1
|
Duan H, Huang W, Lv Q, Liu P, Li Q, Kong D, Sun X, Zhang X, Jiang Y, Chen S. Using Surface Immunogenic Protein as a Carrier Protein to Elicit Protective Antibody to Multiple Serotypes for Candidate Group B Streptococcal Glycan Conjugate Vaccines. Vaccines (Basel) 2024; 12:573. [PMID: 38932301 PMCID: PMC11209137 DOI: 10.3390/vaccines12060573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 06/28/2024] Open
Abstract
Group B Streptococcus (GBS) is a life-threatening opportunistic pathogen, particularly in pregnant women, infants, and the elderly. Currently, maternal vaccination is considered the most viable long-term option for preventing GBS mother-to-infant infection, and two polysaccharide conjugate vaccines utilizing CRM197 as a carrier protein have undergone clinical phase II trials. Surface immunogenic protein (Sip), present in all identified serotypes of GBS strains so far, is a protective surface protein of GBS. In this study, the type Ia capsular polysaccharide (CPS) of GBS was utilized as a model to develop candidate antigens for a polysaccharide conjugate vaccine by coupling it with the Sip of GBS and the traditional carrier protein CRM197. Serum analysis from immunized New Zealand rabbits and CD1 mice revealed that there was no significant difference in antibody titers between the Ia-Sip group and Ia-CRM197 group; however, both were significantly higher than those observed in the Ia polysaccharide group. Opsonophagocytosis and passive immune protection results using rabbit serum indicated no significant difference between the Ia-Sip and Ia-CRM197 groups, both outperforming the Ia polysaccharide group. Furthermore, serum from the Ia-Sip group had a cross-protective effect on multiple types of GBS strains. The challenge test results in CD1 mice demonstrated that the Ia-Sip group provided complete protection against lethal doses of bacteria and also showed cross-protection against type III strain. Our study demonstrates for the first time that Ia-Sip is immunogenic and provides serotype-independent protection in glycan conjugate vaccines, which also indicates Sip may serve as an excellent carrier protein for GBS glycan conjugate vaccines and provide cross-protection against multiple GBS strains.
Collapse
Affiliation(s)
- Huiqi Duan
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Wenhua Huang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Qingyu Lv
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Peng Liu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Qian Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Decong Kong
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Xuyang Sun
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392, China
| | - Xinran Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yongqiang Jiang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Shaolong Chen
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| |
Collapse
|
2
|
Wang J, Li W, Li N, Wang B. Immunization with Multiple Virulence Factors Provides Maternal and Neonatal Protection against Group B Streptococcus Serotypes. Vaccines (Basel) 2023; 11:1459. [PMID: 37766135 PMCID: PMC10535937 DOI: 10.3390/vaccines11091459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Group B streptococcus (GBS) commonly colonizes the vaginal tract and is a leading cause of life-threatening neonatal infections and adverse pregnancy outcomes. No effective vaccine is clinically available. Conserved bacterial virulence factors, including those of GBS, have been employed as vaccine components. We investigated serotype-independent protection against GBS by intranasal immunization with six conserved GBS virulence factors (GBSV6). GBSV6 induced systemic and vaginal antibodies and T cell responses in mice. The immunity reduced mouse mortality and vaginal colonization by various GBS serotypes and protected newborn mice of immunized dams against GBS challenge. Intranasal GBSV6 immunization also provided long-lasting protective immunity and had advantages over intramuscular GBSV6 immunization regarding restricting vaginal GBS colonization. Our findings indicate that intranasal immunization targeting multiple conserved GBS virulence factors induces serotype-independent immunity, which protects against GBS infection systemically and vaginally in dams and prevents newborn death. The study presents valuable strategies for GBS vaccine development.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Varnotech Biopharm Ltd., Beijing 100176, China
| | - Wenbo Li
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Varnotech Biopharm Ltd., Beijing 100176, China
| | - Ning Li
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Beinan Wang
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
3
|
Mahmoud A, Toth I, Stephenson R. Developing an Effective Glycan‐Based Vaccine for
Streptococcus Pyogenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Asmaa Mahmoud
- School of Chemistry and Molecular Biosciences The University of Queensland St Lucia Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences The University of Queensland Woolloongabba Australia
- School of Pharmacy The Universitry of Queensland St Lucia Australia
- Institue for Molecular Biosciences The University of Queensland St Lucia Australia
| | - Rachel Stephenson
- School of Chemistry and Molecular Biosciences The University of Queensland St Lucia Australia
| |
Collapse
|
4
|
Dobrut A, Brzychczy-Włoch M. Immunogenic Proteins of Group B Streptococcus-Potential Antigens in Immunodiagnostic Assay for GBS Detection. Pathogens 2021; 11:43. [PMID: 35055991 PMCID: PMC8778278 DOI: 10.3390/pathogens11010043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 12/21/2022] Open
Abstract
Streptococcus agalactiae (Group B Streptococcus, GBS) is an opportunistic pathogen, which asymptomatically colonizes the gastrointestinal and genitourinary tract of up to one third of healthy adults. Nevertheless, GBS carriage in pregnant women may lead to several health issues in newborns causing life threatening infection, such as sepsis, pneumonia or meningitis. Recommended GBS screening in pregnant women significantly reduced morbidity and mortality in infants. Nevertheless, intrapartum antibiotic prophylaxis, recommended following the detection of carriage or in case of lack of a carriage test result for pregnant women who demonstrate certain risk factors, led to the expansion of the adverse phenomenon of bacterial resistance to antibiotics. In our paper, we reviewed some immunogenic GBS proteins, i.e., Alp family proteins, β protein, Lmb, Sip, BibA, FsbA, ScpB, enolase, elongation factor Tu, IMPDH, and GroEL, which possess features characteristic of good candidates for immunodiagnostic assays for GBS carriage detection, such as immunoreactivity and specificity. We assume that they can be used as an alternative diagnostic method to the presently recommended bacteriological cultivation and MALDI.
Collapse
Affiliation(s)
| | - Monika Brzychczy-Włoch
- Department of Molecular Medical Microbiology, Faculty of Medicine, Medical College, Jagiellonian University, 31-121 Krakow, Poland;
| |
Collapse
|
5
|
Mahmoud A, Toth I, Stephenson R. Developing an Effective Glycan-based Vaccine for Streptococcus Pyogenes. Angew Chem Int Ed Engl 2021; 61:e202115342. [PMID: 34935243 DOI: 10.1002/anie.202115342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Indexed: 11/11/2022]
Abstract
Streptococcus pyogenes is a primary infective agent that causes approximately 700 million human infections each year, resulting in more than 500,000 deaths. Carbohydrate-based vaccines are proven to be one of the most promising subunit vaccine candidates, as the bacterial glycan pattern(s) are different from mammalian cells and show increased pathogen serotype conservancy than the protein components. In this review we highlight reverse vaccinology for use in the development of subunit vaccines against S. pyogenes, and report reproducible methods of carbohydrate antigen production, in addition to the structure-immunogenicity correlation between group A carbohydrate epitopes and alternative vaccine antigen carrier systems. We also report recent advances used to overcome hurdles in carbohydrate-based vaccine development.
Collapse
Affiliation(s)
- Asmaa Mahmoud
- The University of Queensland - Saint Lucia Campus: The University of Queensland, School of Chemistry and Molecular Biosciences, AUSTRALIA
| | - Istvan Toth
- The University of Queensland - Saint Lucia Campus: The University of Queensland, School of Chemistry and Molecular Biosciences, AUSTRALIA
| | - Rachel Stephenson
- The University of Queensland, School of Chemistry and Molecular Biosciences, The University of Queensland, 4068, Brisbane, AUSTRALIA
| |
Collapse
|
6
|
Paoletti LC, Kasper DL. Surface Structures of Group B Streptococcus Important in Human Immunity. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0001-2017. [PMID: 30873933 PMCID: PMC11590616 DOI: 10.1128/microbiolspec.gpp3-0001-2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Indexed: 11/20/2022] Open
Abstract
The surface of the Gram-positive opportunistic pathogen Streptococcus agalactiae, or group B Streptococcus (GBS), harbors several carbohydrate and protein antigens with the potential to be effective vaccines. Capsular polysaccharides of all clinically-relevant GBS serotypes coupled to immunogenic proteins of both GBS and non-GBS origin have undergone extensive testing in animals that led to advanced clinical trials in healthy adult women. In addition, GBS proteins either alone or in combination have been tested in animals; a fusion protein construct has recently advanced to human clinical studies. Given our current understanding of the antigenicity and immunogenicity of the wide array of GBS surface antigens, formulations now exist for the generation of viable vaccines against diseases caused by GBS.
Collapse
Affiliation(s)
- Lawrence C Paoletti
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| | - Dennis L Kasper
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
7
|
Armistead B, Oler E, Adams Waldorf K, Rajagopal L. The Double Life of Group B Streptococcus: Asymptomatic Colonizer and Potent Pathogen. J Mol Biol 2019; 431:2914-2931. [PMID: 30711542 DOI: 10.1016/j.jmb.2019.01.035] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 12/22/2022]
Abstract
Group B streptococcus (GBS) is a β-hemolytic gram-positive bacterium that colonizes the lower genital tract of approximately 18% of women globally as an asymptomatic member of the gastrointestinal and/or vaginal flora. If established in other host niches, however, GBS is highly pathogenic. During pregnancy, ascending GBS infection from the vagina to the intrauterine space is associated with preterm birth, stillbirth, and fetal injury. In addition, vertical transmission of GBS during or after birth results in life-threatening neonatal infections, including pneumonia, sepsis, and meningitis. Although the mechanisms by which GBS traffics from the lower genital tract to vulnerable host niches are not well understood, recent advances have revealed that many of the same bacterial factors that promote asymptomatic vaginal carriage also facilitate dissemination and virulence. Furthermore, highly pathogenic GBS strains have acquired unique factors that enhance survival in invasive niches. Several host factors also exist that either subdue GBS upon vaginal colonization or alternatively permit invasive infection. This review summarizes the GBS and host factors involved in GBS's state as both an asymptomatic colonizer and an invasive pathogen. Gaining a better understanding of these mechanisms is key to overcoming the challenges associated with vaccine development and identification of novel strategies to mitigate GBS virulence.
