1
|
Garai P, Chandra K, Chakravortty D. Bacterial peptide transporters: Messengers of nutrition to virulence. Virulence 2017; 8:297-309. [PMID: 27589415 PMCID: PMC5411238 DOI: 10.1080/21505594.2016.1221025] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/27/2016] [Accepted: 08/02/2016] [Indexed: 12/24/2022] Open
Abstract
Bacteria possess numerous peptide transporters for importing peptides as nutrients. However, these peptide transporters are now consistently reported to play a role in the virulence of various bacterial pathogens. Their ability to transport peptides has implications in antibacterial therapy as well. Therefore, it would be instrumental to have complete knowledge about the role of peptide transporters in mediating this cross connection between metabolism and pathogenesis. Studies on various peptide transporters in bacterial pathogens have improved our understanding of this field. In this review, we have given an overview of the functioning of bacterial peptide transporters and their contribution in virulence of major bacterial pathogens.
Collapse
Affiliation(s)
- Preeti Garai
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Kasturi Chandra
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| |
Collapse
|
2
|
Pinske C, Bönn M, Krüger S, Lindenstrauß U, Sawers RG. Metabolic deficiences revealed in the biotechnologically important model bacterium Escherichia coli BL21(DE3). PLoS One 2011; 6:e22830. [PMID: 21826210 PMCID: PMC3149613 DOI: 10.1371/journal.pone.0022830] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 07/01/2011] [Indexed: 11/26/2022] Open
Abstract
The Escherichia coli B strain BL21(DE3) has had a profound impact on biotechnology through its use in the production of recombinant proteins. Little is understood, however, regarding the physiology of this important E. coli strain. We show here that BL21(DE3) totally lacks activity of the four [NiFe]-hydrogenases, the three molybdenum- and selenium-containing formate dehydrogenases and molybdenum-dependent nitrate reductase. Nevertheless, all of the structural genes necessary for the synthesis of the respective anaerobic metalloenzymes are present in the genome. However, the genes encoding the high-affinity molybdate transport system and the molybdenum-responsive transcriptional regulator ModE are absent from the genome. Moreover, BL21(DE3) has a nonsense mutation in the gene encoding the global oxygen-responsive transcriptional regulator FNR. The activities of the two hydrogen-oxidizing hydrogenases, therefore, could be restored to BL21(DE3) by supplementing the growth medium with high concentrations of Ni²⁺ (Ni²⁺-transport is FNR-dependent) or by introducing a wild-type copy of the fnr gene. Only combined addition of plasmid-encoded fnr and high concentrations of MoO₄²⁻ ions could restore hydrogen production to BL21(DE3); however, to only 25-30% of a K-12 wildtype. We could show that limited hydrogen production from the enzyme complex responsible for formate-dependent hydrogen evolution was due solely to reduced activity of the formate dehydrogenase (FDH-H), not the hydrogenase component. The activity of the FNR-dependent formate dehydrogenase, FDH-N, could not be restored, even when the fnr gene and MoO₄²⁻ were supplied; however, nitrate reductase activity could be recovered by combined addition of MoO₄²⁻ and the fnr gene. This suggested that a further component specific for biosynthesis or activity of formate dehydrogenases H and N was missing. Re-introduction of the gene encoding ModE could only partially restore the activities of both enzymes. Taken together these results demonstrate that BL21(DE3) has major defects in anaerobic metabolism, metal ion transport and metalloprotein biosynthesis.
Collapse
Affiliation(s)
- Constanze Pinske
- Institute for Microbiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Markus Bönn
- Institute of Computer Science, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Sara Krüger
- Institute for Microbiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Ute Lindenstrauß
- Institute for Microbiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - R. Gary Sawers
- Institute for Microbiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
3
|
The antibiotic dehydrophos is converted to a toxic pyruvate analog by peptide bond cleavage in Salmonella enterica. Antimicrob Agents Chemother 2011; 55:3357-62. [PMID: 21537024 DOI: 10.1128/aac.01483-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The metabolic processing of dehydrophos, a broad-spectrum peptide antibiotic containing an unusual vinyl-phosphonate moiety, was examined by using a panel of Salmonella enterica mutants deficient in peptide uptake and catabolism. Dehydrophos bioactivity is lost in opp tpp double mutants, demonstrating a requirement for uptake via nonspecific oligopeptide permeases. Dehydrophos bioactivity is also abolished in a quadruple Salmonella mutant lacking the genes encoding peptidases A, B, D, and N, showing that hydrolysis of the peptide bond is required for activity. (31)P nuclear magnetic resonance spectroscopy was used to assess the fate of dehydrophos following in vitro digestion of the antibiotic with purified PepA. The results suggest that the initial product of peptidase processing is 1-aminovinyl-phosphonate O-methyl ester. This phosphonate analogue of dehydroalanine undergoes rearrangement to the more stable imine, followed by spontaneous hydrolysis to yield O-methyl-acetylphosphonate, a structural analogue of pyruvate. This compound is a known inhibitor of pyruvate dehydrogenase and pyruvate oxidase and is probably the active species responsible for dehydrophos bioactivity.
Collapse
|
4
|
Encheva V, Shah HN, Gharbia SE. Proteomic analysis of the adaptive response of Salmonella enterica serovar Typhimurium to growth under anaerobic conditions. MICROBIOLOGY-SGM 2009; 155:2429-2441. [PMID: 19389776 DOI: 10.1099/mic.0.026138-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In order to survive in the host and initiate infection, Salmonella enterica needs to undergo a transition between aerobic and anaerobic growth by modulating its central metabolic pathways. In this study, a comparative analysis of the proteome of S. enterica serovar Typhimurium grown in the presence or absence of oxygen was performed. The most prominent changes in expression were measured in a semiquantitative manner using difference in-gel electrophoresis (DIGE) to reveal the main protein factors involved in the adaptive response to anaerobiosis. A total of 38 proteins were found to be induced anaerobically, while 42 were repressed. The proteins of interest were in-gel digested with trypsin and identified by MALDI TOF mass spectrometry using peptide mass fingerprinting. In the absence of oxygen, many fermentative enzymes catalysing reactions in the mixed-acid or arginine fermentations were overexpressed. In addition, the enzyme fumarate reductase, which is known to provide an alternative electron acceptor for the respiratory chains in the absence of oxygen, was shown to be induced. Increases in expression of several glycolytic and pentose phosphate pathway enzymes, as well as two malic enzymes, were detected, suggesting important roles for these in anaerobic metabolism. Substantial decreases in expression were observed for a large number of periplasmic transport proteins. The majority of these are involved in the uptake of amino acids and peptides, but permeases transporting iron, thiosulphate, glucose/galactose, glycerol 3-phosphate and dicarboxylic acids were also repressed. Decreases in expression were also observed for a superoxide dismutase, ATP synthase, inositol monophosphatase, and several chaperone and hypothetical proteins. The changes were monitored in two different isolates, and despite their very similar expression patterns, some variability in the adaptive response to anaerobiosis was also observed.
Collapse
Affiliation(s)
- Vesela Encheva
- Department for Bioanalysis and Horizon Technologies, Centre for Infections, Health Protection Agency, London, UK
| | - Haroun N Shah
- Department for Bioanalysis and Horizon Technologies, Centre for Infections, Health Protection Agency, London, UK
| | - Saheer E Gharbia
- Department for Bioanalysis and Horizon Technologies, Centre for Infections, Health Protection Agency, London, UK
| |
Collapse
|
5
|
Ruiz L, Couté Y, Sánchez B, de los Reyes-Gavilán CG, Sanchez JC, Margolles A. The cell-envelope proteome of Bifidobacterium longum in an in vitro bile environment. Microbiology (Reading) 2009; 155:957-967. [DOI: 10.1099/mic.0.024273-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Host–bacteria interactions are often mediated via surface-associated proteins. The identification of these proteins is an important goal of bacterial proteomics. To address how bile can influence the cell-envelope proteome of Bifidobacterium longum biotype longum NCIMB 8809, we analysed its membrane protein fraction using stable isotope labelling of amino acids in cell culture (SILAC). We were able to identify 141 proteins in the membrane fraction, including a large percentage of the theoretical transporters of this species. Moreover, the envelope-associated soluble fraction was analysed using different subfractionation techniques and differential in-gel fluorescence electrophoresis (DIGE). This approach identified 128 different proteins. Some of them were well-known cell wall proteins, but others were highly conserved cytoplasmic proteins probably displaying a ‘moonlighting’ function. We were able to identify 11 proteins in the membrane fraction and 6 proteins in the envelope-associated soluble fraction whose concentration varied in the presence of bile. Bile promoted changes in the levels of proteins with important biological functions, such as some ribosomal proteins and enolase. Also, oligopeptide-binding proteins were accumulated on the cell surface, which was reflected in a different tripeptide transport rate in the cells grown with bile. The data reported here will provide the first cell-envelope proteome map for B. longum, and may contribute to understanding the bile tolerance of these bacteria.
