1
|
Joos M, Van Ginneken S, Villanueva X, Dijkmans M, Coppola GA, Pérez-Romero CA, Vackier T, Van der Eycken E, Marchal K, Lories B, Steenackers HP. EPS inhibitor treatment of Salmonella impacts evolution without selecting for resistance to biofilm inhibition. NPJ Biofilms Microbiomes 2025; 11:73. [PMID: 40328762 PMCID: PMC12056028 DOI: 10.1038/s41522-025-00693-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 04/04/2025] [Indexed: 05/08/2025] Open
Abstract
Virulence factors of pathogens, such as toxin production and biofilm formation, often exhibit a public character, providing benefits to nearby non-producers. Consequently, anti-virulence drugs targeting these public traits may not select for resistance, as resistant mutants that resume production of the virulence factor share the benefits of their resistance with surrounding sensitive cells. In agreement with this, we show that even after long-term treatment with a 2-amino-imidazole (2-AI) biofilm inhibitor, Salmonella populations remained as susceptible to biofilm inhibition as the ancestral populations. Nonetheless, further genotypic and phenotypic analysis revealed that the Salmonella populations did adapt to the treatment and accumulated mutations in efflux pump regulators and alternative sigma factors. These mutations resulted in a reduced biofilm-forming capacity and increased efflux activity. Their selection was due to a growth delaying side effect of the biofilm inhibitor. Enhanced efflux activity helped overcome this growth delay, providing a fitness advantage over the ancestor. Finally, we demonstrate that chemical modification of the inhibitor enhances its specificity by partially alleviating the unintended growth delay while retaining the anti-biofilm activity, which in turn eliminated the selection pressure for increased efflux. Overall, our findings highlight that while unintended side effects can complicate anti-virulence strategies, adaptation to these effects does not necessarily restore the inhibited virulence trait. Moreover, chemical modification can mitigate these unintended side effects and enhance drug specificity.
Collapse
Affiliation(s)
- Mathieu Joos
- KU Leuven - MiCA Lab, Centre of Microbial and Plant Genetics, Leuven, Belgium
| | - Sybren Van Ginneken
- KU Leuven - MiCA Lab, Centre of Microbial and Plant Genetics, Leuven, Belgium
| | - Xabier Villanueva
- KU Leuven - MiCA Lab, Centre of Microbial and Plant Genetics, Leuven, Belgium
| | - Marie Dijkmans
- KU Leuven - MiCA Lab, Centre of Microbial and Plant Genetics, Leuven, Belgium
| | - Guglielmo A Coppola
- KU Leuven - MiCA Lab, Centre of Microbial and Plant Genetics, Leuven, Belgium
- Department of Chemistry, KU Leuven - Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Leuven, Belgium
| | - Camilo Andres Pérez-Romero
- Department of Plant Biotechnology and Bioinformatics, UGent - Internet Technology and Data Science Lab (IDLab), Gent, Belgium
| | - Thijs Vackier
- KU Leuven - MiCA Lab, Centre of Microbial and Plant Genetics, Leuven, Belgium
| | - Erik Van der Eycken
- Department of Chemistry, KU Leuven - Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Leuven, Belgium
- People's Friendship University of Russia (RUDN University), Moscow, Russia
| | - Kathleen Marchal
- Department of Plant Biotechnology and Bioinformatics, UGent - Internet Technology and Data Science Lab (IDLab), Gent, Belgium
| | - Bram Lories
- KU Leuven - MiCA Lab, Centre of Microbial and Plant Genetics, Leuven, Belgium
| | - Hans P Steenackers
- KU Leuven - MiCA Lab, Centre of Microbial and Plant Genetics, Leuven, Belgium.
| |
Collapse
|
2
|
Cooper KG, Kari L, Chong A, Tandon N, Doran K, Gomes Da Silva L, Cockrell DC, Baylink A, Steele-Mortimer O. HilD-regulated chemotaxis proteins contribute to Salmonella Typhimurium colonization in the gut. mBio 2025; 16:e0039025. [PMID: 39998229 PMCID: PMC11980550 DOI: 10.1128/mbio.00390-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
In the enteric pathogen Salmonella Typhimurium, invasion and motility are coordinated by HilD, a master regulator that activates expression of genes encoding the type III secretion system 1 and some motility genes, including the chemotaxis gene mcpC. Previously, we have shown that McpC induces smooth swimming, which is important for type III secretion system 1-dependent invasion of epithelial cells. Here, we have studied another Salmonella-specific chemotaxis gene, mcpA, and demonstrate that it is also HilD regulated. Whereas HilD induction of mcpC occurs by direct derepression of H-NS, mcpA induction requires neither H-NS derepression nor the flagellar-specific sigma factor fliA; instead it occurs through a HilD-SprB regulatory cascade, providing experimental confirmation of previous transcriptional regulatory mapping. McpA and McpC contain methyl-accepting domains characteristic of bacterial chemoreceptors, and McpA also contains a chemoreceptor zinc-binding (CZB) protein domain found in a variety of bacterial proteins, many of which are involved in signaling or regulatory roles. Here, we show that, in a mouse model for acute Salmonella colitis, both mcpA and mcpC deletion mutants are outcompeted by wild-type Salmonella Typhimurium in the gut lumen. CZB domains bind Zn2+ through a conserved cysteine residue and are thought to perform redox-sensing through redox-initiated alterations in zinc homeostasis. We found that the conserved cysteine is required for McpA function in the mouse gut, thus demonstrating a virulence role for the CZB Zn2+-binding site during infection. IMPORTANCE The gut-adapted bacterium Salmonella Typhimurium causes inflammatory diarrhea via a process that involves active invasion of intestinal epithelial cells, secretion of inflammatory molecules, and recruitment of immune cells. Although bacterial motility and invasion of host cells are coordinated, how directed movement facilitates luminal survival and growth or invasion at the mucosal surface is not understood. Chemotaxis is the process by which bacteria control movement toward attractants and away from repellents. Previously, we identified a Salmonella-specific chemoreceptor, McpC, that is co-expressed with the invasion machinery and promotes smooth swimming for optimal host cell invasion. Here, we investigated another chemoreceptor, McpA, also regulated with invasion-associated genes and show it contributes to luminal expansion rather than invasion of epithelial cells. McpA activity requires a conserved Zn2+-binding domain, thought to be involved in sensing inflammation. This work demonstrates that coordination of invasion and chemotaxis plays a significant role in the gut.
Collapse
Affiliation(s)
- Kendal G. Cooper
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Laszlo Kari
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Audrey Chong
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Naman Tandon
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Kathleen Doran
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Lidiane Gomes Da Silva
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Diane C. Cockrell
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Arden Baylink
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Olivia Steele-Mortimer
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
3
|
Hou Y, Kim K, Cakar F, Golubeva YA, Slauch JM, Vanderpool CK. The Salmonella pathogenicity island 1-encoded small RNA InvR mediates post-transcriptional feedback control of the activator HilA in Salmonella. J Bacteriol 2025; 207:e0049124. [PMID: 40013798 PMCID: PMC11925239 DOI: 10.1128/jb.00491-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/28/2025] [Indexed: 02/28/2025] Open
Abstract
Salmonella Pathogenicity Island 1 (SPI1) encodes a Type-3 secretion system (T3SS) essential for Salmonella invasion of intestinal epithelial cells. Many environmental and regulatory signals control SPI1 gene expression, but in most cases, the molecular mechanisms remain unclear. Many regulatory signals control SPI1 at a post-transcriptional level, and we have identified a number of small RNAs (sRNAs) that control the SPI1 regulatory circuit. The transcriptional regulator HilA activates the expression of the genes encoding the SPI1 T3SS structural and primary effector proteins. Transcription of hilA is controlled by the AraC-like proteins HilD, HilC, and RtsA. The hilA mRNA 5' untranslated region (UTR) is ~350 nucleotides in length and binds the RNA chaperone Hfq, suggesting it is a likely target for sRNA-mediated regulation. We used rGRIL-seq (reverse global sRNA target identification by ligation and sequencing) to identify sRNAs that bind to the hilA 5' UTR. The rGRIL-seq data, along with genetic analyses, demonstrate the SPI1-encoded sRNA invasion gene-associated RNA (InvR) base pairs at a site overlapping the hilA ribosome binding site. HilD and HilC activate both invR and hilA. InvR, in turn, negatively regulates the translation of the hilA mRNA. Thus, the SPI1-encoded sRNA InvR acts as a negative feedback regulator of SPI1 expression. Our results suggest that InvR acts to fine-tune SPI1 expression and prevents overactivation of hilA expression, highlighting the complexity of sRNA regulatory inputs controlling SPI1 and Salmonella virulence. IMPORTANCE Salmonella Typhimurium infections pose a significant public health concern, leading to illnesses that range from mild gastroenteritis to severe systemic infection. Infection requires a complex apparatus that the bacterium uses to invade the intestinal epithelium. Understanding how Salmonella regulates this system is essential for addressing these infections effectively. Here, we show that the small RNA (sRNA) InvR imposes a negative feedback regulation on the expression of the invasion system. This work underscores the role of sRNAs in Salmonella's complex regulatory network, offering new insights into how these molecules contribute to bacterial adaptation and pathogenesis.
Collapse
Affiliation(s)
- Yutong Hou
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Kyungsub Kim
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Fatih Cakar
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yekaterina A Golubeva
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - James M Slauch
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Carin K Vanderpool
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
4
|
Hou Y, Kim K, Cakar F, Golubeva YA, Slauch JM, Vanderpool CK. The Salmonella pathogenicity island 1-encoded small RNA InvR mediates post-transcriptional feedback control of the activator HilA in Salmonella. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.21.624761. [PMID: 39605656 PMCID: PMC11601589 DOI: 10.1101/2024.11.21.624761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Salmonella Pathogenicity Island 1 (SPI1) encodes a type three secretion system (T3SS) essential for Salmonella invasion of intestinal epithelial cells. Many environmental and regulatory signals control SPI1 gene expression, but in most cases, the molecular mechanisms remain unclear. Many of these regulatory signals control SPI1 at a post-transcriptional level and we have identified a number of small RNAs (sRNAs) that control the SPI1 regulatory circuit. The transcriptional regulator HilA activates expression of the genes encoding the SPI1 T3SS structural and primary effector proteins. Transcription of hilA is controlled by the AraC-like proteins HilD, HilC, and RtsA. The hilA mRNA 5' untranslated region (UTR) is ~350-nuclotides in length and binds the RNA chaperone Hfq, suggesting it is a likely target for sRNA-mediated regulation. We used the rGRIL-seq (reverse global sRNA target identification by ligation and sequencing) method to identify sRNAs that bind to the hilA 5' UTR. The rGRIL-seq data, along with genetic analyses, demonstrate that the SPI1-encoded sRNA InvR base pairs at a site overlapping the hilA ribosome binding site. HilD and HilC activate both invR and hilA. InvR in turn negatively regulates the translation of the hilA mRNA. Thus, the SPI1-encoded sRNA InvR acts as a negative feedback regulator of SPI1 expression. Our results suggest that InvR acts to fine-tune SPI1 expression and prevent overactivation of hilA expression, highlighting the complexity of sRNA regulatory inputs controlling SPI1 and Salmonella virulence.
Collapse
Affiliation(s)
- Yutong Hou
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Kyungsub Kim
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Present Address: Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Massachusetts, USA
| | - Fatih Cakar
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Present Address: Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Yekaterina A. Golubeva
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - James M. Slauch
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Carin K. Vanderpool
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
5
|
Schmidt JW, Carlson A, Bosilevac JM, Harhay D, Arthur TM, Brown T, Wheeler TL, Vipham JL. Evaluation of Methods for Identifying Poultry Wing Rinses With Salmonella Concentrations Greater Than or Equal to 10 CFU/mL. J Food Prot 2024; 87:100362. [PMID: 39299469 DOI: 10.1016/j.jfp.2024.100362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/13/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
In the United States, the Proposed Regulatory Framework to Reduce Salmonella Illnesses Attributable to Poultry published by the Food Safety and Inspection Service (FSIS) has highlighted the need for simple, rapid methods that identify poultry wing rinse samples harboring Salmonella concentrations ≥10 CFU/mL. One of eight cold-stressed and nutrient-starved Salmonella strains was inoculated into post-chill two-joint poultry wing rinses (48 turkey and 72 chicken) at levels from 0.22 to 3.79 log CFU/mL, and then measured by 3-tube Most Probable Number (MPN), BioMerieux GENE-UP QUANT, Hygiena BAX SalQuant, and novel threshold methods. The MPN lower limit of quantification (LLQ) for Salmonella was -0.96 log CFU/mL. MPN overestimated the inoculated Salmonella level by 0.05 ± 0.35 log CFU/mL. The GENE-UP QUANT Salmonella method (LLQ = 1.00 log CFU/mL) underestimated the inoculated Salmonella level by 0.05 ± 0.51 log CFU/mL. The BAX SalQuant method (LLQ = 0.00 log CFU/mL) underestimated the inoculated Salmonella level by 1.21 ± 0.78 log CFU/mL. Threshold test methods with Poisson probabilities of 0.95 (PiLOT-95), 0.86 (PiLOT-86), 0.63 (PiLOT-63), and 0.50 (PiLOT-50) were developed to identify poultry wing rinses harboring Salmonella levels ≥10 CFU. MPN was 93.1%, accurate for determining if Salmonella levels in poultry wing rinses were ≥10 CFU/mL, but MPN costs and time requirements can be prohibitive for most laboratories. GENE-UP quantification was 86.1% accurate, but the GENE-UP method requires equipment and technical expertise that some food safety laboratories may not possess. BAX quantification had the lowest accuracy; 58.4%. PiLOT threshold test accuracies ranged from 83.2% for PiLOT-50 to 93.1% for PiLOT-86. The PiLOT threshold tests are simple and can be adapted to identify many environmental or food samples containing Salmonella exceeding any user-defined concentration threshold.
