1
|
Lacroix B, Citovsky V. Pathways of DNA Transfer to Plants from Agrobacterium tumefaciens and Related Bacterial Species. ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:231-251. [PMID: 31226020 PMCID: PMC6717549 DOI: 10.1146/annurev-phyto-082718-100101] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Genetic transformation of host plants by Agrobacterium tumefaciens and related species represents a unique model for natural horizontal gene transfer. Almost five decades of studying the molecular interactions between Agrobacterium and its host cells have yielded countless fundamental insights into bacterial and plant biology, even though several steps of the DNA transfer process remain poorly understood. Agrobacterium spp. may utilize different pathways for transferring DNA, which likely reflects the very wide host range of Agrobacterium. Furthermore, closely related bacterial species, such as rhizobia, are able to transfer DNA to host plant cells when they are provided with Agrobacterium DNA transfer machinery and T-DNA. Homologs of Agrobacterium virulence genes are found in many bacterial genomes, but only one non-Agrobacterium bacterial strain, Rhizobium etli CFN42, harbors a complete set of virulence genes and can mediate plant genetic transformation when carrying a T-DNA-containing plasmid.
Collapse
Affiliation(s)
- Benoît Lacroix
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, New York 11794-5215, USA;
| | - Vitaly Citovsky
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, New York 11794-5215, USA;
| |
Collapse
|
2
|
Thompson MA, Onyeziri MC, Fuqua C. Function and Regulation of Agrobacterium tumefaciens Cell Surface Structures that Promote Attachment. Curr Top Microbiol Immunol 2019; 418:143-184. [PMID: 29998422 PMCID: PMC6330146 DOI: 10.1007/82_2018_96] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Agrobacterium tumefaciens attaches stably to plant host tissues and abiotic surfaces. During pathogenesis, physical attachment to the site of infection is a prerequisite to infection and horizontal gene transfer to the plant. Virulent and avirulent strains may also attach to plant tissue in more benign plant associations, and as with other soil microbes, to soil surfaces in the terrestrial environment. Although most A. tumefaciens virulence functions are encoded on the tumor-inducing plasmid, genes that direct general surface attachment are chromosomally encoded, and thus this process is not obligatorily tied to virulence, but is a more fundamental capacity. Several different cellular structures are known or suspected to contribute to the attachment process. The flagella influence surface attachment primarily via their propulsive activity, but control of their rotation during the transition to the attached state may be quite complex. A. tumefaciens produces several pili, including the Tad-type Ctp pili, and several plasmid-borne conjugal pili encoded by the Ti and At plasmids, as well as the so-called T-pilus, involved in interkingdom horizontal gene transfer. The Ctp pili promote reversible interactions with surfaces, whereas the conjugal and T-pili drive horizontal gene transfer (HGT) interactions with other cells and tissues. The T-pilus is likely to contribute to physical association with plant tissues during DNA transfer to plants. A. tumefaciens can synthesize a variety of polysaccharides including cellulose, curdlan (β-1,3 glucan), β-1,2 glucan (cyclic and linear), succinoglycan, and a localized polysaccharide(s) that is confined to a single cellular pole and is called the unipolar polysaccharide (UPP). Lipopolysaccharides are also in the outer leaflet of the outer membrane. Cellulose and curdlan production can influence attachment under certain conditions. The UPP is required for stable attachment under a range of conditions and on abiotic and biotic surfaces. Other factors that have been reported to play a role in attachment include the elusive protein called rhicadhesin. The process of surface attachment is under extensive regulatory control and can be modulated by environmental conditions, as well as by direct responses to surface contact. Complex transcriptional and post-transcriptional control circuitry underlies much of the production and deployment of these attachment functions.
Collapse
Affiliation(s)
- Melene A Thompson
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | | | - Clay Fuqua
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
3
|
Hwang HH, Yu M, Lai EM. Agrobacterium-mediated plant transformation: biology and applications. THE ARABIDOPSIS BOOK 2017; 15:e0186. [PMID: 31068763 PMCID: PMC6501860 DOI: 10.1199/tab.0186] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Plant genetic transformation heavily relies on the bacterial pathogen Agrobacterium tumefaciens as a powerful tool to deliver genes of interest into a host plant. Inside the plant nucleus, the transferred DNA is capable of integrating into the plant genome for inheritance to the next generation (i.e. stable transformation). Alternatively, the foreign DNA can transiently remain in the nucleus without integrating into the genome but still be transcribed to produce desirable gene products (i.e. transient transformation). From the discovery of A. tumefaciens to its wide application in plant biotechnology, numerous aspects of the interaction between A. tumefaciens and plants have been elucidated. This article aims to provide a comprehensive review of the biology and the applications of Agrobacterium-mediated plant transformation, which may be useful for both microbiologists and plant biologists who desire a better understanding of plant transformation, protein expression in plants, and plant-microbe interaction.
Collapse
Affiliation(s)
- Hau-Hsuan Hwang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, 402
| | - Manda Yu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, 115
| | - Erh-Min Lai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, 115
| |
Collapse
|
4
|
Das A, Das A. Delineation of polar localization domains of Agrobacterium tumefaciens type IV secretion apparatus proteins VirB4 and VirB11. Microbiologyopen 2014; 3:793-802. [PMID: 25220247 PMCID: PMC4234268 DOI: 10.1002/mbo3.208] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/12/2014] [Accepted: 07/22/2014] [Indexed: 11/16/2022] Open
Abstract
Agrobacterium tumefaciens transfers DNA and proteins to a plant cell through a type IV secretion apparatus assembled by the VirB proteins. All VirB proteins localized to a cell pole, although these conclusions are in dispute. To study subcellular location of the VirB proteins and to identify determinants of their subcellular location, we tagged two proteins, VirB4 and VirB11, with the visual marker green fluorescent protein (GFP) and studied localization of the fusion proteins by epifluorescence microscopy. Both GFP-VirB4 and GFP-VirB11 fusions localized to a single cell pole. GFP-VirB11 was also functional in DNA transfer. To identify the polar localization domains (PLDs) of VirB4 and VirB11, we analyzed fusions of GFP with smaller segments of the two proteins. Two noncontiguous regions in VirB4, residues 236–470 and 592–789, contain PLDs. The VirB11 PLD mapped to a 69 amino acid segment, residues 149–217, in the central region of the protein. These domains are probably involved in interactions that target the two proteins to a cell pole.
Collapse
Affiliation(s)
- Aditi Das
- Roseville Area High School, Roseville, Minnesota, 55113
| | | |
Collapse
|
5
|
Matthysse AG. Attachment of Agrobacterium to plant surfaces. FRONTIERS IN PLANT SCIENCE 2014; 5:252. [PMID: 24926300 PMCID: PMC4046570 DOI: 10.3389/fpls.2014.00252] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 05/16/2014] [Indexed: 05/23/2023]
Abstract
Agrobacterium tumefaciens binds to the surfaces of inanimate objects, plants, and fungi. These bacteria are excellent colonizers of root surfaces. In addition, they also bind to soil particles and to the surface of artificial or man-made substances, such as polyesters and plastics. The mechanisms of attachment to these different surfaces have not been completely elucidated. At least two types of binding have been described unipolarpolysaccharide-dependent polar attachment and unipolar polysaccharide-independent attachment (both polar and lateral). The genes encoding the enzymes for the production of the former are located on the circular chromosome, while the genes involved in the latter have not been identified. The expression of both of these types of attachment is regulated in response to environmental signals. However, the signals to which they respond differ so that the two types of attachment are not necessarily expressed coordinately.
Collapse
Affiliation(s)
- Ann G. Matthysse
- *Correspondence: Ann G. Matthysse, Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA e-mail:
| |
Collapse
|
6
|
Heindl JE, Wang Y, Heckel BC, Mohari B, Feirer N, Fuqua C. Mechanisms and regulation of surface interactions and biofilm formation in Agrobacterium. FRONTIERS IN PLANT SCIENCE 2014; 5:176. [PMID: 24834068 PMCID: PMC4018554 DOI: 10.3389/fpls.2014.00176] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 04/12/2014] [Indexed: 05/05/2023]
Abstract
For many pathogenic bacteria surface attachment is a required first step during host interactions. Attachment can proceed to invasion of host tissue or cells or to establishment of a multicellular bacterial community known as a biofilm. The transition from a unicellular, often motile, state to a sessile, multicellular, biofilm-associated state is one of the most important developmental decisions for bacteria. Agrobacterium tumefaciens genetically transforms plant cells by transfer and integration of a segment of plasmid-encoded transferred DNA (T-DNA) into the host genome, and has also been a valuable tool for plant geneticists. A. tumefaciens attaches to and forms a complex biofilm on a variety of biotic and abiotic substrates in vitro. Although rarely studied in situ, it is hypothesized that the biofilm state plays an important functional role in the ecology of this organism. Surface attachment, motility, and cell division are coordinated through a complex regulatory network that imparts an unexpected asymmetry to the A. tumefaciens life cycle. In this review, we describe the mechanisms by which A. tumefaciens associates with surfaces, and regulation of this process. We focus on the transition between flagellar-based motility and surface attachment, and on the composition, production, and secretion of multiple extracellular components that contribute to the biofilm matrix. Biofilm formation by A. tumefaciens is linked with virulence both mechanistically and through shared regulatory molecules. We detail our current understanding of these and other regulatory schemes, as well as the internal and external (environmental) cues mediating development of the biofilm state, including the second messenger cyclic-di-GMP, nutrient levels, and the role of the plant host in influencing attachment and biofilm formation. A. tumefaciens is an important model system contributing to our understanding of developmental transitions, bacterial cell biology, and biofilm formation.
