1
|
Mandal S, Mondal C, Lyndem LM. Probiotics: an alternative anti-parasite therapy. J Parasit Dis 2024; 48:409-423. [PMID: 39145362 PMCID: PMC11319687 DOI: 10.1007/s12639-024-01680-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/27/2024] [Indexed: 08/16/2024] Open
Abstract
This paper review about probiotic effects and mechanism of action against the gut and non-gut helminths and protozoan parasites. Gastrointestinal parasitic infections are considered a serious health problem and are widely distributed globally. The disease process which emanates from this parasite infection provides some of the many public and veterinary health problems in the tropical and sub-tropical countries. Prevention and control of the parasite disease is through antihelmintic and anti-protozoan drugs, but, due to the increasing emergence of such drug resistance, eradication of parasite infestation in human and livestock still lingers a challenge, which requires the development of new alternative strategies. The use of beneficial microorganisms i.e. probiotics is becoming interesting due to their prophylactic application against several diseases including parasite infections. Recent studies on the interactions between probiotics, parasites and host immune cells using animal models and in vitro culture systems has increased considerably and draw much attention, yet the mechanisms of actions mediating the positive effects of these beneficial microorganisms on the hosts remain unexplored. Therefore, the aim of the present review is to summarize the latest findings on the probiotic research against the gut and non-gut parasites of significance.
Collapse
Affiliation(s)
- Sudeshna Mandal
- Visva-Bharati, Parasitology Research Laboratory, Department of Zoology, Santiniketan, 731235 West Bengal India
| | - Chandrani Mondal
- Visva-Bharati, Parasitology Research Laboratory, Department of Zoology, Santiniketan, 731235 West Bengal India
| | - Larisha M. Lyndem
- Visva-Bharati, Parasitology Research Laboratory, Department of Zoology, Santiniketan, 731235 West Bengal India
| |
Collapse
|
2
|
Mandal S, Mondal C, Ghosh S, Saha S, Ray MS, Lyndem LM. Efficacy of Lactobacillus taiwanensis S29 and Lactiplantibacillus plantarum S27 against tapeworm infection in Swiss Albino rats. Exp Parasitol 2024; 259:108715. [PMID: 38336094 DOI: 10.1016/j.exppara.2024.108715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Hymenolepis diminuta a zoonotic tapeworm infection in human remains an important cestode model for anthelmintic study as it display common clinical symptoms like other adult human tapeworms during heavy infestation. The use of Lactobacillus as a probiotic is an alternative to drugs which have increased in research and usage considerably during the last decade. The present study aims to determine the anthelmintic efficacy of two probiotics, L. taiwanensis strain S29 and L. plantarum strain S27 against H. diminuta in infected rat. Four groups of animals, each with six numbers were randomly chosen as the negative control (Group I), positive control (infected) (Group II) and the infected treated with two probiotics Group III and Group IV respectively. Another four groups (Group V-VIII) were selected and further subdivided into four sub-groups to investigate the development of larvae to adult during probiotics treatment. Worm burden, egg per gram were determined after treatment with these two probiotics. Furthermore, hematological assays and levels of biochemical markers were estimated, tissue damage was assayed through histological study and intestinal mitochondria detection was done. Worm sustainability reduced about 70-90% and EPG count decreased by 81-94% in probiotics treated groups. A significant level of unsuccessful establishment of larvae was observed in the developmental phase. Improvement in hematological parameter along with some biochemical parameters in the host were significantly observed after treatment with probiotics. The architecture damaged caused in the intestine and mitochondria density due to parasite infection improved significantly as that of control after probiotics treatment.
Collapse
Affiliation(s)
- Sudeshna Mandal
- Parasitology Research Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India.
| | - Chandrani Mondal
- Parasitology Research Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India.
| | - Sinchan Ghosh
- Agriculture, Forestry and Ecosystem Services Group, International Institute for Applied System Analysis, Laxenburg, Austria.
| | - Samiparna Saha
- Parasitology Research Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India.
| | - Mou Singha Ray
- Parasitology Research Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India.
| | - Larisha M Lyndem
- Parasitology Research Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India.
| |
Collapse
|
3
|
Gutiérrez L, Bartelt L. Current Understanding of Giardia lamblia and Pathogenesis of Stunting and Cognitive Deficits in Children from Low- and Middle-Income Countries. CURRENT TROPICAL MEDICINE REPORTS 2024; 11:28-39. [PMID: 38993355 PMCID: PMC11238937 DOI: 10.1007/s40475-024-00314-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2024] [Indexed: 07/13/2024]
Abstract
Purpose of Review Giardia lamblia is a common intestinal parasite worldwide, mainly in children from low- and middle-income countries (LMIC). Also, it has been associated with increased intestinal permeability, stunting, and cognitive impairment. Nonetheless, the pathogenesis of long-term consequences is difficult to elucidate. Recent Findings Recent studies try to understand the long-term consequences of Giardia infections. First, well-characterized studies associate Giardia with intestinal damage and child growth. Second, infections appear not to be associated with inflammation, but "lack of inflammation" may not, however, entirely exclude a pro-inflammatory pathway. Finally, some important amino acids are lower and could contribute to prolongate stunting and cognitive deficit. Summary Giardia infections in LMIC used to be associated with child growth shortfalls, gut permeability, and cognitive deficits. Multifactorial effects could be associated with Giardia, including nutritional, altered microbiota, and generation of potentially toxic microbial metabolic byproducts, all together increasing risk of long-term outcomes.
Collapse
Affiliation(s)
- Lester Gutiérrez
- Centro de Investigación de Enfermedades Tropicales (CIET), Faculty of Microbiology, University of Costa Rica, San José, Costa Rica
| | - Luther Bartelt
- Departments of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
4
|
Bhatt AP, Arnold JW, Awoniyi M, Sun S, Santiago VF, Quintela PH, Walsh K, Ngobeni R, Hansen B, Gulati A, Carroll IM, Azcarate-Peril MA, Fodor AA, Swann J, Bartelt LA. Giardia Antagonizes Beneficial Functions of Indigenous and Therapeutic Intestinal Bacteria during Malnutrition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.575921. [PMID: 38328247 PMCID: PMC10849499 DOI: 10.1101/2024.01.22.575921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Undernutrition in children commonly disrupts the structure and function of the small intestinal microbial community, leading to enteropathies, compromised metabolic health, and impaired growth and development. The mechanisms by which diet and microbes mediate the balance between commensal and pathogenic intestinal flora remain elusive. In a murine model of undernutrition, we investigated the direct interactions Giardia lamblia, a prevalent small intestinal pathogen, on indigenous microbiota and specifically on Lactobacillus strains known for their mucosal and growth homeostatic properties. Our research reveals that Giardia colonization shifts the balance of lactic acid bacteria, causing a relative decrease in Lactobacillus spp . and an increase in Bifidobacterium spp . This alteration corresponds with a decrease in multiple indicators of mucosal and nutritional homeostasis. Additionally, protein-deficient conditions coupled with Giardia infection exacerbate the rise of primary bile acids and susceptibility to bile acid-induced intestinal barrier damage. In epithelial cell monolayers, Lactobacillus spp . mitigated bile acid-induced permeability, showing strain-dependent protective effects. In vivo, L. plantarum, either alone or within a Lactobacillus spp consortium, facilitated growth in protein-deficient mice, an effect attenuated by Giardia , despite not inhibiting Lactobacillus colonization. These results highlight Giardia's potential role as a disruptor of probiotic functional activity, underscoring the imperative for further research into the complex interactions between parasites and bacteria under conditions of nutritional deficiency.
Collapse
|
5
|
Ansari F, Lee CC, Rashidimehr A, Eskandari S, Ashaolu TJ, Mirzakhani E, Pourjafar H, Jafari SM. The Role of Probiotics in Improving Food Safety: Inactivation of Pathogens and Biological Toxins. Curr Pharm Biotechnol 2024; 25:962-980. [PMID: 37264621 DOI: 10.2174/1389201024666230601141627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/07/2023] [Accepted: 04/26/2023] [Indexed: 06/03/2023]
Abstract
Currently, many advances have been made in avoiding food contamination by numerous pathogenic and toxigenic microorganisms. Many studies have shown that different probiotics, in addition to having beneficial effects on the host's health, have a very good ability to eliminate and neutralize pathogens and their toxins in foods which leads to enhanced food safety. The present review purposes to comprehensively discuss the role of probiotics in improving food safety by inactivating pathogens (bacterial, fungal, viral, and parasite agents) and neutralizing their toxins in food products. Some recent examples in terms of the anti-microbial activities of probiotics in the body after consuming contaminated food have also been mentioned. This review shows that different probiotics have the potential to inactivate pathogens and neutralize and detoxify various biological agents in foods, as well as in the host body after consumption.
Collapse
Affiliation(s)
- Fereshteh Ansari
- Department of Agricultural Research, Razi Vaccine and Serum Research Institute, Education and Extension Organization (AREEO), Tehran. Iran
- Research Center for Evidence-Based Medicine, Health Management and Safety Promotion Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Iranian EBM Centre: A Joanna Briggs Institute Affiliated Group, Tabriz, Iran
| | - Chi-Ching Lee
- Department of Food Engineering, Istanbul Sabahattin Zaim University, Faculty of Engineering and Natural Sciences, Turkey
| | - Azadeh Rashidimehr
- Department of Food Sciences, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Lorestan, Iran
| | - Soheyl Eskandari
- Food and Drug Laboratory Research Center (FDLRC), Food and Drug Administration (FDA), Ministry of Health and Medical Education (MOH+ME), Tehran, Iran
| | - Tolulope Joshua Ashaolu
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam
- Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam
| | - Esmaeel Mirzakhani
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Pourjafar
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
6
|
Wu J, Huang H, Wang L, Gao M, Meng S, Zou S, Feng Y, Feng Z, Zhu Z, Cao X, Li B, Kang G. A tailored series of engineered yeasts for the cell-dependent treatment of inflammatory bowel disease by rational butyrate supplementation. Gut Microbes 2024; 16:2316575. [PMID: 38381494 PMCID: PMC10883098 DOI: 10.1080/19490976.2024.2316575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/17/2024] [Accepted: 02/06/2024] [Indexed: 02/22/2024] Open
Abstract
Intestinal microbiota dysbiosis and metabolic disruption are considered essential characteristics in inflammatory bowel disorders (IBD). Reasonable butyrate supplementation can help patients regulate intestinal flora structure and promote mucosal repair. Here, to restore microbiota homeostasis and butyrate levels in the patient's intestines, we modified the genome of Saccharomyces cerevisiae to produce butyrate. We precisely regulated the relevant metabolic pathways to enable the yeast to produce sufficient butyrate in the intestine with uneven oxygen distribution. A series of engineered strains with different butyrate synthesis abilities was constructed to meet the needs of different patients, and the strongest can reach 1.8 g/L title of butyrate. Next, this series of strains was used to co-cultivate with gut microbiota collected from patients with mild-to-moderate ulcerative colitis. After receiving treatment with engineered strains, the gut microbiota and the butyrate content have been regulated to varying degrees depending on the synthetic ability of the strain. The abundance of probiotics such as Bifidobacterium and Lactobacillus increased, while the abundance of harmful bacteria like Candidatus Bacilloplasma decreased. Meanwhile, the series of butyrate-producing yeast significantly improved trinitrobenzene sulfonic acid (TNBS)-induced colitis in mice by restoring butyrate content. Among the series of engineered yeasts, the strain with the second-highest butyrate synthesis ability showed the most significant regulatory and the best therapeutic effect on the gut microbiota from IBD patients and the colitis mouse model. This study confirmed the existence of a therapeutic window for IBD treatment by supplementing butyrate, and it is necessary to restore butyrate levels according to the actual situation of patients to restore intestinal flora.