Collapse
Affiliation(s)
- Lorena Ruiz
- Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (CSIC), Ctra Infiesto s/n, 33300, Villaviciosa, Asturias, Spain
| | - Yohann Couté
- Biomedical Proteomics Research Group, Department of Structural Biology and Bioinformatics, University of Geneva, 1 Rue Michel Servet, 1211 Geneva 14, Switzerland
| | - Borja Sánchez
- UMR 5248 CBMN, CNRS-Université Bordeaux 1-ENITAB, Laboratoire de Microbiologie et Biochimie Appliquée, 1 cours du Général de Gaulle, 33175 Gradignan CEDEX, France
| | - Clara G. de los Reyes-Gavilán
- Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (CSIC), Ctra Infiesto s/n, 33300, Villaviciosa, Asturias, Spain
| | - Jean-Charles Sanchez
- Biomedical Proteomics Research Group, Department of Structural Biology and Bioinformatics, University of Geneva, 1 Rue Michel Servet, 1211 Geneva 14, Switzerland
| | - Abelardo Margolles
- Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (CSIC), Ctra Infiesto s/n, 33300, Villaviciosa, Asturias, Spain
| |
Collapse
|
6
|
Harder D, Stolz J, Casagrande F, Obrdlik P, Weitz D, Fotiadis D, Daniel H. DtpB (YhiP) and DtpA (TppB, YdgR) are prototypical proton-dependent peptide transporters of Escherichia coli. FEBS J 2008; 275:3290-8. [PMID: 18485005 DOI: 10.1111/j.1742-4658.2008.06477.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The genome of Escherichia coli contains four genes assigned to the peptide transporter (PTR) family. Of these, only tppB (ydgR) has been characterized, and named tripeptide permease, whereas protein functions encoded by the yhiP, ybgH and yjdL genes have remained unknown. Here we describe the overexpression of yhiP as a His-tagged fusion protein in E. coli and show saturable transport of glycyl-sarcosine (Gly-Sar) with an apparent affinity constant of 6.5 mm. Overexpression of the gene also increased the susceptibility of cells to the toxic dipeptide alafosfalin. Transport was strongly decreased in the presence of a protonophore but unaffected by sodium depletion, suggesting H(+)-dependence. This was confirmed by purification of YhiP and TppB by nickel affinity chromatography and reconstitution into liposomes. Both transporters showed Gly-Sar influx in the presence of an artificial proton gradient and generated transport currents on a chip-based sensor. Competition experiments established that YhiP transported dipeptides and tripeptides. Western blot analysis revealed an apparent mass of YhiP of 40 kDa. Taken together, these findings show that yhiP encodes a protein that mediates proton-dependent electrogenic transport of dipeptides and tripeptides with similarities to mammalian PEPT1. On the basis of our results, we propose to rename YhiP as DtpB (dipeptide and tripeptide permease B), by analogy with the nomenclature in other bacteria. We also propose to rename TppB as DtpA, to better describe its function as the first protein of the PTR family characterized in E. coli.
Collapse
Affiliation(s)
- Daniel Harder
- Molecular Nutrition Unit, Technical University of Munich, Freising, Germany
| | | | | | | | | | | | | |
Collapse
|
7
|
Sawers RG. Expression of fnr is constrained by an upstream IS5 insertion in certain Escherichia coli K-12 strains. J Bacteriol 2005; 187:2609-17. [PMID: 15805507 PMCID: PMC1070394 DOI: 10.1128/jb.187.8.2609-2617.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
FNR is a global transcriptional regulator that controls anaerobic gene expression in Escherichia coli. Through the use of a number of approaches it was shown that fnr gene expression is reduced approximately three- to fourfold in E. coli strain MC4100 compared with the results seen with strain MG1655. This reduction in fnr expression is due to the insertion of IS5 (is5F) in the regulatory region of the gene at position -41 relative to the transcription initiation site. Transcription of the fnr gene nevertheless occurs from its own promoter in strain MC4100, but transcript levels are reduced approximately fourfold compared with those seen with strain MG1655. Remarkably, in strains bearing is5F the presence of Hfq prevents IS5-dependent transcriptional silencing of fnr expression. Thus, an hfq mutant of MC4100 is devoid of FNR protein and has the phenotype of an fnr mutant. In strain MG1655, or a derivative of MC4100 lacking is5F, mutation of hfq had no effect on fnr transcript levels. This finding indicates that IS5 mediates the effect of Hfq on fnr expression in MC4100. Western blot analysis revealed that cellular levels of FNR were reduced threefold in strain MC4100 compared with strain MG1655 results. A selection of FNR-dependent genes fused to lacZ were analyzed for the effects of reduced FNR levels on anaerobic gene expression. Expression of some operons, e.g., focA-pfl and fdnGHJI, was unaffected by reduction in the level of FNR, while the expression of other genes such as ndh and nikA was clearly affected.
Collapse
Affiliation(s)
- R Gary Sawers
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK.
| |
Collapse
|
8
|
Goh EB, Siino DF, Igo MM. The Escherichia coli tppB (ydgR) gene represents a new class of OmpR-regulated genes. J Bacteriol 2004; 186:4019-24. [PMID: 15175316 PMCID: PMC419963 DOI: 10.1128/jb.186.12.4019-4024.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The EnvZ/OmpR two-component regulatory system plays a critical role in the Escherichia coli stress response. In this study, we examined the expression of a new OmpR-regulated gene, ydgR. Our results indicate that ydgR is equivalent to the Salmonella enterica serovar Typhimurium tppB gene and represents a new class of OmpR-regulated genes.
Collapse
Affiliation(s)
- Ee-Been Goh
- Section of Microbiology, Division of Biological Sciences, University of California, Davis, One Shields Ave., Davis, CA 95616, USA
| | | | | |
Collapse
|
9
|
Samen U, Gottschalk B, Eikmanns BJ, Reinscheid DJ. Relevance of peptide uptake systems to the physiology and virulence of Streptococcus agalactiae. J Bacteriol 2004; 186:1398-408. [PMID: 14973032 PMCID: PMC344423 DOI: 10.1128/jb.186.5.1398-1408.2004] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus agalactiae is a major cause of invasive infections in human newborns. To satisfy its growth requirements, S. agalactiae takes up 9 of the 20 proteinogenic amino acids from the environment. Defined S. agalactiae mutants in one or several of four putative peptide permease systems were constructed and tested for peptide uptake, growth in various media, and expression of virulence traits. Oligopeptide uptake by S. agalactiae was shown to be mediated by the ABC transporter OppA1-F, which possesses two substrate-binding proteins (OppA1 and OppA2) with overlapping substrate specificities. Dipeptides were found to be taken up in parallel by the oligopeptide permease OppA1-F, by the dipeptide ABC transporter DppA-E, and by the dipeptide symporter DpsA. Reverse transcription-PCR analysis revealed a polycistronic organization of the genes oppA1-F and dppA-E and a monocistronic organization of dpsA in S. agalactiae. The results of quantitative real-time PCR revealed a medium-dependent expression of the operons dppA-E and oppA1-F in S. agalactiae. Growth of S. agalactiae in human amniotic fluid was shown to require an intact dpsA gene, indicating an important role of DpsA during the infection of the amniotic cavity by S. agalactiae. Deletion of the oppB gene reduced the adherence of S. agalactiae to epithelial cells by 26%, impaired its adherence to fibrinogen and fibronectin by 42 and 33%, respectively, and caused a 35% reduction in expression of the fbsA gene, which encodes a fibrinogen-binding protein in S. agalactiae. These data indicate that the oligopeptide permease is involved in modulating virulence traits and virulence gene expression in S. agalactiae.
Collapse
Affiliation(s)
- Ulrike Samen
- Department of Microbiology and Biotechnology, University of Ulm, D-89069 Ulm, Germany
| | | | | | | |
Collapse
|
10
|
Urbanowski ML, Stauffer LT, Stauffer GV. The gcvB gene encodes a small untranslated RNA involved in expression of the dipeptide and oligopeptide transport systems in Escherichia coli. Mol Microbiol 2000; 37:856-68. [PMID: 10972807 DOI: 10.1046/j.1365-2958.2000.02051.x] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Escherichia coli gcvB gene encodes a small RNA transcript that is not translated in vivo. Transcription from the gcvB promoter is activated by the GcvA protein and repressed by the GcvR protein, the transcriptional regulators of the gcvTHP operon encoding the enzymes of the glycine cleavage system. A strain carrying a chromosomal deletion of gcvB exhibits normal regulation of gcvTHP expression and glycine cleavage enzyme activity. However, this mutant has high constitutive synthesis of OppA and DppA, the periplasmic-binding protein components of the two major peptide transport systems normally repressed in cells growing in rich medium. The altered regulation of oppA and dppA was also demonstrated using oppA-phoA and dppA-lacZ gene fusions. Although the mechanism(s) involving gcvB in the repression of these two genes is not known, oppA regulation appears to be at the translational level, whereas dppA regulation occurs at the mRNA level.
