1
|
Nascimento F, Vicente C, Cock P, Tavares M, Rossi M, Hasegawa K, Mota M. From plants to nematodes: Serratia grimesii BXF1 genome reveals an adaptation to the modulation of multi-species interactions. Microb Genom 2018; 4. [PMID: 29781797 PMCID: PMC6113876 DOI: 10.1099/mgen.0.000178] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Serratia grimesii BXF1 is a bacterium with the ability to modulate the development of several eukaryotic hosts. Strain BXF1 was isolated from the pinewood nematode, Bursaphelenchus xylophilus, the causative agent of pine wilt disease affecting pine forests worldwide. This bacterium potentiates Bursaphelenchus xylophilus reproduction, acts as a beneficial pine endophyte, and possesses fungal and bacterial antagonistic activities, further indicating a complex role in a wide range of trophic relationships. In this work, we describe and analyse the genome sequence of strain BXF1, and discuss several important aspects of its ecological role. Genome analysis indicates the presence of several genes related to the observed production of antagonistic traits, plant growth regulation and the modulation of nematode development. Moreover, most of the BXF1 genes are involved in environmental and genetic information processing, which is consistent with its ability to sense and colonize several niches. The results obtained in this study provide the basis to a better understanding of the role and evolution of strain BXF1 as a mediator of interactions between organisms involved in a complex disease system. These results may also bring new insights into general Serratia and Enterobacteriaceae evolution towards multitrophic interactions.
Collapse
Affiliation(s)
- Francisco Nascimento
- 2Information and Computer Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK.,1Nemalab/ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Departamento de Biologia, Universidade de Évora, Núcleo da Mitra, Ap. 94, 7002-554 Évora, Portugal
| | - Cláudia Vicente
- 1Nemalab/ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Departamento de Biologia, Universidade de Évora, Núcleo da Mitra, Ap. 94, 7002-554 Évora, Portugal.,3Department of Environmental Biology, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501, Japan
| | - Peter Cock
- 2Information and Computer Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Maria Tavares
- 4Departamento de Microbiologia, Laboratório de Bioprocessos, Universidade Federal de Santa Catarina, Florianópolis SC 88040-900, Brazil
| | - Márcio Rossi
- 4Departamento de Microbiologia, Laboratório de Bioprocessos, Universidade Federal de Santa Catarina, Florianópolis SC 88040-900, Brazil
| | - Koichi Hasegawa
- 3Department of Environmental Biology, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501, Japan
| | - Manuel Mota
- 1Nemalab/ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Departamento de Biologia, Universidade de Évora, Núcleo da Mitra, Ap. 94, 7002-554 Évora, Portugal.,5Departamento Ciências da Vida, EPCV Universidade Lusófona de Humanidades e Tecnologias, C. Grande 376, Lisboa, 1749-024, Portugal
| |
Collapse
|
2
|
Elucidation of the Photorhabdus temperata Genome and Generation of a Transposon Mutant Library To Identify Motility Mutants Altered in Pathogenesis. J Bacteriol 2015; 197:2201-2216. [PMID: 25917908 DOI: 10.1128/jb.00197-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/17/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The entomopathogenic nematode Heterorhabditis bacteriophora forms a specific mutualistic association with its bacterial partner Photorhabdus temperata. The microbial symbiont is required for nematode growth and development, and symbiont recognition is strain specific. The aim of this study was to sequence the genome of P. temperata and identify genes that plays a role in the pathogenesis of the Photorhabdus-Heterorhabditis symbiosis. A draft genome sequence of P. temperata strain NC19 was generated. The 5.2-Mb genome was organized into 17 scaffolds and contained 4,808 coding sequences (CDS). A genetic approach was also pursued to identify mutants with altered motility. A bank of 10,000 P. temperata transposon mutants was generated and screened for altered motility patterns. Five classes of motility mutants were identified: (i) nonmotile mutants, (ii) mutants with defective or aberrant swimming motility, (iii) mutant swimmers that do not require NaCl or KCl, (iv) hyperswimmer mutants that swim at an accelerated rate, and (v) hyperswarmer mutants that are able to swarm on the surface of 1.25% agar. The transposon insertion sites for these mutants were identified and used to investigate other physiological properties, including insect pathogenesis. The motility-defective mutant P13-7 had an insertion in the RNase II gene and showed reduced virulence and production of extracellular factors. Genetic complementation of this mutant restored wild-type activity. These results demonstrate a role for RNA turnover in insect pathogenesis and other physiological functions. IMPORTANCE The relationship between Photorhabdus and entomopathogenic nematode Heterorhabditis represents a well-known mutualistic system that has potential as a biological control agent. The elucidation of the genome of the bacterial partner and role that RNase II plays in its life cycle has provided a greater understanding of Photorhabdus as both an insect pathogen and a nematode symbiont.
Collapse
|
3
|
van Ulsen P, Rahman SU, Jong WS, Daleke-Schermerhorn MH, Luirink J. Type V secretion: From biogenesis to biotechnology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1592-611. [DOI: 10.1016/j.bbamcr.2013.11.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 11/01/2013] [Accepted: 11/13/2013] [Indexed: 12/13/2022]
|
4
|
The genetic basis of the symbiosis between Photorhabdus and its invertebrate hosts. ADVANCES IN APPLIED MICROBIOLOGY 2014; 88:1-29. [PMID: 24767424 DOI: 10.1016/b978-0-12-800260-5.00001-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Photorhabdus is a pathogen of insects that also maintains a mutualistic association with nematodes from the family Heterorhabditis. Photorhabdus colonizes the gut of the infective juvenile (IJ) stage of the nematode. The IJ infects an insect and regurgitates the bacteria and the bacteria reproduce to kill the insect. The nematodes feed on the resulting bacterial biomass until a new generation of IJs emerges from the insect cadaver. Therefore, during its life cycle, Photorhabdus must (1) kill the insect host, (2) support nematode growth and development, and (3) be able to colonize the new generation of IJs. In this review, functional genomic studies that have been aimed at understanding the molecular mechanisms underpinning each of these roles will be discussed. These studies have begun to reveal that distinct gene sets may be required for each of these interactions, suggesting that there is only a minimal genetic overlap between pathogenicity and mutualism in Photorhabdus.
Collapse
|
5
|
Jallouli W, Jaoua S, Zouari N. Overcoming the production limitations of Photorhabdus temperata ssp. temperata strain K122 bioinsecticides in low-cost medium. Bioprocess Biosyst Eng 2011; 34:1039-47. [PMID: 21656156 DOI: 10.1007/s00449-011-0554-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 05/19/2011] [Indexed: 10/18/2022]
Abstract
For low-cost production of Photorhabdus temperata ssp. temperata strain K122 bioinsecticide, a cheap complex medium was optimized. Diluted seawater was used as the source of micronutrients, especially sodium chloride, involved in the improvement of cell density, culturability and oral toxicity of the bacterium P. temperata against Ephestia kuehniella larvae. Thus, the new formulated medium was composed only of 10 g/l of soya bean meal, used as the carbon and nitrogen main source, mixed in sevenfold diluted seawater. At such conditions, several limitations of P. temperata bioinsecticide productions were shown to be overcome. The appearance of variants small colony polymorphism was completely avoided. Thus, the strain K122 was maintained at the primary form even after prolonged incubation. Moreover, the viable but nonculturable state was partially overcome, since the ability of P. temperata cells to form colonies on the solid medium was prolonged until 78 h of incubation. In addition, when cultured in the complex medium, P. temperata cells were produced at high cell density of 12 × 10(8) cells/ml and exhibited 81.48% improvement of oral toxicity compared to those produced in the optimized medium. With such medium, the large-scale bioinsecticides production into 3-l fully controlled fermenter improved the total cell counts, CFU counts and oral toxicity by 20, 5.81 and 16.73%, respectively. This should contribute to a significant reduction of production cost of highly potent P. temperata strain K122 cells, useful as a bioinsecticide.
Collapse
Affiliation(s)
- Wafa Jallouli
- Laboratoire de Protection et Amélioration des Plantes Team of Biopesticides, Centre of Biotechnology of Sfax, Sfax University, PO Box 1177, 3018 Sfax, Tunisia
| | | | | |
Collapse
|
6
|
Wilhelm S, Rosenau F, Kolmar H, Jaeger KE. Autotransporters with GDSL Passenger Domains: Molecular Physiology and Biotechnological Applications. Chembiochem 2011; 12:1476-85. [DOI: 10.1002/cbic.201100013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Indexed: 12/12/2022]
|
7
|
Michaels B, Tisa LS. Swarming motility by Photorhabdus temperata is influenced by environmental conditions and uses the same flagella as that used in swimming motility. Can J Microbiol 2011; 57:196-203. [PMID: 21358760 DOI: 10.1139/w10-119] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Photorhabdus temperata, an insect pathogen and nematode symbiont, is motile in liquid medium by swimming. We found that P. temperata was capable of surface movement, termed swarming behavior. Several lines of evidence indicate that P. temperata use the same flagella for both swimming and swarming motility. Both motility types required additional NaCl or KCl in the medium and had peritrichous flagella, which were composed of the same flagellin as detected by immunoblotting experiments. Mutants defective in flagellar structural proteins were nonmotile for both motility types. Unlike swimming, we observed swarming behavior to be a social form of movement in which the cells coordinately formed intricate channels covering a surface. The constituents of the swarm media affected motility. Swarming was optimal on low agar concentrations; as agar concentrations increased, swarm ring diameters decreased.