Collapse
Affiliation(s)
| | | | | | | | | | - Clay Fuqua
- Department of Biology, Indiana University, BloomingtonIN, USA
| |
Collapse
|
7
|
Zhang WJ, Dewey RE, Boss W, Phillippy BQ, Qu R. Enhanced Agrobacterium-mediated transformation efficiencies in monocot cells is associated with attenuated defense responses. PLANT MOLECULAR BIOLOGY 2013; 81:273-286. [PMID: 23242917 DOI: 10.1007/s11103-012-9997-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 12/06/2012] [Indexed: 05/27/2023]
Abstract
Plant defense responses can lead to altered metabolism and even cell death at the sites of Agrobacterium infection, and thus lower transformation frequencies. In this report, we demonstrate that the utilization of culture conditions associated with an attenuation of defense responses in monocot plant cells led to highly improved Agrobacterium-mediated transformation efficiencies in perennial ryegrass (Lolium perenne L.). The removal of myo-inositol from the callus culture media in combination with a cold shock pretreatment and the addition of L-Gln prior to and during Agrobacterium-infection resulted in about 84 % of the treated calluses being stably transformed. The omission of myo-inositol from the callus culture media was associated with the failure of certain pathogenesis related genes to be induced after Agrobacterium infection. The addition of a cold shock and supplemental Gln appeared to have synergistic effects on infection and transformation efficiencies. Nearly 60 % of the stably transformed calluses regenerated into green plantlets. Calluses cultured on media lacking myo-inositol also displayed profound physiological and biochemical changes compared to ones cultured on standard growth media, such as reduced lignin within the cell walls, increased starch and inositol hexaphosphate accumulation, enhanced Agrobacterium binding to the cell surface, and less H(2)O(2) production after Agrobacterium infection. Furthermore, the cold treatment greatly reduced callus browning after infection. The simple modifications described in this report may have broad application for improving genetic transformation of recalcitrant monocot species.
Collapse
Affiliation(s)
- Wan-Jun Zhang
- Department of Grassland Science, China Agricultural University, Beijing 100193, China.
| | | | | | | | | |
Collapse
|
8
|
Lacroix B, Citovsky V. The roles of bacterial and host plant factors in Agrobacterium-mediated genetic transformation. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2013. [PMID: 24166430 DOI: 10.1387/ijdb.130199b1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The genetic transformation of plants mediated by Agrobacterium tumefaciens represents an essential tool for both fundamental and applied research in plant biology. For a successful infection, culminating in the integration of its transferred DNA (T-DNA) into the host genome, Agrobacterium relies on multiple interactions with host-plant factors. Extensive studies have unraveled many of such interactions at all major steps of the infection process: activation of the bacterial virulence genes, cell-cell contact and macromolecular translocation from Agrobacterium to host cell cytoplasm, intracellular transit of T-DNA and associated proteins (T-complex) to the host cell nucleus, disassembly of the T-complex, T-DNA integration, and expression of the transferred genes. During all these processes, Agrobacterium has evolved to control and even utilize several pathways of host-plant defense response. Studies of these Agrobacterium-host interactions substantially enhance our understanding of many fundamental cellular biological processes and allow improvements in the use of Agrobacterium as a gene transfer tool for biotechnology.
Collapse
Affiliation(s)
- Benoît Lacroix
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY, USA.
| | | |
Collapse
|
9
|
Rosen R, Matthysse AG, Becher D, Biran D, Yura T, Hecker M, Ron EZ. Proteome analysis of plant-induced proteins of Agrobacterium tumefaciens. FEMS Microbiol Ecol 2012; 44:355-60. [PMID: 19719616 DOI: 10.1016/s0168-6496(03)00077-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Abstract A proteome study of Agrobacterium tumefaciens exposed to plant roots demonstrated the existence of a plant-dependent stimulon. This stimulon was induced by exposure to cut roots and consists of at least 30 soluble proteins (pI 4-7), including several proteins whose involvement in agrobacteria-host interactions has not been previously reported. Exposure of the bacteria to tomato roots also resulted in modification of the proteins: Ribosomal Protein L19, GroEL, AttM, and ChvE, indicating the significance of protein modifications in the interactions of agrobacteria with plants.
Collapse
Affiliation(s)
- Ran Rosen
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | | | | | | | | | | | | |
Collapse
|
10
|
Simmons CW, Nitin N, Vandergheynst JS. Rapid, in situ detection of Agrobacterium tumefaciens attachment to leaf tissue. Biotechnol Prog 2012; 28:1321-8. [PMID: 22848046 DOI: 10.1002/btpr.1608] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 07/06/2012] [Indexed: 11/07/2022]
Abstract
Attachment of the plant pathogen Agrobacterium tumefaciens to host plant cells is an early and necessary step in plant transformation and agroinfiltration processes. However, bacterial attachment behavior is not well understood in complex plant tissues. Here we developed an imaging-based method to observe and quantify A. tumefaciens attached to leaf tissue in situ. Fluorescent labeling of bacteria with nucleic acid, protein, and vital dyes was investigated as a rapid alternative to generating recombinant strains expressing fluorescent proteins. Syto 16 green fluorescent nucleic acid stain was found to yield the greatest signal intensity in stained bacteria without affecting viability or infectivity. Stained bacteria retained the stain and were detectable over 72 h. To demonstrate in situ detection of attached bacteria, confocal fluorescent microscopy was used to image A. tumefaciens in sections of lettuce leaf tissue following vacuum-infiltration with labeled bacteria. Bacterial signals were associated with plant cell surfaces, suggesting detection of bacteria attached to plant cells. Bacterial attachment to specific leaf tissues was in agreement with known leaf tissue competencies for transformation with Agrobacterium. Levels of bacteria attached to leaf cells were quantified over time post-infiltration. Signals from stained bacteria were stable over the first 24 h following infiltration but decreased in intensity as bacteria multiplied in planta. Nucleic acid staining of A. tumefaciens followed by confocal microscopy of infected leaf tissue offers a rapid, in situ method for evaluating attachment of A. tumefaciens' to plant expression hosts and a tool to facilitate management of transient expression processes via agroinfiltration.
Collapse
Affiliation(s)
- Christopher W Simmons
- Dept of Biological and Agricultural Engineering, University of California, Davis, One Shields Avenue, Davis, CA, USA
| | | | | |
Collapse
|
11
|
Dorken G, Ferguson GP, French CE, Poon WCK. Aggregation by depletion attraction in cultures of bacteria producing exopolysaccharide. J R Soc Interface 2012; 9:3490-502. [PMID: 22896568 DOI: 10.1098/rsif.2012.0498] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In bacteria, the production of exopolysaccharides--polysaccharides secreted by the cells into their growth medium--is integral to the formation of aggregates and biofilms. These exopolysaccharides often form part of a matrix that holds the cells together. Investigating the bacterium Sinorhizobium meliloti, we found that a mutant that overproduces the exopolysaccharide succinoglycan showed enhanced aggregation, resulting in phase separation of the cultures. However, the aggregates did not appear to be covered in polysaccharides. Succinoglycan purified from cultures was applied to different concentrations of cells, and observation of the phase behaviour showed that the limiting polymer concentration for aggregation and phase separation to occur decreased with increasing cell concentration, suggesting a 'crowding mechanism' was occurring. We suggest that, as found in colloidal dispersions, the presence of a non-adsorbing polymer in the form of the exopolysaccharide succinoglycan drives aggregation of S. meliloti by depletion attraction. This force leads to self-organization of the bacteria into small clusters of laterally aligned cells, and, furthermore, leads to aggregates clustering into biofilm-like structures on a surface.
Collapse
Affiliation(s)
- Gary Dorken
- Institute of Structural and Molecular Biology, School of Biological Sciences, University of Edinburgh, Darwin Building, Mayfield Road, Edinburgh EH9 3JR, UK
| | | | | | | |
Collapse
|
12
|
Role for Rhizobium rhizogenes K84 cell envelope polysaccharides in surface interactions. Appl Environ Microbiol 2011; 78:1644-51. [PMID: 22210213 DOI: 10.1128/aem.07117-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Rhizobium rhizogenes strain K84 is a commercial biocontrol agent used worldwide to control crown gall disease. The organism binds tightly to polypropylene substrate and efficiently colonizes root surfaces as complex, multilayered biofilms. A genetic screen identified two mutants in which these surface interactions were affected. One of these mutants failed to attach and form biofilms on the abiotic surface although, interestingly, it exhibited normal biofilm formation on the biological root tip surface. This mutant is disrupted in a wcbD ortholog gene, which is part of a large locus predicted to encode functions for the biosynthesis and export of a group II capsular polysaccharide (CPS). Expression of a functional copy of wcbD in the mutant background restored the ability of the bacteria to attach and form normal biofilms on the abiotic surface. The second identified mutant attached and formed visibly denser biofilms on both abiotic and root tip surfaces. This mutant is disrupted in the rkpK gene, which is predicted to encode a UDP-glucose 6-dehydrogenase required for O-antigen lipopolysaccharide (LPS) and K-antigen capsular polysaccharide (KPS) biosynthesis in rhizobia. The rkpK mutant from strain K84 was deficient in O-antigen synthesis and exclusively produced rough LPS. We also show that strain K84 does not synthesize the KPS typical of some other rhizobia strains. In addition, we identified a putative type II CPS, distinct from KPS, that mediates cell-surface interactions, and we show that O antigen of strain K84 is necessary for normal cell-cell interactions in the biofilms.