Collapse
Affiliation(s)
- M L Urbanowski
- Department of Microbiology, University of Iowa, Iowa City 52242, USA
| | | | | |
Collapse
|
11
|
Green RM, Seth A, Connell ND. A peptide permease mutant of Mycobacterium bovis BCG resistant to the toxic peptides glutathione and S-nitrosoglutathione. Infect Immun 2000; 68:429-36. [PMID: 10639400 PMCID: PMC97159 DOI: 10.1128/iai.68.2.429-436.2000] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oligopeptides play important roles in bacterial nutrition and signaling. Using sequences from the available genome database for Mycobacterium tuberculosis H37Rv, the oligopeptide permease operon (oppBCDA) of Mycobacterium bovis BCG was cloned from a cosmid library. An opp mutant strain was constructed by homologous recombination with an allele of oppD interrupted by kanamycin and streptomycin resistance markers. The deletion was complemented with a wild-type copy of the opp operon. Two approaches were taken to characterize the peptide transporter defect in this mutant strain. First, growth of wild-type and mutant strains was monitored in media containing a wide variety of peptides as sole source of carbon and/or nitrogen. Among 25 peptides ranging from two to six amino acids in length, none was capable of supporting measurable growth as the sole carbon source in either wild-type or mutant strains. The second approach exploited the resistance of permease mutants to toxic substrates. The tripeptide glutathione (gamma-glutamyl-L-cyteinylglycine [GSH]) is toxic to wild-type BCG and was used successfully to characterize peptide uptake in the opp mutant. In 2 mM GSH, growth of the wild-type strain is inhibited, whereas the opp mutant is resistant to concentrations as high as 10 mM. Similar results were found with the tripeptide S-nitrosoglutathione (GSNO), thought to be a donor of NO in mammalian cells. Using incorporation of [(3)H]uracil to monitor the effects of GSH and GSNO on macromolecular synthesis in growing cells, it was demonstrated that the opp mutant is resistant, whereas the wild type and the mutant complemented with a wild-type copy of the operon are sensitive to both tripeptides. In uptake measurements, incorporation of [(3)H]GSH is reduced in the mutant compared with wild type and the complemented mutant. Finally, growth of the three strains in the tripeptides suggests that GSH is bacteriostatic, whereas GSNO is bacteriocidal.
Collapse
Affiliation(s)
- R M Green
- Department of Microbiology and Molecular Genetics and the National Tuberculosis Center, Department of Medicine, UMDNJ/New Jersey Medical School, Newark, New Jersey 17103, USA
| | | | | |
Collapse
|
12
|
Davies SJ, Golby P, Omrani D, Broad SA, Harrington VL, Guest JR, Kelly DJ, Andrews SC. Inactivation and regulation of the aerobic C(4)-dicarboxylate transport (dctA) gene of Escherichia coli. J Bacteriol 1999; 181:5624-35. [PMID: 10482502 PMCID: PMC94081 DOI: 10.1128/jb.181.18.5624-5635.1999] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gene (dctA) encoding the aerobic C(4)-dicarboxylate transporter (DctA) of Escherichia coli was previously mapped to the 79-min region of the linkage map. The nucleotide sequence of this region reveals two candidates for the dctA gene: f428 at 79.3 min and the o157a-o424-o328 (or orfQMP) operon at 79.9 min. The f428 gene encodes a homologue of the Sinorhizobium meliloti and Rhizobium leguminosarum H(+)/C(4)-dicarboxylate symporter, DctA, whereas the orfQMP operon encodes homologues of the aerobic periplasmic-binding protein- dependent C(4)-dicarboxylate transport system (DctQ, DctM, and DctP) of Rhodobacter capsulatus. To determine which, if either, of these loci specify the E. coli DctA system, the chromosomal f428 and orfM genes were inactivated by inserting Sp(r) or Ap(r) cassettes, respectively. The resulting f428 mutant was unable to grow aerobically with fumarate or malate as the sole carbon source and grew poorly with succinate. Furthermore, fumarate uptake was abolished in the f428 mutant and succinate transport was approximately 10-fold lower than that of the wild type. The growth and fumarate transport deficiencies of the f428 mutant were complemented by transformation with an f428-containing plasmid. No growth defect was found for the orfM mutant. In combination, the above findings confirm that f428 corresponds to the dctA gene and indicate that the orfQMP products play no role in C(4)-dicarboxylate transport. Regulation studies with a dctA-lacZ (f428-lacZ) transcriptional fusion showed that dctA is subject to cyclic AMP receptor protein (CRP)-dependent catabolite repression and ArcA-mediated anaerobic repression and is weakly induced by the DcuS-DcuR system in response to C(4)-dicarboxylates and citrate. Interestingly, in a dctA mutant, expression of dctA is constitutive with respect to C(4)-dicarboxylate induction, suggesting that DctA regulates its own synthesis. Northern blot analysis revealed a single, monocistronic dctA transcript and confirmed that dctA is subject to regulation by catabolite repression and CRP. Reverse transcriptase-mediated primer extension indicated a single transcriptional start site centered 81 bp downstream of a strongly predicted CRP-binding site.
Collapse
Affiliation(s)
- S J Davies
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Foucaud C, Kunji ER, Hagting A, Richard J, Konings WN, Desmazeaud M, Poolman B. Specificity of peptide transport systems in Lactococcus lactis: evidence for a third system which transports hydrophobic di- and tripeptides. J Bacteriol 1995; 177:4652-7. [PMID: 7642491 PMCID: PMC177229 DOI: 10.1128/jb.177.16.4652-4657.1995] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A proton motive force-driven di-tripeptide carrier protein (DtpT) and an ATP-dependent oligopeptide transport system (Opp) have been described for Lactococcus lactis MG1363. Using genetically well-defined mutants in which dtpT and/or opp were inactivated, we have now established the presence of a third peptide transport system (DtpP) in L. lactis. The specificity of DtpP partially overlaps that of DtpT. DtpP transports preferentially di- and tripeptides that are composed of hydrophobic (branched-chain amino acid) residues, whereas DtpT has a higher specificity for more-hydrophilic and charged peptides. The toxic dipeptide L-phenylalanyl-beta-chloro-L-alanine has been used to select for a di-tripeptide transport-negative mutant with the delta dtpT strain as a genetic background. This mutant is unable to transport di- and tripeptides but still shows uptake of amino acids and oligopeptides. The DtpP system is induced in the presence of di- and tripeptides containing branched-chain amino acids. The use of ionophores and metabolic inhibitors suggests that, similar to Opp, DtpP-mediated peptide transport is driven by ATP or a related energy-rich phosphorylated intermediate.
Collapse
Affiliation(s)
- C Foucaud
- Station de Recherches Laitières, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | | | | | | | | | | | | |
Collapse
|
14
|
Abouhamad WN, Manson MD. The dipeptide permease of Escherichia coli closely resembles other bacterial transport systems and shows growth-phase-dependent expression. Mol Microbiol 1994; 14:1077-92. [PMID: 7536291 DOI: 10.1111/j.1365-2958.1994.tb01340.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The dipeptide permease (Dpp) of Escherichia coli transports peptides consisting of two or three L-amino acids. The periplasmic dipeptide-binding protein (DBP), encoded by the dppA gene, also serves as a chemoreceptor. We sequenced the dpp locus, which comprises an operon of five genes, dppABCDE. Its organization is the same as the oligopeptide permease (opp) operon of Salmonella typhimurium and the spo0K operon of Bacillus subtilis. The dpp genes are also closely related to the hbpA gene, which encodes a haem-binding lipoprotein, and four other genes in an unlinked operon of unknown function in Haemophilus influenzae. Each Dpp protein has an Opp, Spo0K and H. influenzae homologue. Transcription of the dpp operon initiates 165 bases upstream of the predicted dppA start codon. The start site for transcription is preceded by potential -35 and -10 regions of a sigma 70 promoter. During exponential growth in Luria-Bertani (LB) broth, the level of dpp mRNA increases in two steps, one between A590 0.2 and 0.4 and one between A590 0.7 and 1.0. The 310 nucleotides between dppA and dppB include a RIP (repetitive IHF-binding palindromic) element, whose deletion from a multi-copy plasmid causes fivefold and 10-fold reductions in the levels of upstream and downstream dpp mRNA, respectively.
Collapse
MESH Headings
- Amino Acid Sequence
- Bacterial Proteins
- Base Sequence
- Biological Transport, Active
- DNA, Bacterial/genetics
- Escherichia coli/enzymology
- Escherichia coli/genetics
- Escherichia coli/growth & development
- Gene Expression Regulation, Bacterial
- Gene Expression Regulation, Enzymologic
- Genes, Bacterial
- Heme/metabolism
- Membrane Transport Proteins/genetics
- Membrane Transport Proteins/metabolism
- Molecular Sequence Data
- Operon
- Plasmids/genetics
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Restriction Mapping
- Transcription, Genetic
Collapse
Affiliation(s)
- W N Abouhamad
- Department of Biology, Texas A&M University, College Station 77843-3258
| | | |
Collapse
|
15
|
Calvo JM, Matthews RG. The leucine-responsive regulatory protein, a global regulator of metabolism in Escherichia coli. Microbiol Rev 1994; 58:466-90. [PMID: 7968922 PMCID: PMC372976 DOI: 10.1128/mr.58.3.466-490.1994] [Citation(s) in RCA: 251] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The leucine-responsive regulatory protein (Lrp) regulates the expression of more than 40 genes and proteins in Escherichia coli. Among the operons that are positively regulated by Lrp are operons involved in amino acid biosynthesis (ilvIH, serA)), in the biosynthesis of pili (pap, fan, fim), and in the assimilation of ammonia (glnA, gltBD). Negatively regulated operons include operons involved in amino acid catabolism (sdaA, tdh) and peptide transport (opp) and the operon coding for Lrp itself (lrp). Detailed studies of a few members of the regulon have shown that Lrp can act directly to activate or repress transcription of target operons. A substantial fraction of operons regulated by Lrp are also regulated by leucine, and the effect of leucine on expression of these operons requires a functional Lrp protein. The patterns of regulation are surprising and interesting: in some cases activation or repression mediated by Lrp is antagonized by leucine, in other cases Lrp-mediated activation or repression is potentiated by leucine, and in still other cases leucine has no effect on Lrp-mediated regulation. Current research is just beginning to elucidate the detailed mechanisms by which Lrp can mediate such a broad spectrum of regulatory effects. Our view of the role of Lrp in metabolism may change as more members of the regulon are identified and their regulation characterized, but at this point Lrp seems to be important in regulating nitrogen metabolism and one-carbon metabolism, permitting adaptations to feast and to famine.