Collapse
Affiliation(s)
- Brandye Michaels
- Department of Microbiology, University of New Hampshire, Durham, NH 03824-2617, USA
| | | |
Collapse
|
8
|
Lanois A, Pages S, Bourot S, Canoy AS, Givaudan A, Gaudriault S. Transcriptional analysis of a Photorhabdus sp. variant reveals transcriptional control of phenotypic variation and multifactorial pathogenicity in insects. Appl Environ Microbiol 2011; 77:1009-20. [PMID: 21131515 PMCID: PMC3028736 DOI: 10.1128/aem.01696-10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 11/20/2010] [Indexed: 11/20/2022] Open
Abstract
Photorhabdus luminescens lives in a mutualistic association with entomopathogenic nematodes and is pathogenic for insects. Variants of Photorhabdus frequently arise irreversibly and are studied because they have altered phenotypic traits that are potentially important for the host interaction. VAR* is a colonial and phenotypic variant displaying delayed pathogenicity when directly injected into the insect, Spodoptera littoralis. In this study, we evaluated the role of transcriptomic modulation in determining the phenotypic variation and delayed pathogenicity of VAR* with respect to the corresponding wild-type form, TT01α. A P. luminescens microarray identified 148 genes as differentially transcribed between VAR* and TT01α. The net regulator status of VAR* was found to be significantly modified. We also observed in VAR* a decrease in the transcription of genes supporting certain phenotypic traits, such as pigmentation, crystalline inclusion, antibiosis, and protease and lipase activities. Three genes encoding insecticidal toxins (pit and pirB) or putative insecticidal toxins (xnp2) were less transcribed in VAR* than in the TT01α. The overexpression of these genes was not sufficient to restore the virulence of VAR* to the levels of ΤΤ01α, which suggests that the lower virulence of VAR* does not result from impaired toxemia in insects. Three loci involved in oxidative stress responses (sodA, katE, and the hca operon) were found to be downregulated in VAR*. This is consistent with the greater sensitivity of VAR* to H(2)O(2) and may account for the impaired bacteremia in the hemolymph of S. littoralis larvae observed with VAR*. In conclusion, we demonstrate here that some phenotypic traits of VAR* are regulated transcriptionally and highlight the multifactorial nature of pathogenicity in insects.
Collapse
Affiliation(s)
- A. Lanois
- INRA, UMR 1133, Laboratoire EMIP, Place Eugène Bataillon, F-34095 Montpellier, France, Université Montpellier 2, UMR 1133, Laboratoire EMIP, Place Eugène Bataillon, F-34095 Montpellier, France, BioIM-BioAnalysis and Services, Bayer BioScience N.V., Technologiepark 38, B-9052 Zwijnaarde, Belgium, Equipe Transcriptome, Groupe de Recherche Génomique Amont, Biogemma, ZI du Brézet, 8 Rue des Frères Lumière, 63028 Clermont-Ferrand, Cedex 2, France
| | - S. Pages
- INRA, UMR 1133, Laboratoire EMIP, Place Eugène Bataillon, F-34095 Montpellier, France, Université Montpellier 2, UMR 1133, Laboratoire EMIP, Place Eugène Bataillon, F-34095 Montpellier, France, BioIM-BioAnalysis and Services, Bayer BioScience N.V., Technologiepark 38, B-9052 Zwijnaarde, Belgium, Equipe Transcriptome, Groupe de Recherche Génomique Amont, Biogemma, ZI du Brézet, 8 Rue des Frères Lumière, 63028 Clermont-Ferrand, Cedex 2, France
| | - S. Bourot
- INRA, UMR 1133, Laboratoire EMIP, Place Eugène Bataillon, F-34095 Montpellier, France, Université Montpellier 2, UMR 1133, Laboratoire EMIP, Place Eugène Bataillon, F-34095 Montpellier, France, BioIM-BioAnalysis and Services, Bayer BioScience N.V., Technologiepark 38, B-9052 Zwijnaarde, Belgium, Equipe Transcriptome, Groupe de Recherche Génomique Amont, Biogemma, ZI du Brézet, 8 Rue des Frères Lumière, 63028 Clermont-Ferrand, Cedex 2, France
| | - A.-S. Canoy
- INRA, UMR 1133, Laboratoire EMIP, Place Eugène Bataillon, F-34095 Montpellier, France, Université Montpellier 2, UMR 1133, Laboratoire EMIP, Place Eugène Bataillon, F-34095 Montpellier, France, BioIM-BioAnalysis and Services, Bayer BioScience N.V., Technologiepark 38, B-9052 Zwijnaarde, Belgium, Equipe Transcriptome, Groupe de Recherche Génomique Amont, Biogemma, ZI du Brézet, 8 Rue des Frères Lumière, 63028 Clermont-Ferrand, Cedex 2, France
| | - A. Givaudan
- INRA, UMR 1133, Laboratoire EMIP, Place Eugène Bataillon, F-34095 Montpellier, France, Université Montpellier 2, UMR 1133, Laboratoire EMIP, Place Eugène Bataillon, F-34095 Montpellier, France, BioIM-BioAnalysis and Services, Bayer BioScience N.V., Technologiepark 38, B-9052 Zwijnaarde, Belgium, Equipe Transcriptome, Groupe de Recherche Génomique Amont, Biogemma, ZI du Brézet, 8 Rue des Frères Lumière, 63028 Clermont-Ferrand, Cedex 2, France
| | - S. Gaudriault
- INRA, UMR 1133, Laboratoire EMIP, Place Eugène Bataillon, F-34095 Montpellier, France, Université Montpellier 2, UMR 1133, Laboratoire EMIP, Place Eugène Bataillon, F-34095 Montpellier, France, BioIM-BioAnalysis and Services, Bayer BioScience N.V., Technologiepark 38, B-9052 Zwijnaarde, Belgium, Equipe Transcriptome, Groupe de Recherche Génomique Amont, Biogemma, ZI du Brézet, 8 Rue des Frères Lumière, 63028 Clermont-Ferrand, Cedex 2, France
| |
Collapse
|
9
|
Antonczak AK, Simova Z, Tippmann EM. A critical examination of Escherichia coli esterase activity. J Biol Chem 2009; 284:28795-800. [PMID: 19666472 DOI: 10.1074/jbc.m109.027409] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ability of Escherichia coli to grow on a series of acetylated and glycosylated compounds has been investigated. It is surmised that E. coli maintains low levels of nonspecific esterase activity. This observation may have ramifications for previous reports that relied on nonspecific esterases from E. coli to genetically encode nonnatural amino acids. It had been reported that nonspecific esterases from E. coli deacetylate tri-acetyl O-linked glycosylated serine and threonine in vivo. The glycosylated amino acids were reported to have been genetically encoded into proteins in response to the amber stop codon. However, it is our contention that such amino acids are not utilized in this manner within E. coli. The current results report in vitro analysis of the original enzyme and an in vivo analysis of a glycosylated amino acid. It is concluded that the amber suppression method with nonnatural amino acids may require a caveat for use in certain instances.
Collapse
Affiliation(s)
- Alicja K Antonczak
- Cardiff University School of Chemistry, Cardiff CF10 3AT, United Kingdom
| | | | | |
Collapse
|
10
|
Gromova TY, Demidyuk IV, Kozlovskiy VI, Kuranova IP, Kostrov SV. Processing of protealysin precursor. Biochimie 2009; 91:639-45. [DOI: 10.1016/j.biochi.2009.03.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 03/16/2009] [Indexed: 11/24/2022]
|
11
|
Jallouli W, Hammami W, Zouari N, Jaoua S. Medium optimization for biomass production and morphology variance overcome of Photorhabdus temperata ssp. temperata strain K122. Process Biochem 2008. [DOI: 10.1016/j.procbio.2008.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Gaudriault S, Pages S, Lanois A, Laroui C, Teyssier C, Jumas-Bilak E, Givaudan A. Plastic architecture of bacterial genome revealed by comparative genomics of Photorhabdus variants. Genome Biol 2008; 9:R117. [PMID: 18647395 PMCID: PMC2530875 DOI: 10.1186/gb-2008-9-7-r117] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 06/12/2008] [Accepted: 07/22/2008] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The phenotypic consequences of large genomic architecture modifications within a clonal bacterial population are rarely evaluated because of the difficulties associated with using molecular approaches in a mixed population. Bacterial variants frequently arise among Photorhabdus luminescens, a nematode-symbiotic and insect-pathogenic bacterium. We therefore studied genome plasticity within Photorhabdus variants. RESULTS We used a combination of macrorestriction and DNA microarray experiments to perform a comparative genomic study of different P. luminescens TT01 variants. Prolonged culturing of TT01 strain and a genomic variant, collected from the laboratory-maintained symbiotic nematode, generated bacterial lineages composed of primary and secondary phenotypic variants and colonial variants. The primary phenotypic variants exhibit several characteristics that are absent from the secondary forms. We identify substantial plasticity of the genome architecture of some variants, mediated mainly by deletions in the 'flexible' gene pool of the TT01 reference genome and also by genomic amplification. We show that the primary or secondary phenotypic variant status is independent from global genomic architecture and that the bacterial lineages are genomic lineages. We focused on two unusual genomic changes: a deletion at a new recombination hotspot composed of long approximate repeats; and a 275 kilobase single block duplication belonging to a new class of genomic duplications. CONCLUSION Our findings demonstrate that major genomic variations occur in Photorhabdus clonal populations. The phenotypic consequences of these genomic changes are cryptic. This study provides insight into the field of bacterial genome architecture and further elucidates the role played by clonal genomic variation in bacterial genome evolution.
