1
|
Samer C, McWilliam HEG, McSharry BP, Burchfield JG, Stanton RJ, Rossjohn J, Villadangos JA, Abendroth A, Slobedman B. Impaired endocytosis and accumulation in early endosomal compartments defines herpes simplex virus-mediated disruption of the nonclassical MHC class I-related molecule MR1. J Biol Chem 2024; 300:107748. [PMID: 39260697 PMCID: PMC11736056 DOI: 10.1016/j.jbc.2024.107748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/13/2024] Open
Abstract
Presentation of metabolites by the major histocompatibility complex class I-related protein 1 (MR1) molecule to mucosal-associated invariant T cells is impaired during herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) infections. This is surprising given these viruses do not directly synthesise MR1 ligands. We have previously identified several HSV proteins responsible for rapidly downregulating the intracellular pool of immature MR1, effectively inhibiting new surface antigen presentation, while preexisting ligand-bound mature MR1 is unexpectedly upregulated by HSV-1. Using flow cytometry, immunoblotting, and high-throughput fluorescence microscopy, we demonstrate that the endocytosis of surface MR1 is impaired during HSV infection and that internalized molecules accumulate in EEA1-labeled early endosomes, avoiding degradation. We establish that the short MR1 cytoplasmic tail is not required for HSV-1-mediated downregulation of immature molecules; however it may play a role in the retention of mature molecules on the surface and in early endosomes. We also determine that the HSV-1 US3 protein, the shorter US3.5 kinase and the full-length HSV-2 homolog, all predominantly target mature surface rather than total MR1 levels. We propose that the downregulation of intracellular and cell surface MR1 molecules by US3 and other HSV proteins is an immune-evasive countermeasure to minimize the effect of impaired MR1 endocytosis, which might otherwise render infected cells susceptible to MR1-mediated killing by mucosal-associated invariant T cells.
Collapse
Affiliation(s)
- Carolyn Samer
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, and the Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Hamish E G McWilliam
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Brian P McSharry
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, and the Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia; School of Dentistry and Medical Sciences, Faculty of Science and Health, and Gulbali Institute, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - James G Burchfield
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia; School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| | - Richard J Stanton
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Jamie Rossjohn
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, Wales, UK; Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jose A Villadangos
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia; Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Allison Abendroth
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, and the Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Barry Slobedman
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, and the Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia.
| |
Collapse
|
2
|
Sharma D, Sharma S, Akojwar N, Dondulkar A, Yenorkar N, Pandita D, Prasad SK, Dhobi M. An Insight into Current Treatment Strategies, Their Limitations, and Ongoing Developments in Vaccine Technologies against Herpes Simplex Infections. Vaccines (Basel) 2023; 11:vaccines11020206. [PMID: 36851084 PMCID: PMC9966607 DOI: 10.3390/vaccines11020206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Herpes simplex virus (HSV) infection, the most prevalent viral infection that typically lasts for a lifetime, is associated with frequent outbreaks of oral and genital lesions. Oral herpes infection is mainly associated with HSV-1 through oral contact, while genital herpes originates due to HSV-2 and is categorized under sexually transmitted diseases. Immunocompromised patients and children are more prone to HSV infection. Over the years, various attempts have been made to find potential targets for the prevention of HSV infection. Despite the global distress caused by HSV infections, there are no licensed prophylactic and therapeutic vaccines available on the market against HSV. Nevertheless, there are numerous promising candidates in the pre-clinical and clinical stages of study. The present review gives an overview of two herpes viruses, their history, and life cycle, and different treatments adopted presently against HSV infections and their associated limitations. Majorly, the review covers the recent investigations being carried out globally regarding various vaccine strategies against oral and genital herpes virus infections, together with the recent and advanced nanotechnological approaches for vaccine development. Consequently, it gives an insight to researchers as well as people from the health sector about the challenges and upcoming solutions associated with treatment and vaccine development against HSV infections.
Collapse
Affiliation(s)
- Divya Sharma
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, Government of NCT of Delhi, New Delhi 110017, India
| | - Supriya Sharma
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, Government of NCT of Delhi, New Delhi 110017, India
| | - Natasha Akojwar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India
| | - Ayusha Dondulkar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India
| | - Nikhil Yenorkar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India
| | - Deepti Pandita
- Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, Government of NCT of Delhi, New Delhi 110017, India
- Correspondence: (D.P.); (S.K.P.); (M.D.)
| | - Satyendra K. Prasad
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India
- Correspondence: (D.P.); (S.K.P.); (M.D.)
| | - Mahaveer Dhobi
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, Government of NCT of Delhi, New Delhi 110017, India
- Correspondence: (D.P.); (S.K.P.); (M.D.)
| |
Collapse
|
3
|
Shohael AM, Moin AT, Chowdhury MAB, Riana SH, Ullah MA, Araf Y, Sarkar B. An Updated Overview of Herpes Simplex Virus-1 Infection: Insights from Origin to Mitigation Measures. ELECTRONIC JOURNAL OF GENERAL MEDICINE 2021. [DOI: 10.29333/ejgm/10869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
4
|
Koujah L, Allaham M, Patil CD, Ames JM, Suryawanshi RK, Yadavalli T, Agelidis A, Mun C, Surenkhuu B, Jain S, Shukla D. Entry receptor bias in evolutionarily distant HSV-1 clinical strains drives divergent ocular and nervous system pathologies. Ocul Surf 2021; 21:238-249. [PMID: 33766740 DOI: 10.1016/j.jtos.2021.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 01/13/2023]
Abstract
PURPOSE Herpes simplex virus-1 (HSV-1) infection leads to varying pathologies including the development of ocular lesions, stromal keratitis and encephalitis. While the role for host immunity in disease progression is well understood, the contribution of genetic variances in generating preferential viral entry receptor usage and resulting immunopathogenesis in humans are not known. METHODS Ocular cultures were obtained from patients presenting distinct pathologies of herpes simplex keratitis (HSK). Next-generation sequencing and subsequent analysis characterized genetic variances among the strains and estimated evolutionary divergence. Murine model of ocular infection was used to assess phenotypic contributions of strain variances on damage to the ocular surface and propagation of innate immunity. Flow cytometry of eye tissue identified differential recruitment of immune cell populations, cytokine array probed for programming of local immune response in the draining lymph node and histology was used to assess inflammation of the trigeminal ganglion (TG). Ex-vivo corneal cultures and in-vitro studies elucidated the role of genetic variances in altering host-pathogen interactions, leading to divergent host responses. RESULTS Phylogenetic analysis of the clinical isolates suggests evolutionary divergence among currently circulating HSV-1 strains. Mutations causing alterations in functional host interactions were identified, particularly in viral entry glycoproteins which generated a receptor bias to herpesvirus entry mediator, an immune modulator involved in immunopathogenic diseases like HSK, leading to exacerbated ocular surface pathologies and heightened viral burden in the TG and brainstem. CONCLUSIONS Our data suggests receptor bias resulting from genetic variances in clinical strains may dictate disease severity and treatment outcome.
Collapse
Affiliation(s)
- Lulia Koujah
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA; Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Mowafak Allaham
- Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Chandrashekhar D Patil
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Joshua M Ames
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA; Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Rahul K Suryawanshi
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Tejabhiram Yadavalli
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Alex Agelidis
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA; Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Christine Mun
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Bayasgalan Surenkhuu
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Sandeep Jain
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA; Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
5
|
Archer K, Pammer K, Vidyasagar TR. A Temporal Sampling Basis for Visual Processing in Developmental Dyslexia. Front Hum Neurosci 2020; 14:213. [PMID: 32733217 PMCID: PMC7360833 DOI: 10.3389/fnhum.2020.00213] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/11/2020] [Indexed: 11/24/2022] Open
Abstract
Knowledge of oscillatory entrainment and its fundamental role in cognitive and behavioral processing has increasingly been applied to research in the field of reading and developmental dyslexia. Growing evidence indicates that oscillatory entrainment to theta frequency spoken language in the auditory domain, along with cross-frequency theta-gamma coupling, support phonological processing (i.e., cognitive encoding of linguistic knowledge gathered from speech) which is required for reading. This theory is called the temporal sampling framework (TSF) and can extend to developmental dyslexia, such that inadequate temporal sampling of speech-sounds in people with dyslexia results in poor theta oscillatory entrainment in the auditory domain, and thus a phonological processing deficit which hinders reading ability. We suggest that inadequate theta oscillations in the visual domain might account for the many magno-dorsal processing, oculomotor control and visual deficits seen in developmental dyslexia. We propose two possible models of a magno-dorsal visual correlate to the auditory TSF: (1) A direct correlate that involves "bottom-up" magnocellular oscillatory entrainment of the visual domain that occurs when magnocellular populations phase lock to theta frequency fixations during reading and (2) an inverse correlate whereby attending to text triggers "top-down" low gamma signals from higher-order visual processing areas, thereby organizing magnocellular populations to synchronize to a theta frequency to drive the temporal control of oculomotor movements and capturing of letter images at a higher frequency.
