1
|
Kanjo K, Lothe R, Nagar G, Rajurkar M, Rao H, Batwal S, Shaligram U, Varadarajan R. Destabilising Effect of Class B CpG Adjuvants on Different Proteins and Vaccine Candidates. Vaccines (Basel) 2025; 13:395. [PMID: 40333326 PMCID: PMC12031019 DOI: 10.3390/vaccines13040395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/19/2025] [Accepted: 04/02/2025] [Indexed: 05/09/2025] Open
Abstract
Background: Adjuvants function by enhancing the breadth, durability, and magnitude of the immune response, but little is known about their impact on vaccine stability. CpG is a widely used adjuvant that is included in several recently approved COVID-19 vaccines using Spike protein, RBD, or whole inactivated virus. Methods: Here, we investigate the in vitro stability of the Receptor-Binding Domain (RBD) of the SARS-CoV-2 Spike protein, as well as a number of other proteins formulated with a class B CpG adjuvant. Results: We show that RBD, BSA, and lysozyme proteins are less thermally stable, more aggregation-prone, and more protease-sensitive in the presence of CpG than without it, and that these effects are enhanced with prolonged incubation. For RBD, the effects of CpG are pH-independent but dependent on the salt concentration, with relative destabilisation decreasing with an increasing salt concentration, indicative of an electrostatic component to the interaction between CpG and the protein. The reduced thermal and proteolytic stability found in the presence of CpG is indicative of a preferential interaction of CpG with the unfolded state of the protein relative to its native state. It remains to be determined if these in vitro characteristics are unique to CpG or are also shared by other non-CpG commercial adjuvants, if they are antigen-dependent, and if and how they correlate with the in vivo immunogenicity of an adjuvanted vaccine. Conclusions: It is demonstrated that the CpG adjuvant is critical to enhancing immunogenicity and is a key reason for the success of multiple licensed commercial vaccines. Nonetheless, our work suggests that careful and systematic in vitro formulation studies may be warranted for the development of suitable, stable formulations of CpG-adjuvanted vaccine candidates.
Collapse
Affiliation(s)
- Kawkab Kanjo
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India;
| | - Rakesh Lothe
- Serum Institute of India Pvt. Ltd., Pune 411028, India; (R.L.); (G.N.); (M.R.); (H.R.); (S.B.); (U.S.)
| | - Gaurav Nagar
- Serum Institute of India Pvt. Ltd., Pune 411028, India; (R.L.); (G.N.); (M.R.); (H.R.); (S.B.); (U.S.)
| | - Meghraj Rajurkar
- Serum Institute of India Pvt. Ltd., Pune 411028, India; (R.L.); (G.N.); (M.R.); (H.R.); (S.B.); (U.S.)
| | - Harish Rao
- Serum Institute of India Pvt. Ltd., Pune 411028, India; (R.L.); (G.N.); (M.R.); (H.R.); (S.B.); (U.S.)
| | - Saurabh Batwal
- Serum Institute of India Pvt. Ltd., Pune 411028, India; (R.L.); (G.N.); (M.R.); (H.R.); (S.B.); (U.S.)
| | - Umesh Shaligram
- Serum Institute of India Pvt. Ltd., Pune 411028, India; (R.L.); (G.N.); (M.R.); (H.R.); (S.B.); (U.S.)
| | - Raghavan Varadarajan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India;
| |
Collapse
|
2
|
Nanishi E, Borriello F, O’Meara TR, McGrath ME, Saito Y, Haupt RE, Seo HS, van Haren SD, Cavazzoni CB, Brook B, Barman S, Chen J, Diray-Arce J, Doss-Gollin S, De Leon M, Prevost-Reilly A, Chew K, Menon M, Song K, Xu AZ, Caradonna TM, Feldman J, Hauser BM, Schmidt AG, Sherman AC, Baden LR, Ernst RK, Dillen C, Weston SM, Johnson RM, Hammond HL, Mayer R, Burke A, Bottazzi ME, Hotez PJ, Strych U, Chang A, Yu J, Sage PT, Barouch DH, Dhe-Paganon S, Zanoni I, Ozonoff A, Frieman MB, Levy O, Dowling DJ. An aluminum hydroxide:CpG adjuvant enhances protection elicited by a SARS-CoV-2 receptor binding domain vaccine in aged mice. Sci Transl Med 2022; 14:eabj5305. [PMID: 34783582 PMCID: PMC10176044 DOI: 10.1126/scitranslmed.abj5305] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Global deployment of vaccines that can provide protection across several age groups is still urgently needed to end the COVID-19 pandemic, especially in low- and middle-income countries. Although vaccines against SARS-CoV-2 based on mRNA and adenoviral vector technologies have been rapidly developed, additional practical and scalable SARS-CoV-2 vaccines are required to meet global demand. Protein subunit vaccines formulated with appropriate adjuvants represent an approach to address this urgent need. The receptor binding domain (RBD) is a key target of SARS-CoV-2 neutralizing antibodies but is poorly immunogenic. We therefore compared pattern recognition receptor (PRR) agonists alone or formulated with aluminum hydroxide (AH) and benchmarked them against AS01B and AS03-like emulsion-based adjuvants for their potential to enhance RBD immunogenicity in young and aged mice. We found that an AH and CpG adjuvant formulation (AH:CpG) produced an 80-fold increase in anti-RBD neutralizing antibody titers in both age groups relative to AH alone and protected aged mice from the SARS-CoV-2 challenge. The AH:CpG-adjuvanted RBD vaccine elicited neutralizing antibodies against both wild-type SARS-CoV-2 and the B.1.351 (beta) variant at serum concentrations comparable to those induced by the licensed Pfizer-BioNTech BNT162b2 mRNA vaccine. AH:CpG induced similar cytokine and chemokine gene enrichment patterns in the draining lymph nodes of both young adult and aged mice and enhanced cytokine and chemokine production in human mononuclear cells of younger and older adults. These data support further development of AH:CpG-adjuvanted RBD as an affordable vaccine that may be effective across multiple age groups.
Collapse
Affiliation(s)
- Etsuro Nanishi
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA 02115
| | - Francesco Borriello
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA 02115
- Division of Immunology, Boston Children’s Hospital, Boston, MA, USA 02115
- Present address: Generate Biomedicines, Cambridge, MA, USA 02139
| | - Timothy R. O’Meara
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA 02115
| | - Marisa E. McGrath
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA 21201
| | - Yoshine Saito
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA 02115
| | - Robert E. Haupt
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA 21201
| | - Hyuk-Soo Seo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA 02115
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA 02115
| | - Simon D. van Haren
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA 02115
| | - Cecilia B. Cavazzoni
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA 02115
| | - Byron Brook
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA 02115
| | - Soumik Barman
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA 02115
| | - Jing Chen
- Research Computing Group, Boston Children’s Hospital, Boston, MA, USA 02115
| | - Joann Diray-Arce
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA 02115
| | - Simon Doss-Gollin
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA 02115
| | - Maria De Leon
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA 02115
| | - Alejandra Prevost-Reilly
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA 02115
| | - Katherine Chew
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA 02115
| | - Manisha Menon
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA 02115
| | - Kijun Song
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA 02115
| | - Andrew Z. Xu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA 02115
| | | | - Jared Feldman
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA 02139
| | - Blake M. Hauser
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA 02139
| | - Aaron G. Schmidt
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA 02139
- Department of Microbiology, Harvard Medical School, Boston, MA, USA 02115
| | - Amy C. Sherman
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA 02115
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA 02115
| | - Lindsey R. Baden
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA 02115
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD, USA 21201
| | - Carly Dillen
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA 21201
| | - Stuart M. Weston
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA 21201
| | - Robert M. Johnson
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA 21201
| | - Holly L. Hammond
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA 21201
| | - Romana Mayer
- Department of Pathology, University of Maryland Medical Center, Baltimore, MD, USA 21201
| | - Allen Burke
- Department of Pathology, University of Maryland Medical Center, Baltimore, MD, USA 21201
| | - Maria E. Bottazzi
- Texas Children’s Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, USA 77030
- National School of Tropical Medicine and Departments of Pediatrics and Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, USA 77030
| | - Peter J. Hotez
- Texas Children’s Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, USA 77030
- National School of Tropical Medicine and Departments of Pediatrics and Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, USA 77030
| | - Ulrich Strych
- Texas Children’s Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, USA 77030
- National School of Tropical Medicine and Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA 77030
| | - Aiquan Chang
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA 02115
| | - Jingyou Yu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA 02115
| | - Peter T. Sage
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA 02115
| | - Dan H. Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA 02115
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA 02115
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA 02115
| | - Ivan Zanoni
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA 02115
- Division of Immunology, Boston Children’s Hospital, Boston, MA, USA 02115
| | - Al Ozonoff
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA 02115
| | - Matthew B. Frieman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA 21201
| | - Ofer Levy
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA 02115
- Broad Institute of MIT & Harvard, Cambridge, MA, USA 02142
| | - David J. Dowling
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA 02115
| |
Collapse
|
3
|
Walkowski W, Bassett J, Bhalla M, Pfeifer BA, Ghanem ENB. Intranasal Vaccine Delivery Technology for Respiratory Tract Disease Application with a Special Emphasis on Pneumococcal Disease. Vaccines (Basel) 2021; 9:vaccines9060589. [PMID: 34199398 PMCID: PMC8230341 DOI: 10.3390/vaccines9060589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/17/2021] [Accepted: 05/22/2021] [Indexed: 12/17/2022] Open
Abstract
This mini-review will cover recent trends in intranasal (IN) vaccine delivery as it relates to applications for respiratory tract diseases. The logic and rationale for IN vaccine delivery will be compared to methods and applications accompanying this particular administration route. In addition, we will focus extended discussion on the potential role of IN vaccination in the context of respiratory tract diseases, with a special emphasis on pneumococcal disease. Here, elements of this disease, including its prevalence and impact upon the elderly population, will be viewed from the standpoint of improving health outcomes through vaccine design and delivery technology and how IN administration can play a role in such efforts.