Collapse
Affiliation(s)
- Sophie Gaudriault
- INRA, UMR 1133, Laboratoire EMIP, Place Eugène Bataillon, F-34095 Montpellier, France
- Université Montpellier 2, UMR 1133, Laboratoire EMIP, Place Eugène Bataillon, F-34095 Montpellier, France
| | - Sylvie Pages
- INRA, UMR 1133, Laboratoire EMIP, Place Eugène Bataillon, F-34095 Montpellier, France
- Université Montpellier 2, UMR 1133, Laboratoire EMIP, Place Eugène Bataillon, F-34095 Montpellier, France
| | - Anne Lanois
- INRA, UMR 1133, Laboratoire EMIP, Place Eugène Bataillon, F-34095 Montpellier, France
- Université Montpellier 2, UMR 1133, Laboratoire EMIP, Place Eugène Bataillon, F-34095 Montpellier, France
| | - Christine Laroui
- INRA, UMR 1133, Laboratoire EMIP, Place Eugène Bataillon, F-34095 Montpellier, France
- Université Montpellier 2, UMR 1133, Laboratoire EMIP, Place Eugène Bataillon, F-34095 Montpellier, France
| | - Corinne Teyssier
- Université Montpellier 1, EA 3755, Laboratoire de Bactériologie-Virologie, 15, Avenue Charles Flahault, BP 14491, F-34060 Montpellier Cedex 5, France
| | - Estelle Jumas-Bilak
- Université Montpellier 1, EA 3755, Laboratoire de Bactériologie-Virologie, 15, Avenue Charles Flahault, BP 14491, F-34060 Montpellier Cedex 5, France
| | - Alain Givaudan
- INRA, UMR 1133, Laboratoire EMIP, Place Eugène Bataillon, F-34095 Montpellier, France
- Université Montpellier 2, UMR 1133, Laboratoire EMIP, Place Eugène Bataillon, F-34095 Montpellier, France
| |
Collapse
|
13
|
Esterase autodisplay: enzyme engineering and whole-cell activity determination in microplates with pH sensors. Appl Environ Microbiol 2008; 74:4782-91. [PMID: 18515492 DOI: 10.1128/aem.01575-07] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Among the GDSL family of serine esterases/lipases is a group of bacterial enzymes that posses C-terminal extensions involved in outer membrane anchoring or translocation. ApeE from Salmonella enterica serovar Typhimurium, a member of this group, has been expressed in Escherichia coli and was resistant to protease digestion when the protease was added to whole cells, indicating a periplasmic localization. The five consensus blocks conserved within all GDSL esterases were identified in ApeE by multiple sequence alignment and separated from the C-terminal extension. The DNA sequence spanning the four invariant residues Ser, Gly, Asn, and His, and hence representing the catalytic domains of ApeE, was amplified by PCR and fused in frame to the transport domains of the autodisplay system. The resulting artificial esterase, called EsjA, was overexpressed in the cell envelope of E. coli and was shown to be active by the use of alpha-naphthyl acetate (alpha-NA) as a substrate in an in-gel activity stain after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Surface exposure of EsjA was indicated by its accessibility to protease added to whole cells. The esterase activity of whole cells displaying EsjA was determined by a pH agar assay and by the use of microplates with integrated pH-dependent optical sensors. alpha-NA, alpha-naphthyl butyrate, and alpha-naphthyl caproate were used as substrates, and it turned out that the substrate preferences of artificial EsjA were altered in comparison to original ApeE. Our results indicate that autodisplay of esterase in combination with pH sensor microplates can provide a new platform technology for the screening of tailor-made hydrolase activities.
Collapse
|
14
|
Jackson T, Wang H, Nugent MJ, Griffin CT, Burnell AM, Dowds BC. Isolation of insect pathogenic bacteria,Providencia rettgeri, fromHeterorhabditisspp. ACTA ACUST UNITED AC 2008. [DOI: 10.1111/j.1365-2672.1995.tb05022.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
Cowles KN, Cowles CE, Richards GR, Martens EC, Goodrich-Blair H. The global regulator Lrp contributes to mutualism, pathogenesis and phenotypic variation in the bacterium Xenorhabdus nematophila. Cell Microbiol 2007; 9:1311-23. [PMID: 17223926 DOI: 10.1111/j.1462-5822.2006.00873.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Xenorhabdus nematophila is a Gram-negative bacterium that leads both pathogenic and mutualistic lifestyles. In this study, we examine the role of Lrp, the leucine-responsive regulatory protein, in regulating both of these lifestyles. lrp mutants have attenuated virulence towards Manduca sexta insects and are defective in suppression of both cellular and humoral insect immunity. In addition, an lrp mutant is deficient in initiating colonization of and growth within mutualistic host nematodes. Furthermore, nematodes reared on lrp mutant lawns exhibit decreased overall numbers of nematode progeny. To our knowledge, this is the first demonstration of virulence attenuation associated with an lrp mutation in any bacterium, as well as the first report of a factor involved in both X. nematophila symbioses. Protein profiles of wild-type and mutant cells indicate that Lrp is a global regulator of expression in X. nematophila, affecting approximately 65% of 290 proteins. We show that Lrp binds to the promoter regions of genes known to be involved in basic metabolism, mutualism and pathogenesis, demonstrating that the regulation of at least some host interaction factors is likely direct. Finally, we demonstrate that Lrp influences aspects of X. nematophila phenotypic variation, a spontaneous process that occurs during prolonged growth in stationary phase.
Collapse
Affiliation(s)
- Kimberly N Cowles
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
16
|
Sun B, Zhang XH, Tang X, Wang S, Zhong Y, Chen J, Austin B. A single residue change in Vibrio harveyi hemolysin results in the loss of phospholipase and hemolytic activities and pathogenicity for turbot (Scophthalmus maximus). J Bacteriol 2007; 189:2575-9. [PMID: 17220231 PMCID: PMC1899364 DOI: 10.1128/jb.01650-06] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio harveyi hemolysin, an important virulence determinant in fish pathogenesis, was further characterized, and the enzyme was identified as a phospholipase B by gas chromatography. Site-directed mutagenesis revealed that a specific residue, Ser153, was critical for its enzymatic activity and for its virulence in fish.
Collapse
Affiliation(s)
- Boguang Sun
- Department of Marine Biology, Ocean University of China, 5 Yushan Road, Qingdao 266003, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
17
|
Lämmle K, Zipper H, Breuer M, Hauer B, Buta C, Brunner H, Rupp S. Identification of novel enzymes with different hydrolytic activities by metagenome expression cloning. J Biotechnol 2007; 127:575-92. [PMID: 16963141 DOI: 10.1016/j.jbiotec.2006.07.036] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Revised: 05/05/2006] [Accepted: 07/31/2006] [Indexed: 11/22/2022]
Abstract
Metagenome cloning has become a powerful tool to exploit the biocatalytic potential of microbial communities for the discovery of novel biocatalysts. In a novel variant of direct expression cloning, metagenomic DNA was isolated from compost by a modified direct lysis method, purified by size exclusion chromatography and cloned into an expression vector allowing bidirectional transcription. Transformation of Escherichia coli DH5alpha resulted in a metagenomic expression library with an average insert size of 3.2 kb. To estimate the functional diversity of the constructed library, it was screened by different approaches based on functional heterologous expression. A large number of active clones were identified, including lipolytic enzymes, amylases, phosphatases and dioxygenases. Molecular analysis of one important class of industrial biocatalysts, the lipolytic enzymes, confirmed the novelty and dissimilarity of all recovered genes, which exhibited only limited similarity to known enzymes. Equally, the novelty of another three genes encoding phosphatase or dioxygenase activity, respectively, was shown. These results demonstrate the suitability of this direct cloning approach, which comprised a dual-orientation expression vector and a simple one-step DNA purification method, for the efficient discovery of numerous active novel clones. By this means it provides an efficient way for the rapid generation of large libraries of hitherto unknown enzyme candidates which could be screened for different specific target reactions.
