1
|
Kiyono H, Ernst PB. Nasal vaccines for respiratory infections. Nature 2025; 641:321-330. [PMID: 40335714 DOI: 10.1038/s41586-025-08910-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 03/18/2025] [Indexed: 05/09/2025]
Abstract
Beginning with Edward Jenner's discovery of the smallpox vaccine, the ever-expanding repertoire of vaccines against pathogens has saved many lives. During the COVID-19 pandemic, a revolutionary mRNA injectable vaccine emerged that effectively controlled the severity of disease caused by SARS-CoV-2. This vaccine induced potent antigen-specific neutralizing serum IgG antibodies, but was limited in its ability to prevent viral invasion at the respiratory surfaces. Nasal vaccines have attracted attention as a potential strategy to combat respiratory infections and prepare for future pandemics. Input from disciplines such as microbiology, biomaterials, bioengineering and chemistry have complemented the immunology to create innovative delivery systems. This approach to vaccine delivery has yielded nasal vaccines that induce secretory IgA as well as serum IgG antibodies, which are expected to prevent pathogen invasion, thereby diminishing transmission and disease severity. For a nasal vaccine to be successful, the complexity of the relevant anatomical, physiological and immunological properties, including the proximity of the central nervous system to the nasal cavity, must be considered. In this Review, we discuss past and current efforts as well as future directions for developing safe and effective nasal vaccines for the prevention of respiratory infections.
Collapse
Affiliation(s)
- Hiroshi Kiyono
- Chiba University-UCSD Center for Mucosal Immunology, Allergy and Vaccines (CU-UCSD cMAV), Departments of Medicine and Pathology, University of California, San Diego, CA, USA.
- Synergy Institute for Futuristic Mucosal Vaccine Research and Development, Chiba University (cSIMVa), Chiba, Japan.
- Future Medicine Education and Research Organization, Mucosal Immunology and Allergy Therapeutics, Institute for Global Prominent Research, Chiba University, Chiba, Japan.
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan.
| | - Peter B Ernst
- Chiba University-UCSD Center for Mucosal Immunology, Allergy and Vaccines (CU-UCSD cMAV), Departments of Medicine and Pathology, University of California, San Diego, CA, USA.
- Synergy Institute for Futuristic Mucosal Vaccine Research and Development, Chiba University (cSIMVa), Chiba, Japan.
- Future Medicine Education and Research Organization, Mucosal Immunology and Allergy Therapeutics, Institute for Global Prominent Research, Chiba University, Chiba, Japan.
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA.
| |
Collapse
|
2
|
Kesharwani P, Halwai K, Jha SK, Al Mughram MH, Almujri SS, Almalki WH, Sahebkar A. Folate-engineered chitosan nanoparticles: next-generation anticancer nanocarriers. Mol Cancer 2024; 23:244. [PMID: 39482651 PMCID: PMC11526716 DOI: 10.1186/s12943-024-02163-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/19/2024] [Indexed: 11/03/2024] Open
Abstract
Chitosan nanoparticles (NPs) are well-recognized as promising vehicles for delivering anticancer drugs due to their distinctive characteristics. They have the potential to enclose hydrophobic anticancer molecules, thereby enhancing their solubilities, permeabilities, and bioavailabilities; without the use of surfactant, i.e., through surfactant-free solubilization. This allows for higher drug concentrations at the tumor sites, prevents excessive toxicity imparted by surfactants, and could circumvent drug resistance. Moreover, biomedical engineers and formulation scientists can also fabricate chitosan NPs to slowly release anticancer agents. This keeps the drugs at the tumor site longer, makes therapy more effective, and lowers the frequency of dosing. Notably, some types of cancer cells (fallopian tube, epithelial tumors of the ovary, and primary peritoneum; lung, kidney, ependymal brain, uterus, breast, colon, and malignant pleural mesothelioma) have overexpression of folate receptors (FRs) on their outer surface, which lets folate-drug conjugate-incorporated NPs to target and kill them more effectively. Strikingly, there is evidence suggesting that the excessively produced FR&αgr (isoforms of the FR) stays consistent throughout treatment in ovarian and endometrial cancer, indicating resistance to conventional treatment; and in this regard, folate-anchored chitosan NPs can overcome it and improve the therapeutic outcomes. Interestingly, overly expressed FRs are present only in certain tumor types, which makes them a promising biomarker for predicting the effectiveness of FR-targeted therapy. On the other hand, the folate-modified chitosan NPs can also enhance the oral absorption of medicines, especially anticancer drugs, and pave the way for effective and long-term low-dose oral metronomic scheduling of poorly soluble and permeable drugs. In this review, we talked briefly about the techniques used to create, characterize, and tailor chitosan-based NPs; and delved deeper into the potential applications of folate-engineered chitosan NPs in treating various cancer types.
Collapse
Affiliation(s)
- Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Kratika Halwai
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Saurav Kumar Jha
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Uttar Pradesh, Kanpur, 208016, India
| | - Mohammed H Al Mughram
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Postal Code 61421, Abha, Saudi Arabia
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Postal Code 61421, Abha, Saudi Arabia
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Hulbert SW, Desai P, Jewett MC, DeLisa MP, Williams AJ. Glycovaccinology: The design and engineering of carbohydrate-based vaccine components. Biotechnol Adv 2023; 68:108234. [PMID: 37558188 DOI: 10.1016/j.biotechadv.2023.108234] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/12/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
Vaccines remain one of the most important pillars in preventative medicine, providing protection against a wide array of diseases by inducing humoral and/or cellular immunity. Of the many possible candidate antigens for subunit vaccine development, carbohydrates are particularly appealing because of their ubiquitous presence on the surface of all living cells, viruses, and parasites as well as their known interactions with both innate and adaptive immune cells. Indeed, several licensed vaccines leverage bacterial cell-surface carbohydrates as antigens for inducing antigen-specific plasma cells secreting protective antibodies and the development of memory T and B cells. Carbohydrates have also garnered attention in other aspects of vaccine development, for example, as adjuvants that enhance the immune response by either activating innate immune responses or targeting specific immune cells. Additionally, carbohydrates can function as immunomodulators that dampen undesired humoral immune responses to entire protein antigens or specific, conserved regions on antigenic proteins. In this review, we highlight how the interplay between carbohydrates and the adaptive and innate arms of the immune response is guiding the development of glycans as vaccine components that act as antigens, adjuvants, and immunomodulators. We also discuss how advances in the field of synthetic glycobiology are enabling the design, engineering, and production of this new generation of carbohydrate-containing vaccine formulations with the potential to prevent infectious diseases, malignancies, and complex immune disorders.
Collapse
Affiliation(s)
- Sophia W Hulbert
- Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, USA
| | - Primit Desai
- Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, USA
| | - Michael C Jewett
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Matthew P DeLisa
- Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, USA; Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA; Cornell Institute of Biotechnology, Cornell University, Ithaca, NY 14853, USA.
| | - Asher J Williams
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA; Department of Chemical Engineering, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
4
|
Gaglio SC, Perduca M, Zipeto D, Bardi G. Efficiency of Chitosan Nanocarriers in Vaccinology for Mucosal Immunization. Vaccines (Basel) 2023; 11:1333. [PMID: 37631901 PMCID: PMC10459455 DOI: 10.3390/vaccines11081333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/29/2023] Open
Abstract
The mucosal barrier constitutes a huge surface area, close to 40 m2 in humans, located mostly in the respiratory, gastrointestinal and urogenital tracts and ocular cavities. It plays a crucial role in tissue interactions with the microbiome, dietary antigens and other environmental materials. Effective vaccinations to achieve highly protective mucosal immunity are evolving strategies to counteract several serious diseases including tuberculosis, diphtheria, influenzae B, severe acute respiratory syndrome, Human Papilloma Virus infection and Acquired Immune Deficiency Syndrome. Interestingly, one of the reasons behind the rapid spread of severe acute respiratory syndrome coronavirus 2 variants has been the weakness of local immunization at the level of the respiratory mucosa. Mucosal vaccines can outperform parenteral vaccination as they specifically elicit protective mucosal immune responses blocking infection and transmission. In this scenario, chitosan-based nanovaccines are promising adjuvants-carrier systems that rely on the ability of chitosan to cross tight junctions and enhance particle uptake due to chitosan-specific mucoadhesive properties. Indeed, chitosan not only improves the adhesion of antigens to the mucosa promoting their absorption but also shows intrinsic immunostimulant abilities. Furthermore, by finely tuning the colloidal properties of chitosan, it can provide sustained antigen release to strongly activate the humoral defense. In the present review, we agnostically discuss the potential reasons why chitosan-based vaccine carriers, that efficiently elicit strong immune responses in experimental setups and in some pre-clinical/clinical studies, are still poorly considered for therapeutic formulations.
Collapse
Affiliation(s)
- Salvatore Calogero Gaglio
- Department of Biotechnology, University of Verona, Cà Vignal 1, Strada Le Grazie 15, 37134 Verona, Italy;
| | - Massimiliano Perduca
- Department of Biotechnology, University of Verona, Cà Vignal 1, Strada Le Grazie 15, 37134 Verona, Italy;
| | - Donato Zipeto
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Giuseppe Bardi
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
5
|
Kehagia E, Papakyriakopoulou P, Valsami G. Advances in intranasal vaccine delivery: A promising non-invasive route of immunization. Vaccine 2023:S0264-410X(23)00529-7. [PMID: 37179163 PMCID: PMC10173027 DOI: 10.1016/j.vaccine.2023.05.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/25/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023]
Abstract
The importance of vaccination has been proven particularly significant the last three years, as it is revealed to be the most efficient weapon for the prevention of several infections including SARS-COV-2. Parenteral vaccination is the most applicable method of immunization, for the prevention of systematic and respiratory infections, or central nervous system disorders, involving T and B cells to a whole-body immune response. However, the mucosal vaccines, such as nasal vaccines, can additionally activate the immune cells localized on the mucosal tissue of the upper and lower respiratory tract. This dual stimulation of the immune system, along with their needle-free administration favors the development of novel nasal vaccines to produce long-lasting immunity. In recent years, the nanoparticulate systems have been extensively involved in the formulation of nasal vaccines as polymeric, polysaccharide and lipid ones, as well as in the form of proteosomes, lipopeptides and virosomes. Advanced delivery nanosystems have been designed and evaluated as carriers or adjuvants for nasal vaccination. To this end, several nanoparticulate vaccines are undergone clinical trials as promising candidates for nasal immunization, while nasal vaccines against influenza type A and B and hepatitis B have been approved by health authorities. This comprehensive literature review aims to summarize the critical aspects of these formulations and highlight their potential for the future establishment of nasal vaccination. Both preclinical (in vitro and in vivo) and clinical studies are incorporated, summarized, and critically discussed, as well as the limitations of nasal immunization.
