1
|
Koyano Y, Okajima K, Mihara M, Yamamoto H. Visualization of Wall Teichoic Acid Decoration in Bacillus subtilis. J Bacteriol 2023; 205:e0006623. [PMID: 37010431 PMCID: PMC10127673 DOI: 10.1128/jb.00066-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/16/2023] [Indexed: 04/04/2023] Open
Abstract
Teichoic acids are important for the maintenance of cell shape and growth in Gram-positive bacteria. Bacillus subtilis produces major and minor forms of wall teichoic acid (WTA) and lipoteichoic acid during vegetative growth. We found that newly synthesized WTA attachment to peptidoglycan occurs in a patch-like manner on the sidewall with the fluorescent labeling compound of the concanavalin A lectin. Similarly, WTA biosynthesis enzymes fused to the epitope tags were localized in similar patch-like patterns on the cylindrical part of the cell, and WTA transporter TagH was frequently colocalized with WTA polymerase TagF, WTA ligase TagT, and actin homolog MreB, respectively. Moreover, we found that the nascent cell wall patches, decorated with the newly glucosylated WTA, were colocalized with TagH and WTA ligase TagV. In the cylindrical part, the newly glucosylated WTA patchily inserted into the bottom of the cell wall layer and finally reached the outermost layer of the cell wall after approximately half an hour. Incorporation of newly glucosylated WTA was arrested with the addition of vancomycin but restored with the removal of the antibiotic. These results are consistent with the prevailing model that WTA precursors are attached to newly synthesized peptidoglycan. IMPORTANCE In Gram-positive bacteria, the cell wall is composed of mesh-like peptidoglycan and covalently linked wall teichoic acid (WTA). It is unclear where WTA decorates peptidoglycan to create a cell wall architecture. Here, we demonstrate that nascent WTA decoration occurred in a patch-like manner at the peptidoglycan synthesis sites on the cytoplasmic membrane. The incorporated cell wall with newly glucosylated WTA in the cell wall layer then reached the outermost layer of the cell wall after approximately half an hour. Incorporation of newly glucosylated WTA was arrested with the addition of vancomycin but restored with the removal of the antibiotic. These results are consistent with the prevailing model that WTA precursors are attached to newly synthesized peptidoglycan.
Collapse
Affiliation(s)
- Yutaka Koyano
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Nagano, Japan
| | - Kiyoshirou Okajima
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Nagano, Japan
| | - Mako Mihara
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Nagano, Japan
| | - Hiroki Yamamoto
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Nagano, Japan
| |
Collapse
|
2
|
Yoon SA, Park SY, Cha Y, Gopala L, Lee MH. Strategies of Detecting Bacteria Using Fluorescence-Based Dyes. Front Chem 2021; 9:743923. [PMID: 34458240 PMCID: PMC8397417 DOI: 10.3389/fchem.2021.743923] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/03/2021] [Indexed: 11/13/2022] Open
Abstract
Identification of bacterial strains is critical for the theranostics of bacterial infections and the development of antibiotics. Many organic fluorescent probes have been developed to overcome the limitations of conventional detection methods. These probes can detect bacteria with "off-on" fluorescence change, which enables the real-time imaging and quantitative analysis of bacteria in vitro and in vivo. In this review, we outline recent advances in the development of fluorescence-based dyes capable of detecting bacteria. Detection strategies are described, including specific interactions with bacterial cell wall components, bacterial and intracellular enzyme reactions, and peptidoglycan synthesis reactions. These include theranostic probes that allow simultaneous bacterial detection and photodynamic antimicrobial effects. Some examples of other miscellaneous detections in bacteria have also been described. In addition, this review demonstrates the validation of these fluorescent probes using a variety of biological models such as gram-negative and -positive bacteria, antibiotic-resistant bacteria, infected cancer cells, tumor-bearing, and infected mice. Prospects for future research are outlined by presenting the importance of effective in vitro and in vivo detection of bacteria and development of antimicrobial agents.
Collapse
Affiliation(s)
| | | | | | | | - Min Hee Lee
- Department of Chemistry, Sookmyung Women’s University, Seoul, South Korea
| |
Collapse
|
3
|
The Min System Disassembles FtsZ Foci and Inhibits Polar Peptidoglycan Remodeling in Bacillus subtilis. mBio 2020; 11:mBio.03197-19. [PMID: 32184253 PMCID: PMC7078482 DOI: 10.1128/mbio.03197-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A microfluidic system coupled with fluorescence microscopy is a powerful approach for quantitative analysis of bacterial growth. Here, we measure parameters of growth and dynamic localization of the cell division initiation protein FtsZ in Bacillus subtilis Consistent with previous reports, we found that after division, FtsZ rings remain at the cell poles, and polar FtsZ ring disassembly coincides with rapid Z-ring accumulation at the midcell. In cells mutated for minD, however, the polar FtsZ rings persist indefinitely, suggesting that the primary function of the Min system is in Z-ring disassembly. The inability to recycle FtsZ monomers in the minD mutant results in the simultaneous maintenance of multiple Z-rings that are restricted by competition for newly synthesized FtsZ. Although the parameters of FtsZ dynamics change in the minD mutant, the overall cell division time remains the same, albeit with elongated cells necessary to accumulate a critical threshold amount of FtsZ for promoting medial division. Finally, the minD mutant characteristically produces minicells composed of polar peptidoglycan shown to be inert for remodeling in the wild type. Polar peptidoglycan, however, loses its inert character in the minD mutant, suggesting that the Min system not only is important for recycling FtsZ but also may have a secondary role in the spatiotemporal regulation of peptidoglycan remodeling.IMPORTANCE Many bacteria grow and divide by binary fission in which a mother cell divides into two identical daughter cells. To produce two equally sized daughters, the division machinery, guided by FtsZ, must dynamically localize to the midcell each cell cycle. Here, we quantitatively analyzed FtsZ dynamics during growth and found that the Min system of Bacillus subtilis is essential to disassemble FtsZ rings after division. Moreover, a failure to efficiently recycle FtsZ results in an increase in cell size. Finally, we show that the Min system has an additional role in inhibiting cell wall turnover and contributes to the "inert" property of cell walls at the poles.
Collapse
|
4
|
Pende N, Wang J, Weber PM, Verheul J, Kuru E, Rittmann SKMR, Leisch N, VanNieuwenhze MS, Brun YV, den Blaauwen T, Bulgheresi S. Host-Polarized Cell Growth in Animal Symbionts. Curr Biol 2018; 28:1039-1051.e5. [PMID: 29576473 PMCID: PMC6611161 DOI: 10.1016/j.cub.2018.02.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 12/13/2017] [Accepted: 02/15/2018] [Indexed: 01/16/2023]
Abstract
To determine the fundamentals of cell growth, we must extend cell biological studies to non-model organisms. Here, we investigated the growth modes of the only two rods known to widen instead of elongating, Candidatus Thiosymbion oneisti and Thiosymbion hypermnestrae. These bacteria are attached by one pole to the surface of their respective nematode hosts. By incubating live Ca. T. oneisti and T. hypermnestrae with a peptidoglycan metabolic probe, we observed that the insertion of new cell wall starts at the poles and proceeds inward, concomitantly with FtsZ-based membrane constriction. Remarkably, in Ca. T. hypermnestrae, the proximal, animal-attached pole grows before the distal, free pole, indicating that the peptidoglycan synthesis machinery is host oriented. Immunostaining of the symbionts with an antibody against the actin homolog MreB revealed that it was arranged medially-that is, parallel to the cell long axis-throughout the symbiont life cycle. Given that depolymerization of MreB abolished newly synthesized peptidoglycan insertion and impaired divisome assembly, we conclude that MreB function is required for symbiont widening and division. In conclusion, our data invoke a reassessment of the localization and function of the bacterial actin homolog.
Collapse
Affiliation(s)
- Nika Pende
- University of Vienna, Department of Ecogenomics and Systems Biology, Archaeal Biology and Ecogenomics Division, Althanstrasse 14, 1090 Vienna, Austria
| | - Jinglan Wang
- Bacterial Cell Biology and Physiology Swammerdam Institute for Life Sciences, University of Amsterdam, De Boelelaan 1108, 1081 Amsterdam, the Netherlands
| | - Philipp M Weber
- University of Vienna, Department of Ecogenomics and Systems Biology, Archaeal Biology and Ecogenomics Division, Althanstrasse 14, 1090 Vienna, Austria
| | - Jolanda Verheul
- Bacterial Cell Biology and Physiology Swammerdam Institute for Life Sciences, University of Amsterdam, De Boelelaan 1108, 1081 Amsterdam, the Netherlands
| | - Erkin Kuru
- Department of Genetics, Harvard Medical School NRB, 77 Avenue Louis Pasteur, Boston, MA, USA
| | - Simon K-M R Rittmann
- University of Vienna, Department of Ecogenomics and Systems Biology, Archaeal Biology and Ecogenomics Division, Althanstrasse 14, 1090 Vienna, Austria
| | - Nikolaus Leisch
- University of Vienna, Department of Ecogenomics and Systems Biology, Archaeal Biology and Ecogenomics Division, Althanstrasse 14, 1090 Vienna, Austria
| | | | - Yves V Brun
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Tanneke den Blaauwen
- Bacterial Cell Biology and Physiology Swammerdam Institute for Life Sciences, University of Amsterdam, De Boelelaan 1108, 1081 Amsterdam, the Netherlands
| | - Silvia Bulgheresi
- University of Vienna, Department of Ecogenomics and Systems Biology, Archaeal Biology and Ecogenomics Division, Althanstrasse 14, 1090 Vienna, Austria.