Collapse
Affiliation(s)
- William Walkowski
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA; (W.W.); (J.B.); (B.A.P.)
| | - Justin Bassett
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA; (W.W.); (J.B.); (B.A.P.)
| | - Manmeet Bhalla
- Department of Microbiology and Immunology, University at Buffalo, The State University of New York, Buffalo, NY 14203, USA;
| | - Blaine A. Pfeifer
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA; (W.W.); (J.B.); (B.A.P.)
| | - Elsa N. Bou Ghanem
- Department of Microbiology and Immunology, University at Buffalo, The State University of New York, Buffalo, NY 14203, USA;
- Correspondence:
| |
Collapse
|
4
|
Nanishi E, Borriello F, O'Meara TR, McGrath ME, Saito Y, Haupt RE, Seo HS, van Haren SD, Brook B, Chen J, Diray-Arce J, Doss-Gollin S, Leon MD, Chew K, Menon M, Song K, Xu AZ, Caradonna TM, Feldman J, Hauser BM, Schmidt AG, Sherman AC, Baden LR, Ernst RK, Dillen C, Weston SM, Johnson RM, Hammond HL, Mayer R, Burke A, Bottazzi ME, Hotez PJ, Strych U, Chang A, Yu J, Barouch DH, Dhe-Paganon S, Zanoni I, Ozonoff A, Frieman MB, Levy O, Dowling DJ. Alum:CpG adjuvant enables SARS-CoV-2 RBD-induced protection in aged mice and synergistic activation of human elder type 1 immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34031655 DOI: 10.1101/2021.05.20.444848] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Global deployment of vaccines that can provide protection across several age groups is still urgently needed to end the COVID-19 pandemic especially for low- and middle-income countries. While vaccines against SARS-CoV-2 based on mRNA and adenoviral-vector technologies have been rapidly developed, additional practical and scalable SARS-CoV-2 vaccines are needed to meet global demand. In this context, protein subunit vaccines formulated with appropriate adjuvants represent a promising approach to address this urgent need. Receptor-binding domain (RBD) is a key target of neutralizing antibodies (Abs) but is poorly immunogenic. We therefore compared pattern recognition receptor (PRR) agonists, including those activating STING, TLR3, TLR4 and TLR9, alone or formulated with aluminum hydroxide (AH), and benchmarked them to AS01B and AS03-like emulsion-based adjuvants for their potential to enhance RBD immunogenicity in young and aged mice. We found that the AH and CpG adjuvant formulation (AH:CpG) demonstrated the highest enhancement of anti-RBD neutralizing Ab titers in both age groups (∼80-fold over AH), and protected aged mice from the SARS-CoV-2 challenge. Notably, AH:CpG-adjuvanted RBD vaccine elicited neutralizing Abs against both wild-type SARS-CoV-2 and B.1.351 variant at serum concentrations comparable to those induced by the authorized mRNA BNT162b2 vaccine. AH:CpG induced similar cytokine and chemokine gene enrichment patterns in the draining lymph nodes of both young adult and aged mice and synergistically enhanced cytokine and chemokine production in human young adult and elderly mononuclear cells. These data support further development of AH:CpG-adjuvanted RBD as an affordable vaccine that may be effective across multiple age groups. One Sentence Summary Alum and CpG enhance SARS-CoV-2 RBD protective immunity, variant neutralization in aged mice and Th1-polarizing cytokine production by human elder leukocytes.
Collapse
|
5
|
Abstract
CpG Oligonucleotides (ODN) are immunomodulatory synthetic oligonucleotides specifically designed to stimulate Toll-like receptor 9. TLR9 is expressed on human plasmacytoid dendritic cells and B cells and triggers an innate immune response characterized by the production of Th1 and pro-inflammatory cytokines. This chapter reviews recent progress in understanding the mechanism of action of CpG ODN and provides an overview of human clinical trial results using CpG ODN to improve vaccines for the prevention/treatment of cancer, allergy, and infectious disease.
Collapse
Affiliation(s)
| | | | - Dennis M Klinman
- National Cancer Institute, NIH, Frederick, MD, USA.
- Leitman Klinman Consulting, Potomac, MD, USA.
| |
Collapse
|
6
|
Oligodeoxynucleotides ODN 2006 and M362 Exert Potent Adjuvant Effect through TLR-9/-6 Synergy to Exaggerate Mammaglobin-A Peptide Specific Cytotoxic CD8+T Lymphocyte Responses against Breast Cancer Cells. Cancers (Basel) 2019; 11:cancers11050672. [PMID: 31091800 PMCID: PMC6562487 DOI: 10.3390/cancers11050672] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 01/07/2023] Open
Abstract
Mammaglobin-A (MamA) is overexpressed in 40–80% of all human breast cancers. Recent phase I clinical trials of the MamA DNA vaccine showed encouraging safety outcomes. However, this vaccine elicited only a modest increase in MamA specific CD8+T lymphocyte (CTL) activation. As vaccine adjuvants play a critical role in enhancing the immunotherapeutic efficiency of vaccines, we tested the potential role of three synthetic CpG oligodeoxynucleotides (ODN2216—class A ODN, ODN2006—class B ODN, and ODN M362—class C ODN) to further enhance MamA specific CTL responses. Towards this, naïve CD8+T cells were obtained from healthy HLA-A2+ human donors. The HLA-A2 specific immunodominant epitope of MamA, MamA2.1 (LIYDSSLCDL), was utilized to activate naïve CD8+T cells. The THP-1 (HLA-A2+) cells were used as antigen presenting cells to stimulate naïve CD8+T cells along with (or without) co-treatment of various ODNs mentioned above. Activation of naïve CD8+T cells with the MamA2.1 peptide along with ODNs demonstrated enhanced MamA specific CTL mediated cytotoxicity on AU565 (HLA-A+/MamA+) breast cancer cells following co-treatment with ODN2006 and M362 compared to ODN2216 or MamA2.1 peptide alone. However, no significant cytotoxicity was noted upon treatment of MamA2.1 activated CTLs on MCF7 (HLA-A+/MamA−) cells, suggesting that the activation of CTLs is specific to the MamA antigen. Functional characterization studies demonstrated specific IL-12 mediated cross-talk between TLR-6 and -9 in THP-1 cells following stimulation with ODN2006 and M362, which was critical for the final cytotoxic activation of CD8+T lymphocytes. Based on these data, we conclude that ODN2006 and ODN M362 exerted a strong adjuvant effect through induction of the initial innate immune response through TLR9 upregulation followed by enhanced MamA specific CTL dependent adaptive immune responses. Our current data provide evidence for the application of Class-B/-C-CpG-ODNs as potential vaccine adjuvants towards enhancing the success of MamA based breast cancer vaccination.
Collapse
|
7
|
Rodriguez-Zhurbenko N, Quach TD, Hopkins TJ, Rothstein TL, Hernandez AM. Human B-1 Cells and B-1 Cell Antibodies Change With Advancing Age. Front Immunol 2019; 10:483. [PMID: 30941130 PMCID: PMC6433875 DOI: 10.3389/fimmu.2019.00483] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/22/2019] [Indexed: 12/28/2022] Open
Abstract
Age-related deficits in the immune system have been associated with an increased incidence of infections, autoimmune diseases, and cancer. Human B cell populations change quantitatively and qualitatively in the elderly. However, the function of human B-1 cells, which play critical anti-microbial and housekeeping roles, have not been studied in the older age population. In the present work, we analyzed how the frequency, function and repertoire of human peripheral blood B-1 cells (CD19+CD20+CD27+CD38low/intCD43+) change with age. Our results show that not only the percentage of B-1 cells but also their ability to spontaneously secrete IgM decreased with age. Further, expression levels of the transcription factors XBP-1 and Blimp-1 were significantly lower, while PAX-5, characteristic of non-secreting B cells, was significantly higher, in healthy donors over 65 years (old) as compared to healthy donors between 20 and 45 years (young). To further characterize the B-1 cell population in older individuals, we performed single cell sequencing analysis of IgM heavy chains from healthy young and old donors. We found reduced repertoire diversity of IgM antibodies in B-1 cells from older donors as well as differences in usage of certain VH and DH specific genes, as compared to younger. Overall, our results show impairment of the human B-1 cell population with advancing age, which might impact the quality of life and onset of disease within the elderly population.