Collapse
Affiliation(s)
- Eleni Kehagia
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784, Greece
| | - Paraskevi Papakyriakopoulou
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784, Greece.
| | - Georgia Valsami
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784, Greece
| |
Collapse
|
6
|
Gong X, Gao Y, Shu J, Zhang C, Zhao K. Chitosan-Based Nanomaterial as Immune Adjuvant and Delivery Carrier for Vaccines. Vaccines (Basel) 2022; 10:1906. [PMID: 36423002 PMCID: PMC9696061 DOI: 10.3390/vaccines10111906] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 08/26/2023] Open
Abstract
With the support of modern biotechnology, vaccine technology continues to iterate. The safety and efficacy of vaccines are some of the most important areas of development in the field. As a natural substance, chitosan is widely used in numerous fields-such as immune stimulation, drug delivery, wound healing, and antibacterial procedures-due to its good biocompatibility, low toxicity, biodegradability, and adhesion. Chitosan-based nanoparticles (NPs) have attracted extensive attention with respect to vaccine adjuvants and delivery systems due to their excellent properties, which can effectively enhance immune responses. Here, we list the classifications and mechanisms of action of vaccine adjuvants. At the same time, the preparation methods of chitosan, its NPs, and their mechanism of action in the delivery system are introduced. The extensive applications of chitosan and its NPs in protein vaccines and nucleic acid vaccines are also introduced. This paper reviewed the latest research progress of chitosan-based NPs in vaccine adjuvant and drug delivery systems.
Collapse
Affiliation(s)
- Xiaochen Gong
- Institute of Nanobiomaterials and Immunology, School of Pharmaceutical Sciences & School of Life Science, Taizhou University, Taizhou 318000, China
- School of Medical Technology, Qiqihar Medical University, Qiqihar 161006, China
| | - Yuan Gao
- Institute of Nanobiomaterials and Immunology, School of Pharmaceutical Sciences & School of Life Science, Taizhou University, Taizhou 318000, China
| | - Jianhong Shu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Hom-Sun Biotechnology Co., Ltd., Shaoxing 312366, China
| | - Chunjing Zhang
- School of Medical Technology, Qiqihar Medical University, Qiqihar 161006, China
| | - Kai Zhao
- Institute of Nanobiomaterials and Immunology, School of Pharmaceutical Sciences & School of Life Science, Taizhou University, Taizhou 318000, China
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Hom-Sun Biotechnology Co., Ltd., Shaoxing 312366, China
| |
Collapse
|
7
|
Jung MH, Jung SJ, Kim T. Saponin and chitosan-based oral vaccine against viral haemorrhagic septicaemia virus (VHSV) provides protective immunity in olive flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2022; 126:336-346. [PMID: 35643353 DOI: 10.1016/j.fsi.2022.05.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Production losses of olive flounder (Paralichthys olivaceus) have increased owing to viral haemorrhagic septicaemia virus (VHSV) infection. In this study, we determined safe concentrations of orally administered saponin and chitosan by analysing serum enzyme (AST/ALT) levels as biochemical markers of hepatic injury. Furthermore, we demonstrated the efficacy, duration of protection, and safety of saponin and chitosan-based vaccines with inactivated VHSV (IV). Oral administration of saponin, chitosan, and their combination did not induce fish mortality at all tested concentrations (0.29, 1.45, and 2.9 mg/g of fish body weight/day) 10 days after administration. However, AST level was high at a dose >0.29 mg/g of fish body weight/day. Both saponin and chitosan were found to be safe and acceptable for vaccination studies at a dose of 0.29 mg/g of fish body weight/day. Administration of IV alone did not induce protection at 2 and 4 weeks post vaccination (wpv). Olive flounders administered saponin + IV and chitosan + IV vaccines had higher immunity against VHSV with relative percentage survival (RPS) of 12.5-7.5% and 0-20.1%, respectively; however, additional immunisation with combination of saponin + chitosan + IV clearly enhanced the protection with RPS values of 10-15%, 26.7%, 42.9%, and 37.5% at 4, 8, 12, and 20 wpv, respectively. Although the RPS value of oral immunisation was not comparable to that of injectable vaccines, the manufacturing process is simple and oral administration causes less stress to juvenile fish. To investigate the development of a protective immune response, olive flounder were re-challenged with VHSV (107.8 TCID50/fish) at 70 days postinfection; 100% of the previously unexposed fish died, whereas 80-100% of the previously immunised fish survived. Our results showed the possibility of developing preventive measures against VHSV using saponin and chitosan-based oral vaccines with inactivated virus.
Collapse
Affiliation(s)
- Myung-Hwa Jung
- Department of Marine Bio and Medical Sciences, Hanseo University, Republic of Korea
| | - Sung-Ju Jung
- Department of Aqualife Medicine, Chonnam National University, Republic of Korea.
| | - Taeho Kim
- Department of Marine Production Management, Chonnam National University, Republic of Korea
| |
Collapse
|
8
|
Alu A, Chen L, Lei H, Wei Y, Tian X, Wei X. Intranasal COVID-19 vaccines: From bench to bed. EBioMedicine 2022; 76:103841. [PMID: 35085851 PMCID: PMC8785603 DOI: 10.1016/j.ebiom.2022.103841] [Citation(s) in RCA: 165] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/09/2022] [Accepted: 01/12/2022] [Indexed: 02/05/2023] Open
Abstract
Currently licensed COVID-19 vaccines are all designed for intramuscular (IM) immunization. However, vaccination today failed to prevent the virus infection through the upper respiratory tract, which is partially due to the absence of mucosal immunity activation. Despite the emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, the next generation of COVID-19 vaccine is in demand and intranasal (IN) vaccination method has been demonstrated to be potent in inducing both mucosal and systemic immune responses. Presently, although not licensed, various IN vaccines against SARS-CoV-2 are under intensive investigation, with 12 candidates reaching clinical trials at different phases. In this review, we give a detailed description about current status of IN COVID-19 vaccines, including virus-vectored vaccines, recombinant subunit vaccines and live attenuated vaccines. The ongoing clinical trials for IN vaccines are highlighted. Additionally, the underlying mechanisms of mucosal immunity and potential mucosal adjuvants and nasal delivery devices are also summarized.
Collapse
Affiliation(s)
- Aqu Alu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Li Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hong Lei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaohe Tian
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
9
|
Oh JW, Shin J, Chun S, Muthu M, Gopal J. Evaluating the Anticarcinogenic Activity of Surface Modified/Functionalized Nanochitosan: The Emerging Trends and Endeavors. Polymers (Basel) 2021; 13:3138. [PMID: 34578039 PMCID: PMC8471611 DOI: 10.3390/polym13183138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/09/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022] Open
Abstract
Chitosan begins its humble journey from marine food shell wastes and ends up as a versatile nutraceutical. This review focuses on briefly discussing the antioxidant activity of chitosan and retrospecting the accomplishments of chitosan nanoparticles as an anticarcinogen. The various modified/functionalized/encapsulated chitosan nanoparticles and nanoforms have been listed and their biomedical deliverables presented. The anticancer accomplishments of chitosan and its modified composites have been reviewed and presented. The future of surface modified chitosan and the lacunae in the current research focus have been discussed as future perspective. This review puts forth the urge to expand the scientific curiosity towards attempting a variety of functionalization and surface modifications to chitosan. There are few well known modifications and functionalization that benefit biomedical applications that have been proven for other systems. Being a biodegradable, biocompatible polymer, chitosan-based nanomaterials are an attractive option for medical applications. Therefore, maximizing expansion of its bioactive properties are explored. The need for applying the ideal functionalization that will significantly promote the anticancer contributions of chitosan nanomaterials has also been stressed.
Collapse
Affiliation(s)
- Jae-Wook Oh
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 143-701, Korea; (J.-W.O.); (J.S.)
| | - Juhyun Shin
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 143-701, Korea; (J.-W.O.); (J.S.)
| | - Sechul Chun
- Department of Environmental Health Science, Konkuk University, Seoul 143-701, Korea; (S.C.); (M.M.)
| | - Manikandan Muthu
- Department of Environmental Health Science, Konkuk University, Seoul 143-701, Korea; (S.C.); (M.M.)
| | - Judy Gopal
- Department of Environmental Health Science, Konkuk University, Seoul 143-701, Korea; (S.C.); (M.M.)
| |
Collapse
|
10
|
Sivanesan I, Gopal J, Muthu M, Shin J, Mari S, Oh J. Green Synthesized Chitosan/Chitosan Nanoforms/Nanocomposites for Drug Delivery Applications. Polymers (Basel) 2021; 13:2256. [PMID: 34301013 PMCID: PMC8309384 DOI: 10.3390/polym13142256] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 11/16/2022] Open
Abstract
Chitosan has become a highlighted polymer, gaining paramount importance and research attention. The fact that this valuable polymer can be extracted from food industry-generated shell waste gives it immense value. Chitosan, owing to its biological and physicochemical properties, has become an attractive option for biomedical applications. This review briefly runs through the various methods involved in the preparation of chitosan and chitosan nanoforms. For the first time, we consolidate the available scattered reports on the various attempts towards greens synthesis of chitosan, chitosan nanomaterials, and chitosan nanocomposites. The drug delivery applications of chitosan and its nanoforms have been reviewed. This review points to the lack of systematic research in the area of green synthesis of chitosan. Researchers have been concentrating more on recovering chitosan from marine shell waste through chemical and synthetic processes that generate toxic wastes, rather than working on eco-friendly green processes-this is projected in this review. This review draws the attention of researchers to turn to novel and innovative green processes. More so, there are scarce reports on the application of green synthesized chitosan nanoforms and nanocomposites towards drug delivery applications. This is another area that deserves research focus. These have been speculated and highlighted as future perspectives in this review.
