity.
Collapse
Affiliation(s)
- Caroline M Milner
- MRC Immunochemistry Unit, Department of Biochemistry, South Parks Road, Oxford OX1 3QU, UK
| | | |
Collapse
|
36
|
Tsirpanlis G, Chatzipanagiotou S, Ioannidis A, Ifanti K, Bagos P, Lagouranis A, Poulopoulou C, Nicolaou C. The effect of viable Chlamydia pneumoniae on serum cytokines and adhesion molecules in hemodialysis patients. KIDNEY INTERNATIONAL. SUPPLEMENT 2003:S72-5. [PMID: 12694314 DOI: 10.1046/j.1523-1755.63.s84.42.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Chlamydia pneumoniae (Cp) induces the production of cytokines and adhesion molecules in infected host eukaryotic cells. The causes for pro-inflammatory cytokine and adhesion molecule increase in hemodialysis (HD) patients have not been fully elucidated. The possibility that, in this particularly atherosclerotic population, Cp, a microorganism implicated in the infectious-based inflammatory hypothesis of atherosclerosis' is also responsible for these molecules' increase is assessed in this study. METHODS In 130 stable HD patients, serum interleukin-1 beta (IL-1), interleukin-6, tumor necrosis factor alpha, interleukin-10, L-selectin, E-selectin, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 (VCAM-1) levels were determined. Cp presence was identified by inoculation of the patient's peripheral blood mononuclear cells (PBMCs) in Hep-2 cell lines and subsequent polymerase chain reaction (PCR) in DNA extracted from cell cultures, as well as by determination of serum IgG antibodies against Cp (IgGCp). RESULTS Patients, positive or negative for IgGCp, had no statistically significant differences in all molecules measured. Patients with viable Cp in PBMCs had higher serum levels of IL-1 and soluble VCAM-1 than negative ones for IgGCp (IL-1 6.87 +/- 7.35 vs. 2.34 +/- 1.47 pg/mL; P = 0.0009 and VCAM-1 1647.16 +/- 513.64 vs. 1162.14 +/- 546.83 ng/mL; P = 0.0115, respectively). Viable Cp in PBMCs remained a significant predictor factor for IL-1 and VCAM-1 in statistical analysis, when patients' characteristics and dialysis conditions were also evaluated. CONCLUSIONS Our results showed that some serum cytokine and adhesion molecule increase in HD patients could be attributed to viable Cp presence in PBMCs. These findings support the Cp-based inflammatory atherogenous hypothesis and add a better understanding of these molecules' increase in HD patients.
Collapse
|
37
|
Virgili F, Ambra R, Muratori F, Natella F, Majewicz J, Minihane AM, Rimbach G. Effect of oxidized low-density lipoprotein on differential gene expression in primary human endothelial cells. Antioxid Redox Signal 2003; 5:237-47. [PMID: 12716483 DOI: 10.1089/152308603764816596] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Oxidative modification of low-density lipoprotein (LDL) plays an important role in the initiation and progression of atherosclerosis. It has been proposed that the biological action of oxidized LDL (ox-LDL) may be partially attributed to its effect on a shift of the pattern of gene expression in endothelial cells. To examine the transcriptional response to ox-LDL, we applied cDNA array technology to cultured primary human endothelial cells challenged with oxidized human LDL. A twofold or greater difference in the expression of a particular gene was considered a significant difference in transcript abundance. Seventy-eight of the 588 genes analyzed were differentially expressed in response to the treatment. Ox-LDL significantly affected the expression of genes encoding for transcription factors, cell receptors, growth factors, adhesion molecules, extracellular matrix proteins, and enzymes involved in cholesterol metabolism. The alteration of the expression pattern of several genes was substantiated post hoc using RT-PCR. The experimental strategy identified several novel ox-LDL-sensitive genes associated with a "response to injury" providing a conceptual background to be utilized for future studies addressing the molecular basis of the early stages of atherogenesis.