Collapse
Affiliation(s)
- John W Schmidt
- United States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, PO Box 165, State Spur 18D, Clay Center, NE 68933, United States.
| | - Anna Carlson
- Cargill Inc, 825 E Douglas Ave, Wichita, KS 67202, United States
| | - Joseph M Bosilevac
- United States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, PO Box 165, State Spur 18D, Clay Center, NE 68933, United States
| | - Dayna Harhay
- United States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, PO Box 165, State Spur 18D, Clay Center, NE 68933, United States
| | - Terrance M Arthur
- United States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, PO Box 165, State Spur 18D, Clay Center, NE 68933, United States; Present address: Fremonta Corp., 1945 Kyle Park Ct., San Jose, CA 95125, United states
| | - Ted Brown
- Cargill Inc, 825 E Douglas Ave, Wichita, KS 67202, United States
| | - Tommy L Wheeler
- United States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, PO Box 165, State Spur 18D, Clay Center, NE 68933, United States
| | - Jessie L Vipham
- Kansas State University, Department of Animal Sciences and Industry, 232 Weber Hall, 2900 College Ave, Manhattan, KS 66502, United States
| |
Collapse
|
6
|
Kokkinias K, Sabag-Daigle A, Kim Y, Leleiwi I, Shaffer M, Kevorkian R, Daly RA, Wysocki VH, Borton MA, Ahmer BMM, Wrighton KC. Time-resolved multi-omics reveals diverse metabolic strategies of Salmonella during diet-induced inflammation. mSphere 2024; 9:e0053424. [PMID: 39254340 PMCID: PMC11520297 DOI: 10.1128/msphere.00534-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/22/2024] [Indexed: 09/11/2024] Open
Abstract
With a rise in antibiotic resistance and chronic infection, the metabolic response of Salmonella enterica serovar Typhimurium to various dietary conditions over time remains an understudied avenue for novel, targeted therapeutics. Elucidating how enteric pathogens respond to dietary variation not only helps us decipher the metabolic strategies leveraged for expansion but also assists in proposing targets for therapeutic interventions. In this study, we use a multi-omics approach to identify the metabolic response of Salmonella enterica serovar Typhimurium in mice on both a fibrous diet and high-fat diet over time. When comparing Salmonella gene expression between diets, we found a preferential use of respiratory electron acceptors consistent with increased inflammation in high-fat diet mice. Looking at the high-fat diet over the course of infection, we noticed heterogeneity in samples based on Salmonella ribosomal activity, which is separated into three infection phases: early, peak, and late. We identified key respiratory, carbon, and pathogenesis gene expressions descriptive of each phase. Surprisingly, we identified genes associated with host cell entry expressed throughout infection, suggesting subpopulations of Salmonella or stress-induced dysregulation. Collectively, these results highlight not only the sensitivity of Salmonella to its environment but also identify phase-specific genes that may be used as therapeutic targets to reduce infection.IMPORTANCEIdentifying novel therapeutic strategies for Salmonella infection that occur in relevant diets and over time is needed with the rise of antibiotic resistance and global shifts toward Western diets that are high in fat and low in fiber. Mice on a high-fat diet are more inflamed compared to those on a fibrous diet, creating an environment that results in more favorable energy generation for Salmonella. We observed differential gene expression across infection phases in mice over time on a high-fat diet. Together, these findings reveal the metabolic tuning of Salmonella to dietary and temporal perturbations. Research like this, which explores the dimensions of pathogen metabolic plasticity, can pave the way for rationally designed strategies to control disease.
Collapse
Affiliation(s)
- Katherine Kokkinias
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Anice Sabag-Daigle
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Yongseok Kim
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Ikaia Leleiwi
- Department of Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Michael Shaffer
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Richard Kevorkian
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Rebecca A. Daly
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Vicki H. Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Mikayla A. Borton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Brian M. M. Ahmer
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Kelly C. Wrighton
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
- Department of Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
7
|
Sun QW, Gao Y, Wang J, Fu FX, Yong CW, Li SQ, Huang HL, Chen WZ, Wang XW, Jiang HB. Molecular mechanism of a coastal cyanobacterium Synechococcus sp. PCC 7002 adapting to changing phosphate concentrations. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:562-575. [PMID: 39219678 PMCID: PMC11358556 DOI: 10.1007/s42995-024-00244-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 06/23/2024] [Indexed: 09/04/2024]
Abstract
Phosphorus concentration on the surface of seawater varies greatly with different environments, especially in coastal. The molecular mechanism by which cyanobacteria adapt to fluctuating phosphorus bioavailability is still unclear. In this study, transcriptomes and gene knockouts were used to investigate the adaptive molecular mechanism of a model coastal cyanobacterium Synechococcus sp. PCC 7002 during periods of phosphorus starvation and phosphorus recovery (adding sufficient phosphorus after phosphorus starvation). The findings indicated that phosphorus deficiency affected the photosynthesis, ribosome synthesis, and bacterial motility pathways, which recommenced after phosphorus was resupplied. Even more, most of the metabolic pathways of cyanobacteria were enhanced after phosphorus recovery compared to the control which was kept in continuous phosphorus replete conditions. Based on transcriptome, 54 genes potentially related to phosphorus-deficiency adaptation were selected and knocked out individually or in combination. It was found that five mutants showed weak growth phenotype under phosphorus deficiency, indicating the importance of the genes (A0076, A0549-50, A1094, A1320, A1895) in the adaptation of phosphorus deficiency. Three mutants were found to grow better than the wild type under phosphorus deficiency, suggesting that the products of these genes (A0079, A0340, A2284-86) might influence the adaptation to phosphorus deficiency. Bioinformatics analysis revealed that cyanobacteria exposed to highly fluctuating phosphorus concentrations have more sophisticated phosphorus acquisition strategies. These results elucidated that Synechococcus sp. PCC 7002 have variable phosphorus response mechanisms to adapt to fluctuating phosphorus concentration, providing a novel perspective of how cyanobacteria may respond to the complex and dynamic environments. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-024-00244-y.
Collapse
Affiliation(s)
- Qiao-Wei Sun
- School of Marine Sciences, Ningbo University, Ningbo, 315211 China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080 China
| | - Yu Gao
- School of Life Sciences, Central China Normal University, Wuhan, 430079 China
| | - Jordan Wang
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089 USA
| | - Fei-xue Fu
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089 USA
| | - Cheng-Wen Yong
- School of Marine Sciences, Ningbo University, Ningbo, 315211 China
| | - Shuang-Qing Li
- School of Marine Sciences, Ningbo University, Ningbo, 315211 China
| | - Hai-Long Huang
- School of Marine Sciences, Ningbo University, Ningbo, 315211 China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080 China
| | - Wei-Zhong Chen
- School of Marine Sciences, Ningbo University, Ningbo, 315211 China
| | - Xin-Wei Wang
- School of Marine Sciences, Ningbo University, Ningbo, 315211 China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080 China
| | - Hai-Bo Jiang
- School of Marine Sciences, Ningbo University, Ningbo, 315211 China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080 China
| |
Collapse
|
8
|
Abi Assaf J, Holden ER, Trampari E, Webber MA. Common food preservatives impose distinct selective pressures on Salmonella Typhimurium planktonic and biofilm populations. Food Microbiol 2024; 121:104517. [PMID: 38637079 DOI: 10.1016/j.fm.2024.104517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 04/20/2024]
Abstract
Food preservatives are crucial in controlling microbial growth in processed foods to maintain food safety. Bacterial biofilms pose a threat in the food chain by facilitating persistence on a range of surfaces and food products. Cells in a biofilm are often highly tolerant of antimicrobials and can evolve in response to antimicrobial exposure. Little is known about the efficacy of preservatives against biofilms and their potential impact on the evolution of antimicrobial resistance. In this study we investigated how Salmonella enterica serovar Typhimurium responded to subinhibitory concentrations of four food preservatives (sodium chloride, potassium chloride, sodium nitrite or sodium lactate) when grown planktonically and in biofilms. We found that each preservative exerted a unique selective pressure on S. Typhimurium populations. There was a trade-off between biofilm formation and growth in the presence of three of the four preservatives, where prolonged preservative exposure resulted in reduced biofilm biomass and matrix production over time. All three preservatives selected for mutations in global stress response regulators rpoS and crp. There was no evidence for any selection of cross-resistance to antibiotics after preservative exposure. In conclusion, we showed that preservatives affect biofilm formation and bacterial growth in a compound specific manner. We showed trade-offs between biofilm formation and preservative tolerance, but no antibiotic cross-tolerance. This indicates that bacterial adaptation to continuous preservative exposure, is unlikely to affect food safety or contribute to antibiotic resistance.
Collapse
Affiliation(s)
- Justin Abi Assaf
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK
| | - Emma R Holden
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK
| | - Eleftheria Trampari
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK.
| | - Mark A Webber
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK; Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, UK.
| |
Collapse
|
9
|
Gül E, Huuskonen J, Abi Younes A, Maurer L, Enz U, Zimmermann J, Sellin ME, Bakkeren E, Hardt WD. Salmonella T3SS-2 virulence enhances gut-luminal colonization by enabling chemotaxis-dependent exploitation of intestinal inflammation. Cell Rep 2024; 43:113925. [PMID: 38460128 DOI: 10.1016/j.celrep.2024.113925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 01/12/2024] [Accepted: 02/20/2024] [Indexed: 03/11/2024] Open
Abstract
Salmonella Typhimurium (S.Tm) utilizes the chemotaxis receptor Tsr to exploit gut inflammation. However, the characteristics of this exploitation and the mechanism(s) employed by the pathogen to circumvent antimicrobial effects of inflammation are poorly defined. Here, using different naturally occurring S.Tm strains (SL1344 and 14028) and competitive infection experiments, we demonstrate that type-three secretion system (T3SS)-2 virulence is indispensable for the beneficial effects of Tsr-directed chemotaxis. The removal of the 14028-specific prophage Gifsy3, encoding virulence effectors, results in the loss of the Tsr-mediated fitness advantage in that strain. Surprisingly, without T3SS-2 effector secretion, chemotaxis toward the gut epithelium using Tsr becomes disadvantageous for either strain. Our findings reveal that luminal neutrophils recruited as a result of NLRC4 inflammasome activation locally counteract S.Tm cells exploiting the byproducts of the host immune response. This work highlights a mechanism by which S.Tm exploitation of gut inflammation for colonization relies on the coordinated effects of chemotaxis and T3SS activities.
Collapse
Affiliation(s)
- Ersin Gül
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland.
| | - Jemina Huuskonen
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Andrew Abi Younes
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Luca Maurer
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Ursina Enz
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Jakob Zimmermann
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Mikael E Sellin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden; Science for Life Laboratory, Uppsala, Sweden
| | - Erik Bakkeren
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
10
|
Kim JS, Liu L, Kant S, Orlicky DJ, Uppalapati S, Margolis A, Davenport BJ, Morrison TE, Matsuda J, McClelland M, Jones-Carson J, Vazquez-Torres A. Anaerobic respiration of host-derived methionine sulfoxide protects intracellular Salmonella from the phagocyte NADPH oxidase. Cell Host Microbe 2024; 32:411-424.e10. [PMID: 38307020 PMCID: PMC11396582 DOI: 10.1016/j.chom.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/06/2023] [Accepted: 01/10/2024] [Indexed: 02/04/2024]
Abstract
Intracellular Salmonella experiencing oxidative stress downregulates aerobic respiration. To maintain cellular energetics during periods of oxidative stress, intracellular Salmonella must utilize terminal electron acceptors of lower energetic value than molecular oxygen. We show here that intracellular Salmonella undergoes anaerobic respiration during adaptation to the respiratory burst of the phagocyte NADPH oxidase in macrophages and in mice. Reactive oxygen species generated by phagocytes oxidize methionine, generating methionine sulfoxide. Anaerobic Salmonella uses the molybdenum cofactor-containing DmsABC enzymatic complex to reduce methionine sulfoxide. The enzymatic activity of the methionine sulfoxide reductase DmsABC helps Salmonella maintain an alkaline cytoplasm that supports the synthesis of the antioxidant hydrogen sulfide via cysteine desulfuration while providing a source of methionine and fostering redox balancing by associated dehydrogenases. Our investigations demonstrate that nontyphoidal Salmonella responding to oxidative stress exploits the anaerobic metabolism associated with dmsABC gene products, a pathway that has accrued inactivating mutations in human-adapted typhoidal serovars.
Collapse
Affiliation(s)
- Ju-Sim Kim
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Lin Liu
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Sashi Kant
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - David J Orlicky
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Siva Uppalapati
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Alyssa Margolis
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Bennett J Davenport
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Thomas E Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | - Michael McClelland
- University of California Irvine School of Medicine, Department of Microbiology and Molecular Genetics, Irvine, CA, USA
| | - Jessica Jones-Carson
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Andres Vazquez-Torres
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA; Veterans Affairs, Eastern Colorado Health Care System, Aurora, CO 80045, USA.
| |
Collapse
|
11
|
Kokkinias K, Sabag-Daigle A, Kim Y, Leleiwi I, Shaffer M, Kevorkian R, Daly RA, Wysocki VH, Borton MA, Ahmer BMM, Wrighton KC. Time resolved multi-omics reveals diverse metabolic strategies of Salmonella during diet-induced inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.03.578763. [PMID: 38352409 PMCID: PMC10862859 DOI: 10.1101/2024.02.03.578763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
With a rise in antibiotic resistance and chronic infection, the metabolic response of Salmonella enterica serovar Typhimurium to various dietary conditions over time remains an understudied avenue for novel, targeted therapeutics. Elucidating how enteric pathogens respond to dietary variation not only helps us decipher the metabolic strategies leveraged for expansion but also assists in proposing targets for therapeutic interventions. Here, we use a multi-omics approach to identify the metabolic response of Salmonella enterica serovar Typhimurium in mice on both a fibrous diet and high-fat diet over time. When comparing Salmonella gene expression between diets, we found a preferential use of respiratory electron acceptors consistent with increased inflammation of the high-fat diet mice. Looking at the high-fat diet over the course of infection, we noticed heterogeneity of samples based on Salmonella ribosomal activity, which separated into three infection phases: early, peak, and late. We identified key respiratory, carbon, and pathogenesis gene expression descriptive of each phase. Surprisingly, we identified genes associated with host-cell entry expressed throughout infection, suggesting sub-populations of Salmonella or stress-induced dysregulation. Collectively, these results highlight not only the sensitivity of Salmonella to its environment but also identify phase-specific genes that may be used as therapeutic targets to reduce infection. Importance Identifying novel therapeutic strategies for Salmonella infection that occur in relevant diets and over time is needed with the rise of antibiotic resistance and global shifts towards Western diets that are high in fat and low in fiber. Mice on a high-fat diet are more inflamed compared to those on a fibrous diet, creating an environment that results in more favorable energy generation for Salmonella . Over time on a high-fat diet, we observed differential gene expression across infection phases. Together, these findings reveal the metabolic tuning of Salmonella to dietary and temporal perturbations. Research like this, exploring the dimensions of pathogen metabolic plasticity, can pave the way for rationally designed strategies to control disease.
Collapse
|
12
|
Pokorzynski ND, Groisman EA. How Bacterial Pathogens Coordinate Appetite with Virulence. Microbiol Mol Biol Rev 2023; 87:e0019822. [PMID: 37358444 PMCID: PMC10521370 DOI: 10.1128/mmbr.00198-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023] Open
Abstract
Cells adjust growth and metabolism to nutrient availability. Having access to a variety of carbon sources during infection of their animal hosts, facultative intracellular pathogens must efficiently prioritize carbon utilization. Here, we discuss how carbon source controls bacterial virulence, with an emphasis on Salmonella enterica serovar Typhimurium, which causes gastroenteritis in immunocompetent humans and a typhoid-like disease in mice, and propose that virulence factors can regulate carbon source prioritization by modifying cellular physiology. On the one hand, bacterial regulators of carbon metabolism control virulence programs, indicating that pathogenic traits appear in response to carbon source availability. On the other hand, signals controlling virulence regulators may impact carbon source utilization, suggesting that stimuli that bacterial pathogens experience within the host can directly impinge on carbon source prioritization. In addition, pathogen-triggered intestinal inflammation can disrupt the gut microbiota and thus the availability of carbon sources. By coordinating virulence factors with carbon utilization determinants, pathogens adopt metabolic pathways that may not be the most energy efficient because such pathways promote resistance to antimicrobial agents and also because host-imposed deprivation of specific nutrients may hinder the operation of certain pathways. We propose that metabolic prioritization by bacteria underlies the pathogenic outcome of an infection.