Collapse
Affiliation(s)
- Katrin Lämmle
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Institute for Interfacial Engineering, University of Stuttgart, Nobelstrasse 12, D-70569 Stuttgart, Germany
| | | | | | | | | | | | | |
Collapse
|
18
|
Naranjo MA, Forment J, Roldán M, Serrano R, Vicente O. Overexpression of Arabidopsis thaliana LTL1, a salt-induced gene encoding a GDSL-motif lipase, increases salt tolerance in yeast and transgenic plants. PLANT, CELL & ENVIRONMENT 2006; 29:1890-900. [PMID: 16930315 DOI: 10.1111/j.1365-3040.2006.01565.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Genes involved in the mechanisms of plant responses to salt stress may be used as biotechnological tools for the genetic improvement of salt tolerance in crop plants. This would help alleviate the increasing problem of salinization of lands cultivated under irrigation in arid and semi-arid regions. We have isolated a novel halotolerance gene from Arabidopsis thaliana, A. thaliana Li-tolerant lipase 1 (AtLTL1), on the basis of the phenotype of tolerance to LiCl conferred by its expression in yeast. AtLTL1 encodes a putative lipase of the GDSL-motif family, which includes bacterial and a very large number of plant proteins. In Arabidopsis, AtLTL1 expression is rapidly induced by LiCl or NaCl, but not by other abiotic stresses. Overexpression of AtLTL1 increases salt tolerance in transgenic Arabidopsis plants, compared to non-transformed controls, allowing germination of seeds in the presence of toxic concentrations of LiCl and NaCl, and stimulating vegetative growth, flowering and seed set in the presence of NaCl. These results clearly point to a role of AtLTL1 in the mechanisms of salt tolerance. In addition, we show that AtLTL1 expression is also activated, although only transiently, by salicylic acid (SA), suggesting that the lipase could also be involved in defence reactions against pathogens.
Collapse
Affiliation(s)
- Miguel Angel Naranjo
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| | | | | | | | | |
Collapse
|
19
|
Joyce SA, Watson RJ, Clarke DJ. The regulation of pathogenicity and mutualism in Photorhabdus. Curr Opin Microbiol 2006; 9:127-32. [PMID: 16480919 DOI: 10.1016/j.mib.2006.01.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Accepted: 01/27/2006] [Indexed: 11/28/2022]
Abstract
Photorhabdus is a genus of insect-pathogenic bacteria that also maintains a mutualistic interaction with Heterorhabditid nematodes. Bacteria in this genus are members of the family Enterobacteriaceae and are, therefore, closely related to many important mammalian pathogens. This bacteria-nematode complex has been exploited as a biocontrol agent that is active against several insect pests. However, this model system is also uniquely placed to address important fundamental questions about pathogenicity and mutualism. Indeed, recent genetic studies have suggested that there is a significant overlap in the genetic requirements of Photorhabdus for these contrasting interactions. In addition, the identification of key regulators of pathogenicity and symbiosis only serves to highlight the similarities between Photorhabdus, a genus of bacteria that infects invertebrate hosts, and closely related mammalian enteric pathogens.
Collapse
Affiliation(s)
- Susan A Joyce
- Molecular Microbiology Laboratory, Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | | | | |
Collapse
|
20
|
Zehl M, Lescić I, Abramić M, Rizzi A, Kojić-Prodić B, Allmaier G. Characterization of covalently inhibited extracellular lipase from Streptomyces rimosus by matrix-assisted laser desorption/ionization time-of-flight and matrix-assisted laser desorption/ionization quadrupole ion trap reflectron time-of-flight mass spectrometry: localization of the active site serine. JOURNAL OF MASS SPECTROMETRY : JMS 2004; 39:1474-1483. [PMID: 15578758 DOI: 10.1002/jms.750] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A chemical modification approach combined with matrix-assisted laser desorption/ionization (MALDI) mass spectrometry was used to identify the active site serine residue of an extracellular lipase from Streptomyces rimosus R6-554W. The lipase, purified from a high-level overexpressing strain, was covalently modified by incubation with 3,4-dichloroisocoumarin, a general mechanism-based serine protease inhibitor. MALDI time-of-flight (TOF) mass spectrometry was used to probe the nature of the intact inhibitor-modified lipase and to clarify the mechanism of lipase inhibition by 3,4-dichloroisocoumarin. The stoichiometry of the inhibition reaction revealed that specifically one molecule of inhibitor was bound to the lipase. The MALDI matrix 2,6-dihydroxyacetophenone facilitated the formation of highly abundant [M + 2H](2+) ions with good resolution compared to other matrices in a linear TOF instrument. This allowed the detection of two different inhibitor-modified lipase species. Exact localization of the modified amino acid residue was accomplished by tryptic digestion followed by low-energy collision-induced dissociation peptide sequencing of the detected 2-(carboxychloromethyl)benzoylated peptide by means of a MALDI quadrupole ion trap reflectron TOF instrument. The high sequence coverage obtained by this approach allowed the confirmation of the site specificity of the inhibition reaction and the unambiguous identification of the serine at position 10 as the nucleophilic amino acid residue in the active site of the enzyme. This result is in agreement with the previously obtained data from multiple sequence alignment of S. rimosus lipase with different esterases, which indicated that this enzyme exhibits a characteristic Gly-Asp-Ser-(Leu) motif located close to the N-terminus and is harboring the catalytically active serine residue. Therefore, this study experimentally proves the classification of the S. rimosus lipase as GDS(L) lipolytic enzyme.
Collapse
Affiliation(s)
- Martin Zehl
- Institute of Chemical Technologies and Analysis, Vienna University of Technology, Getreidemarkt 9/164-IAC, A-1060 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
21
|
Marokházi J, Lengyel K, Pekár S, Felföldi G, Patthy A, Gráf L, Fodor A, Venekei I. Comparison of proteolytic activities produced by entomopathogenic Photorhabdus bacteria: strain- and phase-dependent heterogeneity in composition and activity of four enzymes. Appl Environ Microbiol 2004; 70:7311-20. [PMID: 15574931 PMCID: PMC535150 DOI: 10.1128/aem.70.12.7311-7320.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2004] [Accepted: 08/01/2004] [Indexed: 11/20/2022] Open
Abstract
Twenty strains (including eight phase variant pairs) of nematode-symbiotic and insect-pathogenic Photorhabdus bacteria were examined for the production of proteolytic enzymes by using a combination of several methods, including gelatin liquefaction, zymography coupled to native and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and activity measurement with two chromogen substrate types. Four protease activities (approximately 74, approximately 55, approximately 54, and approximately 37 kDa) could be separated. The N-terminal sequences of three of the proteases were determined, and a comparison with sequences in databases allowed identification of these proteases as HEXXH metallopeptidases. Thus, the 74-kDa protease (described formerly as Php-B [J. Marokhazi, G. Koczan, F. Hudecz, L. Graf, A. Fodor, and I. Venekei, Biochem. J. 379:633-640, 2004) is an ortholog of OpdA, a member the thimet oligopeptidase family, and the 55-kDa protease is an ortholog of PrtA, a HEXXH+H peptidase in clan MB (metzincins), while the 37-kDa protease (Php-C) belongs to the HEXXH+E peptidases in clan MA. The 54-kDa protease (Php-D) is a nonmetalloenzyme. PrtA and Php-C were zymographically detected, and they occurred in several smaller forms as well. OpdA could not be detected by zymography. PrtA, Php-C, and Php-D were secreted proteases; OpdA, in contrast, was an intracellular enzyme. OpdA activity was found in every strain tested, while Php-D was detected only in the Brecon/1 strain. There was significant strain variation in the secretion of PrtA and Php-C activities, but reduced activity or a lack of activity was not specific to secondary-phase variants. The presence of PrtA, OpdA, and Php-C activities could be detected in the hemolymph of Galleria melonella larvae 20 to 40 h postinfection. These proteases appear not to be directly involved in the pathogenicity of Photorhabdus, since strains or phase variants lacking any of these proteases do not show reduced virulence when they are injected into G. melonella larvae.
Collapse
Affiliation(s)
- Judit Marokházi
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Henderson IR, Navarro-Garcia F, Desvaux M, Fernandez RC, Ala'Aldeen D. Type V protein secretion pathway: the autotransporter story. Microbiol Mol Biol Rev 2004; 68:692-744. [PMID: 15590781 PMCID: PMC539010 DOI: 10.1128/mmbr.68.4.692-744.2004] [Citation(s) in RCA: 595] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Gram-negative bacteria possess an outer membrane layer which constrains uptake and secretion of solutes and polypeptides. To overcome this barrier, bacteria have developed several systems for protein secretion. The type V secretion pathway encompasses the autotransporter proteins, the two-partner secretion system, and the recently described type Vc or AT-2 family of proteins. Since its discovery in the late 1980s, this family of secreted proteins has expanded continuously, due largely to the advent of the genomic age, to become the largest group of secreted proteins in gram-negative bacteria. Several of these proteins play essential roles in the pathogenesis of bacterial infections and have been characterized in detail, demonstrating a diverse array of function including the ability to condense host cell actin and to modulate apoptosis. However, most of the autotransporter proteins remain to be characterized. In light of new discoveries and controversies in this research field, this review considers the autotransporter secretion process in the context of the more general field of bacterial protein translocation and exoprotein function.