Collapse
Affiliation(s)
- Kim Archer
- Applied Psychology and Human Factors Laboratory, School of Psychology, University of Newcastle, Newcastle, NSW, Australia
| | - Kristen Pammer
- Applied Psychology and Human Factors Laboratory, School of Psychology, University of Newcastle, Newcastle, NSW, Australia
| | - Trichur Raman Vidyasagar
- Visual and Cognitive Neuroscience Laboratory, Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| |
Collapse
|
6
|
Herpes Simplex Virus Latency Is Noisier the Closer We Look. J Virol 2020; 94:JVI.01701-19. [PMID: 31776275 DOI: 10.1128/jvi.01701-19] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/05/2019] [Indexed: 12/25/2022] Open
Abstract
During herpes simplex virus (HSV) latency, the viral genome is harbored in peripheral neurons in the absence of infectious virus but with the potential to restart infection. Advances in epigenetics have helped explain how viral gene expression is largely inhibited during latency. Paradoxically, at the same time, the view that latency is entirely silent has been eroding. This low-level noise has implications for our understanding of HSV latency and should not be ignored.
Collapse
|
7
|
Li J, Liu T, Dong Y, Kondoh K, Lu Z. Trans-synaptic Neural Circuit-Tracing with Neurotropic Viruses. Neurosci Bull 2019; 35:909-920. [PMID: 31004271 PMCID: PMC6754522 DOI: 10.1007/s12264-019-00374-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/15/2018] [Indexed: 12/19/2022] Open
Abstract
A central objective in deciphering the nervous system in health and disease is to define the connections of neurons. The propensity of neurotropic viruses to spread among synaptically-linked neurons makes them ideal for mapping neural circuits. So far, several classes of viral neuronal tracers have become available and provide a powerful toolbox for delineating neural networks. In this paper, we review the recent developments of neurotropic viral tracers and highlight their unique properties in revealing patterns of neuronal connections.
Collapse
Affiliation(s)
- Jiamin Li
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Taian Liu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yun Dong
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Kunio Kondoh
- Division of Endocrinology and Metabolism, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institute of Natural Sciences, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
- Japan Science and Technology Agency, PRESTO, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
| | - Zhonghua Lu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
8
|
Jiao X, Sui H, Lyons C, Tran B, Sherman BT, Imamichi T. Complete Genome Sequence of Herpes Simplex Virus 1 Strain MacIntyre. Microbiol Resour Announc 2019; 8:e00895-19. [PMID: 31515348 PMCID: PMC6742799 DOI: 10.1128/mra.00895-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 08/23/2019] [Indexed: 01/01/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) strain MacIntyre has a severe defect in the anterograde spread after replication in the nucleus. To better understand and identify the genetic determinants that lead to the unique phenotypes of the MacIntyre strain, we sequenced its genome with PacBio single-molecule real-time sequencing technology and resolved the complete sequence.
Collapse
Affiliation(s)
- Xiaoli Jiao
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Hongyan Sui
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Christopher Lyons
- Sequencing Facility, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Bao Tran
- Sequencing Facility, Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Brad T Sherman
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Tomozumi Imamichi
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| |
Collapse
|
9
|
Beier KT. Hitchhiking on the neuronal highway: Mechanisms of transsynaptic specificity. J Chem Neuroanat 2019; 99:9-17. [PMID: 31075318 PMCID: PMC6701464 DOI: 10.1016/j.jchemneu.2019.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/20/2019] [Accepted: 05/06/2019] [Indexed: 01/28/2023]
Abstract
Transsynaptic viral tracers are an invaluable neuroanatomical tool to define neuronal circuit connectivity across single or multiple synapses. There are variants that label either inputs or outputs of defined starter populations, most of which are based on the herpes and rabies viruses. However, we still have an incomplete understanding of the factors influencing specificity of neuron-neuron transmission and labeling of inputs vs. outputs. This article will touch on three topics: First, how specific are the directional transmission patterns of these viruses? Second, what are the properties that confer synaptic specificity of viral transmission? Lastly, what can we learn from this specificity, and can we use it to devise better transsynaptic tracers?
Collapse
Affiliation(s)
- Kevin T Beier
- Department of Physiology and Biophysics, Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, 92697, United States.
| |
Collapse
|
10
|
Mancini M, Caignard G, Charbonneau B, Dumaine A, Wu N, Leiva-Torres GA, Gerondakis S, Pearson A, Qureshi ST, Sladek R, Vidal SM. Rel-Dependent Immune and Central Nervous System Mechanisms Control Viral Replication and Inflammation during Mouse Herpes Simplex Encephalitis. THE JOURNAL OF IMMUNOLOGY 2019; 202:1479-1493. [DOI: 10.4049/jimmunol.1800063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 12/21/2018] [Indexed: 01/01/2023]
|
11
|
Liu Y, Guan X, Li C, Ni F, Luo S, Wang J, Zhang D, Zhang M, Hu Q. HSV-2 glycoprotein J promotes viral protein expression and virus spread. Virology 2018; 525:83-95. [PMID: 30248525 DOI: 10.1016/j.virol.2018.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 10/28/2022]
Abstract
HSV-2 spread is predominantly dependent on cell-to-cell contact. However, the underlying mechanisms remain to be determined. Here we demonstrate that HSV-2 gJ, which was previously assigned no specific function, promotes HSV-2 cell-to-cell spread and syncytia formation. In the context of viral infection, knockout or knockdown of gJ impairs HSV-2 cell-to-cell spread among epithelial cells or from epithelial cells to neuronal cells, which leads to decreased virus production, whereas ectopic expression of gJ enhances virus production. Mechanistically, gJ increases the expression levels of HSV-2 proteins, and also enhances viral protein expression and replication of heterologous viruses like HIV-1 and JEV, suggesting that HSV-2 gJ likely functions as a regulator of viral protein expression and virus production. Findings in this study provide a basis for further understanding the role of gJ in HSV-2 replication.
Collapse
Affiliation(s)
- Yalan Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xinmeng Guan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuntian Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengfeng Ni
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sukun Luo
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, China
| | - Jun Wang
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, China
| | - Di Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mudan Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Qinxue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; Institute for Infection and Immunity, St George's University of London, London SW17 0RE, UK.
| |
Collapse
|
12
|
Mancini M, Vidal SM. Insights into the pathogenesis of herpes simplex encephalitis from mouse models. Mamm Genome 2018; 29:425-445. [PMID: 30167845 PMCID: PMC6132704 DOI: 10.1007/s00335-018-9772-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/09/2018] [Indexed: 01/05/2023]
Abstract
A majority of the world population is infected with herpes simplex viruses (HSV; human herpesvirus types 1 and 2). These viruses, perhaps best known for their manifestation in the genital or oral mucosa, can also cause herpes simplex encephalitis, a severe and often fatal disease of the central nervous system. Antiviral therapies for HSV are only partially effective since the virus can establish latent infections in neurons, and severe pathological sequelae in the brain are common. A better understanding of disease pathogenesis is required to develop new strategies against herpes simplex encephalitis, including the precise viral and host genetic determinants that promote virus invasion into the central nervous system and its associated immunopathology. Here we review the current understanding of herpes simplex encephalitis from the host genome perspective, which has been illuminated by groundbreaking work on rare herpes simplex encephalitis patients together with mechanistic insight from single-gene mouse models of disease. A complex picture has emerged, whereby innate type I interferon-mediated antiviral signaling is a central pathway to control viral replication, and the regulation of immunopathology and the balance between apoptosis and autophagy are critical to disease severity in the central nervous system. The lessons learned from mouse studies inform us on fundamental defense mechanisms at the interface of host–pathogen interactions within the central nervous system, as well as possible rationales for intervention against infections from severe neuropathogenic viruses.