Collapse
Affiliation(s)
- Blair Armistead
- Department of Global Health, University of Washington, Seattle 98195, WA, USA; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle 98101, WA, USA
| | - Elizabeth Oler
- Department of Obstetrics and Gynecology, University of Washington School of Medicine, Seattle 98195, WA, USA
| | - Kristina Adams Waldorf
- Department of Global Health, University of Washington, Seattle 98195, WA, USA; Department of Obstetrics and Gynecology, University of Washington School of Medicine, Seattle 98195, WA, USA; Center for Innate Immunity and Immune Disease, University of Washington, Seattle 98109, WA, USA; Sahlgrenska Academy, Gothenburg University, Gothenburg 413 90, Sweden
| | - Lakshmi Rajagopal
- Department of Global Health, University of Washington, Seattle 98195, WA, USA; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle 98101, WA, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle 98195, WA, USA.
| |
Collapse
|
8
|
Song JY, Lim JH, Lim S, Yong Z, Seo HS. Progress toward a group B streptococcal vaccine. Hum Vaccin Immunother 2018; 14:2669-2681. [PMID: 29995578 PMCID: PMC6314413 DOI: 10.1080/21645515.2018.1493326] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/18/2018] [Accepted: 06/19/2018] [Indexed: 01/31/2023] Open
Abstract
Streptococcus agalactiae (group B Streptococcus, GBS) is a leading cause of severe invasive disease in neonate, elderly, and immunocompromised patients worldwide. Despite recent advances in the diagnosis and intrapartum antibiotic prophylaxis (IAP) of GBS infections, it remains one of the most common causes of neonatal morbidity and mortality, causing serious infections. Furthermore, recent studies reported an increasing number of GBS infections in pregnant women and elderly. Although IAP is effective, it has several limitations, including increasing antimicrobial resistance and late GBS infection after negative antenatal screening. Maternal immunization is the most promising and effective countermeasure against GBS infection in neonates. However, no vaccine is available to date, but two types of vaccines, protein subunit and capsular polysaccharide conjugate vaccines, were investigated in clinical trials. Here, we provide an overview of the GBS vaccine development status and recent advances in the development of immunoassays to evaluate the GBS vaccine clinical efficacy.
Collapse
Affiliation(s)
- Joon Young Song
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jae Hyang Lim
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Sangyong Lim
- Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
- Department of Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology, Daejeon, Republic of Korea
| | - Zhi Yong
- Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
- Department of Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology, Daejeon, Republic of Korea
| | - Ho Seong Seo
- Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
- Department of Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
9
|
Pietrocola G, Arciola CR, Rindi S, Montanaro L, Speziale P. Streptococcus agalactiae Non-Pilus, Cell Wall-Anchored Proteins: Involvement in Colonization and Pathogenesis and Potential as Vaccine Candidates. Front Immunol 2018; 9:602. [PMID: 29686667 PMCID: PMC5900788 DOI: 10.3389/fimmu.2018.00602] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 03/09/2018] [Indexed: 11/13/2022] Open
Abstract
Group B Streptococcus (GBS) remains an important etiological agent of several infectious diseases including neonatal septicemia, pneumonia, meningitis, and orthopedic device infections. This pathogenicity is due to a variety of virulence factors expressed by Streptococcus agalactiae. Single virulence factors are not sufficient to provoke a streptococcal infection, which is instead promoted by the coordinated activity of several pathogenicity factors. Such determinants, mostly cell wall-associated and secreted proteins, include adhesins that mediate binding of the pathogen to host extracellular matrix/plasma ligands and cell surfaces, proteins that cooperate in the invasion of and survival within host cells and factors that neutralize phagocytosis and/or modulate the immune response. The genome-based approaches and bioinformatics tools and the extensive use of biophysical and biochemical methods and animal model studies have provided a great wealth of information on the molecular structure and function of these virulence factors. In fact, a number of new GBS surface-exposed or secreted proteins have been identified (GBS immunogenic bacterial adhesion protein, leucine-rich repeat of GBS, serine-rich repeat proteins), the three-dimensional structures of known streptococcal proteins (αC protein, C5a peptidase) have been solved and an understanding of the pathogenetic role of "old" and new determinants has been better defined in recent years. Herein, we provide an update of our current understanding of the major surface cell wall-anchored proteins from GBS, with emphasis on their biochemical and structural properties and the pathogenetic roles they may have in the onset and progression of host infection. We also focus on the antigenic profile of these compounds and discuss them as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Giampiero Pietrocola
- Unit of Biochemistry, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Carla Renata Arciola
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute, Bologna, Italy.,Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Simonetta Rindi
- Unit of Biochemistry, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Lucio Montanaro
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute, Bologna, Italy.,Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Pietro Speziale
- Unit of Biochemistry, Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Department of Industrial and Information Engineering, University of Pavia, Pavia, Italy
| |
Collapse
|
10
|
Shabayek S, Spellerberg B. Group B Streptococcal Colonization, Molecular Characteristics, and Epidemiology. Front Microbiol 2018; 9:437. [PMID: 29593684 PMCID: PMC5861770 DOI: 10.3389/fmicb.2018.00437] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 02/26/2018] [Indexed: 11/13/2022] Open
Abstract
Streptococcus agalactiae or group B streptococcus (GBS) is a leading cause of serious neonatal infections. GBS is an opportunistic commensal constituting a part of the intestinal and vaginal physiologic flora and maternal colonization is the principal route of GBS transmission. GBS is a pathobiont that converts from the asymptomatic mucosal carriage state to a major bacterial pathogen causing severe invasive infections. At present, as many as 10 serotypes (Ia, Ib, and II–IX) are recognized. The aim of the current review is to shed new light on the latest epidemiological data and clonal distribution of GBS in addition to discussing the most important colonization determinants at a molecular level. The distribution and predominance of certain serotypes is susceptible to variations and can change over time. With the availability of multilocus sequence typing scheme (MLST) data, it became clear that GBS strains of certain clonal complexes possess a higher potential to cause invasive disease, while other harbor mainly colonizing strains. Colonization and persistence in different host niches is dependent on the adherence capacity of GBS to host cells and tissues. Bacterial biofilms represent well-known virulence factors with a vital role in persistence and chronic infections. In addition, GBS colonization, persistence, translocation, and invasion of host barriers are largely dependent on their adherence abilities to host cells and extracellular matrix proteins (ECM). Major adhesins mediating GBS interaction with host cells include the fibrinogen-binding proteins (Fbs), the laminin-binding protein (Lmb), the group B streptococcal C5a peptidase (ScpB), the streptococcal fibronectin binding protein A (SfbA), the GBS immunogenic bacterial adhesin (BibA), and the hypervirulent adhesin (HvgA). These adhesins facilitate persistent and intimate contacts between the bacterial cell and the host, while global virulence regulators play a major role in the transition to invasive infections. This review combines for first time epidemiological data with data on adherence and colonization for GBS. Investigating the epidemiology along with understanding the determinants of mucosal colonization and the development of invasive disease at a molecular level is therefore important for the development of strategies to prevent invasive GBS disease worldwide.
Collapse
Affiliation(s)
- Sarah Shabayek
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Barbara Spellerberg
- Institute of Medical Microbiology and Hygiene, University of Ulm, Ulm, Germany
| |
Collapse
|
11
|
Multi-functional mechanisms of immune evasion by the streptococcal complement inhibitor C5a peptidase. PLoS Pathog 2017; 13:e1006493. [PMID: 28806402 PMCID: PMC5555575 DOI: 10.1371/journal.ppat.1006493] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/27/2017] [Indexed: 11/19/2022] Open
Abstract
The complement cascade is crucial for clearance and control of invading pathogens, and as such is a key target for pathogen mediated host modulation. C3 is the central molecule of the complement cascade, and plays a vital role in opsonization of bacteria and recruitment of neutrophils to the site of infection. Streptococcal species have evolved multiple mechanisms to disrupt complement-mediated innate immunity, among which ScpA (C5a peptidase), a C5a inactivating enzyme, is widely conserved. Here we demonstrate for the first time that pyogenic streptococcal species are capable of cleaving C3, and identify C3 and C3a as novel substrates for the streptococcal ScpA, which are functionally inactivated as a result of cleavage 7 amino acids upstream of the natural C3 convertase. Cleavage of C3a by ScpA resulted in disruption of human neutrophil activation, phagocytosis and chemotaxis, while cleavage of C3 generated abnormally-sized C3a and C3b moieties with impaired function, in particular reducing C3 deposition on the bacterial surface. Despite clear effects on human complement, expression of ScpA reduced clearance of group A streptococci in vivo in wildtype and C5 deficient mice, and promoted systemic bacterial dissemination in mice that lacked both C3 and C5, suggesting an additional complement-independent role for ScpA in streptococcal pathogenesis. ScpA was shown to mediate streptococcal adhesion to both human epithelial and endothelial cells, consistent with a role in promoting bacterial invasion within the host. Taken together, these data show that ScpA is a multi-functional virulence factor with both complement-dependent and independent roles in streptococcal pathogenesis. The complement pathway is critical in the innate immune response to bacterial pathogens. It consists of a self-perpetuating proteolytic cascade initiated via three distinct pathways that converge at the central complement protein, C3. Pathogens must evade complement-mediated immunity to cause disease, and inactivation of the C3 protein can dampen all effectors of this pathway. Streptococcal species are the causative agents of an array of infections ranging from the benign to lethal. Using the human pathogen Group A Streptococcus as a representative species, we show that the enzyme ScpA, which is conserved amongst the pyogenic streptococci, cleaves human C3a and also C3, releasing abnormally sized and functionally-impaired fragments. As a result, invading streptococci were less well opsonized and host immune cells not properly activated, reducing bacterial phagocytosis and clearance. Despite manifest in vitro activity against complement factors and human neutrophils, ScpA was still able to contribute to systemic bacterial spread in mice lacking C3 and C5. ScpA was also demonstrated to mediate streptococcal adhesion to both epithelial and endothelial cells, which may enhance bacterial systemic spread. Our study highlights the likely importance of both complement-independent and complement-dependent roles for ScpA in streptococcal pathogenesis.
