1
|
Harms JS, Lasarev M, Warner T, Oliveira SC, Smith JA. Persistent articular infection and host reactive response contribute to Brucella-induced spondyloarthritis in SKG mice. mBio 2025:e0054225. [PMID: 40366144 DOI: 10.1128/mbio.00542-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 04/15/2025] [Indexed: 05/15/2025] Open
Abstract
Brucellosis, one of the most prevalent zoonotic diseases worldwide, often results in osteoarticular complications including large joint and axial arthritis mimicking spondyloarthritis. To model this chronic manifestation, we infected autoimmunity-prone SKG mice containing a mutation in the T cell adaptor ZAP-70 with Brucella species. B. melitensis infection resulted in a fully penetrant, readily scoreable disease involving large joint wrist and foot arthritis, peri-ocular inflammation, and less frequent scaly paw rash. Infection with B. abortus resulted in similar manifestations, although with delayed arthritis onset, and B. neotomae revealed sex differences, with a more severe disease in females. Heat-killed Brucella did not induce arthritis, evincing a requirement for viable infection. Across species, splenic CFU correlated well with final clinical score at 12 weeks (ρ = 0.79 and P < 0.001). Moreover, viable Brucella was recovered from the paws at 12 weeks, consistent with persistent articular infection. Mice infected with a BrucellaΔtcpB mutant lacking a Type IV secretion system-dependent mediator displayed an intermediate phenotype without significant differences in splenic CFU. Thus, the degree of arthritis did not strictly correlate with the degree of systemic infection, but it suggested an additional reactive component. Together, these data suggest that Brucella-induced spondyloarthritis reflects both persistent colonization and excess host reactivity. Moreover, the sensitivity of the SKG model to different species and mutants will provide new opportunities for dissecting correlates of Brucella virulence and host immunity.IMPORTANCEBrucellosis, a bacterial infection acquired from herd animals, remains one of the most common zoonotic diseases worldwide. Chronic infection often results in spondyloarthritis-like complications. Investigation into pathogenesis has been limited by the lack of overt disease in standard laboratory mice. We addressed this issue using spondyloarthritis-susceptible SKG mice. Upon infection with B. melitensis, SKG mice develop robust, fully penetrant large joint arthritis. Arthritis development required viable bacteria, and live Brucella persisted in paw tissue out to 12 weeks. Disease onset, severity, and manifestations varied upon infection with different Brucella species and mutants, suggesting an additional immune reactive component. Together, these results suggest that this new model will be very useful to the scientific community for determining correlates of bacterial virulence leading to clinical disease.
Collapse
Affiliation(s)
- Jerome S Harms
- Departments of Pediatrics and Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Michael Lasarev
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Thomas Warner
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sergio Costa Oliveira
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Judith A Smith
- Departments of Pediatrics and Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Harms JS, Lasarev M, Warner T, Costa Oliveira S, Smith JA. Persistent articular infection and host reactive response contribute to Brucella -induced spondyloarthritis in SKG mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.18.638825. [PMID: 40027658 PMCID: PMC11870484 DOI: 10.1101/2025.02.18.638825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Brucellosis, one of the most prevalent zoonotic diseases worldwide, often results in osteoarticular complications including large joint and axial arthritis mimicking spondyloarthritis. To model this chronic manifestation, we infected autoimmunity-prone SKG mice containing a mutation in the T-cell adaptor ZAP-70 with Brucella species. B. melitensis infection resulted in a fully penetrant, readily scoreable disease involving large joint wrist and foot arthritis, peri-ocular inflammation, and less frequent scaly paw rash. Infection with B. abortus resulted in delayed arthritis onset, and B. neotomae revealed sex differences, with more severe disease and a dose response in females. Heat-killed Brucella did not induce arthritis, evincing a requirement for viable infection. Across species, splenic CFU correlated well with final clinical score at 12 weeks (ρ=0.79 and p<0.001). In vivo imaging using luminescent B. neotomae revealed rapid colonization of the paws by one-week post-infection, more than a month prior to arthritis onset. Paw luminescence levels decreased after 2 weeks and then remained relatively static, even as clinical scores increased. Thus, the degree of arthritis did not strictly correlate with degree of paw infection but suggested an additional reactive component. Further, in examining a Brucella Δ tcpB mutant lacking a Type IV secretion system-dependent mediator, mice displayed an intermediate phenotype without significant differences in splenic CFU. Together these data suggest Brucella induced spondyloarthritis reflects both persistent colonization as well as excess host reactivity. Moreover, the sensitivity of the SKG model to different species and mutants will provide new opportunities for dissecting correlates of Brucella virulence and host immunity. Importance Brucellosis, a bacterial infection acquired from herd animals, remains one of the most common zoonotic diseases worldwide. Chronic infection often results in spondyloarthritis-like complications. Investigation into pathogenesis has been limited by the lack of overt disease in standard lab mice. We addressed this issue using spondyloarthritis-susceptible SKG mice. Upon infection with B. melitensis , SKG mice develop robust, fully penetrant large joint arthritis. Arthritis development required viable bacteria. Moreover, studies of colonization, gene expression and anatomic distribution using bioluminescent bacteria revealed active persistent infection in the mouse paws. However, peak paw infection occurred much earlier than arthritis onset, suggesting an added immune reactive component. Disease onset, severity and manifestations varied upon infection with different Brucella species and mutants. Together these results suggest this new model will be very useful to the scientific community for determining correlates of bacterial virulence leading to clinical disease.
Collapse
|
3
|
Zhi F, Liu K, Geng H, Su M, Xu J, Fu L, Ma K, Gao P, Yuan L, Chu Y. Copper sensing transcription factor ArsR2 regulates VjbR to sustain virulence in Brucella abortus. Emerg Microbes Infect 2024; 13:2406274. [PMID: 39295505 PMCID: PMC11425708 DOI: 10.1080/22221751.2024.2406274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/10/2024] [Accepted: 09/16/2024] [Indexed: 09/21/2024]
Abstract
Brucellosis, caused by the intracellular pathogen Brucella, is a major zoonotic infection that promotes reproductive disease in domestic animals and chronic debilitating conditions in humans. The ArsR family of transcriptional regulators plays key roles in diverse cellular processes, including metal ion homeostasis, responding to adverse conditions, and virulence. However, little is known about the function of ArsR family members in Brucella. Here, we identified ArsR2 as a nonclassical member of the family that lacks autoregulatory function, but which nevertheless plays a vital role in maintaining copper homeostasis in B. abortus. ArsR2 is a global regulator of 241 genes, including those involved in the VirB type IV secretion system (T4SS). Significantly, ArsR2 regulates T4SS production in B. abortus by targeting VjbR which encodes a LuxR-type family transcriptional regulator. Moreover, copper modulates transcriptional activity of ArsR2, but not of VjbR. Furthermore, deletion of arsR2 attenuated virulence in a mouse model. Collectively, these findings enhance understanding of the mechanism by which ArsR proteins regulate virulence gene expression in pathogenic Brucella species.
Collapse
Affiliation(s)
- Feijie Zhi
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, People’s Republic of China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, People’s Republic of China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, People’s Republic of China
| | - Kemeng Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, People’s Republic of China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, People’s Republic of China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, People’s Republic of China
| | - Hao Geng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, People’s Republic of China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, People’s Republic of China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, People’s Republic of China
| | - Mengru Su
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, People’s Republic of China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, People’s Republic of China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, People’s Republic of China
| | - Jian Xu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, People’s Republic of China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, People’s Republic of China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, People’s Republic of China
| | - Lei Fu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, People’s Republic of China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, People’s Republic of China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, People’s Republic of China
| | - Ke Ma
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, People’s Republic of China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, People’s Republic of China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, People’s Republic of China
| | - Pengcheng Gao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, People’s Republic of China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, People’s Republic of China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, People’s Republic of China
| | - Lvfeng Yuan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, People’s Republic of China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, People’s Republic of China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, People’s Republic of China
| | - YueFeng Chu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Lanzhou University, Chinese Academy of Agricultural Sciences, Lanzhou, People’s Republic of China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, People’s Republic of China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, People’s Republic of China
| |
Collapse
|
4
|
Qin Y, Zhou G, Jiao F, Cheng C, Meng C, Wang L, Wu S, Fan C, Li J, Zhou B, Chu Y, Jiao H. Brucella mediates autophagy, inflammation, and apoptosis to escape host killing. Front Cell Infect Microbiol 2024; 14:1408407. [PMID: 39507949 PMCID: PMC11537862 DOI: 10.3389/fcimb.2024.1408407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/26/2024] [Indexed: 11/08/2024] Open
Abstract
Brucellosis is a serious zoonosis caused by Brucella spp. infection, which not only seriously jeopardizes the health of humans and mammals, but also causes huge economic losses to the livestock industry. Brucella is a Gram-negative intracellular bacterium that relies primarily on its virulence factors and a variety of evolved survival strategies to replicate and proliferate within cells. Currently, the mechanisms of autophagy, inflammation, and apoptosis in Brucella-infected hosts are not fully understood and require further research and discussion. This review focuses on the relationship between Brucella and autophagy, inflammation, and apoptosis to provide the scientific basis for revealing the pathogenesis of Brucella.
Collapse
Affiliation(s)
- Yaqiong Qin
- The College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Gengxu Zhou
- The College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Fengyuan Jiao
- The College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Chuan Cheng
- The College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Chi Meng
- The College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Lingjie Wang
- The College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Shengping Wu
- The College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Cailiang Fan
- The College of Veterinary Medicine, Southwest University, Chongqing, China
- Animal Epidemic Prevention and Control Center of Rongchang, Chongqing, China
| | - Jixiang Li
- The College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Bo Zhou
- Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Yuefeng Chu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Hanwei Jiao
- The College of Veterinary Medicine, Southwest University, Chongqing, China
| |
Collapse
|
5
|
Muñoz-Bucio A, Arellano-Reynoso B, Sangari FJ, Sieira R, Thébault P, Espitia C, García Lobo JM, Seoane A, Suárez-Güemes F. Increased Brucella abortus asRNA_0067 expression under intraphagocytic stressors is associated with enhanced virB2 transcription. Arch Microbiol 2024; 206:285. [PMID: 38816572 PMCID: PMC11139718 DOI: 10.1007/s00203-024-03984-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/27/2024] [Indexed: 06/01/2024]
Abstract
Intracellular pathogens like Brucella face challenges during the intraphagocytic adaptation phase, where the modulation of gene expression plays an essential role in taking advantage of stressors to persist inside the host cell. This study aims to explore the expression of antisense virB2 RNA strand and related genes under intracellular simulation media. Sense and antisense virB2 RNA strands increased expression when nutrient deprivation and acidification were higher, being starvation more determinative. Meanwhile, bspB, one of the T4SS effector genes, exhibited the highest expression during the exposition to pH 4.5 and nutrient abundance. Based on RNA-seq analysis and RACE data, we constructed a regional map depicting the 5' and 3' ends of virB2 and the cis-encoded asRNA_0067. Without affecting the CDS or a possible autonomous RBS, we generate the deletion mutant ΔasRNA_0067, significantly reducing virB2 mRNA expression and survival rate. These results suggest that the antisense asRNA_0067 expression is promoted under exposure to the intraphagocytic adaptation phase stressors, and its deletion is associated with a lower transcription of the virB2 gene. Our findings illuminate the significance of these RNA strands in modulating the survival strategy of Brucella within the host and emphasize the role of nutrient deprivation in gene expression.
Collapse
Affiliation(s)
- Adrian Muñoz-Bucio
- Facultad de Medicina Veterinaria y Zootecnia, Departamento de Microbiología e Inmunología. Circuito Exterior S/N, Universidad Nacional Autónoma de México, CDMX, Ciudad Universitaria, Coyoacán, 04510, Mexico
| | - Beatriz Arellano-Reynoso
- Facultad de Medicina Veterinaria y Zootecnia, Departamento de Microbiología e Inmunología. Circuito Exterior S/N, Universidad Nacional Autónoma de México, CDMX, Ciudad Universitaria, Coyoacán, 04510, Mexico
| | - Félix J Sangari
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, C. Albert Einstein 22, 39011, Santander, Cantabria, Spain
| | - Rodrigo Sieira
- Fundación Instituto Leloir-IIBBA CONICET, Av. Patricias Argentinas 435CABA, CP. 1405, Buenos Aires Argentina, Argentina
| | - Patricia Thébault
- Laboratoire Bordelais de Recherche en Informatique (LaBRI), UMR 5800, CNRS, Bordeaux INP, Université de Bordeaux, 33400, Talence, France
| | - Clara Espitia
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México MX, CDMX, Circuito Escolar 33, Ciudad Universitaria, Coyoacán, 04510, Mexico
| | - Juan M García Lobo
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, C. Albert Einstein 22, 39011, Santander, Cantabria, Spain
| | - Asunción Seoane
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, C. Albert Einstein 22, 39011, Santander, Cantabria, Spain
| | - Francisco Suárez-Güemes
- Facultad de Medicina Veterinaria y Zootecnia, Departamento de Microbiología e Inmunología. Circuito Exterior S/N, Universidad Nacional Autónoma de México, CDMX, Ciudad Universitaria, Coyoacán, 04510, Mexico.
| |
Collapse
|
6
|
Cabello AL, Wells K, Peng W, Feng HQ, Wang J, Meyer DF, Noroy C, Zhao ES, Zhang H, Li X, Chang H, Gomez G, Mao Y, Patrick KL, Watson RO, Russell WK, Yu A, Zhong J, Guo F, Li M, Zhou M, Qian X, Kobayashi KS, Song J, Panthee S, Mechref Y, Ficht TA, Qin QM, de Figueiredo P. Brucella-driven host N-glycome remodeling controls infection. Cell Host Microbe 2024; 32:588-605.e9. [PMID: 38531364 DOI: 10.1016/j.chom.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 08/28/2023] [Accepted: 03/06/2024] [Indexed: 03/28/2024]
Abstract
Many powerful methods have been employed to elucidate the global transcriptomic, proteomic, or metabolic responses to pathogen-infected host cells. However, the host glycome responses to bacterial infection remain largely unexplored, and hence, our understanding of the molecular mechanisms by which bacterial pathogens manipulate the host glycome to favor infection remains incomplete. Here, we address this gap by performing a systematic analysis of the host glycome during infection by the bacterial pathogen Brucella spp. that cause brucellosis. We discover, surprisingly, that a Brucella effector protein (EP) Rhg1 induces global reprogramming of the host cell N-glycome by interacting with components of the oligosaccharide transferase complex that controls N-linked protein glycosylation, and Rhg1 regulates Brucella replication and tissue colonization in a mouse model of brucellosis, demonstrating that Brucella exploits the EP Rhg1 to reprogram the host N-glycome and promote bacterial intracellular parasitism, thereby providing a paradigm for bacterial control of host cell infection.