Collapse
Affiliation(s)
- Nick D. Pokorzynski
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Eduardo A. Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Microbial Sciences Institute, West Haven, Connecticut, USA
| |
Collapse
|
13
|
Metaane S, Monteil V, Douché T, Giai Gianetto Q, Matondo M, Maufrais C, Norel F. Loss of CorA, the primary magnesium transporter of Salmonella, is alleviated by MgtA and PhoP-dependent compensatory mechanisms. PLoS One 2023; 18:e0291736. [PMID: 37713445 PMCID: PMC10503707 DOI: 10.1371/journal.pone.0291736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/05/2023] [Indexed: 09/17/2023] Open
Abstract
In many Gram-negative bacteria, the stress sigma factor of RNA polymerase, σS/RpoS, remodels global gene expression to reshape the physiology of stationary phase cells and ensure their survival under non-optimal growth conditions. In the foodborne pathogen Salmonella enterica serovar Typhimurium, σS is also required for biofilm formation and virulence. We have recently shown that a ΔrpoS mutation decreases the magnesium content and expression level of the housekeeping Mg2+-transporter CorA in stationary phase Salmonella. The other two Mg2+-transporters of Salmonella are encoded by the PhoP-activated mgtA and mgtB genes and are expressed under magnesium starvation. The σS control of corA prompted us to evaluate the impact of CorA in stationary phase Salmonella cells, by using global and analytical proteomic analyses and physiological assays. The ΔcorA mutation conferred a competitive disadvantage to exit from stationary phase, and slightly impaired motility, but had no effect on total and free cellular magnesium contents. In contrast to the wild-type strain, the ΔcorA mutant produced MgtA, but not MgtB, in the presence of high extracellular magnesium concentration. Under these conditions, MgtA production in the ΔcorA mutant did not require PhoP. Consistently, a ΔmgtA, but not a ΔphoP, mutation slightly reduced the magnesium content of the ΔcorA mutant. Synthetic phenotypes were observed when the ΔphoP and ΔcorA mutations were combined, including a strong reduction in growth and motility, independently of the extracellular magnesium concentration. The abundance of several proteins involved in flagella formation, chemotaxis and secretion was lowered by the ΔcorA and ΔphoP mutations in combination, but not alone. These findings unravel the importance of PhoP-dependent functions in the absence of CorA when magnesium is sufficient. Altogether, our data pinpoint a regulatory network, where the absence of CorA is sensed by the cell and compensated by MgtA and PhoP- dependent mechanisms.
Collapse
Affiliation(s)
- Selma Metaane
- Biochimie des Interactions Macromoléculaires, Institut Pasteur, CNRS UMR3528, Université Paris Cité, Paris, France
| | - Véronique Monteil
- Biochimie des Interactions Macromoléculaires, Institut Pasteur, CNRS UMR3528, Université Paris Cité, Paris, France
| | - Thibaut Douché
- Proteomic Platform, Mass Spectrometry for Biology Unit, Institut Pasteur, CNRS UAR 2024, Université Paris Cité, Paris, France
| | - Quentin Giai Gianetto
- Proteomic Platform, Mass Spectrometry for Biology Unit, Institut Pasteur, CNRS UAR 2024, Université Paris Cité, Paris, France
| | - Mariette Matondo
- Proteomic Platform, Mass Spectrometry for Biology Unit, Institut Pasteur, CNRS UAR 2024, Université Paris Cité, Paris, France
| | - Corinne Maufrais
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université Paris Cité, Paris, France
| | - Françoise Norel
- Biochimie des Interactions Macromoléculaires, Institut Pasteur, CNRS UMR3528, Université Paris Cité, Paris, France
| |
Collapse
|
14
|
Braetz S, Schwerk P, Figueroa-Bossi N, Tedin K, Fulde M. Prophage Gifsy-1 Induction in Salmonella enterica Serovar Typhimurium Reduces Persister Cell Formation after Ciprofloxacin Exposure. Microbiol Spectr 2023; 11:e0187423. [PMID: 37306609 PMCID: PMC10433948 DOI: 10.1128/spectrum.01874-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/28/2023] [Indexed: 06/13/2023] Open
Abstract
Persister cells are drug-tolerant bacteria capable of surviving antibiotic treatment despite the absence of heritable resistance mechanisms. It is generally thought that persister cells survive antibiotic exposure through the implementation of stress responses and/or energy-sparing strategies. Exposure to DNA gyrase-targeting antibiotics could be particularly detrimental for bacteria that carry prophages integrated in their genomes. Gyrase inhibitors are known to induce prophages to switch from their dormant lysogenic state into the lytic cycle, causing the lysis of their bacterial host. However, the influence of resident prophages on the formation of persister cells has only been recently appreciated. Here, we evaluated the effect of endogenous prophage carriage on the generation of bacterial persistence during Salmonella enterica serovar Typhimurium exposure to both gyrase-targeting antibiotics and other classes of bactericidal antibiotics. Results from the analysis of strain variants harboring different prophage combinations revealed that prophages play a major role in limiting the formation of persister cells during exposure to DNA-damaging antibiotics. In particular, we present evidence that prophage Gifsy-1 (and its encoded lysis proteins) are major factors limiting persister cell formation upon ciprofloxacin exposure. Resident prophages also appear to have a significant impact on the initial drug susceptibility, resulting in an alteration of the characteristic biphasic killing curve of persister cells into a triphasic curve. In contrast, a prophage-free derivative of S. Typhimurium showed no difference in the killing kinetics for β-lactam or aminoglycoside antibiotics. Our study demonstrates that induction of prophages increased the susceptibility toward DNA gyrase inhibitors in S. Typhimurium, suggesting that prophages have the potential for enhancing antibiotic efficacy. IMPORTANCE Bacterial infections resulting from antibiotic treatment failure can often be traced to nonresistant persister cells. Moreover, intermittent or single treatment of persister cells with β-lactam antibiotics or fluoroquinolones can lead to the formation of drug-resistant bacteria and to the emergence of multiresistant strains. It is therefore important to have a better understanding of the mechanisms that impact persister formation. Our results indicate that prophage-associated bacterial killing significantly reduces persister cell formation in lysogenic cells exposed to DNA-gyrase-targeting drugs. This suggests that therapies based on gyrase inhibitors should be favored over alternative strategies when dealing with lysogenic pathogens.
Collapse
Affiliation(s)
- Sebastian Braetz
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| | - Peter Schwerk
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| | - Nara Figueroa-Bossi
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Karsten Tedin
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| | - Marcus Fulde
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
15
|
Esteves NC, Bigham DN, Scharf BE. Phages on filaments: A genetic screen elucidates the complex interactions between Salmonella enterica flagellin and bacteriophage Chi. PLoS Pathog 2023; 19:e1011537. [PMID: 37535496 PMCID: PMC10399903 DOI: 10.1371/journal.ppat.1011537] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/04/2023] [Indexed: 08/05/2023] Open
Abstract
The bacterial flagellum is a rotary motor organelle and important virulence factor that propels motile pathogenic bacteria, such as Salmonella enterica, through their surroundings. Bacteriophages, or phages, are viruses that solely infect bacteria. As such, phages have myriad applications in the healthcare field, including phage therapy against antibiotic-resistant bacterial pathogens. Bacteriophage χ (Chi) is a flagellum-dependent (flagellotropic) bacteriophage, which begins its infection cycle by attaching its long tail fiber to the S. enterica flagellar filament as its primary receptor. The interactions between phage and flagellum are poorly understood, as are the reasons that χ only kills certain Salmonella serotypes while others entirely evade phage infection. In this study, we used molecular cloning, targeted mutagenesis, heterologous flagellin expression, and phage-host interaction assays to determine which domains within the flagellar filament protein flagellin mediate this complex interaction. We identified the antigenic N- and C-terminal D2 domains as essential for phage χ binding, with the hypervariable central D3 domain playing a less crucial role. Here, we report that the primary structure of the Salmonella flagellin D2 domains is the major determinant of χ adhesion. The phage susceptibility of a strain is directly tied to these domains. We additionally uncovered important information about flagellar function. The central and most variable domain, D3, is not required for motility in S. Typhimurium 14028s, as it can be deleted or its sequence composition can be significantly altered with minimal impacts on motility. Further knowledge about the complex interactions between flagellotropic phage χ and its primary bacterial receptor may allow genetic engineering of its host range for use as targeted antimicrobial therapy against motile pathogens of the χ-host genera Salmonella, Escherichia, or Serratia.
Collapse
Affiliation(s)
- Nathaniel C. Esteves
- Dept. of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Danielle N. Bigham
- Dept. of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Birgit E. Scharf
- Dept. of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| |
Collapse
|
16
|
Gül E, Abi Younes A, Huuskonen J, Diawara C, Nguyen BD, Maurer L, Bakkeren E, Hardt WD. Differences in carbon metabolic capacity fuel co-existence and plasmid transfer between Salmonella strains in the mouse gut. Cell Host Microbe 2023; 31:1140-1153.e3. [PMID: 37348498 DOI: 10.1016/j.chom.2023.05.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/12/2023] [Accepted: 05/26/2023] [Indexed: 06/24/2023]
Abstract
Antibiotic resistance plasmids can be disseminated between different Enterobacteriaceae in the gut. Here, we investigate how closely related Enterobacteriaceae populations with similar nutrient needs can co-bloom in the same gut and thereby facilitate plasmid transfer. Using different strains of Salmonella Typhimurium (S.Tm SL1344 and ATCC14028) and mouse models of Salmonellosis, we show that the bloom of one strain (i.e., recipient) from very low numbers in a gut pre-occupied by the other strain (i.e., donor) depends on strain-specific utilization of a distinct carbon source, galactitol or arabinose. Galactitol-dependent growth of the recipient S.Tm strain promotes plasmid transfer between non-isogenic strains and between E. coli and S.Tm. In mice stably colonized by a defined microbiota (OligoMM12), galactitol supplementation similarly facilitates co-existence of two S.Tm strains and promotes plasmid transfer. Our work reveals a metabolic strategy used by Enterobacteriaceae to expand in a pre-occupied gut and provides promising therapeutic targets for resistance plasmids spread.
Collapse
Affiliation(s)
- Ersin Gül
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland.
| | - Andrew Abi Younes
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Jemina Huuskonen
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Cheickna Diawara
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Bidong D Nguyen
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Luca Maurer
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Erik Bakkeren
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
17
|
Chen X, Wolin SL. Transfer RNA halves are found as nicked tRNAs in cells: evidence that nicked tRNAs regulate expression of an RNA repair operon. RNA (NEW YORK, N.Y.) 2023; 29:620-629. [PMID: 36781286 PMCID: PMC10159003 DOI: 10.1261/rna.079575.122] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/01/2023] [Indexed: 05/06/2023]
Abstract
Transfer RNA fragments are proposed to regulate numerous processes in eukaryotes, including translation inhibition, epigenetic inheritance, and cancer. In the bacterium Salmonella enterica serovar Typhimurium, 5' tRNA halves ending in 2',3' cyclic phosphate are proposed to bind the RtcR transcriptional activator, resulting in transcription of an RNA repair operon. However, since 5' and 3' tRNA halves can remain base paired after cleavage, the 5' tRNA halves could potentially bind RtcR as nicked tRNAs. Here we report that nicked tRNAs are ligands for RtcR. By isolating RNA from bacteria under conditions that preserve base pairing, we show that many tRNA halves are in the form of nicked tRNAs. Using a circularly permuted tRNA that mimics a nicked tRNA, we show that nicked tRNA ending in 2',3' cyclic phosphate is a better ligand for RtcR than the corresponding 5' tRNA half. In human cells, we show that some tRNA halves similarly remain base paired as nicked tRNAs following cleavage by anticodon nucleases. Our work supports a role for the RNA repair operon in repairing nicked tRNAs and has implications for the functions proposed for tRNA fragments in eukaryotes.
Collapse
Affiliation(s)
- Xinguo Chen
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA
| | - Sandra L Wolin
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA
| |
Collapse
|
18
|
Cho H, Sondak T, Kim KS. Characterization of Increased Extracellular Vesicle-Mediated Tigecycline Resistance in Acinetobacter baumannii. Pharmaceutics 2023; 15:1251. [PMID: 37111736 PMCID: PMC10146562 DOI: 10.3390/pharmaceutics15041251] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/22/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAB) is the most detrimental pathogen that causes hospital-acquired infections. Tigecycline (TIG) is currently used as a potent antibiotic for treating CRAB infections; however, its overuse substantially induces the development of resistant isolates. Some molecular aspects of the resistance mechanisms of AB to TIG have been reported, but they are expected to be far more complicated and diverse than what has been characterized thus far. In this study, we identified bacterial extracellular vesicles (EVs), which are nano-sized lipid-bilayered spherical structures, as mediators of TIG resistance. Using laboratory-made TIG-resistant AB (TIG-R AB), we demonstrated that TIG-R AB produced more EVs than control TIG-susceptible AB (TIG-S AB). Transfer analysis of TIG-R AB-derived EVs treated with proteinase or DNase to recipient TIG-S AB showed that TIG-R EV proteins are major factors in TIG resistance transfer. Additional transfer spectrum analysis demonstrated that EV-mediated TIG resistance was selectively transferred to Escherichia coli, Salmonella typhimurium, and Proteus mirabilis. However, this action was not observed in Klebsiella pneumonia and Staphylococcus aureus. Finally, we showed that EVs are more likely to induce TIG resistance than antibiotics. Our data provide direct evidence that EVs are potent cell-derived components with a high, selective occurrence of TIG resistance in neighboring bacterial cells.
Collapse
Affiliation(s)
| | | | - Kwang-sun Kim
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
19
|
Bruna RE, Kendra CG, Pontes MH. An intracellular phosphorus-starvation signal activates the PhoB/PhoR two-component system in Salmonella enterica. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.533958. [PMID: 36993483 PMCID: PMC10055408 DOI: 10.1101/2023.03.23.533958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Bacteria acquire P primarily as inorganic orthophosphate (Pi, PO43-). Once internalized, Pi is rapidly assimilated into biomass during the synthesis of ATP. Because Pi is essential, but excessive ATP is toxic, the acquisition of environmental Pi is tightly regulated. In the bacterium Salmonella enterica (Salmonella), growth in Pi-limiting environments activates the membrane sensor histidine kinase PhoR, leading to the phosphorylation of its cognate transcriptional regulator PhoB and subsequent transcription of genes involved in adaptations to low Pi. Pi limitation is thought to promote PhoR kinase activity by altering the conformation of a membrane signaling complex comprised by PhoR, the multicomponent Pi transporter system PstSACB and the regulatory protein PhoU. However, the identity of the low Pi signal and how it controls PhoR activity remain unknown. Here we characterize the PhoB-dependent and independent transcriptional changes elicited by Salmonella in response to P starvation, and identify PhoB-independent genes that are required for the utilization of several organic-P sources. We use this knowledge to identify the cellular compartment where the PhoR signaling complex senses the Pi-limiting signal. We demonstrate that the PhoB and PhoR signal transduction proteins can be maintained in an inactive state even when Salmonella is grown in media lacking Pi. Our results establish that PhoR activity is controlled by an intracellular signal resulting from P insufficiency.