Collapse
Affiliation(s)
- Mathieu Mancini
- Department of Human Genetics, McGill University, Montreal, QC, Canada.,McGill Research Centre on Complex Traits, McGill University, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
| | - Silvia M Vidal
- Department of Human Genetics, McGill University, Montreal, QC, Canada. .,McGill Research Centre on Complex Traits, McGill University, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada.
| |
Collapse
|
13
|
Kim JA, Choi MS, Min JS, Kang I, Oh J, Kim JC, Ahn JK. HSV-1 ICP27 represses NF-κB activity by regulating Daxx sumoylation. BMB Rep 2018; 50:275-280. [PMID: 28320502 PMCID: PMC5458678 DOI: 10.5483/bmbrep.2017.50.5.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Indexed: 01/14/2023] Open
Abstract
Herpes simplex virus type 1 ICP27 is a multifunctional protein responsible for viral replication, late gene expression, and reactivation from latency. ICP27 interacts with various cellular proteins, including Daxx. However, the role of interaction between ICP27 and Daxx is largely unknown. Since Daxx is known to repress NF-κB activity, there is a possibility that ICP27 may influence the inhibitory effect of Daxx on NF-κB activity. In this study, we tested whether ICP27 affects the NF-κB activity through its interaction with Daxx. Interestingly, ICP27 enhanced the Daxx-mediated repression of NF-κB activity. In addition, we found that sumoylation of Daxx regulates its interaction with p65. ICP27 binds to Daxx, inhibits Daxx sumoylation, and enhances p65 deacetylation induced by Daxx. Consequently, ICP27 represses the NF-κB activity, by elevating the inhibitory effect of Daxx on NF-κB activity through desumoylation of Daxx.
Collapse
Affiliation(s)
- Ji Ae Kim
- Department of Microbiology & Molecular Biology, College of Biological Science and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Mi Sun Choi
- Department of Microbiology & Molecular Biology, College of Biological Science and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Jung Sun Min
- Department of Microbiology & Molecular Biology, College of Biological Science and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Inho Kang
- Department of Microbiology & Molecular Biology, College of Biological Science and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Jeongho Oh
- Department of Microbiology & Molecular Biology, College of Biological Science and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Jin Chul Kim
- Department of Microbiology & Molecular Biology, College of Biological Science and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Jeong Keun Ahn
- Department of Microbiology & Molecular Biology, College of Biological Science and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
14
|
Pannese E. Biology and Pathology of Perineuronal Satellite Cells in Sensory Ganglia. BIOLOGY AND PATHOLOGY OF PERINEURONAL SATELLITE CELLS IN SENSORY GANGLIA 2018. [DOI: 10.1007/978-3-319-60140-3_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Immune Regulation of Antibody Access to Neuronal Tissues. Trends Mol Med 2017; 23:227-245. [PMID: 28185790 DOI: 10.1016/j.molmed.2017.01.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 01/05/2017] [Accepted: 01/10/2017] [Indexed: 02/06/2023]
Abstract
This review highlights recent advances in how the innate and adaptive immune systems control the blood-brain barrier (BBB) and the blood-nerve barrier (BNB). Interferons and TAM receptors play key roles in innate immune control of the BBB. Cells of the adaptive immune system, particularly CD4+ T cells, take distinct routes to enter neural tissues and mediate immune surveillance. Furthermore, T cell-mediated opening of the BBB and the BNB is crucial to allow antibody access and thereby block the replication of neurotropic viruses. Such novel insights gained from basic research provide key foundations for future design of therapeutic strategies - enabling antibody access to the brain may be key to cancer immunotherapy and to the use of vaccines against neurodegenerative conditions such as Alzheimer's disease.
Collapse
|
16
|
Abstract
Sense organ deposits have been described in temporal bones from patients with vestibular neuronitis, Meniere's disease, and benign paroxysmal positional vertigo that are not found in a comparable series of temporal bones without vestibulopathy. Because the recurrent vestibulopathies are caused by vestibular ganglionitis and the vestibulocochlear anastomosis was degenerated in these temporal bones, the deposits may represent the end buds of regenerating efferent axons injured in passage through the vestibular ganglion. Such neural buds have been described with transmission electron microscopy in animals after vestibular nerve transection and in a human temporal bone with endolymphatic hydrops. The buds may be visible by light microscopy, because their size is comparable to that of hair cell nuclei and they stain blue with hematoxylin because of their nucleic acid content. The variable location and size of these deposits (buds) in the labyrinthine sense organs is described to aid in the recognition of efferent system injury in human temporal bones.
Collapse
Affiliation(s)
- Richard R Gacek
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of South Alabama College of Medicine, Mobile, Alabama 36688-0002, USA
| |
Collapse
|
17
|
Okafor K, Lu J, Thinda S, Schwab I, Morse LS, Park SS, Moshiri A. Acute Retinal Necrosis Presenting in Developmentally-delayed Patients with Neonatal Encephalitis: A Case Series and Literature Review. Ocul Immunol Inflamm 2016; 25:563-568. [DOI: 10.3109/09273948.2016.1160131] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Kingsley Okafor
- Department of Ophthalmology & Vision Science, University of California Davis Eye Center, Sacramento, California, USA
| | - Jonathan Lu
- Department of Ophthalmology & Vision Science, University of California Davis Eye Center, Sacramento, California, USA
| | - Sumeer Thinda
- Department of Ophthalmology & Vision Science, University of California Davis Eye Center, Sacramento, California, USA
| | - Ivan Schwab
- Department of Ophthalmology & Vision Science, University of California Davis Eye Center, Sacramento, California, USA
| | - Lawrence S. Morse
- Department of Ophthalmology & Vision Science, University of California Davis Eye Center, Sacramento, California, USA
| | - Susanna S. Park
- Department of Ophthalmology & Vision Science, University of California Davis Eye Center, Sacramento, California, USA
| | - Ala Moshiri
- Department of Ophthalmology & Vision Science, University of California Davis Eye Center, Sacramento, California, USA
| |
Collapse
|
18
|
Bottinelli M, Rampacci E, Stefanetti V, Marenzoni ML, Malmlov AM, Coletti M, Passamonti F. Serological and biomolecular survey on canine herpesvirus-1 infection in a dog breeding kennel. J Vet Med Sci 2016; 78:797-802. [PMID: 26726105 PMCID: PMC4905834 DOI: 10.1292/jvms.15-0543] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Canine herpesvirus-1 (CaHV-1) is a globally distributed pathogen causing reproductive, respiratory, ocular and neurological disorders in adult dogs and neonatal death in puppies. This pathogen is considered poorly immunogenic, and neutralizing antibodies are found for only a short time following exposure. Further, seroprevalence can be affected by several epidemiological factors. A virological survey was conducted in a high-density population breeding kennel in Central Italy. There were several factors predisposing animals to CaHV-1 infection, such as age, number of pregnancies, experience with mating and dog shows, cases of abortion, management and environmental hygiene. Serum neutralization (SN) and nested PCR assays were used to estimate prevalence of CaHV-1. None of the submitted samples tested positive for nested PCR, and none of the sera tested CaHV-1 positive. No association was observed between antibody titers and risk factors, and no sign of viral reactivation was detected in either males or females. These results suggest that CaHV-1 is not circulating within this kennel and that further studies are needed in order to better understand the distribution of the virus within Italy.
Collapse
Affiliation(s)
- Marco Bottinelli
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia (PG), Italy
| | | | | | | | | | | | | |
Collapse
|
19
|
The pseudorabies virus protein, pUL56, enhances virus dissemination and virulence but is dispensable for axonal transport. Virology 2015; 488:179-86. [PMID: 26655235 DOI: 10.1016/j.virol.2015.11.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/11/2015] [Accepted: 11/15/2015] [Indexed: 11/23/2022]
Abstract
Neurotropic herpesviruses exit the peripheral nervous system and return to exposed body surfaces following reactivation from latency. The pUS9 protein is a critical viral effector of the anterograde axonal transport that underlies this process. We recently reported that while pUS9 increases the frequency of sorting of newly assembled pseudorabies virus particles to axons from the neural soma during egress, subsequent axonal transport of individual virus particles occurs with wild-type kinetics in the absence of the protein. Here, we examine the role of a related pseudorabies virus protein, pUL56, during neuronal infection. The findings indicate that pUL56 is a virulence factor that supports virus dissemination in vivo, yet along with pUS9, is dispensable for axonal transport.