Collapse
|
13
|
Aguilar J, Cameron TA, Zupan J, Zambryski P. Membrane and core periplasmic Agrobacterium tumefaciens virulence Type IV secretion system components localize to multiple sites around the bacterial perimeter during lateral attachment to plant cells. mBio 2011; 2:e00218-11. [PMID: 22027007 PMCID: PMC3202754 DOI: 10.1128/mbio.00218-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 09/30/2011] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Type IV secretion systems (T4SS) transfer DNA and/or proteins into recipient cells. Here we performed immunofluorescence deconvolution microscopy to localize the assembled T4SS by detection of its native components VirB1, VirB2, VirB4, VirB5, VirB7, VirB8, VirB9, VirB10, and VirB11 in the C58 nopaline strain of Agrobacterium tumefaciens, following induction of virulence (vir) gene expression. These different proteins represent T4SS components spanning the inner membrane, periplasm, or outer membrane. Native VirB2, VirB5, VirB7, and VirB8 were also localized in the A. tumefaciens octopine strain A348. Quantitative analyses of the localization of all the above Vir proteins in nopaline and octopine strains revealed multiple foci in single optical sections in over 80% and 70% of the bacterial cells, respectively. Green fluorescent protein (GFP)-VirB8 expression following vir induction was used to monitor bacterial binding to live host plant cells; bacteria bind predominantly along their lengths, with few bacteria binding via their poles or subpoles. vir-induced attachment-defective bacteria or bacteria without the Ti plasmid do not bind to plant cells. These data support a model where multiple vir-T4SS around the perimeter of the bacterium maximize effective contact with the host to facilitate efficient transfer of DNA and protein substrates. IMPORTANCE Transfer of DNA and/or proteins to host cells through multiprotein type IV secretion system (T4SS) complexes that span the bacterial cell envelope is critical to bacterial pathogenesis. Early reports suggested that T4SS components localized at the cell poles. Now, higher-resolution deconvolution fluorescence microscopy reveals that all structural components of the Agrobacterium tumefaciens vir-T4SS, as well as its transported protein substrates, localize to multiple foci around the cell perimeter. These results lead to a new model of A. tumefaciens attachment to a plant cell, where A. tumefaciens takes advantage of the multiple vir-T4SS along its length to make intimate lateral contact with plant cells and thereby effectively transfer DNA and/or proteins through the vir-T4SS. The T4SS of A. tumefaciens is among the best-studied T4SS, and the majority of its components are highly conserved in different pathogenic bacterial species. Thus, the results presented can be applied to a broad range of pathogens that utilize T4SS.
Collapse
Affiliation(s)
- Julieta Aguilar
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | | | | | | |
Collapse
|
14
|
Matthysse AG. Effect of Plasmid pSa and of Auxin on Attachment of Agrobacterium tumefaciens to Carrot Cells. Appl Environ Microbiol 2010; 53:2574-82. [PMID: 16347473 PMCID: PMC204148 DOI: 10.1128/aem.53.10.2574-2582.1987] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When the plasmid pSa is introduced into Agrobacterium tumefaciens, its presence results in the suppression of bacterial virulence. A. tumefaciens(pSa) cells are virulent on Bryophyllum diagremontiana only when inoculated with auxin. A. tumefaciens(pSa) cells also bind to plant cells only in the presence of auxin. The effect of auxin is on the bacteria rather than on the plant cells, since the bacteria require auxin to bind to heat-killed carrot cells. Bacteria containing pSa and grown in the absence of auxin showed a lag in binding to carrot cells in auxin-containing medium. This lag was not seen during the binding of wild-type strains. Tetracycline inhibited the binding of A. tumefaciens(pSa) in auxin-containing medium, suggesting that bacterial protein synthesis is required for the auxin effect. No difference was seen in the size or ability to inhibit bacterial binding of lipopolysaccharides from bacteria containing or lacking pSa and grown with or without auxin. A. tumefaciens(pSa) cells grown in the absence of auxin lacked surface polypeptide(s) found in bacteria grown in the presence of auxin and in the wild-type bacteria, which do not contain pSa. Thus, the presence of certain polypeptides appears to be associated with the ability of the bacteria to bind to plant cells.
Collapse
Affiliation(s)
- A G Matthysse
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27514
| |
Collapse
|
15
|
Macrae S, Thomson JA, Van Staden J. Colonization of Tomato Plants by Two Agrocin-Producing Strains of Agrobacterium tumefaciens. Appl Environ Microbiol 2010; 54:3133-7. [PMID: 16347802 PMCID: PMC204438 DOI: 10.1128/aem.54.12.3133-3137.1988] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For a bacterium to be a successful biocontrol agent against crown gall disease, it must produce an effective agrocin specific for Agrobacterium tumefaciens and be able to colonize host plants efficiently. The colonization abilities of K84 and J73, successful and potential biocontrolling strains, respectively, were compared both in vivo and in vitro. Both strains produced fibrils attaching them to tomato root surfaces and had similar colonization efficiencies up to 14 days after inoculation. However, the ability of J73 to colonize plants for longer periods was significantly less than that of K84. Thus, the presence of fibrils is not sufficient to ensure colonization. No correlation was found between hydrophobicity and colonization.
Collapse
Affiliation(s)
- S Macrae
- Council for Scientific and Industrial Research, Division of Processing and Chemical Manufacturing Technology, P.O. Box 395, Pretoria 0001, University of Natal Council for Scientific and Industrial Research Unit for Plant Growth and Development, Department of Botany, University of Natal, Pietermaritzburg 3200, and Department of Microbiology, University of Cape Town, Rondebosch 7700, South Africa
| | | | | |
Collapse
|
16
|
Abstract
Coxiella burnetii is a Gram-negative pleomorphic bacterium and the causative agent of Q fever. During infection, the pathogen survives and replicates within a phagosome-like parasitophorous vacuole while influencing cellular functions throughout the host cell, indicating a capacity for effector protein secretion. Analysis of the C. burnetii (RSA 493 strain) genome sequence indicates that C. burnetii contains genes with homology to the Legionella pneumophila Dot/Icm type IVB secretion system (T4BSS). T4BSSs have only been described in L. pneumophila and C. burnetii, marking it a unique virulence determinate. Characterization of bacterial virulence determinants ranging from autotransporter proteins to diverse secretion systems suggests that polar localization may be a virulence mechanism hallmark. To characterize T4BSS subcellular localization in C. burnetii, we analyzed C. burnetii-infected Vero cells by indirect immunofluorescent antibody (IFA) and immunoelectron microscopy (IEM). Using antibodies against the C. burnetii T4BSS homologs IcmT, IcmV, and DotH, IFA show that these proteins are localized to the poles of the bacterium. IEM supports this finding, showing that antibodies against C. burnetii IcmT and DotH preferentially localize to the bacterial cell pole(s). Together, these data demonstrate that the C. burnetii T4BSS localizes to the pole(s) of the bacterium during infection of host cells.
Collapse
Affiliation(s)
- J. Kent Morgan
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078
| | - Brandon E. Luedtke
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078
| | - Edward I. Shaw
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078
| |
Collapse
|
17
|
Abstract
This chapter describes a rapid and efficient protocol for explant preparation and genetic transformation of carnation. Node explants from greenhouse-grown plants and leaf explants from in vitro plants are infected with Agrobacterium tumefaciens AGL0 harboring pKT3 plasmid, consisting of GUS and NPTII genes. Explant preparation is an important factor to obtain the transformed plants. The GUS-staining area was located only on the cut end of explants and only explants with a cut end close to the connecting area between node and leaf, produced transformed shoots. The cocultivation medium is also an important factor for the successful genetic transformation of carnation node and leaf explants. High genetic transformation efficiency of node and leaf explants cocultured with Agrobacterium tumefaciens was achieved when the explants were cocultivated on a filter paper soaked with water or water and acetosyringone mixture (AS).
