1
|
Hu L, Lu J, Fan H, Niu C, Han Y, Caiyin Q, Wu H, Qiao J. FAS mediates apoptosis, inflammation, and treatment of pathogen infection. Front Cell Infect Microbiol 2025; 15:1561102. [PMID: 40330016 PMCID: PMC12052831 DOI: 10.3389/fcimb.2025.1561102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/25/2025] [Indexed: 05/08/2025] Open
Abstract
The FAS cell surface death receptor, a member of the tumor necrosis factor receptor family, activates both apoptotic and non-apoptotic signaling upon interaction with its ligand FASL. It is critical in cell migration, invasion, immune responses, and carcinogenesis. Pathogen infection can influence host cells' behavior by modulating the FAS/FASL pathway, thereby influencing disease progression. Understanding the role of FAS signaling in the context of pathogen interactions is therefore crucial. This review examines FAS-mediated apoptotic and non-apoptotic signaling pathways, with particular emphasis on the mechanisms of apoptosis and inflammation induced by bacterial and viral infections. Additionally, it highlights therapeutic strategies, including drug, cytokine, antibody, and FASL recombinant protein therapies, providing new directions for treating pathogenic infections and cancers, as well as insights into developing novel therapeutic approaches.
Collapse
Affiliation(s)
- Liying Hu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing, China
| | - Juane Lu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing, China
| | - Hongfei Fan
- Tianjin Key Laboratory of Food Science and Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Changcheng Niu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing, China
| | - Yanping Han
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing, China
| | - Qinggele Caiyin
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, China
| | - Hao Wu
- Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing, China
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, China
| |
Collapse
|
2
|
Matanza XM, Clements A. Pathogenicity and virulence of Shigella sonnei: A highly drug-resistant pathogen of increasing prevalence. Virulence 2023; 14:2280838. [PMID: 37994877 PMCID: PMC10732612 DOI: 10.1080/21505594.2023.2280838] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/01/2023] [Indexed: 11/24/2023] Open
Abstract
Shigella spp. are the causative agent of shigellosis (or bacillary dysentery), a diarrhoeal disease characterized for the bacterial invasion of gut epithelial cells. Among the 4 species included in the genus, Shigella flexneri is principally responsible for the disease in the developing world while Shigella sonnei is the main causative agent in high-income countries. Remarkably, as more countries improve their socioeconomic conditions, we observe an increase in the relative prevalence of S. sonnei. To date, the reasons behind this change in aetiology depending on economic growth are not understood. S. flexneri has been widely used as a model to study the pathogenesis of the genus, but as more research data are collected, important discrepancies with S. sonnei have come to light. In comparison to S. flexneri, S. sonnei can be differentiated in numerous aspects; it presents a characteristic O-antigen identical to that of one serogroup of the environmental bacterium Plesiomonas shigelloides, a group 4 capsule, antibacterial mechanisms to outcompete and displace gut commensal bacteria, and a poorer adaptation to an intracellular lifestyle. In addition, the World Health Organization (WHO) have recognized the significant threat posed by antibiotic-resistant strains of S. sonnei, demanding new approaches. This review gathers knowledge on what is known about S. sonnei within the context of other Shigella spp. and aims to open the door for future research on understanding the increasing spread of this pathogen.
Collapse
Affiliation(s)
- Xosé M. Matanza
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London, UK
| | - Abigail Clements
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
3
|
Lensen A, Gomes MC, López-Jiménez AT, Mostowy S. An automated microscopy workflow to study Shigella-neutrophil interactions and antibiotic efficacy in vivo. Dis Model Mech 2023; 16:dmm049908. [PMID: 37161932 PMCID: PMC10184671 DOI: 10.1242/dmm.049908] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 04/04/2023] [Indexed: 05/11/2023] Open
Abstract
Shigella are Gram-negative bacterial pathogens responsible for bacillary dysentery (also called shigellosis). The absence of a licensed vaccine and widespread emergence of antibiotic resistance has led the World Health Organisation (WHO) to highlight Shigella as a priority pathogen requiring urgent attention. Several infection models have been useful to explore the Shigella infection process; yet, we still lack information regarding events taking place in vivo. Here, using a Shigella-zebrafish infection model and high-content microscopy, we developed an automated microscopy workflow to non-invasively study fluorescently labelled bacteria and neutrophils in vivo. We applied our workflow to antibiotic-treated zebrafish, and demonstrate that antibiotics reduce bacterial burden and not neutrophil recruitment to the hindbrain ventricle. We discovered that nalidixic acid (a bactericidal antibiotic) can work with leukocytes in an additive manner to control Shigella flexneri infection and can also restrict dissemination of Shigella sonnei from the hindbrain ventricle. We envision that our automated microscopy workflow, applied here to study the interactions between Shigella and neutrophils as well as antibiotic efficacy in zebrafish, can be useful to innovate treatments for infection control in humans.
Collapse
Affiliation(s)
- Arthur Lensen
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
- Département de Biologie, École Normale Supérieure, PSL Université Paris, F-75005, Paris, France
| | - Margarida C. Gomes
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| | - Ana Teresa López-Jiménez
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| | - Serge Mostowy
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| |
Collapse
|
4
|
Pan M, Liu D, Liu J, Li X, Huang D, Luo K, Liu Y, Wu Z, Zhang W, Mai K. Biotin alleviates hepatic and intestinal inflammation and apoptosis induced by high dietary carbohydrate in juvenile turbot (Scophthalmus maximus L.). FISH & SHELLFISH IMMUNOLOGY 2022; 130:560-571. [PMID: 35944760 DOI: 10.1016/j.fsi.2022.07.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 06/21/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Excessive dietary carbohydrate commonly impairs the functions of liver and intestine in carnivorous fish. In the present study, a 10-week feeding trial was carried out to explore the regulation of biotin on the hepatic and intestinal inflammation and apoptosis in turbot (Scophthalmus maximus L.) fed with high carbohydrate diets. Three isonitrogenous and isolipidic experimental diets were designed as follows: the CC diet with 18.6% of carbohydrate and 0.04 mg/kg of biotin, the HC diet with 26.9% of carbohydrate and 0.05 mg/kg of biotin, and the HCB diet with 26.9% of carbohydrate and 1.62 mg/kg of biotin. Results showed that high dietary carbohydrate (HC diet) impaired the morphology of liver and intestine, however, inclusion of dietary biotin (HCB diet) normalized their morphology. Inflammation-related gene expression of nuclear factor κB p65 (nf-κb p65), tumor necrosis factor α (tnf-α), interleukin-1β (il-1β), il-6 and il-8, and the protein expression of NF-κB p65 in the liver and intestine were significantly up-regulated in the HC group compared to those in the CC group (P < 0.05), the HCB diet decreased their expression compared to the HC group (P < 0.05). The gene expression of il-10 and transforming growth factor-β (tgf-β) in the liver and intestine were significantly decreased in the HC group compared to the CC group (P < 0.05), and inclusion of dietary biotin increased the il-10 and tgf-β expression in the liver and intestine (P < 0.05). Moreover, compared to the CC group, the HC group had a stronger degree of DNA fragmentation and more TUNEL-positive cells in the liver and intestine, and the HCB group had a slighter degree of DNA fragmentation and fewer TUNEL-positive cells compared to the HC group. Meanwhile, the gene expression of B-cell lymphoma protein-2-associated X protein (bax) and executor apoptosis-related cysteine peptidase 3 (caspase-3) were significantly up-regulated and the gene expression of B-cell lymphoma-2 (bcl-2) was significantly down-regulated both in the liver and intestine in the HC group compared with those in the CC group (P < 0.05). Inclusion of dietary biotin significantly decreased the bax and caspase-3 mRNA levels and increased bcl-2 mRNA level in the liver and intestine (P < 0.05). In conclusion, high dietary carbohydrate (26.9% vs 18.6%) induced inflammation and apoptosis in liver and intestine. Supplementation of biotin (1.62 mg/kg vs 0.05 mg/kg) in diet can alleviate the high-dietary-carbohydrate-induced hepatic and intestinal inflammation as well as inhibit apoptosis in turbot. The present study provides basic data for the application of biotin into feed, especially the high-carbohydrate feed for turbot.