Collapse
|
20
|
Liang Y, Yang K, Guo J, Wroblewska J, Fu YX, Peng H. Innate lymphotoxin receptor mediated signaling promotes HSV-1 associated neuroinflammation and viral replication. Sci Rep 2015; 5:10406. [PMID: 25993659 PMCID: PMC4438665 DOI: 10.1038/srep10406] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 04/10/2015] [Indexed: 12/13/2022] Open
Abstract
Host anti-viral innate immunity plays important roles in the defense against HSV-1 infection. In this study, we find an unexpected role for innate LT/LIGHT signaling in promoting HSV-1 replication and virus induced inflammation in immunocompromised mice. Using a model of footpad HSV-1 infection in Rag1–/– mice, we observed that blocking LT/LIGHT signaling with LTβR-Ig could significantly delay disease progression and extend the survival of infected mice. LTβR-Ig treatment reduced late proinflammatory cytokine release in the serum and nervous tissue, and inhibited chemokine expression and inflammatory cells infiltration in the dorsal root ganglia (DRG). Intriguingly, LTβR-Ig treatment restricted HSV-1 replication in the DRG but not the footpad. These findings demonstrate a critical role for LT/LIGHT signaling in modulating innate inflammation and promoting HSV-1 replication in the nervous system, and suggest a new target for treatment of virus-induced adverse immune response and control of severe HSV-1 infection.
Collapse
Affiliation(s)
- Yong Liang
- 1] Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China [2] University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaiting Yang
- 1] Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China [2] University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingya Guo
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Joanna Wroblewska
- Department of Pathology and Committee on Immunology, University of Chicago, Chicago, Illinois 60637, USA
| | - Yang-Xin Fu
- Department of Pathology and Committee on Immunology, University of Chicago, Chicago, Illinois 60637, USA
| | - Hua Peng
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
21
|
Xia J, Veselenak RL, Gorder SR, Bourne N, Milligan GN. Virus-specific immune memory at peripheral sites of herpes simplex virus type 2 (HSV-2) infection in guinea pigs. PLoS One 2014; 9:e114652. [PMID: 25485971 PMCID: PMC4259353 DOI: 10.1371/journal.pone.0114652] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 11/12/2014] [Indexed: 12/30/2022] Open
Abstract
Despite its importance in modulating HSV-2 pathogenesis, the nature of tissue-resident immune memory to HSV-2 is not completely understood. We used genital HSV-2 infection of guinea pigs to assess the type and location of HSV-specific memory cells at peripheral sites of HSV-2 infection. HSV-specific antibody-secreting cells were readily detected in the spleen, bone marrow, vagina/cervix, lumbosacral sensory ganglia, and spinal cord of previously-infected animals. Memory B cells were detected primarily in the spleen and to a lesser extent in bone marrow but not in the genital tract or neural tissues suggesting that the HSV-specific antibody-secreting cells present at peripheral sites of HSV-2 infection represented persisting populations of plasma cells. The antibody produced by these cells isolated from neural tissues of infected animals was functionally relevant and included antibodies specific for HSV-2 glycoproteins and HSV-2 neutralizing antibodies. A vigorous IFN-γ-secreting T cell response developed in the spleen as well as the sites of HSV-2 infection in the genital tract, lumbosacral ganglia and spinal cord following acute HSV-2 infection. Additionally, populations of HSV-specific tissue-resident memory T cells were maintained at these sites and were readily detected up to 150 days post HSV-2 infection. Unlike the persisting plasma cells, HSV-specific memory T cells were also detected in uterine tissue and cervicothoracic region of the spinal cord and at low levels in the cervicothoracic ganglia. Both HSV-specific CD4+ and CD8+ resident memory cell subsets were maintained long-term in the genital tract and sensory ganglia/spinal cord following HSV-2 infection. Together these data demonstrate the long-term maintenance of both humoral and cellular arms of the adaptive immune response at the sites of HSV-2 latency and virus shedding and highlight the utility of the guinea pig infection model to investigate tissue-resident memory in the setting of HSV-2 latency and spontaneous reactivation.
Collapse
Affiliation(s)
- Jingya Xia
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Ronald L. Veselenak
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Summer R. Gorder
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Nigel Bourne
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Gregg N. Milligan
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
22
|
Genome Sequence of the Anterograde-Spread-Defective Herpes Simplex Virus 1 Strain MacIntyre. GENOME ANNOUNCEMENTS 2014; 2:2/6/e01161-14. [PMID: 25395637 PMCID: PMC4241663 DOI: 10.1128/genomea.01161-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
We used paired-end Illumina deep sequencing and de novo assembly to determine the genome sequence of herpes simplex virus 1 (HSV-1) strain MacIntyre (aka McIntyre). The MacIntyre strain originated from the brain of a patient with lethal HSV encephalitis and has a unique limitation in its neuronal spread, moving solely in the retrograde direction.
Collapse
|
23
|
Visualization of mouse neuronal ganglia infected by Herpes Simplex Virus 1 (HSV-1) using multimodal non-linear optical microscopy. PLoS One 2014; 9:e105103. [PMID: 25133579 PMCID: PMC4136817 DOI: 10.1371/journal.pone.0105103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 07/17/2014] [Indexed: 12/14/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) is a neurotropic virus that causes skin lesions and goes on to enter a latent state in neurons of the trigeminal ganglia. Following stress, the virus may reactivate from latency leading to recurrent lesions. The in situ study of neuronal infections by HSV-1 is critical to understanding the mechanisms involved in the biology of this virus and how it causes disease; however, this normally requires fixation and sectioning of the target tissues followed by treatment with contrast agents to visualize key structures, which can lead to artifacts. To further our ability to study HSV-1 neuropathogenesis, we have generated a recombinant virus expressing a second generation red fluorescent protein (mCherry), which behaves like the parental virus in vivo. By optimizing the application of a multimodal non-linear optical microscopy platform, we have successfully visualized in unsectioned trigeminal ganglia of mice both infected cells by two-photon fluorescence microscopy, and myelinated axons of uninfected surrounding cells by coherent anti-Stokes Raman scattering (CARS) microscopy. These results represent the first report of CARS microscopy being combined with 2-photon fluorescence microscopy to visualize virus-infected cells deep within unsectioned explanted tissue, and demonstrate the application of multimodal non-linear optical microscopy for high spatial resolution biological imaging of tissues without the use of stains or fixatives.
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Genital herpes has a high global prevalence and burden of disease. This manuscript highlights recent advances in our understanding of genital herpes simplex virus (HSV) infections. RECENT FINDINGS Studies demonstrate a changing epidemiological landscape with an increasing proportion of genital herpes cases associated with HSV type 1. There is also growing evidence that the majority of infected individuals exhibit frequent, brief shedding episodes that are most often asymptomatic, which likely contribute to high HSV transmission rates. Given this finding as well as readily available serological assays, some have proposed that routine HSV screening be performed; however, this remains controversial and is not currently recommended. Host immune responses, particularly local CD4 and CD8 T cell activity, are crucial for HSV control and clearance following initial infection, during latency and after reactivation. Prior HSV immunity may also afford partial protection against HSV reinfection and disease. Although HSV vaccine trials have been disappointing to date and existing antiviral medications are limited, novel prophylactic and therapeutic modalities are currently in development. SUMMARY Although much remains unknown about genital herpes, improved knowledge of HSV epidemiology, pathogenesis and host immunity may help guide new strategies for disease prevention and control.
Collapse
|
25
|
Barker KR, Sarafino-Wani R, Khanom A, Griffiths PD, Jacobs MG, Webster DP. Encephalitis in an immunocompetent man. J Clin Virol 2013; 59:1-3. [PMID: 23829964 DOI: 10.1016/j.jcv.2013.05.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 05/17/2013] [Indexed: 11/24/2022]
Affiliation(s)
- Kevin R Barker
- The Royal Free Foundation Trust, The Royal Free Hospital, Virology, Pond Street, London NW3 2QG, United Kingdom.
| | - Robert Sarafino-Wani
- The Royal Free Foundation Trust, The Royal Free Hospital, Virology, Pond Street, London NW3 2QG, United Kingdom
| | - Aysha Khanom
- The Royal Free Foundation Trust, The Royal Free Hospital, Virology, Pond Street, London NW3 2QG, United Kingdom
| | - Paul D Griffiths
- The Royal Free Foundation Trust, The Royal Free Hospital, Virology, Pond Street, London NW3 2QG, United Kingdom
| | - Michael G Jacobs
- The Royal Free Foundation Trust, The Royal Free Hospital, Virology, Pond Street, London NW3 2QG, United Kingdom
| | - Daniel P Webster
- The Royal Free Foundation Trust, The Royal Free Hospital, Virology, Pond Street, London NW3 2QG, United Kingdom.
| |
Collapse
|
26
|
Directional spread of alphaherpesviruses in the nervous system. Viruses 2013; 5:678-707. [PMID: 23435239 PMCID: PMC3640521 DOI: 10.3390/v5020678] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 02/04/2013] [Accepted: 02/05/2013] [Indexed: 12/30/2022] Open
Abstract
Alphaherpesviruses are pathogens that invade the nervous systems of their mammalian hosts. Directional spread of infection in the nervous system is a key component of the viral lifecycle and is critical for the onset of alphaherpesvirus-related diseases. Many alphaherpesvirus infections originate at peripheral sites, such as epithelial tissues, and then enter neurons of the peripheral nervous system (PNS), where lifelong latency is established. Following reactivation from latency and assembly of new viral particles, the infection typically spreads back out towards the periphery. These spread events result in the characteristic lesions (cold sores) commonly associated with herpes simplex virus (HSV) and herpes zoster (shingles) associated with varicella zoster virus (VZV). Occasionally, the infection spreads transsynaptically from the PNS into higher order neurons of the central nervous system (CNS). Spread of infection into the CNS, while rarer in natural hosts, often results in severe consequences, including death. In this review, we discuss the viral and cellular mechanisms that govern directional spread of infection in the nervous system. We focus on the molecular events that mediate long distance directional transport of viral particles in neurons during entry and egress.