Collapse
Affiliation(s)
- Iyyakkannu Sivanesan
- Department of Bioresources and Food Science, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 05029, Korea
| | - Judy Gopal
- Laboratory of Neo Natural Farming, Chunnampet, Tamil Nadu 603 401, India
| | - Manikandan Muthu
- Laboratory of Neo Natural Farming, Chunnampet, Tamil Nadu 603 401, India
| | - Juhyun Shin
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 143-701, Korea
| | - Selvaraj Mari
- Department of Chemistry, Guru Nanak College, Chennai 600 042, India
| | - Jaewook Oh
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 143-701, Korea
| |
Collapse
|
11
|
Camp JV, Wilson RL, Singletary M, Blanchard JL, Aldovini A, Kaminski RW, Oaks EV, Kozlowski PA. Invaplex functions as an intranasal adjuvant for subunit and DNA vaccines co-delivered in the nasal cavity of nonhuman primates. Vaccine X 2021; 8:100105. [PMID: 34258576 PMCID: PMC8255935 DOI: 10.1016/j.jvacx.2021.100105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/04/2021] [Accepted: 06/11/2021] [Indexed: 01/15/2023] Open
Abstract
Development of intranasal vaccines for HIV-1 and other mucosal pathogens has been hampered by the lack of adjuvants that can be given safely to humans. We have found that an intranasal Shigella vaccine (Invaplex) which is well tolerated in humans can also function as an adjuvant for intranasal protein and DNA vaccines in mice. To determine whether Invaplex could potentially adjuvant similar vaccines in humans, we simultaneously administered a simian immunodeficiency virus (SIV) envelope (Env) protein and DNA encoding simian-human immunodeficiency virus (SHIV) with or without Invaplex in the nasal cavity of female rhesus macaques. Animals were intranasally boosted with adenoviral vectors expressing SIV env or gag,pol to evaluate memory responses. Anti-SIV antibodies in sera and nasal, genital tract and rectal secretions were quantitated by ELISA. Intracellular cytokine staining was used to measure Th1-type T cells in blood. Macaques given DNA/protein immunizations with 0.5 mg Invaplex developed greater serum IgG, nasal IgA and cervicovaginal IgA responses to SIV Env and SHIV Gag,Pol proteins when compared to non-adjuvanted controls. Rectal IgA responses to Env were only briefly elevated and not observed to Gag,Pol. Invaplex increased frequencies of IFNγ-producing CD4 and CD8 T cells to the Env protein, but not T cell responses induced by the DNA. Ad-SIV boosting increased Env-specific polyfunctional T cells and Env- and Gag,Pol-specific antibodies in serum and all secretions. The data suggest that Invaplex could be highly effective as an adjuvant for intranasal protein vaccines in humans, especially those intended to prevent infections in the genital or respiratory tract.
Collapse
Key Words
- Ad, adenovirus
- CVS, cervicovaginal secretions
- Env, envelope
- HIV/AIDS
- ICS, intracellular cytokine staining
- IM, intramuscular
- IN, intranasal
- IgA
- Mucosal adjuvant
- NHP, nonhuman primates
- NS, nasal secretions
- RS, rectal secretions
- Reproductive
- Respiratory tract
- S-IgA, secretory IgA
- Th, T helper
Collapse
Affiliation(s)
- Jeremy V Camp
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Robert L Wilson
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Morgan Singletary
- Tulane National Primate Research Center, Division of Veterinary Medicine, Covington, LA 70433, USA
| | - James L Blanchard
- Tulane National Primate Research Center, Division of Veterinary Medicine, Covington, LA 70433, USA
| | - Anna Aldovini
- Departments of Medicine and Pediatrics, Children's Hospital and Harvard, Boston, MA 02115, USA
| | - Robert W Kaminski
- Department of Subunit Enteric Vaccines and Immunology, Division of Bacterial and Rickettsial Diseases, The Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Edwin V Oaks
- Department of Subunit Enteric Vaccines and Immunology, Division of Bacterial and Rickettsial Diseases, The Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Pamela A Kozlowski
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
12
|
Chai P, Pu X, Ge J, Ren S, Xia X, Luo A, Wang S, Wang X, Li J. The recombinant protein combined vaccine based on the fragment C of tetanus toxin and the cross-reacting material 197. Appl Microbiol Biotechnol 2021; 105:1683-1692. [PMID: 33511443 DOI: 10.1007/s00253-021-11139-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/11/2021] [Accepted: 01/20/2021] [Indexed: 11/28/2022]
Abstract
Diphtheria and tetanus toxoids and acellular pertussis (DTaP) vaccines were widely used since 1940s. The exceptional success of childhood vaccination is undisputed. However, the anti-diphtheria and tetanus antibody will decrease with the increase of age in human body. A boosting vaccine for tetanus and diphtheria in adult is recommended by WHO. Recombinant protein vaccine has the advantages of single component and high safety, which is one of the directions to develop boosting vaccines. Therefore, in this study, we evaluated a recombinant TTc and CRM197 combination vaccine (RTCV) that uses the fragment C (TTc) of tetanus toxin and the cross-reacting material 197 (CRM197) of the diphtheria toxin mutant. Our results displayed that RTCV (composed of 10 μg/mL TTc, 20 μg/mL CRM197 antigens, and 500 μg/mL aluminum adjuvants) could induce high levels of IgG and IgG1 antibody in mice, which were similar as those induced by DTaP. These results will provide technical support for a novel boosting vaccine against diphtheria and tetanus. KEY POINTS: • We successfully expressed CRM197 protein in E. coli BL21 (DE3) using pET26b (+) vector. • The anti-TTc and anti-CRM197 antibody titer (IgG) of RTCV was similar with DTaP.
Collapse
Affiliation(s)
- Pengdi Chai
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, No.699-18 Xuanwu Street, Nanjing, 210042, China.,School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Xiuying Pu
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Jun Ge
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, No.699-18 Xuanwu Street, Nanjing, 210042, China
| | - Sulin Ren
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, No.699-18 Xuanwu Street, Nanjing, 210042, China
| | - Xiaoyu Xia
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, No.699-18 Xuanwu Street, Nanjing, 210042, China.,School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Amiao Luo
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Shiwei Wang
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, No.699-18 Xuanwu Street, Nanjing, 210042, China
| | - Xiaodong Wang
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, No.699-18 Xuanwu Street, Nanjing, 210042, China
| | - Jianqiang Li
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, No.699-18 Xuanwu Street, Nanjing, 210042, China.
| |
Collapse
|
13
|
Ascough S, Vlachantoni I, Kalyan M, Haijema BJ, Wallin-Weber S, Dijkstra-Tiekstra M, Ahmed MS, van Roosmalen M, Grimaldi R, Zhang Q, Leenhouts K, Openshaw PJ, Chiu C. Local and Systemic Immunity against Respiratory Syncytial Virus Induced by a Novel Intranasal Vaccine. A Randomized, Double-Blind, Placebo-controlled Clinical Trial. Am J Respir Crit Care Med 2020; 200:481-492. [PMID: 30753101 DOI: 10.1164/rccm.201810-1921oc] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Rationale: Needle-free intranasal vaccines offer major potential advantages, especially against pathogens entering via mucosal surfaces. As yet, there is no effective vaccine against respiratory syncytial virus (RSV), a ubiquitous pathogen of global importance that preferentially infects respiratory epithelial cells; new strategies are urgently required.Objectives: Here, we report the safety and immunogenicity of a novel mucosal RSV F protein vaccine linked to an immunostimulatory bacterium-like particle (BLP).Methods: In this phase I, randomized, double-blind, placebo-controlled trial, 48 healthy volunteers, aged 18-49 years, were randomly assigned to receive placebo or SynGEM (low or high dose) intranasally by prime-boost administration. The primary outcome was safety and tolerability, with secondary objectives assessing virus-specific immunogenicity.Measurements and Main Results: There were no significant differences in adverse events between placebo and vaccinated groups. SynGEM induced systemic plasmablast responses and significant, durable increases in RSV-specific serum antibody in healthy, seropositive adults. Volunteers given low-dose SynGEM (140 μg F, 2 mg BLP) required a boost at Day 28 to achieve plateau responses with a maximum fold change of 2.4, whereas high-dose recipients (350 μg F, 5 mg BLP) achieved plateau responses with a fold change of 1.5 after first vaccination that remained elevated up to 180 days after vaccination, irrespective of further boosting. Palivizumab-like antibodies were consistently induced, but F protein site ∅-specific antibodies were not detected, and virus-specific nasal IgA responses were heterogeneous, with the strongest responses in individuals with lower pre-existing antibody levels.Conclusions: SynGEM is thus the first nonreplicating intranasal RSV subunit vaccine to induce persistent antibody responses in human volunteers.Clinical trials registered with www.clinicaltrials.gov (NCT02958540).
Collapse
Affiliation(s)
- Stephanie Ascough
- 1Section of Infectious Diseases and Immunity, Department of Medicine, and.,2Section of Respiratory Infections, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Iris Vlachantoni
- 2Section of Respiratory Infections, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Mohini Kalyan
- 1Section of Infectious Diseases and Immunity, Department of Medicine, and.,2Section of Respiratory Infections, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Bert-Jan Haijema
- 3Mucosis B.V., represented by trustee Mr. Holtz, LLM, Bout Advocaten, Groningen, and Virtuvax B.V., Groningen, the Netherlands; and
| | - Sanna Wallin-Weber
- 3Mucosis B.V., represented by trustee Mr. Holtz, LLM, Bout Advocaten, Groningen, and Virtuvax B.V., Groningen, the Netherlands; and
| | - Margriet Dijkstra-Tiekstra
- 3Mucosis B.V., represented by trustee Mr. Holtz, LLM, Bout Advocaten, Groningen, and Virtuvax B.V., Groningen, the Netherlands; and
| | - Muhammad S Ahmed
- 4Department of Clinical Infection, Microbiology, and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Maarten van Roosmalen
- 3Mucosis B.V., represented by trustee Mr. Holtz, LLM, Bout Advocaten, Groningen, and Virtuvax B.V., Groningen, the Netherlands; and
| | - Roberto Grimaldi
- 3Mucosis B.V., represented by trustee Mr. Holtz, LLM, Bout Advocaten, Groningen, and Virtuvax B.V., Groningen, the Netherlands; and
| | - Qibo Zhang
- 4Department of Clinical Infection, Microbiology, and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Kees Leenhouts
- 3Mucosis B.V., represented by trustee Mr. Holtz, LLM, Bout Advocaten, Groningen, and Virtuvax B.V., Groningen, the Netherlands; and
| | - Peter J Openshaw
- 2Section of Respiratory Infections, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Christopher Chiu
- 1Section of Infectious Diseases and Immunity, Department of Medicine, and
| |
Collapse
|
14
|
Komati S, Swain S, Rao MEB, Jena BR, Dasi V. Mucoadhesive Multiparticulate Drug Delivery Systems: An Extensive Review of Patents. Adv Pharm Bull 2019; 9:521-538. [PMID: 31857957 PMCID: PMC6912179 DOI: 10.15171/apb.2019.062] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 06/18/2019] [Accepted: 06/24/2019] [Indexed: 11/09/2022] Open
Abstract
Innovations in pharmaceutical research are striving for designing newer drug therapies to eradicate deadly diseases. Strategies for such inventions always flourish with keys and objectives of minimal adverse effects and effective treatment. Recent trends in pharmaceutical technology specify that mucoadhesive drug delivery system is particularly appropriate than oral control release, for getting local systematic delivery of drugs in GIT for an extended interval of time at a predetermined rate. However, it is somehow expensive and unpleasant sensation for some patients, but still it is needful for getting short enzymatic activity, simple administration without pain and evasion of fast pass metabolism. Usually the vehicles employed in drug delivery of mucoadhesive system have a significant impact that draws further attention to potential benefits like improved bioavailability of therapeutic agents, extensive drug residence time at the site of administration and a comparatively faster drug uptake into the systemic circulation. The drug release from mucoadhesive multiparticulates is contingent on several types of factors comprising carrier need to produce the multiparticles and quantity of medication drug contained in them. Mucoadhesion is characterized by selected theories and mechanisms. Various strategies emergent in mucoadhesive multiparticulate drug delivery system (MMDDS) by in-vitro as well as ex-vivo description and characterization are also critically discussed. Apart from these, the primary focus during this review is to highlight current patents, clinical status, and regulatory policy for enhancement of mucoadhesive multi-particulate drug delivery system in the present scenario.