Collapse
Affiliation(s)
- Mingzhu Pan
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Danni Liu
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China; Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Jiahuan Liu
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Xinxin Li
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Dong Huang
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Kai Luo
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Yue Liu
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Zhenhua Wu
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Wenbing Zhang
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Wen Hai Road, Qingdao, 266237, China.
| | - Kangsen Mai
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Fisheries College, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Wen Hai Road, Qingdao, 266237, China
| |
Collapse
|
5
|
Wang Q, Liu Q, Qi S, Zhang J, Liu X, Li X, Li C. Comprehensive Pan-Cancer Analyses of Pyroptosis-Related Genes to Predict Survival and Immunotherapeutic Outcome. Cancers (Basel) 2022; 14:cancers14010237. [PMID: 35008400 PMCID: PMC8750048 DOI: 10.3390/cancers14010237] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/24/2021] [Accepted: 12/31/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Pyroptosis is a type of programmed cell death accompanied by inflammation. Although the dysregulation of pyroptosis has been reported to be involved in carcinogenesis, its function in cancer progression and therapy remains largely unknown and controversial because of the inconsistency across different cancer types. This study provides the most complete gene set of pyroptosis-related genes (PRGs), depicts their expression changes across 31 cancer types for the first time, and constructs a novel prognostic risk model to predict cancer patient survival. In addition, the effects of pyroptosis on immune cell infiltration and immunotherapy were dissected at the pan-cancer level. Small-molecule compounds, which may be beneficial to immunotherapy, were screened on the basis of differentially expressed PRGs. These results lay the foundation for the study of pyroptosis in cancer. Abstract Pyroptosis is a newly characterized type of programmed cell death. However, its function in cancer progression and its response to treatments remain controversial. Here, we extensively and systematically compiled genes associated with pyroptosis, integrated multiomics data and clinical data across 31 cancer types from The Cancer Genome Atlas, and delineated the global alterations in PRGs at the transcriptional level. The underlying transcriptional regulations by copy number variation, miRNAs, and enhancers were elucidated by integrating data from the Genotype-Tissue Expression and International Cancer Genome Consortium. A prognostic risk model, based on the expression of PRGs across 31 cancer types, was constructed. To investigate the role of pyroptosis in immunotherapy, we found five PRGs associated with effectiveness by exploring the RNA-Seq data of patients with immunotherapy, and further identified two small-molecule compounds that are potentially beneficial for immunotherapy. For the first time, from a pyroptosis standpoint, this study establishes a novel strategy to predict cancer patient survival and immunotherapeutic outcomes.
Collapse
Affiliation(s)
- Qilin Wang
- School of Engineering Medicine, Beihang University, Beijing 100191, China; (Q.W.); (Q.L.); (S.Q.); (J.Z.)
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
| | - Qian Liu
- School of Engineering Medicine, Beihang University, Beijing 100191, China; (Q.W.); (Q.L.); (S.Q.); (J.Z.)
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
| | - Sihan Qi
- School of Engineering Medicine, Beihang University, Beijing 100191, China; (Q.W.); (Q.L.); (S.Q.); (J.Z.)
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
| | - Junyou Zhang
- School of Engineering Medicine, Beihang University, Beijing 100191, China; (Q.W.); (Q.L.); (S.Q.); (J.Z.)
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
| | - Xian Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (X.L.); (X.L.)
| | - Xin Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (X.L.); (X.L.)
| | - Chunyan Li
- School of Engineering Medicine, Beihang University, Beijing 100191, China; (Q.W.); (Q.L.); (S.Q.); (J.Z.)
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing 100191, China
- Correspondence:
| |
Collapse
|
6
|
Zhao L, Liang J, Chen F, Tang X, Liao L, Liu Q, Luo J, Du Z, Li Z, Luo W, Yang S, Rahimnejad S. High carbohydrate diet induced endoplasmic reticulum stress and oxidative stress, promoted inflammation and apoptosis, impaired intestinal barrier of juvenile largemouth bass (Micropterus salmoides). FISH & SHELLFISH IMMUNOLOGY 2021; 119:308-317. [PMID: 34662728 DOI: 10.1016/j.fsi.2021.10.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 05/12/2023]
Abstract
This study assessed the effects of feed carbohydrate content on intestinal physical barrier and immunity in juvenile largemouth bass (Micropterus salmoides). Triplicate groups of juvenile fish (4.1 ± 0.2 g) were fed low (LCD, 7%), medium (MCD, 12%) and high (HCD, 17%) carbohydrate diets for eight weeks. Gut histology revealed the slight infiltration of inflammatory cells and moderate loss of mucous membrane layer in HCD group. Expression of ZO1, occluding, and claudin7 genes and epidermal growth factor receptor (EGFR) gene were significantly decreased in HCD group indicating the impairment of tight junction and epithelial cell regeneration. The results showed the significant (P < 0.05) reduction of antioxidant capacity in HCD group compared to LCD. Furthermore, expression of intestinal ERS-related genes such as IRE1, Eif2α, GRP78, CHOPα and CHOPβ in HCD group was significantly higher than the LCD group. In addition, HCD induced the up-regulated expression of inflammatory (IL-8, IL-1β, TNFα and COX2) and apoptosis (TRAF2, bax, casepase3, caspase8 and casepase9) related genes in fish intestine. The data generated in this study clearly demonstrated that HCD induced ERS and oxidative stress, which promoted intestinal inflammation and apoptosis in juvenile largemouth bass.
Collapse
Affiliation(s)
- Liulan Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Ji Liang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Fukai Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Xiaohong Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Lei Liao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Qiao Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Jie Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Zongjun Du
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Zhiqiong Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Wei Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Samad Rahimnejad
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic.
| |
Collapse
|
7
|
Brunner K, Samassa F, Sansonetti PJ, Phalipon A. Shigella-mediated immunosuppression in the human gut: subversion extends from innate to adaptive immune responses. Hum Vaccin Immunother 2019; 15:1317-1325. [PMID: 30964713 PMCID: PMC6663138 DOI: 10.1080/21645515.2019.1594132] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/13/2019] [Accepted: 02/27/2019] [Indexed: 02/07/2023] Open
Abstract
The enteropathogen, Shigella, is highly virulent and remarkably adjusted to the intestinal environment of its almost exclusive human host. Key for Shigella pathogenicity is the injection of virulence effectors into the host cell via its type three secretion system (T3SS), initiating disease onset and progression by the vast diversity of the secreted T3SS effectors and their respective cellular targets. The multifaceted modulation of host signaling pathways exerted by Shigella T3SS effectors, which include the subversion of host innate immune defenses and the promotion of intracellular bacterial survival and dissemination, have been extensively reviewed in the recent past. This review focuses on the human species specificity of Shigella by discussing some possible evasion mechanisms towards the human, but not non-human or rodent gut innate defense barrier, leading to the lack of a relevant animal infection model. In addition, subversion mechanisms of the adaptive immune response are highlighted summarizing research advances of the recent years. In particular, the new paradigm of Shigella pathogenicity constituted of invasion-independent T3SS effector-mediated targeting of activated, human lymphocytes is discussed. Along with consequences on vaccine development, these findings offer new directions for future research endeavors towards a better understanding of immunity to Shigella infection.
Collapse
Affiliation(s)
- Katja Brunner
- Molecular Microbial Pathogenesis Unit, Department of Cellular Biology of Infection, Institut Pasteur, Paris, France
- INSERM U1202, Paris, France
| | - Fatoumata Samassa
- Molecular Microbial Pathogenesis Unit, Department of Cellular Biology of Infection, Institut Pasteur, Paris, France
- INSERM U1202, Paris, France
| | - Philippe J. Sansonetti
- Molecular Microbial Pathogenesis Unit, Department of Cellular Biology of Infection, Institut Pasteur, Paris, France
- INSERM U1202, Paris, France
- Chaire de Microbiologie et Maladies Infectieuses, Collège de France, Paris, France
| | - Armelle Phalipon
- Molecular Microbial Pathogenesis Unit, Department of Cellular Biology of Infection, Institut Pasteur, Paris, France
- INSERM U1202, Paris, France
| |
Collapse
|
8
|
Schnupf P, Sansonetti PJ. Shigella Pathogenesis: New Insights through Advanced Methodologies. Microbiol Spectr 2019; 7:10.1128/microbiolspec.bai-0023-2019. [PMID: 30953429 PMCID: PMC11588159 DOI: 10.1128/microbiolspec.bai-0023-2019] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Indexed: 02/07/2023] Open
Abstract
Shigella is a genus of Gram-negative enteropathogens that have long been, and continue to be, an important public health concern worldwide. Over the past several decades, Shigella spp. have also served as model pathogens in the study of bacterial pathogenesis, and Shigella flexneri has become one of the best-studied pathogens on a molecular, cellular, and tissue level. In the arms race between Shigella and the host immune system, Shigella has developed highly sophisticated mechanisms to subvert host cell processes in order to promote infection, escape immune detection, and prevent bacterial clearance. Here, we give an overview of Shigella pathogenesis while highlighting innovative techniques and methods whose application has significantly advanced our understanding of Shigella pathogenesis in recent years.