Collapse
|
27
|
Kratchmarov R, Taylor MP, Enquist LW. Making the case: married versus separate models of alphaherpes virus anterograde transport in axons. Rev Med Virol 2012; 22:378-91. [PMID: 22807192 DOI: 10.1002/rmv.1724] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 06/13/2012] [Accepted: 06/14/2012] [Indexed: 01/26/2023]
Abstract
Alphaherpesvirus virions infect neurons and are transported in axons for long distance spread within the host nervous system. The assembly state of newly made herpesvirus particles during anterograde transport in axons is an essential question in alphaherpesvirus biology. The structure of the particle has remained both elusive and controversial for the past two decades, with conflicting evidence from EM, immunofluorescence, and live cell imaging studies. Two opposing models have been proposed-the Married and Separate Models. Under the Married Model, infectious virions are assembled in the neuronal cell body before sorting into axons and then traffic inside a transport vesicle. Conversely, the Separate Model postulates that vesicles containing viral membrane proteins are sorted into axons independent of capsids, with final assembly of mature virions occurring at a distant egress site. Recently, a complementary series of studies employing high-resolution EM and live cell fluorescence microscopy have provided evidence consistent with the Married Model, whereas other studies offer evidence supporting the Separate Model. In this review, we compare and discuss the published data and attempt to reconcile divergent findings and interpretations as they relate to these models.
Collapse
Affiliation(s)
- R Kratchmarov
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | |
Collapse
|
28
|
Abstract
Herpes simplex virus, varicella zoster virus, and pseudorabies virus are neurotropic pathogens of the Alphaherpesvirinae subfamily of the Herpesviridae. These viruses efficiently invade the peripheral nervous system and establish lifelong latency in neurons resident in peripheral ganglia. Primary and recurrent infections cycle virus particles between neurons and the peripheral tissues they innervate. This remarkable cycle of infection is the topic of this review. In addition, some of the distinguishing hallmarks of the infections caused by these viruses are evaluated in terms of their underlying similarities.
Collapse
Affiliation(s)
- Gregory Smith
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.
| |
Collapse
|
29
|
Kastrukoff LF, Lau AS, Thomas EE. The effect of mouse strain on herpes simplex virus type 1 (HSV-1) infection of the central nervous system (CNS). HERPESVIRIDAE 2012; 3:4. [PMID: 22449238 PMCID: PMC3355007 DOI: 10.1186/2042-4280-3-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Accepted: 03/26/2012] [Indexed: 12/25/2022]
Abstract
BACKGROUND Mice infected with HSV-1 can develop lethal encephalitis or virus induced CNS demyelination. Multiple factors affect outcome including route of infection, virus and mouse strain. When infected with a sub-lethal dose of HSV-1 strain 2 via the oral mucosa, susceptible SJL/J, A/J, and PL/J mice develop demyelinating lesions throughout the brain. In contrast, lesions are restricted to the brainstem (BST) in moderately resistant BALB/c mice and are absent in resistant BL/6 mice. The reasons for the strain differences are unknown. METHODS In this study, we combine histology, immunohistochemistry, and in-situ hybridization to investigate the relationship between virus and the development of lesions during the early stage (< 24 days PI) of demyelination in different strains of mice. RESULTS Initially, viral DNA and antigen positive cells appear sequentially in non-contiguous areas throughout the brains of BALB/c, SJL/J, A/J, and PL/J mice but are restricted to an area of the BST of BL/6 mice. In SJL/J, A/J, and PL/J mice, this is followed by the development of 'focal' areas of virus infected neuronal and non-neuronal cells throughout the brain. The 'focal' areas follow a hierarchical order and co-localize with developing demyelinating lesions. When antigen is cleared, viral DNA positive cells can remain in areas of demyelination; consistent with a latent infection. In contrast, 'focal' areas are restricted to the BST of BALB/c mice and do not occur in BL/6 mice. CONCLUSIONS The results of this study indicate that susceptible mouse strains, infected with HSV-1 via the oral mucosa, develop CNS demyelination during the first 24 days PI in several stages. These include: the initial spread of virus and infection of cells in non-contiguous areas throughout the brain, the development of 'focal' areas of virus infected neuronal and non-neuronal cells, the co-localization of 'focal' areas with developing demyelinating lesions, and latent infection in a number of the lesions. In contrast, the limited demyelination that develops in BALB/c and the lack of demyelination in BL/6 mice correlates with the limited or lack of 'focal' areas of virus infected neuronal and non-neuronal cells in these two strains.
Collapse
Affiliation(s)
- Lorne F Kastrukoff
- Department of Medicine, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Allen S Lau
- Department of Medicine, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Eva E Thomas
- Department of Pathology, British Columbia's Children's Hospital, Vancouver V6H 3 V4, Canada
| |
Collapse
|
30
|
Edry E, Lamprecht R, Wagner S, Rosenblum K. Virally mediated gene manipulation in the adult CNS. Front Mol Neurosci 2011; 4:57. [PMID: 22207836 PMCID: PMC3245970 DOI: 10.3389/fnmol.2011.00057] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Accepted: 12/15/2011] [Indexed: 12/02/2022] Open
Abstract
Understanding how the CNS functions poses one of the greatest challenges in modern life science and medicine. Studying the brain is especially challenging because of its complexity, the heterogeneity of its cellular composition, and the substantial changes it undergoes throughout its life-span. The complexity of adult brain neural networks results also from the diversity of properties and functions of neuronal cells, governed, inter alia, by temporally and spatially differential expression of proteins in mammalian brain cell populations. Hence, research into the biology of CNS activity and its implications to human and animal behavior must use novel scientific tools. One source of such tools is the field of molecular genetics—recently utilized more and more frequently in neuroscience research. Transgenic approaches in general, and gene targeting in rodents have become fundamental tools for elucidating gene function in the CNS. Although spectacular progress has been achieved over recent decades by using these approaches, it is important to note that they face a number of restrictions. One of the main challenges is presented by the temporal and spatial regulation of introduced genetic manipulations. Viral vectors provide an alternative approach to temporally regulated, localized delivery of genetic modifications into neurons. In this review we describe available technologies for gene transfer into the adult mammalian CNS that use both viral and non-viral tools. We discuss viral vectors frequently used in neuroscience, with emphasis on lentiviral vector (LV) systems. We consider adverse effects of LVs, and the use of LVs for temporally and spatially controllable manipulations. Especially, we highlight the significance of viral vector-mediated genetic manipulations in studying learning and memory processes, and how they may be effectively used to separate out the various phases of learning: acquisition, consolidation, retrieval, and maintenance.
Collapse
Affiliation(s)
- Efrat Edry
- Department of Neurobiology and Ethology, Center for Gene Manipulation in the Brain (CGMB), University of Haifa Haifa, Israel
| | | | | | | |
Collapse
|
31
|
Zaichick SV, Bohannon KP, Smith GA. Alphaherpesviruses and the cytoskeleton in neuronal infections. Viruses 2011; 3:941-81. [PMID: 21994765 PMCID: PMC3185784 DOI: 10.3390/v3070941] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 06/03/2011] [Accepted: 06/17/2011] [Indexed: 12/13/2022] Open
Abstract
Following infection of exposed peripheral tissues, neurotropic alphaherpesviruses invade nerve endings and deposit their DNA genomes into the nuclei of neurons resident in ganglia of the peripheral nervous system. The end result of these events is the establishment of a life-long latent infection. Neuroinvasion typically requires efficient viral transmission through a polarized epithelium followed by long-distance transport through the viscous axoplasm. These events are mediated by the recruitment of the cellular microtubule motor proteins to the intracellular viral particle and by alterations to the cytoskeletal architecture. The focus of this review is the interplay between neurotropic herpesviruses and the cytoskeleton.