| |
Collapse
|
5
|
Billaudeau C, Chastanet A, Yao Z, Cornilleau C, Mirouze N, Fromion V, Carballido-López R. Contrasting mechanisms of growth in two model rod-shaped bacteria. Nat Commun 2017; 8:15370. [PMID: 28589952 PMCID: PMC5467245 DOI: 10.1038/ncomms15370] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/23/2017] [Indexed: 12/24/2022] Open
Abstract
How cells control their shape and size is a long-standing question in cell biology. Many rod-shaped bacteria elongate their sidewalls by the action of cell wall synthesizing machineries that are associated to actin-like MreB cortical patches. However, little is known about how elongation is regulated to enable varied growth rates and sizes. Here we use total internal reflection fluorescence microscopy and single-particle tracking to visualize MreB isoforms, as a proxy for cell wall synthesis, in Bacillus subtilis and Escherichia coli cells growing in different media and during nutrient upshift. We find that these two model organisms appear to use orthogonal strategies to adapt to growth regime variations: B. subtilis regulates MreB patch speed, while E. coli may mainly regulate the production capacity of MreB-associated cell wall machineries. We present numerical models that link MreB-mediated sidewall synthesis and cell elongation, and argue that the distinct regulatory mechanism employed might reflect the different cell wall integrity constraints in Gram-positive and Gram-negative bacteria. Protein MreB participates in elongation of sidewalls during growth of most rod-shaped bacteria. Here, the authors use fluorescence microscopy and single-particle tracking to visualize MreB, showing that Bacillus subtilis and Escherichia coli appear to use different strategies to adapt to growth rate variations.
Collapse
Affiliation(s)
- Cyrille Billaudeau
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Arnaud Chastanet
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Zhizhong Yao
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Charlène Cornilleau
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Nicolas Mirouze
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Vincent Fromion
- MaIAGE, INRA, Université Paris-Saclay, Jouy-en-Josas F78350, France
| | - Rut Carballido-López
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| |
Collapse
|
6
|
Omardien S, Brul S, Zaat SAJ. Antimicrobial Activity of Cationic Antimicrobial Peptides against Gram-Positives: Current Progress Made in Understanding the Mode of Action and the Response of Bacteria. Front Cell Dev Biol 2016; 4:111. [PMID: 27790614 PMCID: PMC5063857 DOI: 10.3389/fcell.2016.00111] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 09/21/2016] [Indexed: 01/11/2023] Open
Abstract
Antimicrobial peptides (AMPs) have been proposed as a novel class of antimicrobials that could aid the fight against antibiotic resistant bacteria. The mode of action of AMPs as acting on the bacterial cytoplasmic membrane has often been presented as an enigma and there are doubts whether the membrane is the sole target of AMPs. Progress has been made in clarifying the possible targets of these peptides, which is reported in this review with as focus gram-positive vegetative cells and spores. Numerical estimates are discussed to evaluate the possibility that targets, other than the membrane, could play a role in susceptibility to AMPs. Concerns about possible resistance that bacteria might develop to AMPs are addressed. Proteomics, transcriptomics, and other molecular techniques are reviewed in the context of explaining the response of bacteria to the presence of AMPs and to predict what resistance strategies might be. Emergent mechanisms are cell envelope stress responses as well as enzymes able to degrade and/or specifically bind (and thus inactivate) AMPs. Further studies are needed to address the broadness of the AMP resistance and stress responses observed.
Collapse
Affiliation(s)
- Soraya Omardien
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands
| | - Stanley Brul
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands
| | - Sebastian A J Zaat
- Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands
| |
Collapse
|
7
|
Lyme disease and relapsing fever Borrelia elongate through zones of peptidoglycan synthesis that mark division sites of daughter cells. Proc Natl Acad Sci U S A 2016; 113:9162-70. [PMID: 27506799 DOI: 10.1073/pnas.1610805113] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Agents that cause Lyme disease, relapsing fever, leptospirosis, and syphilis belong to the phylum Spirochaetae-a unique lineage of bacteria most known for their long, spiral morphology. Despite the relevance to human health, little is known about the most fundamental aspects of spirochete growth. Here, using quantitative microscopy to track peptidoglycan cell-wall synthesis, we found that the Lyme disease spirochete Borrelia burgdorferi displays a complex pattern of growth. B. burgdorferi elongates from discrete zones that are both spatially and temporally regulated. In addition, some peptidoglycan incorporation occurs along the cell body, with the notable exception of a large region at the poles. Newborn cells inherit a highly active zone of peptidoglycan synthesis at midcell that contributes to elongation for most of the cell cycle. Concomitant with the initiation of nucleoid separation and cell constriction, second and third zones of elongation are established at the 1/4 and 3/4 cellular positions, marking future sites of division for the subsequent generation. Positioning of elongation zones along the cell is robust to cell length variations and is relatively precise over long distances (>30 µm), suggesting that cells ‟sense" relative, as opposed to absolute, cell length to establish zones of peptidoglycan synthesis. The transition from one to three zones of peptidoglycan growth during the cell cycle is also observed in relapsing fever Borrelia. However, this mode of growth does not extend to representative species from other spirochetal genera, suggesting that this distinctive growth mode represents an evolutionary divide in the spirochete phylum.
Collapse
|
8
|
Spatial Organization of Cell Wall-Anchored Proteins at the Surface of Gram-Positive Bacteria. Curr Top Microbiol Immunol 2016; 404:177-201. [DOI: 10.1007/82_2016_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Randich AM, Brun YV. Molecular mechanisms for the evolution of bacterial morphologies and growth modes. Front Microbiol 2015; 6:580. [PMID: 26106381 PMCID: PMC4460556 DOI: 10.3389/fmicb.2015.00580] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/26/2015] [Indexed: 12/13/2022] Open
Abstract
Bacteria exhibit a rich diversity of morphologies. Within this diversity, there is a uniformity of shape for each species that is replicated faithfully each generation, suggesting that bacterial shape is as selectable as any other biochemical adaptation. We describe the spatiotemporal mechanisms that target peptidoglycan synthesis to different subcellular zones to generate the rod-shape of model organisms Escherichia coli and Bacillus subtilis. We then demonstrate, using the related genera Caulobacter and Asticcacaulis as examples, how the modularity of the core components of the peptidoglycan synthesis machinery permits repositioning of the machinery to achieve different growth modes and morphologies. Finally, we highlight cases in which the mechanisms that underlie morphological evolution are beginning to be understood, and how they depend upon the expansion and diversification of the core components of the peptidoglycan synthesis machinery.
Collapse
Affiliation(s)
- Amelia M Randich
- Department of Biology, Indiana University , Bloomington, IN, USA
| | - Yves V Brun
- Department of Biology, Indiana University , Bloomington, IN, USA
| |
Collapse
|
10
|
Molecular modeling, simulation and virtual screening of MurD ligase protein from Salmonella typhimurium LT2. J Pharmacol Toxicol Methods 2015; 73:34-41. [DOI: 10.1016/j.vascn.2015.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/23/2015] [Accepted: 03/26/2015] [Indexed: 01/11/2023]
|
11
|
Abstract
Work over the past decade has highlighted the pivotal role of the actin-like MreB family of proteins in the determination and maintenance of rod cell shape in bacteria. Early images of MreB localization revealed long helical filaments, which were suggestive of a direct role in governing cell wall architecture. However, several more recent, higher-resolution studies have questioned the existence or importance of the helical structures. In this Opinion article, I navigate a path through these conflicting reports, revive the helix model and summarize the key questions that remain to be answered.
Collapse
Affiliation(s)
- Jeff Errington
- Centre for Bacterial Cell Biology, Medical Faculty, Newcastle University, Richardson Road, Newcastle-upon-Tyne NE2 4AX, UK
| |
Collapse
|
12
|
Bierne H, Dramsi S. Spatial positioning of cell wall-anchored virulence factors in Gram-positive bacteria. Curr Opin Microbiol 2012; 15:715-23. [PMID: 23141759 DOI: 10.1016/j.mib.2012.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Revised: 10/18/2012] [Accepted: 10/19/2012] [Indexed: 01/14/2023]
Abstract
Many virulence factors of Gram-positive bacteria are anchored to the peptidoglycan by a sorting signal. While surface display mechanisms are well characterized, less is known about the spatial and temporal organization of these proteins in the bacterial envelope. This review summarizes recent studies on the rod-shaped Listeria monocytogenes, ovococcal Streptococcus pyogenes and spherical Staphylococcus aureus bacteria that provide insights into the compartmentalization of the surface and distribution of peptidoglycan-anchored proteins in space and time. We discuss models that support mechanistic bases for localization of proteins at the poles, septum or lateral sites. The results indicate that deployment of virulence factors by pathogenic bacteria is a dynamic process tightly connected to secretion, cell morphogenesis, cell division rate and gene expression levels.