Collapse
Affiliation(s)
- Roberto E. Bruna
- Department of Pathology and Laboratory Medicine, Pennsylvania State College of Medicine, Hershey, PA 17033, United States of America
| | - Christopher G. Kendra
- Department of Pathology and Laboratory Medicine, Pennsylvania State College of Medicine, Hershey, PA 17033, United States of America
| | - Mauricio H. Pontes
- Department of Pathology and Laboratory Medicine, Pennsylvania State College of Medicine, Hershey, PA 17033, United States of America
- Department of Microbiology and Immunology, Pennsylvania State College of Medicine, Hershey, PA 17033, United States of America
| |
Collapse
|
20
|
Has EG, Akçelik N, Akçelik M. Comparative global gene expression analysis of biofilm forms of Salmonella Typhimurium ATCC 14028 and its seqA mutant. Gene X 2023; 853:147094. [PMID: 36470486 DOI: 10.1016/j.gene.2022.147094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/01/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
In this study, comparative transcriptomic analyzes (mRNA and miRNA) were performed on the biofilm forms of S. Typhimurium ATCC 14028 wild-type strain and its seqA gene mutant in order to determine the regulation characteristics of the seqA gene in detail. The results of global gene expression analyses showed an increase in the expression level of 54 genes and a decrease in the expression level of 155 genes (p < 0.05) in the seqA mutant compared to the wild-type strain. 10 of the 48 miRNAs identified on behalf of sequence analysis are new miRNA records for Salmonella. Transcripts of 14 miRNAs differed between wild-type strain and seqA mutant (p < 0.05), of which eight were up-regulated and six were down-regulated. Bioinformatic analyzes showed that differentially expressed genes in the wild-type strain and its seqA gene mutant play a role in different metabolic processes as well as biofilm formation, pathogenicity and virulence. When the transcriptomic data were interpreted together with the findings obtained from phenotypic tests such as motility, attachment to host cells and biofilm morphotyping, it was determined that the seqA gene has a critical function especially for the adhesion and colonization stages of biofilm formation, as well as for biofilm stability. Transcriptomic data pointing out that the seqA gene is also a general positive regulator of T3SS effector proteins active in cell invasion in S. Typhimurium wild-type biofilm, proves that this gene is involved in Salmonella host cell invasion.
Collapse
Affiliation(s)
- Elif Gamze Has
- Department of Biology, Ankara University, Yenimahalle, 06100 Ankara, Turkey
| | - Nefise Akçelik
- Biotechnology Institute, Ankara University, Keçiören, 06135 Ankara, Turkey
| | - Mustafa Akçelik
- Department of Biology, Ankara University, Yenimahalle, 06100 Ankara, Turkey.
| |
Collapse
|
21
|
Baek J, Yoon H. Cyclic di-GMP Modulates a Metabolic Flux for Carbon Utilization in Salmonella enterica Serovar Typhimurium. Microbiol Spectr 2023; 11:e0368522. [PMID: 36744926 PMCID: PMC10100716 DOI: 10.1128/spectrum.03685-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/16/2023] [Indexed: 02/07/2023] Open
Abstract
Salmonella enterica serovar Typhimurium is an enteric pathogen spreading via the fecal-oral route. Transmission across humans, animals, and environmental reservoirs has forced this pathogen to rapidly respond to changing environments and adapt to new environmental conditions. Cyclic di-GMP (c-di-GMP) is a second messenger that controls the transition between planktonic and sessile lifestyles, in response to environmental cues. Our study reveals the potential of c-di-GMP to alter the carbon metabolic pathways in S. Typhimurium. Cyclic di-GMP overproduction decreased the transcription of genes that encode components of three phosphoenolpyruvate (PEP):carbohydrate phosphotransferase systems (PTSs) allocated for the uptake of glucose (PTSGlc), mannose (PTSMan), and fructose (PTSFru). PTS gene downregulation by c-di-GMP was alleviated in the absence of the three regulators, SgrS, Mlc, and Cra, suggesting their intermediary roles between c-di-GMP and PTS regulation. Moreover, Cra was found to bind to the promoters of ptsG, manX, and fruB. In contrast, c-di-GMP increased the transcription of genes important for gluconeogenesis. However, this effect of c-di-GMP in gluconeogenesis disappeared in the absence of Cra, indicating that Cra is a pivotal regulator that coordinates the carbon flux between PTS-mediated sugar uptake and gluconeogenesis, in response to cellular c-di-GMP concentrations. Since gluconeogenesis supplies precursor sugars required for extracellular polysaccharide production, Salmonella may exploit c-di-GMP as a dual-purpose signal that rewires carbon flux from glycolysis to gluconeogenesis and promotes biofilm formation using the end products of gluconeogenesis. This study sheds light on a new role for c-di-GMP in modulating carbon flux, to coordinate bacterial behavior in response to hostile environments. IMPORTANCE Cyclic di-GMP is a central signaling molecule that determines the transition between motile and nonmotile lifestyles in many bacteria. It stimulates biofilm formation at high concentrations but leads to biofilm dispersal and planktonic status at low concentrations. This study provides new insights into the role of c-di-GMP in programming carbon metabolic pathways. An increase in c-di-GMP downregulated the expression of PTS genes important for sugar uptake, while simultaneously upregulating the transcription of genes important for bacterial gluconeogenesis. The directly opposing effects of c-di-GMP on sugar metabolism were mediated by Cra (catabolite repressor/activator), a dual transcriptional regulator that modulates the direction of carbon flow. Salmonella may potentially harness c-di-GMP to promote its survival and fitness in hostile environments via the coordination of carbon metabolic pathways and the induction of biofilm formation.
Collapse
Affiliation(s)
- Jiwon Baek
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Hyunjin Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
- Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon, Republic of Korea
| |
Collapse
|
22
|
Gómez-Baltazar A, Vázquez-Marrufo G, Astiazaran-Garcia H, Ochoa-Zarzosa A, Canett-Romero R, García-Galaz A, Torres-Vega C, Vázquez-Garcidueñas MS. Comparative virulence of the worldwide ST19 and emergent ST213 genotypes of Salmonella enterica serotype Typhimurium strains isolated from food. Microbes Infect 2023; 25:105019. [PMID: 35781097 DOI: 10.1016/j.micinf.2022.105019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 02/04/2023]
Abstract
Salmonella enterica Typhimurium represents one of the most frequent causal agents of food contamination associated to gastroenteritis. The sequence type ST19 is the founder and worldwide prevalent genotype within this serotype, but its replacement by emerging genotypes has been recently reported. Particularly, the ST213 genotype has replaced it as the most prevalent in clinical and contaminated food samples in Mexico and has been recently reported in several countries. In this study, the in vitro and in vivo virulence of ST213 and ST19 strains isolated from food samples in Mexico was evaluated. Three out of the five analyzed ST213 strains, showed a greater internalization capacity and increased secretion of interleukins IL-8 and IL-6 of Caco-2 cells than the ST19 strains. Microbiological counts in feces and tissues showed the ability of all strains tested to establish infection in the rat model. The ST213 strains also caused histopathological damage, characteristic of gastroenteritis in Wistar rats. In contrast to the in vitro result, one of the ST19 strains showed marked damage in the test animals. The ST213 genotype strains showed in vitro and in vivo virulence variability, but significantly higher than the observed in the ST19 genotype strains, thus such emergent genotype represents a public health concern.
Collapse
Affiliation(s)
- Adrián Gómez-Baltazar
- División de Estudios de Posgrado, Facultad de Ciencias Médicas y Biológicas "Dr. Ignacio Chávez", Universidad Michoacana de San Nicolás de Hidalgo. Morelia, Michoacán, 58020, Mexico; Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo. Morelia, Michoacán, 58893, Mexico
| | - Gerardo Vázquez-Marrufo
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo. Morelia, Michoacán, 58893, Mexico
| | - Humberto Astiazaran-Garcia
- Departamento de Nutrición y Metabolismo, Centro de Investigación en Alimentación y Desarrollo, Carretera al Ejido "La Victoria" Km 0.6, 83304, Mexico
| | - Alejandra Ochoa-Zarzosa
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo. Morelia, Michoacán, 58893, Mexico
| | - Rafael Canett-Romero
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Hermosillo, Sonora, Mexico
| | - Alfonso García-Galaz
- Ciencias de los Alimentos, Centro de Investigación en Alimentación y Desarrollo AC, Carretera al Ejido La Victoria Km 0.6 CP 83304, Mexico
| | - Carlos Torres-Vega
- Laboratorio de Histología, Facultad de Ciencias Médicas y Biológicas "Dr. Ignacio Chávez", Universidad Michoacana de San Nicolás de Hidalgo. Morelia, Michoacán, 58020, Mexico
| | - Ma Soledad Vázquez-Garcidueñas
- División de Estudios de Posgrado, Facultad de Ciencias Médicas y Biológicas "Dr. Ignacio Chávez", Universidad Michoacana de San Nicolás de Hidalgo. Morelia, Michoacán, 58020, Mexico.
| |
Collapse
|
23
|
Klein JA, Powers TR, Knodler LA. Measurement of Salmonella enterica Internalization and Vacuole Lysis in Epithelial Cells. Methods Mol Biol 2023; 2692:209-220. [PMID: 37365470 DOI: 10.1007/978-1-0716-3338-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Establishment of an intracellular niche within mammalian cells is key to the pathogenesis of the gastrointestinal bacterium, Salmonella enterica serovar Typhimurium (S. Typhimurium). Here we will describe how to study the internalization of S. Typhimurium into human epithelial cells using the gentamicin protection assay. The assay takes advantage of the relatively poor penetration of gentamicin into mammalian cells; internalized bacteria are effectively protected from its antibacterial actions. A second assay, the chloroquine (CHQ) resistance assay, can be used to determine the proportion of internalized bacteria that have lysed or damaged their Salmonella-containing vacuole and are therefore residing within the cytosol. Its application to the quantification of cytosolic S. Typhimurium in epithelial cells will also be presented. Together, these protocols provide an inexpensive, rapid, and sensitive quantitative measure of bacterial internalization and vacuole lysis by S. Typhimurium.
Collapse
Affiliation(s)
- Jessica A Klein
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - TuShun R Powers
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Leigh A Knodler
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, USA.
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, USA.
| |
Collapse
|
24
|
Hajra D, Nair AV, Roy Chowdhury A, Mukherjee S, Chatterjee R, Chakravortty D. Salmonella Typhimurium U32 peptidase, YdcP, promotes bacterial survival by conferring protection against in vitro and in vivo oxidative stress. Microb Pathog 2022; 173:105862. [PMID: 36402347 DOI: 10.1016/j.micpath.2022.105862] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 11/18/2022]
Abstract
YdcP, a U32 peptidase, is characterized as a putative collagenase with a role in several bacterial infections. However, its role in the pathogenesis of Salmonella Typhimurium remains elusive. Here, we investigated the role of U32 peptidase, YdcP, in the intracellular survival of S. Typhimurium (STM). Our study revealed a novel function of YdcP in protecting wild-type Salmonella from in vitro and in vivo oxidative stress. The ydcP knockout strain showed attenuated intracellular proliferation within the murine and human macrophages. Incubation of wild-type Salmonella with H2O2 induced the transcript level expression of ydcP. Moreover, deleting ydcP increased the susceptibility of the bacteria to in vitro oxidative stress. STM ΔydcP showed increased colocalization with the gp91phox subunit of the NADPH phagocytic oxidase in RAW264.7 cells. Further, we observed a reduction in the expression of bacterial anti-oxidant genes in STM ΔydcP growing within the RAW264.7 cells. The delay in the death of BALB/c mice infected with STM ΔydcP proved the association of ydcP with the in vivo pathogenesis of Salmonella. Finally, the attenuated growth of the ydcP mutant in wild-type C57BL/6 mice and the recovery of their growth inhibition in gp91phox-/- C57BL/6 mice endorsed the role of ydcP in protecting Salmonella from in vivo oxidative stress. Together, our study depicts a novel role of Salmonella Typhimurium YdcP, a putative U32 peptidase in rendering protection against oxidative stress.
Collapse
Affiliation(s)
- Dipasree Hajra
- Department of Microbiology & Cell Biology, Indian Institute of Science, India
| | - Abhilash Vijay Nair
- Department of Microbiology & Cell Biology, Indian Institute of Science, India
| | - Atish Roy Chowdhury
- Department of Microbiology & Cell Biology, Indian Institute of Science, India
| | | | - Ritika Chatterjee
- Department of Microbiology & Cell Biology, Indian Institute of Science, India
| | - Dipshikha Chakravortty
- Department of Microbiology & Cell Biology, Indian Institute of Science, India; Adjunct Faculty, School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, India.
| |
Collapse
|
25
|
Dumitrescu DG, Gordon EM, Kovalyova Y, Seminara AB, Duncan-Lowey B, Forster ER, Zhou W, Booth CJ, Shen A, Kranzusch PJ, Hatzios SK. A microbial transporter of the dietary antioxidant ergothioneine. Cell 2022; 185:4526-4540.e18. [PMID: 36347253 PMCID: PMC9691600 DOI: 10.1016/j.cell.2022.10.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/16/2022] [Accepted: 10/07/2022] [Indexed: 11/09/2022]
Abstract
Low-molecular-weight (LMW) thiols are small-molecule antioxidants required for the maintenance of intracellular redox homeostasis. However, many host-associated microbes, including the gastric pathogen Helicobacter pylori, unexpectedly lack LMW-thiol biosynthetic pathways. Using reactivity-guided metabolomics, we identified the unusual LMW thiol ergothioneine (EGT) in H. pylori. Dietary EGT accumulates to millimolar levels in human tissues and has been broadly implicated in mitigating disease risk. Although certain microorganisms synthesize EGT, we discovered that H. pylori acquires this LMW thiol from the host environment using a highly selective ATP-binding cassette transporter-EgtUV. EgtUV confers a competitive colonization advantage in vivo and is widely conserved in gastrointestinal microbes. Furthermore, we found that human fecal bacteria metabolize EGT, which may contribute to production of the disease-associated metabolite trimethylamine N-oxide. Collectively, our findings illustrate a previously unappreciated mechanism of microbial redox regulation in the gut and suggest that inter-kingdom competition for dietary EGT may broadly impact human health.