Collapse
Affiliation(s)
- Sofia V Zaichick
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
32
|
Impact of valency of a glycoprotein B-specific monoclonal antibody on neutralization of herpes simplex virus. J Virol 2010; 85:1793-803. [PMID: 21123390 DOI: 10.1128/jvi.01924-10] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus (HSV) glycoprotein B (gB) is an integral part of the multicomponent fusion system required for virus entry and cell-cell fusion. Here we investigated the mechanism of viral neutralization by the monoclonal antibody (MAb) 2c, which specifically recognizes the gB of HSV type 1 (HSV-1) and HSV-2. Binding of MAb 2c to a type-common discontinuous epitope of gB resulted in highly efficient neutralization of HSV at the postbinding/prefusion stage and completely abrogated the viral cell-to-cell spread in vitro. Mapping of the antigenic site recognized by MAb 2c to the recently solved crystal structure of the HSV-1 gB ectodomain revealed that its discontinuous epitope is only partially accessible within the observed multidomain trimer conformation of gB, likely representing its postfusion conformation. To investigate how MAb 2c may interact with gB during membrane fusion, we characterized the properties of monovalent (Fab and scFv) and bivalent [IgG and F(ab')(2)] derivatives of MAb 2c. Our data show that the neutralization capacity of MAb 2c is dependent on cross-linkage of gB trimers. As a result, only bivalent derivatives of MAb 2c exhibited high neutralizing activity in vitro. Notably, bivalent MAb 2c not only was capable of preventing mucocutaneous disease in severely immunodeficient NOD/SCID mice upon vaginal HSV-1 challenge but also protected animals even with neuronal HSV infection. We also report for the first time that an anti-gB specific monoclonal antibody prevents HSV-1-induced encephalitis entirely independently from complement activation, antibody-dependent cellular cytotoxicity, and cellular immunity. This indicates the potential for further development of MAb 2c as an anti-HSV drug.
Collapse
|
33
|
Antinone SE, Zaichick SV, Smith GA. Resolving the assembly state of herpes simplex virus during axon transport by live-cell imaging. J Virol 2010; 84:13019-30. [PMID: 20810730 PMCID: PMC3004300 DOI: 10.1128/jvi.01296-10] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 08/20/2010] [Indexed: 01/07/2023] Open
Abstract
Neurotropic herpesviruses depend on long-distance axon transport for the initial establishment of latency in peripheral ganglia (retrograde transport) and for viral spread in axons to exposed body surfaces following reactivation (anterograde transport). Images of neurons infected with herpes simplex virus type 1 (HSV-1), acquired using electron microscopy, have led to a debate regarding why different types of viral structures are seen in axons and which of these particles are relevant to the axon transport process. In this study, we applied time-lapse fluorescence microscopy to image HSV-1 virion components actively translocating to distal axons in primary neurons and neuronal cell lines. Key to these findings, only a small fraction of viral particles were engaged in anterograde transport during the egress phase of infection at any given time. By selective analysis of the composition of the subpopulation of actively transporting capsids, a link between transport of fully assembled HSV-1 virions and the neuronal secretory pathway was identified. Last, we have evaluated the seemingly opposing findings made in previous studies of HSV-1 axon transport in fixed cells and demonstrate a limitation to assessing the composition of individual HSV-1 particles using antibody detection methods.
Collapse
Affiliation(s)
- Sarah E. Antinone
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Sofia V. Zaichick
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Gregory A. Smith
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| |
Collapse
|
34
|
Ultrastructural analysis of virion formation and intraaxonal transport of herpes simplex virus type 1 in primary rat neurons. J Virol 2010; 84:13031-5. [PMID: 20943987 DOI: 10.1128/jvi.01784-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
After primary replication at the site of entry into the host, alphaherpesviruses infect and establish latency in neurons. To this end, they are transported within axons retrograde from the periphery to the cell body for replication and in an anterograde direction to synapses for infection of higher-order neurons or back to the periphery. Retrograde transport of incoming nucleocapsids is well documented. In contrast, there is still significant controversy on the mode of anterograde transport. By high-resolution transmission electron microscopy of primary neuronal cultures from embryonic rat superior cervical ganglia infected by pseudorabies virus (PrV), we observed the presence of enveloped virions in axons within vesicles supporting the "married model" of anterograde transport of complete virus particles within vesicles (C. Maresch, H. Granzow, A. Negatsch, B.G. Klupp, W. Fuchs, J.P. Teifke, and T.C. Mettenleiter, J. Virol. 84:5528-5539, 2010). We have now extended these analyses to the related human herpes simplex virus type 1 (HSV-1). We have demonstrated that in neurons infected by HSV-1 strains HFEM, 17+ or SC16, approximately 75% of virus particles observed intraaxonally or in growth cones late after infection constitute enveloped virions within vesicles, whereas approximately 25% present as naked capsids. In general, the number of HSV-1 particles in the axons was significantly less than that observed after PrV infection.
Collapse
|
35
|
Sisó S, González L, Jeffrey M. Neuroinvasion in prion diseases: the roles of ascending neural infection and blood dissemination. Interdiscip Perspect Infect Dis 2010; 2010:747892. [PMID: 20652006 PMCID: PMC2905956 DOI: 10.1155/2010/747892] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 03/08/2010] [Indexed: 01/27/2023] Open
Abstract
Prion disorders are infectious, neurodegenerative diseases that affect humans and animals. Susceptibility to some prion diseases such as kuru or the new variant of Creutzfeldt-Jakob disease in humans and scrapie in sheep and goats is influenced by polymorphisms of the coding region of the prion protein gene, while other prion disorders such as fatal familial insomnia, familial Creutzfeldt-Jakob disease, or Gerstmann-Straussler-Scheinker disease in humans have an underlying inherited genetic basis. Several prion strains have been demonstrated experimentally in rodents and sheep. The progression and pathogenesis of disease is influenced by both genetic differences in the prion protein and prion strain. Some prion diseases only affect the central nervous system whereas others involve the peripheral organs prior to neuroinvasion. Many experiments undertaken in different species and using different prion strains have postulated common pathways of neuroinvasion. It is suggested that prions access the autonomic nerves innervating peripheral organs and tissues to finally reach the central nervous system. We review here published data supporting this view and additional data suggesting that neuroinvasion may concurrently or independently involve the blood vascular system.
Collapse
Affiliation(s)
- Sílvia Sisó
- Veterinary Laboratories Agency (VLA-Lasswade), Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK
| | - Lorenzo González
- Veterinary Laboratories Agency (VLA-Lasswade), Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK
| | - Martin Jeffrey
- Veterinary Laboratories Agency (VLA-Lasswade), Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK
| |
Collapse
|
36
|
Tata S, Johnston C, Huang ML, Selke S, Magaret A, Corey L, Wald A. Overlapping reactivations of herpes simplex virus type 2 in the genital and perianal mucosa. J Infect Dis 2010; 201:499-504. [PMID: 20088691 DOI: 10.1086/650302] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Genital shedding of herpes simplex virus (HSV) type 2 occurs frequently. Anatomic patterns of genital HSV-2 reactivation have not been intensively studied. METHODS Four HSV-2-seropositive women with symptomatic genital herpes attended a clinic daily during a 30-day period. Daily samples were collected from 7 separate genital sites. Swab samples were assayed for HSV DNA by quantitative polymerase chain reaction. Anatomic sites of clinical HSV-2 recurrences were recorded. RESULTS HSV was detected on 44 (37%) of 120 days and from 136 (16%) of 840 swab samples. Lesions were documented on 35 (29%) of 120 days. HSV was detected at >1 anatomic site on 25 (57%) of 44 days with HSV shedding (median, 2 sites; range, 1-7), with HSV detected bilaterally on 20 (80%) of the 25 days. The presence of a lesion was significantly associated with detectable HSV from any genital site (incident rate ratio [IRR], 5.41; 95% confidence interval [CI], 1.24-23.50; P= .02) and with the number of positive sites (IRR, 1.19; 95% CI, 1. 01-1.40; P=.03). The maximum HSV copy number detected was associated with the number of positive sites (IRR, 1.62; 95% CI, 1.44-1.82; P<.001). CONCLUSIONS HSV-2 reactivation occurs frequently at widely spaced regions throughout the genital tract. To prevent HSV-2 reactivation, suppressive HSV-2 therapy must control simultaneous viral reactivations from multiple sacral ganglia.