Collapse
Affiliation(s)
- Jiahao Wu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - He Huang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Lina Wang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Mengxue Gao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Shuxian Meng
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Shaolan Zou
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yuanhang Feng
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Zeling Feng
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhixin Zhu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xiaocang Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Bingzhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, China
| | - Guangbo Kang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, China
| |
Collapse
|
7
|
Bhatt AP, Arnold JW, Awoniyi M, Sun S, Feijoli Santiago V, Coskuner D, Henrique Quintela P, Walsh K, Xiao J, Ngobeni-Nyambi R, Hansen B, Gulati AS, Carroll IM, Azcarate-Peril MA, Fodor AA, Swann J, Bartelt LA. Giardia antagonizes beneficial functions of indigenous and therapeutic intestinal bacteria during protein deficiency. Gut Microbes 2024; 16:2421623. [PMID: 39501168 PMCID: PMC11542603 DOI: 10.1080/19490976.2024.2421623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 09/06/2024] [Accepted: 10/21/2024] [Indexed: 11/09/2024] Open
Abstract
Undernutrition in children commonly disrupts the structure and function of the small intestinal microbial community, leading to enteropathies, compromised metabolic health, and impaired growth and development. The mechanisms by which diet and microbes mediate the balance between commensal and pathogenic intestinal flora remain elusive. In a murine model of undernutrition, we investigated the direct interactions Giardia lamblia, a prevalent small intestinal pathogen, on indigenous microbiota and specifically on Lactobacillus strains known for their mucosal and growth homeostatic properties. Our research reveals that Giardia colonization shifts the balance of lactic acid bacteria, causing a relative decrease in Lactobacillus spp. and an increase in Bifidobacterium spp. This alteration corresponds with a decrease in multiple indicators of mucosal and nutritional homeostasis. Additionally, protein-deficient conditions coupled with Giardia infection exacerbate the rise of primary bile acids and susceptibility to bile acid-induced intestinal barrier damage. In epithelial cell monolayers, Lactobacillus spp. mitigated bile acid-induced permeability, showing strain-dependent protective effects. In vivo, L. plantarum, either alone or within a Lactobacillus spp consortium, facilitated growth in protein-deficient mice, an effect attenuated by Giardia, despite not inhibiting Lactobacillus colonization. These results highlight Giardia's potential role as a disruptor of probiotic functional activity, underscoring the imperative for further research into the complex interactions between parasites and bacteria under conditions of nutritional deficiency.
Collapse
Affiliation(s)
- Aadra P. Bhatt
- Division of Gastroenterology and Hepatology, Department of Medicine, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jason W. Arnold
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, North Carolina, USA
| | - Muyiwa Awoniyi
- Department of Gastroenterology Hepatology and Nutrition, Digestive Diseases and Surgery Institute of the Cleveland Clinic Foundation, and Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Shan Sun
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Verônica Feijoli Santiago
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Deniz Coskuner
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Kenneth Walsh
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jamie Xiao
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Brenna Hansen
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ajay S. Gulati
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ian M. Carroll
- Department of Nutrition, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - M. Andrea Azcarate-Peril
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Microbiome Core, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anthony A. Fodor
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Jonathan Swann
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Luther A. Bartelt
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
8
|
Beyhan YE, Yıldız MR. Microbiota and parasite relationship. Diagn Microbiol Infect Dis 2023; 106:115954. [PMID: 37267741 DOI: 10.1016/j.diagmicrobio.2023.115954] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/29/2023] [Accepted: 04/11/2023] [Indexed: 06/04/2023]
Abstract
The diversity of microbiota is different in each person. Many health problems such as autoimmune diseases, diabetes, cardiovascular diseases, and depression can be caused by microbiota imbalance. Since the parasite needs a host to survive, it interacts closely with the microbiota elements. Blastocystis acts on the inflammatory state of the intestine and may cause various gastrointestinal symptoms, on the contrary, it is more important for gut health because it causes bacterial diversity and richness. Blastocystis is associated with changes in gut microbiota composition, the ultimate indicator of which is the Firmicutes/Bacteroidetes ratio. The Bifidobacterium genus was significantly reduced in IBS patients and Blastocystis, and there is a significant decrease in Faecalibacterium prausnitzii, which has anti-inflammatory properties in Blastocystis infection without IBS. Lactobacillus species reduce the presence of Giardia, and the produced bacteriocins prevent parasite adhesion. The presence of helminths has been strongly associated with the transition from Bacteroidetes to Firmicutes and Clostridia. Contrary to Ascaris, alpha diversity in the intestinal microbiota decreases in chronic Trichuris muris infection, and growth and nutrient metabolism efficiency can be suppressed. Helminth infections indirectly affect mood and behavior in children through their effects on microbiota change. The main and focus of this review is to address the relationship of parasites with microbiota elements and to review the data about what changes they cause. Microbiota studies have gained importance recently and it is thought that it will contribute to the treatment of many diseases as well as in the fight against parasitic diseases in the future.
Collapse
Affiliation(s)
- Yunus E Beyhan
- Department of Parasitology, Van Yüzüncü Yil University Faculty of Medicine, Van, Turkey.
| | - Muhammed R Yıldız
- Department of Parasitology, Van Yüzüncü Yil University Faculty of Medicine, Van, Turkey
| |
Collapse
|
9
|
Castañeda S, Muñoz M, Hotez PJ, Bottazzi ME, Paniz-Mondolfi AE, Jones KM, Mejia R, Poveda C, Ramírez JD. Microbiome Alterations Driven by Trypanosoma cruzi Infection in Two Disjunctive Murine Models. Microbiol Spectr 2023; 11:e0019923. [PMID: 37140369 PMCID: PMC10269900 DOI: 10.1128/spectrum.00199-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/08/2023] [Indexed: 05/05/2023] Open
Abstract
Alterations caused by Trypanosoma cruzi in the composition of gut microbiome may play a vital role in the host-parasite interactions that shapes physiology and immune responses against infection. Thus, a better understanding of this parasite-host-microbiome interaction may yield relevant information in the comprehension of the pathophysiology of the disease and the development of new prophylactic and therapeutic alternatives. Therefore, we implemented a murine model with two mice strains (BALB/c and C57BL/6) to evaluate the impact of Trypanosoma cruzi (Tulahuen strain) infection on the gut microbiome utilizing cytokine profiling and shotgun metagenomics. Higher parasite burdens were observed in cardiac and intestinal tissues, including changes in anti-inflammatory (interleukin-4 [IL-4] and IL-10) and proinflammatory (gamma interferon, tumor necrosis factor alpha, and IL-6) cytokines. Bacterial species such as Bacteroides thetaiotaomicron, Faecalibaculum rodentium, and Lactobacillus johnsonii showed a decrease in relative abundance, while Akkermansia muciniphila and Staphylococcus xylosus increased. Likewise, as infection progressed, there was a decrease in gene abundances related to metabolic processes such as lipid synthesis (including short-chain fatty acids) and amino acid synthesis (including branched-chain amino acids). High-quality metagenomic assembled genomes of L. johnsonii and A. muciniphila among other species were reconstructed, confirming, functional changes associated with metabolic pathways that are directly affected by the loss of abundance of specific bacterial taxa. IMPORTANCE Chagas disease (CD) is caused by the protozoan Trypanosoma cruzi, presenting acute and chronic phases where cardiomyopathy, megaesophagus, and/or megacolon stand out. During the course of its life cycle, the parasite has an important gastrointestinal tract transit that leads to severe forms of CD. The intestinal microbiome plays an essential role in the immunological, physiological, and metabolic homeostasis of the host. Therefore, parasite-host-intestinal microbiome interactions may provide information on certain biological and pathophysiological aspects related to CD. The present study proposes a comprehensive evaluation of the potential effects of this interaction based on metagenomic and immunological data from two mice models with different genetic, immunological, and microbiome backgrounds. Our findings suggest that there are alterations in the immune and microbiome profiles that affect several metabolic pathways that can potentially promote the infection's establishment, progression, and persistence. In addition, this information may prove essential in the research of new prophylactic and therapeutic alternatives for CD.
Collapse
Affiliation(s)
- Sergio Castañeda
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Peter J. Hotez
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Department of Biology, Baylor University, Waco, Texas, USA
| | - Maria Elena Bottazzi
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Department of Biology, Baylor University, Waco, Texas, USA
| | - Alberto E. Paniz-Mondolfi
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Incubadora Venezolana de la Ciencia, Barquisimeto, Venezuela
| | - Kathryn M. Jones
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Rojelio Mejia
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, Texas, USA
| | - Cristina Poveda
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, Texas, USA
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
10
|
Antiparasitic Action of Lactobacillus casei ATCC 393 and Lactobacillus paracasei CNCM Strains in CD-1 Mice Experimentally Infected with Trichinella britovi. Pathogens 2022; 11:pathogens11030296. [PMID: 35335620 PMCID: PMC8949586 DOI: 10.3390/pathogens11030296] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 11/17/2022] Open
Abstract
Nematodes of the genus Trichinella are among the most widespread parasites of domestic and wild omnivores and predatory animals. The present study aimed to evaluate the antiparasitic effect of Lactobacillus casei ATCC 393 (original) and L. paracasei CNCM in CD-1 mice experimentally infected with Trichinella britovi. Four groups of 20 mice (10 females and 10 males/group) were used, with two control (C) groups and two experimental (E) groups, in which each animal received a daily oral dose of 100 µL of 105 CFU/mL probiotics in Ringer’s solution. On day 7, all mice (except the negative control group) were infected orally with Trichinella (100 larvae/animal) as well as the two probiotics. On day 9 post-infection (p.i.), 10 mice/group were euthanized, and the presence of adult parasites in the intestinal content and wall was tested. On day 32 p.i., 10 mice/group were euthanized, then trichinoscopy and artificial digestion were performed to assess the muscle infection with T. britovi. On day 9 p.i., the experimental group pretreated with L. casei ATCC 393 (6.3 ± 3.03) showed a significantly lower number of adult parasites in the intestinal wall compared with the positive control group (24.6 ± 4.78). Additionally, a significantly lower adult parasite count in the intestinal wall was registered in female mice pretreated with L. paracasei CNCM (7.4 ± 4.71) compared to female mice from the positive control (29.0 ± 5.17). No statistically relevant results were obtained concerning the male mice or the data obtained at 32 days p.i., irrespective of mice gender.
Collapse
|
11
|
Dashti N, Zarebavani M. Probiotics in the management of Giardia duodenalis: an update on potential mechanisms and outcomes. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:1869-1878. [PMID: 34324017 DOI: 10.1007/s00210-021-02124-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
Giardia duodenalis is a common cause of infection in children and travelers. The most frequent symptom is diarrhea in these patients. G. duodenalis trophozoites use a highly specialized adhesive disc to attach the host intestinal epithelium to induce intestinal damages. Pathological features of the small intestine following giardiasis include villous atrophy; infiltration of granulocytes, lymphocytes, and plasma cells into the lamina propria; and nodular lymphoid hyperplasia. The disturbed intestinal microbiota has been observed in patients with giardiasis. Therefore, a growing body of evidence has emphasized restoring the gut microbiome by probiotics in giardiasis. This study aimed to review the literature to find the pathologic features of giardiasis and its relationship with imbalanced microbiota. Then, benefits of probiotics in giardiasis and their potential molecular mechanisms were discussed. It has been illustrated that using probiotics (e.g., Lactobacillus and Saccharomyces) can reduce the time of gastrointestinal symptoms and repair the damages, particularly in giardiasis. Probiotics' capability in restoring the composition of commensal microbiota may lead to therapeutic outcomes. According to preclinical and clinical studies, probiotics can protect against parasite-induced mucosal damages via increasing the antioxidant capacity, suppressing oxidative products, and regulating the systemic and mucosal immune responses. In addition, they can reduce the proportion of G. duodenalis load by directly targeting the parasite. They can destroy the cellular architecture of parasites and suppress the proliferation and growth of trophozoites via the production of some factors with anti-giardial features. Further researches are required to find suitable probiotics for the prevention and treatment of giardiasis.