Collapse
Affiliation(s)
- Daniel G Dumitrescu
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Department of Chemistry, Yale University, New Haven, CT 06520, USA; Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA
| | - Elizabeth M Gordon
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA
| | - Yekaterina Kovalyova
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Department of Chemistry, Yale University, New Haven, CT 06520, USA; Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA
| | - Anna B Seminara
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA; Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Brianna Duncan-Lowey
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Emily R Forster
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA; Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Wen Zhou
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Carmen J Booth
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Aimee Shen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Philip J Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Parker Institute for Cancer Immunotherapy at Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Stavroula K Hatzios
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Department of Chemistry, Yale University, New Haven, CT 06520, USA; Microbial Sciences Institute, Yale University, West Haven, CT 06516, USA.
| |
Collapse
|
26
|
Lovelace AH, Chen HC, Lee S, Soufi Z, Bota P, Preston GM, Kvitko BH. RpoS contributes in a host-dependent manner to Salmonella colonization of the leaf apoplast during plant disease. Front Microbiol 2022; 13:999183. [PMID: 36425046 PMCID: PMC9679226 DOI: 10.3389/fmicb.2022.999183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/21/2022] [Indexed: 11/04/2023] Open
Abstract
Contaminated fresh produce has been routinely linked to outbreaks of Salmonellosis. Multiple studies have identified Salmonella enterica factors associated with successful colonization of diverse plant niches and tissues. It has also been well documented that S. enterica can benefit from the conditions generated during plant disease by host-compatible plant pathogens. In this study, we compared the capacity of two common S. enterica research strains, 14028s and LT2 (strain DM10000) to opportunistically colonize the leaf apoplast of two model plant hosts Arabidopsis thaliana and Nicotiana benthamiana during disease. While S. enterica 14028s benefited from co-colonization with plant-pathogenic Pseudomonas syringae in both plant hosts, S. enterica LT2 was unable to benefit from Pto co-colonization in N. benthamiana. Counterintuitively, LT2 grew more rapidly in ex planta N. benthamiana apoplastic wash fluid with a distinctly pronounced biphasic growth curve in comparison with 14028s. Using allelic exchange, we demonstrated that both the N. benthamiana infection-depedent colonization and apoplastic wash fluid growth phenotypes of LT2 were associated with mutations in the S. enterica rpoS stress-response sigma factor gene. Mutations of S. enterica rpoS have been previously shown to decrease tolerance to oxidative stress and alter metabolic regulation. We identified rpoS-dependent alterations in the utilization of L-malic acid, an abundant carbon source in N. benthamiana apoplastic wash fluid. We also present data consistent with higher relative basal reactive oxygen species (ROS) in N. benthamiana leaves than in A. thaliana leaves. The differences in basal ROS may explain the host-dependent disease co-colonization defect of the rpoS-mutated LT2 strain. Our results indicate that the conducive environment generated by pathogen modulation of the apoplast niche can vary from hosts to host even with a common disease-compatible pathogen.
Collapse
Affiliation(s)
- Amelia H. Lovelace
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Hsiao-Chun Chen
- Department of Plant Pathology, University of Georgia, Athens, GA, United States
| | - Sangwook Lee
- Department of Microbiology, University of Georgia, Athens, GA, United States
| | - Ziad Soufi
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Pedro Bota
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Gail M. Preston
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Brian H. Kvitko
- Department of Plant Pathology, University of Georgia, Athens, GA, United States
- The Plant Center, University of Georgia, Athens, GA, United States
| |
Collapse
|
27
|
A Trade-Off for Maintenance of Multidrug-Resistant IncHI2 Plasmids in Salmonella enterica Serovar Typhimurium through Adaptive Evolution. mSystems 2022; 7:e0024822. [PMID: 36040022 PMCID: PMC9599605 DOI: 10.1128/msystems.00248-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Understanding the fitness costs associated with plasmid carriage is a key to better understanding the mechanisms of plasmid maintenance in bacteria. In the current work, we performed multiple serial passages (63 days, 627.8 generations) to identify the compensatory mechanisms that Salmonella enterica serovar Typhimurium ATCC 14028 utilized to maintain the multidrug-resistant (MDR) IncHI2 plasmid pJXP9 in the presence and absence of antibiotic selection. The plasmid pJXP9 was maintained for hundreds of generations even without drug exposure. Endpoint evolved (the endpoint of evolution) S. Typhimurium bearing evolved plasmids displayed decreased growth lag times and a competitive advantage over ancestral pJXP9 plasmid-carrying ATCC 14028 strains. Genomic and transcriptomic analyses revealed that the fitness costs of carrying pJXP9 were derived from both specific plasmid genes and particularly the MDR regions and conjugation transfer region I and conflicts resulting from chromosome-plasmid gene interactions. Correspondingly, plasmid deletions of these regions could compensate for the fitness cost that was due to the plasmid carriage. The deletion extent and range of large fragments on the evolved plasmids, as well as the trajectory of deletion mutation, were related to the antibiotic treatment conditions. Furthermore, it is also adaptive evolution that chromosomal gene mutations and altered mRNA expression correlated with changed physiological functions of the bacterium, such as decreased flagellar motility, increased oxidative stress, and fumaric acid synthesis but increased Cu resistance in a given niche. Our findings indicated that plasmid maintenance evolves via a plasmid-bacterium adaptative evolutionary process that is a trade-off between vertical and horizontal transmission costs along with associated alterations in host bacterial physiology. IMPORTANCE The current idea that compensatory evolution processes can account for the "plasmid paradox" phenomenon associated with the maintenance of large costly plasmids in host bacteria has attracted much attention. Although many compensatory mutations have been discovered through various plasmid-host bacterial evolution experiments, the basis of the compensatory mechanisms and the nature of the bacteria themselves to address the fitness costs remain unclear. In addition, the genetic backgrounds of plasmids and strains involved in previous research were limited and clinical drug resistance such as the poorly understood compensatory evolution among clinically dominant multidrug-resistant plasmids or clones was rarely considered. The IncHI2 plasmid is widely distributed in Salmonella Typhimurium and plays an important role in the emergence and rapid spread of its multidrug resistance. In this study, the predominant multidrug-resistant IncHI2 plasmid pJXP9 and the standard Salmonella Typhimurium ATCC 14028 bacteria were used for evolution experiments under laboratory conditions. Our findings indicated that plasmid maintenance through experimental evolution of plasmid-host bacteria is a trade-off between increasing plasmid vertical transmission and impairing its horizontal transmission and bacterial physiological phenotypes, in which compensatory mutations and altered chromosomal expression profiles collectively contribute to alleviating plasmid-borne fitness cost. These results provided potential insights into understanding the relationship of coexistence between plasmids encoding antibiotic resistance and their bacterial hosts and provided a clue to the adaptive forces that shaped the evolution of these plasmids within bacteria and to predicting the evolution trajectory of antibiotic resistance.
Collapse
|
28
|
Bakkeren E, Gül E, Huisman JS, Steiger Y, Rocker A, Hardt WD, Diard M. Impact of horizontal gene transfer on emergence and stability of cooperative virulence in Salmonella Typhimurium. Nat Commun 2022; 13:1939. [PMID: 35410999 PMCID: PMC9001671 DOI: 10.1038/s41467-022-29597-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 03/18/2022] [Indexed: 11/09/2022] Open
Abstract
Intestinal inflammation fuels the transmission of Salmonella Typhimurium (S.Tm). However, a substantial fitness cost is associated with virulence expression. Mutations inactivating transcriptional virulence regulators generate attenuated variants profiting from inflammation without enduring virulence cost. Such variants interfere with the transmission of fully virulent clones. Horizontal transfer of functional regulatory genes (HGT) into attenuated variants could nevertheless favor virulence evolution. To address this hypothesis, we cloned hilD, coding for the master regulator of virulence, into a conjugative plasmid that is highly transferrable during intestinal colonization. The resulting mobile hilD allele allows virulence to emerge from avirulent populations, and to be restored in attenuated mutants competing against virulent clones within-host. However, mutations inactivating the mobile hilD allele quickly arise. The stability of virulence mediated by HGT is strongly limited by its cost, which depends on the hilD expression level, and by the timing of transmission. We conclude that robust evolution of costly virulence expression requires additional selective forces such as narrow population bottlenecks during transmission. Salmonella Typhimurium virulence is costly and can be lost by mutation during infection. Bakkeren et al. show that virulence restoration via horizontal gene transfer is only transient while transmission bottlenecks promote long-term virulence stability.
Collapse
|
29
|
Cohen H, Hoede C, Scharte F, Coluzzi C, Cohen E, Shomer I, Mallet L, Holbert S, Serre RF, Schiex T, Virlogeux-Payant I, Grassl GA, Hensel M, Chiapello H, Gal-Mor O. Intracellular Salmonella Paratyphi A is motile and differs in the expression of flagella-chemotaxis, SPI-1 and carbon utilization pathways in comparison to intracellular S. Typhimurium. PLoS Pathog 2022; 18:e1010425. [PMID: 35381053 PMCID: PMC9012535 DOI: 10.1371/journal.ppat.1010425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 04/15/2022] [Accepted: 03/09/2022] [Indexed: 12/21/2022] Open
Abstract
Although Salmonella Typhimurium (STM) and Salmonella Paratyphi A (SPA) belong to the same phylogenetic species, share large portions of their genome and express many common virulence factors, they differ vastly in their host specificity, the immune response they elicit, and the clinical manifestations they cause. In this work, we compared their intracellular transcriptomic architecture and cellular phenotypes during human epithelial cell infection. While transcription induction of many metal transport systems, purines, biotin, PhoPQ and SPI-2 regulons was similar in both intracellular SPA and STM, we identified 234 differentially expressed genes that showed distinct expression patterns in intracellular SPA vs. STM. Surprisingly, clear expression differences were found in SPI-1, motility and chemotaxis, and carbon (mainly citrate, galactonate and ethanolamine) utilization pathways, indicating that these pathways are regulated differently during their intracellular phase. Concurring, on the cellular level, we show that while the majority of STM are non-motile and reside within Salmonella-Containing Vacuoles (SCV), a significant proportion of intracellular SPA cells are motile and compartmentalized in the cytosol. Moreover, we found that the elevated expression of SPI-1 and motility genes by intracellular SPA results in increased invasiveness of SPA, following exit from host cells. These findings demonstrate unexpected flagellum-dependent intracellular motility of a typhoidal Salmonella serovar and intriguing differences in intracellular localization between typhoidal and non-typhoidal salmonellae. We propose that these differences facilitate new cycles of host cell infection by SPA and may contribute to the ability of SPA to disseminate beyond the intestinal lamina propria of the human host during enteric fever. Salmonella enterica is a ubiquitous, facultative intracellular animal and human pathogen. Although non-typhoidal Salmonella (NTS) and typhoidal Salmonella serovars belong to the same phylogenetic species and share many virulence factors, the disease they cause in humans is very different. While the underlying mechanisms for these differences are not fully understood, one possible reason expected to contribute to their different pathogenicity is a distinct expression pattern of genes involved in host-pathogen interactions. Here, we compared the global gene expression and intracellular phenotypes, during human epithelial cell infection of S. Paratyphi A (SPA) and S. Typhimurium (STM), as prototypical serovars of typhoidal and NTS, respectively. Interestingly, we identified different expression patterns in key virulence and metabolic pathways, cytosolic motility and increased reinvasion of SPA, following exit from infected cells. We hypothesize that these differences contribute to the invasive and systemic disease developed following SPA infection in humans.
Collapse
Affiliation(s)
- Helit Cohen
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
| | - Claire Hoede
- Université Fédérale de Toulouse, INRAE, BioinfOmics, UR MIAT, GenoToul Bioinformatics facility, 31326, Castanet-Tolosan, France
| | - Felix Scharte
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Charles Coluzzi
- INRAE, Université Paris-Saclay, MaIAGE, Jouy-en-Josas, France
| | - Emiliano Cohen
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
| | - Inna Shomer
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
| | - Ludovic Mallet
- Université Fédérale de Toulouse, INRAE, BioinfOmics, UR MIAT, GenoToul Bioinformatics facility, 31326, Castanet-Tolosan, France
| | | | | | - Thomas Schiex
- Université Fédérale de Toulouse, ANITI, INRAE, Toulouse, France
| | | | - Guntram A. Grassl
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research (DZIF), Hanover, Germany
| | - Michael Hensel
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
- CellNanOs–Center of Cellular Nanoanalytics Osnabrück, Universität Osnabrück, Osnabrück, Germany
- * E-mail: (MH); (HC); (OG-M)
| | - Hélène Chiapello
- Université Fédérale de Toulouse, INRAE, BioinfOmics, UR MIAT, GenoToul Bioinformatics facility, 31326, Castanet-Tolosan, France
- INRAE, Université Paris-Saclay, MaIAGE, Jouy-en-Josas, France
- * E-mail: (MH); (HC); (OG-M)
| | - Ohad Gal-Mor
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- * E-mail: (MH); (HC); (OG-M)
| |
Collapse
|
30
|
Cho H, Kim KS. Repurposing of Ciclopirox to Overcome the Limitations of Zidovudine (Azidothymidine) against Multidrug-Resistant Gram-Negative Bacteria. Pharmaceutics 2022; 14:552. [PMID: 35335928 PMCID: PMC8950944 DOI: 10.3390/pharmaceutics14030552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/17/2022] [Accepted: 02/28/2022] [Indexed: 11/17/2022] Open
Abstract
Multidrug-resistant (MDR) Gram-negative bacteria are the top-priority pathogens to be eradicated. Drug repurposing (e.g., the use of non-antibiotics to treat bacterial infections) may be helpful to overcome the limitations of current antibiotics. Zidovudine (azidothymidine, AZT), a licensed oral antiviral agent, is a leading repurposed drug against MDR Gram-negative bacterial infections. However, the rapid emergence of bacterial resistance due to long-term exposure, overuse, or misuse limits its application, making it necessary to develop new alternatives. In this study, we investigated the efficacy of ciclopirox (CPX) as an alternative to AZT. The minimum inhibitory concentrations of AZT and CPX against MDR Gram-negative bacteria were determined; CPX appeared more active against β-lactamase-producing Escherichia coli, whereas AZT displayed no selectivity for any antibiotic-resistant strain. Motility assays revealed that β-lactamase-producing Escherichia coli strains were less motile in nature and more strongly affected by CPX than a parental strain. Resistance against CPX was not observed in E. coli even after 25 days of growth, whereas AZT resistance was observed in less than 2 days. Moreover, CPX effectively killed AZT-resistant strains with different resistance mechanisms. Our findings indicate that CPX may be utilized as an alternative or supplement to AZT-based medications to treat opportunistic Gram-negative bacterial infections.
Collapse
Affiliation(s)
| | - Kwang-sun Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea;
| |
Collapse
|
31
|
Physicochemical and Theoretical Characterization of a New Small Non-Metal Schiff Base with a Differential Antimicrobial Effect against Gram-Positive Bacteria. Int J Mol Sci 2022; 23:ijms23052553. [PMID: 35269699 PMCID: PMC8910636 DOI: 10.3390/ijms23052553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/17/2022] [Accepted: 02/20/2022] [Indexed: 11/17/2022] Open
Abstract
Searching for adequate and effective compounds displaying antimicrobial activities, especially against Gram-positive bacteria, is an important research area due to the high hospitalization and mortality rates of these bacterial infections in both the human and veterinary fields. In this work, we explored (E)-4-amino-3-((3,5-di-tert-butyl-2-hydroxybenzylidene)amino) benzoic acid (SB-1, harboring an intramolecular hydrogen bond) and (E)-2-((4-nitrobenzilidene)amino)aniline (SB-2), two Schiff bases derivatives. Results demonstrated that SB-1 showed an antibacterial activity determined by the minimal inhibitory concentration (MIC) against Staphylococcus aureus, Enterococcus faecalis, and Bacillus cereus (Gram-positive bacteria involved in human and animal diseases such as skin infections, pneumonia, diarrheal syndrome, and urinary tract infections, among others), which was similar to that shown by the classical antibiotic chloramphenicol. By contrast, this compound showed no effect against Gram-negative bacteria (Klebsiella pneumoniae, Escherichia coli, and Salmonella enterica). Furthermore, we provide a comprehensive physicochemical and theoretical characterization of SB-1 (as well as several analyses for SB-2), including elemental analysis, ESMS, 1H and 13C NMR (assigned by 1D and 2D techniques), DEPT, UV-Vis, FTIR, and cyclic voltammetry. We also performed a computational study through the DFT theory level, including geometry optimization, TD-DFT, NBO, and global and local reactivity analyses.