Collapse
|
12
|
Gallage S, Katagiri T, Endo M, Maita M. Comprehensive evaluation of immunomodulation by moderate hypoxia in S. agalactiae vaccinated Nile tilapia. FISH & SHELLFISH IMMUNOLOGY 2017; 66:445-454. [PMID: 28526572 DOI: 10.1016/j.fsi.2017.05.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 05/15/2017] [Accepted: 05/15/2017] [Indexed: 06/07/2023]
Abstract
Streptococcus agalactiae is a major bacterial pathogen in tilapia aquaculture. Vaccines are known to provide protection but S. agalactiae clearance in tilapia can be reduced by marginal environmental conditions. Therefore, the purpose of this study is to examine S. agalactiae clearance in vaccinated Nile tilapia under moderate hypoxic (55± 5% DO) and normoxic (85 ± 5%DO) conditions. Fish were acclimatized to either moderate hypoxia or normoxia and immunized with formalin-inactivated S. agalactiae. Fish were experimentally challenged with S. agalactiae at 30 days post-vaccination. Serum antibody titer was significantly higher in vaccinated fish kept under normoxic condition compared to the moderate hypoxic condition at fifteen and thirty days post-vaccination. The cumulative mortality following challenge was significantly reduced in vaccinated fish kept under normoxic condition compared to those in moderate hypoxic condition reflecting that pre-challenge antibody titer may correlate with survival of fish. Blood and tissue pathogen burden detection of S. agalactiae studies revealed that culturable S. agalactiae cells could not be detected in the blood of normoxic vaccinated fish at all the sampling points. In contrast, fish vaccinated in moderate hypoxic condition had considerable number of culturable S. agalactiae cells in their blood up to 5 days following challenge. Phagocytosis and intracellular reactive oxygen species (ROS) production were lowered by moderate hypoxia in vitro. Furthermore, presence of specific antibodies and higher specific antibody level in the serum increased phagocytosis, ROS production and lowered intracellular survival of S. agalactiae in head kidney leukocytes. Overall this study has highlighted that S. agalactiae clearance in vaccinated Nile tilapia is modulated by moderate hypoxia. One of the possible explanations for this might be less efficient phagocytic activities due to low oxygen availability and lower specific antibody production in vaccinated fish.
Collapse
Affiliation(s)
- Sanchala Gallage
- Laboratory of Fish Health Management, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan.
| | - Takayuki Katagiri
- Laboratory of Fish Health Management, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan.
| | - Masato Endo
- Laboratory of Fish Health Management, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan.
| | - Masashi Maita
- Laboratory of Fish Health Management, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan.
| |
Collapse
|
13
|
Li H, Wang S, Zhao Y, Chen Z, Gu G, Guo Z. Mutagenesis and immunological evaluation of group A streptococcal C5a peptidase as an antigen for vaccine development and as a carrier protein for glycoconjugate vaccine design. RSC Adv 2017. [DOI: 10.1039/c7ra07923k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A non-enzymatic recombinant ScpA mutant (H193A) was prepared and investigated to probe its application potential in the development of GAS vaccines and as a carrier protein of glycoconjugate vaccines.
Collapse
Affiliation(s)
- Hui Li
- National Glycoengineering Research Center
- School of Life Science
- Shandong University
- China
| | - Subo Wang
- National Glycoengineering Research Center
- School of Life Science
- Shandong University
- China
| | - Yisheng Zhao
- National Glycoengineering Research Center
- School of Life Science
- Shandong University
- China
| | - Zonggang Chen
- National Glycoengineering Research Center
- School of Life Science
- Shandong University
- China
| | - Guofeng Gu
- National Glycoengineering Research Center
- School of Life Science
- Shandong University
- China
| | - Zhongwu Guo
- National Glycoengineering Research Center
- School of Life Science
- Shandong University
- China
- Department of Chemistry
| |
Collapse
|
14
|
Nuccitelli A, Rinaudo CD, Maione D. Group B Streptococcus vaccine: state of the art. THERAPEUTIC ADVANCES IN VACCINES 2015; 3:76-90. [PMID: 26288735 DOI: 10.1177/2051013615579869] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Group B Streptococcus (GBS) is cause of neonatal invasive diseases as well as of severe infections in the elderly and immune-compromised patients. Despite significant advances in the prevention and treatment of neonatal disease, sepsis and meningitis caused by GBS still represent a significant public health care concern globally and additional prevention and therapeutic strategies against infection are highly desirable. The introduction of national recommended guidelines in several countries to screen pregnant women for GBS carriage and the use of antibiotics during delivery significantly reduced disease occurring within the first hours of life (early-onset disease), but it has had no effect on the late-onset diseases occurring after the first week and is not feasible in most countries. Availability of an effective vaccine against GBS would provide an effective means of controlling GBS disease. This review provides an overview of the burden of invasive disease caused by GBS in infants and adults, and highlights the strategies for the development of an effective vaccine against GBS infections.
Collapse
Affiliation(s)
| | | | - Domenico Maione
- Novartis Vaccines and Diagnostics, via Fiorentina 1, 53100 Siena, Italy
| |
Collapse
|
15
|
Lemire P, Roy D, Fittipaldi N, Okura M, Takamatsu D, Bergman E, Segura M. Implication of TLR- but not of NOD2-signaling pathways in dendritic cell activation by group B Streptococcus serotypes III and V. PLoS One 2014; 9:e113940. [PMID: 25436906 PMCID: PMC4250082 DOI: 10.1371/journal.pone.0113940] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 10/31/2014] [Indexed: 12/31/2022] Open
Abstract
Group B Streptococcus (GBS) is an important agent of life-threatening invasive infection. It has been previously shown that encapsulated type III GBS is easily internalized by dendritic cells (DCs), and that this internalization had an impact on cytokine production. The receptors underlying these processes are poorly characterized. Knowledge on the mechanisms used by type V GBS to activate DCs is minimal. In this work, we investigated the role of Toll-like receptor (TLR)/MyD88 signaling pathway, the particular involvement of TLR2, and that of the intracellular sensing receptor NOD2 in the activation of DCs by types III and V GBS. The role of capsular polysaccharide (CPS, one of the most important GBS virulence factors) in bacterial-DC interactions was evaluated using non-encapsulated mutants. Despite differences in the role of CPS between types III and V GBS in bacterial internalization and intracellular survival, no major differences were observed in their capacity to modulate release of cytokines by DC. For both serotypes, CPS had a minor role in this response. Production of cytokines by DCs was shown to strongly rely on MyD88-dependent signaling pathways, suggesting that DCs recognize GBS and become activated mostly through TLR signaling. Yet, GBS-infected TLR2-/- DCs only showed a partial reduction in the production of IL-6 and CXCL1 compared to control DCs. Surprisingly, CXCL10 release by type III or type V GBS-infected DCs was MyD88-independent. No differences in DC activation were observed between NOD2-/- and control DCs. These results demonstrate the involvement of various receptors and the complexity of the cytokine production pathways activated by GBS upon DC infection.
Collapse
Affiliation(s)
- Paul Lemire
- Laboratory of Immunology, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, Quebec, Canada
| | - David Roy
- Laboratory of Immunology, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, Quebec, Canada
| | - Nahuel Fittipaldi
- Public Health Ontario, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Masatoshi Okura
- Bacterial and Parasitic Diseases Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Daisuke Takamatsu
- Bacterial and Parasitic Diseases Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
- The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Eugenia Bergman
- Laboratory of Immunology, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, Quebec, Canada
| | - Mariela Segura
- Laboratory of Immunology, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, Quebec, Canada
- * E-mail:
| |
Collapse
|
16
|
Berner R. Significance, management and prevention of Streptococcus agalactiae infection during the perinatal period. Expert Rev Anti Infect Ther 2014; 2:427-37. [PMID: 15482207 DOI: 10.1586/14787210.2.3.427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The highest annual death rate during the first five decades of life occurs in the first year, particularly during the perinatal period between the onset of labor and 72 h after birth. Invasive bacterial disease evoking the severe inflammatory response syndrome is a leading cause of perinatal morbidity and mortality. Group B streptococcus (Streptococcus agalactiae) is the most important pathogen in this period of life, although the concept of intrapartum antimicrobial prophylaxis has impressively reduced the rate of culture-proven invasive infection in neonates. This strategy, however, has considerable limitations since group B streptococcus-related stillbirths or prematurity and late-onset sepsis cannot be prevented. Moreover, the use of intrapartum antimicrobial prophylaxis has significantly increased the use of antibiotics during labor and therefore may select for intrapartum infections caused by other bacteria, including those resistant to antibiotics. Several advances in the development of vaccines and research on virulence factors and pathways involved in the immune response to group B streptococcus have been accomplished within the last years, including complete sequencing of the group B streptococcus genome. Development of effective vaccines and implementation of vaccination strategies will be one of the key challenges in the future for prevention of neonatal group B Streptococcus infections.