Collapse
Affiliation(s)
- Chalermsri Nontaswatsri
- Department of Horticulture, Faculty of Agricultural Production, Maejo University, Chiangmai, Thailand
| | | |
Collapse
|
18
|
Gelvin SB. Plant proteins involved in Agrobacterium-mediated genetic transformation. ANNUAL REVIEW OF PHYTOPATHOLOGY 2010; 48:45-68. [PMID: 20337518 DOI: 10.1146/annurev-phyto-080508-081852] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Agrobacterium species genetically transform plants by transferring a region of plasmid DNA, T-DNA, into host plant cells. The bacteria also transfer several virulence effector proteins. T-DNA and virulence proteins presumably form T-complexes within the plant cell. Super-T-complexes likely also form by interaction of plant-encoded proteins with T-complexes. These protein-nucleic acid complexes traffic through the plant cytoplasm, enter the nucleus, and eventually deliver T-DNA to plant chromatin. Integration of T-DNA into the plant genome establishes a permanent transformation event, permitting stable expression of T-DNA-encoded transgenes. The transformation process is complex and requires participation of numerous plant proteins. This review discusses our current knowledge of plant proteins that contribute to Agrobacterium-mediated transformation, the roles these proteins play in the transformation process, and the modern technologies that have been employed to elucidate the cell biology of transformation.
Collapse
Affiliation(s)
- Stanton B Gelvin
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392, USA.
| |
Collapse
|
19
|
Clauce-Coupel H, Chateau S, Ducrocq C, Niot V, Kaveri S, Dubois F, Sangwan-Norreel B, Sangwan RS. Role of vitronectin-like protein in Agrobacterium attachment and transformation of Arabidopsis cells. PROTOPLASMA 2008; 234:65-75. [PMID: 18841324 DOI: 10.1007/s00709-008-0022-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 07/19/2008] [Indexed: 05/26/2023]
Abstract
The role of plant vitronectin-like protein (Vn) in Agrobacterium-host plant interactions and receptor-specific bacterial attachment is unclear and still open to debate. Using a well-established Agrobacterium-mediated Arabidopsis transformation system, the marker gene beta-glucuronidase (GUS) of Escherichia coli, and biochemical and cytological methods, such as ELISA tests, immunoblots, immunolocalization, and functional in vitro binding assays, we have reassessed the role of Vn in receptor-specific bacterial attachment and transformation. We provide evidence that Vn is present in the host plant cells and anti-human vitronectin antibody cross-reacts with a 65-kDa protein from Arabidopsis cells. The specificity of the immunological cross-reactivity of anti-vitronectin antibodies was further demonstrated by ELISA competition experiments. Immunogold labeling showed that Vn is localized in the plant cell wall, and its level increased considerably after phytohormone treatment of the petiole explants. However, Agrobacterium attachment was unaffected, and no inhibition of petiole cell transformation was detected in the presence of human vitronectin and anti-vitronectin antibodies in the media. Additionally, no correlation between the occurrence of Vn, attachment of bacteria to the cells, and susceptibility to Agrobacterium-mediated transformation was observed. Taken together, our data do not support a functional role of plant Vn as the receptor for site-specific Agrobacterium attachment leading to the transformation of Arabidopsis cells.
Collapse
|
20
|
Smith TG, Lim JM, Weinberg MV, Wells L, Hoover TR. Direct analysis of the extracellular proteome from two strains of Helicobacter pylori. Proteomics 2007; 7:2240-5. [PMID: 17533641 DOI: 10.1002/pmic.200600875] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Helicobacter pylori extracellular proteins are of interest because of possible roles in pathogenesis, host recognition, and vaccine development. We utilized a unique approach by growing two strains (including one nonsequenced strain) in a defined serum-free medium and directly analyzing the proteins present in the culture supernatants by LC-MS/MS. Over 125 proteins were identified in the extracellular proteomes of two H. pylori strains. Forty-five of these proteins were enriched in the extracellular fraction when compared to soluble cell-associated protein samples. Our analysis confirmed and expanded on the previously reported H. pylori extracellular proteome. Extracellular proteins of interest identified here included cag pathogenicity island protein Cag24 (CagD); proteases HP0657 and HP1012; a polysaccharide deacetylase, HP0310, possibly involved in the hydrolysis of acetyl groups from host N-acetylglucosamine residues or from residues on the cell surface; and HP0953, an uncharacterized protein that appears to be restricted to Helicobacter species that colonize the gastric mucosa. In addition, our analysis found eight previously unidentified outer membrane proteins and two lipoproteins that could be important cell surface proteins.
Collapse
Affiliation(s)
- Todd G Smith
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | |
Collapse
|
21
|
Wang K, Kang L, Anand A, Lazarovits G, Mysore KS. Monitoring in planta bacterial infection at both cellular and whole-plant levels using the green fluorescent protein variant GFPuv. THE NEW PHYTOLOGIST 2007; 174:212-223. [PMID: 17335510 DOI: 10.1111/j.1469-8137.2007.01999.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
* Green fluorescent protein (GFP) labeling of bacteria has been used to study their infection of and localization in plants, but strong autofluorescence from leaves and the relatively weak green fluorescence of GFP-labeled bacteria restrict its broader application to investigations of plant-bacterial interactions. * A stable and broad-host-range plasmid vector (pDSK-GFPuv) that strongly expresses GFPuv protein was constructed not only for in vivo monitoring of bacterial infection, localization, activity, and movement at the cellular level under fluorescence microscopy, but also for monitoring bacterial disease development at the whole-plant level under long-wavelength ultraviolet (UV) light. * The presence of pDSK-GFPuv did not have significant impact on the in vitro or in planta growth and virulence of phytobacteria. A good correlation between bacterial cell number and fluorescence intensity was observed, which allowed us to rapidly estimate the bacterial population in plant leaf tissue. We demonstrated that GFPuv-expressing bacteria can be used to screen plants that are compromised for nonhost disease resistance and Agrobacterium attachment. * The use of GFPuv-labeled bacteria has a wide range of applications in host-bacterial interaction studies and bacterial ecology-related research.
Collapse
Affiliation(s)
- Keri Wang
- Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - Li Kang
- Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - Ajith Anand
- Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - George Lazarovits
- Southern Crop Protection and Food Research Center, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada
| | - Kirankumar S Mysore
- Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| |
Collapse
|
22
|
Anand A, Vaghchhipawala Z, Ryu CM, Kang L, Wang K, del-Pozo O, Martin GB, Mysore KS. Identification and characterization of plant genes involved in Agrobacterium-mediated plant transformation by virus-induced gene silencing. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:41-52. [PMID: 17249421 DOI: 10.1094/mpmi-20-0041] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Genetic transformation of plant cells by Agrobacterium tumefaciens represents a unique case of trans-kingdom sex requiring the involvement of both bacterial virulence proteins and plant-encoded proteins. We have developed in planta and leaf-disk assays in Nicotiana benthamiana for identifying plant genes involved in Agrobacterium-mediated plant transformation using virus-induced gene silencing (VIGS) as a genomics tool. VIGS was used to validate the role of several genes that are either known or speculated to be involved in Agrobacterium-mediated plant transformation. We showed the involvement of a nodulin-like protein and an alpha-expansin protein (alpha-Exp) during Agrobacterium infection. Our data suggest that alpha-Exp is involved during early events of Agrobacterium-mediated transformation but not required for attaching A. tumefaciens. By employing the combination of the VIGS-mediated forward genetics approach and an in planta tumorigenesis assay, we identified 21 ACG (altered crown gall) genes that, when silenced, produced altered crown gall phenotypes upon infection with a tumorigenic strain of A. tumefaciens. One of the plant genes identified from the screening, Histone H3 (H3), was further characterized for its biological role in Agrobacterium-mediated plant transformation. We provide evidence for the role of H3 in transfer DNA integration. The data presented here suggest that the VIGS-based approach to identify and characterize plant genes involved in genetic transformation of plant cells by A. tumefaciens is simple, rapid, and robust and complements other currently used approaches.
Collapse
Affiliation(s)
- Ajith Anand
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, OK 73402, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
McCullen CA, Binns AN. Agrobacterium tumefaciens and plant cell interactions and activities required for interkingdom macromolecular transfer. Annu Rev Cell Dev Biol 2006; 22:101-27. [PMID: 16709150 DOI: 10.1146/annurev.cellbio.22.011105.102022] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Host recognition and macromolecular transfer of virulence-mediating effectors represent critical steps in the successful transformation of plant cells by Agrobacterium tumefaciens. This review focuses on bacterial and plant-encoded components that interact to mediate these two processes. First, we examine the means by which Agrobacterium recognizes the host, via both diffusible plant-derived chemicals and cell-cell contact, with emphasis on the mechanisms by which multiple host signals are recognized and activate the virulence process. Second, we characterize the recognition and transfer of protein and protein-DNA complexes through the bacterial and plant cell membrane and wall barriers, emphasizing the central role of a type IV secretion system-the VirB complex-in this process.
Collapse
Affiliation(s)
- Colleen A McCullen
- Department of Biology and Plant Sciences Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018, USA
| | | |
Collapse
|
24
|
Christie PJ, Atmakuri K, Krishnamoorthy V, Jakubowski S, Cascales E. Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu Rev Microbiol 2006; 59:451-85. [PMID: 16153176 PMCID: PMC3872966 DOI: 10.1146/annurev.micro.58.030603.123630] [Citation(s) in RCA: 483] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Type IV secretion (T4S) systems are ancestrally related to bacterial conjugation machines. These systems assemble as a translocation channel, and often also as a surface filament or protein adhesin, at the envelopes of Gram-negative and Gram-positive bacteria. These organelles mediate the transfer of DNA and protein substrates to phylogenetically diverse prokaryotic and eukaryotic target cells. Many basic features of T4S are known, including structures of machine subunits, steps of machine assembly, substrates and substrate recognition mechanisms, and cellular consequences of substrate translocation. A recent advancement also has enabled definition of the translocation route for a DNA substrate through a T4S system of a Gram-negative bacterium. This review emphasizes the dynamics of assembly and function of model conjugation systems and the Agrobacterium tumefaciens VirB/D4 T4S system. We also summarize salient features of the increasingly studied effector translocator systems of mammalian pathogens.