Collapse
|
32
|
Richards AF, Torres-Velez FJ, Mantis NJ. Salmonella Uptake into Gut-Associated Lymphoid Tissues: Implications for Targeted Mucosal Vaccine Design and Delivery. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2410:305-324. [PMID: 34914054 DOI: 10.1007/978-1-0716-1884-4_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Peyer's patches are organized gut-associated lymphoid tissues (GALT) in the small intestine and the primary route by which particulate antigens, including viruses and bacteria, are sampled by the mucosal immune system. Antigen sampling occurs through M cells, a specialized epithelial cell type located in the follicle-associated epithelium (FAE) that overlie Peyer's patch lymphoid follicles. While Peyer's patches play an integral role in intestinal homeostasis, they are also a gateway by which enteric pathogens, like Salmonella enterica serovar Typhimurium (STm), cross the intestinal barrier. Once pathogens like STm gain access to the underlying network of mucosal dendritic cells and macrophages they can spread systemically. Thus, Peyer's patches are at the crossroads of mucosal immunity and intestinal pathogenesis. In this chapter, we provide detailed methods to assess STm entry into mouse Peyer's patch tissues. We describe Peyer's patch collection methods and provide strategies to enumerate bacterial uptake. We also detail a method for quantifying bacterial shedding from infected animals and provide an immunohistochemistry protocol for the localization of STm along the gastrointestinal tract and insight into pathogen transit in the presence of protective antibodies. While the protocols are written for STm, they are easily tailored to other enteric pathogens.
Collapse
Affiliation(s)
- Angelene F Richards
- Department of Biomedical Sciences, University at Albany School of Public Health, Albany, NY, USA.,Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Fernando J Torres-Velez
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Nicholas J Mantis
- Department of Biomedical Sciences, University at Albany School of Public Health, Albany, NY, USA. .,Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY, USA.
| |
Collapse
|
33
|
Herod A, Emond-Rheault JG, Tamber S, Goodridge L, Lévesque RC, Rohde J. Genomic and phenotypic analysis of SspH1 identifies a new Salmonella effector, SspH3. Mol Microbiol 2021; 117:770-789. [PMID: 34942035 DOI: 10.1111/mmi.14871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/19/2021] [Accepted: 12/19/2021] [Indexed: 11/28/2022]
Abstract
Salmonella is a major foodborne pathogen and is responsible for a range of diseases. Not all Salmonella contribute to severe health outcomes as there is a large degree of genetic heterogeneity among the 2600 serovars within the genus. This variability across Salmonella serovars is linked to numerous genetic elements that dictate virulence. While several genetic elements encode virulence factors with well documented contributions to pathogenesis, many genetic elements implicated in Salmonella virulence remain uncharacterized. Many pathogens encode a family of E3 ubiquitin ligases that are delivered into the cells that they infect using a Type 3 Secretion System (T3SS). These effectors, known as NEL-domain E3s, were first characterized in Salmonella. Most Salmonella encode the NEL-effectors sspH2 and slrP, whereas only a subset of Salmonella encode sspH1. SspH1 has been shown to ubiquitinate the mammalian protein kinase PKN1, which has been reported to negatively regulate the pro-survival program Akt. We discovered that SspH1 mediates the degradation of PKN1 during infection of a macrophage cell line but that this degradation does not impact Akt signaling. Genomic analysis of a large collection of Salmonella genomes identified a putative new gene, sspH3, with homology to sspH1. SspH3 is a novel NEL-domain effector.
Collapse
Affiliation(s)
- Adrian Herod
- Department of Microbiology and Immunology, Dalhousie University Halifax, Halifax, NS, B3H 4R2, Canada
| | | | - Sandeep Tamber
- Microbiology Research Division, Bureau of Microbial Hazards, Health Canada, Ottawa, ON, Canada
| | - Lawrence Goodridge
- Food Science Department, University of Guelph, East Guelph, ON, N1G 2W1, Canada
| | - Roger C Lévesque
- Institute for Integrative and Systems Biology, Université Laval, Québec City, QC, G1V 0A6, Canada
| | - John Rohde
- Department of Microbiology and Immunology, Dalhousie University Halifax, Halifax, NS, B3H 4R2, Canada
| |
Collapse
|
34
|
Bakkeren E, Herter JA, Huisman JS, Steiger Y, Gül E, Newson JPM, Brachmann AO, Piel J, Regoes R, Bonhoeffer S, Diard M, Hardt WD. Pathogen invasion-dependent tissue reservoirs and plasmid-encoded antibiotic degradation boost plasmid spread in the gut. eLife 2021; 10:e69744. [PMID: 34872631 PMCID: PMC8651294 DOI: 10.7554/elife.69744] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 11/10/2021] [Indexed: 11/30/2022] Open
Abstract
Many plasmids encode antibiotic resistance genes. Through conjugation, plasmids can be rapidly disseminated. Previous work identified gut luminal donor/recipient blooms and tissue-lodged plasmid-bearing persister cells of the enteric pathogen Salmonella enterica serovar Typhimurium (S.Tm) that survive antibiotic therapy in host tissues, as factors promoting plasmid dissemination among Enterobacteriaceae. However, the buildup of tissue reservoirs and their contribution to plasmid spread await experimental demonstration. Here, we asked if re-seeding-plasmid acquisition-invasion cycles by S.Tm could serve to diversify tissue-lodged plasmid reservoirs, and thereby promote plasmid spread. Starting with intraperitoneal mouse infections, we demonstrate that S.Tm cells re-seeding the gut lumen initiate clonal expansion. Extended spectrum beta-lactamase (ESBL) plasmid-encoded gut luminal antibiotic degradation by donors can foster recipient survival under beta-lactam antibiotic treatment, enhancing transconjugant formation upon re-seeding. S.Tm transconjugants can subsequently re-enter host tissues introducing the new plasmid into the tissue-lodged reservoir. Population dynamics analyses pinpoint recipient migration into the gut lumen as rate-limiting for plasmid transfer dynamics in our model. Priority effects may be a limiting factor for reservoir formation in host tissues. Overall, our proof-of-principle data indicates that luminal antibiotic degradation and shuttling between the gut lumen and tissue-resident reservoirs can promote the accumulation and spread of plasmids within a host over time.
Collapse
Affiliation(s)
- Erik Bakkeren
- Institute of Microbiology, Department of Biology, ETH ZurichZurichSwitzerland
| | | | - Jana Sanne Huisman
- Swiss Institute of BioinformaticsLausanneSwitzerland
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH ZurichZurichSwitzerland
| | - Yves Steiger
- Institute of Microbiology, Department of Biology, ETH ZurichZurichSwitzerland
| | - Ersin Gül
- Institute of Microbiology, Department of Biology, ETH ZurichZurichSwitzerland
| | | | | | - Jörn Piel
- Institute of Microbiology, Department of Biology, ETH ZurichZurichSwitzerland
| | - Roland Regoes
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH ZurichZurichSwitzerland
| | - Sebastian Bonhoeffer
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH ZurichZurichSwitzerland
| | - Médéric Diard
- Botnar Research Centre for Child HealthBaselSwitzerland
- Biozentrum, University of BaselBaselSwitzerland
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH ZurichZurichSwitzerland
| |
Collapse
|
35
|
Virulence Comparison of Salmonella enterica Subsp. enterica Isolates from Chicken and Whole Genome Analysis of the High Virulent Strain S. Enteritidis 211. Microorganisms 2021; 9:microorganisms9112239. [PMID: 34835366 PMCID: PMC8619400 DOI: 10.3390/microorganisms9112239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/12/2021] [Accepted: 10/20/2021] [Indexed: 01/28/2023] Open
Abstract
Background: Salmonellaenterica is one of the common pathogens in both humans and animals that causes salmonellosis and threatens public health all over the world. Methods and Results: Here we determined the virulence phenotypes of nine Salmonellaenterica subsp. enterica (S. enterica) isolates in vitro and in vivo, including pathogenicity to chicken, cell infection, biofilm formation and virulence gene expressions. S. Enteritidis 211 (SE211) was highly pathogenic with notable virulence features among the nine isolates. The combination of multiple virulence genes contributed to the conferring of the high virulence in SE211. Importantly, many mobile genetic elements (MGEs) were found in the genome sequence of SE211, including a virulence plasmid, genomic islands, and prophage regions. The MGEs and CRISPR-Cas system might function synergistically for gene transfer and immune defense. In addition, the neighbor joining tree and the minimum spanning tree were constructed in this study. Conclusions: This study provided both the virulence phenotypes and genomic features, which might contribute to the understanding of bacterial virulence mechanisms in Salmonella enterica subsp. enterica. The first completed genomic sequence for the high virulent S. Enteritidis isolate SE211 and the comparative genomics and phylogenetic analyses provided a preliminary understanding of S. enterica genetics and laid the foundation for further study.
Collapse
|
36
|
Genomic population structure associated with repeated escape of Salmonella enterica ATCC14028s from the laboratory into nature. PLoS Genet 2021; 17:e1009820. [PMID: 34570761 PMCID: PMC8496778 DOI: 10.1371/journal.pgen.1009820] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 10/07/2021] [Accepted: 09/10/2021] [Indexed: 11/19/2022] Open
Abstract
Salmonella enterica serovar Typhimurium strain ATCC14028s is commercially available from multiple national type culture collections, and has been widely used since 1960 for quality control of growth media and experiments on fitness (“laboratory evolution”). ATCC14028s has been implicated in multiple cross-contaminations in the laboratory, and has also caused multiple laboratory infections and one known attempt at bioterrorism. According to hierarchical clustering of 3002 core gene sequences, ATCC14028s belongs to HierCC cluster HC20_373 in which most internal branch lengths are only one to three SNPs long. Many natural Typhimurium isolates from humans, domesticated animals and the environment also belong to HC20_373, and their core genomes are almost indistinguishable from those of laboratory strains. These natural isolates have infected humans in Ireland and Taiwan for decades, and are common in the British Isles as well as the Americas. The isolation history of some of the natural isolates confirms the conclusion that they do not represent recent contamination by the laboratory strain, and 10% carry plasmids or bacteriophages which have been acquired in nature by HGT from unrelated bacteria. We propose that ATCC14028s has repeatedly escaped from the laboratory environment into nature via laboratory accidents or infections, but the escaped micro-lineages have only a limited life span. As a result, there is a genetic gap separating HC20_373 from its closest natural relatives due to a divergence between them in the late 19th century followed by repeated extinction events of escaped HC20_373. Clades of closely related bacteria exist in nature. Individual isolates from such clades are often distinguishable by genomic sequencing because genomic sequence differences can be acquired over a few years due to neutral drift and natural selection. The evolution of laboratory strains is often largely frozen, physically due to storage conditions and genetically due to long periods of storage. Thus, laboratory strains can normally be readily distinguished from natural isolates because they show much less diversity. However, laboratory strain ATCC14028s shows modest levels of sequence diversity because it has been shipped around the world to multiple laboratories and is routinely used for analyses of laboratory evolution. Closely related natural isolates also exist, but their genetic diversity is not dramatically greater at the core genome level. Indeed, many scientists doubt that such isolates are natural, and interpret them as undetected contamination by the laboratory strain. We present data indicating that ATCC14028s has repeatedly escaped from the laboratory through inadvertent contamination of the environment, infection of technical staff and deliberate bioterrorism. The escapees survive in nature long enough that some acquire mobile genomic elements by horizontal gene transfer, but eventually they go extinct. As a result, even extensive global databases of natural isolates lack closely related isolates whose ancestors diverged from ATCC14028s within the last 100 years.
Collapse
|
37
|
Cappable-Seq Reveals Specific Patterns of Metabolism and Virulence for Salmonella Typhimurium Intracellular Survival within Acanthamoeba castellanii. Int J Mol Sci 2021; 22:ijms22169077. [PMID: 34445780 PMCID: PMC8396566 DOI: 10.3390/ijms22169077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 01/21/2023] Open
Abstract
The bacterial pathogen Salmonella enterica, which causes enteritis, has a broad host range and extensive environmental longevity. In water and soil, Salmonella interacts with protozoa and multiplies inside their phagosomes. Although this relationship resembles that between Salmonella and mammalian phagocytes, the interaction mechanisms and bacterial genes involved are unclear. Here, we characterized global gene expression patterns of S. enterica serovar Typhimurium within Acanthamoeba castellanii at the early stage of infection by Cappable-Seq. Gene expression features of S. Typhimurium within A. castellanii were presented with downregulation of glycolysis-related, and upregulation of glyoxylate cycle-related genes. Expression of Salmonella Pathogenicity Island-1 (SPI-1), chemotaxis system, and flagellar apparatus genes was upregulated. Furthermore, expression of genes mediating oxidative stress response and iron uptake was upregulated within A. castellanii as well as within mammalian phagocytes. Hence, global S. Typhimurium gene expression patterns within A. castellanii help better understand the molecular mechanisms of Salmonella adaptation to an amoeba cell and intracellular persistence in protozoa inhabiting water and soil ecosystems.
Collapse
|
38
|
Abstract
Regulation of flagellum biosynthesis is a hierarchical process that is tightly controlled to allow for efficient tuning of flagellar expression. Flagellum-mediated motility directs Salmonella enterica serovar Typhimurium toward the epithelial surface to enhance gut colonization, but flagella are potent activators of innate immune signaling, so fine-tuning flagellar expression is necessary for immune avoidance. In this work, we evaluate the role of the LysR transcriptional regulator YeiE in regulating flagellum-mediated motility. We show that yeiE is necessary and sufficient for swimming motility. A ΔyeiE mutant is defective for gut colonization in both the calf ligated ileal loop model and the murine colitis model due to its lack of motility. Expression of flagellar class 2 and 3 but not class 1 genes is reduced in the ΔyeiE mutant. We linked the motility dysregulation of the ΔyeiE mutant to repression of the anti-FlhD4C2 factor STM1697. Together, our results indicate that YeiE promotes virulence by enhancing cell motility, thereby providing a new regulatory control point for flagellar expression in Salmonella Typhimurium.