Collapse
Affiliation(s)
- Hélène Bierne
- Institut Pasteur, Unité des Interactions Bactéries Cellules, Paris, F-75015, France.
| | | |
Collapse
|
13
|
Kuru E, Hughes HV, Brown PJ, Hall E, Tekkam S, Cava F, de Pedro MA, Brun YV, VanNieuwenhze MS. In Situ Probing of Newly Synthesized Peptidoglycan in Live Bacteria with FluorescentD-Amino Acids. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201206749] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Kuru E, Hughes HV, Brown PJ, Hall E, Tekkam S, Cava F, de Pedro MA, Brun YV, VanNieuwenhze MS. In Situ probing of newly synthesized peptidoglycan in live bacteria with fluorescent D-amino acids. Angew Chem Int Ed Engl 2012; 51:12519-23. [PMID: 23055266 DOI: 10.1002/anie.201206749] [Citation(s) in RCA: 488] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Indexed: 12/21/2022]
Abstract
Tracking a bug's life: Peptidoglycan (PG) of diverse bacteria is labeled by exploiting the tolerance of cells for incorporating different non-natural D-amino acids. These nontoxic D-amino acids preferably label the sites of active PG synthesis, thereby enabling fine spatiotemporal tracking of cell-wall dynamics in phylogenetically and morphologically diverse bacteria. HCC = 7-hydroxycoumarin, NBD = 7-nitrobenzofurazan, TAMRA = carboxytetramethylrhodamine.
Collapse
Affiliation(s)
- Erkin Kuru
- Indiana University, Bloomington, IN 47405, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Brown PJ, Kysela DT, Brun YV. Polarity and the diversity of growth mechanisms in bacteria. Semin Cell Dev Biol 2011; 22:790-8. [PMID: 21736947 PMCID: PMC3193591 DOI: 10.1016/j.semcdb.2011.06.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 06/12/2011] [Accepted: 06/17/2011] [Indexed: 11/20/2022]
Abstract
Bacterial cell growth is a complex process consisting of two distinct phases: cell elongation and septum formation prior to cell division. Although bacteria have evolved several different mechanisms for cell growth, it is clear that tight spatial and temporal regulation of peptidoglycan synthesis is a common theme. In this review, we discuss bacterial cell growth with a particular emphasis on bacteria that utilize tip extension as a mechanism for cell elongation. We describe polar growth among diverse bacteria and consider the advantages and consequences of this mode of cell elongation.
Collapse
Affiliation(s)
| | | | - Yves V. Brun
- Department of Biology, Indiana University, Bloomington, IN
| |
Collapse
|
16
|
Bruck S, Personnic N, Prevost MC, Cossart P, Bierne H. Regulated shift from helical to polar localization of Listeria monocytogenes cell wall-anchored proteins. J Bacteriol 2011; 193:4425-37. [PMID: 21725001 PMCID: PMC3165528 DOI: 10.1128/jb.01154-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 06/23/2011] [Indexed: 01/18/2023] Open
Abstract
Many virulence factors of Gram-positive bacterial pathogens are covalently anchored to the peptidoglycan (PG) by sortase enzymes. However, for rod-shaped bacteria little is known about the spatiotemporal organization of these surface proteins in the cell wall. Here we report the three-dimensional (3D) localization of the PG-bound virulence factors InlA, InlH, InlJ, and SvpA in the envelope of Listeria monocytogenes under different growth conditions. We found that all PG-anchored proteins are positioned along the lateral cell wall in nonoverlapping helices. However, these surface proteins can also become localized at the pole and asymmetrically distributed when specific regulatory pathways are activated. InlA and InlJ are enriched at poles when expressed at high levels in exponential-phase bacteria. InlA and InlH, which are σ(B)dependent, specifically relocalize to the septal cell wall and subsequently to the new pole in cells entering stationary phase. The accumulation of InlA and InlH in the septal region also occurs when oxidative stress impairs bacterial growth. In contrast, the iron-dependent protein SvpA is present at the old pole and is excluded from the septum and new pole of bacteria grown under low-iron conditions. We conclude that L. monocytogenes rapidly reorganizes the spatial localization of its PG proteins in response to changes in environmental conditions such as nutrient deprivation or other stresses. This dynamic control would distribute virulence factors at specific sites during the infectious process.
Collapse
Affiliation(s)
- Serawit Bruck
- Institut Pasteur, Unité des Interactions Bactéries Cellules, Paris F-75015, France
- Inserm, U604, Paris F-75015, France
- INRA, USC2020, Paris F-75015, France
| | - Nicolas Personnic
- Institut Pasteur, Unité des Interactions Bactéries Cellules, Paris F-75015, France
- Inserm, U604, Paris F-75015, France
- INRA, USC2020, Paris F-75015, France
| | | | - Pascale Cossart
- Institut Pasteur, Unité des Interactions Bactéries Cellules, Paris F-75015, France
- Inserm, U604, Paris F-75015, France
- INRA, USC2020, Paris F-75015, France
| | - Hélène Bierne
- Institut Pasteur, Unité des Interactions Bactéries Cellules, Paris F-75015, France
- Inserm, U604, Paris F-75015, France
- INRA, USC2020, Paris F-75015, France
| |
Collapse
|
17
|
Bacteriophage infection in rod-shaped gram-positive bacteria: evidence for a preferential polar route for phage SPP1 entry in Bacillus subtilis. J Bacteriol 2011; 193:4893-903. [PMID: 21705600 DOI: 10.1128/jb.05104-11] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Entry into the host bacterial cell is one of the least understood steps in the life cycle of bacteriophages. The different envelopes of Gram-negative and Gram-positive bacteria, with a fluid outer membrane and exposing a thick peptidoglycan wall to the environment respectively, impose distinct challenges for bacteriophage binding and (re)distribution on the bacterial surface. Here, infection of the Gram-positive rod-shaped bacterium Bacillus subtilis by bacteriophage SPP1 was monitored in space and time. We found that SPP1 reversible adsorption occurs preferentially at the cell poles. This initial binding facilitates irreversible adsorption to the SPP1 phage receptor protein YueB, which is encoded by a putative type VII secretion system gene cluster. YueB was found to concentrate at the cell poles and to display a punctate peripheral distribution along the sidewalls of B. subtilis cells. The kinetics of SPP1 DNA entry and replication were visualized during infection. Most of the infecting phages DNA entered and initiated replication near the cell poles. Altogether, our results reveal that the preferentially polar topology of SPP1 receptors on the surface of the host cell determines the site of phage DNA entry and subsequent replication, which occurs in discrete foci.
Collapse
|
18
|
Andre G, Deghorain M, Bron PA, van Swam II, Kleerebezem M, Hols P, Dufrêne YF. Fluorescence and atomic force microscopy imaging of wall teichoic acids in Lactobacillus plantarum. ACS Chem Biol 2011; 6:366-76. [PMID: 21218855 DOI: 10.1021/cb1003509] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although teichoic acids are major constituents of bacterial cell walls, little is known about the relationships between their spatial localization and their functional roles. Here, we used single-molecule atomic force microscopy (AFM) combined with fluorescence microscopy to image the distribution of wall teichoic acids (WTAs) in Lactobacillus plantarum, in relation with their physiological roles. Phenotype analysis of the wild-type strain and of mutant strains deficient for the synthesis of WTAs (ΔtagO) or cell wall polysaccharides (Δcps1-4) revealed that WTAs are required for proper cell elongation and cell division. Nanoscale imaging by AFM showed that strains expressing WTAs have a highly polarized surface morphology, the poles being much smoother than the side walls. AFM and fluorescence imaging with specific lectin probes demonstrated that the polarized surface structure correlates with a heterogeneous distribution of WTAs, the latter being absent from the surface of the poles. These observations indicate that the polarized distribution of WTAs in L. plantarum plays a key role in controlling cell morphogenesis (surface roughness, cell shape, elongation, and division).
Collapse
Affiliation(s)
- Guillaume Andre
- Institute of Condensed Matter and Nanosciences − Bio & Soft Matter, Université catholique de Louvain, Croix du Sud 2/18, B-1348 Louvain-la-Neuve, Belgium
| | - Marie Deghorain
- Institute of Life Sciences − Biochemistry and Molecular Genetics of Bacteria, Université catholique de Louvain, Croix du Sud 5/6, B-1348 Louvain-la-Neuve, Belgium
| | - Peter A. Bron
- Top Institute Food and Nutrition, PO Box 557, 6700 AN Wageningen, The Netherlands
- NIZO food research BV, P.O. Box 20, 6710 BA Ede, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Iris I. van Swam
- Top Institute Food and Nutrition, PO Box 557, 6700 AN Wageningen, The Netherlands
- NIZO food research BV, P.O. Box 20, 6710 BA Ede, The Netherlands
| | - Michiel Kleerebezem
- Top Institute Food and Nutrition, PO Box 557, 6700 AN Wageningen, The Netherlands
- NIZO food research BV, P.O. Box 20, 6710 BA Ede, The Netherlands
- Laboratory of Microbiology, Agrotechnology and Food Sciences, Wageningen University, Dreijenplein 10, 6703 HB, Wageningen, The Netherlands
| | - Pascal Hols
- Institute of Life Sciences − Biochemistry and Molecular Genetics of Bacteria, Université catholique de Louvain, Croix du Sud 5/6, B-1348 Louvain-la-Neuve, Belgium
| | - Yves F. Dufrêne
- Institute of Condensed Matter and Nanosciences − Bio & Soft Matter, Université catholique de Louvain, Croix du Sud 2/18, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
19
|
Abstract
Bacterial chromosomes are generally approximately 1000 times longer than the cells in which they reside, and concurrent replication, segregation, and transcription/translation of this crowded mass of DNA poses a challenging organizational problem. Recent advances in cell-imaging technology with subdiffraction resolution have revealed that the bacterial nucleoid is reliably oriented and highly organized within the cell. Such organization is transmitted from one generation to the next by progressive segregation of daughter chromosomes and anchoring of DNA to the cell envelope. Active segregation by a mitotic machinery appears to be common; however, the mode of chromosome segregation varies significantly from species to species.