Collapse
Affiliation(s)
- Peter J Christie
- Department of Microbiology and Molecular Genetics, UT-Houston Medical School, Houston, Texas 77030, USA.
| | | | | | | | | |
Collapse
|
25
|
Schröder G, Lanka E. The mating pair formation system of conjugative plasmids-A versatile secretion machinery for transfer of proteins and DNA. Plasmid 2005; 54:1-25. [PMID: 15907535 DOI: 10.1016/j.plasmid.2005.02.001] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Revised: 02/21/2005] [Accepted: 02/23/2005] [Indexed: 10/25/2022]
Abstract
The mating pair formation (Mpf) system functions as a secretion machinery for intercellular DNA transfer during bacterial conjugation. The components of the Mpf system, comprising a minimal set of 10 conserved proteins, form a membrane-spanning protein complex and a surface-exposed sex pilus, which both serve to establish intimate physical contacts with a recipient bacterium. To function as a DNA secretion apparatus the Mpf complex additionally requires the coupling protein (CP). The CP interacts with the DNA substrate and couples it to the secretion pore formed by the Mpf system. Mpf/CP conjugation systems belong to the family of type IV secretion systems (T4SS), which also includes DNA-uptake and -release systems, as well as effector protein translocation systems of bacterial pathogens such as Agrobacterium tumefaciens (VirB/VirD4) and Helicobacter pylori (Cag). The increased efforts to unravel the molecular mechanisms of type IV secretion have largely advanced our current understanding of the Mpf/CP system of bacterial conjugation systems. It has become apparent that proteins coupled to DNA rather than DNA itself are the actively transported substrates during bacterial conjugation. We here present a unified and updated view of the functioning and the molecular architecture of the Mpf/CP machinery.
Collapse
Affiliation(s)
- Gunnar Schröder
- Division of Molecular Microbiology, Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland.
| | | |
Collapse
|
26
|
Matthysse AG, Marry M, Krall L, Kaye M, Ramey BE, Fuqua C, White AR. The effect of cellulose overproduction on binding and biofilm formation on roots by Agrobacterium tumefaciens. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:1002-10. [PMID: 16167770 DOI: 10.1094/mpmi-18-1002] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Agrobacterium tumefaciens growing in liquid attaches to the surface of tomato and Arabidopsis thaliana roots, forming a biofilm. The bacteria also colonize roots grown in sterile quartz sand. Attachment, root colonization, and biofilm formation all were markedly reduced in celA and chvB mutants, deficient in production of cellulose and cyclic beta-(1,2)-D-glucans, respectively. We have identified two genes (celG and cell) in which mutations result in the overproduction of cellulose as judged by chemical fractionation and methylation analysis. Wild-type and chvB mutant strains carrying a cDNA clone of a cellulose synthase gene from the marine urochordate Ciona savignyi also overproduced cellulose. The overproduction in a wild-type strain resulted in increased biofilm formation on roots, as evaluated by light microscopy, and levels of root colonization intermediate between those of cellulose-minus mutants and the wild type. Overproduction of cellulose by a nonattaching chvB mutant restored biofilm formation and bacterial attachment in microscopic and viable cell count assays and partially restored root colonization. Although attachment to plant surfaces was restored, overproduction of cellulose did not restore virulence in the chvB mutant strain, suggesting that simple bacterial binding to plant surfaces is not sufficient for pathogenesis.
Collapse
Affiliation(s)
- Ann G Matthysse
- University of North Carolina, Department of Biology, Chapel Hill 27599-3280, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Judd PK, Kumar RB, Das A. Spatial location and requirements for the assembly of the Agrobacterium tumefaciens type IV secretion apparatus. Proc Natl Acad Sci U S A 2005; 102:11498-503. [PMID: 16076948 PMCID: PMC1183602 DOI: 10.1073/pnas.0505290102] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Indexed: 12/27/2022] Open
Abstract
Type IV secretion is used by pathogenic microorganisms to transfer effector macromolecules to eukaryotic target cells. The VirB/D4 apparatus of Agrobacterium tumefaciens transfers DNA and proteins to plant cells. We postulated that the cell pole is the site of assembly of the A. tumefaciens type IV apparatus. Using immunofluorescence microscopy, we now demonstrate that 10 of the VirB proteins localized primarily to one cell pole and a macromolecular VirB complex is assembled at the pole. Neither the assembly of the complex nor polar localization of a VirB protein requires ATP utilization by the VirB ATPases. The requirement of other VirB proteins for the polar localization of at least six VirB proteins indicates an essential role of protein-protein interaction in polar targeting. Four proteins (VirB3, VirB4, VirB8, and VirB11) could target themselves to a cell pole independent of a VirB protein. We provide evidence that VirB6-VirB10 are the structural components of the type IV apparatus. Using strains that express defined subsets of the virB genes, we demonstrate that VirB7-VirB10 are the minimum components sufficient for the assembly of a polar VirB complex. VirB6 associates with this complex to form the type IV secretion apparatus. VirB8 functions as the assembly factor and targets the apparatus to the cell pole.
Collapse
Affiliation(s)
- Paul K Judd
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
28
|
Michielse CB, Hooykaas PJJ, van den Hondel CAMJJ, Ram AFJ. Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Curr Genet 2005; 48:1-17. [PMID: 15889258 DOI: 10.1007/s00294-005-0578-0] [Citation(s) in RCA: 339] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Revised: 03/10/2005] [Accepted: 03/26/2005] [Indexed: 11/27/2022]
Abstract
In the era of functional genomics, the need for tools to perform large-scale targeted and random mutagenesis is increasing. A potential tool is Agrobacterium-mediated fungal transformation. A. tumefaciens is able to transfer a part of its DNA (transferred DNA; T-DNA) to a wide variety of fungi and the number of fungi that can be transformed by Agrobacterium-mediated transformation (AMT) is still increasing. AMT has especially opened the field of molecular genetics for fungi that were difficult to transform with traditional methods or for which the traditional protocols failed to yield stable DNA integration. Because of the simplicity and efficiency of transformation via A. tumefaciens, it is relatively easy to generate a large number of stable transformants. In combination with the finding that the T-DNA integrates randomly and predominantly as a single copy, AMT is well suited to perform insertional mutagenesis in fungi. In addition, in various gene-targeting experiments, high homologous recombination frequencies were obtained, indicating that the T-DNA is also a useful substrate for targeted mutagenesis. In this review, we discuss the potential of the Agrobacterium DNA transfer system to be used as a tool for targeted and random mutagenesis in fungi.
Collapse
Affiliation(s)
- Caroline B Michielse
- Institute of Biology, Clusius Laboratory, Fungal Genetics Research Group, Leiden University, Wassenaarseweg 64, 2333 AL, Leiden, The Netherlands
| | | | | | | |
Collapse
|
29
|
Llosa M, O'Callaghan D. Euroconference on the Biology of Type IV Secretion Processes: bacterial gates into the outer world. Mol Microbiol 2004; 53:1-8. [PMID: 15225298 DOI: 10.1111/j.1365-2958.2004.04168.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Type IV secretion systems (T4SSs) mediate both protein and ssDNA secretion from a wide range of bacteria into virtually any cell type or into the milieu. It is this versatility that confers on them the ability to participate in many processes of bacterial life that imply communication with their environment. Type IV secretion systems are involved in horizontal DNA transfer to other bacteria and to plant cells, in DNA uptake from the milieu, in toxin secretion into the milieu, and in the injection of virulence factors into the eukaryotic host cell in a number of mammalian and plant pathogens. Recently, a EuroConference addressed the different aspects of the biology of these transmembrane multiprotein complexes, from the crystal structure of the individual components to the modification that the secreted substrates induce in the recipient cell. Significant progress has been made in the understanding of the molecular architecture and mechanism of secretion. The analysis of protein-protein interactions confirms the role of coupling proteins as substrate recruiters for the transporter. The VirB10 component of the complex has come up as a strong candidate for signal transducer. The wide range of effects on the recipient suggests that many effector proteins are secreted. New effector proteins are being identified for both plant and animal pathogens, as are their targets within the host cells. New T4SS members are being identified that perform novel roles, beyond DNA transfer and virulence, such as establishment of symbiotic processes. Our current knowledge of the Biology of Type IV Secretion Processes increases our ability to exploit them as biotechnological tools or to use them as new targets for inhibitors that could constitute a new generation of antimicrobials in the near future.