Collapse
Affiliation(s)
- Someshwar Komati
- Department of Pharmaceutics, University College of Pharmaceutical Sciences, Palamuru University, Mahaboobnagar, Telangana-509001, India
| | - Suryakanta Swain
- Southern Institute of Medical Sciences, College of Pharmacy, Mangaldas Nagar, Vijyawada Road, Guntur-522 001, Andhra Pradesh, India
| | - Muddana Eswara Bhanoji Rao
- Department of Pharmaceutics, Roland Institute of Pharmaceutical Sciences, Khodasinghi, Berhampur-760 010, Ganjam, Odisha, India
| | - Bikash Ranjan Jena
- Southern Institute of Medical Sciences, College of Pharmacy, Mangaldas Nagar, Vijyawada Road, Guntur-522 001, Andhra Pradesh, India
| | - Vishali Dasi
- Department of Pharmaceutics, University College of Pharmaceutical Sciences, Palamuru University, Mahaboobnagar, Telangana-509001, India
| |
Collapse
|
15
|
Kozlowski PA, Aldovini A. Mucosal Vaccine Approaches for Prevention of HIV and SIV Transmission. CURRENT IMMUNOLOGY REVIEWS 2019; 15:102-122. [PMID: 31452652 PMCID: PMC6709706 DOI: 10.2174/1573395514666180605092054] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 04/19/2018] [Accepted: 05/30/2018] [Indexed: 02/06/2023]
Abstract
Optimal protective immunity to HIV will likely require that plasma cells, memory B cells and memory T cells be stationed in mucosal tissues at portals of viral entry. Mucosal vaccine administration is more effective than parenteral vaccine delivery for this purpose. The challenge has been to achieve efficient vaccine uptake at mucosal surfaces, and to identify safe and effective adjuvants, especially for mucosally administered HIV envelope protein immunogens. Here, we discuss strategies used to deliver potential HIV vaccine candidates in the intestine, respiratory tract, and male and female genital tract of humans and nonhuman primates. We also review mucosal adjuvants, including Toll-like receptor agonists, which may adjuvant both mucosal humoral and cellular immune responses to HIV protein immunogens.
Collapse
Affiliation(s)
- Pamela A. Kozlowski
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Anna Aldovini
- Department of Medicine, and Harvard Medical School, Boston Children’s Hospital, Department of Pediatrics, Boston MA, 02115, USA
| |
Collapse
|
16
|
Thakkar SG, Warnken ZN, Alzhrani RF, Valdes SA, Aldayel AM, Xu H, Williams RO, Cui Z. Intranasal immunization with aluminum salt-adjuvanted dry powder vaccine. J Control Release 2018; 292:111-118. [PMID: 30339906 PMCID: PMC6328263 DOI: 10.1016/j.jconrel.2018.10.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 08/09/2018] [Accepted: 10/15/2018] [Indexed: 02/08/2023]
Abstract
Intranasal vaccination using dry powder vaccine formulation represents an attractive, non-invasive vaccination modality with better storage stability and added protection at the mucosal surfaces. Herein we report that it is feasible to induce specific mucosal and systemic antibody responses by intranasal immunization with a dry powder vaccine adjuvanted with an insoluble aluminum salt. The dry powder vaccine was prepared by thin-film freeze-drying of a model antigen, ovalbumin, adsorbed on aluminum (oxy)hydroxide as an adjuvant. Special emphasis was placed on the characterization of the dry powder vaccine formulation that can be realistically used in humans by a nasal dry powder delivery device. The vaccine powder was found to have "passable" to "good" flow properties, and the vaccine was uniformly distributed in the dry powder. An in vitro nasal deposition study using nasal casts of adult humans showed that around 90% of the powder was deposited in the nasal cavity. Intranasal immunization of rats with the dry powder vaccine elicited a specific serum antibody response as well as specific IgA responses in the nose and lung secretions of the rats. This study demonstrates the generation of systemic and mucosal immune responses by intranasal immunization using a dry powder vaccine adjuvanted with an aluminum salt.
Collapse
Affiliation(s)
- Sachin G Thakkar
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States
| | - Zachary N Warnken
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States
| | - Riyad F Alzhrani
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States
| | - Solange A Valdes
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States
| | - Abdulaziz M Aldayel
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States; Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), NGHA, Riyadh, 11426, Saudi Arabia
| | - Haiyue Xu
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States
| | - Robert O Williams
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States
| | - Zhengrong Cui
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States.
| |
Collapse
|
17
|
Luong JHT, Gedanken A. Eco-Friendly and Facile Preparation of Spherical Chitin Nanoparticles. ChemistrySelect 2018. [DOI: 10.1002/slct.201801536] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- John H. T. Luong
- Innovative Chromatography Group; Irish Separation Science Cluster (ISSC); School of Chemistry and Analytical; Biological Chemistry Research Facility (ABCRF); University College Cork; Ireland
| | - Aharon Gedanken
- Bar-Ilan Institute for Nanotechnology and Advanced Materials; Department of Chemistry; Bar-Ilan University; Ramat-Gan 52900 Israel
| |
Collapse
|
18
|
Vemireddy S, M.C. PP, Halmuthur M. SK. Chitosan stabilized nasal emulsion delivery system for effective humoral and cellular response against recombinant tetravalent dengue antigen. Carbohydr Polym 2018; 190:129-138. [DOI: 10.1016/j.carbpol.2018.02.073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/19/2018] [Accepted: 02/22/2018] [Indexed: 10/18/2022]
|
19
|
Mohammed MA, Syeda JTM, Wasan KM, Wasan EK. An Overview of Chitosan Nanoparticles and Its Application in Non-Parenteral Drug Delivery. Pharmaceutics 2017; 9:E53. [PMID: 29156634 PMCID: PMC5750659 DOI: 10.3390/pharmaceutics9040053] [Citation(s) in RCA: 718] [Impact Index Per Article: 89.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 12/11/2022] Open
Abstract
The focus of this review is to provide an overview of the chitosan based nanoparticles for various non-parenteral applications and also to put a spotlight on current research including sustained release and mucoadhesive chitosan dosage forms. Chitosan is a biodegradable, biocompatible polymer regarded as safe for human dietary use and approved for wound dressing applications. Chitosan has been used as a carrier in polymeric nanoparticles for drug delivery through various routes of administration. Chitosan has chemical functional groups that can be modified to achieve specific goals, making it a polymer with a tremendous range of potential applications. Nanoparticles (NP) prepared with chitosan and chitosan derivatives typically possess a positive surface charge and mucoadhesive properties such that can adhere to mucus membranes and release the drug payload in a sustained release manner. Chitosan-based NP have various applications in non-parenteral drug delivery for the treatment of cancer, gastrointestinal diseases, pulmonary diseases, drug delivery to the brain and ocular infections which will be exemplified in this review. Chitosan shows low toxicity both in vitro and some in vivo models. This review explores recent research on chitosan based NP for non-parenteral drug delivery, chitosan properties, modification, toxicity, pharmacokinetics and preclinical studies.
Collapse
Affiliation(s)
- Munawar A Mohammed
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada.
| | - Jaweria T M Syeda
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada.
| | - Kishor M Wasan
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada.
| | - Ellen K Wasan
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada.
| |
Collapse
|
20
|
Intranasal immunization with dry powder vaccines. Eur J Pharm Biopharm 2017; 122:167-175. [PMID: 29122735 DOI: 10.1016/j.ejpb.2017.11.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 10/30/2017] [Accepted: 11/03/2017] [Indexed: 12/22/2022]
Abstract
Vaccination represents a cost-effective weapon for disease prevention and has proven to dramatically reduce the incidences of several diseases that once were responsible for significant mortality and morbidity worldwide. The nasal cavity constitutes the initial stage of the respiratory system and the first contact with inhaled pathogens. The intranasal (IN) route for vaccine administration is an attractive alternative to injection, due to the ease of administration as well as better patient compliance. Many published studies have demonstrated the safety and effectiveness of IN immunization with liquid vaccines. Currently, two liquid IN vaccines are available and both contain live attenuated influenza viruses. FluMist® was approved in 2003 in the United States, and Nasovac® H1N1 vaccine was approved in India in 2010. Preclinical studies showed that IN immunization with dry powder vaccines (DPVs) is feasible. Although there is not a commercially available DPV yet, DPVs have the inherent advantage of being relatively more stable than liquid vaccines. This review focuses on recent developments of DPVs as next-generation IN vaccines.
Collapse
|
21
|
Ahmed M, Smith DM, Hamouda T, Rangel-Moreno J, Fattom A, Khader SA. A novel nanoemulsion vaccine induces mucosal Interleukin-17 responses and confers protection upon Mycobacterium tuberculosis challenge in mice. Vaccine 2017; 35:4983-4989. [PMID: 28774560 DOI: 10.1016/j.vaccine.2017.07.073] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/13/2017] [Accepted: 07/21/2017] [Indexed: 01/08/2023]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) is contracted via aerosol infection, typically affecting the lungs. Mycobacterium bovis bacillus Calmette-Guerin (BCG) is the only licensed vaccine and has variable efficacy in protecting against pulmonary TB. Additionally, chemotherapy is associated with low compliance contributing to development of multidrug-resistant (MDR) and extensively drug-resistant (XDR) Mtb. Thus, there is an urgent need for the design of more effective vaccines against TB. Experimental vaccines delivered through the mucosal route induce robust T helper type 17 (Th17)/ Interleukin (IL) -17 responses and provide superior protection against Mtb infection. Thus, the development of safe mucosal adjuvants for human use is critical. In this study, we demonstrate that nanoemulsion (NE)-based adjuvants when delivered intranasally along with Mtb specific immunodominant antigens (NE-TB vaccine) induce potent mucosal IL-17T-cell responses. Additionally, the NE-TB vaccine confers significant protection against Mtb infection, and when delivered along with BCG, is associated with decreased disease severity. These findings strongly support the development of a NE-TB vaccine as a novel, safe and effective, first-of-kind IL-17 inducing mucosal vaccine for potential use in humans.