Collapse
Affiliation(s)
| | - Tam D Quach
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Thomas J Hopkins
- Center for Oncology and Cell Biology, The Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Thomas L Rothstein
- Center for Oncology and Cell Biology, The Feinstein Institute for Medical Research, Manhasset, NY, United States.,Center for Immunobiology and Department of Biomedical Sciences, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, United States
| | | |
Collapse
|
8
|
Pneumococcal Capsular Polysaccharide Immunity in the Elderly. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00004-17. [PMID: 28424198 DOI: 10.1128/cvi.00004-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Immunity to pneumococcal infections is impaired in older people, and current vaccines are poorly protective against pneumococcal disease in this population. Naturally acquired immunity to pneumococcal capsular polysaccharides develops during childhood and is robust in young adults but deteriorates with advanced age. In particular, antibody levels and function are reduced in older people. Pneumococcal vaccines are recommended for people >65 years old. However, the benefits of polysaccharide and protein-conjugated vaccines in this population are small, because of both serotype replacement and incomplete protection against vaccine serotype pneumococcal disease. In this review, we overview the immune mechanisms by which naturally acquired and vaccine-induced pneumococcal capsular polysaccharide immunity declines with age, including altered colonization dynamics, reduced opsonic activity of antibodies (particularly IgM), and impaired mucosal immunity.
Collapse
|
9
|
Harman MF, Ranocchia RP, Gorlino CV, Sánchez Vallecillo MF, Castell SD, Crespo MI, Maletto BA, Morón G, Pistoresi-Palencia MC. Expansion of myeloid-derived suppressor cells with arginase activity lasts longer in aged than in young mice after CpG-ODN plus IFA treatment. Oncotarget 2016; 6:13448-61. [PMID: 25922914 PMCID: PMC4537026 DOI: 10.18632/oncotarget.3626] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 03/15/2015] [Indexed: 01/19/2023] Open
Abstract
As we age, the homeostatic function of many systems in the body, such as the immune function declines, which in turn contributes to augment susceptibility to disease. Here we describe that challenging aged mice with synthetic oligodeoxynucleotides containing unmethylated cytosine guanine motifs (CpG-ODN) emulsified in incomplete Freund's adjuvant (IFA), (CpG-ODN+IFA) an inflammatory stimulus, led to the expansion of CD11b+Gr1+ myeloid cells with augmented expression of CD124 and CD31. These myeloid cells lasted longer in the spleen of aged mice than in their younger counterparts after CpG-ODN+IFA treatment and were capable of suppressing T cell proliferative response by arginase induction. Myeloid cells from aged CpG-ODN+IFA-treated mice presented increased arginase-1 expression and enzyme activity. In addition, we found a different requirement of cytokines for arginase induction according to mice age. In myeloid cells from young treated mice, arginase-1 expression and activity is induced by the presence of each IL-4 or IL-6 in their extracellular medium, unlike myeloid cells from aged treated mice which need the presence of both IL-4 and IL-6 together for arginase induction and suppressor function.
Collapse
Affiliation(s)
- María F Harman
- Centro de Investigación en Bioquímica Clínica e Inmunología, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Romina P Ranocchia
- Centro de Investigación en Bioquímica Clínica e Inmunología, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Carolina V Gorlino
- Centro de Investigación en Bioquímica Clínica e Inmunología, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María F Sánchez Vallecillo
- Centro de Investigación en Bioquímica Clínica e Inmunología, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Sofía D Castell
- Centro de Investigación en Bioquímica Clínica e Inmunología, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María I Crespo
- Centro de Investigación en Bioquímica Clínica e Inmunología, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Belkys A Maletto
- Centro de Investigación en Bioquímica Clínica e Inmunología, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Gabriel Morón
- Centro de Investigación en Bioquímica Clínica e Inmunología, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María C Pistoresi-Palencia
- Centro de Investigación en Bioquímica Clínica e Inmunología, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
10
|
Hib Vaccines: Past, Present, and Future Perspectives. J Immunol Res 2016; 2016:7203587. [PMID: 26904695 PMCID: PMC4745871 DOI: 10.1155/2016/7203587] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 12/24/2015] [Indexed: 12/31/2022] Open
Abstract
Haemophilus influenzae type b (Hib) causes many severe diseases, including epiglottitis, pneumonia, sepsis, and meningitis. In developed countries, the annual incidence of meningitis caused by bacteria is approximately 5–10 cases per population of 100,000. The Hib conjugate vaccine is considered protective and safe. Adjuvants, molecules that can enhance and/or regulate the fundamental immunogenicity of an antigen, comprise a wide range of diverse compounds. While earlier developments of adjuvants created effective products, there is still a need to create new generations, rationally designed based on recent discoveries in immunology, mainly in innate immunity. Many factors may play a role in the immunogenicity of Hib conjugate vaccines, such as the polysaccharides and proteins carrier used in vaccine construction, as well as the method of conjugation. A Hib conjugate vaccine has been constructed via chemical synthesis of a Hib saccharide antigen. Two models of carbohydrate-protein conjugate have been established, the single ended model (terminal amination-single method) and cross-linked lattice matrix (dual amination method). Increased knowledge in the fields of immunology, molecular biology, glycobiology, glycoimmunology, and the biology of infectious microorganisms has led to a dramatic increase in vaccine efficacy.
Collapse
|
11
|
Fukuyama Y, Ikeda Y, Ohori J, Sugita G, Aso K, Fujihashi K, Briles DE, McGhee JR, Fujihashi K. A molecular mucosal adjuvant to enhance immunity against pneumococcal infection in the elderly. Immune Netw 2015; 15:9-15. [PMID: 25713504 PMCID: PMC4338268 DOI: 10.4110/in.2015.15.1.9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 12/25/2022] Open
Abstract
Streptococcus pneumoniae (the pneumococcus) causes a major upper respiratory tract infection often leading to severe illness and death in the elderly. Thus, it is important to induce safe and effective mucosal immunity against this pathogen in order to prevent pnuemocaccal infection. However, this is a very difficult task to elicit protective mucosal IgA antibody responses in older individuals. A combind nasal adjuvant consisting of a plasmid encoding the Flt3 ligand cDNA (pFL) and CpG oligonucleotide (CpG ODN) successfully enhanced S. pneumoniae-specific mucosal immunity in aged mice. In particular, a pneumococcal surface protein A-based nasal vaccine given with pFL and CpG ODN induced complete protection from S. pneumoniae infection. These results show that nasal delivery of a combined DNA adjuvant offers an attractive potential for protection against the pneumococcus in the elderly.
Collapse
Affiliation(s)
- Yoshiko Fukuyama
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yorihiko Ikeda
- Department of Pediatric Dentistry, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Junichiro Ohori
- Department of Pediatric Dentistry, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Gen Sugita
- Department of Pediatric Dentistry, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kazuyoshi Aso
- Department of Pediatric Dentistry, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Keiko Fujihashi
- Department of Pediatric Dentistry, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David E Briles
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jerry R McGhee
- Department of Pediatric Dentistry, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kohtaro Fujihashi
- Department of Pediatric Dentistry, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
12
|
Bou Ghanem EN, Clark S, Du X, Wu D, Camilli A, Leong JM, Meydani SN. The α-tocopherol form of vitamin E reverses age-associated susceptibility to streptococcus pneumoniae lung infection by modulating pulmonary neutrophil recruitment. THE JOURNAL OF IMMUNOLOGY 2014; 194:1090-9. [PMID: 25512603 PMCID: PMC4834212 DOI: 10.4049/jimmunol.1402401] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Streptococcus pneumoniae infections are an important cause of morbidity and mortality in older patients. Uncontrolled neutrophil-driven pulmonary inflammation exacerbates this disease. To test whether the α-tocopherol (α-Toc) form of vitamin E, a regulator of immunity, can modulate neutrophil responses as a preventive strategy to mitigate the age-associated decline in resistance to S. pneumoniae, young (4 mo) and old (22-24 mo) C57BL/6 mice were fed a diet containing 30-PPM (control) or 500-PPM (supplemented) α-Toc for 4 wk and intratracheally infected with S. pneumoniae. Aged mice fed a control diet were exquisitely more susceptible to S. pneumoniae than young mice. At 2 d postinfection, aged mice suffered 1000-fold higher pulmonary bacterial burden, 2.2-fold higher levels of neutrophil recruitment to the lung, and a 2.25-fold higher rate of lethal septicemia. Strikingly, α-Toc supplementation of aged mice resulted in a 1000-fold lower bacterial lung burden and full control of infection. This α-Toc-induced resistance to pneumococcal challenge was associated with a 2-fold fewer pulmonary neutrophils, a level comparable to S. pneumoniae-challenged, conventionally fed young mice. α-Toc directly inhibited neutrophil egress across epithelial cell monolayers in vitro in response to pneumococci or hepoxilin-A3, an eicosanoid required for pneumococcus-elicited neutrophil trans-epithelial migration. α-Toc altered expression of multiple epithelial and neutrophil adhesion molecules involved in migration, including CD55, CD47, CD18/CD11b, and ICAM-1. These findings suggest that α-Toc enhances resistance of aged mice to bacterial pneumonia by modulating the innate immune response, a finding that has potential clinical significance in combating infection in aged individuals through nutritional intervention.