Collapse
|
38
|
Abstract
Diseases caused by Chlamydia are based on intense and chronic inflammation elicited and maintained by reinfection or persistent infection. The traditional view in the field is that disease is mediated by antigen-dependent delayed-type hypersensitivity or autoimmunity. This immunological paradigm has served as the basis for years of chlamydial research but the mechanism or the antigen that causes pathology has yet to be unequivocally revealed. Recent research on responses elicited in Chlamydia-infected cells defines a new direction for our understanding of this microorganism-host interaction and provides the basis for a reassessment of disease mechanisms. Chlamydia-infected non-immune mammalian cells produce proinflammatory chemokines, cytokines, growth factors and other cellular modulators. This cellular response to infection supports an alternative hypothesis for chlamydial pathogenesis: the inflammatory processes of chlamydial pathogenesis are elicited by infected host cells and are necessary and sufficient to account for chronic and intense inflammation and the promotion of cellular proliferation, tissue remodeling and scarring, the ultimate cause of disease sequelae.
Collapse
Affiliation(s)
- Richard S Stephens
- Division of Infectious Diseases, School of Public Health, 140 Earl Warren Hall, University of California, Berkeley 94720, USA.
| |
Collapse
|
39
|
Aujame L, Burdin N, Vicari M. How microarrays can improve our understanding of immune responses and vaccine development. Ann N Y Acad Sci 2002; 975:1-23. [PMID: 12538150 DOI: 10.1111/j.1749-6632.2002.tb05937.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Luc Aujame
- Campus Mérieux, 69280 Marcy l'Etoile, France.
| | | | | |
Collapse
|
40
|
Abstract
Chlamydiae are obligate intracellular bacterial parasites that infect eukaryotic cells and live their entire life cycle within a cytoplasmic vacuole or inclusion. We have employed cDNA microarray and conventional biological approaches to study the pathogen-host cell interaction during C. pneumoniae infection of eukaryotic cells. Two host cell signaling pathways, MEK/ERK and PI 3-kinase/Akt, were activated within 5 and 20 minutes, respectively, following infection with chlamydiae. Pharmacological inhibition of these pathways blocked invasion of HEp2 cells indicating that activation of these pathways was required for infection. Rho family GTPase activity was essential for invasion, since the pan-Rho GTPase inhibitor, compactin, blocked infection of HEp2 cells. cDNA microarrays and reverse transcriptase PCR were used to study host cell and chlamydial gene expression during the replication cycle. Analysis of host cell gene expression following infection with C. pneumoniae indicated that genes coding for cytokines, growth factors, and signaling molecules were upregulated, as early as 2 hours postinfection. Analysis of chlamydial gene expression indicated a temporal regulation of transcription with distinct early-, mid-, and late-cycle classes of RNA transcripts. Newly discovered genes encoding three Ser/Thr protein kinases and one protein phosphatase were upregulated 6-12 hours postinfection. One protein kinase, designated CpnPK1, was first detected at 12 hours postinfection, accumulated in the inclusion throughout the replication cycle, and may be a type III effector molecule. An increased understanding of chlamydial host cell interactions, in particular the role of various chlamydial proteins in infection and identification of essential virulence factors should provide novel targets for the development of new antimicrobials.
Collapse
Affiliation(s)
- James B Mahony
- Department of Pathology and Molecular Medicine, McMaster University, Regional Virology and Chlamydiology Laboratory, St. Joseph's Healthcare, Hamilton, Ontario, Canada L8N 4A6.