Collapse
Affiliation(s)
- Esteban Toro
- Department of Developmental Biology, Beckman Center, Stanford University School of Medicine, Stanford, California 94305, USA.
| | | |
Collapse
|
20
|
Yamamoto H, Miyake Y, Hisaoka M, Kurosawa SI, Sekiguchi J. The major and minor wall teichoic acids prevent the sidewall localization of vegetative DL-endopeptidase LytF in Bacillus subtilis. Mol Microbiol 2008; 70:297-310. [PMID: 18761696 DOI: 10.1111/j.1365-2958.2008.06397.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cell separation in Bacillus subtilis depends on specific activities of DL-endopeptidases CwlS, LytF and LytE. Immunofluorescence microscopy (IFM) indicated that the localization of LytF depended on its N-terminal LysM domain. In addition, we revealed that the LysM domain efficiently binds to peptidoglycan (PG) prepared by chemically removing wall teichoic acids (WTAs) from the B. subtilis cell wall. Moreover, increasing amounts of the LysM domain bound to TagB- or TagO-depleted cell walls. These results strongly suggested that the LysM domain specifically binds to PG, and that the binding may be prevented by WTAs. IFM with TagB-, TagF- or TagO-reduced cells indicated that LytF-6xFLAG was observed not only at cell separation site and poles but also as a helical pattern along the sidewall. Moreover, we found that LytF was localizable on the whole cell surface in TagB-, TagF- or TagO-depleted cells. These results strongly suggest that WTAs inhibit the sidewall localization of LytF. Furthermore, the helical LytF localization was observed on the lateral cell surface in MreB-depleted cells, suggesting that cell wall modification by WTAs along the sidewall might be governed by an actin-like cytoskeleton homologue, MreB.
Collapse
Affiliation(s)
- Hiroki Yamamoto
- Experimental Farm, Shinshu University, 3-15-1 Tokida, Ueda-shi, Nagano 386-8567, Japan
| | | | | | | | | |
Collapse
|
21
|
Localization and interactions of teichoic acid synthetic enzymes in Bacillus subtilis. J Bacteriol 2007; 190:1812-21. [PMID: 18156271 DOI: 10.1128/jb.01394-07] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The thick wall of gram-positive bacteria is a polymer meshwork composed predominantly of peptidoglycan (PG) and teichoic acids, both of which have a critical function in maintenance of the structural integrity and the shape of the cell. In Bacillus subtilis 168 the major teichoic acid is covalently coupled to PG and is known as wall teichoic acid (WTA). Recently, PG insertion/degradation over the lateral wall has been shown to occur in a helical pattern. However, the spatial organization of WTA assembly and its relationship with cell shape and PG assembly are largely unknown. We have characterized the localization of green fluorescent protein fusions to proteins involved in several steps of WTA synthesis in B. subtilis: TagB, -F, -G, -H, and -O. All of these localized similarly to the inner side of the cytoplasmic membrane, in a pattern strikingly similar to that displayed by probes of nascent PG. Helix-like localization patterns are often attributable to the morphogenic cytoskeletal proteins of the MreB family. However, localization of the Tag proteins did not appear to be substantially affected by single disruption of any of the three MreB homologues of B. subtilis. Bacterial and yeast two-hybrid experiments revealed a complex network of interactions involving TagA, -B, -E, -F, -G, -H, and -O and the cell shape determinants MreC and MreD (encoded by the mreBCD operon and presumably involved in the spatial organization of PG synthesis). Taken together, our results suggest that, in B. subtilis at least, the synthesis and export of WTA precursors are mediated by a large multienzyme complex that may be associated with the PG-synthesizing machinery.
Collapse
|
22
|
Aaron M, Charbon G, Lam H, Schwarz H, Vollmer W, Jacobs-Wagner C. The tubulin homologue FtsZ contributes to cell elongation by guiding cell wall precursor synthesis in Caulobacter crescentus. Mol Microbiol 2007; 64:938-52. [PMID: 17501919 DOI: 10.1111/j.1365-2958.2007.05720.x] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The tubulin homologue FtsZ is well known for its essential function in bacterial cell division. Here, we show that in Caulobacter crescentus, FtsZ also plays a major role in cell elongation by spatially regulating the location of MurG, which produces the essential lipid II peptidoglycan cell wall precursor. The early assembly of FtsZ into a highly mobile ring-like structure during cell elongation is quickly followed by the recruitment of MurG and a major redirection of peptidoglycan precursor synthesis to the midcell region. These FtsZ-dependent events occur well before cell constriction and contribute to cell elongation. In the absence of FtsZ, MurG fails to accumulate near midcell and cell elongation proceeds unperturbed in appearance by insertion of peptidoglycan material along the entire sidewalls. Evidence suggests that bacteria use both a FtsZ-independent and a FtsZ-dependent mode of peptidoglycan synthesis to elongate, the importance of each mode depending on the timing of FtsZ assembly during elongation.
Collapse
Affiliation(s)
- Michelle Aaron
- Department of Molecular, Cellular, and Developmental Biology, and Microbiology Program, Yale University, New Haven, CT 06520, USA
| | | | | | | | | | | |
Collapse
|
23
|
Cabeen MT, Jacobs-Wagner C. Skin and bones: the bacterial cytoskeleton, cell wall, and cell morphogenesis. ACTA ACUST UNITED AC 2007; 179:381-7. [PMID: 17967949 PMCID: PMC2064785 DOI: 10.1083/jcb.200708001] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The bacterial world is full of varying cell shapes and sizes, and individual species perpetuate a defined morphology generation after generation. We review recent findings and ideas about how bacteria use the cytoskeleton and other strategies to regulate cell growth in time and space to produce different shapes and sizes.
Collapse
Affiliation(s)
- Matthew T Cabeen
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
24
|
Bhavsar AP, Brown ED. Cell wall assembly in Bacillus subtilis: how spirals and spaces challenge paradigms. Mol Microbiol 2007; 60:1077-90. [PMID: 16689786 DOI: 10.1111/j.1365-2958.2006.05169.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although the bacterial cell wall has been the subject of decades of investigation, recent studies continue to generate novel and controversial models of its synthesis and assembly. Here we compare and contrast the transcompartmental biosyntheses of peptidoglycan and teichoic acid in Bacillus subtilis. In addition, the current paradigms of B. subtilis wall assembly and structure are distinguished from emerging models of murein insertion and organization. We discuss evidence for the directed, cytoskeleton-dependent insertion of nascent peptidoglycan and the existence of a periplasmic compartment. Furthermore, we summarize the challenges these findings represent to the existing paradigm of murein insertion. Finally, motivated by these new developments, we discuss outstanding issues that remain to be addressed and suggest research directions that may contribute to a better understanding of cell wall assembly in B. subtilis.
Collapse
Affiliation(s)
- Amit P Bhavsar
- Antimicrobial Research Centre and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | | |
Collapse
|
25
|
Abstract
Recent advances have shown conclusively that bacterial cells possess distant but true homologues of actin (MreB, ParM, and the recently uncovered MamK protein). Despite weak amino acid sequence similarity, MreB and ParM exhibit high structural homology to actin. Just like F-actin in eukaryotes, MreB and ParM assemble into highly dynamic filamentous structures in vivo and in vitro. MreB-like proteins are essential for cell viability and have been implicated in major cellular processes, including cell morphogenesis, chromosome segregation, and cell polarity. ParM (a plasmid-encoded actin homologue) is responsible for driving plasmid-DNA partitioning. The dynamic prokaryotic actin-like cytoskeleton is thought to serve as a central organizer for the targeting and accurate positioning of proteins and nucleoprotein complexes, thereby (and by analogy to the eukaryotic cytoskeleton) spatially and temporally controlling macromolecular trafficking in bacterial cells. In this paper, the general properties and known functions of the actin orthologues in bacteria are reviewed.