Collapse
Affiliation(s)
- Elsa N Bou Ghanem
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111
| | - Stacie Clark
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111
| | - Xiaogang Du
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston MA 02114; and
| | - Dayong Wu
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston MA 02114; and
| | - Andrew Camilli
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111; Howard Hughes Medical Institute, Boston, MA 02111
| | - John M Leong
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111;
| | - Simin N Meydani
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston MA 02114; and
| |
Collapse
|
13
|
A novel emulsion-type adjuvant containing CpG oligodeoxynucleotides enhances CD8+ T-cell-mediated anti-tumor immunity. J Control Release 2013; 173:158-65. [PMID: 24177312 DOI: 10.1016/j.jconrel.2013.10.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 10/02/2013] [Accepted: 10/21/2013] [Indexed: 01/31/2023]
Abstract
PELC is a novel emulsion-type adjuvant that contains the bioresorbable polymer poly (ethylene glycol)-block-poly (lactide-co-ε-caprolactone) (PEG-b-PLACL), Span®85 and squalene. To investigate whether PELC is able to enhance CTL responses of antigens for treating tumor, peptides or protein antigens derived from HPV16 E7 were formulated with PELC nanoparticles and CpG oligodeoxynucleotide. We identified that PELC formulation could delay the release of antigens in vitro and in vivo. We assessed the immunogenicity of an H-2D(b)-restricted CTL epitope RAHYNIVTF (RAH) formulated with PELC or PELC/CpG and investigated the ability of these formulations to promote tumor regression. Following a single-dose subcutaneous injection in mice, we found that the RAH peptide formulated with PELC/CpG (RAH/PELC/CpG) resulted in increased numbers of IFN-γ-secreting cells and RAH-specific CD8(+) T cells and an enhanced cytotoxic T cell response compared with RAH formulated with PELC or CpG alone. The tumor-bearing mice received a single-dose injection of RAH/PELC/CpG, which induced complete tumor regression. These results demonstrated that peptide antigen formulated with PELC/CpG nanoparticles is feasible for cancer immunotherapy.
Collapse
|
14
|
Shaw AC, Goldstein DR, Montgomery RR. Age-dependent dysregulation of innate immunity. Nat Rev Immunol 2013; 13:875-87. [PMID: 24157572 DOI: 10.1038/nri3547] [Citation(s) in RCA: 768] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
As we age, the innate immune system becomes dysregulated and is characterized by persistent inflammatory responses that involve multiple immune and non-immune cell types and that vary depending on the cell activation state and tissue context. This ageing-associated basal inflammation, particularly in humans, is thought to be induced by several factors, including the reactivation of latent viral infections and the release of endogenous damage-associated ligands of pattern recognition receptors (PRRs). Innate immune cell functions that are required to respond to pathogens or vaccines, such as cell migration and PRR signalling, are also impaired in aged individuals. This immune dysregulation may affect conditions associated with chronic inflammation, such as atherosclerosis and Alzheimer's disease.
Collapse
Affiliation(s)
- Albert C Shaw
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
15
|
Haas KM, Blevins MW, High KP, Pang B, Swords WE, Yammani RD. Aging promotes B-1b cell responses to native, but not protein-conjugated, pneumococcal polysaccharides: implications for vaccine protection in older adults. J Infect Dis 2013; 209:87-97. [PMID: 23964109 DOI: 10.1093/infdis/jit442] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The efficacy of different vaccines in protecting elderly individuals against Streptococcus pneumoniae infections is not clear. In the current study, aged mice (22-25 months old) exhibited significantly increased susceptibility to respiratory infection with serotype 3 S. pneumoniae relative to younger adult mice, regardless of whether mice were naive or immunized with native pneumococcal polysaccharide (PPS; Pneumovax23) or protein-PPS conjugate (Prevnar-13) vaccines. Nonetheless, Pneumovax-immunized aged mice developed limited bacteremia following respiratory challenge and exhibited significantly increased survival following systemic challenge relative to Prevnar-immune aged mice and young mice that had received either vaccine. This was explained by >10-fold increases in PPS-specific immunoglobulin G (IgG) levels in Pneumovax-immunized aged mice relative to other groups. Remarkably, PPS3-specific B-cell expansion, IgG switching, plasmablast differentiation, and spleen and bone marrow antibody-secreting cell frequencies were 10-fold higher in aged mice following Pneumovax immunization relative to young mice, due to significantly increased B-1b cell participation. In summary, this study highlights (1) the need to devise strategies to enhance respiratory immunity in aged populations, (2) the diverse responses young and aged populations generate to Pneumovax vs Prevnar vaccines, and (3) the potential value of exploiting B-1b cell responses in aged individuals for increased vaccine efficacy.
Collapse
|
16
|
Lefebvre JS, Haynes L. Vaccine strategies to enhance immune responses in the aged. Curr Opin Immunol 2013; 25:523-8. [PMID: 23764092 DOI: 10.1016/j.coi.2013.05.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/20/2013] [Accepted: 05/21/2013] [Indexed: 12/20/2022]
Abstract
The elderly population is more susceptible to infections with higher risks of morbidity and mortality. This is caused by the accumulation of immune defects with aging. The best way to protect people against infections is vaccination. Unfortunately, the same immune defects that render the elderly susceptible to infectious diseases also prevent the development of protective immunity following immunization. A good example of this is the influenza vaccine that only protects between 40 and 60% of the vaccinees over 65 years. In the past decade, tremendous efforts have been put toward improving the influenza vaccine for the elderly. We therefore use this example to present various strategies employed to overcome these age-associated immune defects and hence make vaccines more efficacious for the aged.
Collapse
Affiliation(s)
- Julie S Lefebvre
- Trudeau Institute, 154 Algonquin Avenue, Saranac Lake, NY 12983, USA
| | | |
Collapse
|
17
|
Perkey E, Miller RA, Garcia GG. Ex vivo enzymatic treatment of aged CD4 T cells restores cognate T cell helper function and enhances antibody production in mice. THE JOURNAL OF IMMUNOLOGY 2012; 189:5582-9. [PMID: 23136198 DOI: 10.4049/jimmunol.1200487] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Previous in vitro studies showed that CD4 T cells from old mice have defects in TCR signaling, immune synapse formation, activation, and proliferation. We reported that removing a specific set of surface glycoproteins by ex vivo treatment with O-sialoglycoprotein endopeptidase (OSGE) can reverse many aspects of the age-related decline in CD4 T cell function. However, the specific mechanism by which this process occurs remains unclear, and it is unknown whether this enzymatic treatment can also restore important aspects of adaptive immunity in vivo. By using an in vivo model of the immune response based on adoptive transfer of CD4 T cells from pigeon cytochrome C-specific transgenic H-2(k/k) TCR-Vα(11)Vβ(3) CD4(+) mice to syngeneic hosts, we demonstrate that aging diminishes CD28 costimulatory signals in CD4 T cells. These age-associated defects include changes in phosphorylation of AKT and expression of glucose transporter type I, inducible T cell costimulatory molecule, and CD40L, suggesting that the lack of CD28 costimulation contributes to age-dependent loss of CD4 function. All of these deficits can be reversed by ex vivo OSGE treatment. Blocking B7-CD28 interactions on T cells prevents OSGE-mediated restoration of T cell function, suggesting that changes in surface glycosylation, including CD28, may be responsible for the age-related costimulation decline. Finally, we show that the age-related decline in CD4 cognate helper function for IgG production and long-term humoral immunity can also be restored by OSGE treatment of CD4 T cells prior to adoptive transfer.
Collapse
Affiliation(s)
- Eric Perkey
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan College of Literature, Science and the Arts, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
18
|
Timing of Toll-like receptor 9 agonist administration in pneumococcal vaccination impacts both humoral and cellular immune responses as well as nasopharyngeal colonization in mice. Infect Immun 2012; 80:1744-52. [PMID: 22371375 DOI: 10.1128/iai.00079-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Synthetic oligodeoxynucleotides (ODN) containing unmethylated CpG motifs, CpG ODN, are Toll-like receptor 9 agonists (TLR9a), which have been used as adjuvants in pneumococcal vaccines to improve antibody responses in immunodeficient patients. Here, we examined whether the coadministration of TLR9a with pneumococcal CRM(197)-conjugate vaccine enhances protection against pneumococcal colonization, the levels of antipolysaccharide antibodies, and the CD4(+) T-cell responses. Wild-type BALB/c mice and B-cell-deficient BALB/c Igh-J(tm1Dhu) mice were immunized twice with the following: (i) PCV alone; (ii) simultaneous PCV and TLR9a; (iii) PCV and then TLR9a, after a 48-h delay; (iv) TLR9a alone; and (v) phosphate-buffered saline. Nasopharyngeal protection, serum antibodies, CD4(+) T-cell responses, and clearance of bacteremia after intraperitoneal challenge with Streptococcus pneumoniae 6B were evaluated. We found decreased nasopharyngeal protection against S. pneumoniae 6B colonization after simultaneous immunization with PCV and TLR9a compared to immunization with PCV alone in wild-type BALB/c mice (P = 0.037). A similar trend was observed in B-cell-deficient BALB/c Igh-J(tm1Dhu) mice. Simultaneous administration did not enhance antibody levels and lowered the CRM(197)-specific cytokine release of gamma interferon, interleukin-2 (IL-2), IL-5 and IL-13. Immunization with PCV and then TLR9a, after a 48-h delay, significantly improved nasopharyngeal protection compared to simultaneous administration (P = 0.011). Furthermore, delaying TLR9a delivery increased antibody titers compared to both simultaneous administration (P = 0.001) and PCV immunization alone (P = 0.026). In conclusion, the immunological and clinical impact of adjuvanting a pneumococcal conjugate vaccine (Prevnar; Pfizer) with a TLR9a is highly depended on timing of the adjuvant administration. Thus, careful timing of adjuvant administration may improve novel vaccine formulations.