Collapse
Affiliation(s)
- Ana-Lucia Cabello
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA; Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Kelsey Wells
- Christopher S. Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO 65211, USA
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Hui-Qiang Feng
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Junyao Wang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Damien F Meyer
- CIRAD, UMR ASTRE, 97170 Petit-Bourg, Guadeloupe, France; ASTRE, University Montpellier, CIRAD, INRAE, Montpellier, France
| | - Christophe Noroy
- CIRAD, UMR ASTRE, 97170 Petit-Bourg, Guadeloupe, France; ASTRE, University Montpellier, CIRAD, INRAE, Montpellier, France
| | - En-Shuang Zhao
- College of Computer Science and Technology, Jilin University, Changchun 130012, China
| | - Hao Zhang
- College of Computer Science and Technology, Jilin University, Changchun 130012, China
| | - Xueqing Li
- College of Computer Science and Technology, Jilin University, Changchun 130012, China
| | - Haowu Chang
- College of Computer Science and Technology, Jilin University, Changchun 130012, China
| | - Gabriel Gomez
- Texas A&M Veterinary Medical Diagnostic Laboratory (TVMDL), Texas A&M University, College Station, TX 77843, USA
| | - Yuxin Mao
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703, USA
| | - Kristin L Patrick
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Robert O Watson
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - William K Russell
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-0635, USA
| | - Aiying Yu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Jieqiang Zhong
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Fengguang Guo
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Mingqian Li
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 78843, USA
| | - Mingyuan Zhou
- Department of Information, Risk, and Operations Management, Department of Statistics and Data Sciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Xiaoning Qian
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 78843, USA; TEES-AgriLife Center for Bioinformatics & Genomic Systems Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Koichi S Kobayashi
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA; Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan; Hokkaido University, Institute for Vaccine Research and Development (HU-IVReD), Sapporo 060-8638, Japan
| | - Jianxun Song
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Suresh Panthee
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA.
| | - Thomas A Ficht
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA.
| | - Qing-Ming Qin
- Christopher S. Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO 65211, USA.
| | - Paul de Figueiredo
- Christopher S. Bond Life Sciences Center, Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO 65211, USA; Department of Veterinary Pathobiology, The University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
7
|
Gonuguntla HN, Surendra KSNL, Prasad A, Sarangi LN, Rana SK, Manasa G, Muthappa PN, Harikumar AV, Sharma GK. Brucella melitensis: Divergence Among Indian Strains and Genetic Characterization of a Strain Isolated from Cattle. Indian J Microbiol 2023; 63:272-280. [PMID: 37781017 PMCID: PMC10533427 DOI: 10.1007/s12088-023-01081-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 06/17/2023] [Indexed: 10/03/2023] Open
Abstract
Brucella melitensis primarily affects sheep, goats and is associated with brucellosis in humans, which is one of the world's most widespread neglected zoonotic disease. The current study attempted the determination of genetic diversity through comparative genome analysis of B. melitensis strains reported from India with other countries. The study also reports the isolation and identification of B. melitensis BMNDDB8664 from a cow with a history of abortion, whole-genome sequencing (WGS), determination of virulence factors, genotyping, and comparative genome analysis. Multilocus sequence typing, Multiple locus variable number of tandem repeats analysis (MLVA), and WGS based phylogeny revealed the predominance of ST-8 and genotypes (116 and II respectively) that clustered to the East Mediterranean lineage. Identification of hitherto unreported genotypes by MLVA also indicated the existence and circulation of West Mediterranean and American lineages in India. Though the AMOS-PCR results suggest the BMNDDB8664 isolate as Brucella abortus, the outcomes from multiplex PCR, ribosomal multilocus sequence typing, and WGS analysis confirmed it as B. melitensis. The analysis revealed the presence of adeF gene (aids conferring resistance to fluoro-quinolone and tetracyclines). The isolate lacked two important T4SS genes virB2 and virB7 genes (roles in infection and rifampicin resistance respectively) and also lacked the Brucella suis mprF gene that aids intracellular survival. Further, BMNDDB8664 lacked some of the genes associated with LPS synthesis (wbkB, wbkC) and transport (wzm, wzt) and hence, is most likely a rough strain. WGS-based phylogenetic analysis revealed close genetic relatedness of this BMNDDB8664 with a sheep isolate and two human isolates. The results prompt systematic, broad-based epidemiological studies on brucella infection at the species level. For effective control of human brucellosis, a concerted One Health approach with studies encircling the identification of aetiology at species, strain level to find their prevalence, spread, and inter-host transmission patterns need to be understood, for better design and implementation of effective control strategies in India and other endemic regions. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-023-01081-w.
Collapse
Affiliation(s)
- Hariprasad Naidu Gonuguntla
- National Dairy Development Board Research and Development Laboratory, IIL Campus, Gachibowli, Hyderabad, Telangana 500032 India
| | - Kota Sri Naga Leela Surendra
- National Dairy Development Board Research and Development Laboratory, IIL Campus, Gachibowli, Hyderabad, Telangana 500032 India
| | - Amitesh Prasad
- National Dairy Development Board Research and Development Laboratory, IIL Campus, Gachibowli, Hyderabad, Telangana 500032 India
| | - Laxmi Narayan Sarangi
- National Dairy Development Board Research and Development Laboratory, IIL Campus, Gachibowli, Hyderabad, Telangana 500032 India
| | | | - Gujjala Manasa
- National Dairy Development Board Research and Development Laboratory, IIL Campus, Gachibowli, Hyderabad, Telangana 500032 India
| | - Ponnanna Nadikerianda Muthappa
- National Dairy Development Board Research and Development Laboratory, IIL Campus, Gachibowli, Hyderabad, Telangana 500032 India
| | - A. V. Harikumar
- National Dairy Development Board, Anand, Gujarat 388001 India
| | | |
Collapse
|
8
|
English BC, Savage HP, Mahan SP, Diaz-Ochoa VE, Young BM, Abuaita BH, Sule G, Knight JS, O’Riordan MX, Bäumler AJ, Tsolis RM. The IRE1α-XBP1 Signaling Axis Promotes Glycolytic Reprogramming in Response to Inflammatory Stimuli. mBio 2023; 14:e0306822. [PMID: 36475773 PMCID: PMC9973330 DOI: 10.1128/mbio.03068-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 12/14/2022] Open
Abstract
Immune cells must be able to adjust their metabolic programs to effectively carry out their effector functions. Here, we show that the endoplasmic reticulum (ER) stress sensor Inositol-requiring enzyme 1 alpha (IRE1α) and its downstream transcription factor X box binding protein 1 (XBP1) enhance the upregulation of glycolysis in classically activated macrophages (CAMs). The IRE1α-XBP1 signaling axis supports this glycolytic switch in macrophages when activated by lipopolysaccharide (LPS) stimulation or infection with the intracellular bacterial pathogen Brucella abortus. Importantly, these different inflammatory stimuli have distinct mechanisms of IRE1α activation; while Toll-like receptor 4 (TLR4) supports glycolysis under both conditions, TLR4 is required for activation of IRE1α in response to LPS treatment but not B. abortus infection. Though IRE1α and XBP1 are necessary for maximal induction of glycolysis in CAMs, activation of this pathway is not sufficient to increase the glycolytic rate of macrophages, indicating that the cellular context in which this pathway is activated ultimately dictates the cell's metabolic response and that IRE1α activation may be a way to fine-tune metabolic reprogramming. IMPORTANCE The immune system must be able to tailor its response to different types of pathogens in order to eliminate them and protect the host. When confronted with bacterial pathogens, macrophages, frontline defenders in the immune system, switch to a glycolysis-driven metabolism to carry out their antibacterial functions. Here, we show that IRE1α, a sensor of ER stress, and its downstream transcription factor XBP1 support glycolysis in macrophages during infection with Brucella abortus or challenge with Salmonella LPS. Interestingly, these stimuli activate IRE1α by independent mechanisms. While the IRE1α-XBP1 signaling axis promotes the glycolytic switch, activation of this pathway is not sufficient to increase glycolysis in macrophages. This study furthers our understanding of the pathways that drive macrophage immunometabolism and highlights a new role for IRE1α and XBP1 in innate immunity.
Collapse
Affiliation(s)
- Bevin C. English
- Department of Medical Microbiology and Immunology, University of California—Davis, Davis, California, USA
| | - Hannah P. Savage
- Department of Medical Microbiology and Immunology, University of California—Davis, Davis, California, USA
| | - Scott P. Mahan
- Department of Medical Microbiology and Immunology, University of California—Davis, Davis, California, USA
| | - Vladimir E. Diaz-Ochoa
- Department of Medical Microbiology and Immunology, University of California—Davis, Davis, California, USA
| | - Briana M. Young
- Department of Medical Microbiology and Immunology, University of California—Davis, Davis, California, USA
| | - Basel H. Abuaita
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Gautam Sule
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jason S. Knight
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Mary X. O’Riordan
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Andreas J. Bäumler
- Department of Medical Microbiology and Immunology, University of California—Davis, Davis, California, USA
| | - Renée M. Tsolis
- Department of Medical Microbiology and Immunology, University of California—Davis, Davis, California, USA
| |
Collapse
|
9
|
King KA, Caudill MT, Caswell CC. A comprehensive review of small regulatory RNAs in Brucella spp. Front Vet Sci 2022; 9:1026220. [PMID: 36532353 PMCID: PMC9751625 DOI: 10.3389/fvets.2022.1026220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/15/2022] [Indexed: 09/29/2023] Open
Abstract
Brucella spp. are Gram-negative bacteria that naturally infect a variety of domesticated and wild animals, often resulting in abortions and sterility. Humans exposed to these animals or animal products can also develop debilitating, flu-like disease. The brucellae are intracellular pathogens that reside predominantly within immune cells, typically macrophages, where they replicate in a specialized compartment. This capacity of Brucella to survive and replicate within macrophages is essential to their ability to cause disease. In recent years, several groups have identified and characterized small regulatory RNAs (sRNAs) as critical factors in the control of Brucella physiology within macrophages and overall disease virulence. sRNAs are generally < 300 nucleotides in length, and these independent sRNA transcripts are encoded either next to (i.e., cis-encoded) or at a distant location to (i.e., trans-encoded) the genes that they regulate. Trans-encoded sRNAs interact with the mRNA transcripts through short stretches of imperfect base pairing that often require the RNA chaperone Hfq to facilitate sRNA-mRNA interaction. In many instances, these sRNA-mRNA interactions inhibit gene expression, usually by occluding the ribosome-binding site (RBS) and/or by decreasing the stability of the mRNA, leading to degradation of the transcript. A number of sRNAs have been predicted and authenticated in Brucella strains, and a variety of approaches, techniques, and means of validation have been employed in these efforts. Nonetheless, some important issues and considerations regarding the study of sRNA regulation in Brucella need to be addressed. For example, the lack of uniform sRNA nomenclature in Brucella has led to difficulty in comparisons of sRNAs across the different Brucella species, and there exist multiple names in the literature for what are functionally the same sRNA. Moreover, even though bona fide sRNAs have been discovered in Brucella, scant functional information is known about the regulatory activities of these sRNAs, or the extent to which these sRNAs are required for the intracellular life and/or host colonization by the brucellae. Therefore, this review summarizes the historical context of Hfq and sRNAs in Brucella; our current understanding of Brucella sRNAs; and some future perspectives and considerations for the field of sRNA biology in the brucellae.