Collapse
Affiliation(s)
- Rut Carballido-López
- Génétique Microbienne, Institut National de la Recherche Agronomique, 78352 Jouy-en-Josas Cedex, France.
| |
Collapse
|
26
|
Carballido-López R, Formstone A, Li Y, Ehrlich SD, Noirot P, Errington J. Actin Homolog MreBH Governs Cell Morphogenesis by Localization of the Cell Wall Hydrolase LytE. Dev Cell 2006; 11:399-409. [PMID: 16950129 DOI: 10.1016/j.devcel.2006.07.017] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Revised: 06/27/2006] [Accepted: 07/22/2006] [Indexed: 11/23/2022]
Abstract
MreB proteins are bacterial actin homologs involved in cell morphogenesis and various other cellular processes. However, the effector proteins used by MreBs remain largely unknown. Bacillus subtilis has three MreB isoforms. Mbl and possibly MreB have previously been shown to be implicated in cell wall synthesis. We have now found that the third isoform, MreBH, colocalizes with the two other MreB isoforms in B. subtilis and also has an important role in cell morphogenesis. MreBH can physically interact with a cell wall hydrolase, LytE, and is required for its helical pattern of extracellular localization. Moreover, lytE and mreBH mutants exhibit similar cell-wall-related defects. We propose that controlled elongation of rod-shaped B. subtilis depends on the coordination of cell wall synthesis and hydrolysis in helical tracts defined by MreB proteins. Our data also suggest that physical interactions with intracellular actin bundles can influence the later localization pattern of extracellular effectors.
Collapse
Affiliation(s)
- Rut Carballido-López
- Génétique Microbienne, Institut National de la Recherche Agronomique, 78352 Jouy-en-Josas Cedex, France.
| | | | | | | | | | | |
Collapse
|
27
|
Tiyanont K, Doan T, Lazarus MB, Fang X, Rudner DZ, Walker S. Imaging peptidoglycan biosynthesis in Bacillus subtilis with fluorescent antibiotics. Proc Natl Acad Sci U S A 2006; 103:11033-8. [PMID: 16832063 PMCID: PMC1544169 DOI: 10.1073/pnas.0600829103] [Citation(s) in RCA: 204] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The peptidoglycan (PG) layers surrounding bacterial cells play an important role in determining cell shape. The machinery controlling when and where new PG is made is not understood, but is proposed to involve interactions between bacterial actin homologs such as Mbl, which forms helical cables within cells, and extracellular multiprotein complexes that include penicillin-binding proteins. It has been suggested that labeled antibiotics that bind to PG precursors may be useful for imaging PG to help determine the genes that control the biosynthesis of this polymer. Here, we compare the staining patterns observed in Bacillus subtilis using fluorescent derivatives of two PG-binding antibiotics, vancomycin and ramoplanin. The staining patterns for both probes exhibit a strong dependence on probe concentration, suggesting antibiotic-induced perturbations in PG synthesis. Ramoplanin probes may be better imaging agents than vancomycin probes because they yield clear staining patterns at concentrations well below their minimum inhibitory concentrations. Under some conditions, both ramoplanin and vancomycin probes produce helicoid staining patterns along the cylindrical walls of B. subtilis cells. This sidewall staining is observed in the absence of the cytoskeletal protein Mbl. Although Mbl plays an important role in cell shape determination, our data indicate that other proteins control the spatial localization of the biosynthetic complexes responsible for new PG synthesis along the walls of B. subtilis cells.
Collapse
Affiliation(s)
- Kittichoat Tiyanont
- *Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115; and
| | - Thierry Doan
- *Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115; and
| | - Michael B. Lazarus
- *Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115; and
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Xiao Fang
- *Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115; and
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - David Z. Rudner
- *Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115; and
| | - Suzanne Walker
- *Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115; and
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
28
|
Scheffers DJ, Pinho MG. Bacterial cell wall synthesis: new insights from localization studies. Microbiol Mol Biol Rev 2006; 69:585-607. [PMID: 16339737 PMCID: PMC1306805 DOI: 10.1128/mmbr.69.4.585-607.2005] [Citation(s) in RCA: 430] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to maintain shape and withstand intracellular pressure, most bacteria are surrounded by a cell wall that consists mainly of the cross-linked polymer peptidoglycan (PG). The importance of PG for the maintenance of bacterial cell shape is underscored by the fact that, for various bacteria, several mutations affecting PG synthesis are associated with cell shape defects. In recent years, the application of fluorescence microscopy to the field of PG synthesis has led to an enormous increase in data on the relationship between cell wall synthesis and bacterial cell shape. First, a novel staining method enabled the visualization of PG precursor incorporation in live cells. Second, penicillin-binding proteins (PBPs), which mediate the final stages of PG synthesis, have been localized in various model organisms by means of immunofluorescence microscopy or green fluorescent protein fusions. In this review, we integrate the knowledge on the last stages of PG synthesis obtained in previous studies with the new data available on localization of PG synthesis and PBPs, in both rod-shaped and coccoid cells. We discuss a model in which, at least for a subset of PBPs, the presence of substrate is a major factor in determining PBP localization.
Collapse
Affiliation(s)
- Dirk-Jan Scheffers
- Department of Molecular Microbiology, Institute of Molecular Cell Biology, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | | |
Collapse
|
29
|
Rafelski SM, Theriot JA. Mechanism of polarization of Listeria monocytogenes surface protein ActA. Mol Microbiol 2006; 59:1262-79. [PMID: 16430699 PMCID: PMC1413586 DOI: 10.1111/j.1365-2958.2006.05025.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2005] [Indexed: 11/26/2022]
Abstract
The polar distribution of the ActA protein on the surface of the Gram-positive intracellular bacterial pathogen, Listeria monocytogenes, is required for bacterial actin-based motility and successful infection. ActA spans both the bacterial membrane and the peptidoglycan cell wall. We have directly examined the de novo ActA polarization process in vitro by using an ActA-RFP (red fluorescent protein) fusion. After induction of expression, ActA initially appeared at distinct sites along the sides of bacteria and was then redistributed over the entire cylindrical cell body through helical cell wall growth. The accumulation of ActA at the bacterial poles displayed slower kinetics, occurring over several bacterial generations. ActA accumulated more efficiently at younger, less inert poles, and proper polarization required an optimal balance between protein secretion and bacterial growth rates. Within infected host cells, younger generations of L. monocytogenes initiated motility more quickly than older ones, consistent with our in vitro observations of de novo ActA polarization. We propose a model in which the polarization of ActA, and possibly other Gram-positive cell wall-associated proteins, may be a direct consequence of the differential cell wall growth rates along the bacterium and dependent on the relative rates of protein secretion, protein degradation and bacterial growth.
Collapse
Affiliation(s)
- Susanne M Rafelski
- Departments of Biochemistry and Stanford University Medical Center279 W. Campus Dr, Stanford, CA 94305-5307, USA
| | - Julie A Theriot
- Microbiology and Immunology, Stanford University Medical Center279 W. Campus Dr, Stanford, CA 94305-5307, USA.
| |
Collapse
|
30
|
Abstract
Bacterial species have long been classified on the basis of their characteristic cell shapes. Despite intensive research, the molecular mechanisms underlying the generation and maintenance of bacterial cell shape remain largely unresolved. The field has recently taken an important step forward with the discovery that eukaryotic cytoskeletal proteins have homologues in bacteria that affect cell shape. Here, we discuss how a bacterium gains and maintains its shape, the challenges still confronting us and emerging strategies for answering difficult questions in this rapidly evolving field.
Collapse
Affiliation(s)
- Matthew T Cabeen
- Department of Molecular, Cellular and Developmental Biology, Yale University, PO BOX 208103, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
31
|
Errington J, Murray H, Wu LJ. Diversity and redundancy in bacterial chromosome segregation mechanisms. Philos Trans R Soc Lond B Biol Sci 2005; 360:497-505. [PMID: 15897175 PMCID: PMC1569464 DOI: 10.1098/rstb.2004.1605] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bacterial cells are much smaller and have a much simpler overall structure and organization than eukaryotes. Several prominent differences in cell organization are relevant to the mechanisms of chromosome segregation, particularly the lack of an overt chromosome condensation/decondensation cycle and the lack of a microtubule-based spindle. Although bacterial chromosomes have a rather dispersed appearance, they nevertheless have an underlying high level of spatial organization. During the DNA replication cycle, early replicated (oriC) regions are localized towards the cell poles, whereas the late replicated terminus (terC) region is medially located. This spatial organization is thought to be driven by an active segregation mechanism that separates the sister chromosomes continuously as replication proceeds. Comparisons of various well-characterized bacteria suggest that the mechanisms of chromosome segregation are likely to be diverse, and that in many bacteria, multiple overlapping mechanisms may contribute to efficient segregation. One system in which the molecular mechanisms of chromosome segregation are beginning to be elucidated is that of sporulating cells of Bacillus subtilis. The key components of this system have been identified, and their functions are understood, in outline. Although this system appears to be specialized, most of the functions are conserved widely throughout the bacteria.