Collapse
Affiliation(s)
- Matxalen Llosa
- Departamento de Biología Molecular (Unidad Asociada al CIB-CSIC), Universidad de Cantabria, C. Herrera Oria s/n, 39011 Santander, Spain
| | | |
Collapse
|
30
|
Judd PK, Kumar RB, Das A. The type IV secretion apparatus protein VirB6 of Agrobacterium tumefaciens localizes to a cell pole. Mol Microbiol 2004; 55:115-24. [PMID: 15612921 DOI: 10.1111/j.1365-2958.2004.04378.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Agrobacterium tumefaciens VirB proteins assemble a type IV secretion apparatus for the transfer of DNA and proteins to plant cells. To study the role of the VirB6 protein in the assembly and function of the type IV apparatus, we determined its subcellular location by immunofluorescence microscopy. In wild-type bacteria VirB6 localized to the cell poles but in the absence of the tumour-inducing plasmid it localized to random sites on the cell membranes. Five of the 11 VirB proteins, VirB7-VirB11, are required for the polar localization of VirB6. We identified two regions of VirB6, a conserved tryptophan residue at position 197 and the extreme C-terminus, that are essential for its polar localization. Topology determination by PhoA fusion analysis placed both regions in the cell cytoplasm. Alteration of tryptophan 197 or the deletion of the extreme C-terminus led to the mislocalization of the mutant protein. The mutations abolished the DNA transfer function of the protein as well. The C-terminus of VirB6, in silico, can form an amphipathic helix that may encode a protein-protein interaction domain essential for targeting the protein to a cell pole. We previously reported that another DNA transfer protein, VirD4, localizes to a cell pole. To determine whether VirB6 and VirD4 localize to the same pole, we performed colocalization experiments. Both proteins localized to the same pole indicating that VirB6 and VirD4 are in close proximity and VirB6 is probably a component of the transport apparatus.
Collapse
Affiliation(s)
- Paul K Judd
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
31
|
Danhorn T, Hentzer M, Givskov M, Parsek MR, Fuqua C. Phosphorus limitation enhances biofilm formation of the plant pathogen Agrobacterium tumefaciens through the PhoR-PhoB regulatory system. J Bacteriol 2004; 186:4492-501. [PMID: 15231781 PMCID: PMC438617 DOI: 10.1128/jb.186.14.4492-4501.2004] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2003] [Accepted: 02/26/2004] [Indexed: 11/20/2022] Open
Abstract
The plant pathogen Agrobacterium tumefaciens forms architecturally complex biofilms on inert surfaces. Adherence of A. tumefaciens C58 was significantly enhanced under phosphate limitation compared to phosphate-replete conditions, despite slower overall growth under low-phosphate conditions. Replacement of Pi with sn-glycerol-3-phosphate and 2-aminoethylphosphonate yielded similar results. The increase in surface interactions under phosphate limitation was observed in both static culture and continuous-culture flow cells. Statistical analysis of confocal micrographs obtained from the flow cell biofilms revealed that phosphate limitation increased both the overall attached biomass and the surface coverage, whereas the maximum thickness of the biofilm was not affected. Functions encoded on the two large plasmids of A. tumefaciens C58, pTiC58 and pAtC58, were not required for the observed phosphate effect. The phosphate concentration at which increased attachment was observed triggered the phosphate limitation response, controlled in many bacteria by the two-component regulatory system PhoR-PhoB. The A. tumefaciens phoB and phoR orthologues could only be disrupted in the presence of plasmid-borne copies of the genes, suggesting that this regulatory system might be essential. Expression of the A. tumefaciens phoB gene from a tightly regulated inducible promoter, however, correlated with the amount of biofilm under both phosphate-limiting and nonlimiting conditions, demonstrating that components of the Pho regulon influence A. tumefaciens surface interactions.
Collapse
Affiliation(s)
- Thomas Danhorn
- Department of Biology, 1001 E. 3rd St., Jordan Hall 142, Indiana University, Bloomington, IN 47405-1847, USA
| | | | | | | | | |
Collapse
|
32
|
Abstract
The application of modern biotechnological approaches to cut flowers has clearly become instrumental and rewarding for the floriculture industry. In recent years, several gene-transfer procedures have been developed for some of the major commercial cut flowers. Using Agrobactrium or microprojectile bombardment, several basic protocols are now available. However, despite the great progress and interest in gene transfer to these crops, their transformation is routine in only a limited number of laboratories, and its application is still considered to be an "art form". This review summarizes the reported gene-transfer procedures for the main cut-flower crops, with an emphasis on the unique factors of each method and the recent progress in introducing new traits of horticultural interest into these species.
Collapse
Affiliation(s)
- A Zuker
- The Kennedy-Leigh Centre for Horticultural Research and The Otto Warburg Center for Biotechnology in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | | |
Collapse
|
33
|
Zhu Y, Nam J, Carpita NC, Matthysse AG, Gelvin SB. Agrobacterium-mediated root transformation is inhibited by mutation of an Arabidopsis cellulose synthase-like gene. PLANT PHYSIOLOGY 2003; 133:1000-10. [PMID: 14612582 PMCID: PMC281597 DOI: 10.1104/pp.103.030726] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2003] [Revised: 09/01/2003] [Accepted: 09/01/2003] [Indexed: 05/20/2023]
Abstract
Agrobacterium-mediated plant genetic transformation involves a complex interaction between the bacterium and the host plant. Relatively little is known about the role plant genes and proteins play in this process. We previously identified an Arabidopsis mutant, rat4, that is resistant to Agrobacterium transformation. We show here that rat4 contains a T-DNA insertion into the 3'-untranslated region of the cellulose synthase-like gene CSLA9. CSLA9 transcripts are greatly reduced in the rat4 mutant. Genetic complementation of rat4 with wild-type genomic copies of the CSLA9 gene restores both transformation competence and the wild-type level of CSLA9 transcripts. The CSLA9 promoter shows a distinct pattern of expression in Arabidopsis plants. In particular, the promoter is active in the elongation zone of roots, the root tissue that we previously showed is most susceptible to Agrobacterium-mediated transformation. Disruption of the CSLA9 gene in the rat4 mutant results in reduced numbers and rate of growth of lateral roots and reduced ability of the roots to bind A. tumefaciens cells under certain conditions. No major differences in the linkage structure of the non-cellulosic polysaccharides could be traced to the defective CSLA9 gene.
Collapse
Affiliation(s)
- Yanmin Zhu
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | |
Collapse
|
34
|
Tzfira T, Citovsky V. The Agrobacterium-plant cell interaction. Taking biology lessons from a bug. PLANT PHYSIOLOGY 2003; 133:943-7. [PMID: 14612580 PMCID: PMC1540338 DOI: 10.1104/pp.103.032821] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
|
35
|
Nair GR, Liu Z, Binns AN. Reexamining the role of the accessory plasmid pAtC58 in the virulence of Agrobacterium tumefaciens strain C58. PLANT PHYSIOLOGY 2003; 133:989-99. [PMID: 14551325 PMCID: PMC281596 DOI: 10.1104/pp.103.030262] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2003] [Revised: 08/07/2003] [Accepted: 08/22/2003] [Indexed: 05/22/2023]
Abstract
Isogenic strains of Agrobacterium tumefaciens carrying pTiC58, pAtC58, or both were constructed and assayed semiquantitatively and quantitatively for virulence and vir gene expression to study the effect of the large 542-kb accessory plasmid, pAtC58, on virulence. Earlier studies indicate that the att (attachment) genes of A. tumefaciens are crucial in the ability of this soil phytopathogen to infect susceptible host plants. Mutations in many att genes, notably attR and attD, rendered the strain avirulent. These genes are located on pAtC58. Previous work also has shown that derivatives of the wild-type strain C58 cured of pAtC58 are virulent as determined by qualitative virulence assays and, hence, pAtC58 was described as nonessential for virulence. We show here that the absence of pAtC58 in pTiC58-containing strains results in reduced virulence but that disruption of the attR gene does not result in avirulence or a reduction in virulence. Our studies indicate that pAtC58 has a positive effect on vir gene induction as revealed by immunoblot analysis of Vir proteins and expression of a PvirB::lacZ fusion.
Collapse
Affiliation(s)
- Gauri R Nair
- Plant Science Institute, Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018, USA
| | | | | |
Collapse
|
36
|
Atmakuri K, Ding Z, Christie PJ. VirE2, a type IV secretion substrate, interacts with the VirD4 transfer protein at cell poles of Agrobacterium tumefaciens. Mol Microbiol 2003; 49:1699-713. [PMID: 12950931 PMCID: PMC3882298 DOI: 10.1046/j.1365-2958.2003.03669.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Agrobacterium tumefaciens transfers oncogenic DNA and effector proteins to plant cells during the course of infection. Substrate translocation across the bacterial cell envelope is mediated by a type IV secretion (TFS) system composed of the VirB proteins, as well as VirD4, a member of a large family of inner membrane proteins implicated in the coupling of DNA transfer intermediates to the secretion machine. In this study, we demonstrate with novel cytological screens - a two-hybrid (C2H) assay and bimolecular fluorescence complementation (BiFC) - and by immunoprecipitation of chemically cross-linked protein complexes that the VirE2 effector protein interacts directly with the VirD4 coupling protein at cell poles of A. tumefaciens. Analyses of truncation derivatives showed that VirE2 interacts via its C terminus with VirD4, and, further, an NH2-terminal membrane-spanning domain of VirD4 is dispensable for complex formation. VirE2 interacts with VirD4 independently of the virB-encoded transfer machine and T pilus, the putative periplasmic chaperones AcvB and VirJ, and the T-DNA transfer intermediate. Finally, VirE2 is recruited to polar-localized VirD4 as a complex with its stabilizing secretion chaperone VirE1, yet the effector-coupling protein interaction is not dependent on chaperone binding. Together, our findings establish for the first time that a protein substrate of a type IV secretion system is recruited to a member of the coupling protein superfamily.