Collapse
Affiliation(s)
- Nasrin Dashti
- Department of Clinical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Mitra Zarebavani
- Department of Clinical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
In Vivo Implications of Potential Probiotic Lactobacillus reuteri LR6 on the Gut and Immunological Parameters as an Adjuvant Against Protein Energy Malnutrition. Probiotics Antimicrob Proteins 2021; 12:517-534. [PMID: 31218544 DOI: 10.1007/s12602-019-09563-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The present study investigated the impact of probiotic Lactobacillus reuteri LR6 on the gut and systemic immunity using protein energy malnourished (PEM) murine model. Thirty male Swiss albino mice were divided into five groups: control (C), malnourished (M), probiotic fermented milk (PFM), skim milk (SM), and bacterial suspension (BS) with six mice per group. Group C was fed with conventional diet throughout the study while the other groups were fed with protein calorie restricted diet until the development of malnutrition. After development of malnutrition, group M was continued with the restricted diet while other groups were fed with re-nourished diet supplemented with PFM, SM, and BS for 1 week, respectively. Thereafter, mice were sacrificed and different histological, microbiological, and immunological parameters were studied. Probiotics feeding in PEM model as fermented product or bacterial suspension improved the intestinal health in terms of intact morphology of colonic crypts, normal goblet cells, and intact lamina propria with no inflammation in large intestine, absence of fibrosis, and no inflammation in spleen. The number of secretory IgA+ cells was significantly higher in group PFM and BS. Also, increase in the phagocytic percentage of the macrophages and bone marrow derived dendritic cells (DCs) were observed in the PFM and BS group in comparison to the group M. In comparison to the group M and SM, lactobacilli, bifidobacteria, and Firmicutes counts were significantly higher in the group PFM and BS. This study concludes that probiotic supplementation to re-nutrition diet could emerge as wonder therapeutics against PEM.
Collapse
|
13
|
Fahmy A, Abuelenain GL, Rasheed N, Abdou A. 'de Novo' repurposing of Daflon as anti-intestinal parasitic drug in experimental giardiasis. Exp Parasitol 2021; 226-227:108124. [PMID: 34139241 DOI: 10.1016/j.exppara.2021.108124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 04/19/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND There is a necessity to develop or discover an alternative drug to combat the drug resistance by Giardia duodenalis and minimize the multiple doses and frequency of the conventional drug administration. Progressive repositioning or 'repurposing' of drugs has become widespread due to economic circumstances and medical emergency needs. Daflon 500 mg (DFL) is a natural product used safely as a nutrient supplement and an antidiabetic drug in many European countries and the US. OBJECTIVE This study aimed at investigating the efficiency of DFL, in vivo, in a murine model as a safe alternative or co-drug for giardiasis. MATERIALS AND METHODS Swiss Albino mice (n = 32) were inoculated with 1X104Giardia cysts and assigned to four groups: One group was the infected non-treated control mice and three experimental groups that were treated differently, either with Metronidazole (MTZ), DFL, or combined therapy of DFL/MTZ. Also, eight normal mice served as a control group. All mice were sacrificed 13 days post-infection for the parasitic, histopathological, and oxidative stress analysis. RESULTS MTZ, DFL, and the combined therapy significantly reduced the number of trophozoites and cysts compared to their counterparts of the infected mice. The histopathological analysis of the small intestines of the mice treated with the combined therapy retained typical intestinal architecture and normal levels of malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione. CONCLUSION This study indicated promising actions of Daflon 500 as an anti-giardial drug, and the results demonstrated its potential effect in improving the intestinal epithelial tissue and disturbing the Giardia stages when it was taken collectively with Metronidazole.
Collapse
Affiliation(s)
- Azza Fahmy
- Parasitology Lab, Department of Immunology and Drug Evaluation, Theodor Bilharz Research Institute, Imbaba, Egypt
| | - Gehan Labib Abuelenain
- Parasitology Lab, Department of Immunology and Drug Evaluation, Theodor Bilharz Research Institute, Imbaba, Egypt.
| | | | - Amr Abdou
- Microbiology and Immunology Department, NRC, Giza, Egypt
| |
Collapse
|
14
|
Bile Salt Hydrolases: At the Crossroads of Microbiota and Human Health. Microorganisms 2021; 9:microorganisms9061122. [PMID: 34067328 PMCID: PMC8224655 DOI: 10.3390/microorganisms9061122] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota has been increasingly linked to metabolic health and disease over the last few decades. Several factors have been suggested to be involved in lipid metabolism and metabolic responses. One mediator that has gained great interest as a clinically important enzyme is bile salt hydrolase (BSH). BSH enzymes are widely distributed in human gastrointestinal microbial communities and are believed to play key roles in both microbial and host physiology. In this review, we discuss the current evidence related to the role of BSHs in health and provide useful insights that may pave the way for new therapeutic targets in human diseases.
Collapse
|
15
|
Raheem A, Liang L, Zhang G, Cui S. Modulatory Effects of Probiotics During Pathogenic Infections With Emphasis on Immune Regulation. Front Immunol 2021; 12:616713. [PMID: 33897683 PMCID: PMC8060567 DOI: 10.3389/fimmu.2021.616713] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/12/2021] [Indexed: 12/11/2022] Open
Abstract
In order to inhibit pathogenic complications and to enhance animal and poultry growth, antibiotics have been extensively used for many years. Antibiotics applications not only affect target pathogens but also intestinal beneficially microbes, inducing long-lasting changes in intestinal microbiota associated with diseases. The application of antibiotics also has many other side effects like, intestinal barrier dysfunction, antibiotics residues in foodstuffs, nephropathy, allergy, bone marrow toxicity, mutagenicity, reproductive disorders, hepatotoxicity carcinogenicity, and antibiotic-resistant bacteria, which greatly compromise the efficacy of antibiotics. Thus, the development of new antibiotics is necessary, while the search for antibiotic alternatives continues. Probiotics are considered the ideal antibiotic substitute; in recent years, probiotic research concerning their application during pathogenic infections in humans, aquaculture, poultry, and livestock industry, with emphasis on modulating the immune system of the host, has been attracting considerable interest. Hence, the adverse effects of antibiotics and remedial effects of probiotics during infectious diseases have become central points of focus among researchers. Probiotics are live microorganisms, and when given in adequate quantities, confer good health effects to the host through different mechanisms. Among them, the regulation of host immune response during pathogenic infections is one of the most important mechanisms. A number of studies have investigated different aspects of probiotics. In this review, we mainly summarize recent discoveries and discuss two important aspects: (1) the application of probiotics during pathogenic infections; and (2) their modulatory effects on the immune response of the host during infectious and non-infectious diseases.
Collapse
Affiliation(s)
- Abdul Raheem
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing, China
| | - Lin Liang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing, China
| | - Guangzhi Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing, China
| | - Shangjin Cui
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing, China
| |
Collapse
|
16
|
Preventive role of probiotic bacteria against gastrointestinal diseases in mice caused by Giardia lamblia. Biosci Rep 2021; 41:227855. [PMID: 33600560 PMCID: PMC7901011 DOI: 10.1042/bsr20204114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022] Open
Abstract
Giardiasis is one of the most prevalent gastrointestinal diseases in the world. It is caused by Giardia, Giardia lamblia, a common and opportunistic zoonotic parasite. The aim of our work is to find a natural and safe alternative treatment for giardiasis, specifically, to determine if probiotic bacteria (Lactobacillus acidophilus, Bifidobacterium bifidum, and Lactobacillus helveticus) can contribute to treatment, and act as preventives. Sixty weanling albino mice, Mus musculus, were divided into control and experimental, probiotic-fed groups. We determined infection intensity, and cure and prevention rates of giardiasis through ELISA (enzyme-linked immunosorbent assay) of stool samples and histopathological comparison of intestinal tissue. In experimental groups, there was a significant reduction in infection intensity (P<0.001) on days 10, 15, and 20, while cure rate reached 87.5%. The control group showed no signs of reduced infection or cure and only the group treated with probiotics prior to infection showed significant prevention rates. In the experimental groups, intestinal changes due to giardiasis appeared 7 days post-infection. However, almost all of these changes disappeared by the 25th day. Our results suggest a beneficial and significant effect of probiotics in the prevention and treatment of giardiasis in mice.
Collapse
|
17
|
Fekete E, Allain T, Siddiq A, Sosnowski O, Buret AG. Giardia spp. and the Gut Microbiota: Dangerous Liaisons. Front Microbiol 2021; 11:618106. [PMID: 33510729 PMCID: PMC7835142 DOI: 10.3389/fmicb.2020.618106] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022] Open
Abstract
Alteration of the intestinal microbiome by enteropathogens is commonly associated with gastrointestinal diseases and disorders and has far-reaching consequences for overall health. Significant advances have been made in understanding the role of microbial dysbiosis during intestinal infections, including infection with the protozoan parasite Giardia duodenalis, one of the most prevalent gut protozoa. Altered species composition and diversity, functional changes in the commensal microbiota, and changes to intestinal bacterial biofilm structure have all been demonstrated during the course of Giardia infection and have been implicated in Giardia pathogenesis. Conversely, the gut microbiota has been found to regulate parasite colonization and establishment and plays a critical role in immune modulation during mono and polymicrobial infections. These disruptions to the commensal microbiome may contribute to a number of acute, chronic, and post-infectious clinical manifestations of giardiasis and may account for variations in disease presentation within and between infected populations. This review discusses recent advances in characterizing Giardia-induced bacterial dysbiosis in the gut and the roles of dysbiosis in Giardia pathogenesis.
Collapse
Affiliation(s)
- Elena Fekete
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
- Inflammation Research Network, University of Calgary, Calgary, AB, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, AB, Canada
| | - Thibault Allain
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
- Inflammation Research Network, University of Calgary, Calgary, AB, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, AB, Canada
| | - Affan Siddiq
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
- Inflammation Research Network, University of Calgary, Calgary, AB, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, AB, Canada
| | - Olivia Sosnowski
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
- Inflammation Research Network, University of Calgary, Calgary, AB, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, AB, Canada
| | - Andre G. Buret
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
- Inflammation Research Network, University of Calgary, Calgary, AB, Canada
- Host-Parasite Interactions, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
18
|
Singer SM, Angelova VV, DeLeon H, Miskovsky E. What's eating you? An update on Giardia, the microbiome and the immune response. Curr Opin Microbiol 2020; 58:87-92. [PMID: 33053502 PMCID: PMC7895496 DOI: 10.1016/j.mib.2020.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023]
Abstract
Giardia intestinalis has been observed in human stools since the invention of the microscope. However, it was not recognized as a pathogen until experimental infections in humans in the 1950s resulted in diarrheal illness [1]. We now know that this protozoan is capable of inducing a malabsorptive diarrhea and that the parasite is a major contributor to stunting in young children [2]. However, the majority of infections with this parasite are not accompanied by overt diarrhea and several studies indicate that it actually has a protective effect against moderate-severe diarrhea [3]. There is therefore significant interest in the mechanisms responsible for the wide variation observed in the clinical outcomes of infection with Giardia. This review will highlight recent work on the interactions among the parasite, the host microbiome and the immune response as contributing to this variation.