Collapse
Affiliation(s)
- J M Calvo
- Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853
| | | |
Collapse
|
16
|
Abstract
For most bacterial species, virulence is viewed as a derived state, whereby pathogens acquire certain loci and are rendered virulent. The majority of virulence genes in Salmonella are present in closely related nonpathogenic species, and most genes known to be confined to the salmonellae are not essential for virulence. Alternative evolutionary scenarios may explain the origins of pathogenicity in Salmonella.
Collapse
Affiliation(s)
- E A Groisman
- Washington University School of Medicine, Dept of Molecular Microbiology, St Louis, MO 63110
| | | |
Collapse
|
17
|
Quail MA, Haydon DJ, Guest JR. The pdhR-aceEF-lpd operon of Escherichia coli expresses the pyruvate dehydrogenase complex. Mol Microbiol 1994; 12:95-104. [PMID: 8057842 DOI: 10.1111/j.1365-2958.1994.tb00998.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Transcript mapping and studies with lacZ translational fusions have shown that the pdhR gene (formerly genA) is the proximal gene of the pdhR-aceE-aceF-lpd operon encoding the pyruvate dehydrogenase (PDH) complex of Escherichia coli. A pdhR-lpd read-through transcript (7.4 kb) initiating at the pyruvate-inducible pdh promoter, and a smaller lpd transcript (1.7 kb) initiating at the independent lpd promoter, were identified. Evidence showing that the pdhR gene product negatively regulates the synthesis of the PdhR protein and the PDH complex via the pdh promoter was obtained, with pyruvate (or a derivative) serving as the putative inducing coeffector. The partially purified PdhR protein was also found to specifically retard and protect DNA fragments containing the pdh promoter region. The pdh promoter was not strongly controlled by ArcA, FNR or CRP.
Collapse
Affiliation(s)
- M A Quail
- Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, UK
| | | | | |
Collapse
|
18
|
Affiliation(s)
- J W Payne
- School of Biological Sciences, University of Wales, UK
| | | |
Collapse
|
19
|
Fong CL, Heinzinger NK, Tongklan S, Barrett EL. Cloning of the phs genetic locus from Salmonella typhimurium and a role for a phs product in its own induction. J Bacteriol 1993; 175:6368-71. [PMID: 8407812 PMCID: PMC206738 DOI: 10.1128/jb.175.19.6368-6371.1993] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The Salmonella typhimurium phs chromosomal locus essential for the reduction of thiosulfate to hydrogen sulfide was cloned, and some features of its regulation were examined. The phs locus conferred H2S production on Escherichia coli, suggesting that it contains the structural gene for thiosulfate reductase. H2S production by the E. coli host was, as in S. typhimurium, suppressed by nitrate or glucose in the growth medium. The presence of plasmid-borne phs genes in a S. typhimurium chl+ host containing a chromosomal phs::lacZ operon fusion was found to significantly increase the relative induction efficiency of beta-galactosidase by thiosulfate. These results are consistent with a model for phs regulation in which the true inducer is not thiosulfate per se and in which the action of a phs-encoded molybdoprotein, possibly the reductase itself, converts thiosulfate into a compound that resembles the true inducer more closely than does thiosulfate.
Collapse
Affiliation(s)
- C L Fong
- Department of Food Science and Technology, University of California, Davis 95616
| | | | | | | |
Collapse
|
20
|
Abstract
The expression of L-asparaginase II (encoded by ansB) in Salmonella enterica was found to be positively regulated by the cAMP receptor protein (CRP) and anaerobiosis. The anaerobic regulation of the S. enterica ansB gene is not mediated by the anaerobic transcriptional activator FNR. This is unlike the situation of the ansB gene of Escherichia coli, which is dependent on both CRP and FNR. To investigate this fundamental difference in the regulation of L-asparaginase II expression in S. enterica, the ansB gene was cloned and the nucleotide sequence of the promoter region determined. Sequence analysis and transcript mapping of the 5' promoter region revealed a single transcriptional start point (tsp) and two regulatory sites with substantial homology with those found in E. coli. One site, centred -90.5 bp from the tsp, is homologous to a hybrid CRP/FNR ('CF') site which is the site of CRP regulation in the E. coli promoter. The other site, centred 40.5 bp upstream of the tsp, is homologous to the FNR binding site of the E. coli promoter. Significantly, however, a single base-pair difference exists in this site, at a position of the related CRP and FNR DNA-binding site consensus sequences known to be involved in CRP versus FNR specificity. Site-directed mutagenesis indicates that this single difference, relative to the homologous E. coli site, results in a CRP binding site and the observed FNR-independent ansB expression in S. enterica.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M P Jennings
- Division of Science and Technology, Griffith University, Nathan, Queensland, Australia
| | | | | |
Collapse
|
21
|
Tam R, Saier MH. Structural, functional, and evolutionary relationships among extracellular solute-binding receptors of bacteria. Microbiol Rev 1993; 57:320-46. [PMID: 8336670 PMCID: PMC372912 DOI: 10.1128/mr.57.2.320-346.1993] [Citation(s) in RCA: 392] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Extracellular solute-binding proteins of bacteria serve as chemoreceptors, recognition constituents of transport systems, and initiators of signal transduction pathways. Over 50 sequenced periplasmic solute-binding proteins of gram-negative bacteria and homologous extracytoplasmic lipoproteins of gram-positive bacteria have been analyzed for sequence similarities, and their degrees of relatedness have been determined. Some of these proteins are homologous to cytoplasmic transcriptional regulatory proteins of bacteria; however, with the sole exception of the vitamin B12-binding protein of Escherichia coli, which is homologous to human glutathione peroxidase, they are not demonstrably homologous to any of the several thousand sequenced eukaryotic proteins. Most of these proteins fall into eight distinct clusters as follows. Cluster 1 solute-binding proteins are specific for malto-oligosaccharides, multiple oligosaccharides, glycerol 3-phosphate, and iron. Cluster 2 proteins are specific for galactose, ribose, arabinose, and multiple monosaccharides, and they are homologous to a number of transcriptional regulatory proteins including the lactose, galactose, and fructose repressors of E. coli. Cluster 3 proteins are specific for histidine, lysine-arginine-ornithine, glutamine, octopine, nopaline, and basic amino acids. Cluster 4 proteins are specific for leucine and leucine-isoleucine-valine, and they are homologous to the aliphatic amidase transcriptional repressor, AmiC, of Pseudomonas aeruginosa. Cluster 5 proteins are specific for dipeptides and oligopeptides as well as nickel. Cluster 6 proteins are specific for sulfate, thiosulfate, and possibly phosphate. Cluster 7 proteins are specific for dicarboxylates and tricarboxylates, but these two proteins exhibit insufficient sequence similarity to establish homology. Finally, cluster 8 proteins are specific for iron complexes and possibly vitamin B12. Members of each cluster of binding proteins exhibit greater sequence conservation in their N-terminal domains than in their C-terminal domains. Signature sequences for these eight protein families are presented. The results reveal that binding proteins specific for the same solute from different bacteria are generally more closely related to each other than are binding proteins specific for different solutes from the same organism, although exceptions exist. They also suggest that a requirement for high-affinity solute binding imposes severe structural constraints on a protein. The occurrence of two distinct classes of bacterial cytoplasmic repressor proteins which are homologous to two different clusters of periplasmic binding proteins suggests that the gene-splicing events which allowed functional conversion of these proteins with retention of domain structure have occurred repeatedly during evolutionary history.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- R Tam
- Department of Biology, University of California, San Diego, La Jolla 92093-0116
| | | |
Collapse
|
22
|
Sawers G, Suppmann B. Anaerobic induction of pyruvate formate-lyase gene expression is mediated by the ArcA and FNR proteins. J Bacteriol 1992; 174:3474-8. [PMID: 1592804 PMCID: PMC206030 DOI: 10.1128/jb.174.11.3474-3478.1992] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The pyruvate formate-lyase (pfl) gene of Escherichia coli is transcribed from seven promoters which are coordinately induced 12- to 15-fold by anaerobiosis. The FNR protein plays a major role in the anaerobic control of this system. A mutation in the fnr gene, however, only reduces anaerobic induction fivefold, indicating that FNR is not the only factor involved in the anaerobic activation process (Sawers and Böck, J. Bacteriol. 171:2485-2498, 1989). The residual anaerobic induction could be shown to be imparted by the transcriptional regulator ArcA; an arcA fnr double mutant was incapable of inducing pfl transcription anaerobically. A mutant strain unable to synthesize the membrane-associated histidine kinase (ArcB) that has been proposed to activate ArcA showed the same phenotype as an arcA mutant strain, indicating that a functional ArcB protein is also required for wild-type, anaerobic pfl transcriptional activation. Nuclease S1 analysis revealed that an arcA mutation abolished anaerobic transcription from promoter 7 and reduced expression from promoter 6 but did not affect transcription from promoters 1 to 5. On the other hand, an fnr mutation prevented anaerobic expression from promoters 6 and 7 and reduced transcription from promoters 1 to 5. These data indicate that both ArcA and FNR are essential for anaerobic activation of promoter 7 transcription, which suggests functional interaction between these proteins.