Collapse
|
37
|
Zhu Y, Nam J, Humara JM, Mysore KS, Lee LY, Cao H, Valentine L, Li J, Kaiser AD, Kopecky AL, Hwang HH, Bhattacharjee S, Rao PK, Tzfira T, Rajagopal J, Yi H, Yadav BS, Crane YM, Lin K, Larcher Y, Gelvin MJK, Knue M, Ramos C, Zhao X, Davis SJ, Kim SI, Ranjith-Kumar CT, Choi YJ, Hallan VK, Chattopadhyay S, Sui X, Ziemienowicz A, Matthysse AG, Citovsky V, Hohn B, Gelvin SB. Identification of Arabidopsis rat mutants. PLANT PHYSIOLOGY 2003; 132:494-505. [PMID: 12805582 PMCID: PMC166992 DOI: 10.1104/pp.103.020420] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2003] [Revised: 03/03/2003] [Accepted: 03/03/2003] [Indexed: 05/18/2023]
Abstract
Limited knowledge currently exists regarding the roles of plant genes and proteins in the Agrobacterium tumefaciens-mediated transformation process. To understand the host contribution to transformation, we carried out root-based transformation assays to identify Arabidopsis mutants that are resistant to Agrobacterium transformation (rat mutants). To date, we have identified 126 rat mutants by screening libraries of T-DNA insertion mutants and by using various "reverse genetic" approaches. These mutants disrupt expression of genes of numerous categories, including chromatin structural and remodeling genes, and genes encoding proteins implicated in nuclear targeting, cell wall structure and metabolism, cytoskeleton structure and function, and signal transduction. Here, we present an update on the identification and characterization of these rat mutants.
Collapse
Affiliation(s)
- Yanmin Zhu
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Gelvin SB. Agrobacterium-mediated plant transformation: the biology behind the "gene-jockeying" tool. Microbiol Mol Biol Rev 2003; 67:16-37, table of contents. [PMID: 12626681 PMCID: PMC150518 DOI: 10.1128/mmbr.67.1.16-37.2003] [Citation(s) in RCA: 651] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Agrobacterium tumefaciens and related Agrobacterium species have been known as plant pathogens since the beginning of the 20th century. However, only in the past two decades has the ability of Agrobacterium to transfer DNA to plant cells been harnessed for the purposes of plant genetic engineering. Since the initial reports in the early 1980s using Agrobacterium to generate transgenic plants, scientists have attempted to improve this "natural genetic engineer" for biotechnology purposes. Some of these modifications have resulted in extending the host range of the bacterium to economically important crop species. However, in most instances, major improvements involved alterations in plant tissue culture transformation and regeneration conditions rather than manipulation of bacterial or host genes. Agrobacterium-mediated plant transformation is a highly complex and evolved process involving genetic determinants of both the bacterium and the host plant cell. In this article, I review some of the basic biology concerned with Agrobacterium-mediated genetic transformation. Knowledge of fundamental biological principles embracing both the host and the pathogen have been and will continue to be key to extending the utility of Agrobacterium for genetic engineering purposes.
Collapse
Affiliation(s)
- Stanton B Gelvin
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392, USA.
| |
Collapse
|
39
|
Kumar RB, Das A. Polar location and functional domains of the Agrobacterium tumefaciens DNA transfer protein VirD4. Mol Microbiol 2002; 43:1523-32. [PMID: 11952902 DOI: 10.1046/j.1365-2958.2002.02829.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Agrobacterium tumefaciens VirD4 is essential for DNA transfer to plants. VirD4 presumably functions as a coupling factor that facilitates communication between a substrate and the transport pore. To serve as a coupling protein, VirD4 may be required to localize near the transport apparatus. In a previous study, we observed that several constituents of the transport apparatus localize to the cell membranes. In this study, we demonstrate that VirD4 has a unique cellular location. In immunofluorescence microscopy, cells probed with anti-VirD4 antibodies had foci of fluorescence primarily at the cell poles, indicating that VirD4 localizes to the cell pole. Polar location of VirD4 was not dependent on T-DNA processing, the formation of the transport apparatus and the presence of other Vir proteins. VirD4 is an integral membrane protein with one periplasmic domain. The large cytoplasmic region contains a nucleotide-binding domain. To investigate the role of these domains in DNA transfer, we introduced mutations in virD4 and studied the effect of a mutation on substrate transfer. A deletion of most of the periplasmic domain as well as the alterations of glycine 151 to serine and lysine 152 to alanine led to the complete loss of DNA transfer, indicating that both domains are essential for substrate transfer. Subcellular localization of the mutant proteins indicated that both the periplasmic and the nucleotide-binding domains are required for polar localization of VirD4. The periplasmic domain mutant VirD4Delta36-61 was distributed throughout the cell membrane, whereas the nucleotide binding site mutant VirD4G151S localized to sites other than the cell poles. Polar location of VirD4 suggests a role for the cell pole in DNA transfer.
Collapse
Affiliation(s)
- Renu B Kumar
- Department of Biochemistry, University of Minnesota, St Paul 55108, USA
| | | |
Collapse
|
40
|
Affiliation(s)
- C Fuqua
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | | |
Collapse
|
41
|
Kempf VA, Volkmann B, Schaller M, Sander CA, Alitalo K, Riess T, Autenrieth IB. Evidence of a leading role for VEGF in Bartonella henselae-induced endothelial cell proliferations. Cell Microbiol 2001; 3:623-32. [PMID: 11553014 DOI: 10.1046/j.1462-5822.2001.00144.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bartonella henselae causes the vasculoproliferative disorders bacillary angiomatosis (BA) and bacillary peliosis (BP). The pathomechanisms of these tumorous proliferations are unknown. Our results suggest a novel bacterial two-step pathogenicity strategy, in which the pathogen triggers growth factor production for subsequent proliferation of its own host cells. In fact, B. henselae induces host cell production of the angiogenic factor vascular endothelial growth factor (VEGF), leading to proliferation of endothelial cells. The presence of B. henselae pili was associated with host cell VEGF production, as a Pil- mutant of B. henselae was unable to induce VEGF production. In turn, VEGF-stimulated endothelial cells promoted the growth of B. henselae. Immunohistochemistry for VEGF in specimens from patients with BA or BP revealed increased VEGF expression in vivo. These findings suggest a novel bacteria-dependent mechanism of tumour growth.
Collapse
Affiliation(s)
- V A Kempf
- Institut für Medizinische Mikrobiologie, Eberhard- Karls-Universität, Elfriede-Aulhorn-Str. 6, D-72076 Tübingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
42
|
Turnbull GA, Morgan JA, Whipps JM, Saunders JR. The role of motility in the in vitro attachment of Pseudomonas putida PaW8 to wheat roots. FEMS Microbiol Ecol 2001; 35:57-65. [PMID: 11248390 DOI: 10.1111/j.1574-6941.2001.tb00788.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The attachment of motile and non-motile strains of Pseudomonas putida PaW8 to sterile wheat roots was assessed in both non-competitive and intra-specific competitive assays. The motile strain showed significantly greater attachment to wheat roots than non-motile strains in phosphate buffer. Overall, the motile strain attached better than the non-motile strain at 10(6), 10(7) and 10(8) cfu ml(-1) in competitive assays and at 10(6) and 10(7) cfu ml(-1) in non-competitive assays. When attachment was studied in Luria broth no significant difference between motile and non-motile strains was detected. P. putida PaW8 cells marked with the luxAB genes were used to compare direct detection of attached cells by luminometry with indirect detection by dilution plate counts following extraction from root material. Although direct detection permitted a rapid assessment (60 s) of attachment to surfaces, dilution plate counts provided a more sensitive method for quantification of bacteria. The detection limits were approximately 10 cfu root(-1) using dilution plate counts compared with 1000 cfu root(-1) using luminometry. All results highlighted the importance of motility for the attachment of P. putida to plant roots in simple model systems. To take this work further, studies to assess the role of motility using complex non-sterile systems are needed.