Collapse
Affiliation(s)
- Steven M Singer
- Department of Biology, Georgetown University, Washington, DC 20057, USA.
| | | | - Heriberto DeLeon
- Department of Biology, Georgetown University, Washington, DC 20057, USA
| | - Eleanor Miskovsky
- Department of Biology, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
19
|
Ashour DS, Othman AA. Parasite-bacteria interrelationship. Parasitol Res 2020; 119:3145-3164. [PMID: 32748037 DOI: 10.1007/s00436-020-06804-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/06/2020] [Indexed: 12/18/2022]
Abstract
Parasites and bacteria have co-evolved with humankind, and they interact all the time in a myriad of ways. For example, some bacterial infections result from parasite-dwelling bacteria as in the case of Salmonella infection during schistosomiasis. Other bacteria synergize with parasites in the evolution of human disease as in the case of the interplay between Wolbachia endosymbiont bacteria and filarial nematodes as well as the interaction between Gram-negative bacteria and Schistosoma haematobium in the pathogenesis of urinary bladder cancer. Moreover, secondary bacterial infections may complicate several parasitic diseases such as visceral leishmaniasis and malaria, due to immunosuppression of the host during parasitic infections. Also, bacteria may colonize the parasitic lesions; for example, hydatid cysts and skin lesions of ectoparasites. Remarkably, some parasitic helminths and arthropods exhibit antibacterial activity usually by the release of specific antimicrobial products. Lastly, some parasite-bacteria interactions are induced as when using probiotic bacteria to modulate the outcome of a variety of parasitic infections. In sum, parasite-bacteria interactions involve intricate processes that never cease to intrigue the researchers. However, understanding and exploiting these interactions could have prophylactic and curative potential for infections by both types of pathogens.
Collapse
Affiliation(s)
- Dalia S Ashour
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt.
| | - Ahmad A Othman
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
20
|
Prado GKS, Torrinha KC, Cruz RE, Gonçalves ABB, Silva CAV, Oliveira FMS, Nunes AC, Gomes MA, Caliari MV. Weissella paramesenteroides WpK4 ameliorate the experimental amoebic colitis by increasing the expression of MUC-2 and the intestinal epithelial regeneration. J Appl Microbiol 2020; 129:1706-1719. [PMID: 32320114 DOI: 10.1111/jam.14671] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 01/03/2023]
Abstract
AIMS This study evaluates the action of Weissella paramesenteroides WpK4 on amoebic colitis. METHODS AND RESULTS Weissella paramesenteroides WpK4 was administered in Entamoeba dispar infected and noninfected mice and clinical parameters were evaluated. Following 7 days, the caeca were collected for histopathology, morphometry and immunohistochemical staining of MUC-2, CDC-47 and IgA. The treatment reduced diarrhoea and the presence of blood in the faeces and diminished the area of necrosis, also causing weight gain. Also, the addition of this bacterium enhanced the expression of the mucin (MUC-2). The reduction in necrosis and increased CDC-47 expression indicates significant epithelial regeneration. The negative correlation between CDC-47 and the necrosis area reveals that the bacterium favoured the recovery of the necrotic regions and the positive correlation found between the expression of MUC-2 and CDC-47 indicates that the epithelial regeneration also supports the synthesis of MUC-2. CONCLUSIONS Weissella paramesenteroides WpK4 was able to increase the protection of the intestinal mucosa against experimental amoebic colitis through the increase of MUC-2 and epithelial regeneration. SIGNIFICANCE AND IMPACT OF THE STUDY Weissella paramesenteroides WpK4 presents the potential to become a complementary tool in the treatment of amoebic colitis.
Collapse
Affiliation(s)
- G K S Prado
- Postgraduate Program in Pathology, Institute of Biological Sciences of the Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - K C Torrinha
- Postgraduate Program in Pathology, Institute of Biological Sciences of the Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - R E Cruz
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - A B B Gonçalves
- Postgraduate Program in Pathology, Institute of Biological Sciences of the Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - C A V Silva
- Postgraduate Program in Pathology, Institute of Biological Sciences of the Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - F M S Oliveira
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - A C Nunes
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - M A Gomes
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - M V Caliari
- Postgraduate Program in Pathology, Institute of Biological Sciences of the Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
21
|
Allain T, Buret AG. Pathogenesis and post-infectious complications in giardiasis. ADVANCES IN PARASITOLOGY 2019; 107:173-199. [PMID: 32122529 DOI: 10.1016/bs.apar.2019.12.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Giardia is an important cause of diarrhoea, and results in post-infectious and extra-intestinal complications. This chapter presents a state-of-the art of our understanding of how this parasite may cause such abnormalities, which appear to develop at least in part in Assemblage-dependent manner. Findings from prospective longitudinal cohort studies indicate that Giardia is one of the four most prevalent enteropathogens in early life, and represents a risk factor for stunting at 2 years of age. This may occur independently of diarrheal disease, in strong support of the pathophysiological significance of the intestinal abnormalities induced by this parasite. These include epithelial malabsorption and maldigestion, increased transit, mucus depletion, and disruptions of the commensal microbiota. Giardia increases epithelial permeability and facilitates the invasion of gut bacteria. Loss of intestinal barrier function is at the core of the acute and post-infectious complications associated with this infection. Recent findings demonstrate that the majority of the pathophysiological responses triggered by this parasite can be recapitulated by the effects of its membrane-bound and secreted cysteine proteases.
Collapse
Affiliation(s)
- Thibault Allain
- University of Calgary, Host-Parasite Interactions Program, Inflammation Research Network, Department of Biological Sciences, Calgary, Canada
| | - André G Buret
- University of Calgary, Host-Parasite Interactions Program, Inflammation Research Network, Department of Biological Sciences, Calgary, Canada.
| |
Collapse
|
22
|
Singer SM, Fink MY, Angelova VV. Recent insights into innate and adaptive immune responses to Giardia. ADVANCES IN PARASITOLOGY 2019; 106:171-208. [PMID: 31630758 DOI: 10.1016/bs.apar.2019.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Infection with Giardia produces a wide range of clinical outcomes. Acutely infected patients may have no overt symptoms or suffer from severe cramps, diarrhea, nausea and even urticaria. Recently, post-infectious irritable bowel syndrome and chronic fatigue syndrome have been identified as long-term sequelae of giardiasis. Frequently, recurrent and chronic Giardia infection is considered a major contributor to stunting in children from low and middle income countries. Perhaps the most unusual outcome of infection with Giardia is the apparent reduced risk of developing moderate-to-severe diarrhea due to other enteric infections which has been noted in several recent studies. The goal of understanding immune responses against Giardia is therefore to identify protective mechanisms which could become targets for vaccine development, but also to identify mechanisms whereby infections lead to these other diverse outcomes. Giardia induces a robust adaptive immune response in both humans and animals. It has been known for many years that there is production of large amounts of parasite-specific IgA following infection and that CD4+ T cell responses contribute to this IgA production and control of the infection. In the past decade, there have been advances in our understanding of the non-antibody effector mechanisms used by the host to fight Giardia infections, in particular the importance of the cytokine interleukin (IL)-17 in orchestrating these responses. There have also been major advances in understanding how the innate response to Giardia infection is initiated and how it contributes to the development of adaptive immunity. Finally, there here have been significant increases in our knowledge of how the resident microbial community influences the immune response and how these responses contribute to the development of some of the symptoms of giardiasis. In this article, we will focus on data generated in the last 10 years and how it has advanced our knowledge about this important parasitic disease.
Collapse
Affiliation(s)
- Steven M Singer
- Department of Biology, Georgetown University, Washington, DC, United States.
| | - Marc Y Fink
- Department of Biology, Georgetown University, Washington, DC, United States
| | - Vanessa V Angelova
- Department of Biology, Georgetown University, Washington, DC, United States
| |
Collapse
|
23
|
Fonseca JF, Alvim LB, Nunes ÁC, Oliveira FMS, Amaral RS, Caliari MV, Nicoli JR, Neumann E, Gomes MA. Probiotic effect of Bifidobacterium longum 5 1A and Weissella paramesenteroides WpK4 on gerbils infected with Giardia lamblia. J Appl Microbiol 2019; 127:1184-1191. [PMID: 31155822 DOI: 10.1111/jam.14338] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 03/13/2019] [Accepted: 05/23/2019] [Indexed: 12/25/2022]
Abstract
AIMS The objective of this study was to assess the probiotic potential of genuine strains of Bifidobacterium longum 51A and Weissella paramesenteroides WpK4, in experimental giardiasis. METHODS AND RESULTS The bacteria were administered orally to gerbils (Meriones unguiculatus) 10 days before oral infection with trophozoites of Giardia lamblia. After 7 days of infection, the animals were euthanized and portions of the duodenum were processed for histopathologic, histochemical and morphometric assessment. The height of the intestinal crypts and crypt/villi ratio were higher in infected groups (P < 0·05) than in noninfected groups. The area of mucus production was higher (P < 0·05) in infected animals pretreated with B. longum 51A than in other groups. The parasitic load of the animals that received both bacteria decreased significantly (P < 0·05) compared to the ones of the control group. CONCLUSIONS Our results suggest a probiotic function of B. longum 51A and W. paramesenteroides WpK4 and may result in their use as a prophylactic and therapeutic alternative for promoting human and animal health. SIGNIFICANCE AND IMPACT OF THE STUDY Bifidobacterium longum 51A and W. paramesenteroides WpK4 may constitute prophylactic alternatives, reversing the emergence of side effects and resistance observed in the conventional treatment of giardiasis.
Collapse
Affiliation(s)
- J F Fonseca
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - L B Alvim
- Department of General Biology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Á C Nunes
- Department of General Biology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - F M S Oliveira
- Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - R S Amaral
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - M V Caliari
- Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - J R Nicoli
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - E Neumann
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - M A Gomes
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
24
|
do Carmo MS, Santos CID, Araújo MC, Girón JA, Fernandes ES, Monteiro-Neto V. Probiotics, mechanisms of action, and clinical perspectives for diarrhea management in children. Food Funct 2019; 9:5074-5095. [PMID: 30183037 DOI: 10.1039/c8fo00376a] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Infectious diarrhea is the second most common cause of morbidity and mortality in children under 5 years of age in the underdeveloped areas of the world. Conventional treatment consists of rehydration, which may be coupled with antimicrobial agents in more severe bacterial infections or with antiprotozoal agents. In the last few decades, research on the use of probiotic strains, such as Lactobacillus rhamnosus GG ATCC 53013 (LGG), Lactobacillus reuteri DSM 17938 and Saccharomyces boulardii, has gained much attention to prevent and treat diarrheal diseases. However, they are rarely used in the clinical routine, perhaps because there are still gaps in the knowledge about the effective benefit to the patient in terms of the reduction of the duration of diarrhea and its prevention. Furthermore, only a few probiotic strains are safely indicated for usage in pediatric practice. This review summarizes the current knowledge on the antimicrobial mechanisms of probiotics on distinct enteropathogens and their role in stimulating host defense mechanisms against intestinal infections. In addition, we highlight the potential of probiotics for the treatment and prevention of diarrhea in children. We conclude that the use of probiotics is beneficial for both the treatment and prevention of diarrhea in children and that the identification of other candidate probiotics might represent an important advance to a greater reduction in hospital stays and to prevent infectious diarrhea in a larger portion of this population.