Collapse
Affiliation(s)
- Ian R Henderson
- Division of Immunity and Infection, University of Birmingham, Birmingham B15 2TT, UK.
| | | | | | | | | |
Collapse
|
23
|
Abstract
GDSL esterases and lipases are hydrolytic enzymes with multifunctional properties such as broad substrate specificity and regiospecificity. They have potential for use in the hydrolysis and synthesis of important ester compounds of pharmaceutical, food, biochemical, and biological interests. This new subclass of lipolytic enzymes possesses a distinct GDSL sequence motif different from the GxSxG motif found in many lipases. Unlike the common lipases, GDSL enzymes do not have the so called nucleophile elbow. Studies show that GDSL hydrolases have a flexible active site that appears to change conformation with the presence and binding of the different substrates, much like the induced fit mechanism proposed by Koshland. Some of the GDSL enzymes have thioesterase, protease, arylesterase, and lysophospholipase activity, yet they appear to be the same protein with similar molecular weight ( approximately 22-60 kDa for most esterases), although some have multiple glycosylation sites with higher apparent molecular weight. GDSL enzymes have five consensus sequence (I-V) and four invariant important catalytic residues Ser, Gly, Asn, and His in blocks I, II, III, and V, respectively. The oxyanion structure led to a new designation of these enzymes as SGNH-hydrolase superfamily or subfamily. Phylogenetic analysis revealed that block IIA which belonged to the SGNH-hydrolases was found only in clade I. Therefore, this family of hydrolases represents a new example of convergent evolution of lipolytic enzymes. These enzymes have little sequence homology to true lipases. Another important differentiating feature of GDSL subfamily of lipolytic enzymes is that the serine-containing motif is closer to the N-terminus unlike other lipases where the GxSxG motif is near the center. Since the first classification of these subclass or subfamily of lipases as GDSL(S) hydrolase, progress has been made in determining the consensus sequence, crystal structure, active site and oxyanion residues, secondary structure, mechanism of catalysis, and understanding the conformational changes. Nevertheless, much still needs to be done to gain better understanding of in vivo biological function, 3-D structure, how this group of enzymes evolved to utilize many different substrates, and the mechanism of reactions. Protein engineering is needed to improve the substrate specificity, enantioselectivity, specific activity, thermostability, and heterologous expression in other hosts (especially food grade microorganisms) leading to eventual large scale production and applications. We hope that this review will rekindle interest among researchers and the industry to study and find uses for these unique enzymes.
Collapse
Affiliation(s)
- Casimir C Akoh
- Department of Food Science and Technology, University of Georgia, Athens, GA 30602-7610, USA
| | | | | | | | | |
Collapse
|
24
|
Partial purification and characterization of an extracellular protease fromXenorhabdus nematophilus, a symbiotic bacterium isolated from an entomopathogenic nematode,Steinernema glaseri. BIOTECHNOL BIOPROC E 2004. [DOI: 10.1007/bf02933061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Armer CA, Rao S, Berry RE. Insect cellular and chemical limitations to pathogen development: the Colorado potato beetle, the nematode Heterorhabditis marelatus, and its symbiotic bacteria. J Invertebr Pathol 2004; 87:114-22. [PMID: 15579320 DOI: 10.1016/j.jip.2004.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Accepted: 08/31/2004] [Indexed: 10/26/2022]
Abstract
This research examines possible factors limiting pathogen development and reproduction in a novel host insect. The nematode Heterorhabditis marelatus and its symbiotic bacterium, Photorhabdus luminescens, kill 98% of nematode-treated Colorado potato beetle (CPB) prepupae, but the nematode reproduces in only 1-6% of beetles. We examined nematode/bacterial inhibition at each step of the normal developmental pathway to determine host feature(s) limiting nematode reproduction. We found that in vivo encapsulation of nematodes occurred in only 1.6% of CPB, and in 5% of in vitro hanging drops of hemolymph. Thus, the cellular defense system did not strongly limit nematode reproduction in the CPB. The symbiotic bacterium was negatively affected by a heat-labile factor found in the CPB's hemolymph which often caused the bacterium to switch from the primary form that produces antibiotics and nutrients necessary for the nematodes' development, to a secondary form that provides only limited nutrients. A 58 kDa protein was isolated and bioassayed for activity against P. luminescens, but caused a delay in bacterial growth rather than the primary-secondary form switch. Thus, the identity of the heat-labile factor could not be confirmed as being the 58 kDa protein. The heat-labile factor did not directly affect the nematode. The addition of lipids in the form of olive oil to heated CPB hemolymph allowed nematodes to reproduce in 17% of hanging drops, in contrast to zero reproduction in hemolymph without oil. Reproductive nematodes were smaller when grown in CPB hemolymph than in hemolymph of the highly susceptible Galleria mellonella. These data suggest that both the toxic heat-labile factor and a lack of appropriate nutrients alter the CPB-bacterium-nematode interaction. These factors preclude the use of this otherwise highly effective nematode-bacterial complex in the longterm control of the CPB.
Collapse
Affiliation(s)
- Christine A Armer
- Center for Population Biology, University of California, 2320 Storer Hall, Davis, CA 95616, USA.
| | | | | |
Collapse
|
26
|
Au C, Dean P, Reynolds SE, ffrench-Constant RH. Effect of the insect pathogenic bacterium Photorhabdus on insect phagocytes. Cell Microbiol 2004; 6:89-95. [PMID: 14678333 DOI: 10.1046/j.1462-5822.2003.00345.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Photorhabdus are insect pathogenic bacteria that replicate within the insect haemocoel following release from their entomopathogenic nematode symbionts. To investigate how they escape the cellular immune response we examined the effects of two strains of Photorhabdus, W14 and K122, on Manduca sexta phagocytes (haemocytes), in vitro and in vivo. Following injection of Esherichia coli into Manduca larvae, these non-pathogenic bacteria are rapidly cleared from the haemolymph and the number of free haemocytes transiently increases. In contrast, following injection of either strain of pathogenic Photorhabdus, the bacteria grow rapidly while the number of haemocytes decreases dramatically. In vitro incubation of haemocytes with either Photorhabdus supernatant reduced haemocyte viability, and the W14 supernatant caused distinct changes in the actin cytoskeleton morphology of different haemocyte cell types. In phagocytosis assays both Photorhabdus strains can inhibit their own phagocytosis whether the bacterial cells are alive or dead. Further, the supernatant of W14 also contains a factor capable of inhibiting the phagocytosis of labelled E. coli. Together these results suggest that Photorhabdus evades the cellular immune response by killing haemocytes and suppressing phagocytosis by mechanisms that differ between strains.
Collapse
Affiliation(s)
- C Au
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | | | | | | |
Collapse
|
27
|
Meslet-Cladiere LM, Pimenta A, Duchaud E, Holland IB, Blight MA. In vivo expression of the mannose-resistant fimbriae of Photorhabdus temperata K122 during insect infection. J Bacteriol 2004; 186:611-22. [PMID: 14729685 PMCID: PMC321496 DOI: 10.1128/jb.186.3.611-622.2004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Photorhabdus temperata K122 is an entomopathogenic bacterium symbiotically associated with nematodes of the family Heterorhabditidae: Surface fimbriae are important for the colonization of many pathogenic bacteria, and here we report the nucleotide sequence and analysis of the expression of a 12-kbp fragment encoding the mannose-resistant fimbriae of P. temperata (mrf). The mrf gene cluster contains 11 genes with an organization similar to that of the mrp locus from Proteus mirabilis. mrfI (encoding a putative recombinase) and mrfA (encoding pilin), the first gene in an apparent operon of nine other genes, are expressed from divergent promoters. The mrfI-mrfA intergenic region contains inverted repeats flanking the mrfA promoter. This region was shown to be capable of inversion, consistent with an ON/OFF regulation of the operon. In in vitro liquid cultures, both orientations were detected. Nevertheless, when we analyzed the expression of all of the genes in the mrf locus by semiquantitative reverse transcription-PCR during infection of Galleria mellonella (greater wax moth) larvae, expression of mrfA was not detected until 25 h postinfection, preceding the death of the larvae at 32 h. In contrast, mrfJ (a putative inhibitor of flagellar synthesis) was expressed throughout infection. Expression of mrfI was also detected only late in infection (25 to 30 h), indicating a possible increase in inversion frequency at this stage. In both in vitro liquid cultures and in vivo larval infections, the distal genes of the operon were expressed at substantially lower levels than mrfA. These results indicate the complex regulation of the mrf cluster during infection.
Collapse
Affiliation(s)
- L M Meslet-Cladiere
- Institut de Génétique et Microbiologie, CNRS UMR 8621, Laboratoire de Pathogenèse Comparée, Université Paris XI, 91405 Orsay Cedex, France
| | | | | | | | | |
Collapse
|
28
|
Salaün L, Snyder LA, Saunders NJ. Adaptation by phase variation in pathogenic bacteria. ADVANCES IN APPLIED MICROBIOLOGY 2003; 52:263-301. [PMID: 12964248 DOI: 10.1016/s0065-2164(03)01011-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Laurence Salaün
- Bacterial Pathogenesis and Functional Genomics Group, Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | | | |
Collapse
|
29
|
Timpe JM, Holm MM, Vanlerberg SL, Basrur V, Lafontaine ER. Identification of a Moraxella catarrhalis outer membrane protein exhibiting both adhesin and lipolytic activities. Infect Immun 2003; 71:4341-50. [PMID: 12874311 PMCID: PMC166007 DOI: 10.1128/iai.71.8.4341-4350.2003] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The UspA1 and Hag proteins have previously been shown to be involved in the ability of the Moraxella catarrhalis wild-type strain O35E to bind to human Chang and A549 cells, respectively. In an effort to identify novel adhesins, we generated a plasmid library of M. catarrhalis DNA fragments, which was introduced into a nonadherent Escherichia coli strain. Recombinant E. coli bacteria were subsequently enriched for clones that gained the ability to bind to Chang and A549 cells, yielding the plasmid pELFOS190. Transposon mutagenesis of this plasmid identified the potential adhesin gene mcaP (M. catarrhalis adherence protein). Sequence analysis revealed that McaP is related to autotransporter proteins and has substantial similarity with the GDSL family of lipolytic enzymes, particularly the Moraxella bovis phospholipase B. Expression of the mcaP gene product by E. coli increased adherence to Chang, A549, and 16HBE14o(-) polarized human bronchial cells 50- to 100-fold. Spectrophotometric assays with p-nitrophenol derivatives also demonstrated that McaP is an esterase. Furthermore, thin-layer chromatography revealed that McaP cleaves both phosphatidylcholine and lysophosphatidylcholine. McaP releases fatty acids and glycerophosphorylcholine upon cleavage of phosphatidylcholine, thus exhibiting phospholipase B activity. The construction and characterization of isogenic M. catarrhalis O35E mutants demonstrated that the lack of McaP expression abolishes esterase activity and considerably decreases adherence to several human cell lines.