| |
Collapse
|
41
|
Sakai S, Mantani N, Kogure T, Ochiai H, Shimada Y, Terasawa K. Gene expression of cell surface antigens in the early phase of murine influenza pneumonia determined by a cDNA expression array technique. Mediators Inflamm 2002; 11:359-61. [PMID: 12581500 PMCID: PMC1781684 DOI: 10.1080/0962935021000051557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Influenza virus is a worldwide health problem with significant economic consequences. To study the gene expression pattern induced by influenza virus infection, it is useful to reveal the pathogenesis of influenza virus infection; but this has not been well examined, especially in vivo study. AIMS To assess the influence of influenza virus infection on gene expression in mice, mRNA levels in the lung and tracheal tissue 48 h after infection were investigated by cDNA array analysis. METHODS Four-week-old outbred, specific pathogen free strain, ICR female mice were infected by intra-nasal inoculation of a virus solution under ether anesthesia. The mice were sacrificed 48 h after infection and the tracheas and lungs were removed. To determine gene expression, the membrane-based microtechnique with an Atlas cDNA expression array (mouse 1.2 array II) was performed in accordance with the manual provided. RESULTS AND CONCLUSIONS We focused on the expression of 46 mRNAs for cell surface antigens. Of these 46 mRNAs that we examined, four (CD1d2 antigen, CD39 antigen-like 1, CD39 antigen-like 3, CD68 antigen) were up-regulated and one (CD36 antigen) was down-regulated. Although further studies are required, these data suggest that these molecules play an important role in influenza virus infection, especially the phase before specific immunity.
Collapse
Affiliation(s)
- Shinya Sakai
- Department of Japanese Oriental (Kampo) Medicine, Faculty of Medicine, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama 930-0194, Japan.
| | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Abstract
In this review, recent advances in DNA microarray technology and their applications are examined. The many varieties of DNA microarray or DNA chip devices and systems are described along with their methods for fabrication and their use. This includes both high-density microarrays for high-throughput screening applications and lower-density microarrays for various diagnostic applications. The methods for microarray fabrication that are reviewed include various inkjet and microjet deposition or spotting technologies and processes, in situ or on-chip photolithographic oligonucleotide synthesis processes, and electronic DNA probe addressing processes. The DNA microarray hybridization applications reviewed include the important areas of gene expression analysis and genotyping for point mutations, single nucleotide polymorphisms (SNPs), and short tandem repeats (STRs). In addition to the many molecular biological and genomic research uses, this review covers applications of microarray devices and systems for pharmacogenomic research and drug discovery, infectious and genetic disease and cancer diagnostics, and forensic and genetic identification purposes. Additionally, microarray technology being developed and applied to new areas of proteomic and cellular analysis are reviewed.
Collapse
Affiliation(s)
- Michael J Heller
- Department of Bioengineering/Electronic, University of California, San Diego, La Jolla 92093, USA.
| |
Collapse
|
44
|
Coombes BK, Mahony JB. Identification of MEK- and phosphoinositide 3-kinase-dependent signalling as essential events during Chlamydia pneumoniae invasion of HEp2 cells. Cell Microbiol 2002; 4:447-60. [PMID: 12102690 DOI: 10.1046/j.1462-5822.2002.00203.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The ability of Chlamydia pneumoniae to survive and cause disease is predicated on efficient invasion of cellular hosts. While it is recognized that chlamydial determinants are important for mediating attachment and uptake into non-phagocytic cells, little is known about the bacterial ligands and cellular receptors that facilitate invasion or host cell signal transduction pathways implicated in this process. We used transmission and scanning electron microscopy to demonstrate that attachment of bacteria to host cells induced the appearance of microvilli on host cell membranes. Invasion occurred 30-120 min after cell contact with the subsequent loss of membrane microvilli. Using an epithelial cell infection model, C. pneumoniae invasion caused a rapid and sustained increase in MEK-dependent phosphorylation and activation of ERK1/2, followed by PI 3-kinase-dependent phosphorylation and activation of Akt. Tyrosine phosphorylation of focal adhesion kinase (FAK) preceded its appearance in a complex with the p85 subunit of PI 3-kinase during chlamydial invasion and isoform-specific tyrosine phosphorylation of the docking protein Shc also occurred at the time of attachment and entry of bacteria. Chlamydia entry but not attachment could be abrogated with specific inhibitors of MEK, PI 3-kinase and actin polymerization, demonstrating the importance of these signalling pathways and an intact actin cytoskeleton for C. pneumoniae invasion. These results suggest that activation of specific cell signalling pathways is an essential strategy used by C. pneumoniae to invade epithelial cells.