Collapse
Affiliation(s)
- Monique Santos do Carmo
- Programa de Pós-graduação em Ciências da Saúde, Universidade Federal do Maranhão, São Luís, MA, Brazil
| | | | | | | | | | | |
Collapse
|
25
|
Davoren MJ, Liu J, Castellanos J, Rodríguez-Malavé NI, Schiestl RH. A novel probiotic, Lactobacillus johnsonii 456, resists acid and can persist in the human gut beyond the initial ingestion period. Gut Microbes 2018; 10:458-480. [PMID: 30580660 PMCID: PMC6748577 DOI: 10.1080/19490976.2018.1547612] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/14/2018] [Accepted: 11/06/2018] [Indexed: 02/03/2023] Open
Abstract
Probiotics are considered to have multiple beneficial effects on the human gastrointestinal tract, including immunomodulation, pathogen inhibition, and improved host nutrient metabolism. However, extensive characterization of these properties is needed to define suitable clinical applications for probiotic candidates. Lactobacillus johnsonii 456 (LBJ 456) was previously demonstrated to have anti-inflammatory and anti-genotoxic effects in a mouse model. Here, we characterize its resistance to gastric and bile acids as well as its ability to inhibit gut pathogens and adhere to host mucosa. While bile resistance and in vitro host attachment properties of LBJ 456 were comparable to other tested probiotics, LBJ 456 maintained higher viability at lower pH conditions compared to other tested strains. LBJ 456 also altered pathogen adhesion to LS 174T monolayers and demonstrated contact-dependent and independent inhibition of pathogen growth. Genome analyses further revealed possible genetic elements involved in host attachment and pathogen inhibition. Importantly, we show that ingestion of Lactobacillus johnsonii 456 over a one week yogurt course leads to persistent viable bacteria detectable even beyond the period of initial ingestion, unlike many other previously described probiotic species of lactic acid bacteria.
Collapse
Affiliation(s)
- Michael J. Davoren
- Molecular Toxicology Interdepartmental Program, Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA
| | - Jared Liu
- School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Jocelyn Castellanos
- Molecular Toxicology Interdepartmental Program, Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Robert H. Schiestl
- Molecular Toxicology Interdepartmental Program, Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
26
|
Mukherjee S, Joardar N, Sengupta S, Sinha Babu SP. Gut microbes as future therapeutics in treating inflammatory and infectious diseases: Lessons from recent findings. J Nutr Biochem 2018; 61:111-128. [PMID: 30196243 PMCID: PMC7126101 DOI: 10.1016/j.jnutbio.2018.07.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/24/2018] [Accepted: 07/28/2018] [Indexed: 02/07/2023]
Abstract
The human gut microbiota has been the interest of extensive research in recent years and our knowledge on using the potential capacity of these microbes are growing rapidly. Microorganisms colonized throughout the gastrointestinal tract of human are coevolved through symbiotic relationship and can influence physiology, metabolism, nutrition and immune functions of an individual. The gut microbes are directly involved in conferring protection against pathogen colonization by inducing direct killing, competing with nutrients and enhancing the response of the gut-associated immune repertoire. Damage in the microbiome (dysbiosis) is linked with several life-threatening outcomes viz. inflammatory bowel disease, cancer, obesity, allergy, and auto-immune disorders. Therefore, the manipulation of human gut microbiota came out as a potential choice for therapeutic intervention of the several human diseases. Herein, we review significant studies emphasizing the influence of the gut microbiota on the regulation of host responses in combating infectious and inflammatory diseases alongside describing the promises of gut microbes as future therapeutics.
Collapse
Affiliation(s)
- Suprabhat Mukherjee
- Parasitology Laboratory, Department of Zoology (Centre for Advanced Studies), Siksha-Bhavana, Visva-Bharati University, Santiniketan, West Bengal, 731235, India
| | - Nikhilesh Joardar
- Parasitology Laboratory, Department of Zoology (Centre for Advanced Studies), Siksha-Bhavana, Visva-Bharati University, Santiniketan, West Bengal, 731235, India
| | - Subhasree Sengupta
- Parasitology Laboratory, Department of Zoology (Centre for Advanced Studies), Siksha-Bhavana, Visva-Bharati University, Santiniketan, West Bengal, 731235, India
| | - Santi P Sinha Babu
- Parasitology Laboratory, Department of Zoology (Centre for Advanced Studies), Siksha-Bhavana, Visva-Bharati University, Santiniketan, West Bengal, 731235, India.
| |
Collapse
|
27
|
Abstract
Giardia is the commonest parasitic diarrheal pathogen affecting humans and a frequent cause of waterborne/foodborne parasitic diseases worldwide. Prevalence of giardiasis is higher in children, living in poor, low hygiene settings in developing countries, and in travelers returning from highly endemic areas. The clinical picture of giardiasis is heterogeneous, with high variability in severity of clinical disease. It can become chronic or be followed by post-infectious sequelae. An alarming increase in cases refractory to the conventional treatment with nitroimidazoles (ie, metronidazole) has been reported in low prevalence settings, such as European Union countries, especially in patients returning from Asia. In view of its relevance, we aim in this review to recapitulate present clinical knowledge about Giardia, with a special focus on the challenge of treatment-refractory giardiasis. We propose a working definition of clinically drug-resistant giardiasis, summarize knowledge regarding resistance mechanisms, and discuss its clinical management according to research-based evidence and medical practice. Advances in development and identification of novel drugs and potential non-pharmacological alternatives are also reviewed with the overall aim to define knowledge gaps and suggest future directions for research.
Collapse
Affiliation(s)
- Marco Lalle
- Department of Infectious Diseases, European Reference Laboratory for Parasites, Istituto Superiore di Sanità, Rome, Italy,
| | - Kurt Hanevik
- Norwegian National Advisory Unit on Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
28
|
Yordanova IA, Zakovic S, Rausch S, Costa G, Levashina E, Hartmann S. Micromanaging Immunity in the Murine Host vs. the Mosquito Vector: Microbiota-Dependent Immune Responses to Intestinal Parasites. Front Cell Infect Microbiol 2018; 8:308. [PMID: 30234029 PMCID: PMC6129580 DOI: 10.3389/fcimb.2018.00308] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/13/2018] [Indexed: 12/18/2022] Open
Abstract
The digestive tract plays a central role in nutrient acquisition and harbors a vast and intricate community of bacteria, fungi, viruses and parasites, collectively known as the microbiota. In recent years, there has been increasing recognition of the complex and highly contextual involvement of this microbiota in the induction and education of host innate and adaptive immune responses under homeostasis, during infection and inflammation. The gut passage and colonization by unicellular and multicellular parasite species present an immense challenge to the host immune system and to the microbial communities that provide vital support for its proper functioning. In mammals, parasitic nematodes induce distinct shifts in the intestinal microbial composition. Vice versa, the commensal microbiota has been shown to serve as a molecular adjuvant and immunomodulator during intestinal parasite infections. Moreover, similar interactions occur within insect vectors of deadly human pathogens. The gut microbiota has emerged as a crucial factor affecting vector competence in Anopheles mosquitoes, where it modulates outcomes of infections with malaria parasites. In this review, we discuss currently known involvements of the host microbiota in the instruction, support or suppression of host immune responses to gastrointestinal nematodes and protozoan parasites in mice, as well as in the malaria mosquito vector. A deeper understanding of the mechanisms underlying microbiota-dependent modulation of host and vector immunity against parasites in mammals and mosquitoes is key to a better understanding of the host-parasite relationships and the identification of more efficient approaches for intervention and treatment of parasite infections of both clinical and veterinary importance.
Collapse
Affiliation(s)
- Ivet A. Yordanova
- Center for Infection Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Suzana Zakovic
- Vector Biology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Sebastian Rausch
- Center for Infection Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Giulia Costa
- Vector Biology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Elena Levashina
- Vector Biology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Susanne Hartmann
- Center for Infection Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
29
|
Zhou S, Hang Y, Wang J, Fang R. Enzyme activity and phosphate uptake in the small intestine of Sprague Dawley rats improved by supplementation of infant formula with prebiotics. ANIMAL NUTRITION 2018; 4:300-304. [PMID: 30175258 PMCID: PMC6116332 DOI: 10.1016/j.aninu.2018.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/05/2018] [Accepted: 06/14/2018] [Indexed: 11/25/2022]
Abstract
This study was to identify the effects of prebiotics supplemented in infant formula on enzyme activity and phosphate uptake in the small intestine of Sprague Dawley (SD) rats. Forty-eight healthy SD rats at 15 days old (a week before weaning) with similar weight were randomly divided into 3 groups: A (control group), B, C, with 16 rats per group. Rats in groups A, B, C were fed a standard infant formula, the standard infant formula supplemented with oligosaccharides, and the standard infant formula supplemented with polysaccharides, respectively. The feeding test was conducted for 28 d. Compared with group A, the results showed the following: 1) the activities of sucrose and lactase in the small intestine were significantly increased in SD rats of group C (P < 0.05); 2) the relative expressions of lactase gene in the anterior and posterior segments of the small intestine were significantly increased by 1.68 and 2.26 in SD rats of group C (P < 0.05), and the relative expression of Mgam gene in the posterior segment of the small intestine was significantly increased by 0.99 in SD rats of group C (P < 0.05); 3) the relative expressions of Na/Pi-IIb gene in the anterior and posterior segments of the small intestine were significantly increased by 1.85 and 2.28 in SD rats of group C (P < 0.05). These results indicate that the supplementation of infant formula with prebiotics can promote enzyme activity in the small intestine by increasing the relative expression of enzyme gene or by decreasing intestinal injury, and can increase the relative expression of Na/Pi-IIb gene. The effect of polysaccharides is better than that of oligosaccharides.
Collapse
|
30
|
Ventura LLA, Oliveira DRD, Gomes MA, Torres MRF. Effect of probiotics on giardiasis. Where are we? BRAZ J PHARM SCI 2018. [DOI: 10.1590/s2175-97902018000217360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
31
|
Gupta V, Nag D, Garg P. Recurrent urinary tract infections in women: How promising is the use of probiotics? Indian J Med Microbiol 2018; 35:347-354. [PMID: 29063878 DOI: 10.4103/ijmm.ijmm_16_292] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Urinary tract infections (UTIs) currently rank amongst the most prevalent bacterial infections, representing a major health hazard. UTIs in females usually start as vaginal infections and ascend to the urethra and bladder. Recurrent UTIs (rUTIs) can be defined as at least three episodes of UTI in 1 year or two episodes in 6 months. Various antibiotics have been the mainstay of therapy in ameliorating the incidence of UTIs, but recurrent infections continue to afflict many women. It necessitates the exploitation of alternative antimicrobial therapy. Probiotics have been shown to be effective in varied clinical trials for long-term preventions of rUTI. Because Escherichia coli is the primary pathogen involved in UTIs which spreads from the rectum to vagina and then ascends up the sterile urinary tract, improving the gut or vaginal flora will thus impact the urinary tract. Since a healthy vaginal microbiota is mainly dominated by Lactobacillus species, in this context, exogenously administered probiotics containing Lactobacilli play a pivotal role in reducing the risk of rUTI. The concept of artificially boosting the Lactobacilli numbers through probiotic administration has long been conceived but has been recently shown to be possible. Lactobacilli may especially be useful for women with a history of recurrent, complicated UTIs or on prolonged antibiotic use. Probiotics do not cause antibiotic resistance and may offer other health benefits due to vaginal re-colonisation with Lactobacilli. However, more comprehensive research is still needed, to recommend for probiotics as an alternative to antibiotics.