Collapse
Affiliation(s)
- Reinhard Berner
- Department of Pediatrics and Adolescent Medicine, University Hospital Freiburg, Mathildenstrasse 1, D-79106 Freiburg, Germany.
| |
Collapse
|
17
|
Sharma P, Lata H, Arya DK, Kashyap AK, Kumar H, Dua M, Ali A, Johri AK. Role of pilus proteins in adherence and invasion of Streptococcus agalactiae to the lung and cervical epithelial cells. J Biol Chem 2012; 288:4023-34. [PMID: 23209289 DOI: 10.1074/jbc.m112.425728] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Streptococcus agalactiae, or group B Streptococcus (GBS), is an important opportunistic pathogen that causes pneumonia, sepsis, and meningitis in neonates and severe diseases in immunocompromised adults. We have performed comparative genomics of prevalent GBS serotypes of Indian origin (i.e. Ia, III, V, and VII). Pilus-proteins were commonly found up-regulated, and their expression was studied by using antiserum for GBS80 (backbone protein of pilus island-I), GBS67 (ancillary protein of PI-2a), and SAN1518 (backbone protein of PI-2b) by whole cell and Western blot analysis. To check the role of pilus proteins in adherence and invasion, an inhibition assay was performed. Comparative immunoblotting experiments revealed that expression of pili proteins does not differ in geographically different selected serotypes, Ia and V, of India and the United States. In the case of A549 cells, we found that GBS VII invasion and adherence was inhibited by pilus protein-specific antiserum SAN1518 significantly (p < 0.001) by 88.5 and 91%, respectively. We found that mutant strains, deficient in the pilus proteins (Δgbs80 and Δsan1518) exhibit a significant decrease in adherence in the case of type Ia, III, and VII. In the case of type VII, we have found a 95% reduction in invasion when Δsan1518 was used with A549 cells. Because the pilus proteins were identified previously as vaccine candidates against GBS serotypes of developed countries, we also found their role in the attachment and invasion of GBS of Indian origin. Thus, the present work supports the idea of making a more effective pilus protein-based vaccine that can be used universally.
Collapse
Affiliation(s)
- Puja Sharma
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Fujieda M, Aoyagi Y, Matsubara K, Takeuchi Y, Fujimaki W, Matsushita M, Bohnsack JF, Takahashi S. L-ficolin and capsular polysaccharide-specific IgG in cord serum contribute synergistically to opsonophagocytic killing of serotype III and V group B streptococci. Infect Immun 2012; 80:2053-60. [PMID: 22451515 PMCID: PMC3370578 DOI: 10.1128/iai.06232-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 03/15/2012] [Indexed: 11/20/2022] Open
Abstract
Group B streptococci (GBS; Streptococcus agalactiae) are the most common cause of neonatal sepsis and meningitis. Serotype-specific IgG antibody is known to protect neonates against GBS infections by promoting opsonophagocytosis. The L-ficolin-mediated lectin pathway of the complement is also a potential mechanism for opsonization of GBS, because L-ficolin activates the complement after binding to serotype Ib, III, V, VI, and VIII GBS. In the present study, we investigated how L-ficolin and serotype-specific IgG in cord sera contribute to opsonophagocytic killing of GBS. Neither L-ficolin nor serotype-specific IgG concentrations correlated with C3b deposition on serotype Ib and VI GBS, suggesting L-ficolin- and serotype-specific IgG-independent mechanisms of complement activation. The percentage of serotype VIII GBS killed was high regardless of the concentration of L-ficolin and IgG. In contrast, L-ficolin and serotype-specific IgG can each initiate C3b deposition on serotype III and V GBS and promote phagocytosis by polymorphonuclear leukocytes, but L-ficolin and serotype-specific IgG together promote opsonophagocytic killing to a greater extent than does either alone in vitro. This synergy was observed when serotype III-specific IgG concentrations were between 1 and 6 μg/ml and when serotype V-specific IgG concentrations were between 2 and 5 μg/ml. Concentrations of serotype III-specific IgG in cord blood above 7 μg/ml are considered protective for neonates colonized with GBS, but most neonates with IgG levels of less than 7 μg/ml do not develop GBS infections. The data presented here suggest that L-ficolin enhances opsonophagocytosis of serotype III and V GBS when serotype-specific IgG alone is suboptimal for protection.
Collapse
Affiliation(s)
| | | | | | | | - Wakae Fujimaki
- Human Medical Science, Joshi-Eiyoh (Kagawa Nutrition) University, Sakado, Japan
| | - Misao Matsushita
- Department of Applied Biochemistry, Tokai University, Hiratsuka, Japan
| | - John F. Bohnsack
- Department of Pediatrics, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | | |
Collapse
|
19
|
The CovS/CovR acid response regulator is required for intracellular survival of group B Streptococcus in macrophages. Infect Immun 2012; 80:1650-61. [PMID: 22331428 DOI: 10.1128/iai.05443-11] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Group B Streptococcus (GBS) is a leading cause of neonatal meningitis and septicemia. The ability of this organism to survive inside phagocytic cells is poorly understood but thought to be an important step for the establishment of disease in the host. Here, we demonstrate that GBS shows prolonged survival within J774 macrophages and that the capacity to survive is not significantly changed across a diverse range of strains representing different serotypes, multilocus sequence types (MLST), and sites of clinical isolation. Using staining for the lysosome-associated membrane protein (LAMP) and by pharmacological inhibition of phagosome acidification, we demonstrate that streptococci reside in a phagosome and that acidification of the phagosome is required for GBS to survive intracellularly. Moreover, we show that the GBS two-component system CovS/CovR, which is the major acid response regulator in this organism, is required for survival inside the phagosome.
Collapse
|
20
|
Santillan DA, Rai KK, Santillan MK, Krishnamachari Y, Salem AK, Hunter SK. Efficacy of polymeric encapsulated C5a peptidase-based group B streptococcus vaccines in a murine model. Am J Obstet Gynecol 2011; 205:249.e1-8. [PMID: 21802065 PMCID: PMC3213321 DOI: 10.1016/j.ajog.2011.06.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 04/26/2011] [Accepted: 06/07/2011] [Indexed: 10/18/2022]
Abstract
OBJECTIVE The purpose was to examine in mice the efficacy of various polymeric-encapsulated C5a peptidase vaccine formulations in eliciting a long-term immune response and preventing group B streptococcus (GBS) infection. STUDY DESIGN C5a peptidase was encapsulated in semipermeable microspheres of poly(lactide-coglycolide) (PLGA). Female ICR mice were immunized with 0, 10, or 30 μg of encapsulated C5a peptidase within 2 different formulations of PLGA polymers. Booster doses were given at weeks 4 and 8. Antibody responses were measured by enzyme-linked immunosorbent assay at weeks 4, 8, 11, and 40. Vaginal challenges with GBS types 1a, III, and V were performed at week 12. RESULTS Thirty microgram doses of the 75:25 and 50:50 PLGA formulations generate the highest and most sustained C5a peptidase-specific immune responses. Mice that received encapsulated C5a peptidase were significantly protected from vaginal colonization compared with mice that received empty microspheres. CONCLUSION Encapsulated C5a peptidase elicited significant immune responses and protection against a GBS challenge. C5a peptidase microsphere encapsulation has potential as a GBS vaccine.
Collapse
Affiliation(s)
- Donna A Santillan
- Department of Obstetrics and Gynecology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | | | | | | | | | | |
Collapse
|
21
|
Percha B, Newman MEJ, Foxman B. Transmission probabilities and durations of immunity for three pathogenic group B Streptococcus serotypes. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2011; 11:1407-12. [PMID: 21605704 PMCID: PMC3391980 DOI: 10.1016/j.meegid.2011.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 04/17/2011] [Accepted: 05/07/2011] [Indexed: 11/16/2022]
Abstract
Group B Streptococcus (GBS) remains a major cause of neonatal sepsis and is an emerging cause of invasive bacterial infections. The 9 known serotypes vary in virulence, and there is little cross-immunity. Key parameters for planning an effective vaccination strategy, such as average length of immunity and transmission probabilities by serotype, are unknown. We simulated GBS spread in a population using a computational model with parameters derived from studies of GBS sexual transmission in a college dormitory. Here we provide estimates of the duration of immunity relative to the transmission probabilities for the 3 GBS serotypes most associated with invasive disease: Ia, III, and V. We also place upper limits on the durations of immunity for serotype Ia (570 days), III (1125 days) and V (260 days). Better transmission estimates are required to establish the epidemiological parameters of GBS infection and determine the best vaccination strategies to prevent GBS disease.