Collapse
Affiliation(s)
- Jeff Errington
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK.
| | | | | |
Collapse
|
32
|
Matias VRF, Beveridge TJ. Cryo-electron microscopy reveals native polymeric cell wall structure in Bacillus subtilis 168 and the existence of a periplasmic space. Mol Microbiol 2005; 56:240-51. [PMID: 15773993 DOI: 10.1111/j.1365-2958.2005.04535.x] [Citation(s) in RCA: 196] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Ultrarapid freezing of bacteria (i.e. vitrification) results in optimal preservation of native structure. In this study, cryo-transmission electron microscopy of frozen-hydrated sections was used to gain insight into the organization of the Bacillus subtilis 168 cell envelope. A bipartite structure was seen above the plasma membrane consisting of a low-density 22 nm region above which a higher-density 33 nm region or outer wall zone (OWZ) resided. The interface between these two regions appeared to possess the most mass. In intact and in teichoic acid-extracted wall fragments, only a single region was seen but the mass distribution varied from being dense on the inside to less dense on the outside (i.e. similar to the OWZ). In plasmolysed cells, the inner wall zone (IWZ)'s thickness expanded in size but the OWZ's thickness remained constant. As the IWZ expanded it became filled with plasma membrane vesicles indicating that the IWZ had little substance and was empty of the wall's polymeric network of peptidoglycan and teichoic acid. Together these results strongly suggest that the inner zone actually represents a periplasmic space confined between the plasma membrane and the wall matrix and that the OWZ is the peptidoglycan-teichoic acid polymeric network of the wall.
Collapse
Affiliation(s)
- Valério R F Matias
- Biophysics Interdepartmental Group and Department of Microbiology, College of Biological Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | |
Collapse
|
33
|
Koch AL. Bacterial choices for the consumption of multiple resources for current and future needs. MICROBIAL ECOLOGY 2005; 49:183-97. [PMID: 15965728 DOI: 10.1007/s00248-003-1053-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2003] [Accepted: 10/17/2003] [Indexed: 05/03/2023]
Abstract
Microorganisms differ in their effectiveness in uptake and selection of substances that they bring in from the environment. They also differ in how they balance the allocation of nutrients for immediate and for delayed use. Moreover, they may not take up resources as fast as they seemingly could, and they may extrude derivatives of substances just pumped in. A good deal of these apparent choices must reside in the uptake systems and the linkage of these with the cell's intermediate metabolism. An important feature is that a resource may vary in concentration from time to time, nutrient to nutrient, and habitat to habitat. This variation must have been critical to the evolution of regulatory processes. Some possibilities for the combined uptake and consumption are considered for substrates serving the same (homologous) and different (heterologous) roles for the bacterium. From the membrane transport processes diagrammed in Fig. 1c and Fig. 2 and corresponding computer program given in Appendix A, the combined effect of uptake processes and cell growth can be studied. The model can be modified for various alternate models to study the possible control of cellular uptake and metabolism for the range of ecological roles of the bacterium.
Collapse
Affiliation(s)
- A L Koch
- Department of Biology, Indiana University, Bloomington, IN 47405-6801, USA.
| |
Collapse
|
34
|
Leonard TA, Butler PJG, Löwe J. Structural analysis of the chromosome segregation protein Spo0J from Thermus thermophilus. Mol Microbiol 2004; 53:419-32. [PMID: 15228524 DOI: 10.1111/j.1365-2958.2004.04133.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Prokaryotic chromosomes and plasmids encode partitioning systems that are required for DNA segregation at cell division. The plasmid partitioning loci encode two proteins, ParA and ParB, and a cis-acting centromere-like site denoted parS. The chromosomally encoded homologues of ParA and ParB, Soj and Spo0J, play an active role in chromosome segregation during bacterial cell division and sporulation. Spo0J is a DNA-binding protein that binds to parS sites in vivo. We have solved the X-ray crystal structure of a C-terminally truncated Spo0J (amino acids 1-222) from Thermus thermophilus to 2.3 A resolution by multiwavelength anomalous dispersion. It is a DNA-binding protein with structural similarity to the helix-turn-helix (HTH) motif of the lambda repressor DNA-binding domain. The crystal structure is an antiparallel dimer with the recognition alpha-helices of the HTH motifs of each monomer separated by a distance of 34 A corresponding to the length of the helical repeat of B-DNA. Sedimentation velocity and equilibrium ultracentrifugation studies show that full-length Spo0J exists in a monomer-dimer equilibrium in solution and that Spo0J1-222 is exclusively monomeric. Sedimentation of the C-terminal domain of Spo0J shows it to be exclusively dimeric, confirming that the C-terminus is the primary dimerization domain. We hypothesize that the C-terminus mediates dimerization of Spo0J, thereby effectively increasing the local concentration of the N-termini, which most probably dimerize, as shown by our structure, upon binding to a cognate parS site.
Collapse
Affiliation(s)
- Thomas A Leonard
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| | | | | |
Collapse
|
35
|
Rubio A, Pogliano K. Septal localization of forespore membrane proteins during engulfment in Bacillus subtilis. EMBO J 2004; 23:1636-46. [PMID: 15044948 PMCID: PMC391076 DOI: 10.1038/sj.emboj.7600171] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2004] [Accepted: 02/19/2004] [Indexed: 11/08/2022] Open
Abstract
In Bacillus subtilis, many membrane proteins localize to the sporulation septum, where they play key roles in spore morphogenesis and cell-specific gene expression, but the mechanism for septal targeting is not well understood. SpoIIQ, a forespore-expressed protein, is involved in engulfment and forespore-specific gene expression. We find that SpoIIQ dynamically localizes to the sporulation septum, tracks the engulfing mother cell membrane, assembles into helical arcs around the forespore and is finally degraded. Retention of SpoIIQ in the septum requires one or more mother cell-expressed proteins. We also observed that any forespore-expressed membrane protein initially localizes to the septum and later spreads throughout the forespore membrane, suggesting that membrane protein insertion occurs at the forespore septal region. This possibility provides an attractive mechanism for how activation of mother cell-specific gene expression is restricted to adjacent sister cells, since direct insertion of the signaling protein SpoIIR into the septum would spatially restrict its activity. In keeping with this hypothesis, we find that SpoIIR localizes to the septum and is transiently expressed.
Collapse
Affiliation(s)
- Aileen Rubio
- Division of Biological Sciences, University of California-San Diego, La Jolla, CA, USA
| | - Kit Pogliano
- Division of Biological Sciences, University of California-San Diego, La Jolla, CA, USA
- Division of Biological Sciences, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0377, USA. Tel.: +1 858 822 1314; Fax: +1 858 822 1431; E-mail:
| |
Collapse
|
36
|
Pinho MG, Errington J. Dispersed mode of Staphylococcus aureus cell wall synthesis in the absence of the division machinery. Mol Microbiol 2004; 50:871-81. [PMID: 14617148 DOI: 10.1046/j.1365-2958.2003.03719.x] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have developed several new fluorescent staining procedures that enabled us to study the synthesis of cell wall material in the spherical Gram-positive bacterium Staphylococcus aureus. The results obtained support previous proposals that these cells synthesize new wall material specifically at cell division sites, in the form of a flat circular plate that is subsequently cleaved and remodelled to produce the new hemispherical poles of the daughter cells. We have shown that formation of the septal peptidoglycan is dependent on the key cell division protein FtsZ, which recruits penicillin-binding protein (PBP) 2. Unexpectedly, in FtsZ-depleted cells, the cell wall synthetic machinery becomes dispersed and new wall material is made in dispersed patches over the entire surface of the cells, which increase in volume by up to eightfold before lysing. The results have implications for understanding the nature of S. aureus morphogenesis and for inhibitors of cell division proteins as drug targets.
Collapse
Affiliation(s)
- Mariana G Pinho
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | |
Collapse
|
37
|
Scheffers DJ, Jones LJF, Errington J. Several distinct localization patterns for penicillin-binding proteins in Bacillus subtilis. Mol Microbiol 2003; 51:749-64. [PMID: 14731276 DOI: 10.1046/j.1365-2958.2003.03854.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bacterial cell shape is determined by a rigid external cell wall. In most non-coccoid bacteria, this shape is also determined by an internal cytoskeleton formed by the actin homologues MreB and/or Mbl. To gain further insights into the topological control of cell wall synthesis in bacteria, we have constructed green fluorescent protein (GFP) fusions to all 11 penicillin-binding proteins (PBPs) expressed during vegetative growth of Bacillus subtilis. The localization of these fusions was studied in a wild-type background as well as in strains deficient in FtsZ, MreB or Mbl. PBP3 and PBP4a localized specifically to the lateral wall, in distinct foci, whereas PBP1 and PBP2b localized specifically to the septum. All other PBPs localized to both the septum and the lateral cell wall, sometimes with irregular distribution along the lateral wall or a preference for the septum. This suggests that cell wall synthesis is not dispersed but occurs at specific places along the lateral cell wall. The results implicate PBP3, PBP5 and PBP4a, and possibly PBP4, in lateral wall growth. Localization of PBPs to the septum was found to be dependent on FtsZ, but the GFP-PBP fluorescence patterns were not detectably altered in the absence of MreB or Mbl.