Collapse
Affiliation(s)
- Pamela Schnupf
- Institut Imagine, Laboratory of Intestinal Immunity, INSERM UMR1163; Institut Necker Enfants Malades, Laboratory of Host-Microbiota Interaction, INSERM U1151; and Université Paris Descartes-Sorbonne, 75006 Paris, France
| | - Philippe J Sansonetti
- Institut Pasteur, Unité de Pathogénie Microbienne Moléculaire, INSERM U1202, and College de France, Paris, France
| |
Collapse
|
9
|
Belotserkovsky I, Sansonetti PJ. Shigella and Enteroinvasive Escherichia Coli. Curr Top Microbiol Immunol 2018; 416:1-26. [PMID: 30218158 DOI: 10.1007/82_2018_104] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Shigella and enteroinvasive Escherichia coli (EIEC) are gram-negative bacteria responsible for bacillary dysentery (shigellosis) in humans, which is characterized by invasion and inflammatory destruction of the human colonic epithelium. Different EIEC and Shigella subgroups rose independently from commensal E. coli through patho-adaptive evolution that included loss of functional genes interfering with the virulence and/or with the intracellular lifestyle of the bacteria, as well as acquisition of genetic elements harboring virulence genes. Among the latter is the large virulence plasmid encoding for a type three secretion system (T3SS), which enables translocation of virulence proteins (effectors) from the bacterium directly into the host cell cytoplasm. These effectors enable the pathogen to subvert epithelial cell functions, promoting its own uptake, replication in the host cytosol, and dissemination to adjacent cells while concomitantly inhibiting pro-inflammatory cell death. Furthermore, T3SS effectors are directly involved in Shigella manipulation of immune cells causing their dysfunction and promoting cell death. In the current chapter, we first describe the evolution of the enteroinvasive pathovars and then summarize the overall knowledge concerning the pathogenesis of these bacteria, with a particular focus on Shigella flexneri. Subversion of host cell functions in the human gut, both epithelial and immune cells, by different virulence factors is especially highlighted.
Collapse
Affiliation(s)
- Ilia Belotserkovsky
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, 28 Rue Du Dr Roux, 75724 Cedex 15, Paris, France.
| | - Philippe J Sansonetti
- Microbiologie et Maladies Infectieuses, Collège de France, 11 Place Marcelin Berthelot, 75005, Paris, France
| |
Collapse
|
10
|
Macrophage Apoptosis Triggered by IpaD from Shigella flexneri. Infect Immun 2016; 84:1857-1865. [PMID: 27068089 DOI: 10.1128/iai.01483-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 04/03/2016] [Indexed: 01/24/2023] Open
Abstract
Shigellosis, a potentially severe bacillary dysentery, is an infectious gastrointestinal disease caused by Shigella spp. Shigella invades the human colonic epithelium and avoids clearance by promoting apoptosis of resident immune cells in the gut. This process is dependent on the Shigella type III secretion system (T3SS), which injects effector proteins into target cells to alter their normal cellular functions. Invasion plasmid antigen D (IpaD) is a structural component that forms a complex at the tip of the T3SS apparatus needle. Recently, IpaD has also been shown to indirectly induce apoptosis in B lymphocytes. In this study, we explored the cytotoxicity profile during macrophage infection by Shigella and discovered that the pathogen induces macrophage cell death independent of caspase-1. Our results demonstrate that IpaD triggers apoptosis in macrophages through activation of host caspases accompanied by mitochondrial disruption. Additionally, we found that the IpaD N-terminal domain is necessary for macrophage killing and SipD, a structural homologue from Salmonella, was found to promote similar cytotoxicity. Together, these findings indicate that IpaD is a contributing factor to macrophage cell death during Shigella infection.
Collapse
|
11
|
The Orchestra and Its Maestro: Shigella's Fine-Tuning of the Inflammasome Platforms. Curr Top Microbiol Immunol 2016; 397:91-115. [PMID: 27460806 DOI: 10.1007/978-3-319-41171-2_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Shigella spp. are the causative agents of bacillary dysentery, leading to extensive mortality and morbidity worldwide. These facultative intracellular bacteria invade the epithelium of the colon and the rectum, inducing a severe inflammatory response from which the symptoms of the disease originate. Shigella are human pathogens able to manipulate and subvert the innate immune system surveillance. Shigella dampens inflammasome activation in epithelial cells. In infected macrophages, inflammasome activation and IL-1β and IL-18 release lead to massive neutrophil recruitment and greatly contribute to inflammation. Here, we describe how Shigella hijacks and finely tunes inflammasome activation in the different cell populations involved in pathogenesis: epithelial cells, macrophages, neutrophils, DCs, and B and T lymphocytes. Shigella emerges as a "sly" pathogen that switches on/off the inflammasome mechanisms in order to optimize the interaction with the host and establish a successful infection.
Collapse
|
12
|
Biomarkers of Gastrointestinal Host Responses to Microbial Infections. Mol Microbiol 2016. [DOI: 10.1128/9781555819071.ch46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Ashida H, Mimuro H, Sasakawa C. Shigella manipulates host immune responses by delivering effector proteins with specific roles. Front Immunol 2015; 6:219. [PMID: 25999954 PMCID: PMC4423471 DOI: 10.3389/fimmu.2015.00219] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 04/22/2015] [Indexed: 11/30/2022] Open
Abstract
The intestinal epithelium deploys multiple defense systems against microbial infection to sense bacterial components and danger alarms, as well as to induce intracellular signal transduction cascades that trigger both the innate and the adaptive immune systems, which are pivotal for bacterial elimination. However, many enteric bacterial pathogens, including Shigella, deliver a subset of virulence proteins (effectors) via the type III secretion system (T3SS) that enable bacterial evasion from host immune systems; consequently, these pathogens are able to efficiently colonize the intestinal epithelium. In this review, we present and select recently discovered examples of interactions between Shigella and host immune responses, with particular emphasis on strategies that bacteria use to manipulate inflammatory outputs of host-cell responses such as cell death, membrane trafficking, and innate and adaptive immune responses.
Collapse
Affiliation(s)
- Hiroshi Ashida
- Division of Bacterial Infection Biology, Institute of Medical Science, University of Tokyo , Tokyo , Japan
| | - Hitomi Mimuro
- Division of Bacteriology, Department of Infectious Diseases Control, International Research Center for Infectious Diseases, The Institute of Medical Science, University of Tokyo , Tokyo , Japan
| | - Chihiro Sasakawa
- Division of Bacterial Infection Biology, Institute of Medical Science, University of Tokyo , Tokyo , Japan ; Nippon Institute for Biological Science , Tokyo , Japan ; Medical Mycology Research Center, Chiba University , Chiba , Japan
| |
Collapse
|
14
|
Ashida H, Kim M, Sasakawa C. Manipulation of the host cell death pathway by Shigella. Cell Microbiol 2014; 16:1757-66. [PMID: 25264025 DOI: 10.1111/cmi.12367] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/11/2014] [Accepted: 08/21/2014] [Indexed: 12/25/2022]
Abstract
Host cells deploy multiple defences against microbial infection. One prominent host defence mechanism, the death of infected cells, plays a pivotal role in clearing damaged cells, eliminating pathogens, removing replicative niches, exposing intracellular bacterial pathogens to extracellular immune surveillance and presenting bacteria-derived antigens to the adaptive immune system. Although cell death can occur under either physiological or pathophysiological conditions, it acts as an innate defence mechanism against bacterial pathogens by limiting their persistent colonization. However, many bacterial pathogens, including Shigella, have evolved mechanisms that manipulate host cell death for their own benefit.
Collapse
Affiliation(s)
- Hiroshi Ashida
- Division of Bacterial Infection Biology, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
| | | | | |
Collapse
|
15
|
Blessing or curse? Proteomics in granzyme research. Proteomics Clin Appl 2014; 8:351-81. [DOI: 10.1002/prca.201300096] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/29/2013] [Accepted: 12/21/2013] [Indexed: 01/08/2023]
|
16
|
New insights into the crosstalk between Shigella and T lymphocytes. Trends Microbiol 2014; 22:192-8. [PMID: 24613405 DOI: 10.1016/j.tim.2014.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 02/03/2014] [Accepted: 02/05/2014] [Indexed: 01/22/2023]
Abstract
Subversion of host immune responses is the key infection strategy employed by most, if not all, human pathogens. Modulation of the host innate response by pathogens has been vastly documented. Yet, especially for bacterial infections, it was only recently that cells of the adaptive immune response were recognized as targets of bacterial weapons such as the type III secretion system (T3SS) and its effector proteins. In this review, we focus on the recent advances made in the understanding of how the enteroinvasive bacterium Shigella flexneri interferes with the host adaptive response by targeting T lymphocytes, especially their migration capacities.