Collapse
Affiliation(s)
| | | | - Clayton C. Caswell
- Center for One Health Research, Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
10
|
Antibiogram Screening and Detection of Virulence-Associated Genes in Brucella Species Acquired from Cattle in South Africa's Eastern Cape Province. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19052813. [PMID: 35270507 PMCID: PMC8909984 DOI: 10.3390/ijerph19052813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 12/04/2022]
Abstract
Brucellosis is a widespread zoonotic illness, and it poses serious public health and economic risks. The purpose of this investigation is to look at the antimicrobial susceptibility of unpasteurized milk, blood, and lymph node specimens from cattle, goats, and sheep, as well as to identify virulence-associated genes. In this investigation, a total of 123 isolates were examined. The activity of 15 antimicrobials against Brucella pathogens were assessed using the Kirby−Bauer disk diffusion technique. Nine virulence factors were detected with polymerase chain reaction analysis. Five antibiotics were 100% effective against Brucella isolates. A high level of resistance (100%) was documented with streptomycin, penicillin, and seven more antibiotics. Doxycycline resistance was found in 12% of goat isolates, and tetracycline resistance was found in 21% and 44% of goat and sheep isolates, respectively. Multiple antibiotic resistance (MAR) index >0.2 was found in 38.2% (47/123) of Brucella isolates. VecC and BetB, two B. abortus genes, were confirmed to be comparable. The findings of this study suggests that Brucella spp. are reservoirs of antibiotic resistance in the Eastern Cape Province. As such, they represent a potential pool of antibiotic genes that might be transferred to other pathogens in the community, and thus continue to pose a healthcare hazard.
Collapse
|
11
|
Xiong X, Li B, Zhou Z, Gu G, Li M, Liu J, Jiao H. The VirB System Plays a Crucial Role in Brucella Intracellular Infection. Int J Mol Sci 2021; 22:ijms222413637. [PMID: 34948430 PMCID: PMC8707931 DOI: 10.3390/ijms222413637] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 01/18/2023] Open
Abstract
Brucellosis is a highly prevalent zoonotic disease caused by Brucella. Brucella spp. are gram-negative facultative intracellular parasitic bacteria. Its intracellular survival and replication depend on a functional virB system, an operon encoded by VirB1–VirB12. Type IV secretion system (T4SS) encoded by the virB operon is an important virulence factor of Brucella. It can subvert cellular pathway and induce host immune response by secreting effectors, which promotes Brucella replication in host cells and induce persistent infection. Therefore, this paper summarizes the function and significance of the VirB system, focusing on the structure of the VirB system where VirB T4SS mediates biogenesis of the endoplasmic reticulum (ER)-derived replicative Brucella-containing vacuole (rBCV), the effectors of T4SS and the cellular pathways it subverts, which will help better understand the pathogenic mechanism of Brucella and provide new ideas for clinical vaccine research and development.
Collapse
Affiliation(s)
- Xue Xiong
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (X.X.); (B.L.); (Z.Z.); (G.G.); (M.L.)
| | - Bowen Li
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (X.X.); (B.L.); (Z.Z.); (G.G.); (M.L.)
| | - Zhixiong Zhou
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (X.X.); (B.L.); (Z.Z.); (G.G.); (M.L.)
| | - Guojing Gu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (X.X.); (B.L.); (Z.Z.); (G.G.); (M.L.)
| | - Mengjuan Li
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (X.X.); (B.L.); (Z.Z.); (G.G.); (M.L.)
| | - Jun Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Yujinxiang Street 573, Changchun 130122, China
- Correspondence: (J.L.); (H.J.)
| | - Hanwei Jiao
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (X.X.); (B.L.); (Z.Z.); (G.G.); (M.L.)
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
- Veterinary Scientific Engineering Research Center, Chongqing 402460, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China
- Correspondence: (J.L.); (H.J.)
| |
Collapse
|
12
|
An extracytoplasmic function (ECF) sigma/anti-sigma factor system regulates hypochlorous acid resistance and impacts expression of the type IV secretion system in Brucella melitensis. J Bacteriol 2021; 203:e0012721. [PMID: 33820796 PMCID: PMC8315932 DOI: 10.1128/jb.00127-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The intracellular bacterial pathogen Brucella causes persistent infections in various mammalian species. To survive and replicate within macrophages, these bacteria must be able to withstand oxidative stresses and express the type IV secretion system (T4SS) to evade host immune responses. The extracytoplasmic function (ECF) sigma factor system is a major signal transduction mechanism in bacteria that senses environmental cues and responds by regulating gene expression. In this study, we defined an ECF σ bcrS and its cognate anti-σ factor abcS in Brucella melitensis M28 by conserved domain analysis and a protein interaction assay. BcrS directly activates an adjacent operon, bcrXQP, that encodes a methionine-rich peptide and a putative methionine sulfoxide reductase system, whereas AbcS is a negative regulator of bcrS and bcrXQP. The bcrS-abcS and bcrXQP operons can be induced by hypochlorous acid and contribute to hypochlorous acid resistance in vitro. Next, RNA sequencing analysis and genome-wide recognition sequence search identified the regulons of BcrS and AbcS. Interestingly, we found that BcrS positively influences T4SS expression in an AbcS-dependent manner and that AbcS also affects T4SS expression independently of BcrS. Last, we demonstrate that abcS is required for the maintenance of persistent infection, while bcrS is dispensable in a mouse infection model. Collectively, we conclude that BcrS and AbcS influence expression of multiple genes responsible for Brucella virulence traits. IMPORTANCEBrucella is a notorious intracellular pathogen that induces chronic infections in animals and humans. To survive and replicate within macrophages, these bacteria require a capacity to withstand oxidative stresses and to express the type IV secretion system (T4SS) to combat host immune responses. In this study, we characterized an extracytoplasmic function sigma/anti-sigma factor system that regulates resistance to reactive chlorine species and T4SS expression, thereby establishing a potential link between two crucial virulence traits of Brucella. Furthermore, the anti-sigma factor AbcS contributes to Brucella persistent infection of mice. Thus, this work provides novel insights into Brucella virulence regulation as well as a potential drug target for fighting Brucella infections.
Collapse
|
13
|
Jiao H, Zhou Z, Li B, Xiao Y, Li M, Zeng H, Guo X, Gu G. The Mechanism of Facultative Intracellular Parasitism of Brucella. Int J Mol Sci 2021; 22:ijms22073673. [PMID: 33916050 PMCID: PMC8036852 DOI: 10.3390/ijms22073673] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/22/2021] [Accepted: 03/30/2021] [Indexed: 01/18/2023] Open
Abstract
Brucellosis is a highly prevalent zoonotic disease characterized by abortion and reproductive dysfunction in pregnant animals. Although the mortality rate of Brucellosis is low, it is harmful to human health, and also seriously affects the development of animal husbandry, tourism and international trade. Brucellosis is caused by Brucella, which is a facultative intracellular parasitic bacteria. It mainly forms Brucella-containing vacuoles (BCV) in the host cell to avoid the combination with lysosome (Lys), so as to avoid the elimination of it by the host immune system. Brucella not only has the ability to resist the phagocytic bactericidal effect, but also can make the host cells form a microenvironment which is conducive to its survival, reproduction and replication, and survive in the host cells for a long time, which eventually leads to the formation of chronic persistent infection. Brucella can proliferate and replicate in cells, evade host immune response and induce persistent infection, which are difficult problems in the treatment and prevention of Brucellosis. Therefore, the paper provides a preliminary overview of the facultative intracellular parasitic and immune escape mechanisms of Brucella, which provides a theoretical basis for the later study on the pathogenesis of Brucella.
Collapse
Affiliation(s)
- Hanwei Jiao
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Z.Z.); (B.L.); (Y.X.); (M.L.); (H.Z.); (X.G.); (G.G.)
- Veterinary Scientific Engineering Research Center, Chongqing 402460, China
- Correspondence:
| | - Zhixiong Zhou
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Z.Z.); (B.L.); (Y.X.); (M.L.); (H.Z.); (X.G.); (G.G.)
| | - Bowen Li
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Z.Z.); (B.L.); (Y.X.); (M.L.); (H.Z.); (X.G.); (G.G.)
| | - Yu Xiao
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Z.Z.); (B.L.); (Y.X.); (M.L.); (H.Z.); (X.G.); (G.G.)
| | - Mengjuan Li
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Z.Z.); (B.L.); (Y.X.); (M.L.); (H.Z.); (X.G.); (G.G.)
| | - Hui Zeng
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Z.Z.); (B.L.); (Y.X.); (M.L.); (H.Z.); (X.G.); (G.G.)
| | - Xiaoyi Guo
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Z.Z.); (B.L.); (Y.X.); (M.L.); (H.Z.); (X.G.); (G.G.)
| | - Guojing Gu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, China; (Z.Z.); (B.L.); (Y.X.); (M.L.); (H.Z.); (X.G.); (G.G.)
| |
Collapse
|
14
|
Disruption of VirB6 Paralogs in Anaplasma phagocytophilum Attenuates Its Growth. J Bacteriol 2020; 202:JB.00301-20. [PMID: 32928930 PMCID: PMC7648143 DOI: 10.1128/jb.00301-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/08/2020] [Indexed: 01/25/2023] Open
Abstract
Knowledge of the T4SS is derived from model systems, such as Agrobacterium tumefaciens. The structure of the T4SS in Rickettsiales differs from the classical arrangement. These differences include missing and duplicated components with structural alterations. Particularly, two sequenced virB6-4 genes encode unusual C-terminal structural extensions resulting in proteins of 4,322 (GenBank accession number AGR79286.1) and 9,935 (GenBank accession number ANC34101.1) amino acids. To understand how the T4SS is used in A. phagocytophilum, we describe the expression of the virB6 paralogs and explore their role as the bacteria replicate within its host cell. Conclusions about the importance of these paralogs for colonization of human and tick cells are supported by the deficient phenotype of an A. phagocytophilum mutant isolated from a sequence-defined transposon insertion library. Many pathogenic bacteria translocate virulence factors into their eukaryotic hosts by means of type IV secretion systems (T4SS) spanning the inner and outer membranes. Genes encoding components of these systems have been identified within the order Rickettsiales based upon their sequence similarities to other prototypical systems. Anaplasma phagocytophilum strains are obligate intracellular, tick-borne bacteria that are members of this order. The organization of these components at the genomic level was determined in several Anaplasma phagocytophilum strains, showing overall conservation, with the exceptions of the virB2 and virB6 genes. The virB6 loci are characterized by the presence of four virB6 copies (virB6-1 through virB6-4) arranged in tandem within a gene cluster known as the sodB-virB operon. Interestingly, the virB6-4 gene varies significantly in length among different strains due to extensive tandem repeats at the 3′ end. To gain an understanding of how these enigmatic virB6 genes function in A. phagocytophilum, we investigated their expression in infected human and tick cells. Our results show that these genes are expressed by A. phagocytophilum replicating in both cell types and that VirB6-3 and VirB6-4 proteins are surface exposed. Analysis of an A. phagocytophilum mutant carrying the Himar1 transposon within the virB6-4 gene demonstrated that the insertion not only disrupted its expression but also exerted a polar effect on the sodB-virB operon. Moreover, the altered expression of genes within this operon was associated with the attenuated in vitro growth of A. phagocytophilum in human and tick cells, indicating the importance of these genes in the physiology of this obligate intracellular bacterium in such different environments. IMPORTANCE Knowledge of the T4SS is derived from model systems, such as Agrobacterium tumefaciens. The structure of the T4SS in Rickettsiales differs from the classical arrangement. These differences include missing and duplicated components with structural alterations. Particularly, two sequenced virB6-4 genes encode unusual C-terminal structural extensions resulting in proteins of 4,322 (GenBank accession number AGR79286.1) and 9,935 (GenBank accession number ANC34101.1) amino acids. To understand how the T4SS is used in A. phagocytophilum, we describe the expression of the virB6 paralogs and explore their role as the bacteria replicate within its host cell. Conclusions about the importance of these paralogs for colonization of human and tick cells are supported by the deficient phenotype of an A. phagocytophilum mutant isolated from a sequence-defined transposon insertion library.