Collapse
Affiliation(s)
- Varsha Gupta
- Department of Microbiology, Government Medical College Hospital, Chandigarh, India
| | - Deepika Nag
- Department of Microbiology, Government Medical College Hospital, Chandigarh, India
| | - Pratibha Garg
- Department of Microbiology, Government Medical College Hospital, Chandigarh, India
| |
Collapse
|
32
|
El Khoury S, Rousseau A, Lecoeur A, Cheaib B, Bouslama S, Mercier PL, Demey V, Castex M, Giovenazzo P, Derome N. Deleterious Interaction Between Honeybees (Apis mellifera) and its Microsporidian Intracellular Parasite Nosema ceranae Was Mitigated by Administrating Either Endogenous or Allochthonous Gut Microbiota Strains. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00058] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
33
|
Chemical analysis and giardicidal effectiveness of the aqueous extract of Cymbopogon citratus Stapf. Parasitol Res 2018; 117:1745-1755. [PMID: 29666923 DOI: 10.1007/s00436-018-5855-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/28/2018] [Indexed: 01/09/2023]
Abstract
Searching for new effective and safe treatment of Giardia lamblia (G. lamblia) parasite is mandatory. The aim was to evaluate the in vitro and in vivo effectiveness of an aqueous extract prepared from the leaves of Cymbagogon citratus (CcAE) against G. lamblia and to reveal the phenolic and antioxidant properties of CcAE. METHODS CcAE (25, 50, 100, 200, 400, and 500 μg/ml) was in vitro incubated with G. lamblia trophozoites in comparison with metronidazole (MTZ 10 and 25 μg/ml). Growth inhibition was evaluated after 3, 24, and 48 h of drug exposure. Infected groups of mice were orally treated for 7 days with CcAE at 125, 250, and 500 mg/kg/day/mouse, in comparison with a group treated with 15 mg/kg/day/mouse MTZ for the same period. The total phenolic components (TPC), the total flavonoid components (TFC), the 2,2,diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity, and the high-performance liquid chromatography (HPLC) for quantitative and qualitative phenolic content were chemically estimated. After 24 and 48 h of in vitro incubation, the estimated minimal inhibitory concentrations (MIC) were 500 and 400 μg/ml, respectively, and the concentrations that induced 50% growth inhibition (IC50) were 93.8 and 60.4 μg/ml, respectively (P < 0.001). Mice given 500 mg/kg CcAE showed 100% stool clearance of G. lamblia stages, similar to MTZ-treated control group (P < 0.001). The TPC was 10.7 ± 0.2 mg GAE/g and the TFC was 23.9 ± 0.3 mg quercetin/g, and the estimated IC50 for DPPH free radical scavenging was 16.4 ± 0.1 mg/ml. HPLC revealed the major phenolic components of CcAE to be carnosic acid, p-coumaric acid, cinnamiac acid, quercetin, rutin, and chlorogenic acid. In conclusion, CcAE is significantly effective against G. lamblia in vitro and in vivo, and has considerable phenolic and antioxidant properties.
Collapse
|
34
|
Allain T, Chaouch S, Thomas M, Travers MA, Valle I, Langella P, Grellier P, Polack B, Florent I, Bermúdez-Humarán LG. Bile Salt Hydrolase Activities: A Novel Target to Screen Anti- Giardia Lactobacilli? Front Microbiol 2018; 9:89. [PMID: 29472903 PMCID: PMC5809405 DOI: 10.3389/fmicb.2018.00089] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/15/2018] [Indexed: 01/23/2023] Open
Abstract
Giardia duodenalis is a protozoan parasite responsible for giardiasis, a disease characterized by intestinal malabsorption, diarrhea and abdominal pain in a large number of mammal species. Giardiasis is one of the most common intestinal parasitic diseases in the world and thus a high veterinary, and public health concern. It is well-established that some probiotic bacteria may confer protection against this parasite in vitro and in vivo and we recently documented the implication of bile-salt hydrolase (BSH)-like activities from strain La1 of Lactobacillus johnsonii as mediators of these effects in vitro. We showed that these activities were able to generate deconjugated bile salts that were toxic to the parasite. In the present study, a wide collection of lactobacilli strains from different ecological origins was screened to assay their anti-giardial effects. Our results revealed that the anti-parasitic effects of some of the strains tested were well-correlated with the expression of BSH-like activities. The two most active strains in vitro, La1 and Lactobacillus gasseri CNCM I-4884, were then tested for their capacity to influence G. duodenalis infection in a suckling mice model. Strikingly, only L. gasseri CNCM I-4884 strain was able to significantly antagonize parasite growth with a dramatic reduction of the trophozoites load in the small intestine. Moreover, this strain also significantly reduced the fecal excretion of Giardia cysts after 5 days of treatment, which could contribute to blocking the transmission of the parasite, in contrast of La1 where no effect was observed. This study represents a step toward the development of new prophylactic strategies to combat G. duodenalis infection in both humans and animals.
Collapse
Affiliation(s)
- Thibault Allain
- INRA, Commensal and Probiotics-Host Interactions Laboratory, Micalis Institute, AgroParisTech, Paris, France.,UMR 7245, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne Universités, Paris, France
| | - Soraya Chaouch
- UMR 7245, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne Universités, Paris, France
| | - Myriam Thomas
- INRA, Ecole Nationale Vétérinaire d'Alfort, BIPAR, ENVA, ANSES, UMR, Université Paris-Est, Champs-sur-Marne, France.,INRA, Laboratoire de Santé Animale, BIPAR, ENVA, ANSES, UMR, Maisons-Alfort, France
| | - Marie-Agnès Travers
- UMR 7245, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne Universités, Paris, France
| | - Isabelle Valle
- INRA, Ecole Nationale Vétérinaire d'Alfort, BIPAR, ENVA, ANSES, UMR, Université Paris-Est, Champs-sur-Marne, France.,INRA, Laboratoire de Santé Animale, BIPAR, ENVA, ANSES, UMR, Maisons-Alfort, France
| | - Philippe Langella
- INRA, Commensal and Probiotics-Host Interactions Laboratory, Micalis Institute, AgroParisTech, Paris, France
| | - Philippe Grellier
- UMR 7245, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne Universités, Paris, France
| | - Bruno Polack
- INRA, Ecole Nationale Vétérinaire d'Alfort, BIPAR, ENVA, ANSES, UMR, Université Paris-Est, Champs-sur-Marne, France.,INRA, Laboratoire de Santé Animale, BIPAR, ENVA, ANSES, UMR, Maisons-Alfort, France
| | - Isabelle Florent
- UMR 7245, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne Universités, Paris, France
| | - Luis G Bermúdez-Humarán
- INRA, Commensal and Probiotics-Host Interactions Laboratory, Micalis Institute, AgroParisTech, Paris, France
| |
Collapse
|
35
|
Allain T, Chaouch S, Thomas M, Vallée I, Buret AG, Langella P, Grellier P, Polack B, Bermúdez-Humarán LG, Florent I. Bile-Salt-Hydrolases from the Probiotic Strain Lactobacillus johnsonii La1 Mediate Anti-giardial Activity in Vitro and in Vivo. Front Microbiol 2018; 8:2707. [PMID: 29472895 PMCID: PMC5810305 DOI: 10.3389/fmicb.2017.02707] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/29/2017] [Indexed: 01/10/2023] Open
Abstract
Giardia duodenalis (syn. G. lamblia, G. intestinalis) is the protozoan parasite responsible for giardiasis, the most common and widely spread intestinal parasitic disease worldwide, affecting both humans and animals. After cysts ingestion (through either contaminated food or water), Giardia excysts in the upper intestinal tract to release replicating trophozoites that are responsible for the production of symptoms. In the gut, Giardia cohabits with the host's microbiota, and several studies have revealed the importance of this gut ecosystem and/or some probiotic bacteria in providing protection against G. duodenalis infection through mechanisms that remain incompletely understood. Recent findings suggest that Bile-Salt-Hydrolase (BSH)-like activities from the probiotic strain of Lactobacillus johnsonii La1 may contribute to the anti-giardial activity displayed by this strain. Here, we cloned and expressed each of the three bsh genes present in the L. johnsonii La1 genome to study their enzymatic and biological properties. While BSH47 and BSH56 were expressed as recombinant active enzymes, no significant enzymatic activity was detected with BSH12. In vitro assays allowed determining the substrate specificities of both BSH47 and BSH56, which were different. Modeling of these BSHs indicated a strong conservation of their 3-D structures despite low conservation of their primary structures. Both recombinant enzymes were able to mediate anti-giardial biological activity against Giardia trophozoites in vitro. Moreover, BSH47 exerted significant anti-giardial effects when tested in a murine model of giardiasis. These results shed new light on the mechanism, whereby active BSH derived from the probiotic strain Lactobacillus johnsonii La1 may yield anti-giardial effects in vitro and in vivo. These findings pave the way toward novel approaches for the treatment of this widely spread but neglected infectious disease, both in human and in veterinary medicine.
Collapse
Affiliation(s)
- Thibault Allain
- Commensal and Probiotics-Host Interactions Laboratory, Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Jouy-en-Josas, France.,UMR7245, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne-Universités, Paris, France
| | - Soraya Chaouch
- UMR7245, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne-Universités, Paris, France
| | - Myriam Thomas
- JRU BIPAR, ANSES, Ecole Nationale Vétérinaire d'Alfort, INRA, Université Paris-Est, Animal Health Laboratory, Maisons-Alfort, France
| | - Isabelle Vallée
- JRU BIPAR, ANSES, Ecole Nationale Vétérinaire d'Alfort, INRA, Université Paris-Est, Animal Health Laboratory, Maisons-Alfort, France
| | - André G Buret
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Philippe Langella
- Commensal and Probiotics-Host Interactions Laboratory, Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Jouy-en-Josas, France
| | - Philippe Grellier
- UMR7245, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne-Universités, Paris, France
| | - Bruno Polack
- JRU BIPAR, Ecole Nationale Vétérinaire d'Alfort, ANSES, INRA, Université Paris-Est, Maisons-Alfort, France
| | - Luis G Bermúdez-Humarán
- Commensal and Probiotics-Host Interactions Laboratory, Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Jouy-en-Josas, France
| | - Isabelle Florent
- UMR7245, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne-Universités, Paris, France
| |
Collapse
|
36
|
Partida-Rodríguez O, Serrano-Vázquez A, Nieves-Ramírez ME, Moran P, Rojas L, Portillo T, González E, Hernández E, Finlay BB, Ximenez C. Human Intestinal Microbiota: Interaction Between Parasites and the Host Immune Response. Arch Med Res 2017; 48:690-700. [PMID: 29290328 DOI: 10.1016/j.arcmed.2017.11.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 11/24/2017] [Indexed: 02/07/2023]
Abstract
The human gut is a highly complex ecosystem with an extensive microbial community, and the influence of the intestinal microbiota reaches the entire host organism. For example, the microbiome regulates fat storage, stimulates or renews epithelial cells, and influences the development and maturation of the brain and the immune system. Intestinal microbes can protect against infection by pathogenic bacteria, viruses, fungi and parasites. Hence, the maintenance of homeostasis between the gut microbiota and the rest of the body is crucial for health, with dysbiosis affecting disease. This review focuses on intestinal protozoa, especially those still representing a public health problem in Mexico, and their interactions with the microbiome and the host. The decrease in prevalence of intestinal helminthes in humans left a vacant ecological niche that was quickly occupied by protozoa. Although the mechanisms governing the interaction between intestinal microbiota and protozoa are poorly understood, it is known that the composition of the intestinal bacterial populations modulates the progression of protozoan infection and the outcome of parasitic disease. Most reports on the complex interactions between intestinal bacteria, protozoa and the immune system emphasize the protective role of the microbiota against protozoan infection. Insights into such protection may facilitate the manipulation of microbiota components to prevent and treat intestinal protozoan infections. Here we discuss recent findings about the immunoregulatory effect of intestinal microbiota with regards to intestinal colonization by protozoa, focusing on infections by Entamoeba histolytica, Blastocystis spp, Giardia duodenalis, Toxoplasma gondii and Cryptosporidium parvum. The possible consequences of the microbiota on parasitic, allergic and autoimmune disorders are also considered.