Collapse
|
19
|
Snapper CM. Mechanisms underlying in vivo polysaccharide-specific immunoglobulin responses to intact extracellular bacteria. Ann N Y Acad Sci 2012; 1253:92-101. [DOI: 10.1111/j.1749-6632.2011.06329.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Shaw AC, Panda A, Joshi SR, Qian F, Allore HG, Montgomery RR. Dysregulation of human Toll-like receptor function in aging. Ageing Res Rev 2011; 10:346-53. [PMID: 21074638 PMCID: PMC3633557 DOI: 10.1016/j.arr.2010.10.007] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 10/22/2010] [Accepted: 10/25/2010] [Indexed: 12/19/2022]
Abstract
Studies addressing immunosenescence in the immune system have expanded to focus on the innate as well as the adaptive responses. In particular, aging results in alterations in the function of Toll-like receptors (TLRs), the first described pattern recognition receptor family of the innate immune system. Recent studies have begun to elucidate the consequences of aging on TLR function in human cohorts and add to existing findings performed in animal models. In general, these studies show that human TLR function is impaired in the context of aging, and in addition there is evidence for inappropriate persistence of TLR activation in specific systems. These findings are consistent with an overarching theme of age-associated dysregulation of TLR signaling that likely contributes to the increased morbidity and mortality from infectious diseases found in geriatric patients.
Collapse
Affiliation(s)
- Albert C Shaw
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
Synthetic oligodeoxynucleotides (ODNs) containing unmethylated CpG motifs trigger cells that express Toll-like receptor 9 (including human plasmacytoid dendritic cells and B cells) to mount an innate immune response characterized by the production of Th1 and proinflammatory cytokines. When used as vaccine adjuvants, CpG ODNs improve the function of professional antigen-presenting cells and boost the generation of humoral and cellular vaccine-specific immune responses. These effects are optimized by maintaining ODNs and vaccine in close proximity. The adjuvant properties of CpG ODNs are observed when administered either systemically or mucosally, and persist in immunocompromised hosts. Preclinical studies indicate that CpG ODNs improve the activity of vaccines targeting infectious diseases and cancer. Clinical trials demonstrate that CpG ODNs have a good safety profile and increase the immunogenicity of coadministered vaccines.
Collapse
Affiliation(s)
- Christian Bode
- Cancer and Infammation Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Gan Zhao
- Cancer and Infammation Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Folkert Steinhagen
- Cancer and Infammation Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Takeshi Kinjo
- Cancer and Infammation Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Dennis M Klinman
- Cancer and Infammation Program, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
22
|
Exley AR, Buckenham S, Hodges E, Hallam R, Byrd P, Last J, Trinder C, Harris S, Screaton N, Williams AP, Taylor AMR, Shneerson JM. Premature ageing of the immune system underlies immunodeficiency in ataxia telangiectasia. Clin Immunol 2011; 140:26-36. [PMID: 21459046 DOI: 10.1016/j.clim.2011.03.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 02/18/2011] [Accepted: 03/03/2011] [Indexed: 10/18/2022]
Abstract
ATM kinase modulates pathways implicated in premature ageing and ATM genotype predicts survival, yet immunodeficiency in ataxia telangiectasia is regarded as mild and unrelated to age. We address this paradox in a molecularly characterised sequential adult cohort with classical and mild variant ataxia telangiectasia. Immunodeficiency has the characteristics of premature ageing across multiple cellular and molecular immune parameters. This immune ageing occurs without previous CMV infection. Age predicts immunodeficiency in genetically homogeneous ataxia telangiectasia, and in comparison with controls, calendar age is exceeded by immunological age defined by thymic naïve CD4+ T cell levels. Applying ataxia telangiectasia as a model of immune ageing, pneumococcal vaccine responses, characteristically deficient in physiological ageing, are predicted by thymic naïve CD4+ T cell levels. These data suggest inherited defects of DNA repair may provide valuable insight into physiological ageing. Thymic naïve CD4+ T cells may provide a biomarker for vaccine responsiveness in elderly cohorts.
Collapse
Affiliation(s)
- Andrew Robert Exley
- Immunology Laboratory, Department of Pathology, Papworth Hospital NHS Foundation Trust, Cambridge University Health Partners, Cambridge CB23 3RE, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Liscovsky MV, Ranocchia RP, Alignani DO, Gorlino CV, Morón G, Maletto BA, Pistoresi-Palencia MC. CpG-ODN+IFN-γ confer pro- and anti-inflammatory properties to peritoneal macrophages in aged mice. Exp Gerontol 2011; 46:462-7. [PMID: 21316438 DOI: 10.1016/j.exger.2011.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 12/20/2010] [Accepted: 01/31/2011] [Indexed: 02/08/2023]
Abstract
Aging is accompanied by a disturbance in the homeostasis of the immune system. However, research into the behavior of macrophages in aging has shown disagreements about the functional status of these cells in aged mice. In this work, we studied the influence of aging on macrophage functions by evaluating the pro- and anti-inflammatory parameters of peritoneal macrophages preserved in their natural microenvironment. Resident peritoneal macrophages from old mice, in the context of their natural milieu, were found to respond with a similar phenotype and functional pattern to macrophages from young mice. In addition, we evaluated the macrophage response to CpG-ODN, a well-known Th1 promoter. CpG-ODN+IFN-γ were able to activate not only nitric oxide to initiate the inflammatory response, but also IL-12 in resident and inflammatory peritoneal macrophages from aged mice in the context of their natural milieu, although some quantitative differences were found in IL-10 and IL-12 secretion. With this stimulus, NO secretion and arginase activation were maintained in peritoneal macrophages during aging. These results will help to elucidate potential immunization strategies with CpG-ODN in the elderly.
Collapse
Affiliation(s)
- Miriam V Liscovsky
- Centro de Investigación en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | | | | | | | | | | |
Collapse
|
24
|
Fukuyama Y, King JD, Kataoka K, Kobayashi R, Gilbert RS, Hollingshead SK, Briles DE, Fujihashi K. A combination of Flt3 ligand cDNA and CpG oligodeoxynucleotide as nasal adjuvant elicits protective secretory-IgA immunity to Streptococcus pneumoniae in aged mice. THE JOURNAL OF IMMUNOLOGY 2011; 186:2454-61. [PMID: 21242514 DOI: 10.4049/jimmunol.1002837] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Our previous study showed that a combination of a plasmid-expressing Flt3 ligand (pFL) and CpG oligodeoxynucleotides (CpG ODN) as a combined nasal adjuvant elicited mucosal immune responses in aged (2-y-old) mice. In this study, we investigated whether a combination of pFL and CpG ODN as a nasal adjuvant for a pneumococcal surface protein A (PspA) would enhance PspA-specific secretory-IgA Ab responses, which could provide protective mucosal immunity against Streptococcus pneumoniae infection in aged mice. Nasal immunization with PspA plus a combination of pFL and CpG ODN elicited elevated levels of PspA-specific secretory-IgA Ab responses in external secretions and plasma in both young adult and aged mice. Significant levels of PspA-specific CD4(+) T cell proliferative and PspA-induced Th1- and Th2- type cytokine responses were noted in nasopharyngeal-associated lymphoreticular tissue, cervical lymph nodes, and spleen of aged mice, which were equivalent to those in young adult mice. Additionally, increased numbers of mature-type CD8, CD11b-expressing dendritic cells were detected in mucosal inductive and effector lymphoid tissues of aged mice. Importantly, aged mice given PspA plus a combination of pFL and CpG ODN showed protective immunity against nasal S. pneumoniae colonization. These results demonstrate that nasal delivery of a combined DNA adjuvant offers an attractive possibility for protection against S. pneumoniae in the elderly.
Collapse
Affiliation(s)
- Yoshiko Fukuyama
- Department of Pediatric Dentistry, Immunobiology Vaccine Center, Institute of Oral Health Research, University of Alabama at Birmingham, AL 35294-0007, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Morgan EL, Thoman ML, Sanderson SD, Phillips JA. A novel adjuvant for vaccine development in the aged. Vaccine 2010; 28:8275-9. [PMID: 20965299 PMCID: PMC2997863 DOI: 10.1016/j.vaccine.2010.10.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 09/28/2010] [Accepted: 10/05/2010] [Indexed: 12/31/2022]
Abstract
A conformationally-biased, response-selective agonist of human C5a(65-74) (EP67) activated antigen presenting cells (APC) from aged C57Bl/6 mice in vitro and the generation of antigen (Ag)-specific antibody (Ab) responses in aged mice in vivo. EP67, induced the release of the pro-inflammatory cytokines IL-6, TNFα, and INFγ from splenic APCs obtained from both aged and young mice. Both aged and young mice produced high Ag-specific IgG Ab titers when immunized with EP67-containing vaccines to ovalbumin (OVA-EP67) and to a protein (rPrp1) from the cell wall of Coccidioides (rPrp1-EP67). Immunization with EP67-containing vaccines resulted in higher IgG titers in both young and aged mice compared to mice immunized with OVA adsorbed to alum (OVA/alum) and Prp1 admixed with CpG (rPrp1 +CpG). Aged and young mice immunized with the EP67-containing vaccines generated higher titers of IgG1 and IgG2b relative to their aged-matched counterparts immunized with OVA/alum or Prp1 +CpG. These results indicate that EP67 induces humoral immunity in aged mice not obtainable with alum and CpG. These results support the use of EP67 as a potential vaccine adjuvant suited to the elderly.