Collapse
|
15
|
Khan M, Harms JS, Liu Y, Eickhoff J, Tan JW, Hu T, Cai F, Guimaraes E, Oliveira SC, Dahl R, Cheng Y, Gutman D, Barber GN, Splitter GA, Smith JA. Brucella suppress STING expression via miR-24 to enhance infection. PLoS Pathog 2020; 16:e1009020. [PMID: 33108406 PMCID: PMC7647118 DOI: 10.1371/journal.ppat.1009020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 11/06/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022] Open
Abstract
Brucellosis, caused by a number of Brucella species, remains the most prevalent zoonotic disease worldwide. Brucella establish chronic infections within host macrophages despite triggering cytosolic innate immune sensors, including Stimulator of Interferon Genes (STING), which potentially limit infection. In this study, STING was required for control of chronic Brucella infection in vivo. However, early during infection, Brucella down-regulated STING mRNA and protein. Down-regulation occurred post-transcriptionally, required live bacteria, the Brucella type IV secretion system, and was independent of host IRE1-RNase activity. STING suppression occurred in MyD88-/- macrophages and was not induced by Toll-like receptor agonists or purified Brucella lipopolysaccharide (LPS). Rather, Brucella induced a STING-targeting microRNA, miR-24-2, in a type IV secretion system-dependent manner. Furthermore, STING downregulation was inhibited by miR-24 anti-miRs and in Mirn23a locus-deficient macrophages. Failure to suppress STING expression in Mirn23a-/- macrophages correlated with diminished Brucella replication, and was rescued by exogenous miR-24. Mirn23a-/- mice were also more resistant to splenic colonization one week post infection. Anti-miR-24 potently suppressed replication in wild type, but much less in STING-/- macrophages, suggesting most of the impact of miR-24 induction on replication occurred via STING suppression. In summary, Brucella sabotages cytosolic surveillance by miR-24-dependent suppression of STING expression; post-STING activation “damage control” via targeted STING destruction may enable establishment of chronic infection. Cytosolic pattern recognition receptors, such as the nucleotide-activated STING molecule, play a critical role in the innate immune system by detecting the presence of intracellular invaders. Brucella bacterial species establish chronic infections in macrophages despite initially activating STING. STING participates in the control of Brucella infection, as mice or cells lacking STING show a higher burden of Brucella infection. However, we have found that early following infection, Brucella upregulates a microRNA, miR-24, that targets the STING messenger RNA, resulting in lower STING levels. Dead bacteria or bacteria lacking a functional type IV secretion system were defective at upregulating miR-24 and STING suppression, suggesting an active bacteria-driven process. Failure to upregulate miR-24 and suppress STING greatly compromised the capacity of Brucella to replicate inside macrophages and in mice. Thus, although Brucella initially activate STING during infection, the ensuing STING downregulation serves as a “damage control” mechanism, enabling intracellular infection. Viruses have long been known to target immune sensors such as STING. Our results indicate that intracellular bacterial pathogens also directly target innate immune receptors to enhance their infectious success.
Collapse
Affiliation(s)
- Mike Khan
- Cellular and Molecular Pathology Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jerome S. Harms
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Yiping Liu
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jens Eickhoff
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jin Wen Tan
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Tony Hu
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Fengwei Cai
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Erika Guimaraes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte-Minas Gerais, Brazil
- Programa de Pós-Graduação em Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sergio Costa Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte-Minas Gerais, Brazil
| | - Richard Dahl
- Department of Microbiology and Immunology, Indiana University School of Medicine, South Bend, Indiana, United States of America
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Yong Cheng
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Delia Gutman
- Department of Cell Biology, University of Miami, Miami, Florida, United States of America
| | - Glen N. Barber
- Department of Cell Biology, University of Miami, Miami, Florida, United States of America
| | - Gary A. Splitter
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Judith A. Smith
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
16
|
Leung MHY, Tong X, Bastien P, Guinot F, Tenenhaus A, Appenzeller BMR, Betts RJ, Mezzache S, Li J, Bourokba N, Breton L, Clavaud C, Lee PKH. Changes of the human skin microbiota upon chronic exposure to polycyclic aromatic hydrocarbon pollutants. MICROBIOME 2020; 8:100. [PMID: 32591010 PMCID: PMC7320578 DOI: 10.1186/s40168-020-00874-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/20/2020] [Indexed: 05/25/2023]
Abstract
BACKGROUND Polycyclic aromatic hydrocarbons (PAHs) are of environmental and public health concerns and contribute to adverse skin attributes such as premature skin aging and pigmentary disorder. However, little information is available on the potential roles of chronic urban PAH pollutant exposure on the cutaneous microbiota. Given the roles of the skin microbiota have on healthy and undesirable skin phenotypes and the relationships between PAHs and skin properties, we hypothesize that exposure of PAHs may be associated with changes in the cutaneous microbiota. In this study, the skin microbiota of over two hundred Chinese individuals from two cities in China with varying exposure levels of PAHs were characterized by bacterial and fungal amplicon and shotgun metagenomics sequencing. RESULTS Skin site and city were strong parameters in changing microbial communities and their assembly processes. Reductions of bacterial-fungal microbial network structural integrity and stability were associated with skin conditions (acne and dandruff). Multivariate analysis revealed associations between abundances of Propionibacterium and Malassezia with host properties and pollutant exposure levels. Shannon diversity increase was correlated to exposure levels of PAHs in a dose-dependent manner. Shotgun metagenomics analysis of samples (n = 32) from individuals of the lowest and highest exposure levels of PAHs further highlighted associations between the PAHs quantified and decrease in abundances of skin commensals and increase in oral bacteria. Functional analysis identified associations between levels of PAHs and abundance of microbial genes of metabolic and other pathways with potential importance in host-microbe interactions as well as degradation of aromatic compounds. CONCLUSIONS The results in this study demonstrated the changes in composition and functional capacities of the cutaneous microbiota associated with chronic exposure levels of PAHs. Findings from this study will aid the development of strategies to harness the microbiota in protecting the skin against pollutants. Video Abstract.
Collapse
Affiliation(s)
- Marcus H. Y. Leung
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Xinzhao Tong
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | | | - Florent Guinot
- L’Oréal Research and Innovation, Aulnay-sous-Bois, France
| | - Arthur Tenenhaus
- CentraleSupelec-L2S-Laboratoire des signaux et systèmes, Brain and Spine Institute, Université Paris-Sud, Orsay, France
| | | | | | | | - Jing Li
- L’Oréal Research and Innovation, Pudong, China
| | | | - Lionel Breton
- L’Oréal Research and Innovation, Aulnay-sous-Bois, France
| | - Cécile Clavaud
- L’Oréal Research and Innovation, Aulnay-sous-Bois, France
| | - Patrick K. H. Lee
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
17
|
Yi J, Wang Y, Li Q, Zhang H, Shao Z, Deng X, He J, Xiao C, Wang Z, Wang Y, Chen C. Interaction between Brucella melitensis 16M and small ubiquitin-related modifier 1 and E2 conjugating enzyme 9 in mouse RAW264.7 macrophages. J Vet Sci 2020; 20:e54. [PMID: 31565897 PMCID: PMC6769333 DOI: 10.4142/jvs.2019.20.e54] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/09/2019] [Accepted: 07/26/2019] [Indexed: 11/20/2022] Open
Abstract
Brucella is an intracellular pathogen that invades a host and settles in its immune cells; however, the mechanism of its intracellular survival is unclear. Modification of small ubiquitin-related modifier (SUMO) occurs in many cellular activities. E2 conjugating enzyme 9 (Ubc9) is the only reported ubiquitin-conjugating enzyme that links the SUMO molecule with a target protein. Brucella's intracellular survival mechanism has not been studied with respect to SUMO-related proteins and Ubc9. Therefore, to investigate the relationship between Brucella melitensis 16M and SUMO, we constructed plasmids and cells lines suitable for overexpression and knockdown of SUMO1 and Ubc9 genes. Brucella 16M activated SUMO1/Ubc9 expression in a time-dependent manner, and Brucella 16M intracellular survival was inhibited by SUMO1/Ubc9 overexpression and promoted by SUMO1/Ubc9 depletion. In macrophages, Brucella 16M-dependent apoptosis and immune factors were induced by SUMO1/Ubc9 overexpression and restricted by SUMO1/Ubc9 depletion. We noted no effect on the expressions of SUMO1 and Ubc9 in B. melitensis 16M lipopolysaccharide-prestimulated mouse RAW264.7 macrophages. Additionally, intracellular survival of the 16M△VirB2 mutant was lower than that of Brucella 16M (p < 0.05). VirB2 can affect expression levels of Ubc9, thereby increasing intracellular survival of Brucella in macrophages at the late stage of infection. Collectively, our results demonstrate that B. melitensis 16M may use the VirB IV secretion system of Brucella to interact with SUMO-related proteins during infection of host cells, which interferes with SUMO function and promotes pathogen survival in host cells.
Collapse
Affiliation(s)
- Jihai Yi
- Department of Veterinary Medicine, College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| | - Yueli Wang
- Department of Veterinary Medicine, College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| | - Qifeng Li
- Department of Veterinary Medicine, College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| | - Huan Zhang
- Department of Veterinary Medicine, College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| | - Zhiran Shao
- Department of Veterinary Medicine, College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| | - XiaoYu Deng
- Department of Veterinary Medicine, College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| | - Jinke He
- Department of Biology, School of Life Science, Shihezi University, Shihezi 832000, China
| | - Chencheng Xiao
- Department of Veterinary Medicine, College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| | - Zhen Wang
- Department of Veterinary Medicine, College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| | - Yong Wang
- Department of Veterinary Medicine, College of Animal Science and Technology, Shihezi University, Shihezi 832000, China.
| | - Chuangfu Chen
- Department of Veterinary Medicine, College of Animal Science and Technology, Shihezi University, Shihezi 832000, China.
| |
Collapse
|
18
|
Deng Y, Liu X, Duan K, Peng Q. Research Progress on Brucellosis. Curr Med Chem 2019; 26:5598-5608. [PMID: 29745323 DOI: 10.2174/0929867325666180510125009] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 02/09/2018] [Accepted: 05/02/2018] [Indexed: 01/08/2023]
Abstract
Brucellosis is a debilitating febrile illness caused by an intracellular Brucella. The disease is distributed in humans and animals widely, especially in developing countries. Ten species are included in the genus Brucella nowadays; four species of them are pathogenic to humans, which make brucellosis a zoonosis with more than 500,000 new cases reported annually. For human brucellosis, the most pathogenic species is B. melitensis followed by B. suis, while B. abortus is the mildest type of brucellosis. The infection mechanism of Brucella is complicated and mostly relies on its virulence factors. The therapy of the disease contains vaccination and antibiotic. However, there are some defects in currently available vaccines such as the lower protective level and safety. Thus, safe and efficient vaccines for brucellosis are still awaited. The dual therapy of antibacterial is effective in the treatment of brucellosis if a rapid and exact detection method is found.
Collapse
Affiliation(s)
- Yuming Deng
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China
| | - Xinyue Liu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China
| | - Kaifang Duan
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China
| | - Qisheng Peng
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China
| |
Collapse
|
19
|
Byndloss MX, Tsai AY, Walker GT, Miller CN, Young BM, English BC, Seyffert N, Kerrinnes T, de Jong MF, Atluri VL, Winter MG, Celli J, Tsolis RM. Brucella abortus Infection of Placental Trophoblasts Triggers Endoplasmic Reticulum Stress-Mediated Cell Death and Fetal Loss via Type IV Secretion System-Dependent Activation of CHOP. mBio 2019; 10:e01538-19. [PMID: 31337727 PMCID: PMC6650558 DOI: 10.1128/mbio.01538-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 06/24/2019] [Indexed: 01/23/2023] Open
Abstract
Subversion of endoplasmic reticulum (ER) function is a feature shared by multiple intracellular bacteria and viruses, and in many cases this disruption of cellular function activates pathways of the unfolded protein response (UPR). In the case of infection with Brucella abortus, the etiologic agent of brucellosis, the unfolded protein response in the infected placenta contributes to placentitis and abortion, leading to pathogen transmission. Here we show that B. abortus infection of pregnant mice led to death of infected placental trophoblasts in a manner that depended on the VirB type IV secretion system (T4SS) and its effector VceC. The trophoblast death program required the ER stress-induced transcription factor CHOP. While NOD1/NOD2 expression in macrophages contributed to ER stress-induced inflammation, these receptors did not play a role in trophoblast death. Both placentitis and abortion were independent of apoptosis-associated Speck-like protein containing a caspase activation and recruitment domain (ASC). These studies show that B. abortus uses its T4SS to induce cell-type-specific responses to ER stress in trophoblasts that trigger placental inflammation and abortion. Our results suggest further that in B. abortus the T4SS and its effectors are under selection as bacterial transmission factors.IMPORTANCEBrucella abortus infects the placenta of pregnant cows, where it replicates to high levels and triggers abortion of the calf. The aborted material is highly infectious and transmits infection to both cows and humans, but very little is known about how B. abortus causes abortion. By studying this infection in pregnant mice, we discovered that B. abortus kills trophoblasts, which are important cells for maintaining pregnancy. This killing required an injected bacterial protein (VceC) that triggered an endoplasmic reticulum (ER) stress response in the trophoblast. By inhibiting ER stress or infecting mice that lack CHOP, a protein induced by ER stress, we could prevent death of trophoblasts, reduce inflammation, and increase the viability of the pups. Our results suggest that B. abortus injects VceC into placental trophoblasts to promote its transmission by abortion.