Collapse
Affiliation(s)
- Dirk-Jan Scheffers
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | | | | |
Collapse
|
38
|
Abstract
When Bacteria, Archaea, and Eucarya separated from each other, a great deal of evolution had taken place. Only then did extensive diversity arise. The bacteria split off with the new property that they had a sacculus that protected them from their own turgor pressure. The saccular wall of murein (or peptidoglycan) was an effective solution to the osmotic pressure problem, but it then was a target for other life-forms, which created lysoymes and beta-lactams. The beta-lactams, with their four-member strained rings, are effective agents in nature and became the first antibiotic in human medicine. But that is by no means the end of the story. Over evolutionary time, bacteria challenged by beta-lactams evolved countermeasures such as beta-lactamases, and the producing organisms evolved variant beta-lactams. The biology of both classes became evident as the pharmaceutical industry isolated, modified, and produced new chemotherapeutic agents and as the properties of beta-lactams and beta-lactamases were examined by molecular techniques. This review attempts to fit the wall biology of current microbes and their clinical context into the way organisms developed on this planet as well as the changes arising since the work done by Fleming. It also outlines the scientific advances in our understanding of this broad area of biology.
Collapse
Affiliation(s)
- Arthur L Koch
- Biology Department, Indiana University, Bloomington, Indiana 47405-6801, USA.
| |
Collapse
|
39
|
Wei Y, Havasy T, McPherson DC, Popham DL. Rod shape determination by the Bacillus subtilis class B penicillin-binding proteins encoded by pbpA and pbpH. J Bacteriol 2003; 185:4717-26. [PMID: 12896990 PMCID: PMC166473 DOI: 10.1128/jb.185.16.4717-4726.2003] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The peptidoglycan cell wall determines the shape and structural integrity of a bacterial cell. Class B penicillin-binding proteins (PBPs) carry a transpeptidase activity that cross-links peptidoglycan strands via their peptide side chains, and some of these proteins are directly involved in cell shape determination. No Bacillus subtilis PBP with a clear role in rod shape maintenance has been identified. However, previous studies showed that during outgrowth of pbpA mutant spores, the cells grew in an ovoid shape for several hours before they recovered and took on a normal rod shape. It was postulated that another PBP, expressed later during outgrowth, was able to compensate for the lack of the pbpA product, PBP2a, and to guide the formation of a rod shape. The B. subtilis pbpH (ykuA) gene product is predicted to be a class B PBP with greatest sequence similarity to PBP2a. We found that a pbpH-lacZ fusion was expressed at very low levels in early log phase and increased in late log phase. A pbpH null mutant was indistinguishable from the wild-type, but a pbpA pbpH double mutant was nonviable. When pbpH was placed under the control of an inducible promoter in a pbpA mutant, viability was dependent on pbpH expression. Growth of this strain in the absence of inducer resulted in conversion of the cells from rods to ovoid/round shapes and lysis. We conclude that PBP2a and PbpH play redundant roles in formation of a rod-shaped peptidoglycan cell wall.
Collapse
Affiliation(s)
- Yuping Wei
- Department of Biology, Virginia Tech, Blacksburg, Virginia 24061, USA
| | | | | | | |
Collapse
|
40
|
Daniel RA, Errington J. Control of cell morphogenesis in bacteria: two distinct ways to make a rod-shaped cell. Cell 2003; 113:767-76. [PMID: 12809607 DOI: 10.1016/s0092-8674(03)00421-5] [Citation(s) in RCA: 599] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cell shape in most eubacteria is maintained by a tough external peptidoglycan cell wall. Recently, cell shape determining proteins of the MreB family were shown to form helical, actin-like cables in the cell. We used a fluorescent derivative of the antibiotic vancomycin as a probe for nascent peptidoglycan synthesis in unfixed cells of various Gram-positive bacteria. In the rod-shaped bacterium B. subtilis, synthesis of the cylindrical part of the cell wall occurs in a helical pattern governed by an MreB homolog, Mbl. However, a few rod-shaped bacteria have no MreB system. Here, a rod-like shape can be achieved by a completely different mechanism based on use of polar growth zones derived from the division machinery. These results provide insights into the diverse molecular strategies used by bacteria to control their cellular morphology, as well as suggesting ways in which these strategies may impact on growth rates and cell envelope structure.
Collapse
Affiliation(s)
- Richard A Daniel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, United Kingdom
| | | |
Collapse
|
41
|
Abstract
Generally speaking, bacteria grow and divide indefinitely, and as long as the growth conditions are maintained they retain constant dimensions and shapes with little variation. How they do this is a question that I have been considering for three decades. Here, I discuss two hypothetical mechanisms, one for Gram-positive rods and the other for Gram-negative rods. These mechanisms are consistent with what is known, but make some unproven assumptions.
Collapse
Affiliation(s)
- Arthur L Koch
- Biology Dept, Indiana University, Bloomington, IN 47405-6801, USA.
| |
Collapse
|
42
|
Calamita HG, Ehringer WD, Koch AL, Doyle RJ. Evidence that the cell wall of Bacillus subtilis is protonated during respiration. Proc Natl Acad Sci U S A 2001; 98:15260-3. [PMID: 11752466 PMCID: PMC65017 DOI: 10.1073/pnas.261483798] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Several independent experiments suggest that cell walls of Bacillus subtilis are protonated during growth. When cells were grown in the presence of fluorescein-labeled dextran to saturate the cell walls, centrifuged, and suspended in PBS, fluorescence-activated cell sorter analyses revealed the bacteria were only poorly fluorescent. In contrast, when the bacteria were purged with N(2) to dissipate protonmotive force (pmf) fluorescence became intense. Upon reconstitution of the pmf with phenazine methosulfate, glucose, and oxygen, fluorescence declined. Another approach used pH-dependent chemical modification of cell walls. The walls of respiring B. subtilis cells were amenable to carboxylate modification by [(14)C]ethanolamine and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide. The carbodiimide activation of carboxylate groups occurs only in acidic conditions. Upon dissipation of pmf the walls were refractory to chemical modification. Ammonium groups can be condensed with FITC in alkaline medium, but the condensation is very slow in acidic buffers. It was found that the derivatization of the walls with FITC could occur in the absence of pmf. The use of pH-dependent fluorophores and pH-dependent chemical modification reactions suggest that cell walls of respiring B. subtilis cells have a relatively low pH environment. This study shows a bacterium has a protonated compartment. Acidification of cell walls during growth may be one means of regulating autolytic enzymes.
Collapse
Affiliation(s)
- H G Calamita
- Department of Microbiology, University of Louisville, Health Sciences Center, Louisville, KY 40292, USA
| | | | | | | |
Collapse
|
43
|
Walsh AW, Falk PJ, Thanassi J, Discotto L, Pucci MJ, Ho HT. Comparison of the D-glutamate-adding enzymes from selected gram-positive and gram-negative bacteria. J Bacteriol 1999; 181:5395-401. [PMID: 10464212 PMCID: PMC94047 DOI: 10.1128/jb.181.17.5395-5401.1999] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The biochemical properties of the D-glutamate-adding enzymes (MurD) from Escherichia coli, Haemophilus influenzae, Enterococcus faecalis, and Staphylococcus aureus were investigated to detect any differences in the activity of this enzyme between gram-positive and gram-negative bacteria. The genes (murD) that encode these enzymes were cloned into pMAL-c2 fusion vector and overexpressed as maltose-binding protein-MurD fusion proteins. Each fusion protein was purified to homogeneity by affinity to amylose resin. Proteolytic treatments of the fusion proteins with factor Xa regenerated the individual MurD proteins. It was found that these fusion proteins retain D-glutamate-adding activity and have Km and Vmax values similar to those of the regenerated MurDs, except for the H. influenzae enzyme. Substrate inhibition by UDP-N-acetylmuramyl-L-alanine, the acceptor substrate, was observed at concentrations greater than 15 and 30 microM for E. coli and H. influenzae MurD, respectively. Such substrate inhibition was not observed with the E. faecalis and S. aureus enzymes, up to a substrate concentration of 1 to 2 mM. In addition, the two MurDs of gram-negative origin were shown to require monocations such as NH4+ and/or K+, but not Na+, for optimal activity, while anions such as Cl- and SO4(2-) had no effect on the enzyme activities. The activities of the two MurDs of gram-positive origin, on the other hand, were not affected by any of the ions tested. All four enzymes required Mg2+ for the ligase activity and exhibited optimal activities around pH 8. These differences observed between the gram-positive and gram-negative MurDs indicated that the two gram-negative bacteria may apply a more stringent regulation of cell wall biosynthesis at the early stage of peptidoglycan biosynthesis pathway than do the two gram-positive bacteria. Therefore, the MurD-catalyzed reaction may constitute a fine-tuning step necessary for the gram-negative bacteria to optimally maintain its relatively thin yet essential cell wall structure during all stages of growth.