Collapse
Affiliation(s)
- Jennifer M Timpe
- Department of Microbiology and Immunology, Medical College of Ohio, Toledo, Ohio 43614-5806, USA
| | | | | | | | | |
Collapse
|
30
|
Suzuki T, Nakayama T, Choo DW, Hirano Y, Kurihara T, Nishino T, Esaki N. Cloning, heterologous expression, renaturation, and characterization of a cold-adapted esterase with unique primary structure from a psychrotroph Pseudomonas sp. strain B11-1. Protein Expr Purif 2003; 30:171-8. [PMID: 12880765 DOI: 10.1016/s1046-5928(03)00128-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A gene coding for an esterase (PsEst1, 1911bp in length) of the psychrotrophic bacterium Pseudomonas sp. B11-1 isolated from Alaskan soil was cloned and sequenced. The deduced amino acid sequence revealed a protein of 637 amino acid residues with a molecular mass of 69 kDa. Although the expression product, PsEst1, showed no appreciable sequence similarity (less than 15% identity) to any known proteins with the established biochemical functions, it is expected to be related to the alpha/beta hydrolase superfamily because it shared sequence motifs that have been identified with this superfamily. For example, a unique 'nucleophilic elbow' motif, -Gly(36)-Asp-Ser-Leu-Asn(40)-, was identified, and Ser(38) was predicted to constitute a catalytic triad with Asp(162) and His(303). PsEst1 was overexpressed using a T7 RNA polymerase transcription (pET21a) system in the Escherichia coli BL21(DE3) cells as an inclusion body. A soluble denatured form of the enzyme was purified to homogeneity in the presence of 8M urea, and the catalytically active form of the enzyme could be obtained by subsequent removal of urea by dialysis, where the addition of 0.1% Triton X-100 was essential for the efficient renaturation of the enzyme. To our knowledge, this was the first example of the successful renaturation of the recombinant cold-adapted enzyme. The enzyme efficiently hydrolyzed vinyl and aryl esters with the C4-C6 acyl chain. The activation energy of the enzymatic p-nitrophenyl butyrate hydrolysis (20.1 kcal/mol at 10 degrees C) was significantly lower than the value (79.9 kcal/mol) of the mesophilic lipase. It was observed that the K(m) values for p-nitrophenyl butyrate in the growth temperature range of strain B11-1 (5-15 degrees C) were lower than those at higher temperatures.
Collapse
Affiliation(s)
- Takeshi Suzuki
- Laboratory of Microbial Biochemistry, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Riedel K, Talker-Huiber D, Givskov M, Schwab H, Eberl L. Identification and characterization of a GDSL esterase gene located proximal to the swr quorum-sensing system of Serratia liquefaciens MG1. Appl Environ Microbiol 2003; 69:3901-10. [PMID: 12839759 PMCID: PMC165140 DOI: 10.1128/aem.69.7.3901-3910.2003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Serratia liquefaciens MG1 employs the swr quorum-sensing system to control various functions, including production of extracellular enzymes and swarming motility. Here we report the sequencing of the swr flanking DNA regions. We identified a gene upstream of swrR and transcribed in the same direction, designated estA, which encodes an esterase that belongs to family II of lipolytic enzymes. EstA was heterologously expressed in Escherichia coli, and the substrate specificity of the enzyme was determined in crude extracts. With the aid of zymograms visualizing EstA on polyacrylamide gels and by the analysis of a transcriptional fusion of the estA promoter to the promoterless luxAB genes, we showed that expression of the esterase is not regulated by the swr quorum-sensing system. An estA mutant was generated and was found to exhibit growth defects on minimal medium containing Tween 20 or Tween 80 as the sole carbon source. Moreover, we show that the mutant produces greatly reduced amounts of N-acyl-homoserine lactone (AHL) signal molecules on Tween-containing medium compared with the wild type, suggesting that under certain growth conditions EstA may be important for providing the cell with precursors required for AHL biosynthesis.
Collapse
Affiliation(s)
- Kathrin Riedel
- Department of Microbiology, Technical University Munich, Am Hochanger 4, D-85350 Freising, Germany
| | | | | | | | | |
Collapse
|
32
|
Bowen DJ, Rocheleau TA, Grutzmacher CK, Meslet L, Valens M, Marble D, Dowling A, Ffrench-Constant R, Blight MA. Genetic and biochemical characterization of PrtA, an RTX-like metalloprotease from Photorhabdus. MICROBIOLOGY (READING, ENGLAND) 2003; 149:1581-1591. [PMID: 12777498 DOI: 10.1099/mic.0.26171-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Proteases play a key role in the interaction between pathogens and their hosts. The bacterial entomopathogen Photorhabdus lives in symbiosis with nematodes that invade insects. Following entry into the insect, the bacteria are released from the nematode gut into the open blood system of the insect. Here they secrete factors which kill the host and also convert the host tissues into food for the replicating bacteria and nematodes. One of the secreted proteins is PrtA, which is shown here to be a repeats-in-toxin (RTX) alkaline zinc metalloprotease. PrtA has high affinity for artificial substrates such as casein and gelatin and can be inhibited by zinc metalloprotease inhibitors. The metalloprotease also shows a calcium- and temperature-dependent autolysis. The prtA gene carries the characteristic RTX repeated motifs and predicts high similarity to proteases from Erwinia chrysanthemi, Pseudomonas aeruginosa and Serratia marcescens. The prtA gene resides in a locus encoding both the protease ABC transporter (prtBCD) and an intervening ORF encoding a protease inhibitor (inh). PrtA activity is detectable 24 h after artificial bacterial infection of an insect, suggesting that the protease may play a key role in degrading insect tissues rather than in overcoming the insect immune system. Purified PrtA also shows cytotoxicity to mammalian cell cultures, supporting its proposed role in bioconversion of the insect cadaver into food for bacterial and nematode development.
Collapse
Affiliation(s)
- David J Bowen
- Department of Entomology, University of Wisconsin-Madison, Madison, USA
| | | | | | - Laurence Meslet
- Institut de Génétique et Microbiologie, CNRS UMR 8621, Bâtiment 360, Université Paris XI, 91405 Orsay Cedex, France
| | - Michelle Valens
- Institut de Génétique et Microbiologie, CNRS UMR 8621, Bâtiment 360, Université Paris XI, 91405 Orsay Cedex, France
| | - Daniel Marble
- Department of Entomology, University of Wisconsin-Madison, Madison, USA
| | - Andrea Dowling
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | | | - Mark A Blight
- Institut de Génétique et Microbiologie, CNRS UMR 8621, Bâtiment 360, Université Paris XI, 91405 Orsay Cedex, France
| |
Collapse
|
33
|
Talker-Huiber D, Jose J, Glieder A, Pressnig M, Stubenrauch G, Schwab H. Esterase EstE from Xanthomonas vesicatoria ( Xv_EstE) is an outer membrane protein capable of hydrolyzing long-chain polar esters. Appl Microbiol Biotechnol 2003; 61:479-87. [PMID: 12764562 DOI: 10.1007/s00253-003-1227-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2002] [Revised: 12/02/2002] [Accepted: 12/06/2002] [Indexed: 12/11/2022]
Abstract
A new esterase gene from Xanthomonas vesicatoria (formerly X. campestris) DSM 50861 was identified, cloned from a chromosomal gene library and overexpressed in Escherichia coli. The corresponding DNA fragment contains an ORF of 1,818 bp, encoding a hydrolase of the GDSL esterase family. A protein of about 67 kDa, named Xv_EstE, was expressed from this fragment. A N-terminal signal peptide was processed under low-expression conditions, yielding a 63-kDa mature protein. The predicted amino acid sequence showed distinct homology to esterases of the GDSL family. Based on homology, a catalytic triad Gly-Asp-Ser could be defined. Amino acid sequence alignments and computer-assisted structure prediction indicated the presence of a carboxyl-terminal beta-barrel membrane domain which might facilitate binding of Xv_EstE to the outer membrane. This could be verified by differential cell fractionation experiments, in which Xv_EstE was exclusively found in the outer membrane fraction. Xv_EstE showed preferential hydrolytic activity on short chain (up to C(8)) and para-substituted nitrophenylesters as substrates. However, only long-chain 1-hydroxy-pyrene-3,6,8-trisulfonic acid (HPTS)-fatty acid esters were hydrolyzed. Xv_EstE was also found to be active on a series of substrates of industrial interest, such as 1-methylprop-2-ynyl acetate, for which an enantioselectivity up to 93% ee could be recognized.