Collapse
Affiliation(s)
- Mariana X Byndloss
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, USA
| | - April Y Tsai
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, USA
| | - Gregory T Walker
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, USA
| | - Cheryl N Miller
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, USA
| | - Briana M Young
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, USA
| | - Bevin C English
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, USA
| | - Núbia Seyffert
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, USA
| | - Tobias Kerrinnes
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, USA
| | - Maarten F de Jong
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, USA
| | - Vidya L Atluri
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, USA
| | - Maria G Winter
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, USA
| | - Jean Celli
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, USA
| | - Renée M Tsolis
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, USA
| |
Collapse
|
20
|
Demars A, Lison A, Machelart A, Van Vyve M, Potemberg G, Vanderwinden JM, De Bolle X, Letesson JJ, Muraille E. Route of Infection Strongly Impacts the Host-Pathogen Relationship. Front Immunol 2019; 10:1589. [PMID: 31354728 PMCID: PMC6637429 DOI: 10.3389/fimmu.2019.01589] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/25/2019] [Indexed: 12/24/2022] Open
Abstract
Live attenuated vaccines play a key role in the control of many human and animal pathogens. Their rational development is usually helped by identification of the reservoir of infection, the lymphoid subpopulations associated with protective immunity as well as the virulence genes involved in pathogen persistence. Here, we compared the course of Brucella melitensis infection in C57BL/6 mice infected via intraperitoneal (i.p.), intranasal (i.n.) and intradermal (i.d.) route and demonstrated that the route of infection strongly impacts all of these parameters. Following i.p. and i.n. infection, most infected cells observed in the spleen or lung were F4/80+ myeloid cells. In striking contrast, infected Ly6G+ neutrophils and CD140a+ fibroblasts were also observed in the skin after i.d. infection. The virB operon encoding for the type IV secretion system is considered essential to deflecting vacuolar trafficking in phagocytic cells and allows Brucella to multiply and persist. Unexpectedly, the ΔvirB Brucella strain, which does not persist in the lung after i.n. infection, persists longer in skin tissues than the wild strain after i.d. infection. While the CD4+ T cell-mediated Th1 response is indispensable to controlling the Brucella challenge in the i.p. model, it is dispensable for the control of Brucella in the i.d. and i.n. models. Similarly, B cells are indispensable in the i.p. and i.d. models but dispensable in the i.n. model. γδ+ T cells appear able to compensate for the absence of αβ+ T cells in the i.d. model but not in the other models. Taken together, our results demonstrate the crucial importance of the route of infection for the host pathogen relationship.
Collapse
Affiliation(s)
- Aurore Demars
- Unité de Recherche en Biologie des Microorganismes, Laboratoire d'Immunologie et de Microbiologie, NARILIS, Université de Namur, Namur, Belgium
| | - Aurore Lison
- Unité de Recherche en Biologie des Microorganismes, Laboratoire d'Immunologie et de Microbiologie, NARILIS, Université de Namur, Namur, Belgium
| | - Arnaud Machelart
- Unité de Recherche en Biologie des Microorganismes, Laboratoire d'Immunologie et de Microbiologie, NARILIS, Université de Namur, Namur, Belgium
| | - Margaux Van Vyve
- Unité de Recherche en Biologie des Microorganismes, Laboratoire d'Immunologie et de Microbiologie, NARILIS, Université de Namur, Namur, Belgium
| | - Georges Potemberg
- Unité de Recherche en Biologie des Microorganismes, Laboratoire d'Immunologie et de Microbiologie, NARILIS, Université de Namur, Namur, Belgium
| | | | - Xavier De Bolle
- Unité de Recherche en Biologie des Microorganismes, Laboratoire d'Immunologie et de Microbiologie, NARILIS, Université de Namur, Namur, Belgium
| | - Jean-Jacques Letesson
- Unité de Recherche en Biologie des Microorganismes, Laboratoire d'Immunologie et de Microbiologie, NARILIS, Université de Namur, Namur, Belgium
| | - Eric Muraille
- Unité de Recherche en Biologie des Microorganismes, Laboratoire d'Immunologie et de Microbiologie, NARILIS, Université de Namur, Namur, Belgium
- Laboratoire de Parasitologie, Faculté de Médecine, Université Libre de Bruxelles, Bruxelles, Belgium
| |
Collapse
|
21
|
Hou H, Liu X, Peng Q. The advances in brucellosis vaccines. Vaccine 2019; 37:3981-3988. [PMID: 31176541 DOI: 10.1016/j.vaccine.2019.05.084] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 05/04/2019] [Accepted: 05/21/2019] [Indexed: 01/18/2023]
Abstract
Brucellosis is a worldwide zoonosis affecting animal and human health. Till now, there is no effective vaccine licensed for brucellosis in humans. Although M5, H38 and 45/20 vaccines were used to prevent animal brucellosis in the early stages, the currently used animal vaccines are S19, Rev.1, S2, RB51 and SR82. However, these vaccines still have several drawbacks such as residual virulence and interfering conventional serological tests. With the development of DNA recombination technologies and the completion of the sequence of Brucella genome, much research focuses on the search for potential safer and more effective vaccines. Preliminary studies have demonstrated that new vaccines, including genetically engineered attenuated vaccines, subunit vaccines and other potential vaccines, have higher levels of protection, but there are still some problems. In this paper, we briefly review the main vaccines that have been used in controlling the brucellosis for decades and the progress in the development of new brucellosis vaccines.
Collapse
Affiliation(s)
- Huanhuan Hou
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China
| | - Xiaofeng Liu
- Tumor Hospital of Jilin Province, Changchun 130021, China
| | - Qisheng Peng
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China.
| |
Collapse
|
22
|
Assessment of Survival and Replication of Brucella spp. in Murine Peritoneal Macrophages. Methods Mol Biol 2019. [PMID: 30798532 DOI: 10.1007/978-1-4939-9167-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Brucella spp. are bacteria that naturally infect a variety of domesticated and wild animals leading to abortions and infertility, and these bacteria are also capable of causing debilitating human infections, which often result from human exposure to infected animals and animal products. The brucellae are intracellular pathogens that reside in host cells, including macrophages and dendritic cells, and it is paramount for the pathogenesis of Brucella that the bacteria are able to survive and replicate in these host cells. The methods outlined in this chapter can be employed to study the interactions between Brucella strains and primary murine peritoneal macrophages.
Collapse
|
23
|
Hisham Y, Ashhab Y. Identification of Cross-Protective Potential Antigens against Pathogenic Brucella spp. through Combining Pan-Genome Analysis with Reverse Vaccinology. J Immunol Res 2018; 2018:1474517. [PMID: 30622973 PMCID: PMC6304850 DOI: 10.1155/2018/1474517] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 11/04/2018] [Indexed: 01/18/2023] Open
Abstract
Brucellosis is a zoonotic infectious disease caused by bacteria of the genus Brucella. Brucella melitensis, Brucella abortus, and Brucella suis are the most pathogenic species of this genus causing the majority of human and domestic animal brucellosis. There is a need to develop a safe and potent subunit vaccine to overcome the serious drawbacks of the live attenuated Brucella vaccines. The aim of this work was to discover antigen candidates conserved among the three pathogenic species. In this study, we employed a reverse vaccinology strategy to compute the core proteome of 90 completed genomes: 55 B. melitensis, 17 B. abortus, and 18 B. suis. The core proteome was analyzed by a metasubcellular localization prediction pipeline to identify surface-associated proteins. The identified proteins were thoroughly analyzed using various in silico tools to obtain the most potential protective antigens. The number of core proteins obtained from analyzing the 90 proteomes was 1939 proteins. The surface-associated proteins were 177. The number of potential antigens was 87; those with adhesion score ≥ 0.5 were considered antigen with "high potential," while those with a score of 0.4-0.5 were considered antigens with "intermediate potential." According to a cumulative score derived from protein antigenicity, density of MHC-I and MHC-II epitopes, MHC allele coverage, and B-cell epitope density scores, a final list of 34 potential antigens was obtained. Remarkably, most of the 34 proteins are associated with bacterial adhesion, invasion, evasion, and adaptation to the hostile intracellular environment of macrophages which is adjusted to deprive Brucella of required nutrients. Our results provide a manageable list of potential protective antigens for developing a potent vaccine against brucellosis. Moreover, our elaborated analysis can provide further insights into novel Brucella virulence factors. Our next step is to test some of these antigens using an appropriate antigen delivery system.
Collapse
Affiliation(s)
- Yasmin Hisham
- Palestine-Korea Biotechnology Center, Palestine Polytechnic University, Hebron, State of Palestine
| | - Yaqoub Ashhab
- Palestine-Korea Biotechnology Center, Palestine Polytechnic University, Hebron, State of Palestine
| |
Collapse
|
24
|
Gheibi A, Khanahmad H, Kashfi K, Sarmadi M, Khorramizadeh MR. Development of new generation of vaccines for Brucella abortus. Heliyon 2018; 4:e01079. [PMID: 30603712 PMCID: PMC6307385 DOI: 10.1016/j.heliyon.2018.e01079] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 01/18/2023] Open
Abstract
Brucella abortus is a Gram-negative facultative and intracellular bacteria, it causes bovine brucellosis, a zoonotic disease that is responsible for considerable economic loss to owners of domesticated animals and can cause problems in otherwise healthy humans. There are a few available live attenuated vaccines for animal immunization against brucellosis; however, these have significant side effects and offer insufficient protective efficacy. Thus, the need for more research into the Molecular pathobiology and immunological properties of B. abortus that would lead to the development of better and safer vaccines. In this paper we have reviewed the main aspects of the pathology and the responsive immunological mechanisms, we have also covered current and new prospective vaccines against B. abortus.
Collapse
Affiliation(s)
- Azam Gheibi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, USA
| | - Mahdieh Sarmadi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Reza Khorramizadeh
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Hop HT, Arayan LT, Huy TXN, Reyes AWB, Baek EJ, Min W, Lee HJ, Rhee MH, Watanabe K, Chang HH, Kim S. Lipocalin 2 (Lcn2) interferes with iron uptake by Brucella abortus and dampens immunoregulation during infection of RAW 264.7 macrophages. Cell Microbiol 2017; 20. [PMID: 29168343 DOI: 10.1111/cmi.12813] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 11/14/2017] [Accepted: 11/17/2017] [Indexed: 01/19/2023]
Abstract
Lipocalin 2 (Lcn2) is an important innate immunity component against bacterial pathogens. In this study, we report that Lcn2 is induced by Brucella (B.) abortus infection and significantly contributes to the restriction of intracellular survival of Brucella in macrophages. We found that Lcn2 prevented iron uptake by B. abortus through two distinct mechanisms. First, Lcn2 is secreted to capture bacterial siderophore(s) and abrogate iron import by Brucella. Second, Lcn2 decreases the intracellular iron levels during Brucella infection, which probably deprives the invading Brucella of the iron source needed for growth. Suppression of Lcn2 signalling resulted in a marked induction of anti-inflammatory cytokine, interleukin 10, which was shown to play a major role in Lcn2-induced antibrucella immunity. Similarly, interleukin 6 was also found to be increased when Lcn2 signalling is abrogated; however, this induction was thought to be an alternative pathway that rescues the cell from infection when the effective Lnc2 pathway is repressed. Furthermore, Lcn2 deficiency also caused a marked decrease in brucellacidal effectors, such as reactive oxygen species and nitric oxide but not the phagolysosome fusion. Taken together, our results indicate that Lcn2 is required for the efficient restriction of intracellular B. abortus growth that is through limiting iron acquisition and shifting cells to pro-inflammatory brucellacidal activity in murine macrophages.
Collapse
Affiliation(s)
- Huynh Tan Hop
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Lauren Togonon Arayan
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Tran Xuan Ngoc Huy
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | | | - Eun Jin Baek
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Wongi Min
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Hu Jang Lee
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Man Hee Rhee
- College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Kenta Watanabe
- The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - Hong Hee Chang
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Suk Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea.,Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
26
|
Machelart A, Khadrawi A, Demars A, Willemart K, De Trez C, Letesson JJ, Muraille E. Chronic Brucella Infection Induces Selective and Persistent Interferon Gamma-Dependent Alterations of Marginal Zone Macrophages in the Spleen. Infect Immun 2017; 85:e00115-17. [PMID: 28808159 PMCID: PMC5649024 DOI: 10.1128/iai.00115-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 08/08/2017] [Indexed: 12/19/2022] Open
Abstract
The spleen is known as an important filter for blood-borne pathogens that are trapped by specialized macrophages in the marginal zone (MZ): the CD209+ MZ macrophages (MZMs) and the CD169+ marginal metallophilic macrophages (MMMs). Acute systemic infection strongly impacts MZ populations and the location of T and B lymphocytes. This phenomenon has been linked to reduced chemokine secretion by stromal cells. Brucella spp. are the causative agent of brucellosis, a widespread zoonotic disease. Here, we used Brucella melitensis infection as a model to investigate the impact of chronic stealth infection on splenic MZ macrophage populations. During the late phase of Brucella infection, we observed a loss of both MZMs and MMMs, with a durable disappearance of MZMs, leading to a reduction of the ability of the spleen to take up soluble antigens, beads, and unrelated bacteria. This effect appears to be selective as every other lymphoid and myeloid population analyzed increased during infection, which was also observed following Brucella abortus and Brucella suis infection. Comparison of wild-type and deficient mice suggested that MZ macrophage population loss is dependent on interferon gamma (IFN-γ) receptor but independent of T cells or tumor necrosis factor alpha receptor 1 (TNF-αR1) signaling pathways and is not correlated to an alteration of CCL19, CCL21, and CXCL13 chemokine mRNA expression. Our results suggest that MZ macrophage populations are particularly sensitive to persistent low-level IFN-γ-mediated inflammation and that Brucella infection could reduce the ability of the spleen to perform certain MZM- and MMM-dependent tasks, such as antigen delivery to lymphocytes and control of systemic infection.