Collapse
Affiliation(s)
- G Sawers
- Lehrstuhl für Mikrobiologie, Universität München, Munich, Germany
| | | |
Collapse
|
23
|
Gazeau M, Delort F, Dessen P, Blanquet S, Plateau P. Escherichia coli leucine-responsive regulatory protein (Lrp) controls lysyl-tRNA synthetase expression. FEBS Lett 1992; 300:254-8. [PMID: 1555652 DOI: 10.1016/0014-5793(92)80857-d] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Using random Tn10 insertion mutagenesis, we isolated an Escherichia coli mutant strain affected in the regulation of lysU, the gene encoding the inducible form of lysyl-tRNA synthetase. The transposon giving rise to the altered expression of lysU was found inserted within lrp. The latter gene codes for the leucine-responsive regulatory protein (Lrp) which mediates a global response of the bacterium to leucine. An involvement of Lrp in the regulation of lysU was searched for by using a lysU-lacZ operon fusion. The following conclusions were reached: (i) inactivation of lrp causes an increased activity of the lysU promoter, whatever the growth conditions assayed, (ii) insertion of a wild-type lrp gene into a multi-copy plasmid significantly reduces lysU expression, and (iii) sensitivity of the lysU promoter to the presence of leucine in the growth medium is abolished in the lrp context.
Collapse
Affiliation(s)
- M Gazeau
- Laboratoire de Biochimie, Unité de Recherche Associée 240 du Centre National de la Recherche Scientifique, Ecole Polytechnique, Palaiseau, France
| | | | | | | | | |
Collapse
|
24
|
Affiliation(s)
- S A Haney
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor 48109
| | | |
Collapse
|
25
|
Lombardo MJ, Bagga D, Miller CG. Mutations in rpoA affect expression of anaerobically regulated genes in Salmonella typhimurium. J Bacteriol 1991; 173:7511-8. [PMID: 1938946 PMCID: PMC212517 DOI: 10.1128/jb.173.23.7511-7518.1991] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
oxrB8, a mutation that diminishes the anaerobic induction of pepT and other anaerobically regulated, oxrA (fnr)-dependent Salmonella typhimurium genes, is an allele of rpoA, the gene for the alpha subunit of RNA polymerase. Four additional rpoA mutations that affect anaerobic pepT expression have been isolated after localized mutagenesis of the rpoA region. All but one of these rpoA mutations appear to have relatively specific effects on genes that require the OxrA (FNR) protein, a positive transcriptional regulator of a family of anaerobically expressed genes. All of these mutations lead to amino acid substitutions in the C-terminal region of the alpha subunit. These results taken with a number of previous observations suggest a role for the alpha subunit in the interaction between RNA polymerase and positive transcriptional regulatory proteins. They also suggest that the C-terminal region of alpha is important for these interactions.
Collapse
Affiliation(s)
- M J Lombardo
- Department of Molecular Biology and Microbiology, Case Western Reserve University, School of Medicine, Cleveland 44106
| | | | | |
Collapse
|
26
|
Island MD, Perry JR, Naider F, Becker JM. Isolation and characterization of S. cerevisiae mutants deficient in amino acid-inducible peptide transport. Curr Genet 1991; 20:457-63. [PMID: 1782673 DOI: 10.1007/bf00334772] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The transport of small peptides into the yeast Saccharomyces cerevisiae is subject to complex regulatory control. In an effort to determine the number, and to address the function, of the components involved in peptide transport and its regulation, spontaneous mutants resistant to toxic di- and tripeptides were isolated under inducing conditions. Twenty-four mutant strains were characterized in detail and fell into two phenotypic groups; one group deficient in amino acid-inducible peptide uptake, the other with a pleiotropic phenotype including a loss of peptide transport. Complementation analysis of recessive mutations in 12 of these strains defined three groups; ptr1 (nine strains), ptr2 (two strains), and ptr3 (one strain). Isolation and screening of 31 additional N-methyl-N-nitro-N-Nitrosoguanidine (MNNG)-induced, peptide transport-deficient mutants produced one ptr3 and 30 ptr2 strains: no additional complementation groups were detected. Uptake of radiolabeled dileucine was negligible in ptr1 and ptr2 strains and was reduced by 65% and 90% in the two ptr3 mutants, indicating that all strains were defective at the transport step. We conclude that the S. cerevisiae amino acid-inducible peptide transport system recognizes a broad spectrum of peptide substrates and involves at least three components. One gene, PTR3, may play an indirect or regulatory role since mutations in this gene cause a pleiotropic phenotype.
Collapse
Affiliation(s)
- M D Island
- Department of Microbiology, University of Tennessee, Knoxville 37996
| | | | | | | |
Collapse
|
27
|
Rasmussen LJ, Møller PL, Atlung T. Carbon metabolism regulates expression of the pfl (pyruvate formate-lyase) gene in Escherichia coli. J Bacteriol 1991; 173:6390-7. [PMID: 1917868 PMCID: PMC208971 DOI: 10.1128/jb.173.20.6390-6397.1991] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The anaerobic expression of pfl is reduced both in a strain mutated in the pgi gene and in a pfkA pfkB double mutant strain when cells are grown in medium supplemented with glucose. When cells are grown in medium supplemented with either fructose or pyruvate, no reduction is observed in these strains. The amount of pyruvate in the cells may be responsible for the reduced expression of pfl in the strains mutated in the genes encoding the glycolytic enzymes. Because of the lowered oxygen concentration in the medium, the expression of pfl is induced when an exponentially growing culture enters the stationary phase. This induction is increased when the Casamino Acid concentration is raised 10-fold or when the medium is supplemented with NaCl. Superhelicity of DNA is decreased in a pgi mutant strain grown in medium supplemented with glucose. The superhelicity is also changed, but the opposite way, in a wild-type strain grown in medium supplemented with Casamino Acids at a high concentration or 0.3 M sodium chloride. Our data show that changes in superhelicity do not affect the aerobic expression of pfl but might be important for the anaerobic induction of pfl.
Collapse
Affiliation(s)
- L J Rasmussen
- Department of Microbiology, Technical University of Denmark, Copenhagen
| | | | | |
Collapse
|
28
|
Miller CG, Miller JL, Bagga DA. Cloning and nucleotide sequence of the anaerobically regulated pepT gene of Salmonella typhimurium. J Bacteriol 1991; 173:3554-8. [PMID: 1904438 PMCID: PMC207971 DOI: 10.1128/jb.173.11.3554-3558.1991] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The anaerobically regulated pepT gene of Salmonella typhimurium has been cloned in pBR328. Strains carrying the pepT plasmid, pJG17, overproduce peptidase T by approximately 70-fold. The nucleotide sequence of a 2.5-kb region including pepT has been determined. The sequence codes for a protein of 44,855 Da, consistent with a molecular weight of approximately 46,000 for peptidase T (as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration). The N-terminal amino acid sequence of peptidase T purified from a pJG17-containing strain matches that predicted by the nucleotide sequence. A plasmid carrying an anaerobically regulated pepT::lacZ transcriptional fusion contains only 165 bp 5' to the start of translation. This region contains a sequence highly homologous to that identified in Escherichia coli as the site of action of the FNR protein, a positive regulator of anaerobic gene expression. A region of the deduced amino acid sequence of peptidase T is similar to segments of Pseudomonas carboxypeptidase G2, the E. coli peptidase encoded by the iap gene, and E. coli peptidase D.
Collapse
Affiliation(s)
- C G Miller
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | | | | |
Collapse
|
29
|
Lutz S, Jacobi A, Schlensog V, Böhm R, Sawers G, Böck A. Molecular characterization of an operon (hyp) necessary for the activity of the three hydrogenase isoenzymes in Escherichia coli. Mol Microbiol 1991; 5:123-35. [PMID: 1849603 DOI: 10.1111/j.1365-2958.1991.tb01833.x] [Citation(s) in RCA: 192] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The 58/59 min region of the Escherichia coli chromosome contains two divergently oriented gene clusters coding for proteins with a function in hydrogenase formation. One cluster (the hyc operon), transcribed counterclockwise with respect to the E. coli chromosome, codes for gene products with a structural role in hydrogenase 3 formation (Böhm et al., 1990). The nucleotide sequence of the divergently transcribed operon (hyp) has been determined. It contains five genes, all of which are expressed in vivo in a T7 promoter/polymerase system, and the sizes of the synthesized products correspond with those predicted from the amino acid sequence. Complementation analysis of previously characterized mutants showed that the hypB, hypC and hypD genes have a function in the formation of all three hydrogenase isoenzymes, lesions in hypB being complemented by high nickel ion concentration in the medium. Prevention of hypBCDE gene expression led to an altered electrophoretic pattern of hydrogenase 1 and 2 constituent subunits, indicating increased chemical or proteolytic subunits, Under fermentative growth conditions, operon expression was governed by an NtrA-dependent promoter lying upstream of hypA working together with an fnr gene product-dependent promoter which was localized within the hypA gene. The latter (operon-internal) promoter is responsible for hypBCDE transcription under non-fermentative conditions when the -24/-12 NtrA-dependent promoter upstream of hypA is silent.