Collapse
Affiliation(s)
- D Talker-Huiber
- Institut für Biotechnologie, Arbeitsgruppe Genetik, Technische Universitaet Graz, Petersgasse 12, 8010 Graz, Austria
| | | | | | | | | | | |
Collapse
|
34
|
ffrench-Constant R, Waterfield N, Daborn P, Joyce S, Bennett H, Au C, Dowling A, Boundy S, Reynolds S, Clarke D. Photorhabdus: towards a functional genomic analysis of a symbiont and pathogen. FEMS Microbiol Rev 2003; 26:433-56. [PMID: 12586390 DOI: 10.1111/j.1574-6976.2003.tb00625.x] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Pathogenicity and symbiosis are central to bacteria-host interactions. Although several human pathogens have been subjected to functional genomic analysis, we still understand little about bacteria-invertebrate interactions despite their ecological prevalence. Advances in our knowledge of this area are often hindered by the difficulty of isolating and working with invertebrate pathogenic bacteria and their hosts. Here we review studies on pathogenicity and symbiosis in an insect pathogenic bacterium Photorhabdus and its entomopathogenic nematode vector and model insect hosts. Whilst switching between these hosts, Photorhabdus changes from a state of symbiosis with its nematode vector to one of pathogenicity towards its new insect host and both the bacteria and the nematode then cooperatively exploit the dying insect. We examine candidate genes involved in symbiosis and pathogenicity, their secretion and expression patterns in culture and in the host, and begin to dissect the extent of their genetic coregulation. We describe the presence of several large genomic islands, putatively involved in pathogenicity or symbiosis, within the otherwise Yersinia-like backbone of the Photorhabdus genome. Finally, we examine the emerging comparative genomics of the Photorhabdus group and begin to describe the interrelationship between anti-invertebrate virulence factors and those used against vertebrates.
Collapse
Affiliation(s)
- Richard ffrench-Constant
- Centre for Molecular Microbiology, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Roche DM, Dowds BCA. Identification and sequence of an unstable DNA element in the entomopathogenic bacteria Photorhabdus temperata strain K122. Lett Appl Microbiol 2002; 35:131-5. [PMID: 12100588 DOI: 10.1046/j.1472-765x.2002.01158.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS A search was conducted for a difference in genome composition between phenotypic variants of the insect pathogenic bacteria, Photorhabdus temperata. METHODS An unstable 300 bp fragment of DNA was identified by amplified fragment length polymorphism (AFLP) analysis, which was not, however, associated with phenotypic variation. RESULTS During prolonged culturing of the bacteria, one copy of the repeated fragment was deleted and a restriction site linked to one of the copies was lost or gained. The sequence did not show substantial identity to any in the database, but a 16-bp region was identical to part of the marR gene of Escherichia coli. SIGNIFICANCE AND IMPACT OF THE STUDY The work has implications for the understanding of genetic instability in this and other pathogenic species of bacteria. In addition, the complete unstable element may be useful as a genetic tool in Photorhabdus spp.
Collapse
Affiliation(s)
- D M Roche
- Department of Biology and Institute for Bioengineering and Agroecology, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | | |
Collapse
|
36
|
Valens M, Broutelle AC, Lefebvre M, Blight MA. A zinc metalloprotease inhibitor, Inh, from the insect pathogen Photorhabdus luminescens. MICROBIOLOGY (READING, ENGLAND) 2002; 148:2427-2437. [PMID: 12177336 DOI: 10.1099/00221287-148-8-2427] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The entomopathogen Photorhabdus luminescens secretes many proteins during the late stages of insect larvae infection and during in vitro laboratory culture. The authors have previously characterized and purified a 55 kDa zinc metalloprotease, PrtA, from culture supernatants of P. luminescens. PrtA is secreted via a classical type I secretory pathway and is encoded within the operon prtA-inh-prtBCD. The 405 bp inh gene encodes a 14.8 kDa pre-protein that is translocated to the periplasm by the classical signal-peptide-dependent sec pathway, yielding the mature 11.9 kDa inhibitor Inh. Inh is a specific inhibitor of the protease PrtA. This study describes the purification of Inh and the initial characterization of its in vitro protease inhibition properties.
Collapse
Affiliation(s)
- Michèle Valens
- Institut de Génétique et Microbiologie, Laboratoire de Pathogenèse Comparée, CNRS UMR 8621, Bâtiment 360, Université Paris XI, 91405 Orsay Cedex, France1
| | - Anne-Cécile Broutelle
- Institut de Génétique et Microbiologie, Laboratoire de Pathogenèse Comparée, CNRS UMR 8621, Bâtiment 360, Université Paris XI, 91405 Orsay Cedex, France1
| | - Mélanie Lefebvre
- Institut de Génétique et Microbiologie, Laboratoire de Pathogenèse Comparée, CNRS UMR 8621, Bâtiment 360, Université Paris XI, 91405 Orsay Cedex, France1
| | - Mark A Blight
- Institut de Génétique et Microbiologie, Laboratoire de Pathogenèse Comparée, CNRS UMR 8621, Bâtiment 360, Université Paris XI, 91405 Orsay Cedex, France1
| |
Collapse
|
37
|
O'Neill KH, Roche DM, Clarke DJ, Dowds BCA. The ner gene of Photorhabdus: effects on primary-form-specific phenotypes and outer membrane protein composition. J Bacteriol 2002; 184:3096-105. [PMID: 12003952 PMCID: PMC135048 DOI: 10.1128/jb.184.11.3096-3105.2002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nematode-bacterium complex of Heterorhabditis-Photorhabdus is pathogenic to insect larvae. The bacteria undergo a form of phenotypic switching whereby the primary form, at the stationary phase of the growth cycle, makes a range of products and has the capacity to support nematode growth, whereas the secondary form does not express these phenotypes. The work described here investigated the mechanism regulating phenotypic variation by transforming the primary cells with secondary-form DNA on a low-copy-number vector and screening for colonies which did not produce the yellow pigment characteristic of primaries. Four transformants all carrying the same gene were found to loose primary-form-specific characteristics, and the gene was sequenced and identified as ner, a regulatory gene in gram-negative bacteria and their phages. Unexpectedly, inactivation of the endogenous gene in the secondaries did not cause them to revert to the primary phenotype, and the gene was expressed in the primary form as well as the secondary form during exponential but not stationary phase and deregulated in the plasmid-bearing primary form. These and other pieces of evidence indicate that the endogenous ner gene is not responsible for the secondary phenotype, but that ner, when overexpressed, can repress expression of primary phenotypes at stationary phase. Inactivation of the endogenous ner gene in the primary form affected the outer membrane protein profile. A number of outer membrane proteins displayed differential accumulation in the primary and secondary forms at stationary phase, and two of the primary-form-specific proteins were absent from the ner primary strain.
Collapse
Affiliation(s)
- Keith H O'Neill
- Department of Biology, National University of Ireland, Maynooth, Ireland
| | | | | | | |
Collapse
|
38
|
Litthauer D, Ginster A, van Eeden Skein E. Pseudomonas luteola lipase: a new member of the 320-residue Pseudomonas lipase family. Enzyme Microb Technol 2002. [DOI: 10.1016/s0141-0229(01)00469-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Farn JL, Strugnell RA, Hoyne PA, Michalski WP, Tennent JM. Molecular characterization of a secreted enzyme with phospholipase B activity from Moraxella bovis. J Bacteriol 2001; 183:6717-20. [PMID: 11673447 PMCID: PMC95508 DOI: 10.1128/jb.183.22.6717-6720.2001] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A candidate for a vaccine against infectious bovine keratoconjunctivitis (IBK) has been cloned and characterized from Moraxella bovis. The plb gene encodes a protein of 616 amino acids (molecular mass of ~65.8 kDa) that expresses phospholipase B activity. Amino acid sequence analysis revealed that PLB is a new member of the GDSL (Gly-Asp-Ser-Leu) family of lipolytic enzymes.
Collapse
Affiliation(s)
- J L Farn
- CSIRO Livestock Industries, Geelong, Victoria, Australia 3220.
| | | | | | | | | |
Collapse
|
40
|
Ciche TA, Bintrim SB, Horswill AR, Ensign JC. A Phosphopantetheinyl transferase homolog is essential for Photorhabdus luminescens to support growth and reproduction of the entomopathogenic nematode Heterorhabditis bacteriophora. J Bacteriol 2001; 183:3117-26. [PMID: 11325940 PMCID: PMC95212 DOI: 10.1128/jb.183.10.3117-3126.2001] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacterium Photorhabdus luminescens is a symbiont of the entomopathogenic nematode Heterorhabditis bacteriophora. The nematode requires the bacterium for infection of insect larvae and as a substrate for growth and reproduction. The nematodes do not grow and reproduce in insect hosts or on artificial media in the absence of viable P. luminescens cells. In an effort to identify bacterial factors that are required for nematode growth and reproduction, transposon-induced mutants of P. luminescens were screened for the loss of the ability to support growth and reproduction of H. bacteriophora nematodes. One mutant, NGR209, consistently failed to support nematode growth and reproduction. This mutant was also defective in the production of siderophore and antibiotic activities. The transposon was inserted into an open reading frame homologous to Escherichia coli EntD, a 4'-phosphopantetheinyl (Ppant) transferase, which is required for the biosynthesis of the catechol siderophore enterobactin. Ppant transferases catalyze the transfer of the Ppant moiety from coenzyme A to a holo-acyl, -aryl, or -peptidyl carrier protein(s) required for the biosynthesis of fatty acids, polyketides, or nonribosomal peptides. Possible roles of a Ppant transferase in the ability of P. luminescens to support nematode growth and reproduction are discussed.