Collapse
Affiliation(s)
- Brian K Coombes
- Father Sean O'Sullivan Research Centre, St. Joseph's Hospital, Hamilton, Ontario, Canada
| | | |
Collapse
|
45
|
Ball KD, Trevors JT. Bacterial genomics: the use of DNA microarrays and bacterial artificial chromosomes. J Microbiol Methods 2002; 49:275-84. [PMID: 11869792 DOI: 10.1016/s0167-7012(01)00375-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Immense amounts of genetic information are contained within microbial genomes. As the number of completely sequenced microbial genomes is increasing, functional and comparative genomic techniques will be employed for sequence analysis and gene characterization. Sequence comparison and expression profiling by DNA microarrays can determine phylogenetic relationships and identify genes while bacterial artificial chromosomes (BACs) allow the study of entire biochemical pathways and permit the expression of bacterial genes in a foreign host.
Collapse
Affiliation(s)
- Kristen D Ball
- Department of Environmental Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | |
Collapse
|
46
|
Abstract
Chlamydia pneumoniae, a respiratory pathogen, has been suggested as a risk factor for cardiovascular disease. Epidemiologic data are very controversial. Histopathologic and microbiologic studies have established an association between atherosclerosis and presence of C. pneumoniae, consistently finding C. pneumoniae DNA and antigens in atherosclerotic arteries. C. pneumoniae has been cultured from atherosclerotic arteries in several centers. An etiologic role for C. pneumoniae in initiation, acceleration of atherosclerosis, and/or acute ischemia remains debatable. In vitro studies have shown that C. pneumoniae can induce foam cell formation, low-density lipoprotein oxidation, and proinflammatory and procoagulant cytokine expression. Animal models of de novo initiation or enhancement of atherosclerosis have been developed. Preliminary trials of secondary prevention of coronary artery disease complications by antimicrobial agents show modest results. Better diagnostic tools, more diverse animal models, and clinical trials of primary prevention are needed. Meanwhile, results of ongoing large clinical trials on secondary prevention are eagerly awaited, but may not be definitive.
Collapse
Affiliation(s)
- Maria Kolia
- Division of Infectious Disease, St. Michael's Hospital, 30 Bond Street, Room 4179V, Toronto, Ontario, M5W 1W8, Canada.
| | | |
Collapse
|
47
|
Abstract
DNA microarray technology allows a parallel analysis of RNA abundance and DNA homology for thousands of genes in a single experiment. Over the past few years, this powerful technology has been used to explore transcriptional profiles and genome differences for a variety of microorganisms, greatly facilitating our understanding of microbial metabolism. With the increasing availability of complete microbial genomes, DNA microarrays are becoming a common tool in many areas of microbial research, including microbial physiology, pathogenesis, epidemiology, ecology, phylogeny, pathway engineering and fermentation optimization.
Collapse
Affiliation(s)
- R W Ye
- E328/148B, DuPont Experimental Station, DuPont Central Research and Development, Route 141 and Henry Clay Road, Wilmington, DE 19880, USA.
| | | | | | | |
Collapse
|
48
|
Zhao B, Bowden RA, Stavchansky SA, Bowman PD. Human endothelial cell response to gram-negative lipopolysaccharide assessed with cDNA microarrays. Am J Physiol Cell Physiol 2001; 281:C1587-95. [PMID: 11600422 DOI: 10.1152/ajpcell.2001.281.5.c1587] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To assess the feasibility of using cDNA microarrays to understand the response of endothelial cells to lipopolysaccharide (LPS) and to evaluate potentially beneficial agents in treatment of septic shock, human umbilical vein endothelial cells were exposed to Escherichia coli LPS for 1, 4, 7, 12, or 24 h. Total RNA was isolated and reverse-transcribed into (33)P-labeled cDNA probes that were hybridized to human GeneFilter microarrays containing approximately 4,000 genes. The mRNA levels of several genes known to respond to LPS changed after stimulation. In addition, a number of genes not previously implicated in the response of endothelial cells to LPS also appeared to be altered in expression. Nuclear factor-kappaB (NF-kappaB) was shown to play an important role in regulating genes identified from the microarray studies. Pretreatment of endothelial cells with a specific NF-kappaB translocation inhibitor eliminated most of the alterations in gene expression. Quantitative RT-PCR results independently confirmed the microarray results for monocyte chemotactic protein-1 and interleukin-8, and enzyme-linked immunosorbent assays demonstrated that augmented transcription was followed by translation and secretion.