Collapse
Affiliation(s)
- Mushtaq Ahmed
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO 63110, United States
| | | | - Tarek Hamouda
- NanoBio Corporation, Ann Arbor, MI 48105, United States
| | - Javier Rangel-Moreno
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, NY 14624, United States
| | - Ali Fattom
- NanoBio Corporation, Ann Arbor, MI 48105, United States
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO 63110, United States.
| |
Collapse
|
22
|
Ahmed M, Jiao H, Domingo-Gonzalez R, Das S, Griffiths KL, Rangel-Moreno J, Nagarajan UM, Khader SA. Rationalized design of a mucosal vaccine protects against Mycobacterium tuberculosis challenge in mice. J Leukoc Biol 2017; 101:1373-1381. [PMID: 28258153 DOI: 10.1189/jlb.4a0616-270r] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 01/23/2017] [Accepted: 02/15/2017] [Indexed: 12/20/2022] Open
Abstract
Pulmonary tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) is a leading cause of global morbidity and mortality. The only licensed TB vaccine, Mycobacterium bovis bacillus Calmette-Guerin (BCG), has variable efficacy in protecting against pulmonary TB. Thus, the development of more effective TB vaccines is critical to control the TB epidemic. Specifically, vaccines delivered through the mucosal route are known to induce Th17 responses and provide superior protection against Mtb infection. However, already tested Th17-inducing mucosal adjuvants, such as heat-labile enterotoxins and cholera toxins, are not considered safe for use in humans. In the current study, we rationally screened adjuvants for their ability to induce Th17-polarizing cytokines in dendritic cells (DCs) and determined whether they could be used in a protective mucosal TB vaccine. Our new studies show that monophosphoryl lipid A (MPL), when used in combination with chitosan, potently induces Th17-polarizing cytokines in DCs and downstream Th17/Th1 mucosal responses and confers significant protection in mice challenged with a clinical Mtb strain. Additionally, we show that both TLRs and the inflammasome pathways are activated in DCs by MPL-chitosan to mediate induction of Th17-polarizing cytokines. Together, our studies put forward the potential of a new, protective mucosal TB vaccine candidate, which incorporates safe adjuvants already approved for use in humans.
Collapse
Affiliation(s)
- Mushtaq Ahmed
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Hongmei Jiao
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA.,School of Medicine, Yangzhou University, Yangzhou, People's Republic of China
| | - Racquel Domingo-Gonzalez
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Shibali Das
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Kristin L Griffiths
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Javier Rangel-Moreno
- Department of Medicine, Division of Allergy, Immunology, and Rheumatology, University of Rochester Medical Center, Rochester, New York, USA; and
| | - Uma M Nagarajan
- Department of Pediatrics and Microbiology/Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA;
| |
Collapse
|
23
|
Unique cellular and humoral immunogenicity profiles generated by aerosol, intranasal, or parenteral vaccination in rhesus macaques. Vaccine 2016; 35:639-646. [PMID: 28041780 DOI: 10.1016/j.vaccine.2016.12.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/31/2016] [Accepted: 12/02/2016] [Indexed: 11/22/2022]
Abstract
Respiratory mucosa immunization is capable of eliciting both local and distal mucosal immune responses; it is a potentially powerful yet largely unused modality for vaccination against respiratory diseases. Targeting the lower versus upper airways by aerosol delivery alters the immunogenicity profile of a vaccine, although the full extent of this impact is not well characterized. We set out to define the cellular and humoral response profiles elicited by immunization via intranasal, small aerosol droplets, and large aerosol droplets. We compared responses following adenovirus-vectored vaccination by these routes in macaques, either for the generation of primary immune responses or for the boosting of previously primed systemic responses. Aerosol delivery (4 or 10μm diameter droplets, addressing lower or upper airways, respectively) generated the highest magnitude lung CD4 and CD8 T-cell responses, reaching 10-30% vaccine-specific levels in bronchoalveolar lavage cells. In contrast, intranasal delivery was less immunogenic with >10-fold lower peak lung T-cell responses. Systemic (blood) T-cell responses were only observed following 4μm aerosol (and parenteral) immunization, while all delivery routes elicited similar humoral responses. These data demonstrate distinct immune response profiles with each respiratory tract vaccination modality and suggest that small droplet aerosol offers several immunological advantages over other respiratory routes.
Collapse
|
24
|
Molecular Weight-Dependent Immunostimulative Activity of Low Molecular Weight Chitosan via Regulating NF-κB and AP-1 Signaling Pathways in RAW264.7 Macrophages. Mar Drugs 2016; 14:md14090169. [PMID: 27657093 PMCID: PMC5039540 DOI: 10.3390/md14090169] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 11/17/2022] Open
Abstract
Chitosan and its derivatives such as low molecular weight chitosans (LMWCs) have been found to possess many important biological properties, such as antioxidant and antitumor effects. In our previous study, LMWCs were found to elicit a strong immunomodulatory response in macrophages dependent on molecular weight. Herein we further investigated the molecular weight-dependent immunostimulative activity of LMWCs and elucidated its mechanism of action on RAW264.7 macrophages. LMWCs (3 kDa and 50 kDa of molecular weight) could significantly enhance the mRNA expression levels of COX-2, IL-10 and MCP-1 in a molecular weight and concentration-dependent manner. The results suggested that LMWCs elicited a significant immunomodulatory response, which was dependent on the dose and the molecular weight. Regarding the possible molecular mechanism of action, LMWCs promoted the expression of the genes of key molecules in NF-κB and AP-1 pathways, including IKKβ, TRAF6 and JNK1, and induced the phosphorylation of protein IKBα in RAW264.7 macrophage. Moreover, LMWCs increased nuclear translocation of p65 and activation of activator protein-1 (AP-1, C-Jun and C-Fos) in a molecular weight-dependent manner. Taken together, our findings suggested that LMWCs exert immunostimulative activity via activation of NF-κB and AP-1 pathways in RAW264.7 macrophages in a molecular weight-dependent manner and that 3 kDa LMWC shows great potential as a novel agent for the treatment of immune suppression diseases and in future vaccines.
Collapse
|
25
|
Adjuvants: Classification, Modus Operandi, and Licensing. J Immunol Res 2016; 2016:1459394. [PMID: 27274998 PMCID: PMC4870346 DOI: 10.1155/2016/1459394] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/02/2016] [Accepted: 04/11/2016] [Indexed: 02/06/2023] Open
Abstract
Vaccination is one of the most efficient strategies for the prevention of infectious diseases. Although safer, subunit vaccines are poorly immunogenic and for this reason the use of adjuvants is strongly recommended. Since their discovery in the beginning of the 20th century, adjuvants have been used to improve immune responses that ultimately lead to protection against disease. The choice of the adjuvant is of utmost importance as it can stimulate protective immunity. Their mechanisms of action have now been revealed. Our increasing understanding of the immune system, and of correlates of protection, is helping in the development of new vaccine formulations for global infections. Nevertheless, few adjuvants are licensed for human vaccines and several formulations are now being evaluated in clinical trials. In this review, we briefly describe the most well known adjuvants used in experimental and clinical settings based on their main mechanisms of action and also highlight the requirements for licensing new vaccine formulations.
Collapse
|
26
|
Elieh-Ali-Komi D, Hamblin MR. Chitin and Chitosan: Production and Application of Versatile Biomedical Nanomaterials. INTERNATIONAL JOURNAL OF ADVANCED RESEARCH 2016; 4:411-427. [PMID: 27819009 PMCID: PMC5094803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Chitin is the most abundant aminopolysaccharide polymer occurring in nature, and is the building material that gives strength to the exoskeletons of crustaceans, insects, and the cell walls of fungi. Through enzymatic or chemical deacetylation, chitin can be converted to its most well-known derivative, chitosan. The main natural sources of chitin are shrimp and crab shells, which are an abundant byproduct of the food-processing industry, that provides large quantities of this biopolymer to be used in biomedical applications. In living chitin-synthesizing organisms, the synthesis and degradation of chitin require strict enzymatic control to maintain homeostasis. Chitin synthase, the pivotal enzyme in the chitin synthesis pathway, uses UDP-N-acetylglucosamine (UDPGlcNAc), produce the chitin polymer, whereas, chitinase enzymes degrade chitin. Bacteria are considered as the major mediators of chitin degradation in nature. Chitin and chitosan, owing to their unique biochemical properties such as biocompatibility, biodegradability, non-toxicity, ability to form films, etc, have found many promising biomedical applications. Nanotechnology has also increasingly applied chitin and chitosan-based materials in its most recent achievements. Chitin and chitosan have been widely employed to fabricate polymer scaffolds. Moreover, the use of chitosan to produce designed-nanocarriers and to enable microencapsulation techniques is under increasing investigation for the delivery of drugs, biologics and vaccines. Each application is likely to require uniquely designed chitosan-based nano/micro-particles with specific dimensions and cargo-release characteristics. The ability to reproducibly manufacture chitosan nano/microparticles that can encapsulate protein cargos with high loading efficiencies remains a challenge. Chitosan can be successfully used in solution, as hydrogels and/or nano/microparticles, and (with different degrees of deacetylation) an endless array of derivatives with customized biochemical properties can be prepared. As a result, chitosan is one of the most well-studied biomaterials. The purpose of this review is to survey the biosynthesis and isolation, and summarize nanotechnology applications of chitin and chitosan ranging from tissue engineering, wound dressings, antimicrobial agents, antiaging cosmetics, and vaccine adjuvants.
Collapse
Affiliation(s)
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
27
|
Wu N, Wen ZS, Xiang XW, Huang YN, Gao Y, Qu YL. Immunostimulative Activity of Low Molecular Weight Chitosans in RAW264.7 Macrophages. Mar Drugs 2015; 13:6210-25. [PMID: 26437419 PMCID: PMC4626685 DOI: 10.3390/md13106210] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/09/2015] [Accepted: 09/21/2015] [Indexed: 12/26/2022] Open
Abstract
Chitosan and its derivatives such as low molecular weight chitosans (LMWCs) have been reported to exert many biological activities, such as antioxidant and antitumor effects. However, complex and molecular weight dependent effects of chitosan remain controversial and the mechanisms that mediate these complex effects are still poorly defined. This study was carried out to investigate the immunostimulative effect of different molecular weight chitosan in RAW264.7 macrophages. Our data suggested that two LMWCs (molecular weight of 3 kDa and 50 kDa) both possessed immunostimulative activity, which was dependent on dose and, at the higher doses, also on the molecular weight. LMWCs could significantly enhance the the pinocytic activity, and induce the production of tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), interferon-γ (IFN-γ), nitric oxide (NO) and inducible nitric oxide synthase (iNOS) in a molecular weight and concentration-dependent manner. LMWCs were further showed to promote the expression of the genes including iNOS, TNF-α. Taken together, our findings suggested that LMWCs elicited significantly immunomodulatory response through up-regulating mRNA expression of proinflammatory cytokines and activated RAW264.7 macrophage in a molecular weight- and concentration-dependent manner.