Collapse
Affiliation(s)
- Oswaldo Partida-Rodríguez
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México; Michael Smith Laboratories, University of Brithish Columbia, Vancouver, Canada
| | - Angélica Serrano-Vázquez
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Miriam E Nieves-Ramírez
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Patricia Moran
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Liliana Rojas
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Tobias Portillo
- Unidad de Bioinformática, Bioestadística y Biología Computacional. Red de Apoyo a la Investigación Científica, Universidad Nacional Autónoma de México, Instituto Nacional De Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - Enrique González
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Eric Hernández
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - B Brett Finlay
- Michael Smith Laboratories, University of Brithish Columbia, Vancouver, Canada
| | - Cecilia Ximenez
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México.
| |
Collapse
|
37
|
Garg S, Singh T, Reddi S, Malik R, Kapila S. Intervention of probiotic L. reuteri fermented milk as an adjuvant to combat protein energy malnourishment induced gut disturbances in albino mice. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.07.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
38
|
Fink MY, Singer SM. The Intersection of Immune Responses, Microbiota, and Pathogenesis in Giardiasis. Trends Parasitol 2017; 33:901-913. [PMID: 28830665 DOI: 10.1016/j.pt.2017.08.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/18/2017] [Accepted: 08/01/2017] [Indexed: 02/07/2023]
Abstract
Giardia lamblia is one of the most common infectious protozoans in the world. Giardia rarely causes severe life-threatening diarrhea, and may even have a slight protective effect in this regard, but it is a major contributor to malnutrition and growth faltering in children in the developing world. Giardia infection also appears to be a significant risk factor for postinfectious irritable bowel and chronic fatigue syndromes. In this review we highlight recent work focused on the impact of giardiasis and the mechanisms that contribute to the various outcomes of this infection, including changes in the composition of the microbiota, activation of immune responses, and immunopathology.
Collapse
Affiliation(s)
- Marc Y Fink
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Steven M Singer
- Department of Biology, Georgetown University, Washington, DC, USA.
| |
Collapse
|
39
|
Burgess SL, Gilchrist CA, Lynn TC, Petri WA. Parasitic Protozoa and Interactions with the Host Intestinal Microbiota. Infect Immun 2017; 85:e00101-17. [PMID: 28584161 PMCID: PMC5520446 DOI: 10.1128/iai.00101-17] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Parasitic protozoan infections represent a major health burden in the developing world and contribute significantly to morbidity and mortality. These infections are often associated with considerable variability in clinical presentation. An emerging body of work suggests that the intestinal microbiota may help to explain some of these differences in disease expression. The objective of this minireview is to synthesize recent progress in this rapidly advancing field. Studies of humans and animals and in vitro studies of the contribution of the intestinal microbiota to infectious disease are discussed. We hope to provide an understanding of the human-protozoal pathogen-microbiome interaction and to speculate on how that might be leveraged for treatment.
Collapse
Affiliation(s)
- Stacey L Burgess
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Carol A Gilchrist
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Tucker C Lynn
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - William A Petri
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
40
|
Peachey LE, Jenkins TP, Cantacessi C. This Gut Ain’t Big Enough for Both of Us. Or Is It? Helminth–Microbiota Interactions in Veterinary Species. Trends Parasitol 2017; 33:619-632. [DOI: 10.1016/j.pt.2017.04.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/12/2017] [Accepted: 04/13/2017] [Indexed: 01/25/2023]
|
41
|
Allain T, Amat CB, Motta JP, Manko A, Buret AG. Interactions of Giardia sp. with the intestinal barrier: Epithelium, mucus, and microbiota. Tissue Barriers 2017; 5:e1274354. [PMID: 28452685 DOI: 10.1080/21688370.2016.1274354] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Understanding how intestinal enteropathogens cause acute and chronic alterations has direct animal and human health perspectives. Significant advances have been made on this field by studies focusing on the dynamic crosstalk between the intestinal protozoan parasite model Giardia duodenalis and the host intestinal mucosa. The concept of intestinal barrier function is of the highest importance in the context of many gastrointestinal diseases such as infectious enteritis, inflammatory bowel disease, and post-infectious gastrointestinal disorders. This crucial function relies on 3 biotic and abiotic components, first the commensal microbiota organized as a biofilm, then an overlaying mucus layer, and finally the tightly structured intestinal epithelium. Herein we review multiple strategies used by Giardia parasite to circumvent these 3 components. We will summarize what is known and discuss preliminary observations suggesting how such enteropathogen directly and/ or indirectly impairs commensal microbiota biofilm architecture, disrupts mucus layer and damages host epithelium physiology and survival.
Collapse
Affiliation(s)
- Thibault Allain
- a Department of Biological Sciences , University of Calgary , Calgary , AB , Canada.,b Inflammation Research Network, University of Calgary , Calgary , AB , Canada.,c Host-Parasite Interactions, University of Calgary , Calgary , AB , Canada
| | - Christina B Amat
- a Department of Biological Sciences , University of Calgary , Calgary , AB , Canada.,b Inflammation Research Network, University of Calgary , Calgary , AB , Canada.,c Host-Parasite Interactions, University of Calgary , Calgary , AB , Canada
| | - Jean-Paul Motta
- a Department of Biological Sciences , University of Calgary , Calgary , AB , Canada.,b Inflammation Research Network, University of Calgary , Calgary , AB , Canada.,c Host-Parasite Interactions, University of Calgary , Calgary , AB , Canada
| | - Anna Manko
- a Department of Biological Sciences , University of Calgary , Calgary , AB , Canada.,b Inflammation Research Network, University of Calgary , Calgary , AB , Canada.,c Host-Parasite Interactions, University of Calgary , Calgary , AB , Canada
| | - André G Buret
- a Department of Biological Sciences , University of Calgary , Calgary , AB , Canada.,b Inflammation Research Network, University of Calgary , Calgary , AB , Canada.,c Host-Parasite Interactions, University of Calgary , Calgary , AB , Canada
| |
Collapse
|
42
|
Vitetta L, Saltzman ET, Nikov T, Ibrahim I, Hall S. Modulating the Gut Micro-Environment in the Treatment of Intestinal Parasites. J Clin Med 2016; 5:jcm5110102. [PMID: 27854317 PMCID: PMC5126799 DOI: 10.3390/jcm5110102] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/09/2016] [Accepted: 11/10/2016] [Indexed: 02/07/2023] Open
Abstract
The interactions of micro-organisms cohabitating with Homo sapiens spans millennia, with microbial communities living in a symbiotic relationship with the host. Interacting to regulate and maintain physiological functions and immunological tolerance, the microbial community is able to exert an influence on host health. An example of micro-organisms contributing to an intestinal disease state is exhibited by a biodiverse range of protozoan and bacterial species that damage the intestinal epithelia and are therefore implicated in the symptoms of diarrhea. As a contentious exemplar, Blastocystis hominis is a ubiquitous enteric protist that can adversely affect the intestines. The symptoms experienced are a consequence of the responses of the innate immune system triggered by the disruption of the intestinal barrier. The infiltration of the intestinal epithelial barrier involves a host of immune receptors, including toll like receptors and IgM/IgG/IgA antibodies as well as CD8+ T cells, macrophages, and neutrophils. Whilst the mechanisms of interactions between the intestinal microbiome and protozoan parasites remain incompletely understood, it is acknowledged that the intestinal microbiota is a key factor in the pathophysiology of parasitic infections. Modulating the intestinal environment through the administration of probiotics has been postulated as a possible therapeutic agent to control the proliferation of intestinal microbes through their capacity to induce competition for occupation of a common biotype. The ultimate goal of this mechanism is to prevent infections of the like of giardiasis and eliminate its symptoms. The differing types of probiotics (i.e., bacteria and yeast) modulate immunity by stimulating the host immune system. Early animal studies support the potential benefits of probiotic administration to prevent intestinal infections, with human clinical studies showing probiotics can reduce the number of parasites and the severity of symptoms. The early clinical indications endorse probiotics as adjuncts in the pharmaceutical treatment of protozoan infections. Currently, the bar is set low for the conduct of well-designed clinical studies that will translate the use of probiotics to ameliorate protozoan infections, therefore the requisite is for further clinical research.
Collapse
Affiliation(s)
- Luis Vitetta
- Sydney Medical School, The University of Sydney, Sydney 2006, NSW, Australia.
- Medlab Clinical Ltd., Sydney 2015, NSW, Australia.
| | - Emma Tali Saltzman
- Sydney Medical School, The University of Sydney, Sydney 2006, NSW, Australia.
- Medlab Clinical Ltd., Sydney 2015, NSW, Australia.
| | - Tessa Nikov
- Medlab Clinical Ltd., Sydney 2015, NSW, Australia.
| | | | - Sean Hall
- Medlab Clinical Ltd., Sydney 2015, NSW, Australia.
| |
Collapse
|
43
|
Travers MA, Sow C, Zirah S, Deregnaucourt C, Chaouch S, Queiroz RML, Charneau S, Allain T, Florent I, Grellier P. Deconjugated Bile Salts Produced by Extracellular Bile-Salt Hydrolase-Like Activities from the Probiotic Lactobacillus johnsonii La1 Inhibit Giardia duodenalis In vitro Growth. Front Microbiol 2016; 7:1453. [PMID: 27729900 PMCID: PMC5037171 DOI: 10.3389/fmicb.2016.01453] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 08/31/2016] [Indexed: 12/15/2022] Open
Abstract
Giardiasis, currently considered a neglected disease, is caused by the intestinal protozoan parasite Giardia duodenalis and is widely spread in human as well as domestic and wild animals. The lack of appropriate medications and the spread of resistant parasite strains urgently call for the development of novel therapeutic strategies. Host microbiota or certain probiotic strains have the capacity to provide some protection against giardiasis. By combining biological and biochemical approaches, we have been able to decipher a molecular mechanism used by the probiotic strain Lactobacillus johnsonii La1 to prevent Giardia growth in vitro. We provide evidence that the supernatant of this strain contains active principle(s) not directly toxic to Giardia but able to convert non-toxic components of bile into components highly toxic to Giardia. By using bile acid profiling, these components were identified as deconjugated bile-salts. A bacterial bile-salt-hydrolase of commercial origin was able to mimic the properties of the supernatant. Mass spectrometric analysis of the bacterial supernatant identified two of the three bile-salt-hydrolases encoded in the genome of this probiotic strain. These observations document a possible mechanism by which L. johnsonii La1, by secreting, or releasing BSH-like activity(ies) in the vicinity of replicating Giardia in an environment where bile is present and abundant, can fight this parasite. This discovery has both fundamental and applied outcomes to fight giardiasis, based on local delivery of deconjugated bile salts, enzyme deconjugation of bile components, or natural or recombinant probiotic strains that secrete or release such deconjugating activities in a compartment where both bile salts and Giardia are present.