Collapse
Affiliation(s)
- A W Walsh
- Department of Microbiology, Bristol Myers Squibb Pharmaceutical Research Institute, Wallingford, Connecticut 06492, USA
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
Bacteria in the modern taxonomic sense are one of the three Domains. They must have split from the other two after the bulk of the development of biochemistry and cell biology had taken place. Up to the time of the Last Universal Ancestor (LUA) the world had been monophyletic with little stable diversity. This is to say that as advances took place the older forms were eliminated and diversity was only temporary. Two kinds of events could, in principle, permit stable diversity to arise. One kind occurs when two nearly simultaneous, different advances occur, both of which overcome the same problem. While the previous type would be supplanted, if the new types did not compete with each other, new niches and habitats could lead to stable diversity. The second kind is a saltation or macroevolutionary event that greatly expands the biota and reduces previous constraints and thereby drastically reduces competition; this generally leads to a 'species radiation' and results in the development of a spectrum of biological types some of which persist and do not compete with each other. It is proposed that the two splits to yield the three Domains of Bacteria, Archaea, and Eukarya, resulted from one of each of these two processes leading to diversity. One arose from the consequences of cells accumulating substances from the environment, thus increasing their internal osmotic pressure. This resulted in two nearly simultaneous biological solutions: one (Bacteria) was the development of the external sacculus, i.e. the formation of a stress-bearing exoskeleton. The other (Eukarya) was the development of cytoskeletons and mechanoenzymes, i.e. formation of an endoskeleton. The other event causing diversity was the invention of an effective way to tap a new energy source and allow the biomass to increase extensively permitting a radiation of many different types of organisms. I suggest that this seminal advance was the development of methanogenesis. This caused a short-lived expansion and radiation before oxygen-producing photosynthesis allowed a still more major expansion and decreased the number of methanogens. Some details of these processes are elaborated. In particular, the evolutionary process that permitted the development of a sacculus, interpreted in light of the bacterial physiology of today's organisms is presented. It is argued that many great advances arise by developing a number of totally different processes for other purposes that can then each be modified to combine for yet another purpose.
Collapse
Affiliation(s)
- A L Koch
- Department of Biology, Indiana University, Bloomington 47405-6801, USA
| |
Collapse
|
45
|
|
46
|
Abstract
Peptidoglycan (murein) segregation has been studied by means of a new labeling method. The method relies on the ability of Escherichia coli cells to incorporate D-Cys into macromolecular murein. The incorporation depends on a periplasmic amino acid exchange reaction. At low concentrations, D-Cys is innocuous to the cell. The distribution of modified murein in purified sacculi can be traced and visualized by immunodetection of the -SH groups by fluorescence and electron microscopy techniques. Analysis of murein segregation in wild-type and cell division mutant strains revealed that murein in polar caps is metabolically inert and is segregated in a conservative fashion. Elongation of the sacculus apparently occurs by diffuse insertion of precursors over the cylindrical part of the cell surface. At the initiation of cell division, there is a FtsZ-dependent localized activation of murein synthesis at the potential division sites. Penicillin-binding protein 3 and the products of the division genes ftsA and ftsQ are dispensable for the activation of division sites. As a consequence, under restrictive conditions ftsA,ftsI,or ftsQ mutants generate filamentous sacculi with rings of all-new murein at the positions where septa would otherwise develop.
Collapse
Affiliation(s)
- M A de Pedro
- Centro de Biología Molecular Severo Ochoa Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Facultad de Ciencias, Spain.
| | | | | | | |
Collapse
|
47
|
Webb CD, Teleman A, Gordon S, Straight A, Belmont A, Lin DC, Grossman AD, Wright A, Losick R. Bipolar localization of the replication origin regions of chromosomes in vegetative and sporulating cells of B. subtilis. Cell 1997; 88:667-74. [PMID: 9054506 DOI: 10.1016/s0092-8674(00)81909-1] [Citation(s) in RCA: 299] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
To investigate chromosome segregation in B. subtilis, we introduced tandem copies of the lactose operon operator into the chromosome near the replication origin or terminus. We then visualized the position of the operator cassettes with green fluorescent protein fused to the Lac1 repressor. In sporulating bacteria, which undergo asymmetric cell division, origins localized near each pole of the cell whereas termini were restricted to the middle. In growing cells, which undergo binary fission, origins were observed at various positions but preferentially toward the poles early in the cell cycle. In contrast, termini showed little preference for the poles. These results indicate the existence of a mitotic-like apparatus that is responsible for moving the origin regions of newly formed chromosomes toward opposite ends of the cell.
Collapse
Affiliation(s)
- C D Webb
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Exponential-growth-phase cultures of Bacillus subtilis 168 were probed with polycationized ferritin (PCF) or concanavalin A (localized by the addition of horseradish peroxidase conjugated to colloidal gold) to distinguish surface anionic sites and teichoic acid polymers, respectively. Isolated cell walls, lysozyme-digested cell walls, and cell walls treated with mild alkali to remove teichoic acid were also treated with PCF. After labelling, whole cells and walls were processed for electron microscopy by freeze-substitution. Thin sections of untreated cells showed a triphasic, fibrous wall extending more than 30 nm beyond the cytoplasmic membrane. Measurements of wall thickness indicated that the wall was thicker at locations adjacent to septa and at pole-cylinder junctions (P < 0.001). Labelling studies showed that at saturating concentrations the PCF probe labelled the outermost limit of the cell wall, completely surrounding individual cells. However, at limiting PCF concentrations, labelling was observed at only discrete cell surface locations adjacent to or overlying septa and at the junction between pole and cylinder. Labelling was rarely observed along the cell cylinder or directly over the poles. Cells did not label along the cylindrical wall until there was visible evidence of a developing septum. Identical labelling patterns were observed by using concanavalin A-horseradish peroxidase-colloidal gold. Neither probe appeared to penetrate between the fibers of the wall. We suggest that the fibrous appearance of the wall seen in freeze-substituted cells reflects turnover of the wall matrix, that the specificity of labelling to discrete sites on the cell surface is indicative of regions of extreme hydrolytic activity in which alpha-glucose residues of the wall teichoic acids and electronegative sites (contributed by phosphate and carboxyl groups of the teichoic acids and carboxyl groups of the peptidoglycan polymers) are more readily accessible to our probes, and that the wall of exponentially growing B. subtilis cells contains regions of structural differentiation.
Collapse
Affiliation(s)
- L L Graham
- Department of Microbiology, College of Biological Sciences, University of Guelph, Ontario, Canada
| | | |
Collapse
|
49
|
Kemper MA, Urrutia MM, Beveridge TJ, Koch AL, Doyle RJ. Proton motive force may regulate cell wall-associated enzymes of Bacillus subtilis. J Bacteriol 1993; 175:5690-6. [PMID: 8396121 PMCID: PMC206628 DOI: 10.1128/jb.175.17.5690-5696.1993] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Bacterial metabolism excretes protons during normal metabolic processes. The protons may be recycled by chemiosmosis, diffuse through the wall into the medium, or bind to cell surface constituents. Calculations by Koch (J. Theor. Biol. 120:73-84, 1986) have suggested that the cell wall of gram-positive bacteria may serve as a reservoir of protons during growth and metabolism, causing the wall to have a relatively low pH. That the cell wall may possess a pH lower than the surrounding medium has now been tested in Bacillus subtilis by several independent experiments. When cultures of B. subtilis were treated with the proton conductors azide and carbonylcyanide m-chlorophenylhydrazone, the cells bound larger amounts of positively charged probes, including the chromium (Cr3+) and uranyl (UO2(2+) ions and were readily agglutinated by cationized ferritin. In contrast, the same proton conductors caused a decrease in the binding of the negatively charged probe chromate (CrO4(2-)). Finally, when levansucrase was induced in cultures by the addition of sucrose, the enzyme was inactive as it traversed the wall during the first 0.7 to 1.0 generation of growth. The composite interpretation of the foregoing observations suggests that the wall is positively charged during metabolism, thereby decreasing its ability to complex with cations while increasing its ability to bind with anions. This may be one reason why some enzymes, such as autolysins, are unable to hydrolyze their substrata until they reach the wall periphery or are in the medium.
Collapse
Affiliation(s)
- M A Kemper
- Department of Microbiology and Immunology, Academic Health Center, University of Louisville, Kentucky 40292
| | | | | | | | | |
Collapse
|
50
|
Wu TL, Koch AL, Doyle RJ. Anomalies in cell wall turnover associated with the growth temperature of Bacillus subtilis. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1156:173-80. [PMID: 8094013 DOI: 10.1016/0304-4165(93)90133-s] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cell wall turnover appeared to be anomalously fast in Bacillus subtilis when the cells were grown at temperatures below 29 degrees C. Turnover rates k(generation-1), of exponential cultures at 25 degrees were approximately double those of cells grown at 37 degrees C. When autolysin levels were assayed in cell walls, it was found that the enzyme activities were constant between 25 degrees C and 40 degrees C, suggesting that there was no greater synthesis of autolysin at the lower temperature. Analyses of walls for individual components, extent of aminosugar substitution and extent of crosslinking, did not reveal significant differences between samples obtained from 25 degrees C or 37 degrees C cultures. The N-acetylmuramoyl-L-alanine amidase was stable over the temperature range studied. Lysis of cells, induced by carbonylcyanide-m-chlorophenylhydrazone, occurred at a faster rate for cells obtained at 25 degrees C than for cells obtained at 37 degrees C. In addition, the lysis of cells by hen egg white lysozyme was slightly faster when the cells were obtained from 25 degrees C cultures than from 37 degrees C cultures. It is possible the autolysin(s) responsible for cell wall turnover are cold-activated.
Collapse
Affiliation(s)
- T L Wu
- Department of Microbiology and Immunology, University of Louisville Health Sciences Center, KY 40292
| | | | | |
Collapse
|