Collapse
Affiliation(s)
- Edward L Morgan
- San Diego State University, Biosciences Center, 5500 Campanile Drive, San Diego, CA 92182, USA.
| | | | | | | |
Collapse
|
26
|
High KP, D'Aquila RT, Fuldner RA, Gerding DN, Halter JB, Haynes L, Hazzard WR, Jackson LA, Janoff E, Levin MJ, Nayfield SG, Nichol KL, Prabhudas M, Talbot HK, Clayton CP, Henderson R, Scott CM, Tarver ED, Woolard NF, Schmader KE. Workshop on immunizations in older adults: identifying future research agendas. J Am Geriatr Soc 2010; 58:765-76. [PMID: 20398161 DOI: 10.1111/j.1532-5415.2010.02772.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Goals for immunization in older adults may differ from those in young adults and children, in whom complete prevention of disease is the objective. Often, reduced hospitalization and death but also averting exacerbation of underlying chronic illness, functional decline, and frailty are important goals in the older age group. Because of the effect of age on dendritic cell function, T cell-mediated immune suppression, reduced proliferative capacity of T cells, and other immune responses, the efficacy of vaccines often wanes with advanced age. This article summarizes the discussion and proceedings of a workshop organized by the Association of Specialty Professors, the Infectious Diseases Society of America, the American Geriatrics Society, the National Institute on Aging, and the National Institute of Allergy and Infectious Diseases. Leading researchers and clinicians in the fields of immunology, epidemiology, infectious diseases, geriatrics, and gerontology reviewed the current status of vaccines in older adults, identified knowledge gaps, and suggest priority areas for future research. The goal of the workshop was to identify what is known about immunizations (efficacy, effect, and current schedule) in older adults and to recommend priorities for future research. Investigation in the areas identified has the potential to enhance understanding of the immune process in aging individuals, inform vaccine development, and lead to more-effective strategies to reduce the risk of vaccine-preventable illness in older adults.
Collapse
Affiliation(s)
- Kevin P High
- Division of Infectious Diseases, Department of Internal Medicine, School of Medicine, Wake Forest University, Winston-Salem, North Carolina 27157, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Defective B cell response to TLR9 ligand (CpG-ODN), Streptococcus pneumoniae and Haemophilus influenzae extracts in common variable immunodeficiency patients. Cell Immunol 2010; 262:105-11. [PMID: 20171611 DOI: 10.1016/j.cellimm.2010.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 01/15/2010] [Accepted: 01/15/2010] [Indexed: 12/19/2022]
Abstract
Common variable immunodeficiency (CVID) is a primary immunodeficiency characterized by hypogammaglobulinaemia and antibody deficiency to both T dependent and independent antigens. Patients suffer from recurrent sinopulmonary infections mostly caused by Streptococcus pneumoniae and Haemophilus influenzae, but also gastrointestinal or autoimmune symptoms. Their response to vaccination is poor or absent. In this study we investigated B cell activation induced by the TLR9 specific ligand (CpG-ODN) and bacterial extracts from S. pneumoniae and H. influenzae known to stimulate several TLR. We found that B cells from CVID patients express lower levels of CD86 after stimulation with CpG-ODN, S. pneumoniae and H. influenzae extracts in combination with anti-IgM antibody and also display a lower proliferative index when stimulated with bacterial extracts. Our results point to a broad TLR signalling defect in B lymphocytes from CVID patients that may be related to the hypogammaglobulinaemia and poor response to vaccination characteristic of these patients.
Collapse
|
28
|
The thymus-independent immunity conferred by a pneumococcal polysaccharide is mediated by long-lived plasma cells. Blood 2009; 114:4432-40. [PMID: 19767510 DOI: 10.1182/blood-2009-01-200014] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
It was recently shown that bacterial thymus-independent (TI) antigens confer long-lasting immunity and generate memory B lymphocytes. However, reactivation of TI memory B cells is repressed in immunocompetent mice, thus raising the issue of the mechanism whereby TI vaccines confer immune protection. Here, we propose an explanation to this apparent paradox by showing that a Streptococcus pneumoniae capsular polysaccharide (PS) generates long-lived bone marrow (BM) plasma cells which frequency can be increased by CpG oligodeoxynucleotides (ODNs). The adjuvant effect of CpG ODNs on the PS3 Ab response is directly targeted to B cells and does not involve B-1a cells. We also demonstrated that BM plasma cells generated in response to the thymus-dependent (TD) form of the PS vaccine have a higher secretion capacity than those produced after immunization with the CpG-adjuvanted PS vaccine. Finally, we show that the PS-specific BM plasma cell compartment is sufficient to confer full protection of vaccinated mice against S pneumoniae infection. Altogether, our results show that TI antigens like their TD counterparts can generate both the lymphoid and the plasma cell component of B-cell memory. They also provide a framework for the improvement and widespread usage of TI vaccines.
Collapse
|
29
|
Fujihashi K, Kiyono H. Mucosal immunosenescence: new developments and vaccines to control infectious diseases. Trends Immunol 2009; 30:334-43. [DOI: 10.1016/j.it.2009.04.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 04/08/2009] [Accepted: 04/08/2009] [Indexed: 11/28/2022]
|
30
|
Twohig JP, Pappworth IY, Sivasankar B, Kulik L, Bull M, Holers VM, Wang EC, Marchbank KJ. Defective B cell ontogeny and humoral immune response in mice prematurely expressing human complement receptor 2 (CR2, CD21) is similar to that seen in aging wild type mice. Mol Immunol 2009; 46:2002-13. [PMID: 19359041 PMCID: PMC2706330 DOI: 10.1016/j.molimm.2009.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 03/12/2009] [Accepted: 03/14/2009] [Indexed: 02/03/2023]
Abstract
Mice prematurely expressing human CR2 (hCR2) in the B cell lineage have a defective B cell ontogeny and humoral immune response. We have previously determined altered tyrosine phosphorylation patterns within hCR2 transgenic mice, suggesting that irreversible changes in B cell signaling pathways had occurred, which could explain the B cell unresponsiveness associated with hCR2 transgene expression. In support of that assertion, we found that increasing antigen dose or addition of adjuvant had a minimal impact on the ability of B cells to respond to antigen. However, analysis of aged hCR2(high) mice (1 year plus) revealed that both B cell numbers, B cell sub-population distribution including expansion of a newly described B regulatory cell subset, and immune responses were comparable with age-matched hCR2 negative mice. Finally, we established that B cell unresponsiveness to antigen in aging wild type mice (1 year plus) was equivalent to that noted in 3-month-old hCR2(high) mice. This data provides evidence that 3-month-old hCR2(high) mice have a humoral immune system resembling aged mice and suggests that further examination of the precise molecular and cellular parallels between aged wild type mice and 3-month-old hCR2(high) mice could provide an important insight into the mechanisms which lead to B cell unresponsiveness in the aging immune system.
Collapse
Affiliation(s)
- Jason P. Twohig
- Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Cardiff, UK
| | - Isabel Y. Pappworth
- Institute of Human Genetics, Newcastle University, Center for Life, Central Parkway, Newcastle NE1 3BZ, UK
| | | | - Liudmila Kulik
- Departments of Medicine and Immunology, University of Colorado, SOM, Denver, CO, USA
| | - Melanie Bull
- Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Cardiff, UK
| | - V. Michael Holers
- Departments of Medicine and Immunology, University of Colorado, SOM, Denver, CO, USA
| | - Eddie C.Y. Wang
- Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Cardiff, UK
| | - Kevin J. Marchbank
- Institute of Human Genetics, Newcastle University, Center for Life, Central Parkway, Newcastle NE1 3BZ, UK
| |
Collapse
|
31
|
Maue AC, Eaton SM, Lanthier PA, Sweet KB, Blumerman SL, Haynes L. Proinflammatory adjuvants enhance the cognate helper activity of aged CD4 T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:6129-35. [PMID: 19414765 PMCID: PMC3023905 DOI: 10.4049/jimmunol.0804226] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Age-related declines in humoral responses contribute to the reduced efficacy of vaccines in older populations. Using an adoptive transfer model, we have shown that age-related intrinsic declines in CD4 T cell function contribute significantly to the reduced humoral responses observed with aging, resulting in reduced B cell expansion and differentiation as well as reduced IgG production. In this current study, we show that the helper function of aged CD4 T cells can be enhanced using a TLR-binding adjuvant or an adjuvant containing proinflammatory (PI) cytokines. The helper function of aged CD4 T cells was also enhanced when PI cytokines were added during in vitro CD4 effector generation. Enhanced helper activity resulted in improved expansion and differentiation of B cells and affinity maturation of IgG. PI cytokines also induced significant production of effector cytokines, including IL-4, IFN-gamma, IL-17, and IL-21, by both young and aged CD4 T cells. Importantly, we also show that proinflammatory adjuvants can significantly enhance the humoral response in intact aged animals. We propose that one of the mechanisms involved in the ability of adjuvants to enhance both young and aged T cell responses includes driving multifaceted T cell differentiation and production of multiple cytokines by responding CD4 T cells.