Collapse
Affiliation(s)
- Bethany Percha
- School of Public Health, University of Michigan, Ann Arbor, MI 48109
| | - M. E. J. Newman
- Center for the Study of Complex Systems and Department of Physics, University of Michigan, Ann Arbor, MI 48109
| | - Betsy Foxman
- School of Public Health, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
22
|
Senn BM, Visram Z, Meinke AL, Neubauer C, Gelbmann D, Sinzinger J, Hanner M, Lundberg U, Boisvert H, Reinscheid D, von Gabain A, Nagy E. Monoclonal antibodies targeting different cell wall antigens of group B streptococcus mediate protection in both Fc-dependent and independent manner. Vaccine 2011; 29:4116-24. [DOI: 10.1016/j.vaccine.2011.03.100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2010] [Revised: 03/20/2011] [Accepted: 03/28/2011] [Indexed: 10/18/2022]
|
23
|
Xue G, Yu L, Li S, Shen X. Intranasal immunization with GBS surface protein Sip and ScpB induces specific mucosal and systemic immune responses in mice. ACTA ACUST UNITED AC 2009; 58:202-10. [PMID: 19912341 DOI: 10.1111/j.1574-695x.2009.00623.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Sip and ScpB are highly conserved among strains of Group B Streptococcus (GBS). Thus, the two proteins are attractive antigens for inclusion in a vaccine against GBS. In this study, we constructed and expressed the two proteins, and investigated their specific mucosal immune responses against GBS induced by intranasal immunization with cholera toxin (CT) and CpG-oligodeoxynucleotides (CpG-ODNs). Intranasal immunization with different doses of recombinant Sip and ScpB all elicited specific antibodies in serum and vagina of mice. A combination of rSip and rScpB with either CT or CpG-ODN elicited specific antibodies in serum and vaginal samples. Th1 responses were enhanced by CpG and CT. Sera from the mice group intranasally immunized with rSip+CT, rScpB+CT, rSip+rScpB+CT, and rSip+rScpB+CpG also showed bactericidal activity compared with the serum of the control group. The current findings suggest that rSip and rScpB would be useful antigens as a vaccine component to induce protective immune responses against GBS, and CpG-ODN could be used as an effective mucosal adjuvant in inducing a good mucosal immune response. The use of an intranasal vaccine composed of different surface protein antigens is an attractive strategy for the development of a vaccine against GBS.
Collapse
Affiliation(s)
- Guanhua Xue
- Beijing Children's Hospital, Capital Medical University, Beijing, China
| | | | | | | |
Collapse
|
24
|
Doro F, Liberatori S, Rodríguez-Ortega MJ, Rinaudo CD, Rosini R, Mora M, Scarselli M, Altindis E, D'Aurizio R, Stella M, Margarit I, Maione D, Telford JL, Norais N, Grandi G. Surfome analysis as a fast track to vaccine discovery: identification of a novel protective antigen for Group B Streptococcus hypervirulent strain COH1. Mol Cell Proteomics 2009; 8:1728-37. [PMID: 19401597 DOI: 10.1074/mcp.m800486-mcp200] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Safe recombinant vaccines, based on a small number of antigenic proteins, are emerging as the most attractive, cost-effective solution against infectious diseases. In the present work, we confirmed previous data from our laboratory showing that whole viable bacterial cell treatment with proteases followed by the identification of released peptides by mass spectrometry is the method of choice for the rapid and reliable identification of vaccine candidates in Gram-positive bacteria. When applied to the Group B Streptococcus COH1 strain, 43 surface-associated proteins were identified, including all the protective antigens described in the literature as well as a new protective antigen, the cell wall-anchored protein SAN_1485 belonging to the serine-rich repeat protein family. This strategy overcomes the difficulties so far encountered in the identification of novel vaccine candidates and speeds up the entire vaccine discovery process by reducing the number of recombinant proteins to be tested in the animal model.
Collapse
Affiliation(s)
- Francesco Doro
- Research Centre, Novartis Vaccines and Diagnostics, 53100 Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Toll-like receptor 2 deficiency is associated with enhanced severity of group B streptococcal disease. Infect Immun 2009; 77:1524-31. [PMID: 19179417 DOI: 10.1128/iai.00965-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Group B streptococcus (GBS) has been recognized as an ever-growing cause of serious invasive infections in nonpregnant adults, in particular, in association with severe underlying diseases. The most common manifestations include primary bacteremia, urinary tract infections, pneumonia, meningitis, peritonitis, and osteoarticular infections. Toll-like receptor-2 (TLR2) mediates host responses to gram-positive bacteria. TLR2 function was investigated in murine GBS-induced sepsis and arthritis in wild-type (wt) and TLR2-deficient (TLR2(-/-)) mice. Mice were infected with different doses of GBS (10(7), 5 x 10(6), or 10(6) CFU per mouse). Mortality, appearance of arthritis, GBS growth in the organs, and local and systemic cytokine and chemokine production were examined. TLR2(-/-) mice showed earlier and higher mortality rates and increased incidence and severity of arthritis than wt mice at all the infecting doses employed. Histopathological analysis of the joints confirmed clinical observations. TLR2(-/-) mice exhibited a higher microbial load in blood, kidneys, and joints than wt animals. In vitro experiments performed with peritoneal polymorphonuclear cells and macrophages showed a significantly lower bactericidal ability of cells from TLR2(-/-) mice. Increased systemic and local levels of interleukin-1beta (IL-1beta), IL-6, tumor necrosis factor alpha, macrophage inflammatory protein-1alpha (MIP-1alpha), and MIP-2 accompanied the more severe development of sepsis and arthritis in TLR2(-/-) mice. In conclusion, the lack of TLR2 was associated with an impaired host resistance to GBS infection, likely due to a diminished bacterial clearing and a consequent enhanced inflammatory response.
Collapse
|
26
|
Recombinant group B Streptococcus alpha-like protein 3 is an effective immunogen and carrier protein. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 15:1035-41. [PMID: 18463225 DOI: 10.1128/cvi.00030-08] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Conjugate vaccines against pathogens of multiple serotypes are optimized when all components induce functional antibody, resulting in broadened coverage. While most clinical studies of vaccines against group B Streptococcus (GBS) have evaluated conjugates composed of capsular polysaccharide (CPS) coupled to tetanus toxoid, conjugates prepared with GBS proteins as carriers have also been efficacious in animals. Here, we report that recombinant GBS alpha-like protein 3 (rAlp3) is both a strong immunogen and a viable carrier protein for type III CPS. The type III CPS-specific immunoglobulin G (IgG) titer rose from <100 to 64,000 among mice that received type III CPS coupled to rAlp3 (III-rAlp3) compared with an absence of a specific response among mice that received an uncoupled mixture. Most (94%) newborn pups born to III-rAlp-vaccinated dams survived challenge with viable type III GBS, compared with 43% survival among those born to dams that received the uncoupled mixture (P < 0.0001). A tricomponent conjugate of type III CPS, rAlp3, and a GBS recombinant beta C protein lacking its IgA binding site (III-rAlp3-rBCP(DeltaIgA)) provided protection against a serotype III strain and a serotype Ia strain bearing beta C protein. High-titered anti-rAlp3 rabbit serum opsonized Alp3-containing strains of two GBS serotypes (types V and VIII) and invasive type III strains bearing the cross-reactive Rib protein for in vitro killing by human peripheral blood leukocytes. Thus, the potential exists for the inclusion of rAlp3 in a GBS vaccine formulated to provide multiserotype coverage.
Collapse
|
27
|
Santillan DA, Andracki ME, Hunter SK. Protective immunization in mice against group B streptococci using encapsulated C5a peptidase. Am J Obstet Gynecol 2008; 198:114.e1-6. [PMID: 17905172 DOI: 10.1016/j.ajog.2007.06.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 03/27/2007] [Accepted: 06/05/2007] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The purpose of the study was to test whether C5a peptidase encapsulated within a biodegradable polymer can act as a vaccine and elicit an immune response to prevent group B streptococci (GBS) infection in mice and provide protection to pups. STUDY DESIGN C5a peptidase was encapsulated in semipermeable microspheres of poly(lactide-co-glycolide). Female ICR mice were immunized with encapsulated C5a peptidase, free C5a peptidase, or empty microparticles. Booster doses were given at days 21 and 42. Antibody responses were measured by enzyme-linked immunosorbent assay. Challenge with GBS type III was performed 4 days after the final booster in the vaginal vault of adult mice and intraperitoneally 48 hours after the birth for pups. RESULTS Encapsulated C5a peptidase elicited a systemic immunoglobulin (Ig) G antibody response after intramuscular and intranasal administration. Unencapsulated C5a peptidase elicited a smaller systemic response. In addition to the strong IgG response, a secretory IgA response was observed in the vaginal mucosa after intranasal vaccination. No evidence of GBS colonization was found in vaccinated mice. Eighty-seven percent and 81% of the pups from intramuscularly and intranasally vaccinated dams survived a 90% lethal dose (LD90) GBS challenge vs 9% born to nonvaccinated dams. CONCLUSION Encapsulated C5a peptidase elicited significant immune responses and protection against GBS challenge. C5a peptidase microsphere encapsulation has potential as a GBS vaccine.