Collapse
Affiliation(s)
- Sunitha Tata
- Vaccine and Infectious Disease Institute, University of Washington, Seattle, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Dahlstrom AB. Fast intra-axonal transport: Beginning, development and post-genome advances. Prog Neurobiol 2010; 90:119-45. [DOI: 10.1016/j.pneurobio.2009.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 11/23/2009] [Accepted: 11/23/2009] [Indexed: 01/02/2023]
|
38
|
Abstract
OBJECTIVE To demonstrate anatomically a pathway for protein transport from the palate to the vestibular system. METHOD The vestibulofacial anastomosis and associated ganglion cells were identified in a collection of 160 horizontally sectioned human temporal bones that had been stained with hematoxylin and eosin. Wheat germ agglutinin-horseradish peroxidase (HRP) was applied to the greater superficial petrosal nerve in 4 Sprague-Dawley rats. After 30 hours, the rats were killed by intracardiac perfusion, and the seventh and eighth nerves with adjacent brainstem removed. Frozen sections cut at 30 mum through this block were then reacted for HRP, counterstained with neutral red, and mounted on slides for examination in the light microscope. RESULTS Thirty-two of the 160 human temporal bones contained sections through the vestibulofacial anastomosis and its ganglion. In all cases, the ganglion was incorporated into the vestibular ganglion (VG) adjacent to the nervus intermedius. In all 4 experimental rats, HRP reaction product labeled a small number of ganglion cells in the VG adjacent to the nervus intermedius and facial nerve. CONCLUSION These observations support the presence of a pathway from receptors in the palate to the VG.
Collapse
|
39
|
Abstract
Most α-herpesviruses are pantropic, neuroinvasive pathogens that establish a reactivateable, latent infection in the PNS of their natural hosts. Various manifestations of herpes disease rely on extent and direction of the spread of infection between the surface epithelia and the nervous system components that innervate that surface. One aspect of such controlled spread of infection is the capacity for synaptically defined, transneuronal spread, a property that makes α-herpesviruses useful tools for determining the connectivity of neural circuits. The current understanding of intra-axonal transport and transneuronal spread of α-herpesviruses is reviewed, focusing on work with herpes simplex virus and pseudorabies virus, the available in vitro technology used to study viral transport and spread is evaluated and how certain viral mutants can be used to examine neural circuit architecture is described in this article.
Collapse
Affiliation(s)
- D Curanovic
- Department of Pharmacology, Weill Medical College, Cornell University, New York, NY 10065, USA
| | - LW Enquist
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA, Tel.: +1 609 258 2415, Fax: +1 609 258 1035
| |
Collapse
|
40
|
Tullo AB. Herpes Simplex Keratitis. Semin Ophthalmol 2009. [DOI: 10.3109/08820538609068782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
41
|
Jenkins FJ, Baum A. Stress and reactivation of latent herpes simplex virus: a fusion of behavioral medicine and molecular biology. Ann Behav Med 2009; 17:116-23. [PMID: 18425662 DOI: 10.1007/bf02895060] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Since 1978, the study of health and behavior has become a major focus of scientists in psychology, psychiatry, nursing, neuroscience, and in traditional medical science disciplines. Investigation of psychological or behavioral influences on biological systems has established that biobehavioral processes such as stress play an important role in disease processes. An excellent example of the interactions between stress and health outcomes is the reactivation of latent herpes simplex virus (HSV) leading to recurrent lesions. This article describes what is currently known about HSV latency and reactivation and considers some mechanisms by which stress-induced changes in the host's immune and nervous systems might allow for either the establishment or reactivation of latent viral infections.
Collapse
Affiliation(s)
- F J Jenkins
- Division of Behavioral Medicine and Oncology, Pittsburgh Cancer Institute, University of Pittsburgh, 3600 Forbes Avenue, Suite 405, 15213, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
42
|
|
43
|
Berges BK, Wolfe JH, Fraser NW. Transduction of brain by herpes simplex virus vectors. Mol Ther 2008; 15:20-9. [PMID: 17164771 DOI: 10.1038/sj.mt.6300018] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
An imposing obstacle to gene therapy is the inability to transduce all of the necessary cells in a target organ. This certainly applies to gene transfer to the brain, especially when one considers the challenges involved in scaling up transduction from animal models to use in the clinic. Non-neurotropic viral gene transfer vectors (e.g., adenovirus, adeno-associated virus, and lentivirus) do not spread very far in the nervous system, and consequently these vectors transduce brain regions mostly near the injection site in adult animals. This indicates that numerous, well-spaced injections would be required to achieve widespread transduction in a large brain with these vectors. In contrast, herpes simplex virus type 1 (HSV-1) is a promising vector for widespread gene transfer to the brain owing to the innate ability of the virus to spread through the nervous system and form latent infections in neurons that last for the lifetime of the infected individual. In this review, we summarize the published literature of the transduction patterns produced by attenuated HSV-1 vectors in small animals as a function of the injection site, and discuss the implications of the distribution for widespread gene transfer to the large animal brain.
Collapse
Affiliation(s)
- Bradford K Berges
- Department of Microbiology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
44
|
Diefenbach RJ, Miranda-Saksena M, Douglas MW, Cunningham AL. Transport and egress of herpes simplex virus in neurons. Rev Med Virol 2008; 18:35-51. [PMID: 17992661 DOI: 10.1002/rmv.560] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mechanisms of axonal transport of the alphaherpesviruses, HSV and pseudorabies virus (PrV), in neuronal axons are of fundamental interest, particularly in comparison with other viruses, and offer potential sites for antiviral intervention or development of gene therapy vectors. These herpesviruses are transported rapidly along microtubules (MTs) in the retrograde direction from the axon terminus to the dorsal root ganglion and then anterogradely in the opposite direction. Retrograde transport follows fusion and deenvelopment of the viral capsid at the axonal membrane followed by loss of most of the tegument proteins and then binding of the capsid via one or more viral proteins (VPs) to the retrograde molecular motor dynein. The HSV capsid protein pUL35 has been shown to bind to the dynein light chain Tctex1 but is likely to be accompanied by additional dynein binding of an inner tegument protein. The mechanism of anterograde transport is much more controversial with different processes being claimed for PrV and HSV: separate transport of HSV capsid/tegument and glycoproteins versus PrV transport as an enveloped virion. The controversy has not been resolved despite application, in several laboratories, of confocal microscopy (CFM), real-time fluorescence with viruses dual labelled on capsid and glycoprotein, electron microscopy in situ and immuno-electron microscopy. Different processes for each virus seem counterintuitive although they are the most divergent in the alphaherpesvirus subfamily. Current hypotheses suggest that unenveloped HSV capsids complete assembly in the axonal growth cones and varicosities, whereas with PrV unenveloped capsids are only found travelling in a retrograde direction.
Collapse
Affiliation(s)
- Russell J Diefenbach
- Centre for Virus Research, Westmead Millennium Institute, Westmead Hospital and the University of Sydney, Westmead, NSW 2145, Australia
| | | | | | | |
Collapse
|
45
|
Ch'ng TH, Spear PG, Struyf F, Enquist LW. Glycoprotein D-independent spread of pseudorabies virus infection in cultured peripheral nervous system neurons in a compartmented system. J Virol 2007; 81:10742-57. [PMID: 17652377 PMCID: PMC2045490 DOI: 10.1128/jvi.00981-07] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The molecular mechanisms underlying the directional neuron-to-epithelial cell transport of herpesvirus particles during infection are poorly understood. To study the role of the viral glycoprotein D (gD) in the directional spread of herpes simplex virus (HSV) and pseudorabies virus (PRV) infection, a culture system consisting of sympathetic neurons or epithelial cells in different compartments was employed. We discovered that PRV infection could spread efficiently from neurons to cells and back to neurons in the absence of gD, the viral ligand required for entry of extracellular particles. Unexpectedly, PRV infection can also spread transneuronally via axo-axonal contacts. We show that this form of interaxonal spread between neurons is gD independent and is not mediated by extracellular virions. We also found that unlike PRV gD, HSV-1 gD is required for neuron-to-cell spread of infection. Neither of the host cell gD receptors (HVEM and nectin-1) is required in target primary fibroblasts for neuron-to-cell spread of HSV-1 or PRV infection.