Collapse
Affiliation(s)
- B Zhao
- United States Army Institute of Surgical Research and Clinical Investigation, Brook Army Medical Center, San Antonio, Texas 78234, USA
| | | | | | | |
Collapse
|
49
|
Kellam P. Post-genomic virology: the impact of bioinformatics, microarrays and proteomics on investigating host and pathogen interactions. Rev Med Virol 2001; 11:313-29. [PMID: 11590669 DOI: 10.1002/rmv.328] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Post-genomic research encompasses many diverse aspects of modern science. These include the two broad subject areas of computational biology (bioinformatics) and functional genomics. Laboratory based functional genomics aims to measure and assess either the messenger RNA (mRNA) levels (transcriptome studies) or the protein content (proteome studies) of cells and tissues. All of these methods have been applied recently to the study of host and pathogen interactions for both bacteria and viruses. A basic overview of the technology is given in this review together with approaches to data analysis. The wealth of information produced from even these preliminary studies has shown the generalities, subtleties and specificities of host-pathogen interactions. Such research should ultimately result in new methods for diagnosing and treating infectious diseases.
Collapse
Affiliation(s)
- P Kellam
- Wohl Virion Centre, Department of Immunology and Molecular Pathology, Windeyer Institute of Medical Sciences, University College London, 46 Cleveland Street, London W1T 4JF, UK.
| |
Collapse
|
50
|
Mahony JB, Coombes BK. Chlamydia pneumoniae and atherosclerosis: does the evidence support a causal or contributory role? FEMS Microbiol Lett 2001; 197:1-9. [PMID: 11287138 DOI: 10.1111/j.1574-6968.2001.tb10574.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The intracellular bacterial pathogen Chlamydia pneumoniae causes respiratory tract infection and has been associated with atherosclerosis and coronary artery disease. Since atherosclerosis is a progressive disease and is considered to be a chronic inflammation of the artery vessel wall, the interaction of C. pneumoniae with cells of the vasculature that can result in a local inflammatory response is of paramount importance. In this essay we review the pathophysiology of atherosclerosis in the context of C. pneumoniae infection and present an integrated model that includes the involvement of C. pneumoniae in all stages of atherogenesis including initiation, inflammation, fibrous plaque formation, plaque rupture and thrombosis. We hypothesize that acute and persistent infection of professional immune cells (T-cells, monocytes and macrophages) and non-immune cells (endothelial cells and smooth muscle cells) contributes to a sustained inflammatory response mediated by extensive cellular 'crosstalk' and numerous cytokines/chemokines. This cascade of inflammatory mediators may contribute to cellular dysfunction and tissue remodelling of the arterial intima. An improved understanding of the precise mechanism(s) of C. pneumoniae involvement in atherogenesis may help resolve the question of causality however, at the present time, we interpret the data as favoring a contributory rather than a causal role. Future research directed at the discovery of chlamydial virulence factors necessary for intracellular survival and subsequent alterations in host cell gene expression including signalling pathways may be important for the design of future clinical trials.
Collapse
Affiliation(s)
- J B Mahony
- Department of Pathology and Molecular Medicine, McMaster University, and the Father Sean O'Sullivan Research Center, St. Joseph's Hospital, 50 Charlton Ave. East, L8N 4A6, Hamilton, Ont., Canada.
| | | |
Collapse
|