Collapse
Affiliation(s)
- Donna A Santillan
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
28
|
Yang HH, Madoff LC, Guttormsen HK, Liu YD, Paoletti LC. Recombinant group B streptococcus Beta C protein and a variant with the deletion of its immunoglobulin A-binding site are protective mouse maternal vaccines and effective carriers in conjugate vaccines. Infect Immun 2007; 75:3455-61. [PMID: 17470542 PMCID: PMC1932936 DOI: 10.1128/iai.00332-07] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 04/16/2007] [Accepted: 04/22/2007] [Indexed: 11/20/2022] Open
Abstract
Immunogenic vaccines against group B Streptococcus (GBS) have been created by coupling the GBS capsular polysaccharides (CPS) to carrier proteins. The GBS beta C protein (BCP) serves as an effective carrier while inducing protective immunity against BCP-expressing strains. BCP also binds human immunoglobulin A (IgA), a characteristic that may be undesirable for use in humans. Here, we examined the immunogenicity and protective efficacy of a recombinant GBS BCP (rBCP), an rBCP modified to eliminate its IgA-binding site (rBCP(DeltaIgA)), and their corresponding GBS serotype III CPS conjugates (III-rBCP and III-rBCP(DeltaIgA)). Deletion of the IgA-binding site or conjugation to CPS did not alter antigenic BCP epitopes. Recombinant proteins and conjugates elicited specific, high-titered IgG in mice. Antisera to rBCP, rBCP(DeltaIgA), III-rBCP, and III-rBCP(DeltaIgA) opsonized GBS strains A909 (Ia/BCP(+)) and H36B (Ib/BCP(+)) for killing by HL-60 cells; antiserum to III-rBCP and III-rBCP(DeltaIgA) also opsonized strain M781 (III/BCP(-)). Vaccination of female mice with either rBCP or rBCP(DeltaIgA) protected approximately 40% of their pups challenged with GBS strain A909. Pups born to III-rBCP- or III-rBCP(DeltaIgA)-vaccinated dams survived at rates of 56% and 66%, respectively. Over 90% of pups born to dams that received the type III CPS conjugates survived challenge with GBS strain M781. In summary, rBCP and rBCP(DeltaIgA) proteins and the conjugates containing them were immunogenic in mice, inducing both CPS- and protein-specific functional IgG. These results suggest that the rBCP(DeltaIgA) could be used as a carrier to augment the immunogenicity of the CPS while expanding coverage to GBS strains bearing BCP.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Animals, Outbred Strains
- Antibodies, Bacterial/blood
- Antigens, Bacterial/chemistry
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Antigens, Bacterial/metabolism
- Bacterial Capsules/immunology
- Binding Sites/genetics
- Female
- Gene Deletion
- Genetic Variation
- HL-60 Cells
- Humans
- Immunity, Maternally-Acquired
- Immunoglobulin A/metabolism
- Immunoglobulin G/blood
- Mice
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Streptococcal Infections/immunology
- Streptococcal Infections/microbiology
- Streptococcal Infections/prevention & control
- Streptococcal Vaccines/administration & dosage
- Streptococcal Vaccines/immunology
- Streptococcus agalactiae/immunology
- Vaccines, Conjugate/administration & dosage
- Vaccines, Conjugate/immunology
Collapse
Affiliation(s)
- Hsiao-Hui Yang
- Channing Laboratory, 181 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
29
|
Johri AK, Paoletti LC, Glaser P, Dua M, Sharma PK, Grandi G, Rappuoli R. Group B Streptococcus: global incidence and vaccine development. Nat Rev Microbiol 2006; 4:932-42. [PMID: 17088932 PMCID: PMC2742968 DOI: 10.1038/nrmicro1552] [Citation(s) in RCA: 235] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
An ongoing public health challenge is to develop vaccines that are effective against infectious diseases that have global relevance. Vaccines against serotypes of group B Streptococcus (GBS) that are prevalent in the United States and Europe are not optimally efficacious against serotypes common to other parts of the world. New technologies and innovative approaches are being used to identify GBS antigens that overcome serotype-specificity and that could form the basis of a globally effective vaccine against this opportunistic pathogen. This Review highlights efforts towards this goal and describes a template that can be followed to develop vaccines against other bacterial pathogens.
Collapse
Affiliation(s)
- Atul Kumar Johri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | | | | | | | | | | | | |
Collapse
|
30
|
Henneke P, Berner R. SIRS and group-B streptococcal sepsis in newborns: pathogenesis and perspectives in adjunctive therapy. Semin Fetal Neonatal Med 2006; 11:333-42. [PMID: 16690364 DOI: 10.1016/j.siny.2006.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Clinical signs of systemic inflammation and suspected systemic infection are common in neonatal medicine. Yet, causative infectious organisms can only infrequently be isolated. In previously healthy infants at low risk of sepsis, group B streptococcus (GBS) is the most common isolate. In vitro and in vivo data suggest that immune cells from newborn infants have impaired antimicrobial properties against GBS. In contrast large amounts of inflammatory mediators are formed upon GBS challenge and Toll-like receptors (TLR) are critical host molecules in this context. Thus, the immune balance tilts towards inflammation, SIRS and sepsis. Adjunctive therapy of neonatal sepsis needs to adjust the inflammatory response without further impairing bacterial clearance. This article summarises the pathophysiological events leading to sepsis and suggests molecular targets for adjunctive therapy.
Collapse
Affiliation(s)
- Philipp Henneke
- Zentrum für Kinderheilkunde und Jugendmedizin, Albert-Ludwigs Universität Freiburg, Mathildenstr. 1, 79106 Freiburg, Germany.
| | | |
Collapse
|
31
|
Henneke P, Berner R. Interaction of neonatal phagocytes with group B streptococcus: recognition and response. Infect Immun 2006; 74:3085-95. [PMID: 16714536 PMCID: PMC1479263 DOI: 10.1128/iai.01551-05] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Philipp Henneke
- Zentrum für Kinderheilkunde und Jugendmedizin, Albert-Ludwigs Universität Freiburg, Mathildenstr. 1, 79106 Freiburg, Germany.
| | | |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW The advent of human Toll-like receptors has revolutionized our understanding of innate immunity. This review summarizes recent discoveries about the role of Toll-like receptors and innate immunity in neonatal sepsis with a particular emphasis on the paradigmatic organism S. agalactiae. RECENT FINDINGS S. agalactiae stimulates phagocytes to excessive formation of inflammatory cytokines such as tumor necrosis factor, and Toll-like receptors are essential for this response both in vivo and in vitro. On the molecular level, distinct signaling pathways are engaged by released S. agalactiae toxins such as lipoteichoic acid (Toll-like receptor-2 dependent) and cell-bound toxins (Toll-like receptor-2 independent). In contrast, complement receptors and Fc receptors, but not Toll-like receptors, are directly involved in phagocytosis and therefore elimination of S. agalactiae. Notably, neonatal phagocytes potently activate cytokines in response to S. agalactiae but are deficient in S. agalactiae uptake and killing. Interference with the Toll-like receptor-dependent mitogen activated protein kinase cJun N-terminal Kinase improves outcome in a neonatal model of S. agalactiae sepsis by inhibiting cytokine formation but preserving clearance of S. agalactiae. SUMMARY Recent progress in the understanding of S. agalactiae recognition and phagocytic signaling in neonatal sepsis suggests intermediates in the Toll-like receptor pathways as valuable targets for adjunctive sepsis therapy.
Collapse
Affiliation(s)
- Sybille Kenzel
- Zentrum für Kinderheilkunde und Jugendmedizin, Albert-Ludwigs Universität Freiburg, Freiburg, Germany
| | | |
Collapse
|
33
|
Park HS, Cleary PP. Active and passive intranasal immunizations with streptococcal surface protein C5a peptidase prevent infection of murine nasal mucosa-associated lymphoid tissue, a functional homologue of human tonsils. Infect Immun 2006; 73:7878-86. [PMID: 16299278 PMCID: PMC1307028 DOI: 10.1128/iai.73.12.7878-7886.2005] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
C5a peptidase, also called SCPA (surface-bound C5a peptidase), is a surface-bound protein on group A streptococci (GAS), etiologic agents for a variety of human diseases including pharyngitis, impetigo, toxic shock, and necrotizing fasciitis, as well as the postinfection sequelae rheumatic fever and rheumatic heart disease. This protein is highly conserved among different serotypes and is also expressed in human isolates of group B, C, and G streptococci. Human tonsils are the primary reservoirs for GAS, maintaining endemic disease across the globe. We recently reported that GAS preferentially target nasal mucosa-associated lymphoid tissue (NALT) in mice, a tissue functionally analogous to human tonsils. Experiments using a C5a peptidase loss-of-function mutant and an intranasal infection model showed that this protease is required for efficient colonization of NALT. An effective vaccine should prevent infection of this secondary lymphoid tissue; therefore, the potential of anti-SCPA antibodies to protect against streptococcal infection of NALT was investigated. Experiments showed that GAS colonization of NALT was significantly reduced following intranasal immunization of mice with recombinant SCPA protein administered alone or with cholera toxin, whereas a high degree of GAS colonization of NALT was observed in control mice immunized with phosphate-buffered saline only. Moreover, administration of anti-SCPA serum by the intranasal route protected mice against streptococcal infection. These results suggest that intranasal immunization with SCPA would prevent colonization and infection of human tonsils, thereby eliminating potential reservoirs that maintain endemic disease.