Collapse
Affiliation(s)
- T H Ch'ng
- Schultz Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | | |
Collapse
|
46
|
Carr DJJ, Campbell IL. Herpes simplex virus type 1 induction of chemokine production is unrelated to viral load in the cornea but not in the nervous system. Viral Immunol 2007; 19:741-6. [PMID: 17201669 PMCID: PMC1766944 DOI: 10.1089/vim.2006.19.741] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Herpes simplex virus type 1 elicits a strong host inflammatory response after corneal infection. The purpose of the current study was to compare the production of chemokines induced by viral infection at sites known to harbor virus after ocular inoculation in order to determine the relationship between viral load and chemokine expression. Using highly resistant IFN-alpha1 transgenic mice whose transgene is under the control of the glial fibrillary acidic protein promoter in comparison with the more sensitive wild-type counterparts, we compared the expression of chemokines versus the amount of infectious virus recovered from the anterior segment of the eye and nervous system. Consistent with our predicted outcome, the level of infectious virus recovered in the iris, trigeminal ganglia, and brainstem of resistant versus sensitive mice correlated with chemokine production; that is, the less virus recovered the less chemokine (CCL2, CCL3, CCL5, CXCL9, and CXCL10) produced. In contrast to the nervous system and iris, there was no correlation between chemokine expression and level of infectious virus recovered in the cornea. We interpret these results as suggesting chemokine expression within the cornea in response to herpes simplex virus type 1 infection is driven by factors other than antigenic stimulation.
Collapse
Affiliation(s)
- Daniel J J Carr
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | | |
Collapse
|
47
|
Power C, Noorbakhsh F. Central Nervous System Viral Infections: Clinical Aspects and Pathogenic Mechanisms. Neurobiol Dis 2007. [DOI: 10.1016/b978-012088592-3/50045-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
48
|
Whitley RJ. Herpes simplex encephalitis: adolescents and adults. Antiviral Res 2006; 71:141-8. [PMID: 16675036 DOI: 10.1016/j.antiviral.2006.04.002] [Citation(s) in RCA: 318] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Revised: 03/30/2006] [Accepted: 04/03/2006] [Indexed: 11/29/2022]
Abstract
Herpes simplex encephalitis (HSE) remains one of the most devastating infections of the central nervous system despite available antiviral therapy. Children and adolescents account for approximately one third of all cases of HSE. Clinical diagnosis is suggested in the encephalopathic, febrile patient with focal neurologic signs. However, these clinical findings are not pathognomonic because numerous other diseases in the central nervous system can mimic HSE. Neurodiagnostic evaluation can provide support for the diagnosis by the demonstration of temporal lobe edema/hemorrhage by magnetic resonance image scan and spike and slow-wave activity on electroencephalogram. In the current era, the diagnostic gold standard is the detection of herpes simplex virus (HSV) DNA in the cerebrospinal fluid by polymerase chain reaction (PCR). Although PCR is an excellent test and preferable to brain biopsy, false negatives can occur early after disease onset. Acyclovir is the treatment of choice and is administered at 10 mg/kg every 8 h for 21 days. Even with early administration of therapy after the disease onset, nearly two thirds of survivors have significant residual neurologic deficits. Current investigative efforts are assessing the prognostic value of quantitative PCR detection of viral DNA at the onset of therapy as well as at the completion of therapy and the contribution of prolonged antiviral therapy to improved neurologic outcome.
Collapse
Affiliation(s)
- Richard J Whitley
- Department of Pediatrics, Infectious Diseases, The University of Alabama at Birmingham, 1600 Seventh Avenue, CHB 303, Birmingham, AL 35233, United States.
| |
Collapse
|
49
|
Saksena MM, Wakisaka H, Tijono B, Boadle RA, Rixon F, Takahashi H, Cunningham AL. Herpes simplex virus type 1 accumulation, envelopment, and exit in growth cones and varicosities in mid-distal regions of axons. J Virol 2006; 80:3592-606. [PMID: 16537627 PMCID: PMC1440394 DOI: 10.1128/jvi.80.7.3592-3606.2006] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Accepted: 01/09/2006] [Indexed: 12/13/2022] Open
Abstract
The mechanism of anterograde transport of alphaherpesviruses in axons remains controversial. This study examined the transport, assembly, and egress of herpes simplex virus type 1 (HSV-1) in mid- and distal axons of infected explanted human fetal dorsal root ganglia using confocal microscopy and transmission electron microscopy (TEM) at 19, 24, and 48 h postinfection (p.i.). Confocal-microscopy studies showed that although capsid (VP5) and tegument (UL37) proteins were not uniformly present in axons until 24 h p.i., they colocalized with envelope (gG) proteins in axonal varicosities and in growth cones at 24 and 48 h p.i. TEM of longitudinal sections of axons in situ showed enveloped and unenveloped capsids in the axonal varicosities and growth cones, whereas in the midregion of the axons, predominantly unenveloped capsids were observed. Partially enveloped capsids, apparently budding into vesicles, were observed in axonal varicosities and growth cones, but not during viral attachment and entry into axons. Tegument proteins (VP22) were found associated with vesicles in growth cones, either alone or together with envelope (gD) proteins, by transmission immunoelectron microscopy. Extracellular virions were observed adjacent to axonal varicosities and growth cones, with some virions observed in crescent-shaped invaginations of the axonal plasma membrane, suggesting exit at these sites. These findings suggest that varicosities and growth cones are probable sites of HSV-1 envelopment of at least a proportion of virions in the mid- to distal axon. Envelopment probably occurs by budding of capsids into vesicles with associated tegument and envelope proteins. Virions appear to exit from these sites by exocytosis.
Collapse
Affiliation(s)
- Monica Miranda Saksena
- Centre for Virus Research, Westmead Millennium Institute, Westmead Hospital, P.O. Box 412, Westmead, NSW 2145, Australia
| | | | | | | | | | | | | |
Collapse
|
50
|
Orr MT, Edelmann KH, Vieira J, Corey L, Raulet DH, Wilson CB. Inhibition of MHC class I is a virulence factor in herpes simplex virus infection of mice. PLoS Pathog 2005; 1:e7. [PMID: 16201019 PMCID: PMC1238742 DOI: 10.1371/journal.ppat.0010007] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Accepted: 07/20/2005] [Indexed: 01/01/2023] Open
Abstract
Herpes simplex virus (HSV) has a number of genes devoted to immune evasion. One such gene, ICP47, binds to the transporter associated with antigen presentation (TAP) 1/2 thereby preventing transport of viral peptides into the endoplasmic reticulum, loading of peptides onto nascent major histocompatibility complex (MHC) class I molecules, and presentation of peptides to CD8 T cells. However, ICP47 binds poorly to murine TAP1/2 and so inhibits antigen presentation by MHC class I in mice much less efficiently than in humans, limiting the utility of murine models to address the importance of MHC class I inhibition in HSV immunopathogenesis. To address this limitation, we generated recombinant HSVs that efficiently inhibit antigen presentation by murine MHC class I. These recombinant viruses prevented cytotoxic T lymphocyte killing of infected cells in vitro, replicated to higher titers in the central nervous system, and induced paralysis more frequently than control HSV. This increase in virulence was due to inhibition of antigen presentation to CD8 T cells, since these differences were not evident in MHC class I-deficient mice or in mice in which CD8 T cells were depleted. Inhibition of MHC class I by the recombinant viruses did not impair the induction of the HSV-specific CD8 T-cell response, indicating that cross-presentation is the principal mechanism by which HSV-specific CD8 T cells are induced. This inhibition in turn facilitates greater viral entry, replication, and/or survival in the central nervous system, leading to an increased incidence of paralysis. While animal models are often instructive in understanding human diseases, many factors that influence disease differ between mouse and man. Although mice can be experimentally infected with HSV-1, this virus has evolved as a human pathogen. One facet of this evolution is HSV's mechanisms to evade the immune response, allowing the virus to persist for the lifetime of the human host. This evasion includes preventing CD8 T cells from recognizing and killing infected cells by inhibiting the expression of the molecule that presents viral peptides to CD8 T cells: major histocompatibility complex (MHC) class I. HSV is unable to inhibit mouse MHC class I, thus rendering this immune-evasion strategy inoperative in the mouse. To better understand the biology of HSV infection and the immune response to this virus in humans, the authors corrected this deficiency by inserting a gene which inhibits murine MHC class I. This recombinant virus demonstrates that MHC class I inhibition is an important determinant of disease progression. The authors found that the recombinant HSV still effectively elicits a CD8 T-cell response, but this response is ineffective in controlling the infection. This finding reveals the important distinction between the size of the immune response and the effectiveness of the response, which may be important to HSV vaccine studies.
Collapse
Affiliation(s)
- Mark T Orr
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Kurt H Edelmann
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Jeffrey Vieira
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
- Program in Infectious Diseases, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Lawrence Corey
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
- Program in Infectious Diseases, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - David H Raulet
- Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, California, United States of America
| | - Christopher B Wilson
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|