Collapse
Affiliation(s)
- S Lutz
- Lehrstuhl für Mikrobiologie, Universität München, FRG
| | | | | | | | | | | |
Collapse
|
30
|
Chatfield SN, Dorman CJ, Hayward C, Dougan G. Role of ompR-dependent genes in Salmonella typhimurium virulence: mutants deficient in both ompC and ompF are attenuated in vivo. Infect Immun 1991; 59:449-52. [PMID: 1846127 PMCID: PMC257763 DOI: 10.1128/iai.59.1.449-452.1991] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A Salmonella typhimurium strain harboring stable mutations in both ompC and ompF was constructed from the mouse-virulent strain S. typhimurium SL1344. When administered orally to BALB/c mice the strain was attenuated, with the 50% lethal dose (LD50) reduced by approximately 1,000-fold. However, the intravenous LD50 was reduced only by approximately 10-fold. The ompC ompF mutant persisted in murine tissues for several weeks following oral challenge, and mice immunized with this mutant were well protected against challenge with virulent SL1344. A strain harboring a stable mutation in tppB behaved in a manner similar to that of strain SL1344 in vivo, while a strain harboring mutations in ompC, ompF, and tppB behaved as an ompC ompF mutant in vivo, indicating that the tppB operon is not required for virulence in S. typhimurium.
Collapse
Affiliation(s)
- S N Chatfield
- Department of Molecular Biology, Wellcome Biotech, Bechenham, United Kingdom
| | | | | | | |
Collapse
|
31
|
Olson ER, Dunyak DS, Jurss LM, Poorman RA. Identification and characterization of dppA, an Escherichia coli gene encoding a periplasmic dipeptide transport protein. J Bacteriol 1991; 173:234-44. [PMID: 1702779 PMCID: PMC207180 DOI: 10.1128/jb.173.1.234-244.1991] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We describe the isolation and analysis of an Escherichia coli gene, dppA, and its role in dipeptide transport. dppA maps near min 79 and encodes a protein (DppA) that has regions of amino acid similarity with a peptide-binding protein from Salmonella typhimurium (OppA). Like OppA, DppA is found in the periplasmic space and thus is most likely a dipeptide-binding protein. Insertional inactivation of dppA results in the inability of a proline auxotroph to utilize Pro-Gly as a proline source. dppA-dependent Pro-Gly utilization does not require any of the three major proline transport systems, demonstrating that DppA is not simply a dipeptidase. An in vivo competition assay was used to show that DppA is probably involved in the transport of dipeptides other than Pro-Gly. Transcription of dppA is repressed by the presence of casamino acids, suggesting that the cell alters its dipeptide transport capabilities in response to an environmental signal.
Collapse
Affiliation(s)
- E R Olson
- Molecular Biology Research, Upjohn Company, Kalamazoo, Michigan 49007
| | | | | | | |
Collapse
|
32
|
Perego M, Higgins CF, Pearce SR, Gallagher MP, Hoch JA. The oligopeptide transport system of Bacillus subtilis plays a role in the initiation of sporulation. Mol Microbiol 1991; 5:173-85. [PMID: 1901616 DOI: 10.1111/j.1365-2958.1991.tb01838.x] [Citation(s) in RCA: 272] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bacillus subtilis spo0K mutants are blocked at the first step in sporulation. The spo0K strain was found to contain two mutations: one was linked to the trpS locus, and the other was elsewhere on the chromosome. The mutation linked to trpS was responsible for the sporulation defect (spo-). The unlinked mutation enhanced this sporulation deficiency but had no phenotype on its own. The spo- mutation was located in an operon of five genes highly homologous to the oligopeptide transport (Opp) system of Gram-negative species. Studies with toxic peptide analogues showed that this operon does indeed encode a peptide-transport system. However, unlike the Opp system of Salmonella typhimurium, one of the two ATP-binding proteins, OppF, was not required for peptide transport or for sporulation. The OppA peptide-binding protein, which is periplasmically located in Gram-negative species, has a signal sequence characteristic of lipoproteins with an amino-terminal lipo-amino acid anchor. Cellular location studies revealed that OppA was associated with the cell during exponential growth, but was released into the medium in stationary phase. A major role of the Opp system in Gram-negative bacteria is the recycling of cell-wall peptides as they are released from the growing peptidoglycan. We postulate that the accumulation of such peptides may play a signalling role in the initiation of sporulation, and that the sporulation defect in opp mutants results from an inability to transport these peptides.
Collapse
Affiliation(s)
- M Perego
- Department of Molecular and Experimental Medicine, Research Institute of Scripps Clinic, La Jolla, California 92037
| | | | | | | | | |
Collapse
|
33
|
Abstract
Bacteria which can grow in different environments have developed regulatory systems which allow them to exploit specific habitats to their best advantage. In the facultative anaerobe Escherichia coli two transcriptional regulators controlling independent networks of oxygen-regulated gene expression have been identified. One is a two-component sensor-regulator system (ArcB-A), which represses a wide variety of aerobic enzymes under anaerobic conditions. The other is FNR, the transcriptional regulator which is essential for expressing anaerobic respiratory processes. The purpose of this review is to summarize what is known about FNR. The fnr gene was initially defined by the isolation of some pleiotropic mutants which characteristically lacked the ability to use fumarate and nitrate as reducible substrates for supporting anaerobic growth and several other anaerobic respiratory functions. Its role as a transcriptional regulator emerged from genetic and molecular studies in which its homology with CRP (the cyclic AMP receptor protein which mediates catabolite repression) was established and has since been particularly important in identifying the structural basis of its regulatory specificities. FNR is a member of a growing family of CRP-related regulatory proteins which have a DNA-binding domain based on the helix-turn-helix structural motif, and a characteristic beta-roll that is involved in nucleotide-binding in CRP. The FNR protein has been isolated in a monomeric form (Mr 30,000) which exhibits a high but as yet non-specific affinity for DNA. Nevertheless, the DNA-recognition site and important residues conferring the functional specificity of FNR have been defined by site-directed mutagenesis. A consensus for the sequences that are recognized by FNR in the promoter regions of FNR-regulated genes, has likewise been identified. The basic features of the genes and operons regulated by FNR are reviewed, and examples in which FNR functions negatively as an anaerobic repressor as well as positively as an anaerobic activator, are included. Less is known about the way in which FNR senses anoxia and is thereby transformed into its 'active' form, but it seems likely that cysteine residues and possibly a metal ion are involved. Four of the five cysteine residues of FNR are clustered in an essential N-terminal 'domain' which is conserved in FNR and the HlyX protein of Actinobacillus pleuropneumoniae, but not in CRP or the FixK protein of Rhizobium meliloti. The relationships between FNR and other oxygen-related systems in E. coli are discussed, as well as parallel systems in other organisms.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- S Spiro
- Department of Molecular Biology and Biotechnology, University of Sheffield, U.K
| | | |
Collapse
|
34
|
Wu LF, Mandrand-Berthelot MA, Waugh R, Edmonds CJ, Holt SE, Boxer DH. Nickel deficiency gives rise to the defective hydrogenase phenotype of hydC and fnr mutants in Escherichia coli. Mol Microbiol 1989; 3:1709-18. [PMID: 2695744 DOI: 10.1111/j.1365-2958.1989.tb00156.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Hydrogenase activity and other hydrogenase-related functions can be restored to hydC mutants by the specific addition of nickel salts to the growth medium. These mutants are defective in all three hydrogenase isoenzymes and the restoration is dependent upon protein synthesis. The cellular nickel content of the mutant when grown in LB medium is less than 1% of that of the parental strain. Partial suppression of the hydrogenase phenotype of hydC mutants occurs when growth takes place in a different medium. This correlates with an increased cellular nickel content. The phenotype of the mutant is also fully suppressed by growth in media of very low magnesium content. Such media facilitate nickel uptake via the magnesium transport system, which leads to the acquisition of a normal cellular nickel content. Mutations in the fnr gene, which encodes a transcriptional regulator for several anaerobically expressed enzymes, abolishes hydC expression and gives rise to a defective hydrogenase phenotype. The hydrogenase phenotype of fnr is closely similar to that of hydC in all respects examined. The hydrogenase activity of fnr strains can be restored by the presence of a functional hydC gene on a multicopy plasmid. The hydrogenase phenotype of fnr strains therefore arises indirectly via suppression of hydC, which leads to a low cellular nickel content. Nickel has no influence on fumarate reductase or nitrate reductase activities in fnr strains. The hydrogen-metabolism phenotype of fnr strains is, therefore, dependent upon their ability to acquire nickel from growth media. It is likely that hydC encodes a specific transport system for nickel.