Collapse
|
43
|
Matthysse AG, McMahan S. The effect of the Agrobacterium tumefaciens attR mutation on attachment and root colonization differs between legumes and other dicots. Appl Environ Microbiol 2001; 67:1070-5. [PMID: 11229893 PMCID: PMC92696 DOI: 10.1128/aem.67.3.1070-1075.2001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infections of wound sites on dicot plants by Agrobacterium tumefaciens result in the formation of crown gall tumors. An early step in tumor formation is bacterial attachment to the plant cells. AttR mutants failed to attach to wound sites of both legumes and nonlegumes and were avirulent on both groups of plants. AttR mutants also failed to attach to the root epidermis and root hairs of nonlegumes and had a markedly reduced ability to colonize the roots of these plants. However, AttR mutants were able to attach to the root epidermis and root hairs of alfalfa, garden bean, and pea. The mutant showed little reduction in its ability to colonize these roots. Thus, A. tumefaciens appears to possess two systems for binding to plant cells. One system is AttR dependent and is required for virulence on all of the plants tested and for colonization of the roots of all of the plants tested except legumes. Attachment to root hairs through this system can be blocked by the acetylated capsular polysaccharide. The second system is AttR independent, is not inhibited by the acetylated capsular polysaccharide, and allows the bacteria to bind to the roots of legumes.
Collapse
Affiliation(s)
- A G Matthysse
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA.
| | | |
Collapse
|
44
|
Bechtold N, Jaudeau B, Jolivet S, Maba B, Vezon D, Voisin R, Pelletier G. The maternal chromosome set is the target of the T-DNA in the in planta transformation of Arabidopsis thaliana. Genetics 2000; 155:1875-87. [PMID: 10924482 PMCID: PMC1461210 DOI: 10.1093/genetics/155.4.1875] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In planta transformation methods are now commonly used to transform Arabidopsis thaliana by Agrobacterium tumefaciens. The origin of transformants obtained by these methods has been studied by inoculating different floral stages and examining gametophytic expression of an introduced beta-glucuronidase marker gene encoding GUS. We observed that transformation can still occur after treating flowers where embryo sacs have reached the stage of the third division. No GUS expression was observed in embryo sacs or pollen of plants infiltrated with an Agrobacterium strain bearing a GUS gene under the control of a gametophyte-specific promoter. To identify the genetic target we used an insertion mutant in which a gene essential for male gametophytic development has been disrupted by a T-DNA bearing a Basta resistance gene (B(R)). In this mutant the B(R) marker is transferred to the progeny only by the female gametes. This mutant was retransformed with a hygromycin resistance marker and doubly resistant plants were selected. The study of 193 progeny of these transformants revealed 25 plants in which the two resistance markers were linked in coupling and only one plant where they were linked in repulsion. These results point to the chromosome set of the female gametophyte as the main target for the T-DNA.
Collapse
Affiliation(s)
- N Bechtold
- Unité de Génétique et d'Amélioration des Plantes, INRA, 78026 Versailles Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
The phytopathogenic bacterium Agrobacterium tumefaciens genetically transforms plants by transferring a portion of the resident Ti-plasmid, the T-DNA, to the plant. Accompanying the T-DNA into the plant cell is a number of virulence (Vir) proteins. These proteins may aid in T-DNA transfer, nuclear targeting, and integration into the plant genome. Other virulence proteins on the bacterial surface form a pilus through which the T-DNA and the transferred proteins may translocate. Although the roles of these virulence proteins within the bacterium are relatively well understood, less is known about their roles in the plant cell. In addition, the role of plant-encoded proteins in the transformation process is virtually unknown. In this article, I review what is currently known about the functions of virulence and plant proteins in several aspects of the Agrobacterium transformation process.
Collapse
Affiliation(s)
- Stanton B. Gelvin
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392; e-mail:
| |
Collapse
|
46
|
Matthysse AG, Yarnall H, Boles SB, McMahan S. A region of the Agrobacterium tumefaciens chromosome containing genes required for virulence and attachment to host cells. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1490:208-12. [PMID: 10786639 DOI: 10.1016/s0167-4781(99)00250-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A 29 kb region of the circular chromosome of Agrobacterium tumefaciens containing genes required for bacterial attachment to host cells and virulence has been sequenced. Transposon mutants in many of the genes have been obtained. The mutants can be divided into two groups: those which can be complemented by conditioned medium and those whose phenotype is unaffected by conditioned medium. The first group includes mutants in genes with homology to ABC transporters, one possible transcriptional regulator, and some closely linked genes immediately downstream. The second group includes mutants in two possible transcriptional regulators, one ATPase, and a number of biosynthetic genes including a transacetylase required for the formation of an acetylated capsular polysaccharide. There are also several genes with no homology to genes of identified function. The presence of such a large number of genes required for attachment to host cells suggests that the ability of A. tumefaciens to bind to plant cells may play an important role in the life of these bacteria.
Collapse
Affiliation(s)
- A G Matthysse
- Department of Biology, University of North Carolina, Chapel Hill 27599-3280, USA.
| | | | | | | |
Collapse
|
47
|
Mysore KS, Kumar CT, Gelvin SB. Arabidopsis ecotypes and mutants that are recalcitrant to Agrobacterium root transformation are susceptible to germ-line transformation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 21:9-16. [PMID: 10652146 DOI: 10.1046/j.1365-313x.2000.00646.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Germ-line transformation (vacuum infiltration) is frequently used to transform Arabidopsis thaliana using Agrobacterium tumefaciens. We have recently identified several Arabidopsis ecotypes and T-DNA-tagged mutants that are recalcitrant to Agrobacterium-mediated transformation of cut root segments. Some of these ecotypes and mutants are deficient in their ability to bind bacteria. Some are deficient in T-DNA integration. We report here that using a germ-line transformation protocol we transformed these ecotypes and mutants, including attachment- and integration-defective Arabidopsis plants, with a frequency similar to that of highly susceptible wild-type plants. However, we could not transform otherwise highly susceptible Arabidopsis plants by germ-line or root transformation using several vir and attachment-deficient Agrobacterium mutants. These results indicate that certain plant factors important for transformation may exist in germ-line tissue but may be lacking in some somatic cells.
Collapse
Affiliation(s)
- K S Mysore
- Purdue Genetics Program, Purdue University, West Lafayette, IN 47907-1392, USA
| | | | | |
Collapse
|
48
|
Construction of a range of derivatives of the biological control strain agrobacterium rhizogenes K84: a study of factors involved in biological control of crown gall disease. Appl Environ Microbiol 1998; 64:3977-82. [PMID: 9758829 PMCID: PMC106588 DOI: 10.1128/aem.64.10.3977-3982.1998] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The biological control strain Agrobacterium rhizogenes K84 is an effective agent in the control of Agrobacterium pathogens, the causative agents of crown gall disease. A number of factors are thought to play a role in the control process, including production of the specific agrocins 84 and 434, which differ in the spectra of pathogenic strains that they inhibit in vitro. A range of derivatives of strain K84 has been developed with every combination of the three resident plasmids, pAgK84, pAgK434, and pAtK84b, including a plasmid-free strain. These derivatives produced either both, one, or neither of the characterized agrocins 84 and 434 and were isolated by plasmid curing, conjugation, and Tn5 transposon mutagenesis. The ability of the derivative strains to inhibit gall formation on almond roots was compared to that of the wild-type K84 parent. Treatment with the plasmid-free derivative did not result in a significant level of control of an A. rhizogenes pathogen based on numbers or dry weight of galls formed on injured almond roots. The presence of plasmid pAgK84, pAgK434, or pAtK84b significantly enhanced the biological control efficacy of K84 derivatives, and the highest level of control was observed with strains harboring two or more plasmids. The results observed with strains deficient in agrocin 434 production suggest that this product may play an important role in the biological control of A. rhizogenes pathogens. The involvement of plasmid pAgK84b in biological control has not previously been reported. This study supports the conclusion that multiple factors are involved in the success of strain K84 as a biological control agent.
Collapse
|
49
|
Affiliation(s)
- C I Kado
- Department of Plant Pathology, University of California, Davis 95616, USA
| |
Collapse
|
50
|
Matthysse AG, McMahan S. Root colonization by Agrobacterium tumefaciens is reduced in cel, attB, attD, and attR mutants. Appl Environ Microbiol 1998; 64:2341-5. [PMID: 9647796 PMCID: PMC106392 DOI: 10.1128/aem.64.7.2341-2345.1998] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Root colonization by Agrobacterium tumefaciens was measured by using tomato and Arabidopsis thaliana roots dipped in a bacterial suspension and planted in soil. Wild-type bacteria showed extensive growth on tomato roots; the number of bacteria increased from 10(3) bacteria/cm of root length at the time of inoculation to more than 10(7) bacteria/cm after 10 days. The numbers of cellulose-minus and nonattaching attB, attD, and attR mutant bacteria were less than 1/10,000th the number of wild-type bacteria recovered from tomato roots. On roots of A. thaliana ecotype Landsberg erecta, the numbers of wild-type bacteria increased from about 30 to 8,000 bacteria/cm of root length after 8 days. The numbers of cellulose-minus and nonattaching mutant bacteria were 1/100th to 1/10th the number of wild-type bacteria recovered after 8 days. The attachment of A. tumefaciens to cut A. thaliana roots incubated in 0.4% sucrose and observed with a light microscope was also reduced with cel and att mutants. These results suggest that cellulose synthesis and attachment genes play a role in the ability of the bacteria to colonize roots, as well as in bacterial pathogenesis.
Collapse
Affiliation(s)
- A G Matthysse
- Department of Biology, University of North Carolina, Chapel Hill 27599-3280, USA.
| | | |
Collapse
|