Collapse
|
17
|
Abstract
The Gram-negative enteroinvasive bacterium Shigella flexneri is responsible for the endemic form of bacillary dysentery, an acute rectocolitis in humans. S. flexneri uses a type III secretion system to inject effector proteins into host cells, thus diverting cellular functions to its own benefit. Protective immunity to reinfection requires several rounds of infection to be elicited and is short-lasting, suggesting that S. flexneri interferes with the priming of specific immunity. Considering the key role played by T-lymphocyte trafficking in priming of adaptive immunity, we investigated the impact of S. flexneri on T-cell dynamics in vivo. By using two-photon microscopy to visualize bacterium-T-cell cross-talks in the lymph nodes, where the adaptive immunity is initiated, we provide evidence that S. flexneri, via its type III secretion system, impairs the migration pattern of CD4(+) T cells independently of cognate recognition of bacterial antigens. We show that bacterial invasion of CD4(+) T lymphocytes occurs in vivo, and results in cell migration arrest. In the absence of invasion, CD4(+) T-cell migration parameters are also dramatically altered. Signals resulting from S. flexneri interactions with subcapsular sinus macrophages and dendritic cells, and recruitment of polymorphonuclear cells are likely to contribute to this phenomenon. These findings indicate that S. flexneri targets T lymphocytes in vivo and highlight the role of type III effector secretion in modulating host adaptive immune responses.
Collapse
|
18
|
Teo I, Toms SM, Marteyn B, Barata TS, Simpson P, Johnston KA, Schnupf P, Puhar A, Bell T, Tang C, Zloh M, Matthews S, Rendle PM, Sansonetti PJ, Shaunak S. Preventing acute gut wall damage in infectious diarrhoeas with glycosylated dendrimers. EMBO Mol Med 2012; 4:866-81. [PMID: 22887873 PMCID: PMC3491821 DOI: 10.1002/emmm.201201290] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 06/15/2012] [Accepted: 06/22/2012] [Indexed: 01/25/2023] Open
Abstract
Intestinal pathogens use the host's excessive inflammatory cytokine response, designed to eliminate dangerous bacteria, to disrupt epithelial gut wall integrity and promote their tissue invasion. We sought to develop a non-antibiotic-based approach to prevent this injury. Molecular docking studies suggested that glycosylated dendrimers block the TLR4-MD-2-LPS complex, and a 13.6 kDa polyamidoamine (PAMAM) dendrimer glucosamine (DG) reduced the induction of human monocyte interleukin (IL)-6 by Gram-negative bacteria. In a rabbit model of shigellosis, PAMAM-DG prevented epithelial gut wall damage and intestinal villous destruction, reduced local IL-6 and IL-8 expression, and minimized bacterial invasion. Computational modelling studies identified a 3.3 kDa polypropyletherimine (PETIM)-DG as the smallest likely bioactive molecule. In human monocytes, high purity PETIM-DG potently inhibited Shigella Lipid A-induced IL-6 expression. In rabbits, PETIM-DG prevented Shigella-induced epithelial gut wall damage, reduced local IL-6 and IL-8 expression, and minimized bacterial invasion. There was no change in β-defensin, IL-10, interferon-β, transforming growth factor-β, CD3 or FoxP3 expression. Small and orally delivered DG could be useful for preventing gut wall tissue damage in a wide spectrum of infectious diarrhoeal diseases. –>See accompanying article http://dx.doi.org/10.1002/emmm.201201668
Collapse
Affiliation(s)
- Ian Teo
- Departments of Medicine, Infectious Diseases & Immunity, Imperial College London, Hammersmith Hospital, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Schnupf P, Sansonetti PJ. Quantitative RT-PCR profiling of the rabbit immune response: assessment of acute Shigella flexneri infection. PLoS One 2012; 7:e36446. [PMID: 22675469 PMCID: PMC3366964 DOI: 10.1371/journal.pone.0036446] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 04/04/2012] [Indexed: 12/18/2022] Open
Abstract
Quantitative reverse transcription PCR analysis is an important tool to monitor changes in gene expression in animal models. The rabbit is a widely accepted and commonly used animal model in the study of human diseases and infections by viral, fungal, bacterial and protozoan pathogens. Only a limited number of rabbit genes have, however, been analyzed by this method as the rabbit genome sequence remains unfinished. Recently, increasing coverage of the genome has permitted the prediction of a growing number of genes that are relevant in the context of the immune response. We hereby report the design of twenty-four quantitative PCR primer pairs covering common cytokines, chemoattractants, antimicrobials and enzymes for a rapid, sensitive and quantitative analysis of the rabbit immune response. Importantly, all primer pairs were designed to be used under identical experimental conditions, thereby enabling the simultaneous analysis of all genes in a high-throughput format. This tool was used to analyze the rabbit innate immune response to infection with the human gastrointestinal pathogen Shigella flexneri. Beyond the known inflammatory mediators, we identified IL-22, IL-17A and IL-17F as highly upregulated cytokines and as first responders to infection during the innate phase of the host immune response. This set of qPCR primers also provides a convenient tool for monitoring the rabbit immune response during infection with other pathogens and other inflammatory conditions.
Collapse
Affiliation(s)
- Pamela Schnupf
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
| | | |
Collapse
|
20
|
Abstract
The gastrointestinal system is a common entry point for pathogenic microbes to access the inner environment of the body. Anti-microbial factors produced by the intestinal mucosa limit the translocation of both commensal and pathogenic microbes across the intestinal epithelial cell barrier. The regulation of these host defense mechanisms largely depends on the activation of innate immune receptors by microbial molecules. Under steady-state conditions, the microbiota provides constitutive signals to the innate immune system, which helps to maintain a healthy inflammatory tone within the intestinal mucosa and, thus, enhances resistance to infection with enteric pathogens. During an acute infection, the intestinal epithelial cell barrier is breached, and the detection of microbial molecules in the intestinal lamina propria rapidly stimulates innate immune signaling pathways that coordinate early defense mechanisms. Herein, we review how microbial molecules shed by both commensal and pathogenic microbes direct host defenses at the intestinal mucosa. We highlight the signaling pathways, effector molecules, and cell populations that are activated by microbial molecule recognition and, thereby, are involved in the maintenance of homeostatic levels of host defense and in the early response to acute enteric infection. Finally, we discuss how manipulation of these host defense pathways by stimulating innate immune receptors is a potential therapeutic strategy to prevent or alleviate intestinal disease.
Collapse
Affiliation(s)
- Melissa A Kinnebrew
- Infectious Diseases Service, Department of Medicine, Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | |
Collapse
|
21
|
Konradt C, Frigimelica E, Nothelfer K, Puhar A, Salgado-Pabon W, di Bartolo V, Scott-Algara D, Rodrigues C, Sansonetti P, Phalipon A. The Shigella flexneri Type Three Secretion System Effector IpgD Inhibits T Cell Migration by Manipulating Host Phosphoinositide Metabolism. Cell Host Microbe 2011; 9:263-72. [DOI: 10.1016/j.chom.2011.03.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Revised: 02/02/2011] [Accepted: 03/18/2011] [Indexed: 11/24/2022]
|
22
|
Silva MT. Bacteria-induced phagocyte secondary necrosis as a pathogenicity mechanism. J Leukoc Biol 2010; 88:885-96. [PMID: 20566623 DOI: 10.1189/jlb.0410205] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Triggering of phagocyte apoptosis is a major virulence mechanism used by some successful bacterial pathogens. A central issue in the apoptotic death context is that fully developed apoptosis results in necrotic cell autolysis (secondary necrosis) with release of harmful cell components. In multicellular animals, this occurs when apoptosing cells are not removed by scavengers, mainly macrophages. Secondary necrotic lysis of neutrophils and macrophages may occur in infection when extensive phagocyte apoptosis is induced by bacterial cytotoxins and removal of apoptosing phagocytes is defective because the apoptotic process exceeds the available scavenging capacity or targets macrophages directly. Induction of phagocyte secondary necrosis is an important pathogenic mechanism, as it combines the pathogen evasion from phagocyte antimicrobial activities and the release of highly cytotoxic molecules, particularly of neutrophil origin, such as neutrophil elastase. This pathogenicity mechanism therefore promotes the unrestricted multiplication of the pathogen and contributes directly to the pathology of several necrotizing infections, where extensive apoptosis and necrosis of macrophages and neutrophils are present. Here, examples of necrotizing infectious diseases, where phagocyte secondary necrosis is implicated, are reviewed.