Collapse
Affiliation(s)
- L F Wu
- Laboratoire de Microbiologie, CNRS, INSA, Villeurbanne, France
| | | | | | | | | | | |
Collapse
|
35
|
Stock JB, Ninfa AJ, Stock AM. Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol Rev 1989; 53:450-90. [PMID: 2556636 PMCID: PMC372749 DOI: 10.1128/mr.53.4.450-490.1989] [Citation(s) in RCA: 915] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Bacteria continuously adapt to changes in their environment. Responses are largely controlled by signal transduction systems that contain two central enzymatic components, a protein kinase that uses adenosine triphosphate to phosphorylate itself at a histidine residue and a response regulator that accepts phosphoryl groups from the kinase. This conserved phosphotransfer chemistry is found in a wide range of bacterial species and operates in diverse systems to provide different regulatory outputs. The histidine kinases are frequently membrane receptor proteins that respond to environmental signals and phosphorylate response regulators that control transcription. Four specific regulatory systems are discussed in detail: chemotaxis in response to attractant and repellent stimuli (Che), regulation of gene expression in response to nitrogen deprivation (Ntr), control of the expression of enzymes and transport systems that assimilate phosphorus (Pho), and regulation of outer membrane porin expression in response to osmolarity and other culture conditions (Omp). Several additional systems are also examined, including systems that control complex developmental processes such as sporulation and fruiting-body formation, systems required for virulent infections of plant or animal host tissues, and systems that regulate transport and metabolism. Finally, an attempt is made to understand how cross-talk between parallel phosphotransfer pathways can provide a global regulatory curcuitry.
Collapse
|
36
|
Ni Bhriain N, Dorman CJ, Higgins CF. An overlap between osmotic and anaerobic stress responses: a potential role for DNA supercoiling in the coordinate regulation of gene expression. Mol Microbiol 1989; 3:933-42. [PMID: 2677605 DOI: 10.1111/j.1365-2958.1989.tb00243.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The regulation of several genes in response to osmotic and anaerobic stress has been examined. We have demonstrated a clear overlap between these two regulatory signals. Thus, the osmotically induced proU and ompC genes require anaerobic growth for optimum induction while the anaerobically induced tppB gene is also regulated by osmolarity. Furthermore, normal expression of tppB and ompC requires the positive regulatory protein OmpR, yet this requirement can be partially, or even fully, overcome by altering the growth conditions. Finally, the pleiotropic, anaerobic regulatory locus, oxrC, is also shown to affect expression of the osmotically regulated proU gene. The oxrC mutation is shown to affect the level of negative supercoiling of plasmid DNA and its effects on gene expression can be explained as secondary consequences of altered DNA topology. We suggest that there is a class of 'stress-regulated' genes that are regulated by a common mechanism in response to different environmental signals. Furthermore, our data are consistent with the notion that this regulatory overlap is mediated by changes in DNA supercoiling in response to these environmental stresses.
Collapse
Affiliation(s)
- N Ni Bhriain
- Department of Biochemistry, Dundee University, UK
| | | | | |
Collapse
|
37
|
Schlensog V, Birkmann A, Böck A. Mutations in trans which affect the anaerobic expression of a formate dehydrogenase (fdhF) structural gene. Arch Microbiol 1989; 152:83-9. [PMID: 2669674 DOI: 10.1007/bf00447016] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
An operon fusion was constructed in which the chloramphenicol acetyltransferase gene (cat) is under the transcriptional control of the anaerobically-activated formate dehydrogenase (fdhF) gene promoter. It was used as a screening system for mutations in trans which prevent the formate-dependent anaerobic induction of fdhF gene expression. Five classes of mutants were identified. The defect in class I mutants was complemented by a plasmid (pBA11) or subclones thereof, which harbor genes of the Escherichia coli 58 min hyd (hydrogenase) gene cluster. They may comprise regulatory gene mutants. The phenotype of class II mutants was reversed by supplementing the medium with 100 microM MoO4(2-); WO4(2-) could substitute for MoO4(2-) in restoring anaerobic induction by formate. Similarly, class III mutants were phenotypically suppressed by inclusion of 500 microM Ni2+ in the medium; these mutants were shown to carry a defective fnr gene. The mutant of class IV had a defect in a formate dehydrogenase structural gene and that of class V was unable to grow under fermentative conditions while maintaining the capability to grow anaerobically in the presence of electron acceptors.
Collapse
Affiliation(s)
- V Schlensog
- Lehrstuhl für Mikrobiologie der Universität München, Federal Republic of Germany
| | | | | |
Collapse
|
38
|
Spiro S, Roberts RE, Guest JR. FNR-dependent repression of the ndh gene of Escherichia coli and metal ion requirement for FNR-regulated gene expression. Mol Microbiol 1989; 3:601-8. [PMID: 2503680 DOI: 10.1111/j.1365-2958.1989.tb00207.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The ndh gene of Escherichia coli which encodes an NADH dehydrogenase contains a putative FNR-binding site in its upstream non-coding region, and its expression has been investigated using an ndh-lacZ fusion. Expression of the fusion was found to be reduced during anaerobic growth, and experiments with hosts containing an fnr mutation and/or a multicopy fnr+ plasmid indicated that the anaerobic repression of the ndh gene is mediated by the FNR protein. Thus FNR can function as an anaerobic repressor as well as an anaerobic transcriptional activator. The results are consistent with the FNR-binding function attributed to the proposed consensus sequence. Using frdA- and ndh-lacZ fusions exhibiting positive and negative regulation by FNR, it was further shown that the depletion of metal ions in growth media with chelating agents mimics oxygen with respect to the activity of FNR. Possible roles for metal ions in the oxygen-sensing pathway associated with FNR function are discussed.
Collapse
Affiliation(s)
- S Spiro
- Department of Molecular Biology and Biotechnology, University of Sheffield, UK
| | | | | |
Collapse
|
39
|
Nellemann LJ, Holm F, Atlung T, Hansen FG. Cloning and characterization of the Escherichia coli phosphoglycerate kinase (pgk) gene. Gene 1989; 77:185-91. [PMID: 2545537 DOI: 10.1016/0378-1119(89)90373-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The pgk gene of Escherichia coli coding for the phosphoglycerate kinase was subcloned from the Carbon and Clarke collection plasmid pLC33-5. The position and direction of transcription of the pgk gene was determined by Tn5 insertion mutagenesis. Analysis of proteins encoded from these plasmids showed that the pgk gene product is a 40-kDa protein, and that the gene is transcribed from two promoters, one immediately in front of the gene and one in front of an upstream gene coding for a 38-kDa polypeptide of unknown function. The position of the Pgk protein on two-dimensional O'Farrel gels was identified, and from this we conclude that it is one of the proteins induced by anaerobiosis [Smith and Neidhardt, J. Bacteriol. 154 (1987) 336-343]. The pgk gene was also found to show growth phase regulation; the synthesis of Pgk protein was induced more than ten-fold during transition from the exponential to the stationary growth phase.
Collapse
Affiliation(s)
- L J Nellemann
- Department of Microbiology, Technical University of Denmark, Lyngby
| | | | | | | |
Collapse
|
40
|
Atlung T, Nielsen A, Hansen FG. Isolation, characterization, and nucleotide sequence of appY, a regulatory gene for growth-phase-dependent gene expression in Escherichia coli. J Bacteriol 1989; 171:1683-91. [PMID: 2537825 PMCID: PMC209798 DOI: 10.1128/jb.171.3.1683-1691.1989] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A plasmid carrying a regulator gene, designated appY, was found in the screening of an Escherichia coli gene library for clones overproducing AppA, an acid phosphatase which is induced as a culture approaches the stationary phase. In cells containing multicopy plasmids carrying the appY gene, the expression of the chromosomal appY gene was stimulated 10- to 40-fold in the stationary phase and more than 100-fold during exponential growth. The appA plasmid also changed the rate of synthesis of more than 30 other proteins in a growth-phase-dependent way. The appY gene was mapped to 13 min on the E. coli genetic map. The position of the appY gene on the 4.9-kilobase HindIII fragment of the original clone was located by Tn5 mutagenesis and deletion analysis, and the nucleotide sequence of a 1.9-kilobase region containing the gene was determined. The appY gene product was identified as a weakly expressed 243-amino-acid polypeptide which contains a stretch of 20 amino acids showing very good similarity to the conserved DNA-binding domain of repressors and transcriptional activators.
Collapse
Affiliation(s)
- T Atlung
- Department of Microbiology, Technical University of Denmark, Lyngby
| | | | | |
Collapse
|
41
|
Gallagher MP, Pearce SR, Higgins CF. Identification and localization of the membrane-associated, ATP-binding subunit of the oligopeptide permease of Salmonella typhimurium. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 180:133-41. [PMID: 2651120 DOI: 10.1111/j.1432-1033.1989.tb14623.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The OppF protein, a component of the oligopeptide permease of Salmonella typhimurium, is an ATP-binding protein and is believed to couple ATP hydrolysis to the transport process. This protein is an example of a large family of closely related proteins which couple ATP to a variety of different biological processes. The oppF gene has been cloned and sequenced. In order to identify and characterize its protein product we overproduced the protein from the cloned gene. Anti-OppF antibodies were raised against a synthetic peptide. Using these antibodies as a probe we identified OppF in wild-type and overproducing strains. Protease accessibility studies showed the protein to be a peripheral membrane protein located on the cytoplasmic side of the inner membrane. These findings have general implications for the organization and function of this class of prokaryotic and eukaryotic transport system.