Collapse
Affiliation(s)
- Ning Wu
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, Food and Pharmacy College, Zhejiang Ocean University, Zhoushan 316000, China.
| | - Zheng-Shun Wen
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, Food and Pharmacy College, Zhejiang Ocean University, Zhoushan 316000, China.
| | - Xing-Wei Xiang
- Zhejiang Marine Development Research Institute, Zhoushan 316000, China.
| | - Yan-Na Huang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China.
| | - Yang Gao
- School of Fishery, Zhejiang Ocean University, Zhoushan, 316000, China.
| | - You-Le Qu
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, Food and Pharmacy College, Zhejiang Ocean University, Zhoushan 316000, China.
| |
Collapse
|
28
|
Chitosan-based mucosal adjuvants: Sunrise on the ocean. Vaccine 2015; 33:5997-6010. [PMID: 26271831 PMCID: PMC7185844 DOI: 10.1016/j.vaccine.2015.07.101] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 07/22/2015] [Accepted: 07/28/2015] [Indexed: 12/20/2022]
Abstract
Metabolism and safety profile of chitosan and its derivatives on mucosal application. Mechanisms of chitosan as potent mucosal adjuvant. Different types and forms of chitosan in pre-clinical applications. Clinical perspectives.
Mucosal vaccination, which is shown to elicit systemic and mucosal immune responses, serves as a non-invasive and convenient alternative to parenteral administration, with stronger capability in combatting diseases at the site of entry. The exploration of potent mucosal adjuvants is emerging as a significant area, based on the continued necessity to amplify the immune responses to a wide array of antigens that are poorly immunogenic at the mucosal sites. As one of the inspirations from the ocean, chitosan-based mucosal adjuvants have been developed with unique advantages, such as, ability of mucosal adhesion, distinct trait of opening the junctions to allow the paracellular transport of antigen, good tolerability and biocompatibility, which guaranteed the great potential in capitalizing on their application in human clinical trials. In this review, the state of art of chitosan and its derivatives as mucosal adjuvants, including thermo-sensitive chitosan system as mucosal adjuvant that were newly developed by author's group, was described, as well as the clinical application perspective. After a brief introduction of mucosal adjuvants, chitosan and its derivatives as robust immune potentiator were discussed in detail and depth, in regard to the metabolism, safety profile, mode of actions and preclinical and clinical applications, which may shed light on the massive clinical application of chitosan as mucosal adjuvant.
Collapse
|
29
|
Nicholson LK, Janoff EN. Respiratory Bacterial Vaccines. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00058-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Neimert-Andersson T, Binnmyr J, Enoksson M, Langebäck J, Zettergren L, Hällgren AC, Franzén H, Lind Enoksson S, Lafolie P, Lindberg A, Al-Tawil N, Andersson M, Singer P, Grönlund H, Gafvelin G. Evaluation of safety and efficacy as an adjuvant for the chitosan-based vaccine delivery vehicle ViscoGel in a single-blind randomised Phase I/IIa clinical trial. Vaccine 2014; 32:5967-74. [DOI: 10.1016/j.vaccine.2014.08.057] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 08/21/2014] [Accepted: 08/22/2014] [Indexed: 11/30/2022]
|
31
|
Vasiliev YM. Chitosan-based vaccine adjuvants: incomplete characterization complicates preclinical and clinical evaluation. Expert Rev Vaccines 2014; 14:37-53. [PMID: 25262982 DOI: 10.1586/14760584.2015.956729] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A number of preclinical and clinical studies with chitosan-adjuvanted antigen- and DNA-based vaccines have been carried out. Various chitosans and their modifications, in different forms (solutions, powders, gels and particles), have been evaluated with various antigens administered via different routes. Chitosan is a generic name for a wide array of glucosamine-based substances derived from biological sources, and standardization is necessary. However, in most of the studies published to date, molecular weight, viscosity, deacetylation degree and/or purity level (especially endotoxins) are not provided for the initial chitosan substance and/or final formulation and the preparation procedure is not detailed. Evaluation of adjuvant properties is challenging, given that the only available data are insufficient to demonstrate immunogenicity for chitosans with characteristics within certain intervals to elucidate mechanisms of action or to exclude impurities as the active substance. These and other issues of chitosan-based vaccine adjuvants are summarized and a step-by-step evaluation approach for chitosan-based vaccine adjuvants is outlined.
Collapse
Affiliation(s)
- Yuri M Vasiliev
- Mechnikov Research Institute of Vaccines and Sera, M. Kazeny lane, 5a, Moscow, 105064, Russian Federation
| |
Collapse
|
32
|
Tabynov K, Kydyrbayev Z, Ryskeldinova S, Yespembetov B, Zinina N, Assanzhanova N, Kozhamkulov Y, Inkarbekov D, Gotskina T, Sansyzbay A. Novel influenza virus vectors expressing Brucella L7/L12 or Omp16 proteins in cattle induced a strong T-cell immune response, as well as high protectiveness against B. abortus infection. Vaccine 2014; 32:2034-41. [PMID: 24598723 DOI: 10.1016/j.vaccine.2014.02.058] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 02/04/2014] [Accepted: 02/12/2014] [Indexed: 12/17/2022]
Abstract
This paper presents the results of a study of the immunogenicity and protectiveness of new candidate vector vaccine against Brucella abortus - a bivalent vaccine formulation consisting of a mixture of recombinant influenza A subtype H5N1 or H1N1 (viral constructs vaccine formulation) viruses expressing Brucella ribosomal protein L7/L12 and Omp16, in cattle. To increase the effectiveness of the candidate vaccine, adjuvants such as Montanide Gel01 or chitosan were included in its composition. Immunization of cattle (heifers aged 1-1.5 years, 5 animals per group) with the viral constructs vaccine formulation only, or its combination with adjuvants Montanide Gel01 or chitosan, was conducted via the conjunctival method using cross prime (influenza virus subtype H5N1) and booster (influenza virus subtype H1N1) vaccination schedules at an interval of 28 days. Vaccine candidates were evaluated in comparison with the positive (B. abortus S19) and negative (PBS) controls. The viral constructs vaccine formulations, particularly in combination with Montanide Gel01 adjuvant promoted formation of IgG antibodies (with a predominance of antibodies of isotype IgG2a) against Brucella L7/L12 and Omp16 proteins in ELISA. Moreover, these vaccines in cattle induced a strong antigen-specific T-cell immune response, as indicated by a high number of CD4(+) and CD8(+) cells, as well as the concentration of IFN-γ, and most importantly provided a high level of protectiveness comparable to the commercial B. abortus S19 vaccine and superior to the B. abortus S19 vaccine in combination with Montanide Gel01 adjuvant. Based on these findings, we recommended the bivalent vaccine formulation containing the adjuvant Montanide Gel01 for practical use in cattle.
Collapse
Affiliation(s)
- Kaissar Tabynov
- The Research Institute for Biological Safety Problems, 080409, Zhambulskaya oblast, Kordaiskiy rayon, Gvardeisky, Kazakhstan.
| | - Zhailaubay Kydyrbayev
- The Research Institute for Biological Safety Problems, 080409, Zhambulskaya oblast, Kordaiskiy rayon, Gvardeisky, Kazakhstan
| | - Sholpan Ryskeldinova
- The Research Institute for Biological Safety Problems, 080409, Zhambulskaya oblast, Kordaiskiy rayon, Gvardeisky, Kazakhstan
| | - Bolat Yespembetov
- The Research Institute for Biological Safety Problems, 080409, Zhambulskaya oblast, Kordaiskiy rayon, Gvardeisky, Kazakhstan
| | - Nadezhda Zinina
- The Research Institute for Biological Safety Problems, 080409, Zhambulskaya oblast, Kordaiskiy rayon, Gvardeisky, Kazakhstan
| | - Nurika Assanzhanova
- The Research Institute for Biological Safety Problems, 080409, Zhambulskaya oblast, Kordaiskiy rayon, Gvardeisky, Kazakhstan
| | - Yerken Kozhamkulov
- The Research Institute for Biological Safety Problems, 080409, Zhambulskaya oblast, Kordaiskiy rayon, Gvardeisky, Kazakhstan
| | - Dulat Inkarbekov
- The Research Institute for Biological Safety Problems, 080409, Zhambulskaya oblast, Kordaiskiy rayon, Gvardeisky, Kazakhstan
| | - Tatyana Gotskina
- The Research Institute for Biological Safety Problems, 080409, Zhambulskaya oblast, Kordaiskiy rayon, Gvardeisky, Kazakhstan
| | - Abylai Sansyzbay
- The Research Institute for Biological Safety Problems, 080409, Zhambulskaya oblast, Kordaiskiy rayon, Gvardeisky, Kazakhstan
| |
Collapse
|
33
|
Kim JJ, Nam JP, Nah JW, Jang MK, Yee ST. Immunoadjuvant Efficacy of N-Carboxymethyl Chitosan for Vaccination via Dendritic Cell Activation. J Med Food 2014; 17:268-77. [DOI: 10.1089/jmf.2013.2921] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jong-Jin Kim
- Department of Biology, Sunchon National University, Suncheon, Korea
| | - Joung-Pyo Nam
- Department of Polymer Science and Engineering, Sunchon National University, Suncheon, Korea
| | - Jae-Woon Nah
- Department of Polymer Science and Engineering, Sunchon National University, Suncheon, Korea
| | - Mi-Kyeong Jang
- Department of Polymer Science and Engineering, Sunchon National University, Suncheon, Korea
| | - Sung-Tae Yee
- Department of Biology, Sunchon National University, Suncheon, Korea
- Department of Pharmacy, Sunchon National University, Suncheon, Korea
| |
Collapse
|
34
|
Smith A, Perelman M, Hinchcliffe M. Chitosan: a promising safe and immune-enhancing adjuvant for intranasal vaccines. Hum Vaccin Immunother 2013; 10:797-807. [PMID: 24346613 PMCID: PMC4130252 DOI: 10.4161/hv.27449] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 11/27/2013] [Accepted: 12/06/2013] [Indexed: 11/19/2022] Open
Abstract
The nasal route is attractive for the delivery of vaccines in that it not only offers an easy to use, non-invasive, needle-free alternative to more conventional parenteral injection, but it also creates an opportunity to elicit both systemic and (crucially) mucosal immune responses which may increase the capability of controlling pathogens at the site of entry. Immune responses to "naked" antigens are often modest and it is widely accepted that incorporation of an adjuvant is a prerequisite for the achievement of clinically effective nasal vaccines. Many existing adjuvants are sub-optimal or unsuitable because of local toxicity or poor enhancement of immunogenicity. Chitosan, particularly chitosan salts, have now been used in several preclinical and clinical studies with good tolerability, excellent immune stimulation and positive clinical results across a number of infections. Particularly significant evidence supporting chitosan as an adjuvant for nasal vaccination comes from clinical investigations on a norovirus vaccine; this demonstrated the ability of chitosan (ChiSys®), when combined with monophosphoryl lipid, to evoke robust immunological responses and confer protective immunity following (enteral) norovirus challenge. This article summarizes the totality of the meaningful information (including key unpublished data) supporting the development of chitosan-adjuvanted vaccines.