Collapse
Affiliation(s)
- Manuel T Silva
- Instituto de Biologia Molecular e Celular, University of Porto, Rua do Campo Alegre 823, Porto, Portugal.
| |
Collapse
|
23
|
Bagchi AK, Sinha AK, Adhikari R, Mukherjee J. Adaptive immune responses during Shigella dysenteriae type 1 infection: an in vitro stimulation with 57 kDa major antigenic OMP in the presence of anti-CD3 antibody. Mol Cell Biochem 2010; 338:1-10. [PMID: 19915959 DOI: 10.1007/s11010-009-0314-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 10/29/2009] [Indexed: 01/11/2023]
Abstract
An effort was made to understand the role of the 57 kDa major antigenic fraction of Shigella outer membrane protein (OMP) in the presence of T-cell antigen receptor in activation of adaptive immune responses of the cell mediated immune (CMI) restored patients. The expression of HLA-DR/CD4 out of CD3(+) T-cells was significantly dominant over the HLA-DR/CD8 and comparable to unstimulated cells of infected or healthy controls. CD4(+) T-cell activation together with HLA-DR is associated with the expression of CD25(+) (IL2Ralpha) for IL-2 growth factors with decreased IL-4 levels, required for maintaining the homeostasis of CD4(+) T cell. Furthermore, the positive expression of the CD45 antigen is possibly required for acquiring the memory for CD4(+) cells signals and facilitates the interaction with CD54 antigen. As a result, antigen-specific secondary signal is generated for B-cell activation to produce IgG2a and IgG2b. This suggests that antibody mediated-adaptive immune responses are generated due to anti-CD3 induced helper T-cell activity. The above mentioned findings reflect that the antigen alone might not exacerbate the selective T-cell responses. But these antigens in the presence of anti-CD3 antibody might help to elicit adaptive immune response via T-cell receptor (TCR) activation.
Collapse
Affiliation(s)
- Ashim Kumar Bagchi
- Microbial-Immunology Division, Research and Development, Nutratech Inc, Winnipeg, MB, Canada.
| | | | | | | |
Collapse
|
24
|
Bagchi AK, Sinha AK, Adhikari R, Maiti P, Mukherjee J, Panda A, Saha DR. Selective deletion of CD8(+) cells upregulated by caspases-1 via IL-18 in mice immunized with major outer membrane protein of Shigella dysenteriae 1 following infection. J Clin Immunol 2010; 30:408-18. [PMID: 20084439 DOI: 10.1007/s10875-009-9359-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Accepted: 12/08/2009] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Mucosal lymphoid changes were observed in cryopreserved rectal tissues obtained from BALB/c mice infected with Shigella dysenteriae 1, immunized with 57-kDa major antigenic outer membrane protein, and infection after immunization. DISCUSSION Our data suggested that caspase-3 is downregulated in CD4(+) cells of immunized BALB/c mice following infection with substantial increased expression of interleukin (IL)-2 and interferon (IFN)-gamma, while caspase-1 is upregulated in CD8(+) cells with decreased expression of IL-4 and IL-10. This indicated an involvement of Fas-mediated lytic pathway for selective deletion of CD8(+) cells out of CD3(+) T cells. IL-18 promotes inflammation and induces IFN-gamma and tumor necrosis factor (TNF)-alpha as the expression of IFN-gamma and TNF-alpha cytokines was evident in this study. It is assumed that the role of caspase-1 in inducing the CD4+ T cell activity increased with IL-18 rather than CD8+ suppressor cell activity. Bcl-2 is capable of inhibiting the Fas/Fas-L-mediated cell death for helper cells. Overall, the findings indicate that majority of the apoptotic cells were CD8(+) T cells in the groups of infection following immunization, and there might be a selective deletion of T lymphocytes mediated by caspase-1 via IL-18.
Collapse
Affiliation(s)
- Ashim Kumar Bagchi
- Research & Development Division, Nutratech, Inc., Winnipeg, MB, R3Y 1M5, Canada.
| | | | | | | | | | | | | |
Collapse
|
25
|
Sarker P, Bhuiyan TR, Qadri F, Alam NH, Wretlind B, Bishop AE, Mathan M, Agerberth B, Andersson J, Raqib R. Differential expression of enteric neuroimmune-network in invasive and acute watery diarrhoea. Neurogastroenterol Motil 2010; 22:70-8, e29. [PMID: 19650770 DOI: 10.1111/j.1365-2982.2009.01375.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We aimed to evaluate the changes of nerve morphology and distribution of neurotransmitters and neuropeptides in the rectum of Shigella flexneri-infected patients and in the duodenum of Vibrio cholerae O1-infected patients. Nerve morphology was observed by transmission electron microscopy. Immunoreactivity of nerve growth factor (NGF), neurotransmitters and neuropeptides in tissues were studied by immunohistochemistry. Ultrastructural analysis of intestinal biopsy revealed persisting axons degeneration throughout the study period in all patients. Regeneration was already evident at the acute stage with marked increase at late convalescence. Both acute shigellosis and cholera were accompanied by increased expression of NGF and histamine and decreased expression of serotonin that was restored at convalescence. Immunoreactivity of vasoactive intestinal peptide (VIP) was increased during acute cholera, whereas in shigellosis VIP- and substance P-immunoreactive nerves appeared at early convalescence. Both shigellosis and cholera induced long-lasting degeneration of enteric neuronal axons, despite the presence of ongoing proliferation and regeneration processes. Neurotransmitters and neuropeptides may play differential roles in invasive and watery diarrhoea.
Collapse
Affiliation(s)
- P Sarker
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Spa15 of Shigella flexneri is secreted through the type III secretion system and prevents staurosporine-induced apoptosis. Infect Immun 2009; 77:5281-90. [PMID: 19805534 DOI: 10.1128/iai.00800-09] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Shigella flexneri is a gram-negative, facultative intracellular pathogen that invades the colonic epithelium and causes bacillary dysentery. We previously demonstrated that S. flexneri inhibits staurosporine-induced apoptosis in infected epithelial cells and that a DeltamxiE mutant is unable to inhibit apoptosis. Therefore, we hypothesized that an MxiE-regulated gene was responsible for protection of epithelial cells from apoptosis. Analysis of all MxiE-regulated genes yielded no mutants that lacked the ability to prevent apoptosis. Spa15, which is defined as a type III secretion system chaperone, was analyzed since it associates with MxiE. A Deltaspa15 mutant was unable to prevent staurosporine-induced apoptosis. C-terminal hemagglutinin-tagged spa15 was secreted by S. flexneri within 2 h in the Congo red secretion assay, and secretion was dependent on the type III secretion system. Spa15 was also secreted by Shigella in infected epithelial cells, as verified by immunofluorescence analysis. Spa15 secretion was decreased in the DeltamxiE mutant, which demonstrates why this mutant is unable to prevent staurosporine-induced apoptosis. Our data are the first to show that Spa15 is secreted in a type III secretion system-dependent fashion, and the absence of Spa15 in the Deltaspa15 mutant results in the loss of protection from staurosporine-induced apoptosis in epithelial cells. Thus, Spa15 contributes to the intracellular survival of Shigella by blocking apoptosis in the infected host cell.
Collapse
|
27
|
Abstract
Polymorphonuclear leukocytes (PMNs) are the most abundant white cell in humans and an essential component of the innate immune system. PMNs are typically the first type of leukocyte recruited to sites of infection or areas of inflammation. Ingestion of microorganisms triggers production of reactive oxygen species and fusion of cytoplasmic granules with forming phagosomes, leading to effective killing of ingested microbes. Phagocytosis of bacteria typically accelerates neutrophil apoptosis, which ultimately promotes the resolution of infection. However, some bacterial pathogens alter PMN apoptosis to survive and thereby cause disease. Herein, we review PMN apoptosis and the ability of microorganisms to alter this important process.
Collapse
Affiliation(s)
- Adam D Kennedy
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840, USA
| | | |
Collapse
|
28
|
Willingham SB, Bergstralh DT, O’Connor W, Morrison AC, Taxman DJ, Duncan JA, Barnoy S, Venkatesan MM, Flavell RA, Deshmukh M, Hoffman HM, Ting JPY. Microbial pathogen-induced necrotic cell death mediated by the inflammasome components CIAS1/cryopyrin/NLRP3 and ASC. Cell Host Microbe 2007; 2:147-59. [PMID: 18005730 PMCID: PMC2083260 DOI: 10.1016/j.chom.2007.07.009] [Citation(s) in RCA: 231] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2007] [Revised: 04/30/2007] [Accepted: 07/30/2007] [Indexed: 01/21/2023]
Abstract
Cryopyrin (CIAS1, NLRP3) and ASC are components of the inflammasome, a multiprotein complex required for caspase-1 activation and cytokine IL-1beta production. CIAS1 mutations underlie autoinflammation characterized by excessive IL-1beta secretion. Disease-associated cryopyrin also causes a program of necrosis-like cell death in macrophages, the mechanistic details of which are unknown. We find that patient monocytes carrying disease-associated CIAS1 mutations exhibit excessive necrosis-like death by a process dependent on ASC and cathepsin B, resulting in spillage of the proinflammatory mediator HMGB1. Shigella flexneri infection also causes cryopyrin-dependent macrophage necrosis with features similar to the death caused by mutant CIAS1. This necrotic death is independent of caspase-1 and IL-1beta, and thus independent of the inflammasome. Furthermore, necrosis of primary macrophages requires the presence of Shigella virulence genes. While similar proteins mediate pathogen-induced cell death in plants, this report identifies cryopyrin as an important host regulator of programmed pathogen-induced necrosis in animals, a process we term pyronecrosis.