Collapse
|
32
|
Klinman DM, Klaschik S, Sato T, Tross D. CpG oligonucleotides as adjuvants for vaccines targeting infectious diseases. Adv Drug Deliv Rev 2009; 61:248-55. [PMID: 19272313 DOI: 10.1016/j.addr.2008.12.012] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2008] [Indexed: 01/14/2023]
Abstract
Synthetic oligodeoxynucleotides (ODN) containing unmethylated CpG motifs act as immune adjuvants, accelerating and boosting antigen-specific immune responses. CpG motifs promote the induction of Th1 and pro-inflammatory cytokines and support the maturation/activation of professional antigen presenting cells (particularly plasmacytoid dendritic cells). These effects are optimized by maintaining close physical contact between the CpG ODN and the immunogen. Co-administering CpG ODN with a variety of vaccines has improved the resultant humoral and/or cellular immune responses, culminating in enhanced protective immunity in rodent and primate challenge models. Ongoing clinical studies indicate that CpG ODN are safe and well-tolerated when administered as adjuvants to humans, and that they can support increased vaccine-specific immune responses.
Collapse
Affiliation(s)
- Dennis M Klinman
- Laboratory of Experimental Immunology, National Cancer Institute at Frederick, Frederick, MD 21702, United States.
| | | | | | | |
Collapse
|
33
|
Chattopadhyay G, Chen Q, Colino J, Lees A, Snapper CM. Intact bacteria inhibit the induction of humoral immune responses to bacterial-derived and heterologous soluble T cell-dependent antigens. THE JOURNAL OF IMMUNOLOGY 2009; 182:2011-9. [PMID: 19201854 DOI: 10.4049/jimmunol.0802615] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
During infections with extracellular bacteria, such as Streptococcus pneumoniae (Pn), the immune system likely encounters bacterial components in soluble form, as well as those associated with the intact bacterium. The potential cross-regulatory effects on humoral immunity in response to these two forms of Ag are unknown. We thus investigated the immunologic consequences of coimmunization with intact Pn and soluble conjugates of Pn-derived proteins and polysaccharides (PS) as a model. Coimmunization of mice with Pn and conjugate resulted in marked inhibition of conjugate-induced PS-specific memory, as well as primary and memory anti-protein Ig responses. Inhibition occurred with unencapsulated Pn, encapsulated Pn expressing different capsular types of PS than that present in the conjugate, and with conjugate containing protein not expressed by Pn, but not with 1-microm latex beads in adjuvant. Inhibition was long-lasting and occurred only during the early phase of the immune response, but it was not associated with tolerance. Pn inhibited the trafficking of conjugate from the splenic marginal zone to the B cell follicle and T cell area, strongly suggesting a potential mechanism for inhibition. These data suggest that during infection, bacterial-associated Ags are the preferential immunogen for antibacterial Ig responses.
Collapse
Affiliation(s)
- Gouri Chattopadhyay
- Department of Pathology, Uniformed Services University of Health Sciences, Bethesda, MD 20814, USA
| | | | | | | | | |
Collapse
|
34
|
Posnett DN, Engelhorn ME, Lin Y, Merghoub T, Duan F, Wolchok JD, Houghton AN. Development of effective vaccines for old mice in a tumor model. Vaccine 2009; 27:1093-100. [PMID: 19103244 PMCID: PMC4229949 DOI: 10.1016/j.vaccine.2008.11.112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 11/21/2008] [Accepted: 11/26/2008] [Indexed: 10/21/2022]
Abstract
Vaccines are often inefficient in old people and old mice. Few studies have focused on testing vaccines in old populations. Here we used DNA tumor antigen vaccines against melanoma and showed that old mice were not protected. Vaccines incorporating fusions of the tumor antigen with microbial adjuvant proteins OmpA (E. Coli) or Vp22 (Herpes simplex virus-1) dramatically improved protection of old mice. The mechanisms by which these adjuvant proteins act are distinct. TLR2 was not required for either OmpA or Vp22. Antigen processing and presentation were not boosted by these fusion constructs. However, fusion constructs with Vp22 gave a strong CD4 response to B16 melanoma and the OmpA response is MHC-II dependent. Both adjuvant fusion constructs stimulated CD4 and CD8 responses otherwise diminished in old mice.
Collapse
Affiliation(s)
- David N Posnett
- Dep. of Medicine, Weill Medical College of Cornell University, New York, NY 10021, United States.
| | | | | | | | | | | | | |
Collapse
|
35
|
Chen Q, Cannons JL, Paton JC, Akiba H, Schwartzberg PL, Snapper CM. A novel ICOS-independent, but CD28- and SAP-dependent, pathway of T cell-dependent, polysaccharide-specific humoral immunity in response to intact Streptococcus pneumoniae versus pneumococcal conjugate vaccine. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:8258-66. [PMID: 19050242 PMCID: PMC2893027 DOI: 10.4049/jimmunol.181.12.8258] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Polysaccharide (PS)- and protein-specific murine IgG responses to intact Streptococcus pneumoniae (Pn) are both dependent on CD4(+) T cell help, B7-dependent costimulation, and CD40/CD40 ligand interactions. However, the primary PS-specific, relative to protein-specific, IgG response terminates more rapidly, requires a shorter period of T cell help and B7-dependent costimulation, and fails to generate memory. In light of the critical role for ICOS/ICOS ligand interactions in sustaining T cell-dependent Ig responses and promoting germinal center reactions, we hypothesized that this interaction was nonessential for PS-specific IgG responses to Pn. We now demonstrate that ICOS(-/-), relative to wild-type, mice elicit a normal PS-specific IgG isotype response to Pn, despite marked inhibition of both the primary and secondary IgG anti-protein (i.e., PspA, PspC, and PsaA) response. A blocking anti-ICOS ligand mAb injected during primary Pn immunization inhibits both the primary anti-protein response and the generation of protein-specific memory, but has no effect when injected during secondary immunization. In contrast to Pn, both PS- and protein-specific IgG responses to a pneumococcal conjugate vaccine are inhibited in ICOS(-/-) mice. ICOS(-/-) mice immunized with intact Pn or conjugate exhibit nearly complete abrogation in germinal center formation. Finally, although mice that lack the adaptor molecule SAP (SLAM-associated protein) resemble ICOS(-/-) mice (and can exhibit decreased ICOS expression), we observe that the PS-specific, as well as protein-specific, IgG responses to both Pn and conjugate are markedly defective in SAP(-/-) mice. These data define a novel T cell-, SAP-, and B7-dependent, but ICOS-independent, extrafollicular pathway of Ig induction.
Collapse
MESH Headings
- Animals
- Antibodies, Bacterial/biosynthesis
- Antibodies, Bacterial/metabolism
- Antibodies, Bacterial/physiology
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/physiology
- Bacterial Capsules/administration & dosage
- Bacterial Capsules/immunology
- Bacterial Capsules/metabolism
- Bacterial Proteins/immunology
- Bacterial Proteins/metabolism
- Binding Sites, Antibody
- CD28 Antigens/genetics
- CD28 Antigens/physiology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/microbiology
- Epitopes, T-Lymphocyte/administration & dosage
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Female
- Inducible T-Cell Co-Stimulator Protein
- Intracellular Signaling Peptides and Proteins/deficiency
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/physiology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Phosphorylcholine/metabolism
- Signal Transduction/genetics
- Signal Transduction/immunology
- Signaling Lymphocytic Activation Molecule Associated Protein
- Streptococcal Vaccines/administration & dosage
- Streptococcal Vaccines/immunology
- Streptococcal Vaccines/metabolism
- Streptococcus pneumoniae/immunology
- Vaccines, Conjugate/administration & dosage
- Vaccines, Conjugate/immunology
- Vaccines, Conjugate/metabolism
Collapse
Affiliation(s)
- Quanyi Chen
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Jennifer L. Cannons
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20814
| | - James C. Paton
- School of Molecular and Biomedical Science, University of Adelaide, S. A. 5005 Australia
| | - Hisaya Akiba
- Department of Immunology, Juntendo University School of Medicine, Tokyo 133-8421, Japan
| | - Pamela L. Schwartzberg
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20814
| | - Clifford M. Snapper
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| |
Collapse
|
36
|
Moretto MM, Lawlor EM, Khan IA. Aging mice exhibit a functional defect in mucosal dendritic cell response against an intracellular pathogen. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:7977-84. [PMID: 19017989 PMCID: PMC2676144 DOI: 10.4049/jimmunol.181.11.7977] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Down-regulation of the immune response in aging individuals puts this population at a potential risk against infectious agents. In-depth studies conducted in humans and mouse models have demonstrated that with increasing age, the T cell immune response against pathogens is compromised and response to vaccinations is subdued. In the present study, using a mouse model, we demonstrate that older animals exhibit greater susceptibility to Encephalitozoon cuniculi infection, and their ability to evoke an Ag-specific T cell response at the gut mucosal site is reduced. The dampening of T cell immunity was due to the defective priming by the dendritic cells (DC) isolated from the mucosal tissues of aging animals. When primed with DC from younger mice, T cells from older animals were able to exhibit an optimal Ag-specific response. The functional defect in DC from older mice can be attributed to a large extent to reduced IL-15 message in these cells, which can be reversed by addition of exogenous IL-15 to the cultures. IL-15 treatment led to optimal expression of costimulatory molecules (CD80 and CD86) on the surface of older DC and restored their ability to prime a T cell response against the pathogen. To our knowledge, this is the first report which demonstrates the inability of the DC population from aging animals to prime a robust T cell response against an infectious agent. Moreover, the observation that IL-15 treatment can reverse this defect has far-reaching implications in developing strategies to increase vaccination protocols for aging populations.