Collapse
|
39
|
Richards A, Baranova DE, Pizzuto MS, Jaconi S, Willsey GG, Torres-Velez FJ, Doering JE, Benigni F, Corti D, Mantis NJ. Recombinant Human Secretory IgA Induces Salmonella Typhimurium Agglutination and Limits Bacterial Invasion into Gut-Associated Lymphoid Tissues. ACS Infect Dis 2021; 7:1221-1235. [PMID: 33728898 PMCID: PMC8154420 DOI: 10.1021/acsinfecdis.0c00842] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Indexed: 12/11/2022]
Abstract
As the predominant antibody type in mucosal secretions, human colostrum, and breast milk, secretory IgA (SIgA) plays a central role in safeguarding the intestinal epithelium of newborns from invasive enteric pathogens like the Gram-negative bacterium Salmonella enterica serovar Typhimurium (STm). SIgA is a complex molecule, consisting of an assemblage of two or more IgA monomers, joining (J)-chain, and secretory component (SC), whose exact functions in neutralizing pathogens are only beginning to be elucidated. In this study, we produced and characterized a recombinant human SIgA variant of Sal4, a well-characterized monoclonal antibody (mAb) specific for the O5-antigen of STm lipopolysaccharide (LPS). We demonstrate by flow cytometry, light microscopy, and fluorescence microscopy that Sal4 SIgA promotes the formation of large, densely packed bacterial aggregates in vitro. In a mouse model, passive oral administration of Sal4 SIgA was sufficient to entrap STm within the intestinal lumen and reduce bacterial invasion into gut-associated lymphoid tissues by several orders of magnitude. Bacterial aggregates induced by Sal4 SIgA treatment in the intestinal lumen were recalcitrant to immunohistochemical staining, suggesting the bacteria were encased in a protective capsule. Indeed, a crystal violet staining assay demonstrated that STm secretes an extracellular matrix enriched in cellulose following even short exposures to Sal4 SIgA. Collectively, these results demonstrate that recombinant human SIgA recapitulates key biological activities associated with mucosal immunity and raises the prospect of oral passive immunization to combat enteric diseases.
Collapse
Affiliation(s)
- Angelene
F. Richards
- Department
of Biomedical Sciences, University at Albany
School of Public Health, Albany, New York 12208, United States
- Division
of Infectious Diseases, Wadsworth Center,
New York State Department of Health, Albany, New York 12208, United States
| | - Danielle E. Baranova
- Division
of Infectious Diseases, Wadsworth Center,
New York State Department of Health, Albany, New York 12208, United States
| | - Matteo S. Pizzuto
- Humabs
BioMed SA a Subsidiary of Vir Biotechnology Inc., 6500 Bellinzona, Switzerland
| | - Stefano Jaconi
- Humabs
BioMed SA a Subsidiary of Vir Biotechnology Inc., 6500 Bellinzona, Switzerland
| | - Graham G. Willsey
- Division
of Infectious Diseases, Wadsworth Center,
New York State Department of Health, Albany, New York 12208, United States
| | - Fernando J. Torres-Velez
- Division
of Infectious Diseases, Wadsworth Center,
New York State Department of Health, Albany, New York 12208, United States
| | - Jennifer E. Doering
- Division
of Infectious Diseases, Wadsworth Center,
New York State Department of Health, Albany, New York 12208, United States
| | - Fabio Benigni
- Humabs
BioMed SA a Subsidiary of Vir Biotechnology Inc., 6500 Bellinzona, Switzerland
| | - Davide Corti
- Humabs
BioMed SA a Subsidiary of Vir Biotechnology Inc., 6500 Bellinzona, Switzerland
| | - Nicholas J. Mantis
- Department
of Biomedical Sciences, University at Albany
School of Public Health, Albany, New York 12208, United States
- Division
of Infectious Diseases, Wadsworth Center,
New York State Department of Health, Albany, New York 12208, United States
| |
Collapse
|
40
|
Patel K, Cangelosi C, Warrier V, Wykoff D, Wilson JW. The cloned SPI-1 type 3 secretion system can be functionally expressed outside Salmonella backgrounds. FEMS Microbiol Lett 2021; 367:5819957. [PMID: 32286609 DOI: 10.1093/femsle/fnaa065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/09/2020] [Indexed: 11/14/2022] Open
Abstract
Due to its potential for use in bacterial engineering applications, we previously cloned the SPI-1 type 3 secretion system (T3SS) genes from the genome of Salmonella enterica serovar Typhimurium strain LT2. We have documented that this clone, while functionally expressed in S. Typhimurium strains, displays a severe expression defect in other Gram negative backgrounds including Escherichia coli. To address this issue, we compared SPI-1 DNA sequence across different backgrounds, fully sequenced the original SPI-1 clone, and cloned SPI-1 from other S. Typhimurium strains. In this process, we were able to successfully obtain SPI-1 clones that are functionally expressed in E. coli indicating the first such result for a full-length SP-1 T3SS clone. We discovered that the original cloning technique using a DNA homology-based capture method was the root of the expression defect and that the FRT-Capture technique is preferable over the homology-based method. This result paves the way for future studies and applications using cloned SPI-1 and other T3SS in non-Salmonella bacterial backgrounds.
Collapse
Affiliation(s)
- Krupa Patel
- Department of Biology, Mendel Hall, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085 USA
| | - Chris Cangelosi
- Department of Biology, Mendel Hall, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085 USA
| | - Vaishnavi Warrier
- Department of Biology, Mendel Hall, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085 USA
| | - Dennis Wykoff
- Department of Biology, Mendel Hall, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085 USA
| | - James W Wilson
- Department of Biology, Mendel Hall, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085 USA
| |
Collapse
|
41
|
Fernández PA, Zabner M, Ortega J, Morgado C, Amaya F, Vera G, Rubilar C, Salas B, Cuevas V, Valenzuela C, Baisón-Olmo F, Álvarez SA, Santiviago CA. Novel Template Plasmids pCyaA'-Kan and pCyaA'-Cam for Generation of Unmarked Chromosomal cyaA' Translational Fusion to T3SS Effectors in Salmonella. Microorganisms 2021; 9:microorganisms9030475. [PMID: 33668764 PMCID: PMC7996335 DOI: 10.3390/microorganisms9030475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 02/15/2021] [Indexed: 11/25/2022] Open
Abstract
The type III secretion systems (T3SS) encoded in pathogenicity islands SPI-1 and SPI-2 are key virulence factors of Salmonella. These systems translocate proteins known as effectors into eukaryotic cells during infection. To characterize the functionality of T3SS effectors, gene fusions to the CyaA’ reporter of Bordetella pertussis are often used. CyaA’ is a calmodulin-dependent adenylate cyclase that is only active within eukaryotic cells. Thus, the translocation of an effector fused to CyaA’ can be evaluated by measuring cAMP levels in infected cells. Here, we report the construction of plasmids pCyaA’-Kan and pCyaA’-Cam, which contain the ORF encoding CyaA’ adjacent to a cassette that confers resistance to kanamycin or chloramphenicol, respectively, flanked by Flp recombinase target (FRT) sites. A PCR product from pCyaA’-Kan or pCyaA’-Cam containing these genetic elements can be introduced into the bacterial chromosome to generate gene fusions by homologous recombination using the Red recombination system from bacteriophage λ. Subsequently, the resistance cassette can be removed by recombination between the FRT sites using the Flp recombinase. As a proof of concept, the plasmids pCyaA’-Kan and pCyaA’-Cam were used to generate unmarked chromosomal fusions of 10 T3SS effectors to CyaA’ in S. Typhimurium. Each fusion protein was detected by Western blot using an anti-CyaA’ monoclonal antibody when the corresponding mutant strain was grown under conditions that induce the expression of the native gene. In addition, T3SS-1-dependent secretion of fusion protein SipA-CyaA’ during in vitro growth was verified by Western blot analysis of culture supernatants. Finally, efficient translocation of SipA-CyaA’ into HeLa cells was evidenced by increased intracellular cAMP levels at different times of infection. Therefore, the plasmids pCyaA’-Kan and pCyaA’-Cam can be used to generate unmarked chromosomal cyaA’ translational fusion to study regulated expression, secretion and translocation of Salmonella T3SS effectors into eukaryotic cells.
Collapse
Affiliation(s)
- Paulina A. Fernández
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 92101 Santiago, Chile; (P.A.F.); (M.Z.); (J.O.); (C.M.); (F.A.); (G.V.); (C.R.); (B.S.); (C.V.); (F.B.-O.); (S.A.Á.)
| | - Marcela Zabner
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 92101 Santiago, Chile; (P.A.F.); (M.Z.); (J.O.); (C.M.); (F.A.); (G.V.); (C.R.); (B.S.); (C.V.); (F.B.-O.); (S.A.Á.)
| | - Jaime Ortega
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 92101 Santiago, Chile; (P.A.F.); (M.Z.); (J.O.); (C.M.); (F.A.); (G.V.); (C.R.); (B.S.); (C.V.); (F.B.-O.); (S.A.Á.)
| | - Constanza Morgado
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 92101 Santiago, Chile; (P.A.F.); (M.Z.); (J.O.); (C.M.); (F.A.); (G.V.); (C.R.); (B.S.); (C.V.); (F.B.-O.); (S.A.Á.)
| | - Fernando Amaya
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 92101 Santiago, Chile; (P.A.F.); (M.Z.); (J.O.); (C.M.); (F.A.); (G.V.); (C.R.); (B.S.); (C.V.); (F.B.-O.); (S.A.Á.)
| | - Gabriel Vera
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 92101 Santiago, Chile; (P.A.F.); (M.Z.); (J.O.); (C.M.); (F.A.); (G.V.); (C.R.); (B.S.); (C.V.); (F.B.-O.); (S.A.Á.)
| | - Carolina Rubilar
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 92101 Santiago, Chile; (P.A.F.); (M.Z.); (J.O.); (C.M.); (F.A.); (G.V.); (C.R.); (B.S.); (C.V.); (F.B.-O.); (S.A.Á.)
| | - Beatriz Salas
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 92101 Santiago, Chile; (P.A.F.); (M.Z.); (J.O.); (C.M.); (F.A.); (G.V.); (C.R.); (B.S.); (C.V.); (F.B.-O.); (S.A.Á.)
| | - Víctor Cuevas
- Facultad de Medicina y Ciencia, Universidad San Sebastián, 92101 Santiago, Chile;
| | - Camila Valenzuela
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 92101 Santiago, Chile; (P.A.F.); (M.Z.); (J.O.); (C.M.); (F.A.); (G.V.); (C.R.); (B.S.); (C.V.); (F.B.-O.); (S.A.Á.)
- Dynamics of Host-Pathogen Interactions Unit, Institut Pasteur, 75015 Paris, France
| | - Fernando Baisón-Olmo
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 92101 Santiago, Chile; (P.A.F.); (M.Z.); (J.O.); (C.M.); (F.A.); (G.V.); (C.R.); (B.S.); (C.V.); (F.B.-O.); (S.A.Á.)
| | - Sergio A. Álvarez
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 92101 Santiago, Chile; (P.A.F.); (M.Z.); (J.O.); (C.M.); (F.A.); (G.V.); (C.R.); (B.S.); (C.V.); (F.B.-O.); (S.A.Á.)
| | - Carlos A. Santiviago
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 92101 Santiago, Chile; (P.A.F.); (M.Z.); (J.O.); (C.M.); (F.A.); (G.V.); (C.R.); (B.S.); (C.V.); (F.B.-O.); (S.A.Á.)
- Correspondence: ; Tel.: +56-2-2978-1681
| |
Collapse
|
42
|
Fijalkowska D, Fijalkowski I, Willems P, Van Damme P. Bacterial riboproteogenomics: the era of N-terminal proteoform existence revealed. FEMS Microbiol Rev 2021; 44:418-431. [PMID: 32386204 DOI: 10.1093/femsre/fuaa013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/07/2020] [Indexed: 12/17/2022] Open
Abstract
With the rapid increase in the number of sequenced prokaryotic genomes, relying on automated gene annotation became a necessity. Multiple lines of evidence, however, suggest that current bacterial genome annotations may contain inconsistencies and are incomplete, even for so-called well-annotated genomes. We here discuss underexplored sources of protein diversity and new methodologies for high-throughput genome reannotation. The expression of multiple molecular forms of proteins (proteoforms) from a single gene, particularly driven by alternative translation initiation, is gaining interest as a prominent contributor to bacterial protein diversity. In consequence, riboproteogenomic pipelines were proposed to comprehensively capture proteoform expression in prokaryotes by the complementary use of (positional) proteomics and the direct readout of translated genomic regions using ribosome profiling. To complement these discoveries, tailored strategies are required for the functional characterization of newly discovered bacterial proteoforms.
Collapse
Affiliation(s)
- Daria Fijalkowska
- Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Igor Fijalkowski
- Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Patrick Willems
- Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Petra Van Damme
- Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| |
Collapse
|
43
|
Kubicek-Sutherland JZ, Xie G, Shakya M, Dighe PK, Jacobs LL, Daligault H, Davenport K, Stromberg LR, Stromberg ZR, Cheng Q, Kempaiah P, Ong’echa JM, Otieno V, Raballah E, Anyona S, Ouma C, Chain PSG, Perkins DJ, Mukundan H, McMahon BH, Doggett NA. Comparative genomic and phenotypic characterization of invasive non-typhoidal Salmonella isolates from Siaya, Kenya. PLoS Negl Trop Dis 2021; 15:e0008991. [PMID: 33524010 PMCID: PMC7877762 DOI: 10.1371/journal.pntd.0008991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 02/11/2021] [Accepted: 11/17/2020] [Indexed: 02/07/2023] Open
Abstract
Non-typhoidal Salmonella (NTS) is a major global health concern that often causes bloodstream infections in areas of the world affected by malnutrition and comorbidities such as HIV and malaria. Developing a strategy to control the emergence and spread of highly invasive and antimicrobial resistant NTS isolates requires a comprehensive analysis of epidemiological factors and molecular pathogenesis. Here, we characterize 11 NTS isolates that caused bloodstream infections in pediatric patients in Siaya, Kenya from 2003-2010. Nine isolates were identified as S. Typhimurium sequence type 313 while the other two were S. Enteritidis. Comprehensive genotypic and phenotypic analyses were performed to compare these isolates to those previously identified in sub-Saharan Africa. We identified a S. Typhimurium isolate referred to as UGA14 that displayed novel plasmid, pseudogene and resistance features as compared to other isolates reported from Africa. Notably, UGA14 is able to ferment both lactose and sucrose due to the acquisition of insertion elements on the pKST313 plasmid. These findings show for the first time the co-evolution of plasmid-mediated lactose and sucrose metabolism along with cephalosporin resistance in NTS further elucidating the evolutionary mechanisms of invasive NTS phenotypes. These results further support the use of combined genomic and phenotypic approaches to detect and characterize atypical NTS isolates in order to advance biosurveillance efforts that inform countermeasures aimed at controlling invasive and antimicrobial resistant NTS.