Collapse
Affiliation(s)
- Stephen B. Willingham
- Lineberger Comprehensive Cancer Center, Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Daniel T. Bergstralh
- Lineberger Comprehensive Cancer Center, Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - William O’Connor
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Amy C. Morrison
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Debra J. Taxman
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joseph A. Duncan
- Department of Medicine, Division of Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shoshana Barnoy
- Division of Bacterial and Rickettsial Diseases, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Malabi M. Venkatesan
- Division of Bacterial and Rickettsial Diseases, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Richard A. Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Mohanish Deshmukh
- Neuroscience Center, Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hal M. Hoffman
- Division of Rheumatology, Allergy, and Immunology, University of California at San Diego, La Jolla, CA 92093, USA
- Department of Pediatrics, University of California at San Diego, La Jolla, CA 92093, USA
| | - Jenny P.-Y. Ting
- Lineberger Comprehensive Cancer Center, Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
29
|
Kim H, Rhee SH, Pothoulakis C, Lamont JT. Inflammation and apoptosis in Clostridium difficile enteritis is mediated by PGE2 up-regulation of Fas ligand. Gastroenterology 2007; 133:875-86. [PMID: 17854595 DOI: 10.1053/j.gastro.2007.06.063] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Accepted: 05/31/2007] [Indexed: 02/05/2023]
Abstract
BACKGROUND & AIMS Clostridium difficile toxin A causes acute inflammation and fluid secretion in experimental animals and patients with C difficile infection. We previously reported that toxin A increased cyclooxygenase-2/prostaglandin E(2) (PGE(2)) expression and apoptosis in human colonocytes. Here, we assessed the role of secreted PGE(2) in inflammation and enterocyte apoptosis in toxin A enteritis. METHODS Effects of PGE(2) and PGE(2) blockade on toxin A-induced apoptosis of human colonocytes (NCM460) and of PGE(2) or toxin A on the Fas ligand (FasL) induction were analyzed by flow cytometry and Western blot. Functional activity of elevated FasL on colonocytes was assessed by coculture of colonocytes with Fas bearing Jurkat T cells. The involvement of PGE(2)-dependent Fas/FasL activation in toxin A enteritis was further assessed in either scid or FasL and Fas deficient mice. RESULTS Inhibition of cyclooxygenase-2 by NS-398 and of PGE(2) using a blocking antibody markedly attenuated apoptosis in colonocytes exposed to toxin A. Enhanced expression and release of FasL followed PGE(2) or toxin A exposure in vivo and in vitro and also was significantly attenuated by treatment with NS-398 and PGE(2) blocking antibody. PGE(2) acting through an EP1 receptor activated nuclear factor-kappaB, which induced transcription of FasL. Toxin A enteritis was accompanied by increased cellular infiltration, fluid secretion, and mucosal damage in control mice, but this response was markedly reduced in both Fas(-/-) and FasL(-/-) mice. CONCLUSIONS Toxin A enteritis involves release of PGE(2), which activates the Fas/FasL system, causing enterocyte apoptosis and inflammation.
Collapse
Affiliation(s)
- Ho Kim
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | |
Collapse
|
30
|
Abstract
Flagellin is bacterial protein that serves as a danger signal across a wide variety of eukaryotes and is a potent inducer of inflammatory effector responses in the mammalian gut. Recent findings utilizing purified flagellin and flagellate/aflagellate bacteria in in vitro and in vivo systems have revealed the important roles played by flagellin in the initial encounter between mucosa and flagellate bacteria, specifically in the modulation of apoptotic responses.
Collapse
Affiliation(s)
- Andrew S Neish
- Dept of Pathology, Emory Univ School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
31
|
Phalipon A, Sansonetti PJ. Shigella’
s ways of manipulating the host intestinal innate and adaptive immune system: a tool box for survival? Immunol Cell Biol 2007; 85:119-29. [PMID: 17213832 DOI: 10.1038/sj.icb7100025] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Shigella, a Gram-negative invasive enteropathogenic bacterium, causes the rupture, invasion and inflammatory destruction of the human colonic epithelium. This complex and aggressive process accounts for the symptoms of bacillary dysentery. The so-called invasive phenotype of Shigella is linked to expression of a type III secretory system (TTSS) injecting effector proteins into the epithelial cell membrane and cytoplasm, thereby inducing local but massive changes in the cell cytoskeleton that lead to bacterial internalization into non-phagocytic intestinal epithelial cells. The invasive phenotype also accounts for the potent pro-inflammatory capacity of the microorganism. Recent evidence indicates that a large part of the mucosal inflammation is initiated by intracellular sensing of bacterial peptidoglycan by cytosolic leucine-rich receptors of the NOD family, particularly NOD1, in epithelial cells. This causes activation of the nuclear factor kappa B and c-JunNH(2)-terminal-kinase pathways, with interleukin-8 appearing as a major chemokine mediating the inflammatory burst that is dominated by massive infiltration of the mucosa by polymorphonuclear leukocytes. Not unexpectedly, this inflammatory response, which is likely to be very harmful for the invading microbe, is regulated by the bacterium itself. A group of proteins encoded by Shigella, which are injected into target cells by the TTSS, has been recently recognized as a family of potent regulators of the innate immune response. These enzymes target key cellular functions that are essential in triggering the inflammatory response, and more generally defense responses of the intestinal mucosa. This review focuses on the mechanisms employed by Shigella to manipulate the host innate response in order to escape early bacterial killing, thus ensuring establishment of its infectious process. The escape strategies, the possible direct effect of Shigella on B and T lymphocytes, their impact on the development of adaptive immunity, and how they may help explain the limited protection induced by natural infection are discussed.
Collapse
Affiliation(s)
- Armelle Phalipon
- Unité de Pathogénie Microbienne Moléculaire, INSERM U786, Institut Pasteur 25, Rue du Dr Roux, Paris, France.
| | | |
Collapse
|
32
|
Vijay-Kumar M, Wu H, Jones R, Grant G, Babbin B, King TP, Kelly D, Gewirtz AT, Neish AS. Flagellin suppresses epithelial apoptosis and limits disease during enteric infection. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:1686-700. [PMID: 17071592 PMCID: PMC1780197 DOI: 10.2353/ajpath.2006.060345] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Flagellin, the primary component of bacterial flagella, is a potent activator of toll-like receptor 5 (TLR5) signaling and is a major proinflammatory determinant of enteropathogenic Salmonella. In accordance with this, we report here that aflagellate Salmonella mutants are impaired in their ability to up-regulate proinflammatory and anti-apoptotic effector molecules in murine models of salmonellosis and that these mutants elicit markedly reduced early mucosal inflammation relative to their isogenic parent strains. Conversely, aflagellate bacteria were more potent activators of epithelial caspases and subsequent apoptosis. These phenomena correlated with a delayed but markedly exacerbated mucosal inflammation at the later stages of infection as well as elevated extra-intestinal and systemic bacterial load, culminating in a more severe clinical outcome. Systemic administration of exogenous flagellin primarily reversed the deleterious effects of in vivo Salmonella infection. These observations indicate that in Salmonella infection, flagellin plays a dominant role in activation of not only innate immunity but also anti-apoptotic processes in epithelial cells. These latter TLR-mediated responses that delay epithelial apoptosis may be as critical to mucosal defense as the classic acute inflammatory response. This notion is consistent with the emerging paradigm that specific TLR ligands may have a fundamental cytoprotective effect during inflammatory stress.