Collapse
Affiliation(s)
- Magali M Moretto
- Department of Microbiology, Immunology and Tropical Medecine, George Washington University, Washington, DC, 20037
| | - Elizabeth M Lawlor
- Department of Microbiology, Immunology and Tropical Medecine, George Washington University, Washington, DC, 20037
| | - Imtiaz A Khan
- Department of Microbiology, Immunology and Tropical Medecine, George Washington University, Washington, DC, 20037
| |
Collapse
|
37
|
Vasilevsky S, Colino J, Puliaev R, Canaday DH, Snapper CM. Macrophages pulsed with Streptococcus pneumoniae elicit a T cell-dependent antibody response upon transfer into naive mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:1787-97. [PMID: 18641316 PMCID: PMC2561269 DOI: 10.4049/jimmunol.181.3.1787] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Macrophages are less effective than DC at priming naive CD4(+) T cells, suggesting that DC are unique in initiating T cell-dependent Ab responses. We compared the ability of DC and macrophages, pulsed in vitro with Streptococcus pneumoniae, to elicit protein- and polysaccharide-specific Ig isotype production upon adoptive transfer into naive mice. S. pneumoniae-activated DC secreted more proinflammatory and anti-inflammatory cytokines, expressed higher levels of surface MHC class II and CD40, and presented S. pneumoniae or recombinant pneumococcal surface protein A (PspA) to a PspA-specific T hybridoma more efficiently than macrophages. However, upon adoptive transfer into naive mice, S. pneumoniae-pulsed macrophages elicited an IgM or IgG anti-PspA and anti-polysaccharide response comparable in serum titers and IgG isotype distribution to that induced by DC. The IgG anti-PspA response, in contrast to the IgG anti-polysaccharide, to S. pneumoniae-pulsed macrophages was T cell-dependent. S. pneumoniae-pulsed macrophages that were paraformaldehyde-fixed before transfer or lacking expression of MHC class II or CD40 were highly defective in eliciting an anti-PspA response, although the anti-polysaccharide response was largely unaffected. To our knowledge, these data are the first to indicate that macrophages can play an active role in the induction of a T cell-dependent humoral immune response in a naive host.
Collapse
Affiliation(s)
- Sam Vasilevsky
- Department of Pathology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814
| | - Jesus Colino
- Department of Pathology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814
| | - Roman Puliaev
- Department of Pathology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814
| | - David H. Canaday
- Division of Infectious Disease, Case Western Reserve University, Cleveland, OH 44106
| | - Clifford M. Snapper
- Department of Pathology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814
| |
Collapse
|
38
|
Csordas FC, Perciani CT, Darrieux M, Gonçalves VM, Cabrera-Crespo J, Takagi M, Sbrogio-Almeida ME, Leite LC, Tanizaki MM. Protection induced by pneumococcal surface protein A (PspA) is enhanced by conjugation to a Streptococcus pneumoniae capsular polysaccharide. Vaccine 2008; 26:2925-9. [DOI: 10.1016/j.vaccine.2008.03.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 03/18/2008] [Accepted: 03/19/2008] [Indexed: 11/17/2022]
|
39
|
Bates JT, Honko AN, Graff AA, Kock ND, Mizel SB. Mucosal adjuvant activity of flagellin in aged mice. Mech Ageing Dev 2008; 129:271-81. [PMID: 18367233 PMCID: PMC2366812 DOI: 10.1016/j.mad.2008.01.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 12/11/2007] [Accepted: 01/25/2008] [Indexed: 01/22/2023]
Abstract
We evaluated the ability of flagellin, a highly effective mucosal adjuvant in mice and non-human primates, to promote mucosal innate and adaptive immunity in aged mice. We found that intratracheal instillation of flagellin induced a stronger respiratory innate response in aged mice than in young mice, and that intranasal instillation of flagellin was equally effective at triggering recruitment of T and B lymphocytes to the draining lymph nodes of young and aged mice. Intranasal immunization of aged mice with flagellin and the Yersinia pestis protein F1 promoted specific IgG and IgA production, but at lower levels and lower avidities than in young mice. Although intranasal instillation of flagellin and F1 antigen increased germinal center formation and size in young mice, it did not do so in aged mice. Our findings are consistent with the conclusion that flagellin can promote adaptive immune responses in aged mice, but at a less robust level than in young mice.
Collapse
Affiliation(s)
- John T. Bates
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Anna N. Honko
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Aaron A. Graff
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Nancy D. Kock
- Department of Pathology, Division of Comparative Medicine, Wake Forest University School of Medicine Winston-Salem, NC 27157
| | - Steven B. Mizel
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| |
Collapse
|
40
|
Higgins D, Marshall JD, Traquina P, Van Nest G, Livingston BD. Immunostimulatory DNA as a vaccine adjuvant. Expert Rev Vaccines 2007; 6:747-59. [PMID: 17931155 DOI: 10.1586/14760584.6.5.747] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Immunostimulatory DNA containing unmethylated CpG motifs is recognized by Toll-like receptor 9, resulting in the activation of innate immune responses that subsequently amplify the adaptive-immune response. Advances in the characterization of Toll-like receptor 9 signaling have identified immunostimulatory sequences (ISS) with distinct biological activities. Numerous animal models have demonstrated that synthetic ISS are effective adjuvants that enhance both humoral and cellular immune responses in diverse indications, ranging from infectious disease to cancer and allergy. An added benefit supporting the use of ISS as a vaccine adjuvant is that the specific activation of a pathway critical to the regulation of the immune response results in minimal toxicity. To date, clinical testing has largely affirmed the potency and safety of ISS-adjuvanted vaccines.
Collapse
Affiliation(s)
- Debbie Higgins
- Preclinical Research, Dynavax Technologies, 2929 Seventh Street, Suite 100, Berkeley, CA 94710, USA.
| | | | | | | | | |
Collapse
|
41
|
Chen Q, Sen G, Snapper CM. Endogenous IL-1R1 signaling is critical for cognate CD4+ T cell help for induction of in vivo type 1 and type 2 antipolysaccharide and antiprotein Ig isotype responses to intact Streptococcus pneumoniae, but not to a soluble pneumococcal conjugate vaccine. THE JOURNAL OF IMMUNOLOGY 2006; 177:6044-51. [PMID: 17056530 DOI: 10.4049/jimmunol.177.9.6044] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
MyD88(-/-) mice exhibit defective innate, diminished CD4(+) T cell-dependent (TD) type 1, but enhanced type 2, humoral immunity in response to intact Streptococcus pneumoniae (Pn). Because type 1 IL-1R (IL-1R1) signaling is MyD88 dependent, a role for endogenous IL-1 was determined. IL-1R1(-/-), in contrast to MyD88(-/-), mice exhibited relatively intact innate splenic cytokine expression in response to Pn. Nevertheless, IL-1R1(-/-), like MyD88(-/-), mice were more sensitive to killing with live Pn relative to wild-type controls. Although IL-1R1(-/-) mice elicited a normal T cell-independent IgM antipolysaccharide (PS) response to heat-killed Pn, the induction of PS- and protein-specific cognate, but not noncognate, TD type 1 and type 2 IgG isotypes were markedly reduced. Additionally, CD4(+) T cells from Pn-primed IL-1R1(-/-) mice failed to elicit IFN-gamma, IL-5, or IL-13 secretion upon restimulation with Pn in vitro, whereas MyD88(-/-) mice secreted normal levels of IFN-gamma and enhanced levels of IL-5 and IL-13. In contrast, IgG responses to a soluble, pneumococcal protein-PS conjugate, with or without adjuvant, showed little dependence on IL-1R1 and normal CD4(+) T cell priming. These data are the first to demonstrate a nonredundant role for endogenous IL-1 in TD induction of humoral immune responses to an intact pathogen, although not a pathogen-derived soluble conjugate, suggesting that antigenic context is a key determinant for IL-1 dependence. These data further suggest that IL-1 may be critical for preserving CD4(+) Th2 function in the presence, but not absence, of MyD88-dependent signaling via TLRs.
Collapse
Affiliation(s)
- Quanyi Chen
- Department of Pathology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | | | | |
Collapse
|