Collapse
MESH Headings
- Animals
- Anti-Bacterial Agents/pharmacology
- B-Lymphocytes/immunology
- B-Lymphocytes/microbiology
- Brucella abortus/drug effects
- Brucella abortus/immunology
- Brucella abortus/pathogenicity
- Brucella melitensis/drug effects
- Brucella melitensis/immunology
- Brucella melitensis/pathogenicity
- Brucella suis/drug effects
- Brucella suis/immunology
- Brucella suis/pathogenicity
- Brucellosis/drug therapy
- Brucellosis/genetics
- Brucellosis/immunology
- Brucellosis/microbiology
- Chemokine CCL19/genetics
- Chemokine CCL19/immunology
- Chemokine CCL21/genetics
- Chemokine CCL21/immunology
- Chemokine CXCL13/genetics
- Chemokine CXCL13/immunology
- Chronic Disease
- Gene Expression Regulation
- Host-Pathogen Interactions
- Interferon-gamma/genetics
- Interferon-gamma/immunology
- Macrophages/immunology
- Macrophages/microbiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- RNA, Messenger/genetics
- RNA, Messenger/immunology
- Receptors, Interferon/deficiency
- Receptors, Interferon/genetics
- Receptors, Interferon/immunology
- Receptors, Tumor Necrosis Factor, Type I/deficiency
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/immunology
- Rifampin/pharmacology
- Signal Transduction
- Spleen/immunology
- Spleen/microbiology
- Streptomycin/pharmacology
- T-Lymphocytes/immunology
- T-Lymphocytes/microbiology
- Interferon gamma Receptor
Collapse
Affiliation(s)
- Arnaud Machelart
- Unité de Recherche en Biologie des Microorganismes, Laboratoire d'Immunologie et de Microbiologie, Université de Namur, Namur, Belgium
| | - Abir Khadrawi
- Unité de Recherche en Biologie des Microorganismes, Laboratoire d'Immunologie et de Microbiologie, Université de Namur, Namur, Belgium
| | - Aurore Demars
- Unité de Recherche en Biologie des Microorganismes, Laboratoire d'Immunologie et de Microbiologie, Université de Namur, Namur, Belgium
| | - Kevin Willemart
- Unité de Recherche en Biologie des Microorganismes, Laboratoire d'Immunologie et de Microbiologie, Université de Namur, Namur, Belgium
| | - Carl De Trez
- Research Unit of Cellular and Molecular Immunology, Vrije Universiteit Brussel and Vlaams Instituut voor Biotechnologie, Department of Structural Biology Research Center, Brussels, Belgium
| | - Jean-Jacques Letesson
- Unité de Recherche en Biologie des Microorganismes, Laboratoire d'Immunologie et de Microbiologie, Université de Namur, Namur, Belgium
| | - Eric Muraille
- Laboratoire de Parasitologie, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
27
|
Hop HT, Arayan LT, Reyes AWB, Huy TXN, Min W, Lee HJ, Son JS, Kim S. Simultaneous RNA-seq based transcriptional profiling of intracellular Brucella abortus and B. abortus-infected murine macrophages. Microb Pathog 2017; 113:57-67. [PMID: 29054743 DOI: 10.1016/j.micpath.2017.10.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 10/15/2017] [Accepted: 10/16/2017] [Indexed: 02/06/2023]
Abstract
Brucella is a zoonotic pathogen that survives within macrophages; however the replicative mechanisms involved are not fully understood. We describe the isolation of sufficient Brucella abortus RNA from primary host cell environment using modified reported methods for RNA-seq analysis, and simultaneously characterize the transcriptional profiles of intracellular B. abortus and bone marrow-derived macrophages (BMM) from BALB/c mice at 24 h (replicative phase) post-infection. Our results revealed that 25.12% (801/3190) and 16.16% (515/3190) of the total B. abortus genes were up-regulated and down-regulated at >2-fold, respectively as compared to the free-living B. abortus. Among >5-fold differentially expressed genes, the up-regulated genes are mostly involved in DNA, RNA manipulations as well as protein biosynthesis and secretion while the down-regulated genes are mainly involved in energy production and metabolism. On the other hand, the host responses during B. abortus infection revealed that 14.01% (6071/43,346) of BMM genes were reproducibly transcribed at >5-fold during infection. Transcription of cytokines, chemokines and transcriptional factors, such as tumor necrosis factor (Tnf), interleukin-1α (Il1α), interleukin-1β (Il1β), interleukin-6 (Il6), interleukin-12 (Il12), chemokine C-X-C motif (CXCL) family, nuclear factor kappa B (Nf-κb), signal transducer and activator of transcription 1 (Stat1), that may contribute to host defense were markedly induced while transcription of various genes involved in cell proliferation and metabolism were suppressed upon B. abortus infection. In conclusion, these data suggest that Brucella modulates gene expression in hostile intracellular environment while simultaneously alters the host pathways that may lead to the pathogen's intracellular survival and infection.
Collapse
Affiliation(s)
- Huynh Tan Hop
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Lauren Togonon Arayan
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | | | - Tran Xuan Ngoc Huy
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - WonGi Min
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Hu Jang Lee
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Jee Soo Son
- iNtRON Biotechnology, Inc., Room 903, JungAng Induspia, 137, Sagimakgol-ro, Jungwon-gu, Seongnam, Gyeonggi-do 13202, Republic of Korea
| | - Suk Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea; Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 660-701, Republic of Korea.
| |
Collapse
|
28
|
Lalsiamthara J, Lee JH. Development and trial of vaccines against Brucella. J Vet Sci 2017; 18:281-290. [PMID: 28859268 PMCID: PMC5583415 DOI: 10.4142/jvs.2017.18.s1.281] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/07/2017] [Accepted: 07/14/2017] [Indexed: 01/18/2023] Open
Abstract
The search for ideal brucellosis vaccines remains active today. Currently, no licensed human or canine anti-brucellosis vaccines are available. In bovines, the most successful vaccine (S19) is only used in calves, as adult vaccination results in orchitis in male, prolonged infection, and possible abortion complications in pregnant female cattle. Another widely deployed vaccine (RB51) has a low protective efficacy. An ideal vaccine should exhibit a safe profile as well as enhance protective efficacy. However, currently available vaccines exhibit one or more major drawbacks. Smooth live attenuated vaccines suffer shortcomings such as residual virulence and serodiagnostic interference. Inactivated vaccines, in general, confer relatively low levels of protection. Recent developments to improve brucellosis vaccines include generation of knockout mutants by targeting genes involved in metabolism, virulence, and the lipopolysaccharide synthesis pathway, as well as generation of DNA vaccines, mucosal vaccines, and live vectored vaccines, have all produced varying degrees of success. Herein, we briefly review the bacteriology, pathogenesis, immunological implications, candidate vaccines, vaccinations, and models related to Brucella.
Collapse
Affiliation(s)
| | - John Hwa Lee
- College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Korea
| |
Collapse
|
29
|
Abstract
Many bacterial pathogens can cause acute infections that are cleared with the onset of adaptive immunity, but a subset of these pathogens can establish persistent, and sometimes lifelong, infections. While bacteria that cause chronic infections are phylogenetically diverse, they share common features in their interactions with the host that enable a protracted period of colonization. This article will compare the persistence strategies of two chronic pathogens from the Proteobacteria, Brucella abortus and Salmonella enterica serovar Typhi, to consider how these two pathogens, which are very different at the genomic level, can utilize common strategies to evade immune clearance to cause chronic intracellular infections of the mononuclear phagocyte system.
Collapse
|
30
|
Hashemifar I, Yadegar A, Jazi FM, Amirmozafari N. Molecular prevalence of putative virulence-associated genes in Brucella melitensis and Brucella abortus isolates from human and livestock specimens in Iran. Microb Pathog 2017; 105:334-339. [PMID: 28284850 DOI: 10.1016/j.micpath.2017.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 01/08/2023]
Abstract
Molecular prevalence of nine putative virulence factors in two more prevalent Brucella species in Iranian patients and livestock was investigated. During five years (2010-2015), 120 human and animal specimens were collected from three geographical areas of Iran. All samples were cultured in blood culture media and subcultured into Brucella agar medium. Nine primer pairs were designed for detection of VirB2, VirB5, VceC, BtpA, BtpB, PrpA, BetB, BPE275 and BSPB virulence factors using PCR and sequence analysis. Totally, 68 Brucella isolates including 60 B. melitensis and 8 B. abortus were isolated from the human and animal specimens examined. Approximately, all B. melitensis and B. abortus strains were positive (100%) regarding btpA, btpB, virB5, vceC, bpe275, bspB, and virB2 genes except for prpA and betB that were detected in 86% and 97% of the strains, respectively. Significant relationships were found between the presence of prpA and human B. melitensis isolates (P = 0.04), and also between the presence of betB and human isolates of B. abortus (P = 0.03). In conclusion, our results revealed that Iranian Brucella strains, regardless of human or animal sources, are extremely virulent due to high prevalence of virulence attributes in almost all strains studied.
Collapse
Affiliation(s)
- Iman Hashemifar
- Microbiology Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Faramarz Masjedian Jazi
- Microbiology Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nour Amirmozafari
- Microbiology Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
31
|
The role of NLRP3 and AIM2 in inflammasome activation during Brucella abortus infection. Semin Immunopathol 2016; 39:215-223. [PMID: 27405866 DOI: 10.1007/s00281-016-0581-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/04/2016] [Indexed: 01/18/2023]
Abstract
The innate immune system is essential for the detection and elimination of bacterial pathogens. Upon inflammasome activation, caspase-1 cleaves pro-IL-1β and pro-IL-18 to their mature forms IL-1β and IL-18, respectively, and the cell undergoes inflammatory death termed pyroptosis. Here, we reviewed recent findings demonstrating that Brucella abortus ligands activate NLRP3 and AIM2 inflammasomes which lead to control of infection. This protective effect is due to the inflammatory response caused by IL-1β and IL-18 rather than cell death. Brucella DNA is sensed by AIM2 and bacteria-induced mitochondrial reactive oxygen species is detected by NLRP3. However, deregulation of pro-inflammatory cytokine production can lead to immunopathology. Nervous system invasion by bacteria of the genus Brucella results in an inflammatory disorder termed neurobrucellosis. Herein, we discuss the mechanism of caspase-1 activation and IL-1β secretion in glial cells infected with B. abortus. Our results demonstrate that the ASC inflammasome is indispensable for inducing the activation of caspase-1 and secretion of IL-1β upon infection of astrocytes and microglia with Brucella. Moreover, our results demonstrate that secretion of IL-1β by Brucella-infected glial cells depends on NLRP3 and AIM2 and leads to neurobrucellosis. Further, the inhibition of the host cell inflammasome as an immune evasion strategy has been described for bacterial pathogens. We discuss here that the bacterial type IV secretion system VirB is required for inflammasome activation in host cells during infection. Taken together, our results indicate that Brucella is sensed by ASC inflammasomes mainly NLRP3 and AIM2 that collectively orchestrate a robust caspase-1 activation and pro-inflammatory response.
Collapse
|
32
|
RNA-seq reveals the critical role of CspA in regulating Brucella melitensis metabolism and virulence. SCIENCE CHINA-LIFE SCIENCES 2016; 59:417-24. [PMID: 26740105 DOI: 10.1007/s11427-015-4981-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 11/23/2015] [Indexed: 10/22/2022]
Abstract
Brucella melitensis is a facultative intracellular bacterium that replicates within macrophages. The ability of Brucella to survive and multiply in the hostile environment of host macrophages is essential for its virulence. The cold shock protein CspA plays an important role in the virulence of B. melitensis. To analyze the genes regulated by CspA, the whole transcriptomes of B. melitensis NIΔcspA and its parental wild-type strain, B. melitensis NI, were sequenced and analyzed using the Solexa/Illumina sequencing platform. A total of 446 differentially expressed genes were identified, including 324 up-regulated and 122 down-regulated genes. Numerous genes identified are involved in amino acid, fatty acid, nitrogen, and energy metabolism. Interestingly, all genes involved in the type IV secretion system and LuxR-type regulatory protein VjbR were significantly down-regulated in NIΔcspA. In addition, an effector translocation assay confirmed that the function of T4SS in NIΔcspA is influenced by deletion of the cspA gene. These results revealed the differential phenomena associated with virulence and metabolism in NIΔcspA and NI, providing important information for understanding detailed CspA-regulated interaction networks and Brucella pathogenesis.
Collapse
|
33
|
Abstract
Brucellosis, caused by bacteria of the genus Brucella, is an important zoonotic infection that causes reproductive disease in domestic animals and chronic debilitating disease in humans. An intriguing aspect of Brucella infection is the ability of these bacteria to evade the host immune response, leading to pathogen persistence. Conversely, in the reproductive tract of infected animals, this stealthy pathogen is able to cause an acute severe inflammatory response. In this review, we discuss the different mechanisms used by Brucella to cause disease, with emphasis on its virulence factors and the dichotomy between chronic persistence and reproductive disease.
Collapse
Affiliation(s)
| | - Renee M Tsolis
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, California 95616; ,
| |
Collapse
|
34
|
Ke Y, Wang Y, Li W, Chen Z. Type IV secretion system of Brucella spp. and its effectors. Front Cell Infect Microbiol 2015; 5:72. [PMID: 26528442 PMCID: PMC4602199 DOI: 10.3389/fcimb.2015.00072] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 09/28/2015] [Indexed: 11/13/2022] Open
Abstract
Brucella spp. are intracellular bacterial pathogens that cause infection in domestic and wild animals. They are often used as model organisms to study intracellular bacterial infections. Brucella VirB T4SS is a key virulence factor that plays important roles in mediating intracellular survival and manipulating host immune response to infection. In this review, we discuss the roles of Brucella VirB T4SS and 15 effectors that are proposed to be crucial for Brucella pathogenesis. VirB T4SS regulates the inflammation response and manipulates vesicle trafficking inside host cells. VirB T4SS also plays crucial roles in the inhibition of the host immune response and intracellular survival during infection. Here, we list the key molecular events in the intracellular life cycle of Brucella that are potentially targeted by the VirB T4SS effectors. Elucidating the functions of these effectors will help clarify the molecular role of T4SS during infection. Furthermore, studying the effectors secreted by Brucella spp. might provide insights into the mechanisms used by the bacteria to hijack the host signaling pathways and aid in the development of better vaccines and therapies against brucellosis.