Collapse
Affiliation(s)
- Matam Vijay-Kumar
- Department of Pathology and Laboratory Medicine, Epithelial Pathobiology Unit, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Desnues B, Ihrig M, Raoult D, Mege JL. Whipple's disease: a macrophage disease. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2006; 13:170-8. [PMID: 16467322 PMCID: PMC1391942 DOI: 10.1128/cvi.13.2.170-178.2006] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Benoît Desnues
- Unité des Rickettsies, Centre National de la Recherche Scientifique, Institut Fédératif de Recherche, Université de la Méditerranée, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France
| | | | | | | |
Collapse
|
34
|
Sherman MP, Petrak K. Lactoferrin-enhanced anoikis: a defense against neonatal necrotizing enterocolitis. Med Hypotheses 2005; 65:478-82. [PMID: 15950395 DOI: 10.1016/j.mehy.2005.04.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Accepted: 04/04/2005] [Indexed: 11/25/2022]
Abstract
Enteral nutrition with human milk lowers the incidence of necrotizing enterocolitis in preterm human infants. Lactoferrin, the major whey protein in human milk, has many functions related to host defense against bacterial infection. Here, we hypothesize that lactoferrin also helps terminate bacterial invasion of enterocytes via a detachment-induced apoptosis called anoikis. Death of infected epithelia by anoikis prevents local spread of bacterial pathogens because the bacteria are trapped within the cell. Such infected, apoptotic and sloughed epithelia also cannot infect the lower gastrointestinal tract, and the epithelia exit the body in the stool. Currently, anoikis is a phenomenon related to the renewal of enterocytes, and it is not recognized as an anti-bacterial host defense. We suggest that anoikis of infected enterocytes is a process in which lactoferrin plays an important role. In a pilot study in which neonatal rats were pre-treated with intra-gastric recombinant human lactoferrin, we found evidence of epithelia with anoikis in ileal fluid after enteric infection. This finding was rarely seen in infected neonatal rats without pre-treatment with lactoferrin. Quantitative analysis of intestinal lavage specimens and quantitative stereology of apoptotic epithelia in this model will be required to verify the theory. We propose that oral use of recombinant human lactoferrin might have these hypothesized and other anti-bacterial effects in preterm infants, and hence, this protein might prevent necrotizing enterocolitis in preterm infants who cannot take human milk.
Collapse
Affiliation(s)
- Michael P Sherman
- Division of Neonatology, School of Medicine, University of California, Surge I, Suite 1121, Davis, CA 95616, USA.
| | | |
Collapse
|
35
|
McGuire K, Glass EJ. The expanding role of microarrays in the investigation of macrophage responses to pathogens. Vet Immunol Immunopathol 2005; 105:259-75. [PMID: 15808305 DOI: 10.1016/j.vetimm.2005.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In the last few years, microarray technology has emerged as the method of choice for large-scale gene expression studies. It provides an efficient and rapid method to investigate the entire transcriptome of a cell. No research field has benefited more from microarray technology than the study of the exquisite interplay between pathogens and hosts. Numerous microarray studies have now been published in this field, which have provided insights into the mechanisms of host defence and the tactics employed by pathogens to circumvent these protection strategies. These studies have led to a more comprehensive understanding of the host immune response and identified new avenues of research for potential control strategies against pathogens. In the past, research has concentrated on human and mouse microarrays to investigate host-pathogen interactions, regardless of the host species. This trend is changing with the ever-expanding sequence resources now available for many pathogen and host species, including livestock animals. The use of species-specific microarrays has furthered our understanding of host-pathogen interactions for particular organisms and aided in the annotation of unknown genes. Macrophages play a central role in the host's innate and adaptive immune responses to pathogens. These cells are in the first line of defence and interact with a wide range of pathogens; many of which have evolved strategies to circumvent the macrophage defence mechanisms and survive within these cells. In this report, we review the wealth of studies using microarray technology to investigate the response of macrophages to pathogens. These studies illustrate how microarray technology has expanded our understanding of the dialogue between macrophage and pathogen and provide examples of the benefits and pitfalls of using this technique. Furthermore, we discuss the resources available to use microarray analysis to study the immune response of a non-human, non-rodent species, the cow.
Collapse
Affiliation(s)
- Kirsty McGuire
- Department of Genetics and Genomics, Roslin Institute, Roslin, Midlothian, Edinburgh EH25 9PS, UK.
| | | |
Collapse
|
36
|
Rahman MJ, Sarker P, Roy SK, Ahmad SM, Chisti J, Azim T, Mathan M, Sack D, Andersson J, Raqib R. Effects of zinc supplementation as adjunct therapy on the systemic immune responses in shigellosis. Am J Clin Nutr 2005; 81:495-502. [PMID: 15699240 DOI: 10.1093/ajcn.81.2.495] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Zinc is lost during diarrheal diseases, and zinc deficiency induces intestinal morphology-altering inflammatory responses that zinc supplementation can correct. OBJECTIVE We assessed the in vivo effect of zinc supplementation on systemic and mucosal responses in mildly to moderately malnourished (defined as <-1 but >-2 and <-2 but >-3 weight-for-height z scores, respectively, based on the National Center for Health Statistics growth reference) children with shigellosis. DESIGN A double-blind placebo-controlled trial was conducted in Shigella flexneri-infected children aged 12-59 mo. Daily for 14 d, elemental zinc (20 mg) and multivitamins (vitamins A and D, thiamine, riboflavin, and nicotinamide) plus calcium were given at twice the US recommended dietary allowance to the zinc group (n=28), and multivitamins plus calcium were given to the control group (n=28). All subjects received standard antibiotic therapy. RESULTS There was no significant interaction between zinc supplementation and time, but zinc supplementation showed a significant effect on serum zinc concentrations. With a >or=4-fold increase in serum shigellacidal antibody titers from baseline used as the cutoff, the proportion of children with shigellacidal antibody response was greater in the zinc group than in the control group (P<0.03). There was a significant (P=0.02) treatment x time interaction for the proportions of circulating CD20+ and CD20+CD38+ cells, which were higher on day 7 in the zinc group than in the control group (P<0.007). No effect was seen on histopathologic features or the expression of innate and inflammatory mediators in the rectum. CONCLUSION Adjunct therapy with zinc during acute shigellosis significantly improved seroconversion to shigellacidal antibody response and increased the proportions of circulating B lymphocytes and plasma cells.
Collapse
Affiliation(s)
- Muhammad J Rahman
- International Centre for Health and Population Research, Bangladesh, Dhaka, Bangladesh
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
That we live with numerous bacteria in our gut without any adverse effects is a remarkable feat by the body's immune system, particularly considering the wealth of sensing and effector systems that are available to trigger inflammatory or innate immune responses to microbial intrusion. So, a fine line seems to exist between the homeostatic balance maintained in the presence of commensal gut flora and the necessarily destructive response to bacterial pathogens that invade the gut mucosa. This review discusses the mechanisms for establishing and controlling the 'dialogue' between unresponsiveness and initiation of active immune defences in the gut. Si vis pacem, para bellum. (If you wish for peace, prepare for war.).
Collapse
Affiliation(s)
- Philippe J Sansonetti
- Unité de Pathogénie Microbienne Moléculaire, U389 INSERM and Howard Hughes Medical Institute, Institut Pasteur, 28 Rue du Docteur Roux, 75724 Paris cedex 15, France.
| |
Collapse
|
38
|
Sinha AK, Bagchi AK. Role of anti-CD3 in modulation of Th1-type immune response in Shigella dysenteriae infection. J Med Microbiol 2004; 53:1075-1081. [PMID: 15496383 DOI: 10.1099/jmm.0.05420-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A murine model was used to evaluate the role of anti-CD3 in modulating a Th1-type response by restimulation of T-cells after immunization with the 57 kDa immunodominant antigen of Shigella dysenteriae 1 outer-membrane proteins (OMPs), followed by Shigella infection after immunization. To observe the effect of anti-CD3, other T-cell cultures were also established following anti-CD1, anti-IL2 and phytohaemagglutinin stimulation. Anti-CD3 stimulation of reconstituted T-cells showed 'mean' levels of CD4 and CD25 were enhanced by 34.5 and 31.1 % in immunized mice, which was comparable to 53.2 and 50.7 %, respectively, in challenged-immunized mice, and were dominant over CD8+ T-cells. Levels of IL2 generated by anti-CD3-stimulated T-cells of immunized mice were greater than those of unstimulated T-cells and were significantly elevated in challenged-immunized mice. The reactivity of T-cells indicated their complete responsiveness, as anti-CD3 antibody might not inhibit the migration of the macrophages but rather inhibit IL4. These macrophage factors synergistically act with anions towards an activated response, which in turn provokes IL2 secretion with a low degree of internalization of its receptor. Thus, sharing of IL2 to form a high-affinity receptor complex with CD4+ T-cells through motive signals suggested a generalized T-cell activation with increased humoral responses. Macrophage migration inhibition factor (MIF) and IL4 responses during anti-CD3 stimulation of immunized mice indicated that the role of anti-CD3 in generation of O2- is due to a synergistic effect by Th1 subsets of Th0 cells. The above findings should have implications for understanding the immunoregulatory role of anti-CD3 associated with 57 kDa antigen in immunoprophylactic measures.