Collapse
Affiliation(s)
| | - Gary Xie
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - Migun Shakya
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - Priya K. Dighe
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | - Lindsey L. Jacobs
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | | | - Karen Davenport
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | | | | | - Qiuying Cheng
- Center for Global Health, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Prakasha Kempaiah
- Center for Global Health, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - John Michael Ong’echa
- University of New Mexico/KEMRI Laboratories of Parasitic and Viral Diseases, Kenya Medical Research Institute, Kisumu, Kenya
| | - Vincent Otieno
- University of New Mexico/KEMRI Laboratories of Parasitic and Viral Diseases, Kenya Medical Research Institute, Kisumu, Kenya
| | - Evans Raballah
- University of New Mexico/KEMRI Laboratories of Parasitic and Viral Diseases, Kenya Medical Research Institute, Kisumu, Kenya
- Department of Medical Laboratory Science, School of Public Health, Biomedical Sciences and Technology, Masinde Muliro University of Science and Technology, Kakamega, Kenya
| | - Samuel Anyona
- University of New Mexico/KEMRI Laboratories of Parasitic and Viral Diseases, Kenya Medical Research Institute, Kisumu, Kenya
- Department of Medical Biochemistry, School of Medicine, Maseno University, Maseno, Kenya
| | - Collins Ouma
- University of New Mexico/KEMRI Laboratories of Parasitic and Viral Diseases, Kenya Medical Research Institute, Kisumu, Kenya
- Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno, Kenya
| | | | - Douglas J. Perkins
- Center for Global Health, University of New Mexico, Albuquerque, New Mexico, United States of America
- University of New Mexico/KEMRI Laboratories of Parasitic and Viral Diseases, Kenya Medical Research Institute, Kisumu, Kenya
| | - Harshini Mukundan
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| | | | - Norman A. Doggett
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States
| |
Collapse
|
44
|
An RNA Repair Operon Regulated by Damaged tRNAs. Cell Rep 2020; 33:108527. [PMID: 33357439 PMCID: PMC7790460 DOI: 10.1016/j.celrep.2020.108527] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/03/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Many bacteria contain an RNA repair operon, encoding the RtcB RNA ligase and the RtcA RNA cyclase, that is regulated by the RtcR transcriptional activator. Although RtcR contains a divergent version of the CARF (CRISPR-associated Rossman fold) oligonucleotide-binding regulatory domain, both the specific signal that regulates operon expression and the substrates of the encoded enzymes are unknown. We report that tRNA fragments activate operon expression. Using a genetic screen in Salmonella enterica serovar Typhimurium, we find that the operon is expressed in the presence of mutations that cause tRNA fragments to accumulate. RtcA, which converts RNA phosphate ends to 2′, 3′-cyclic phosphate, is also required. Operon expression and tRNA fragment accumulation also occur upon DNA damage. The CARF domain binds 5′ tRNA fragments ending in cyclic phosphate, and RtcR oligomerizes upon binding these ligands, a prerequisite for operon activation. Our studies reveal a signaling pathway involving broken tRNAs and implicate the operon in tRNA repair. Hughes et al. demonstrate that a bacterial RNA repair operon, containing the RtcB RNA ligase and the RtcA RNA cyclase, is regulated by binding of 5′ tRNA halves ending in 2′, 3′-cyclic phosphate to the RtcR transcriptional activator. These studies show how tRNA fragments can regulate bacterial gene expression.
Collapse
|
45
|
de Melo Pereira GV, de Carvalho Neto DP, Maske BL, De Dea Lindner J, Vale AS, Favero GR, Viesser J, de Carvalho JC, Góes-Neto A, Soccol CR. An updated review on bacterial community composition of traditional fermented milk products: what next-generation sequencing has revealed so far? Crit Rev Food Sci Nutr 2020; 62:1870-1889. [PMID: 33207956 DOI: 10.1080/10408398.2020.1848787] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The emergence of next-generation sequencing (NGS) technologies has revolutionized the way to investigate the microbial diversity in traditional fermentations. In the field of food microbial ecology, different NGS platforms have been used for community analysis, including 454 pyrosequencing from Roche, Illumina's instruments and Thermo Fisher's SOLiD/Ion Torrent sequencers. These recent platforms generate information about millions of rDNA amplicons in a single running, enabling accurate phylogenetic resolution of microbial taxa. This review provides a comprehensive overview of the application of NGS for microbiome analysis of traditional fermented milk products worldwide. Fermented milk products covered in this review include kefir, buttermilk, koumiss, dahi, kurut, airag, tarag, khoormog, lait caillé, and suero costeño. Lactobacillus-mainly represented by Lb. helveticus, Lb. kefiranofaciens, and Lb. delbrueckii-is the most important and frequent genus with 51 reported species. In general, dominant species detected by culturing were also identified by NGS. However, NGS studies have revealed a more complex bacterial diversity, with estimated 400-600 operational taxonomic units, comprising uncultivable microorganisms, sub-dominant populations, and late-growing species. This review explores the importance of these discoveries and address related topics on workflow, NGS platforms, and knowledge bioinformatics devoted to fermented milk products. The knowledge that has been gained is vital in improving the monitoring, manipulation, and safety of these traditional fermented foods.
Collapse
Affiliation(s)
- Gilberto V de Melo Pereira
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Dão Pedro de Carvalho Neto
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Bruna L Maske
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Juliano De Dea Lindner
- Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Alexander S Vale
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Gabriel R Favero
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Jéssica Viesser
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Júlio C de Carvalho
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Aristóteles Góes-Neto
- Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Carlos R Soccol
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| |
Collapse
|
46
|
Troxell B, Mendoza M, Ali R, Koci M, Hassan H. Attenuated Salmonella enterica Serovar Typhimurium, Strain NC983, Is Immunogenic, and Protective against Virulent Typhimurium Challenges in Mice. Vaccines (Basel) 2020; 8:vaccines8040646. [PMID: 33153043 PMCID: PMC7711481 DOI: 10.3390/vaccines8040646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 01/31/2023] Open
Abstract
Non-typhoidal Salmonella (NTS) serovars are significant health burden worldwide. Although much effort has been devoted to developing typhoid-based vaccines for humans, currently there is no NTS vaccine available. Presented here is the efficacy of a live attenuated serovar Typhimurium strain (NC983). Oral delivery of strain NC983 was capable of fully protecting C57BL/6 and BALB/c mice against challenge with virulent Typhimurium. Strain NC983 was found to elicit an anti-Typhimurium IgG response following administration of vaccine and boosting doses. Furthermore, in competition experiments with virulent S. Typhimurium (ATCC 14028), NC983 was highly defective in colonization of the murine liver and spleen. Collectively, these results indicate that strain NC983 is a potential live attenuated vaccine strain that warrants further development.
Collapse
Affiliation(s)
- Bryan Troxell
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA; (B.T.); (M.M.); (R.A.); (M.K.)
| | - Mary Mendoza
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA; (B.T.); (M.M.); (R.A.); (M.K.)
| | - Rizwana Ali
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA; (B.T.); (M.M.); (R.A.); (M.K.)
| | - Matthew Koci
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA; (B.T.); (M.M.); (R.A.); (M.K.)
| | - Hosni Hassan
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA; (B.T.); (M.M.); (R.A.); (M.K.)
- Microbiology Graduate Program, North Carolina State University, Raleigh, NC 27695, USA
- Correspondence: ; Tel.: +919-515-7081; Fax: +919-515-2625
| |
Collapse
|
47
|
Stringer AM, Baniulyte G, Lasek-Nesselquist E, Seed KD, Wade JT. Transcription termination and antitermination of bacterial CRISPR arrays. eLife 2020; 9:e58182. [PMID: 33124980 PMCID: PMC7665894 DOI: 10.7554/elife.58182] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022] Open
Abstract
A hallmark of CRISPR-Cas immunity systems is the CRISPR array, a genomic locus consisting of short, repeated sequences ('repeats') interspersed with short, variable sequences ('spacers'). CRISPR arrays are transcribed and processed into individual CRISPR RNAs that each include a single spacer, and direct Cas proteins to complementary sequences in invading nucleic acid. Most bacterial CRISPR array transcripts are unusually long for untranslated RNA, suggesting the existence of mechanisms to prevent premature transcription termination by Rho, a conserved bacterial transcription termination factor that rapidly terminates untranslated RNA. We show that Rho can prematurely terminate transcription of bacterial CRISPR arrays, and we identify a widespread antitermination mechanism that antagonizes Rho to facilitate complete transcription of CRISPR arrays. Thus, our data highlight the importance of transcription termination and antitermination in the evolution of bacterial CRISPR-Cas systems.
Collapse
Affiliation(s)
- Anne M Stringer
- Wadsworth Center, New York State Department of HealthAlbanyUnited States
| | - Gabriele Baniulyte
- Department of Biomedical Sciences, School of Public Health, University at AlbanyAlbanyUnited States
| | | | - Kimberley D Seed
- Department of Plant and Microbial Biology, University of California, BerkeleyBerkeleyUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Joseph T Wade
- Wadsworth Center, New York State Department of HealthAlbanyUnited States
- Department of Biomedical Sciences, School of Public Health, University at AlbanyAlbanyUnited States
| |
Collapse
|
48
|
Phenotypes, transcriptome, and novel biofilm formation associated with the ydcI gene. Antonie Van Leeuwenhoek 2020; 113:1109-1122. [PMID: 32419108 DOI: 10.1007/s10482-020-01412-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/02/2020] [Indexed: 10/24/2022]
Abstract
The ydcI gene has previously been shown to encode a DNA-binding protein involved with acid stress resistance and induced biofilm formation in a strain of Salmonella enterica serovar Typhimurium. In addition, characterisation of the ydcI gene in Escherichia coli and other bacteria demonstrated strikingly different tolerance for induced ydcI expression across Gram negative species. In this report, we investigated the conservation of these phenotypes across multiple strains of S. Typhimurium and E. coli, and we used RNA Seq to identify the transcriptome of the ΔydcI mutant compared to WT in S. Typhimurium and E. coli (to establish the YdcI regulon in each species). We constructed deletion mutants in each species based on the RNA Seq results and tested these mutants for the relevant ydcI-related phenotypes. Though no evidence for a role in these phenotypes was found via the RNA Seq deletion mutants, we found that the ydcI-induced biofilm in S. Typhimurium is formed independently of the major biofilm genes csgA and bcsA indicating a potentially novel type of biofilm formation.
Collapse
|
49
|
Gogoleva NE, Kataev VY, Balkin AS, Plotnikov AO, Shagimardanova EI, Subbot AM, Cherkasov SV, Gogolev YV. Dataset for transcriptome analysis of Salmonella enterica subsp. enterica serovar Typhimurium strain 14028S response to starvation. Data Brief 2020; 31:106008. [PMID: 32695865 PMCID: PMC7364113 DOI: 10.1016/j.dib.2020.106008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 11/16/2022] Open
Abstract
Salmonella enterica is an ubiquitous pathogen throughout the world causing gastroenteritis in humans and animals. Survival of pathogenic bacteria in the external environment may be associated with the ability to overcome the stress caused by starvation. The bacterial response to starvation is well understood in laboratory cultures with a sufficiently high cell density. However, bacterial populations often have a small size when facing this challenge in natural biotopes. The aim of this work was to find out if there are differences in the transcriptomes of S. enterica depending on the factor of cell density during starvation. Here we present transcriptome data of Salmonella enterica subsp. enterica serovar Typhimurium str. 14028S grown in carbon rich or carbon deficient medium with high or low cell density. These data will help identify genes involved in adaptation of low-density bacterial populations to starvation conditions.
Collapse
Affiliation(s)
- Natalia E Gogoleva
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St., Kazan, 420111, Russian Federation.,Institute for Cellular and Intracellular Symbiosis, Ural Branch of Russian Academy of Sciences, 11 Pionerskaya St., Orenburg, 460000, Russian Federation
| | - Vladimir Ya Kataev
- Institute for Cellular and Intracellular Symbiosis, Ural Branch of Russian Academy of Sciences, 11 Pionerskaya St., Orenburg, 460000, Russian Federation
| | - Alexander S Balkin
- Institute for Cellular and Intracellular Symbiosis, Ural Branch of Russian Academy of Sciences, 11 Pionerskaya St., Orenburg, 460000, Russian Federation
| | - Andrey O Plotnikov
- Institute for Cellular and Intracellular Symbiosis, Ural Branch of Russian Academy of Sciences, 11 Pionerskaya St., Orenburg, 460000, Russian Federation
| | - Elena I Shagimardanova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., Kazan, 420111, Russian Federation
| | - Anastasia M Subbot
- Research Institute of Eye Diseases, 11 Rossolimo St., Moscow, 119021, Russian Federation
| | - Sergey V Cherkasov
- Institute for Cellular and Intracellular Symbiosis, Ural Branch of Russian Academy of Sciences, 11 Pionerskaya St., Orenburg, 460000, Russian Federation
| | - Yuri V Gogolev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St., Kazan, 420111, Russian Federation.,Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., Kazan, 420111, Russian Federation
| |
Collapse
|
50
|
Zarkani AA, López-Pagán N, Grimm M, Sánchez-Romero MA, Ruiz-Albert J, Beuzón CR, Schikora A. Salmonella Heterogeneously Expresses Flagellin during Colonization of Plants. Microorganisms 2020; 8:microorganisms8060815. [PMID: 32485895 PMCID: PMC7355505 DOI: 10.3390/microorganisms8060815] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/19/2022] Open
Abstract
Minimally processed or fresh fruits and vegetables are unfortunately linked to an increasing number of food-borne diseases, such as salmonellosis. One of the relevant virulence factors during the initial phases of the infection process is the bacterial flagellum. Although its function is well studied in animal systems, contradictory results have been published regarding its role during plant colonization. In this study, we tested the hypothesis that Salmonella's flagellin plays a versatile function during the colonization of tomato plants. We have assessed the persistence in plant tissues of a Salmonella enterica wild type strain, and of a strain lacking the two flagellins, FljB and FliC. We detected no differences between these strains concerning their respective abilities to reach distal, non-inoculated parts of the plant. Analysis of flagellin expression inside the plant, at both the population and single cell levels, shows that the majority of bacteria down-regulate flagellin production, however, a small fraction of the population continues to express flagellin at a very high level inside the plant. This heterogeneous expression of flagellin might be an adaptive strategy to the plant environment. In summary, our study provides new insights on Salmonella adaption to the plant environment through the regulation of flagellin expression.
Collapse
Affiliation(s)
- Azhar A. Zarkani
- Julius Kühn-Institut Federal Research Centre for Cultivated Plants (JKI), Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104 Braunschweig, Germany; (A.A.Z.); (M.G.)
- Department of Biotechnology, College of Science, University of Baghdad, 10071 Baghdad, Iraq
| | - Nieves López-Pagán
- Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Dpto. Biología Celular, Genética y Fisiología, Campus de Teatinos, 29071 Malaga, Spain; (N.L.-P.); (J.R.-A.); (C.R.B.)
| | - Maja Grimm
- Julius Kühn-Institut Federal Research Centre for Cultivated Plants (JKI), Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104 Braunschweig, Germany; (A.A.Z.); (M.G.)
| | - María Antonia Sánchez-Romero
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Apartado 1095, 41080 Seville, Spain;
- Current address: Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, Calle Profesor García González 2, 41012 Seville, Spain
| | - Javier Ruiz-Albert
- Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Dpto. Biología Celular, Genética y Fisiología, Campus de Teatinos, 29071 Malaga, Spain; (N.L.-P.); (J.R.-A.); (C.R.B.)
| | - Carmen R. Beuzón
- Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Dpto. Biología Celular, Genética y Fisiología, Campus de Teatinos, 29071 Malaga, Spain; (N.L.-P.); (J.R.-A.); (C.R.B.)
| | - Adam Schikora
- Julius Kühn-Institut Federal Research Centre for Cultivated Plants (JKI), Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104 Braunschweig, Germany; (A.A.Z.); (M.G.)
- Correspondence:
| |
Collapse
|