Collapse
Affiliation(s)
- Yuehua Ke
- Institute of Disease Control and Prevention, AMMS Beijing, China
| | - Yufei Wang
- Department of Laboratory Medicine, General Hospital of Chinese People's Armed Police Forces Beijing, China
| | - Wengfeng Li
- Department of Orthopedics, The First Affiliated Hospital of General Hospital of People's Liberation Army Beijing, China
| | - Zeliang Chen
- Institute of Disease Control and Prevention, AMMS Beijing, China
| |
Collapse
|
35
|
Macedo AA, Silva APC, Mol JPS, Costa LF, Garcia LNN, Araújo MS, Martins Filho OA, Paixão TA, Santos RL. The abcEDCBA-Encoded ABC Transporter and the virB Operon-Encoded Type IV Secretion System of Brucella ovis Are Critical for Intracellular Trafficking and Survival in Ovine Monocyte-Derived Macrophages. PLoS One 2015; 10:e0138131. [PMID: 26366863 PMCID: PMC4569489 DOI: 10.1371/journal.pone.0138131] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/25/2015] [Indexed: 12/24/2022] Open
Abstract
Brucella ovis infection is associated with epididymitis, orchitis and infertility in rams. Most of the information available on B. ovis and host cell interaction has been generated using murine macrophages or epithelial cell lines, but the interaction between B. ovis and primary ovine macrophages has not been studied. The aim of this study was to evaluate the role of the B. ovis abcEDCBA-encoded ABC transporter and the virB operon-encoded Type IV Secretion System (T4SS) during intracellular survival of B. ovis in ovine peripheral blood monocyte-derived macrophages. ΔabcBA and ΔvirB2 mutant strains were unable to survive in the intracellular environment when compared to the WT B. ovis at 48 hours post infection (hpi). In addition, these mutant strains cannot exclude the lysosomal marker LAMP1 from its vacuolar membrane, and their vacuoles do not acquire the endoplasmic reticulum marker calreticulin, which takes place in the WT B. ovis containing vacuole. Higher levels of nitric oxide production were observed in macrophages infected with WT B. ovis at 48 hpi when compared to macrophages infected with the ΔabcBA or ΔvirB2 mutant strains. Conversely, higher levels of reactive oxygen species were detected in macrophages infected with the ΔabcBA or ΔvirB2 mutant strains at 48 hpi when compared to macrophages infected with the WT strain. Our results demonstrate that B. ovis is able to persist and multiply in ovine macrophages, while ΔabcBA and ΔvirB2 mutations prevent intracellular multiplication, favor phagolysosome fusion, and impair maturation of the B. ovis vacuole towards an endoplasmic reticulum-derived compartment.
Collapse
Affiliation(s)
- Auricelio A. Macedo
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana P. C. Silva
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Juliana P. S. Mol
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luciana F. Costa
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luize N. N. Garcia
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marcio S. Araújo
- Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG, Brazil
| | | | - Tatiane A. Paixão
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Renato L. Santos
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- * E-mail:
| |
Collapse
|
36
|
Saeedinia AR, Zeinoddini M, Soleimani M, Sadeghizadeh M. A new method for simultaneous gene deletion and down-regulation in Brucella melitensis Rev.1. Microbiol Res 2015; 170:114-123. [PMID: 25249309 DOI: 10.1016/j.micres.2014.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 08/17/2014] [Accepted: 08/24/2014] [Indexed: 10/24/2022]
Abstract
In this study, our aim was to integrate an antisense expression cassette in bacterial chromosome for providing a long-term expression down-regulation in a bid to develop a new approach for simultaneous deletion and down-regulation of target genes in bacterial system. Therefore, we were used this approach for simultaneous deletion of the perosamine synthetase (per) gene and down-regulation of the virB1 expression in Brucella melitensis Rev.1. The per gene, which is one of the LPS O-chain coding genes, was replaced by homologous recombination with an antisense virB1 expression cassette together with kanamycin resistance cassette (kan(R)). Deletion of the per gene was characterized by PCR analysis and DNA sequencing. The expression of antisense virB1 cassette was confirmed by RT-PCR. Down-regulation of the virB1 mRNA expression was quantified by real-time RT-PCR using virB1 specific primers relative to the groEL reference gene. The survival rate of mutant strain was evaluated by CFU count in the BALB/c mice. The virB1 mRNA expression was down-regulated on average 10-fold in mutant strain as compared to parental strain. The loss of per gene function and decrease of the virB1 mRNA expression resulted in reduced entry and survival of the mutant Rev.1 strain in BALB/c mice splenocytes. We propose that this method can be used for simultaneous regulation of multiple genes expression.
Collapse
Affiliation(s)
- Ali Reza Saeedinia
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-175, Tehran, Iran.
| | - Mehdi Zeinoddini
- Department of Genetics, Science and Biotechnology Research Center, Mallek-Ashtar University of Technology, P.O. Box: 15875-1774, Tehran, Iran.
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box: 14115-111, Tehran, Iran.
| | - Majid Sadeghizadeh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-175, Tehran, Iran.
| |
Collapse
|
37
|
Silva TMA, Mol JPS, Winter MG, Atluri V, Xavier MN, Pires SF, Paixão TA, Andrade HM, Santos RL, Tsolis RM. The predicted ABC transporter AbcEDCBA is required for type IV secretion system expression and lysosomal evasion by Brucella ovis. PLoS One 2014; 9:e114532. [PMID: 25474545 PMCID: PMC4256435 DOI: 10.1371/journal.pone.0114532] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 11/10/2014] [Indexed: 12/23/2022] Open
Abstract
Brucella ovis is a major cause of reproductive failure in rams and it is one of the few well-described Brucella species that is not zoonotic. Previous work showed that a B. ovis mutant lacking a species-specific ABC transporter (ΔabcBA) was attenuated in mice and was unable to survive in macrophages. The aim of this study was to evaluate the role of this ABC transporter during intracellular survival of B. ovis. In HeLa cells, B. ovis WT was able to survive and replicate at later time point (48 hpi), whereas an ΔabcBA mutant was attenuated at 24 hpi. The reduced survival of the ΔabcBA mutant was associated with a decreased ability to exclude the lysosomal marker LAMP1 from its vacuolar membrane, suggesting a failure to establish a replicative niche. The ΔabcBA mutant showed a reduced abundance of the Type IV secretion system (T4SS) proteins VirB8 and VirB11 in both rich and acid media, when compared to WT B. ovis. However, mRNA levels of virB1, virB8, hutC, and vjbR were similar in both strains. These results support the notion that the ABC transporter encoded by abcEDCBA or its transported substrate acts at a post-transcriptional level to promote the optimal expression of the B. ovis T4SS within infected host cells.
Collapse
Affiliation(s)
- Teane M. A. Silva
- Departamento de Clínica e Cirurgia Veterinária, Escola de Veterinária da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Juliana P. S. Mol
- Departamento de Clínica e Cirurgia Veterinária, Escola de Veterinária da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Maria G. Winter
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
| | - Vidya Atluri
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
| | - Mariana N. Xavier
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
| | - Simone F. Pires
- Departamento de Parasitologia, Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Tatiane A. Paixão
- Departamento de Patologia Geral, Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Hélida M. Andrade
- Departamento de Parasitologia, Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Renato L. Santos
- Departamento de Clínica e Cirurgia Veterinária, Escola de Veterinária da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail: (RLS); (RMT)
| | - Renee M. Tsolis
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
- * E-mail: (RLS); (RMT)
| |
Collapse
|
38
|
Mol JPS, Costa EA, Carvalho AF, Sun YH, Tsolis RM, Paixão TA, Santos RL. Early transcriptional responses of bovine chorioallantoic membrane explants to wild type, ΔvirB2 or ΔbtpB Brucella abortus infection. PLoS One 2014; 9:e108606. [PMID: 25259715 PMCID: PMC4178178 DOI: 10.1371/journal.pone.0108606] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 08/29/2014] [Indexed: 12/23/2022] Open
Abstract
The pathogenesis of the Brucella-induced inflammatory response in the bovine placenta is not completely understood. In this study we evaluated the role of the B. abortus Type IV secretion system and the anti-inflammatory factor BtpB in early interactions with bovine placental tissues. Transcription profiles of chorioallantoic membrane (CAM) explants inoculated with wild type (strain 2308), ΔvirB2 or ΔbtpB Brucella abortus were compared by microarray analysis at 4 hours post infection. Transcripts with significant variation (>2 fold change; P<0.05) were functionally classified, and transcripts related to defense and inflammation were assessed by quantitative real time RT-PCR. Infection with wild type B. abortus resulted in slightly more genes with decreased than increased transcription levels. Conversely, infection of trophoblastic cells with the ΔvirB2 or the ΔbtpB mutant strains, that lack a functional T4SS or that has impaired inhibition of TLR signaling, respectively, induced more upregulated than downregulated genes. Wild type Brucella abortus impaired transcription of host genes related to immune response when compared to ΔvirB and ΔbtpB mutants. Our findings suggest that proinflammatory genes are negatively modulated in bovine trophoblastic cells at early stages of infection. The virB operon and btpB are directly or indirectly related to modulation of these host genes. These results shed light on the early interactions between B. abortus and placental tissue that ultimately culminate in inflammatory pathology and abortion.
Collapse
Affiliation(s)
- Juliana P. S. Mol
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Erica A. Costa
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alex F. Carvalho
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Yao-Hui Sun
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Reneé M. Tsolis
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Tatiane A. Paixão
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Renato L. Santos
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- * E-mail:
| |
Collapse
|
39
|
Gokulan K, Khare S, Rooney AW, Han J, Lynne AM, Foley SL. Impact of plasmids, including those encodingVirB4/D4 type IV secretion systems, on Salmonella enterica serovar Heidelberg virulence in macrophages and epithelial cells. PLoS One 2013; 8:e77866. [PMID: 24098597 PMCID: PMC3789690 DOI: 10.1371/journal.pone.0077866] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 09/11/2013] [Indexed: 12/11/2022] Open
Abstract
Salmonella enterica serovar Heidelberg (S. Heidelberg) can cause foodborne illness in humans following the consumption of contaminated meat and poultry products. Recent studies from our laboratory have demonstrated that certain S. Heidelberg isolated from food-animal sources harbor multiple transmissible plasmids with genes that encode antimicrobial resistance, virulence and a VirB4/D4 type-IV secretion system. This study examines the potential role of these transmissible plasmids in bacterial uptake and survival in intestinal epithelial cells and macrophages, and the molecular basis of host immune system modulation that may be associated with disease progression. A series of transconjugant and transformant strains were developed with different combinations of the plasmids to determine the roles of the individual and combinations of plasmids on virulence. Overall the Salmonella strains containing the VirB/D4 T4SS plasmids entered and survived in epithelial cells and macrophages to a greater degree than those without the plasmid, even though they carried other plasmid types. During entry in macrophages, the VirB/D4 T4SS encoding genes are up-regulated in a time-dependent fashion. When the potential mechanisms for increased virulence were examined using an antibacterial Response PCR Array, the strain containing the T4SS down regulated several host innate immune response genes which likely contributed to the increased uptake and survival within macrophages and epithelial cells.
Collapse
Affiliation(s)
- Kuppan Gokulan
- Division of Microbiology, FDA National Center for Toxicological Research, Jefferson, Arkansas, United States of America
| | - Sangeeta Khare
- Division of Microbiology, FDA National Center for Toxicological Research, Jefferson, Arkansas, United States of America
| | - Anthony W. Rooney
- Division of Microbiology, FDA National Center for Toxicological Research, Jefferson, Arkansas, United States of America
- Department of Chemistry, University of Minnesota-Morris, Morris, Minnesota, United States of America
| | - Jing Han
- Division of Microbiology, FDA National Center for Toxicological Research, Jefferson, Arkansas, United States of America
| | - Aaron M. Lynne
- Department of Biological Sciences, Sam Houston State University, Huntsville, Texas, United States of America
| | - Steven L. Foley
- Division of Microbiology, FDA National Center for Toxicological Research, Jefferson, Arkansas, United States of America
- * E-mail:
| |
Collapse
|
40
|
Abstract
Host cytokine responses to Brucella abortus infection are elicited predominantly by the deployment of a type IV secretion system (T4SS). However, the mechanism by which the T4SS elicits inflammation remains unknown. Here we show that translocation of the T4SS substrate VceC into host cells induces proinflammatory responses. Ectopically expressed VceC interacted with the endoplasmic reticulum (ER) chaperone BiP/Grp78 and localized to the ER of HeLa cells. ER localization of VceC required a transmembrane domain in its N terminus. Notably, the expression of VceC resulted in reorganization of ER structures. In macrophages, VceC was required for B. abortus-induced inflammation by induction of the unfolded protein response by a process requiring inositol-requiring transmembrane kinase/endonuclease 1. Altogether, these findings suggest that translocation of the T4SS effector VceC induces ER stress, which results in the induction of proinflammatory host cell responses during B. abortus infection. IMPORTANCE Brucella species are pathogens that require a type IV secretion system (T4SS) to survive in host cells and to maintain chronic infection. By as-yet-unknown pathways, the T4SS also elicits inflammatory responses in infected cells. Here we show that inflammation caused by the T4SS results in part from the sensing of a T4SS substrate, VceC, that localizes to the endoplasmic reticulum (ER), an intracellular site of Brucella replication. Possibly via binding of the ER chaperone BiP, VceC causes ER stress with concomitant expression of proinflammatory cytokines. Thus, induction of the unfolded protein response may represent a novel pathway by which host cells can detect pathogens deploying a T4SS.