Collapse
Affiliation(s)
- Alan Smith
- Archimedes Development Limited; Albert Einstein Centre; Nottingham Science Park; Nottingham, UK
| | - Michael Perelman
- Archimedes Development Limited; Albert Einstein Centre; Nottingham Science Park; Nottingham, UK
| | | |
Collapse
|
35
|
Svindland SC, Pedersen GK, Pathirana RD, Bredholt G, Nøstbakken JK, Jul-Larsen Å, Guzmán CA, Montomoli E, Lapini G, Piccirella S, Jabbal-Gill I, Hinchcliffe M, Cox RJ. A study of Chitosan and c-di-GMP as mucosal adjuvants for intranasal influenza H5N1 vaccine. Influenza Other Respir Viruses 2012; 7:1181-93. [PMID: 23170900 PMCID: PMC4634239 DOI: 10.1111/irv.12056] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Highly pathogenic avian influenza A/H5N1 virus remains a potential pandemic threat, and it is essential to continue vaccine development against this subtype. A local mucosal immune response in the upper respiratory tract may stop influenza transmission. It is therefore important to develop effective intranasal pandemic influenza vaccines that induce mucosal immunity at the site of viral entry. OBJECTIVES We evaluated the humoral and cellular immune responses of two promising mucosal adjuvants (Chitosan and c-di-GMP) for intranasal influenza H5N1 vaccine in a murine model. Furthermore, we evaluated the concept of co-adjuvanting an experimental adjuvant (c-di-GMP) with chitosan. METHODS BALB/c mice were intranasally immunised with two doses of subunit NIBRG-14 (H5N1) vaccine (7·5, 1·5 or 0·3 μg haemagglutinin (HA) adjuvanted with chitosan (CSN), c-di-GMP or both adjuvants. RESULTS All adjuvant formulations improved the serum and local antibody responses, with the highest responses observed in the 7·5 μg HA CSN and c-di-GMP-adjuvanted groups. The c-di-GMP provided dose sparing with protective single radial haemolysis (SRH), and haemagglutination inhibition (HI) antibody responses found in the 0·3 μg HA group. CSN elicited a Th2 response, whereas c-di-GMP induced higher frequencies of virus-specific CD4+T cells producing one or more Th1 cytokines (IFN-γ+, IL-2+, TNF-α+). A combination of the two adjuvants demonstrated effectiveness at 7·5 μg HA and triggered a more balanced Th cytokine profile. CONCLUSION These data show that combining adjuvants can modulate the Th response and in combination with ongoing studies of adjuvanted intranasal vaccines will dictate the way forward for optimal mucosal influenza vaccines.
Collapse
Affiliation(s)
- Signe C Svindland
- Influenza Centre, The Gade Institute, University of Bergen, Bergen, NorwayDepartment of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, GermanyUniversity of Siena, Siena, ItalyVisMederi, Siena, ItalyArchimedes Development Ltd., Reading, UKDepartment of Research and Development, Haukeland University Hospital, Bergen, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Barhate G, Gautam M, Gairola S, Jadhav S, Pokharkar V. Quillaja saponaria extract as mucosal adjuvant with chitosan functionalized gold nanoparticles for mucosal vaccine delivery: stability and immunoefficiency studies. Int J Pharm 2012; 441:636-42. [PMID: 23117021 DOI: 10.1016/j.ijpharm.2012.10.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 10/20/2012] [Accepted: 10/23/2012] [Indexed: 10/27/2022]
Abstract
Carrier mediated delivery of vaccines along with adjuvants can possibly address the issue related to oral vaccines like inadequate immune potentiation. In this study, chitosan functionalized gold nanoparticles (CsAuNPs) were used as a carrier for the model antigen tetanus toxoid (TT) along with immunostimulant Quillaja saponaria extract (QS). Physicochemical properties (size, zeta potential, pH value) of formulation were investigated as stability indicating parameters. The synthesized CsAuNPs were spherical in shape, around 40 nm in size, positively charged (around +35 mV) and had TT and QS payload of 65% and 0.01%, respectively. Formulation parameters did not alter the secondary structure of TT, as determined by FTIR, fluorescence and CD spectroscopy. Antigen specificity, determined by an ELISA, was also not compromised. The CsAuNPs conferred protection to TT against gastric hydrolysis as studied in vitro. TT-QS-CsAuNPs induced up to 28-fold immune responses compared to control formulations (TT, TT-QS) after oral administration of formulations in BALB/c mice. The immune responses were quantified by measuring the TT-specific IgG and IgA titers using ELISA. Findings herein demonstrate that co-delivery of TT and QS with functionalized CsAuNPs promotes better systemic and local immune responses and hence can be considered as a sound approach for oral vaccine delivery.
Collapse
Affiliation(s)
- Ganesh Barhate
- Bharati Vidyapeeth University, Poona College of Pharmacy, Department of Pharmaceutics, Erandwane, Pune 411038, India
| | | | | | | | | |
Collapse
|
37
|
Lewis AL, Jordan F, Illum L. CriticalSorb™: enabling systemic delivery of macromolecules via the nasal route. Drug Deliv Transl Res 2012; 3:26-32. [DOI: 10.1007/s13346-012-0089-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
38
|
Nasal drug delivery — Recent developments and future prospects. J Control Release 2012; 161:254-63. [DOI: 10.1016/j.jconrel.2012.01.024] [Citation(s) in RCA: 179] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 01/16/2012] [Accepted: 01/18/2012] [Indexed: 11/21/2022]
|
39
|
Jabbal-Gill I, Watts P, Smith A. Chitosan-based delivery systems for mucosal vaccines. Expert Opin Drug Deliv 2012; 9:1051-67. [PMID: 22708875 DOI: 10.1517/17425247.2012.697455] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Mucosal vaccine development faces several challenges and opportunities. Critical issues for effective mucosal vaccination include the antigen-retention period that enables interaction with the lymphatic system, choice of adjuvant that is nontoxic and induces the required immune response and possibly an ability to mimic mucosal pathogens. Chitosan-based delivery systems are reviewed here as they address these issues and hence represent the most promising candidates for the delivery of mucosal vaccines. AREAS COVERED A comprehensive literature search was conducted, to locate relevant studies published within the last 5 years. Mucosal delivery via nasal and oral routes is evaluated with respect to chitosan type, dosage forms, co-adjuvanting with novel adjuvants and modulation of the immune system. EXPERT OPINION It is concluded that chitosan derivatives offer advantageous opportunities such as nanoparticle and surface charge manipulation that facilitate vaccine targeting. Nevertheless, these technologies represent a longer-term goal. By contrast, chitosan (unmodified form) with or without a co-adjuvant has significant toxicology and human data to support safe mucosal administration, and thus has the potential for earlier product introduction into the market.
Collapse
Affiliation(s)
- Inderjit Jabbal-Gill
- Archimedes Development Ltd, Albert Einstein Centre, Nottingham Science & Technology Park, University Boulevard, Nottingham, UK
| | | | | |
Collapse
|
40
|
Huo Z, Bissett SL, Giemza R, Beddows S, Oeser C, Lewis DJM. Systemic and mucosal immune responses to sublingual or intramuscular human papilloma virus antigens in healthy female volunteers. PLoS One 2012; 7:e33736. [PMID: 22438987 PMCID: PMC3306286 DOI: 10.1371/journal.pone.0033736] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 02/16/2012] [Indexed: 11/19/2022] Open
Abstract
UNLABELLED The sublingual route has been proposed as a needle-free option to induce systemic and mucosal immune protection against viral infections. In a translational study of systemic and mucosal humoral immune responses to sublingual or systemically administered viral antigens, eighteen healthy female volunteers aged 19-31 years received three immunizations with a quadravalent Human Papilloma Virus vaccine at 0, 4 and 16 weeks as sublingual drops (SL, n = 12) or intramuscular injection (IM, n = 6). IM antigen delivery induced or boosted HPV-specific serum IgG and pseudovirus-neutralizing antibodies, HPV-specific cervical and vaginal IgG, and elicited circulating IgG and IgA antibody secreting cells. SL antigens induced ~38-fold lower serum and ~2-fold lower cervical/vaginal IgG than IM delivery, and induced or boosted serum virus neutralizing antibody in only 3/12 subjects. Neither route reproducibly induced HPV-specific mucosal IgA. Alternative delivery systems and adjuvants will be required to enhance and evaluate immune responses following sublingual immunization in humans. TRIAL REGISTRATION ClinicalTrials.govNCT00949572.