Collapse
Affiliation(s)
- M P Gallagher
- Department of Biochemistry, University of Dundee, Scotland
| | | | | |
Collapse
|
42
|
|
43
|
Jendrossek D, Steinbüchel A, Schlegel HG. Alcohol dehydrogenase gene from Alcaligenes eutrophus: subcloning, heterologous expression in Escherichia coli, sequencing, and location of Tn5 insertions. J Bacteriol 1988; 170:5248-56. [PMID: 2846513 PMCID: PMC211598 DOI: 10.1128/jb.170.11.5248-5256.1988] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The nucleotide sequence of the gene that encodes the fermentative, multifunctional alcohol dehydrogenase (ADH) in Alcaligenes eutrophus, and of adjacent regions on a 1.8-kilobase-pair PstI fragment was determined. From the deduced amino acid sequence, a molecular weight of 38,549 was calculated for the ADH subunit. The amino acid sequence reveals homologies from 22.3 to 26.3% with zinc-containing alcohol dehydrogenases from eucaryotic organisms (Schizosaccharomyces pombe, Zea mays, mouse, horse liver, and human liver). Most of the 22 amino acid residues, which are strictly conserved in this group of ADHs (H. Jörnvall, B. Persson, and J. Jeffery, Eur. J. Biochem. 167:195-201, 1987), either were present in the A. eutrophus enzyme or had been substituted by related amino acids. The A. eutrophus adh gene was transcribed in Escherichia coli only under the control of the lac promoter, but was not expressed by its own promoter. A sequence resembling the E. coli consensus promoter DNA sequence did not contain the invariant T, but a G, in the potential -10 region. In the transposon-induced mutants HC1409 and HC1421, which form ADH constitutively, the insertions of Tn5::mob were localized 56 and 66 base pairs, respectively, upstream of the presumptive translation initiation codon. In contrast to the promoter, the A. eutrophus ribosome-binding site with a GGAG Shine-Dalgarno sequence 6 base pairs upstream of the translation initiation codon was accepted by the E. coli translation apparatus. A stable hairpin structure, which may provide a transcription termination signal, is predicted to occur in the mRNA, with its starting point 21 base pairs downstream from the translation termination codon.
Collapse
Affiliation(s)
- D Jendrossek
- Institut für Mikrobiologie der Georg-August-Universität Göttingen, Federal Republic of Germany
| | | | | |
Collapse
|
44
|
Cole J. Reassessment of the role of the Fnr transcriptional activator protein in the expression of formate hydrogenlyase activity ofEscherichia coliK-12. FEMS Microbiol Lett 1988. [DOI: 10.1111/j.1574-6968.1988.tb13928.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
45
|
Latour DJ, Weiner JH. Regulation of in vitro expression of the Escherichia coli frd operon: alanine and Fnr represent positive and negative control elements. Nucleic Acids Res 1988; 16:6339-52. [PMID: 2456525 PMCID: PMC338299 DOI: 10.1093/nar/16.14.6339] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The frdABCD operon of Escherichia coli encodes the anaerobically expressed terminal electron transport enzyme, fumarate reductase. Two mutually exclusive hairpin loop structures can occur in frdmRNA just downstream of the start of the frdA cistron. The mRNA sequence involved encodes a stretch of sequence rich in Ala and uses all four of the codons for this amino acid. In vitro expression of the frdABCD operon showed that as the level of plasmid DNA was increased from 150 fmol to 225 fmol, transcription of mRNA was suddenly elevated 6.5-fold, consistent with the concept of titrating out a repressor protein. Further studies showed that the concomitant 10.9-fold increase in translation of protein was heavily biased towards the proximal end of the operon, with little or no expression of FrdC or FrdD and a ratio of FrdA:FrdB of 2.6:1. Addition of Ala to the S-30 extract caused a 6.1-fold amplification of frd messenger transcription, a 17.6-fold increase in Frd protein translation, and a balancing of the subunit ratios to 1:1:1:1. The expression of the bla gene carried on the plasmid was not affected by DNA titration or the addition of Ala. When fnr DNA was added in equimolar ratio to frdDNA the amplification of fumarate reductase expression by Ala was abolished and the ratio of subunits produced showed a high degree of polarity with or without Ala.
Collapse
Affiliation(s)
- D J Latour
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
46
|
|
47
|
Dorman CJ, Barr GC, Ni Bhriain N, Higgins CF. DNA supercoiling and the anaerobic and growth phase regulation of tonB gene expression. J Bacteriol 1988; 170:2816-26. [PMID: 2836373 PMCID: PMC211208 DOI: 10.1128/jb.170.6.2816-2826.1988] [Citation(s) in RCA: 214] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We show that several interacting environmental factors influence the topology of intracellular DNA. Negative supercoiling of DNA in vivo is increased by anaerobic growth and is also influenced by growth phase. The tonB promoter of Escherichia coli and Salmonella typhimurium was found to be highly sensitive to changes in DNA supercoiling. Expression was increased by novobiocin, an inhibitor of DNA gyrase, and was decreased by factors which increase DNA superhelicity. Expression of the plasmid-encoded tonB gene was enhanced by gamma delta insertions in cis in a distance- and orientation-independent fashion. Both the res site and the TnpR protein of gamma delta, which is known to function as a type I topoisomerase, were required for this activation. tonB expression increased during the growth cycle and was reduced by anaerobiosis. There was excellent correlation between tonB expression from a plasmid and the level of supercoiling of that plasmid under a wide range of conditions. The chromosomal tonB gene was regulated in a manner identical to that of the plasmid-encoded gene. Thus, the physiological regulation of tonB expression in response to anaerobiosis and growth phase appears to be mediated by environmentally induced changes in DNA superhelicity.
Collapse
Affiliation(s)
- C J Dorman
- Department of Biochemistry, University of Dundee, Scotland
| | | | | | | |
Collapse
|
48
|
|
49
|
Aliabadi Z, Park YK, Slonczewski JL, Foster JW. Novel regulatory loci controlling oxygen- and pH-regulated gene expression in Salmonella typhimurium. J Bacteriol 1988; 170:842-51. [PMID: 3276666 PMCID: PMC210731 DOI: 10.1128/jb.170.2.842-851.1988] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Three new loci were discovered, each of which participates in the regulation of anaerobic gene expression. The regulatory gene earA negatively regulates the expression of the anaerobiosis-inducible gene aniG as well as that of at least three other genes, as determined by two-dimensional polyacrylamide gel electrophoresis. The earA locus maps at 86 min. The expression of aniG was also shown to be controlled by changes in external pH under aerobic and anaerobic conditions. Maximal expression was observed under anaerobic conditions at an external pH of 6.0. Significant transcriptional activity was also observed under aerobic conditions at pH 6.0. This was in contrast to hyd, whose expression was dependent upon anaerobiosis and varied with external pH. The pH dependence disappeared under fully aerobic conditions. Mutations in earA had no effect upon hyd expression. The two other regulators identified were oxrF, which controls aniH, and oxrG, which, in concert with oxrA and oxrB, controls aniC and aniI. The oxrG locus was mapped to 88 min and appears to code for a positive regulator. Various oxr mutants were subjected to two-dimensional polyacrylamide electrophoretic analysis of anaerobiosis-inducible proteins. Several pathways of anaerobic control were observed by means of these techniques.
Collapse
Affiliation(s)
- Z Aliabadi
- Department of Microbiology, College of Medicine, University of South Alabama, Mobile 36688
| | | | | | | |
Collapse
|
50
|
Sawers RG, Zehelein E, Böck A. Two-dimensional gel electrophoretic analysis of Escherichia coli proteins: influence of various anaerobic growth conditions and the fnr gene product on cellular protein composition. Arch Microbiol 1988; 149:240-4. [PMID: 2835026 DOI: 10.1007/bf00422011] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Two-dimensional gel electrophoresis was used to examine the response of the cellular proteins of Escherichia coli to various anaerobic growth conditions and to the presence or absence of a functional Fnr protein. The steady-state levels of 125 polypeptides were found to vary in either a positive or negative manner, with many polypeptides being affected under a number of conditions. A large number (21) of the anaerobically inducible polypeptides were shown to be totally independent of the presence of Fnr while 22 were shown to be reduced in a fnr mutant under all anaerobic growth conditions tested. A total of 8 proteins were shown to be reduced in a fnr mutant only in aerobically grown cells indicating that the Fnr protein has a function in the presence of oxygen. This was further confirmed by the observation that 15 anaerobically inducible polypeptides were also found to show an increase in aerobically grown cells, however, only in a fnr strain. This latter finding implies that Fnr may also exhibit repressor function. This effect of Fnr-dependent repression was also observed with several polypeptides in anaerobically grown cells.
Collapse
Affiliation(s)
- R G Sawers
- Lehrstuhl für Mikrobiologie der Universität München, Federal Republic of Germany
| | | | | |
Collapse
|