Collapse
|
41
|
Erythritol triggers expression of virulence traits in Brucella melitensis. Microbes Infect 2013; 15:440-9. [PMID: 23421980 DOI: 10.1016/j.micinf.2013.02.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 01/29/2013] [Accepted: 02/05/2013] [Indexed: 11/21/2022]
Abstract
Erythritol is a four-carbon sugar preferentially utilized by Brucella spp. The presence of erythritol in the placentas of goats, cows, and pigs has been used to explain the localization of Brucella to these sites and the subsequent accumulation of large amounts of bacteria, eventually leading to abortion. Here we show that Brucella melitensis will also localize to an artificial site of erythritol within a mouse, providing a potential model system to study the pathogenesis of Brucella abortion. Immunohistological staining of the sites of erythritol within infected mice indicated a higher than expected proportion of extracellular bacteria. Ensuing experiments suggested intracellular B. melitensis was unable to replicate within macrophages in the presence of erythritol and that erythritol was able to reach the site of intracellular bacteria. The intracellular inhibition of growth was found to encourage the bacteria to replicate extracellularly rather than intracellularly, a particularly interesting development in Brucella pathogenesis. To determine the effect of erythritol on expression of B. melitensis genes, bacteria grown either with or without erythritol were analyzed by microarray. Two major virulence pathways were up-regulated in response to exposure to erythritol (the type IV secretion system VirB and flagellar proteins), suggesting a role for erythritol in virulence.
Collapse
|
42
|
YANG X, SKYBERG JA, CAO L, CLAPP B, THORNBURG T, PASCUAL DW. Progress in Brucella vaccine development. FRONTIERS IN BIOLOGY 2013; 8:60-77. [PMID: 23730309 PMCID: PMC3666581 DOI: 10.1007/s11515-012-1196-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 01/16/2012] [Indexed: 01/18/2023]
Abstract
Brucella spp. are zoonotic, facultative intracellular pathogens, which cause animal and human disease. Animal disease results in abortion of fetuses; in humans, it manifests flu-like symptoms with an undulant fever, with osteoarthritis as a common complication of infection. Antibiotic regimens for human brucellosis patients may last several months and are not always completely effective. While there are no vaccines for humans, several licensed live Brucella vaccines are available for use in livestock. The performance of these animal vaccines is dependent upon the host species, dose, and route of immunization. Newly engineered live vaccines, lacking well-defined virulence factors, retain low residual virulence, are highly protective, and may someday replace currently used animal vaccines. These also have possible human applications. Moreover, due to their enhanced safety and efficacy in animal models, subunit vaccines for brucellosis show great promise for their application in livestock and humans. This review summarizes the progress of brucellosis vaccine development and presents an overview of candidate vaccines.
Collapse
Affiliation(s)
- Xinghong YANG
- Department of Immunology & Infectious Diseases, Montana State University, Bozeman, MT 59717-3610, USA
| | - Jerod A. SKYBERG
- Department of Immunology & Infectious Diseases, Montana State University, Bozeman, MT 59717-3610, USA
| | - Ling CAO
- Department of Immunology & Infectious Diseases, Montana State University, Bozeman, MT 59717-3610, USA
| | - Beata CLAPP
- Department of Immunology & Infectious Diseases, Montana State University, Bozeman, MT 59717-3610, USA
| | - Theresa THORNBURG
- Department of Immunology & Infectious Diseases, Montana State University, Bozeman, MT 59717-3610, USA
| | - David W. PASCUAL
- Department of Immunology & Infectious Diseases, Montana State University, Bozeman, MT 59717-3610, USA
| |
Collapse
|
43
|
A lysozyme-like protein in Brucella abortus is involved in the early stages of intracellular replication. Infect Immun 2013; 81:956-64. [PMID: 23319555 DOI: 10.1128/iai.01158-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Secretion of proteins in Gram-negative bacteria is a high-energy-consuming process that requires translocation across two membranes and a periplasmic space composed of a mesh-like layer, the peptidoglycan. To achieve this, bacteria have evolved complex secretion systems that cross these barriers, and in many cases there are specific peptidoglycanases that degrade the peptidoglycan to allow the proper assembly of the secretion machinery. We describe here the identification and characterization of a muramidase in Brucella abortus that participates in the intracellular multiplication in professional and nonprofessional phagocytes. We demonstrated that this protein has peptidoglycanase activity, that a strain with a clean deletion of the gene displayed a defect in the early stages of the intracellular multiplication curve, and that this is dependent on the lytic activity. While neither the attachment nor the invasion of the strain was affected, we demonstrated that it had a defect in excluding the lysosomal marker LAMP-1 but not in acquiring the reticulum endoplasmic marker calnexin, indicating that the gene participates in the early stages of the intracellular trafficking but not in the establishment of the replicative niche. Analysis of the assembly status and functionality of the VirB secretion apparatus indicated that the mutant has affected the proper function of this central virulence factor.
Collapse
|
44
|
Lacerda TLS, Salcedo SP, Gorvel JP. Brucella T4SS: the VIP pass inside host cells. Curr Opin Microbiol 2013; 16:45-51. [PMID: 23318140 DOI: 10.1016/j.mib.2012.11.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 11/11/2012] [Accepted: 11/26/2012] [Indexed: 02/07/2023]
Abstract
For many Gram-negative bacteria, like Brucella, the type IV secretion system (T4SS) has a critical role in bacterial virulence. In Brucella, the VirB T4SS permits the injection of bacterial effectors inside host cells, leading to subversion of signaling pathways and favoring bacterial growth and pathogenesis. The virB operon promoter is tightly regulated by a combination of transcriptional activators and repressors that are expressed according to the environmental conditions encountered by Brucella. Recent advances have shed light on the Brucella T4SS regulatory mechanisms and also its substrates. Characterization of the targets and functions of these translocated effectors is underway and will help understand the role of the T4SS in the establishment of a replication niche inside host cells.
Collapse
|
45
|
Liu W, Dong H, Liu W, Gao X, Zhang C, Wu Q. OtpR regulated the growth, cell morphology of B. melitensis and tolerance to β-lactam agents. Vet Microbiol 2012; 159:90-8. [DOI: 10.1016/j.vetmic.2012.03.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Revised: 02/10/2012] [Accepted: 03/20/2012] [Indexed: 11/17/2022]
|
46
|
Junqueira Junior DG, Rosinha GMS, Carvalho CEG, Oliveira CE, Sanches CC, Lima-Ribeiro AMC. Detection of Brucella spp. DNA in the semen of seronegative bulls by polymerase chain reaction. Transbound Emerg Dis 2012; 60:376-7. [PMID: 22672525 DOI: 10.1111/j.1865-1682.2012.01347.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Semen samples from 88 reproductively mature bulls were screened to detect the presence of Brucella spp. by polymerase chain reaction. Twenty-seven samples were found to be positive, underscoring the importance of researching brucellosis in males and the need for greater care in the selection of sperm-donating bulls for semen centres.
Collapse
Affiliation(s)
- D G Junqueira Junior
- Faculty of Veterinary Medicine, Collaborating Centre of Agricultural Protection in Central Brazil, Federal University of Uberlândia, Uberlândia, MG, Brazil.
| | | | | | | | | | | |
Collapse
|
47
|
Sun YH, de Jong MF, den Hartigh AB, Roux CM, Rolán HG, Tsolis RM. The small protein CydX is required for function of cytochrome bd oxidase in Brucella abortus. Front Cell Infect Microbiol 2012; 2:47. [PMID: 22919638 PMCID: PMC3417669 DOI: 10.3389/fcimb.2012.00047] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 03/17/2012] [Indexed: 01/01/2023] Open
Abstract
A large number of hypothetical genes potentially encoding small proteins of unknown function are annotated in the Brucella abortus genome. Individual deletion of 30 of these genes identified four mutants, in BAB1_0355, BAB2_0726, BAB2_0470, and BAB2_0450 that were highly attenuated for infection. BAB2_0726, an YbgT-family protein located at the 3′ end of the cydAB genes encoding cytochrome bd ubiquinal oxidase, was designated cydX. A B. abortus cydX mutant lacked cytochrome bd oxidase activity, as shown by increased sensitivity to H2O2, decreased acid tolerance and increased resistance to killing by respiratory inhibitors. The C terminus, but not the N terminus, of CydX was located in the periplasm, suggesting that CydX is an integral cytoplasmic membrane protein. Phenotypic analysis of the cydX mutant, therefore, suggested that CydX is required for full function of cytochrome bd oxidase, possibly via regulation of its assembly or activity.
Collapse
Affiliation(s)
- Yao-Hui Sun
- Department of Medical Microbiology and Immunology, University of California at Davis, Davis CA, USA
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
Brucellosis is a global disease of domestic and wild mammals that is caused by intracellular bacteria of the genus Brucella. Although humans are not a natural reservoir for Brucella, infection in the human population is common in many countries, and brucellosis is one of the most common zoonotic infections. Brucella species have evolved to avoid the host's immune system and infection is usually characterized by long-term persistence of the bacteria. One important Brucella virulence factor for intracellular survival and persistence in the host is the type IV secretion system. This review will discuss the Brucella type IV secretion system in detail, including current knowledge of architecture and regulation, as well as the newly identified effector substrates that this system transports into host cells.
Collapse
Affiliation(s)
- Maarten F de Jong
- Department of Medical Microbiology & Immunology, University of California, Davis, CA, USA
| | | |
Collapse
|
49
|
Restoring virulence to mutants lacking subunits of multiprotein machines: functional complementation of a Brucella virB5 mutant. FEBS Open Bio 2012; 2:71-5. [PMID: 23650582 PMCID: PMC3642115 DOI: 10.1016/j.fob.2012.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 03/29/2012] [Accepted: 03/31/2012] [Indexed: 11/21/2022] Open
Abstract
Complementation for virulence of a non-polar virB5 mutant in Brucella suis 1330 was not possible using a pBBR-based plasmid but was with low copy vector pGL10. Presence of the pBBR-based replicon in wildtype B. suis had a dominant negative effect, leading to complete attenuation in J774 macrophages. This was due to pleiotropic effects on VirB protein expression due to multiple copies of the virB promoter region and over expression of VirB5. Functional complementation of mutants in individual components of multiprotein complexes such as bacterial secretion systems, are often problematic; this study highlights the importance of using a low copy vector.
Collapse
|
50
|
Sá JC, Silva TMA, Costa EA, Silva APC, Tsolis RM, Paixão TA, Carvalho Neta AV, Santos RL. The virB-encoded type IV secretion system is critical for establishment of infection and persistence of Brucella ovis infection in mice. Vet Microbiol 2012; 159:130-40. [PMID: 22483850 DOI: 10.1016/j.vetmic.2012.03.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 03/08/2012] [Accepted: 03/10/2012] [Indexed: 12/13/2022]
Abstract
Brucella spp. are gram-negative intracellular bacterial pathogens that cause chronic infections. Brucella virulence factors include a type IV secretion system (T4SS) and its lipopolysaccharide (LPS), which are essential for persistence. However, the role of the virB-encoded T4SS has not been investigated in naturally rough Brucella species such as Brucella ovis. In this study, male 6-week old BALBc mice were infected with B. ovis, Brucella abortus, and their respective ΔvirB2 mutant strains. During early infection, B. ovis and B. abortus wild type strains were similarly recovered from spleen. Interestingly, in contrast to ΔvirB2 B. abortus that was recovered at similar levels when compared to the wild type strain, the ΔvirB2 B. ovis was markedly attenuated as early as 24h post infection (hpi). The ΔvirB2 B. ovis was unable to survive and multiply in murine peritoneal macrophages and extracellularly within the peritoneal cavity at 12 and 24 hpi with lower splenic colonization than the parental strain at 6, 12 and 24 hpi. In contrast, wild type B. abortus and ΔvirB2 B. abortus had a similar kinetics of infection in this model. As expected, the T4SS was essential for intracellular replication of smooth and rough strains in RAW macrophages at 48 hpi. These results suggest that T4SS is important for survival of B. ovis in murine model, and that a T4SS deficient B. ovis strain is cleared at earlier stages of infection when compared to a similar B. abortus mutant.
Collapse
Affiliation(s)
- Joicy C Sá
- Departamento de Clínica e Cirurgia Veterinária, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | | | | | | | | |
Collapse
|