Collapse
Affiliation(s)
- A K Sinha
- Division of Immunology and Vaccine Development, National Institute of Cholera & Enteric Diseases, Kolkata, India
| | - A K Bagchi
- Division of Immunology and Vaccine Development, National Institute of Cholera & Enteric Diseases, Kolkata, India
| |
Collapse
|
39
|
Bagchi AK, Sinha AK. Role of 57 kDa major antigenic component of Shigella dysenteriae outer membrane proteins in induction of major histocompatibility complex II-restricted T-cell response. Arch Med Res 2004; 35:427-34. [PMID: 15610914 DOI: 10.1016/j.arcmed.2004.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Accepted: 05/21/2004] [Indexed: 11/28/2022]
Abstract
BACKGROUND In the past, many Shigella surface antigens were used to activate both T and B lymphocytes but failed to induce antigen-specific responses in Shigellosis. Our objective was to identify in vitro T-cell components using 57 kDa major antigenic fraction of Shigella dysenteriae 1 (IPC-31) outer membrane proteins (OMPs) in modulating specific T-cell subset responses against Shigellosis. METHODS Antigen-specific T- and B-cell activation was studied in immunized Balb/c mice against 57 kDa antigen by proliferative responses using [3H]-thymidine incorporation and avidin-biotin complex (ABC) peroxidase staining for CD4, CD8, CD3, CD22, and CD25 followed by IL-2 and IL-4 estimation. Macrophage functional assays for migration inhibition factors (MIF) and superoxide (O2-) anions were also performed against 57 kDa antigen, whole OMPs, and phytohemagglutinin (PHA) stimulation. RESULTS Greater increase of lymphocyte proliferation was observed after 57 kDa antigen stimulation than post-OMP and -PHA stimulation. Proportionately, CD4+ and CD25+ expression of total CD3+ T-cells was significantly dominant (p >0.05) over CD8+ T-cells. On day 7 of this stimulation, it was found to increase % MIF and O2- anions with decrease of IL-2 leading to activation of MHC-II antigens. Later, on day 28 of immunization, IL-2 levels were more increased than on days 7 and 14 but insignificant with non-immunized mice stimulated with 57 kDa. Levels of IL-2 were also noted with low degree of internalization to its IL-2R receptors rather than to IL-4 receptors. In parallel, expression of CD22 was also recorded higher in this stimulation than in PHA, indicating a T-cell-dependent humoral response. CONCLUSIONS Our results suggested that 57 kDa major antigenic OMP is immunogenic for MHC II-restricted T-cell response to acquire host defense against Shigella infection.
Collapse
Affiliation(s)
- Ashim K Bagchi
- Division of Immunology and Vaccine Development, National Institute of Cholera & Enteric Diseases, Kolkata, India
| | | |
Collapse
|
40
|
Zhang Z, Stanley SL. Stereotypic and specific elements of the human colonic response to Entamoeba histolytica and Shigella flexneri. Cell Microbiol 2004; 6:535-54. [PMID: 15104595 DOI: 10.1111/j.1462-5822.2004.00381.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The clinical presentations of bacillary dysentery caused by shigella, and amoebic dysentery caused by the protozoan parasite Entamoeba histolytica, can be indistinguishable, with both organisms causing colonic mucosal damage and ulceration. However, the two organisms are quite distinct, and have very different pathogenic mechanisms. This raises the fundamental question of whether the similar clinical manifestations reflect a stereotypic response of the human gut to mucosal injury, or whether there are differences at the molecular level in the host response to individual gut pathogens. To characterize the human colonic response to each pathogen at the molecular level, we measured the differential transcription of nearly 40,000 human genes in sections of human colonic xenografts obtained 4 and 24 h following infection with Shigella flexneri or E. histolytica. Our results indicate that much of the human colonic response to these two pathogens is stereotypic, with increased expression of genes activated in cells undergoing stress and/or hypoxic responses, genes encoding cytokines, chemokines, and mediators that are involved in immune and inflammatory responses, and genes encoding proteins involved in responses to tissue injury and in tissue repair. The responses to amoeba and Shigella were not identical however, and we found unique elements in each response that may provide new insights into the distinct pathogenic mechanisms of E. histolytica and S. flexneri.
Collapse
MESH Headings
- Animals
- Colon/metabolism
- Colon/microbiology
- Colon/parasitology
- Colon/transplantation
- Dysentery, Amebic/genetics
- Dysentery, Amebic/immunology
- Dysentery, Amebic/parasitology
- Dysentery, Amebic/pathology
- Dysentery, Bacillary/genetics
- Dysentery, Bacillary/immunology
- Dysentery, Bacillary/microbiology
- Dysentery, Bacillary/pathology
- Entamoeba histolytica/growth & development
- Gene Expression Profiling
- Gene Expression Regulation
- Genes
- Humans
- Inflammation
- Mice
- Mice, SCID
- Oligonucleotide Array Sequence Analysis
- Shigella flexneri/growth & development
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Zhi Zhang
- Department of Medicine, Washington University School of Medicine, USA
| | | |
Collapse
|
41
|
Joshi SG, Francis CW, Silverman DJ, Sahni SK. NF-κB activation suppresses host cell apoptosis duringRickettsia rickettsiiinfection via regulatory effects on intracellular localization or levels of apoptogenic and anti-apoptotic proteins. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09552.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
42
|
Abstract
Fas ligand (FasL) is a type II transmembrane protein that plays a critical role in immune homeostasis by binding to its receptor Fas (CD95) and inducing apoptosis. Fas/FasL dysregulation contributes to infectious disease pathogenesis. Microorganisms may inhibit Fas signal transduction to prolong intracellular survival and prevent killing by immune effector cells. FasL may be upregulated in directly infected cells to enhance killing of responding immune cells and facilitate immune evasion. The host response to infection may aim to induce apoptosis in directly infected cells, but immune cells that target directly infected cells can induce Fas-mediated apoptosis of uninfected bystander cells. FasL also contributes to the generation and regulation of the inflammatory response in infection. The multiple roles of FasL in infectious disease pathogenesis are discussed in the context of viral, bacterial and parasitic infections.
Collapse
Affiliation(s)
- D H Dockrell
- Division of Genomic Medicine, University of Sheffield, School of Medicine and Biomedical Sciences, Sheffield, UK.
| |
Collapse
|
43
|
Abstract
The skin and contiguous mucosal surfaces define the primary locus of interaction between host and micro-organisms. In this review, we focus on the innate immune system in the mucosa, which manages to deal with invading pathogens, the mechanisms that organisms have evolved in order to circumvent this primary defensive barrier and, finally, potential therapeutic manipulation of the innate immune system that was the focus of meeting at a Euroconference/Workshop on "Novel Strategies of Mucosal Immunisation through Exploitation of Mechanisms of Innate Immunity in Pathogen-Host Interaction", which was held in Siena, Italy, November 2002.
Collapse
Affiliation(s)
- Christelle Basset
- Department of Medical Microbiology, Windeyer Institute of Medical Sciences, Royal Free and University College London Medical School, London, UK.
| | | | | | | |
Collapse
|
44
|
Raqib R, Moly PK, Sarker P, Qadri F, Alam NH, Mathan M, Andersson J. Persistence of mucosal mast cells and eosinophils in Shigella-infected children. Infect Immun 2003; 71:2684-92. [PMID: 12704143 PMCID: PMC153256 DOI: 10.1128/iai.71.5.2684-2692.2003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Cells of the innate immune system and their mediators were studied at the single-cell level in the rectums of pediatric and adult patients with Shigella infection to better understand why children are at higher risk for severe infection. Adult patients had increased infiltration of mucosal mast cells (MMC) at the acute stage (3 to 5 days after the onset of diarrhea) and eosinophils in early convalescence (14 to 16 days after onset). Increased expression of stem cell factor and prostaglandin H synthase-1 (PGHS-1) was associated with increased tryptase-K(i)67-double-positive MMC in the acute stage and increased apoptosis of MMC, which led to a rapid decline in early convalescence. The eosinophils demonstrated increased expression of major basic protein (MBP), eotaxin, and CCR3, as well as increased necrotic death. The neutrophils showed enhanced alpha-defensin and lactoferrin expression in the acute phase. In contrast to adults, the pediatric patients demonstrated delayed accumulation of mast cells and eosinophils, while alpha-defensin expression persisted during convalescence. In contrast, neutrophil counts and lactoferrin expression were reduced in children compared to adults. The results suggest that children with shigellosis have a persistent activation of the innate immune response in the convalescent phase, indicating delayed elimination of Shigella antigens compared to adults.
Collapse
Affiliation(s)
- Rubhana Raqib
- International Centre for Diarrhoeal Diseases Research, Bangladesh, Dhaka, Bangladesh.
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Bacterial infections of the small intestine and colon represent a major health problem for developing and developed nations. Recent technological progress has helped research groups to obtain important information on bacterial structure, identify evolutionary relationship between bacterial species, and learn details of the mechanisms involved in the interplay between host and microbes that culminate in disease expression. It is hoped that accumulated knowledge from in vitro experiments and animal models will translate into clinical benefit by means of developing new therapeutic strategies and effective vaccines.
Collapse
Affiliation(s)
- Stavros Sougioultzis
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | |
Collapse
|