Collapse
Affiliation(s)
- Hae-Sun Park
- Department of Microbiology, University of Minnesota Medical School, 1460 Mayo Bldg., MMC196, 420 Delaware Street SE, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
34
|
Maione D, Margarit I, Rinaudo CD, Masignani V, Mora M, Scarselli M, Tettelin H, Brettoni C, Iacobini ET, Rosini R, D’Agostino N, Miorin L, Buccato S, Mariani M, Galli G, Nogarotto R, Dei VN, Vegni F, Fraser C, Mancuso G, Teti G, Madoff LC, Paoletti LC, Rappuoli R, Kasper DL, Telford JL, Grandi G. Identification of a universal Group B streptococcus vaccine by multiple genome screen. Science 2005; 309:148-50. [PMID: 15994562 PMCID: PMC1351092 DOI: 10.1126/science.1109869] [Citation(s) in RCA: 394] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Group B Streptococcus (GBS) is a multiserotype bacterial pathogen representing a major cause of life-threatening infections in newborns. To develop a broadly protective vaccine, we analyzed the genome sequences of eight GBS isolates and cloned and tested 312 surface proteins as vaccines. Four proteins elicited protection in mice, and their combination proved highly protective against a large panel of strains, including all circulating serotypes. Protection also correlated with antigen accessibility on the bacterial surface and with the induction of opsonophagocytic antibodies. Multigenome analysis and screening described here represent a powerful strategy for identifying potential vaccine candidates against highly variable pathogens.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hervé Tettelin
- Institute for Genome Research, 9712 Medical Center Drive, Rockville, MD 20850, USA
| | | | | | | | | | - Lisa Miorin
- Chiron srl, Via Fiorentina 1, 53100 Siena, Italy
| | | | | | | | | | | | - Filipo Vegni
- Chiron srl, Via Fiorentina 1, 53100 Siena, Italy
| | - Claire Fraser
- Institute for Genome Research, 9712 Medical Center Drive, Rockville, MD 20850, USA
| | - Giuseppe Mancuso
- Department of Pathology and Experimental Microbiology, University of Messina Medical School, 98125 Messina, Italy
| | - Giuseppe Teti
- Department of Pathology and Experimental Microbiology, University of Messina Medical School, 98125 Messina, Italy
| | - Lawrence C. Madoff
- Channing Laboratory, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02125, USA
| | - Lawrence C. Paoletti
- Channing Laboratory, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02125, USA
| | | | - Dennis L. Kasper
- Channing Laboratory, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02125, USA
| | | | - Guido Grandi
- Chiron srl, Via Fiorentina 1, 53100 Siena, Italy
| |
Collapse
|
35
|
Lindahl G, Stålhammar-Carlemalm M, Areschoug T. Surface proteins of Streptococcus agalactiae and related proteins in other bacterial pathogens. Clin Microbiol Rev 2005; 18:102-27. [PMID: 15653821 PMCID: PMC544178 DOI: 10.1128/cmr.18.1.102-127.2005] [Citation(s) in RCA: 267] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Streptococcus agalactiae (group B Streptococcus) is the major cause of invasive bacterial disease, including meningitis, in the neonatal period. Although prophylactic measures have contributed to a substantial reduction in the number of infections, development of a vaccine remains an important goal. While much work in this field has focused on the S. agalactiae polysaccharide capsule, which is an important virulence factor that elicits protective immunity, surface proteins have received increasing attention as potential virulence factors and vaccine components. Here, we summarize current knowledge about S. agalactiae surface proteins, with emphasis on proteins that have been characterized immunochemically and/or elicit protective immunity in animal models. These surface proteins have been implicated in interactions with human epithelial cells, binding to extracellular matrix components, and/or evasion of host immunity. Of note, several S. agalactiae surface proteins are related to surface proteins identified in other bacterial pathogens, emphasizing the general interest of the S. agalactiae proteins. Because some S. agalactiae surface proteins elicit protective immunity, they hold promise as components in a vaccine based only on proteins or as carriers in polysaccharide conjugate vaccines.
Collapse
Affiliation(s)
- Gunnar Lindahl
- Department of Medical Microbiology, Dermatology and Infection, Lund University, Sölvegatan 23, SE-22362 Lund, Sweden.
| | | | | |
Collapse
|
36
|
Abstract
Significant advances in the prevention of neonatal group B streptococcal (GBS) disease have occurred in the last decade. In Australia, as well as in centres overseas, intrapartum penicillin given to carrier mothers has been shown to unequivocally decrease early onset neonatal GBS sepsis. In choosing which women should receive intrapartum chemoprophylaxis, recent data suggest that screening programmes for the detection of GBS carriage may be more effective than risk-based strategies to prevent early onset neonatal GBS sepsis. Combined vaginal and rectal swabs, collected between 35 and 37 weeks gestation, either by a health care worker or by the patient herself and inoculated onto selective media after enrichment provide the optimum conditions to detect carriage. Increasingly erythromycin and clindamycin resistance is being described overseas, which may influence the choice of antibiotics used in those allergic to penicillin. Widespread antibiotic use, particularly with broad-spectrum agents, may lead to increasing neonatal sepsis with ampicillin resistant organisms. Whilst rates of non-GBS neonatal sepsis are generally stable there is evidence suggesting that Escherichia coli sepsis in premature infants is increasing. Novel vaccination strategies for GBS are being developed that may ultimately provide broader protection for mothers and babies and eliminate the need for intrapartum antibiotics.
Collapse
Affiliation(s)
- A J Daley
- Department of Microbiology and Infectious Diseases, The Royal Women's Hospital and The Royal Children's Hospital, Melbourne, Victoria, Australia.
| | | |
Collapse
|
37
|
Dahl MS, Tessin I, Trollfors B. Invasive group B streptococcal infections in Sweden: incidence, predisposing factors and prognosis. Int J Infect Dis 2003; 7:113-9. [PMID: 12839712 DOI: 10.1016/s1201-9712(03)90006-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
OBJECTIVES To study the incidence, clinical manifestations, concomitant conditions and case-fatality rate in patients with invasive group B Streptococcus (GBS) infections in the Göteborg area (mean population 582,666) of Sweden during 1981-95. DESIGN Patients were identified from the records of the Department of Clinical Bacteriology. Clinical data were obtained from hospital records. RESULTS GBS was isolated from blood, cerebrospinal fluid or other sterile body fluids from 211 patients with 215 infectious episodes; 108 in neonates, and 107 in non-neonates. The incidence was 2.4/100,000 per year, with the highest rates in neonates and in persons 65 years old or older. The incidence in neonates was 0.92/1,000 live births. The most common manifestation was septicemia with unknown focus. Of the neonates, 54% were full term and had no underlying conditions. Of the non-neonates, 15% had no underlying conditions. The most common underlying conditions were preterm delivery in neonates, and arteriosclerotic disease and diabetes mellitus in non-neonates. The case-fatality rates were 13% in neonates and 16% in non-neonates. CONCLUSIONS GBS is an important pathogen in neonates and in adults with concomitant conditions. The morbidity and mortality rates necessitate research to develop GBS vaccines both for women of fertile age and for patients with a wide variety of underlying diseases.
Collapse
Affiliation(s)
- Mats S Dahl
- Department of Infectious Diseases, Sahlgrenska University Hospital/Ostra, Göteborg, Sweden.
| | | | | |
Collapse
|
38
|
Tsopelas C, Smith E, Drew P, Bartholomeusz F. Preparation and biological evaluation of99mTc-stannous fluoride colloid-labelled-leucocytes in rats99mTc-stannous fluoride-labelled-leucocytes in rats. J Labelled Comp Radiopharm 2003. [DOI: 10.1002/jlcr.715] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
39
|
Cheng Q, Debol S, Lam H, Eby R, Edwards L, Matsuka Y, Olmsted SB, Cleary PP. Immunization with C5a peptidase or peptidase-type III polysaccharide conjugate vaccines enhances clearance of group B Streptococci from lungs of infected mice. Infect Immun 2002; 70:6409-15. [PMID: 12379721 PMCID: PMC130386 DOI: 10.1128/iai.70.11.6409-6415.2002] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Group B streptococci (GBS) are among the most common causes of life-threatening neonatal infections. Vaccine development since the late 1970s has focused on the capsular polysaccharides, but a safe, effective product is still not available. Our quest for a vaccine turned to the streptococcal C5a peptidase (SCPB). This surface protein is antigenically conserved across most if not all serotypes. A murine model was used to assess the impact of SCPB on clearance of GBS from the lungs of intranasally infected animals. Mutational inactivation of SCPB resulted in more-rapid clearance of streptococci from the lung. Immunization with recombinant SCPB alone or SCPB conjugated to type III capsular polysaccharide produced serotype-independent protection, which was evidenced by more-rapid clearance of the serotype VI strain from the lungs. Immunization of mice with tetanus toxoid-type III polysaccharide conjugate did not produce protection, confirming that protection induced by SCPB conjugates was independent of type III polysaccharide antigen. Histological evaluation of lungs from infected mice revealed that pathology in animals immunized with SCPB or SCPB conjugates was significantly less than that in animals immunized with a tetanus toxoid-polysaccharide conjugate. These experiments suggest that inclusion of C5a peptidase in a vaccine will both add another level to and broaden the spectrum of the protection of a polysaccharide vaccine.