Collapse
MESH Headings
- Administration, Sublingual
- Adult
- Alphapapillomavirus/immunology
- Antibodies, Neutralizing/biosynthesis
- Antibodies, Neutralizing/blood
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/blood
- Antigens, Viral/administration & dosage
- Capsid Proteins/immunology
- Cervix Uteri/immunology
- Female
- Human Papillomavirus Recombinant Vaccine Quadrivalent, Types 6, 11, 16, 18
- Human papillomavirus 11/immunology
- Human papillomavirus 16/immunology
- Human papillomavirus 18/immunology
- Human papillomavirus 6/immunology
- Humans
- Immunity, Mucosal
- Immunoglobulin A, Secretory/biosynthesis
- Immunoglobulin G/biosynthesis
- Immunoglobulin G/blood
- Injections, Intramuscular
- Oncogene Proteins, Viral/immunology
- Papillomavirus Vaccines/administration & dosage
- Vagina/immunology
- Young Adult
Collapse
Affiliation(s)
- Zhiming Huo
- Infectious Diseases, St George's - University of London, London, United Kingdom
| | - Sara L. Bissett
- Virus Reference Department, Health Protection Agency, London, United Kingdom
| | - Raphaela Giemza
- Infectious Diseases, St George's - University of London, London, United Kingdom
| | - Simon Beddows
- Virus Reference Department, Health Protection Agency, London, United Kingdom
| | - Clarissa Oeser
- Infectious Diseases, St George's - University of London, London, United Kingdom
| | - David J. M. Lewis
- Surrey Clinical Research Centre, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
41
|
|
42
|
Levine MM. “IDEAL” vaccines for resource poor settings. Vaccine 2011; 29 Suppl 4:D116-25. [DOI: 10.1016/j.vaccine.2011.11.090] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 11/18/2011] [Accepted: 11/23/2011] [Indexed: 12/22/2022]
|
43
|
Bröker M, Costantino P, DeTora L, McIntosh ED, Rappuoli R. Biochemical and biological characteristics of cross-reacting material 197 (CRM197), a non-toxic mutant of diphtheria toxin: Use as a conjugation protein in vaccines and other potential clinical applications. Biologicals 2011; 39:195-204. [DOI: 10.1016/j.biologicals.2011.05.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 05/16/2011] [Accepted: 05/24/2011] [Indexed: 12/30/2022] Open
|
44
|
Abstract
The current vaccine market is gaining momentum in the development of alternative administration routes namely intranasal, oral, topical, pulmonary, vaginal, and rectal; the nasal route offers the most promising opportunity for vaccine administration. It can enhance convenience, safety, elicit both local and systemic immune responses; thus potentially provide protection from pathogens at the site of entry. Nasal vaccine innovation comes with both opportunities and challenges. The innovative strategies used by industry and researchers to overcome the hurdles are discussed in this article: these include live-attenuated vaccines, adjuvants, mucoadhesives, particulate delivery systems, virus-like particles, vaccine manufacture, challenges of regulatory authorities, and the nasal vaccine impact on market potential. Critical issues for effective nasal vaccination are the antigen-retention period that enables its interaction with the lymphatic system and choice of an adjuvant that is nontoxic and induces the required immune response. Co-adjuvanting by means of a mucoadhesive technology addresses some of these issues. ChiSys(®), a natural bioadhesive with proven intranasal safety profile, has already demonstrated efficacy for several nasally delivered vaccines including norovirus. With the looming threat of a pandemic, alternatives such as intranasal vaccination will ultimately facilitate greater public compliance and rapid mass global vaccination.
Collapse
Affiliation(s)
- Inderjit Jabbal-Gill
- Archimedes Development Ltd., Albert Einstein Centre, Nottingham Science & Technology Park, University Boulevard, Nottingham, UK.
| |
Collapse
|
45
|
Wang SH, Thompson AL, Hickey AJ, Staats HF. Dry powder vaccines for mucosal administration: critical factors in manufacture and delivery. Curr Top Microbiol Immunol 2011; 354:121-56. [PMID: 21822816 DOI: 10.1007/82_2011_167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Dry powder vaccine formulations have proved effective for induction of systemic and mucosal immune responses. Here we review the use of dry vaccines for immunization in the respiratory tract. We discuss techniques for powder formulation, manufacture, characterization and delivery in addition to methods used for evaluation of stability and safety. We review the immunogenicity and protective efficacy of dry powder vaccines as compared to liquid vaccines delivered by mucosal or parenteral routes. Included is information on mucosal adjuvants and mucoadhesives that can be used to enhance nasal or pulmonary dry vaccines. Mucosal immunization with dry powder vaccines offers the potential to provide a needle-free and cold chain-independent vaccination strategy for the induction of protective immunity against either systemic or mucosal pathogens.
Collapse
Affiliation(s)
- Sheena H Wang
- Division of Molecular Pharmaceutics, School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
46
|
|
47
|
Madrigal-Carballo S, Vila AO, Sibaja M, Reed JD, Molina F. In vitro uptake of lysozyme-loaded liposomes coated with chitosan biopolymer as model immunoadjuvants. J Liposome Res 2010; 20:1-8. [PMID: 19514859 DOI: 10.3109/08982100903015009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Chitosan binds to negatively charged soy lecithin liposomes by an electrostatic interaction driven by its cationic amino group. This interaction allows developing stable coated vesicles suitable as a targeted carrier and controlled release system for drugs and vaccines. In this work, we studied the effect of chitosan-coated liposomes on the uptake and antigen presentation of hen egg-white lysozyme (HEL) in Peyer's patches peritoneal macrophages isolated from mice. Chitosan-coated liposomes were characterized according to size, zeta potential, and antigen-loading and release properties. Results showed an increase in the positive net charge and size of the liposomes as the concentration of chitosan was increased, suggesting an electrostatic interaction and an effective coating, followed by fluorescence microscopy. About 85% of the antigen loaded remained in the chitosan-coated liposomes after release studies for 4 hours in phosphate-buffered saline. After 4 hours of preincubation with a T-cell hybridoma line cocultured with murine peritoneal macrophages, only trace amounts of interleukin-2 (IL-2) were detected in the cocultures treated with HEL alone, whereas cocultures treated with HEL-liposomes had an important production of IL-2, and the HEL chitosan-coated liposomes had already reached maximum IL-2 expression. Confocal microscopy studies showed that chitosan-coated liposomes had a higher uptake rate of the fluorescently labeled HEL than uncoated liposomal vesicles after 30 minutes of incubation with the peritoneal macrophages. Since uptake by macrophage cells is the first step in vaccination, our results suggest that the chitosan-coated liposomal system is a potential candidate as an immunoadjuvant for vaccine delivery systems.
Collapse
|
48
|
Muttil P, Pulliam B, Garcia-Contreras L, Fallon JK, Wang C, Hickey AJ, Edwards DA. Pulmonary immunization of guinea pigs with diphtheria CRM-197 antigen as nanoparticle aggregate dry powders enhance local and systemic immune responses. AAPS JOURNAL 2010; 12:699-707. [PMID: 20878294 DOI: 10.1208/s12248-010-9229-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 09/07/2010] [Indexed: 01/16/2023]
Abstract
This study establishes the immune response elicited in guinea pigs after pulmonary and parenteral immunizations with diphtheria CRM-197 antigen (CrmAg). Several spray-dried powders of formalin-treated/untreated CrmAg nanoaggregates with L-leucine were delivered to the lungs of guinea pigs. A control group consisting of alum with adsorbed CrmAg in saline was administered by intramuscular injection. Animals received three doses of powder vaccines containing 20 or 40 μg of CrmAg. The serum IgG titers were measured for 16 weeks after the initial immunization; IgA titers were measured at the time of sacrifice in the broncho-alveolar lavage fluid. Further, toxin neutralization tests in naïve guinea pigs were performed for a few select serum samples. Histopathology of the lung tissues was conducted to evaluate inflammation or injury to the lung tissues. While the highest titer of serum IgG antibody was observed in guinea pigs immunized by the intramuscular route, those animals immunized with dry powder formulation by the pulmonary route, and without the adjuvant alum, exhibited high IgA titers. A pulmonary administered dry powder, compared to parenteral immunization, conferred complete protection in the toxin neutralization test. Mild inflammation was observed in lung tissues of animals receiving dry powder vaccines by the pulmonary route. Thus, administering novel CrmAg as dry powders to the lungs may be able to overcome some of the disadvantages observed with the existing diphtheria vaccine which is administered by the parenteral route. In addition, these powders will have the advantage of eliciting a high mucosal immune response in the lungs without using traditional adjuvants.
Collapse
Affiliation(s)
- Pavan Muttil
- University of North Carolina, Chapel Hill, 27599-7571, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Canali MM, Porporatto C, Aoki MP, Bianco ID, Correa SG. Signals elicited at the intestinal epithelium upon chitosan feeding contribute to immunomodulatory activity and biocompatibility of the polysaccharide. Vaccine 2010; 28:5718-24. [PMID: 20598784 DOI: 10.1016/j.vaccine.2010.06.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 06/01/2010] [Accepted: 06/05/2010] [Indexed: 10/19/2022]
Abstract
Chitosan is a copolymer of N-acetylglucosamine and glucosamine derived from chitin with several applications in pharmaceutical and medical fields. This polysaccharide exhibits adjuvant properties in mucosal immune responses of humans, rats and mice. Characterization of signals elicited by chitosan at the intestinal epithelium could explain its immunomodulatory activity and biocompatibility. We fed normal rats with single doses of chitosan and 16h later, we purified intestinal epithelial cells (IECs) to assess immune and biochemical parameters. Following chitosan administration, mRNA expression and release of several cytokines and chemokines increased, injury markers maintained constitutive levels and MHC type II molecule expression was augmented. IEC supernatants showed higher levels of IL-10, IL-6 and TGF-beta. Arginase activity of IECs increased upon chitosan interaction in vivo and in vitro. Together, after chitosan feeding, mild activation of IECs occurs in vivo, with production of regulatory factors that could be relevant for its biocompatibility and immunomodulatory effects.
Collapse
Affiliation(s)
- M Magdalena Canali
- Immunology, Center of Research in Biochemistry and Immunology (CIBICI) (National Council of Research in Science and Technology (CONICET), Department of Clinical Biochemistry, Faculty of Chemical Sciences, National University of Cordoba, Cordoba, Argentina
| | | | | | | | | |
Collapse
|
50
|
Amidi M, Mastrobattista E, Jiskoot W, Hennink WE. Chitosan-based delivery systems for protein therapeutics and antigens. Adv Drug Deliv Rev 2010; 62:59-82. [PMID: 19925837 DOI: 10.1016/j.addr.2009.11.009] [Citation(s) in RCA: 416] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 10/16/2009] [Accepted: 11/04/2009] [Indexed: 11/28/2022]
Abstract
Therapeutic peptides/proteins and protein-based antigens are chemically and structurally labile compounds, which are almost exclusively administered by parenteral injections. Recently, non-invasive mucosal routes have attracted interest for administration of these biotherapeutics. Chitosan-based delivery systems enhance the absorption and/or cellular uptake of peptides/proteins across mucosal sites and have immunoadjuvant properties. Chitosan is a mucoadhesive polysaccharide capable of opening the tight junctions between epithelial cells and it has functional groups for chemical modifications, which has resulted in a large variety of chitosan derivatives with tunable properties for the aimed applications. This review provides an overview of chitosan-based polymers for preparation of both therapeutic peptides/protein and antigen formulations. The physicochemical properties of these carrier systems as well as their applications in protein and antigen delivery through parenteral and mucosal (particularly nasal and pulmonary) administrations are summarized and discussed.
Collapse
Affiliation(s)
- Maryam Amidi
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands.
| | | | | | | |
Collapse
|