Collapse
Affiliation(s)
- Marie-Agnès Travers
- Laboratoire de Génétique et Pathologie des Mollusques Marins, Unité SG2M, IFREMER La Tremblade, France
| | - Cissé Sow
- MCAM UMR 7245, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne Universités Paris, France
| | - Séverine Zirah
- MCAM UMR 7245, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne Universités Paris, France
| | - Christiane Deregnaucourt
- MCAM UMR 7245, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne Universités Paris, France
| | - Soraya Chaouch
- MCAM UMR 7245, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne Universités Paris, France
| | - Rayner M L Queiroz
- Department of Cell Biology, Institute of Biology, University of Brasilia Brasília, Brazil
| | - Sébastien Charneau
- Department of Cell Biology, Institute of Biology, University of Brasilia Brasília, Brazil
| | - Thibault Allain
- MCAM UMR 7245, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne UniversitésParis, France; UMR 1319, Commensal and Probiotics-Host Interactions Laboratory, INRA, AgroParisTechJouy en Josas, France
| | - Isabelle Florent
- MCAM UMR 7245, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne Universités Paris, France
| | - Philippe Grellier
- MCAM UMR 7245, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne Universités Paris, France
| |
Collapse
|
44
|
The Microbiota Contributes to CD8+ T Cell Activation and Nutrient Malabsorption following Intestinal Infection with Giardia duodenalis. Infect Immun 2016; 84:2853-60. [PMID: 27456829 DOI: 10.1128/iai.00348-16] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/18/2016] [Indexed: 12/19/2022] Open
Abstract
Giardia duodenalis is a noninvasive luminal pathogen that impairs digestive function in its host in part by reducing intestinal disaccharidase activity. This enzyme deficiency has been shown in mice to require CD8(+) T cells. We recently showed that both host immune responses and parasite strain affected disaccharidase levels during murine giardiasis. However, high doses of antibiotics were used to facilitate infections in that study, and we therefore decided to systematically examine the effects of antibiotic use on pathogenesis and immune responses in the mouse model of giardiasis. We found that antibiotic treatment did not overtly increase the parasite burden but significantly limited the disaccharidase deficiency observed in infected mice. Moreover, while infected mice had more activated CD8(+) αβ T cells in the small intestinal lamina propria, this increase was absent in antibiotic-treated mice. Infection also led to increased numbers of CD4(+) αβ T cells in the lamina propria and activation of T cell receptor γδ-expressing intraepithelial lymphocytes (IEL), but these changes were not affected by antibiotics. Finally, we show that activated CD8(+) T cells express gamma interferon (IFN-γ) and granzymes but that granzymes are not required for sucrase deficiency. We conclude that CD8(+) T cells become activated in giardiasis through an antibiotic-sensitive process and contribute to reduced sucrase activity. These are the first data directly demonstrating activation of CD8(+) T cells and γδ T cells during Giardia infections. These data also demonstrate that disruption of the intestinal microbiota by antibiotic treatment prevents pathological CD8(+) T cell activation in giardiasis.
Collapse
|
45
|
Del Coco VF, Sparo MD, Sidoti A, Santín M, Basualdo JA, Córdoba MA. Effects of Enterococcus faecalis CECT 7121 on Cryptosporidium parvum infection in mice. Parasitol Res 2016; 115:3239-44. [PMID: 27193238 DOI: 10.1007/s00436-016-5087-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 04/20/2016] [Indexed: 12/18/2022]
Abstract
Cryptosporidium is an opportunistic protozoan parasite of humans and animals worldwide and causes diarrheal disease that is typically self-limiting in immunocompetent hosts but often life threatening to immunocompromised individuals. However, there is a lack of completely efficient therapy available. Probiotics have attracted the attention as potential antiparasite compounds against protozoa involved in intestinal infections. This study investigated the effects of administration of probiotic Enterococcus faecalis CECT 7121 on Cryptosporidium parvum infection in immunosuppressed mice. Effects on C. parvum infection at the intestinal mucosa were studied and scored at each portion of the gut. It was demonstrated that Ef CECT 7121 interfered with C. parvum infection when both probiotic and parasite were present in the same intestinal location suggesting that Ef CECT 7121 supplementation can alleviate the negative effects of C. parvum infection.
Collapse
Affiliation(s)
- Valeria F Del Coco
- Centro de Estudios Microbiológicos y Parasitológicos (CUDEMyP), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, La Plata, 1900, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Mónica D Sparo
- Centro de Estudios Microbiológicos y Parasitológicos (CUDEMyP), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, La Plata, 1900, Argentina
| | - Alicia Sidoti
- Cátedra de Patología B, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Mónica Santín
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, United States Department of Agriculture, Beltsville, MD, USA
| | - Juan Angel Basualdo
- Centro de Estudios Microbiológicos y Parasitológicos (CUDEMyP), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, La Plata, 1900, Argentina
| | - María Alejandra Córdoba
- Centro de Estudios Microbiológicos y Parasitológicos (CUDEMyP), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, La Plata, 1900, Argentina.,Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, La Plata, Buenos Aires, Argentina
| |
Collapse
|
46
|
de Avila LFDC, de Leon PMM, de Moura MQ, Berne MEA, Scaini CJ, Leivas Leite FP. Modulation of IL-12 and IFNγ by probiotic supplementation promotes protection againstToxocara canisinfection in mice. Parasite Immunol 2016; 38:326-30. [DOI: 10.1111/pim.12314] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 03/11/2016] [Indexed: 12/31/2022]
Affiliation(s)
- L. F. d. C. de Avila
- Post-Graduate Program in Parasitology; Universidade Federal de Pelotas (UFPel); Pelotas Brazil
| | - P. M. M. de Leon
- Center for Technological Development - Biotechnology; UFPel; Pelotas Brazil
| | - M. Q. de Moura
- Post-Graduate Program in Parasitology; Universidade Federal de Pelotas (UFPel); Pelotas Brazil
| | - M. E. A. Berne
- Post-Graduate Program in Parasitology; Universidade Federal de Pelotas (UFPel); Pelotas Brazil
| | - C. J. Scaini
- Post-Graduate Program in Health Science; Universidade Federal do Rio Grande (FURG); Rio Grande, Rio Grande do Sul Brazil
| | - F. P. Leivas Leite
- Post-Graduate Program in Parasitology; Universidade Federal de Pelotas (UFPel); Pelotas Brazil
- Center for Technological Development - Biotechnology; UFPel; Pelotas Brazil
| |
Collapse
|
47
|
The Biological Fight Against Pathogenic Bacteria and Protozoa. NEW WEAPONS TO CONTROL BACTERIAL GROWTH 2016. [PMCID: PMC7123701 DOI: 10.1007/978-3-319-28368-5_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The animal gastrointestinal tract is a tube with two open ends; hence, from the microbial point of view it constitutes an open system, as opposed to the circulatory system that must be a tightly closed microbial-free environment. In particular, the human intestine spans ca. 200 m2 and represents a massive absorptive surface composed of a layer of epithelial cells as well as a paracellular barrier. The permeability of this paracellular barrier is regulated by transmembrane proteins known as claudins that play a critical role in tight junctions.
Collapse
|
48
|
Bär AK, Phukan N, Pinheiro J, Simoes-Barbosa A. The Interplay of Host Microbiota and Parasitic Protozoans at Mucosal Interfaces: Implications for the Outcomes of Infections and Diseases. PLoS Negl Trop Dis 2015; 9:e0004176. [PMID: 26658061 PMCID: PMC4684208 DOI: 10.1371/journal.pntd.0004176] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Infections by parasitic protozoans are largely neglected, despite threatening millions of people, particularly in developing countries. With descriptions of the microbiota in humans, a new frontier of investigation is developing to decipher the complexity of host-parasite-microbiota relationships, instead of the classic reductionist approach, which considers host-parasite in isolation. Here, we review with specific examples the potential roles that the resident microbiota can play at mucosal interfaces in the transmission of parasitic protozoans and in the progress of infection and disease. Although the mechanisms underlying these relationships remain poorly understood, some examples provide compelling evidence that specific components of the microbiota can potentially alter the outcomes of parasitic infections and diseases in humans. Most findings suggest a protective role of the microbiota, which might lead to exploratory research comprising microbiota-based interventions to prevent and treat protozoal infections in the future. However, these infections are often accompanied by an unbalanced microbiota and, in some specific cases, apparently, these bacteria may contribute synergistically to disease progression. Taken together, these findings provide a different perspective on the ecological nature of protozoal infections. This review focuses attention on the importance of considering polymicrobial associations, i.e., parasitic protozoans and the host microbiota, for understanding these human infections in their natural microbial context.
Collapse
Affiliation(s)
- Ann-Katrein Bär
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Niha Phukan
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Jully Pinheiro
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Augusto Simoes-Barbosa
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Centre for Microbial Innovation, University of Auckland, Auckland, New Zealand
| |
Collapse
|
49
|
Lopez-Romero G, Quintero J, Astiazarán-García H, Velazquez C. Host defences againstGiardia lamblia. Parasite Immunol 2015; 37:394-406. [DOI: 10.1111/pim.12210] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 06/08/2015] [Indexed: 02/06/2023]
Affiliation(s)
- G. Lopez-Romero
- Coordinación de Nutrición; Centro de Investigación en Alimentación y Desarrollo A.C.; Hermosillo Sonora México
| | - J. Quintero
- Department of Chemistry-Biology; University of Sonora; Hermosillo Sonora México
| | - H. Astiazarán-García
- Coordinación de Nutrición; Centro de Investigación en Alimentación y Desarrollo A.C.; Hermosillo Sonora México
| | - C. Velazquez
- Department of Chemistry-Biology; University of Sonora; Hermosillo Sonora México
| |
Collapse
|
50
|
Bartelt LA, Sartor RB. Advances in understanding Giardia: determinants and mechanisms of chronic sequelae. F1000PRIME REPORTS 2015; 7:62. [PMID: 26097735 PMCID: PMC4447054 DOI: 10.12703/p7-62] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Giardia lamblia is a flagellated protozoan that is the most common cause of intestinal parasitic infection in children living in resource-limited settings. The pathogenicity of Giardia has been debated since the parasite was first identified, and clinical outcomes vary across studies. Among recent perplexing findings are diametrically opposed associations between Giardia and acute versus persistent diarrhea and a poorly understood potential for long-term sequelae, including impaired child growth and cognitive development. The mechanisms driving these protean clinical outcomes remain elusive, but recent advances suggest that variability in Giardia strains, host nutritional status, the composition of microbiota, co-infecting enteropathogens, host genetically determined mucosal immune responses, and immune modulation by Giardia are all relevant factors influencing disease manifestations after Giardia infection.
Collapse
Affiliation(s)
- Luther A. Bartelt
- Division of Infectious Diseases and International Health, University of VirginiaBox 801340, Charlottesville, VA 22908USA
| | - R. Balfour Sartor
- Division of Gastroenterology, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel HillCampus Box 7032, Chapel Hill, NC 27599-7032USA
| |
Collapse
|