Collapse
Affiliation(s)
- Qi Cheng
- Department of Microbiology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
|
41
|
O'Brien KL, Beall B, Barrett NL, Cieslak PR, Reingold A, Farley MM, Danila R, Zell ER, Facklam R, Schwartz B, Schuchat A. Epidemiology of invasive group a streptococcus disease in the United States, 1995-1999. Clin Infect Dis 2002; 35:268-76. [PMID: 12115092 DOI: 10.1086/341409] [Citation(s) in RCA: 274] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2002] [Revised: 03/15/2002] [Indexed: 11/04/2022] Open
Abstract
Severe invasive group A streptococcal (GAS) disease is believed to have reemerged during the past 10-20 years. We conducted active, laboratory, population-based surveillance in 5 US states (total population, 13,214,992). From 1 July 1995 through 31 December 1999, we identified 2002 episodes of invasive GAS (3.5 cases per 100,000 persons). Rates varied by age (higher among those <2 or >/=65 years old), surveillance area, and race (higher among black individuals) but did not increase during the study period. The 5 most common emm types (1, 28, 12, 3, and 11) accounted for 49.2% of isolates; newly characterized emm types accounted for 8.9% of isolates. Older age; presence of streptococcal toxic shock syndrome, meningitis, or pneumonia; and infection with emm1 or emm3 were all independent predictors of death. We estimate that 9600-9700 cases of invasive GAS disease occur in the United States each year, resulting in 1100-1300 deaths.
Collapse
Affiliation(s)
- Katherine L O'Brien
- Respiratory Diseases Branch, Division of Bacterial and Mycotic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Group B streptococcus (Streptococcus agalactiae) is still of great relevance in the perinatal period, although maternal antimicrobial prophylaxis has significantly reduced the rate of culture-confirmed invasive infection in neonates. This strategy, however, raises considerable concern because preterm delivery or late-onset sepsis cannot be prevented, and antibiotic resistance is increasing worldwide. Several advances in the development of conjugate vaccines and in research on virulence factors and pathways involved in the immune response to group B streptococcus have been accomplished, some of which might reach clinical practice in the near future.
Collapse
MESH Headings
- Antibodies, Bacterial/immunology
- Drug Resistance, Multiple, Bacterial
- Female
- Humans
- Infant, Newborn
- Infant, Premature, Diseases/drug therapy
- Infant, Premature, Diseases/epidemiology
- Infant, Premature, Diseases/microbiology
- Infant, Premature, Diseases/prevention & control
- Pregnancy
- Streptococcal Infections/drug therapy
- Streptococcal Infections/epidemiology
- Streptococcal Infections/immunology
- Streptococcal Infections/prevention & control
- Streptococcal Vaccines/immunology
- Streptococcus agalactiae/classification
- Streptococcus agalactiae/immunology
- Streptococcus agalactiae/pathogenicity
- Streptococcus agalactiae/physiology
- Virulence
Collapse
Affiliation(s)
- Reinhard Berner
- Department of Pediatrics, University Hospital Freiburg, Freiburg, Germany.
| |
Collapse
|
43
|
Cheng Q, Stafslien D, Purushothaman SS, Cleary P. The group B streptococcal C5a peptidase is both a specific protease and an invasin. Infect Immun 2002; 70:2408-13. [PMID: 11953377 PMCID: PMC127948 DOI: 10.1128/iai.70.5.2408-2413.2002] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2001] [Revised: 01/14/2002] [Accepted: 02/07/2002] [Indexed: 11/20/2022] Open
Abstract
The group B streptococcus (GBS) is a major cause of pneumonia, sepsis, and meningitis in neonates and a serious cause of mortality or morbidity in immunocompromised adults. Although these streptococci adhere efficiently and invade a variety of tissue-specific epithelial and endothelial cells, adhesins and invasins are still unknown. All serotypes of GBS studied to date express C5a peptidase (SCPB) on their surface. This investigation addresses the possibility that this relatively large surface protein has additional activities. Rabbit anti-SCPB serum inhibited invasion of lung epithelial A549 cells by the serotype Ia strain O90R, suggesting that SCPB is an invasin. This was confirmed by inserting an in-frame 25-amino-acid deletion into the scpB gene. Invasion of HEp2 and A549 human cell lines was significantly reduced by the mutation. Enzyme-linked immunosorbent assays were used to demonstrate that purified SCPB protein binds directly to HEp2 and A549 cells and also binds the extracellular matrix protein fibronectin. Binding was dose dependent and saturable. These results suggested that SCPB is one of several potential invasins essential for GBS colonization of damaged epithelium.
Collapse
Affiliation(s)
- Qi Cheng
- Department of Microbiology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
44
|
Hughes MJG, Moore JC, Lane JD, Wilson R, Pribul PK, Younes ZN, Dobson RJ, Everest P, Reason AJ, Redfern JM, Greer FM, Paxton T, Panico M, Morris HR, Feldman RG, Santangelo JD. Identification of major outer surface proteins of Streptococcus agalactiae. Infect Immun 2002; 70:1254-9. [PMID: 11854208 PMCID: PMC127763 DOI: 10.1128/iai.70.3.1254-1259.2002] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2001] [Revised: 09/25/2001] [Accepted: 12/04/2001] [Indexed: 11/20/2022] Open
Abstract
To identify the major outer surface proteins of Streptococcus agalactiae (group B streptococcus), a proteomic analysis was undertaken. An extract of the outer surface proteins was separated by two-dimensional electrophoresis. The visualized spots were identified through a combination of peptide sequencing and reverse genetic methodologies. Of the 30 major spots identified as S. agalactiae specific, 27 have been identified. Six of these proteins, previously unidentified in S. agalactiae, were sequenced and cloned. These were ornithine carbamoyltransferase, phosphoglycerate kinase, nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase, purine nucleoside phosphorylase, enolase, and glucose-6-phosphate isomerase. Using a gram-positive expression system, we have overexpressed two of these proteins in an in vitro system. These recombinant, purified proteins were used to raise antisera. The identification of these proteins as residing on the outer surface was confirmed by the ability of the antisera to react against whole, live bacteria. Further, in a neonatal-animal model system, we demonstrate that some of these sera are protective against lethal doses of bacteria. These studies demonstrate the successful application of proteomics as a technique for identifying vaccine candidates.
Collapse
|
45
|
Paoletti LC, Peterson DL, Legmann R, Collier RJ. Preclinical evaluation of group B streptococcal polysaccharide conjugate vaccines prepared with a modified diphtheria toxin and a recombinant duck hepatitis B core antigen. Vaccine 2001; 20:370-6. [PMID: 11672899 DOI: 10.1016/s0264-410x(01)00364-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An effective vaccine against group B streptococcal (GBS) disease will undoubtedly include capsular polysaccharides (CPSs) from each of the five serotypes prevalent in the United States individually coupled to immunogenic proteins. This formulation may require the use of two or more different protein carriers. We preclinically examined the potential of two proteins to serve as effective carriers for GBS type III CPS. Recombinant duck hepatitis B core antigen (rdHBcAg), a particulate protein of viral origin, and a newly mutated form of diphtheria toxin (DTm) were covalently and directly coupled to purified type III CPS by reductive amination. Seventy-seven of 79 (97%) newborn pups born to mouse dams actively vaccinated with type III CPS-rdHBcAg conjugate survived GBS type III challenge, whereas none of the pups born to dams that received an uncoupled mixture of type III CPS and rdHBcAg or saline survived. Likewise, 64 (98%) of 65 pups born to dams vaccinated with type III CPS-DTm conjugate survived challenge, in sharp contrast to no survivors among the pups born to dams vaccinated with an uncoupled mixture of type III CPS and DTm. The presence of type III CPS-specific IgG in serum from dams correlated with pup survival in groups that received a conjugate vaccine, and this serum was opsonically active in vitro against GBS type III. In addition, carrier-specific IgG was also measured in serum from vaccinated mice. These data suggest that the rdHBcAg and DTm may be effective carriers for GBS CPSs.
Collapse
Affiliation(s)
- L C Paoletti
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
46
|
Poyart C, Pellegrini E, Gaillot O, Boumaila C, Baptista M, Trieu-Cuot P. Contribution of Mn-cofactored superoxide dismutase (SodA) to the virulence of Streptococcus agalactiae. Infect Immun 2001; 69:5098-106. [PMID: 11447191 PMCID: PMC98605 DOI: 10.1128/iai.69.8.5098-5106.2001] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Superoxide dismutases convert superoxide anions to molecular oxygen and hydrogen peroxide, which, in turn, is metabolized by catalases and/or peroxidases. These enzymes constitute one of the major defense mechanisms of cells against oxidative stress and hence play a role in the pathogenesis of certain bacteria. We previously demonstrated that group B streptococci (GBS) possess a single Mn-cofactored superoxide dismutase (SodA). To analyze the role of this enzyme in the pathogenicity of GBS, we constructed a sodA-disrupted mutant of Streptococcus agalactiae NEM316 by allelic exchange. This mutant was subsequently cis complemented by integration into the chromosome of pAT113/Sp harboring the wild-type sodA gene. The SOD specific activity detected by gel analysis in cell extracts confirmed that active SODs were present in the parental and complemented strains but absent in the sodA mutant. The growth rates of these strains in standing cultures were comparable, but the sodA mutant was extremely susceptible to the oxidative stress generated by addition of paraquat or hydrogen peroxide to the culture medium and exhibited a higher mutation frequency in the presence of rifampin. In mouse bone marrow-derived macrophages, the sodA mutant showed an increased susceptibility to bacterial killing by macrophages. In a mouse infection model, after intravenous injection the survival of the sodA mutant in the blood and the brain was markedly reduced in comparison to that of the parental and complemented strains whereas only minor effects on survival in the liver and the spleen were observed. These results suggest that SodA plays a role in GBS pathogenesis.
Collapse
Affiliation(s)
- C Poyart
- INSERM U-411, Faculté de Médecine Necker-Enfants Malades, 75730 Paris Cedex 15, France.
| | | | | | | | | | | |
Collapse
|