Collapse
Affiliation(s)
- T A Ciche
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
41
|
Affiliation(s)
- I R Henderson
- Center for Vaccine Development, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| | | |
Collapse
|
42
|
Chabeaud P, de Groot A, Bitter W, Tommassen J, Heulin T, Achouak W. Phase-variable expression of an operon encoding extracellular alkaline protease, a serine protease homolog, and lipase in Pseudomonas brassicacearum. J Bacteriol 2001; 183:2117-20. [PMID: 11222613 PMCID: PMC95110 DOI: 10.1128/jb.183.6.2117-2120.2001] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2000] [Accepted: 12/14/2000] [Indexed: 11/20/2022] Open
Abstract
The rhizobacterium Pseudomonas brassicacearum forms phenotypic variants which do not show extracellular protease and lipase activity. The operon encoding these enzymes, a serine protease homolog, and a type I secretion machinery was characterized. Transcriptional lacZ gene fusions revealed that the expression of the operon is under the control of phase variation.
Collapse
Affiliation(s)
- P Chabeaud
- CEA/Cadarache, DSV-DEVM, Laboratoire d'Ecologie Microbienne de la Rhizosphère, UMR 163 CNRS-CEA, F-13108 Saint-Paul-lez-Durance, France
| | | | | | | | | | | |
Collapse
|
43
|
Conlin CA, Tan SL, Hu H, Segar T. The apeE gene of Salmonella enterica serovar Typhimurium is induced by phosphate limitation and regulated by phoBR. J Bacteriol 2001; 183:1784-6. [PMID: 11160112 PMCID: PMC95066 DOI: 10.1128/jb.183.5.1784-1786.2001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutations in apeR, a regulatory locus of the outer membrane esterase apeE from Salmonella enterica serovar Typhimurium, were shown to be alleles of the pstSCAB-phoU high-affinity phosphate transport operon. Expression of apeE was induced by phosphate limitation, and this induction required the phoBR phosphate regulatory system.
Collapse
Affiliation(s)
- C A Conlin
- Department of Biological Sciences, Minnesota State University, Mankato, Minnesota 56001, USA
| | | | | | | |
Collapse
|
44
|
Wee KE, Yonan CR, Chang FN. A new broad-spectrum protease inhibitor from the entomopathogenic bacterium Photorhabdus luminescens. MICROBIOLOGY (READING, ENGLAND) 2000; 146 Pt 12:3141-3147. [PMID: 11101672 DOI: 10.1099/00221287-146-12-3141] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A new protease inhibitor was purified to apparent homogeneity from a culture medium of Photorhabdus luminescens by ammonium sulfate precipitation and preparative isoelectric focusing followed by affinity chromatography. Ph. luminescens, a bacterium symbiotically associated with the insect-parasitic nematode Heterorhabditis bacteriophora, exists in two morphologically distinguishable phases (primary and secondary). It appears that only the secondary-phase bacterium produces this protease inhibitor. The protease inhibitor has an M:(r) of approximately 12000 as determined by SDS-PAGE. Its activity is stable over a pH range of 3.5-11 and at temperatures below 50 degrees C. The N-terminal 16 amino acids of the protease inhibitor were determined as STGIVTFKND(X)GEDIV and have a very high sequence homology with the N-terminal region of an endogenous inhibitor (IA-1) from the fruiting bodies of an edible mushroom, Pleurotus ostreatus. The purified protease inhibitor inactivated the homologous protease with an almost 1:1 stoichiometry. It also inhibited proteases from a related insect-nematode-symbiotic bacterium, Xenorhabdus nematophila. Interestingly, when present at a molar ratio of 5 to 1, this new protease inhibitor completely inactivated the activity of both trypsin and elastase. The activity of proteinase A and cathepsin G was partially inhibited by this bacterial protease inhibitor, but it had no effect on chymotrypsin, subtilisin, thermolysin and cathepsins B and D. The newly isolated protease inhibitor from the secondary-phase bacteria and its specific inhibition of its own protease provides an explanation as to why previous investigators failed to detect the presence of protease activity in the secondary-phase bacteria. The functional implications of the protease inhibitor are also discussed in relation to the physiology of nematode-symbiotic bacteria.
Collapse
Affiliation(s)
- Kevin E Wee
- Department of Biology, Temple University, Philadelphia, PA 19122, USA1
| | | | - F N Chang
- Department of Biology, Temple University, Philadelphia, PA 19122, USA1
| |
Collapse
|
45
|
Ffrench-Constant RH, Waterfield N, Burland V, Perna NT, Daborn PJ, Bowen D, Blattner FR. A genomic sample sequence of the entomopathogenic bacterium Photorhabdus luminescens W14: potential implications for virulence. Appl Environ Microbiol 2000; 66:3310-29. [PMID: 10919786 PMCID: PMC92150 DOI: 10.1128/aem.66.8.3310-3329.2000] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Photorhabdus luminescens is a pathogenic bacterium that lives in the guts of insect-pathogenic nematodes. After invasion of an insect host by a nematode, bacteria are released from the nematode gut and help kill the insect, in which both the bacteria and the nematodes subsequently replicate. However, the bacterial virulence factors associated with this "symbiosis of pathogens" remain largely obscure. In order to identify genes encoding potential virulence factors, we performed approximately 2,000 random sequencing reads from a P. luminescens W14 genomic library. We then compared the sequences obtained to sequences in existing gene databases and to the Escherichia coli K-12 genome sequence. Here we describe the different classes of potential virulence factors found. These factors include genes that putatively encode Tc insecticidal toxin complexes, Rtx-like toxins, proteases and lipases, colicin and pyocins, and various antibiotics. They also include a diverse array of secretion (e.g., type III), iron uptake, and lipopolysaccharide production systems. We speculate on the potential functions of each of these gene classes in insect infection and also examine the extent to which the invertebrate pathogen P. luminescens shares potential antivertebrate virulence factors. The implications for understanding both the biology of this insect pathogen and links between the evolution of vertebrate virulence factors and the evolution of invertebrate virulence factors are discussed.
Collapse
|
46
|
Volgyi A, Fodor A, Forst S. Inactivation of a novel gene produces a phenotypic variant cell and affects the symbiotic behavior of Xenorhabdus nematophilus. Appl Environ Microbiol 2000; 66:1622-8. [PMID: 10742251 PMCID: PMC92032 DOI: 10.1128/aem.66.4.1622-1628.2000] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/1999] [Accepted: 01/24/2000] [Indexed: 11/20/2022] Open
Abstract
Xenorhabdus nematophilus is an insect pathogen that lives in a symbiotic association with a specific entomopathogenic nematode. During prolonged culturing, variant cells arise that are deficient in numerous properties. To understand the genetic mechanism underlying variant cell formation, a transposon mutagenesis approach was taken. Three phenotypically similar variant strains of X. nematophilus, each of which contained a single transposon insertion, were isolated. The insertions occurred at different locations in the chromosome. The variant strain, ANV2, was further characterized. It was deficient in several properties, including the ability to produce antibiotics and the stationary-phase-induced outer membrane protein, OpnB. Unlike wild-type cells, ANV2 produced lecithinase. The emergence of ANV2 from the nematode host was delayed relative to the emergence of the parental strain. The transposon in ANV2 had inserted in a gene designated var1, which encodes a novel protein composed of 121 amino acid residues. Complementation analysis confirmed that the pleiotropic phenotype of the ANV2 strain was produced by inactivation of var1. Other variant strains were not complemented by var1. These results indicate that inactivation of a single gene was sufficient to promote variant cell formation in X. nematophilus and that disruption of genetic loci other than var1 can result in the same pleiotropic phenotype.
Collapse
Affiliation(s)
- A Volgyi
- Department of Biological Sciences, University of Wisconsin, Milwaukee, Wisconsin 53201, USA
| | | | | |
Collapse
|
47
|
Fenster KM, Parkin KL, Steele JL. Characterization of an arylesterase from Lactobacillus helveticus CNRZ32. J Appl Microbiol 2000; 88:572-83. [PMID: 10792515 DOI: 10.1046/j.1365-2672.2000.00993.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An esterase gene (estA) was isolated from a previously constructed genomic library of Lactobacillus helveticus CNRZ32. The estA gene consisted of a 558 bp open reading frame encoding a putative peptide of 21.3 kDa. Protein sequence homology searches using BLAST revealed that EstA had low amino acid sequence identity with the serine-dependent arylesterases TesI (24%) and EtpA (26%) from Escherichia coli and Vibrio mimicus, respectively. A recombinant EstA fusion protein containing a C-terminal six-histidine tag was constructed and purified to electrophoretic homogeneity. Characterization of EstA revealed that it was a serine-dependent enzyme having a monomeric Mr of 22.6-25.1 kDa. Optimum temperature, NaCl concentration and pH for EstA activity were determined to be 35-40 degrees C, 3.5% NaCl and 7.5-8.0, respectively. EstA had significant activity under conditions simulating those of ripening cheese (10 degrees C, 4% NaCl, pH 5.1). EstA hydrolysed a variety of ester compounds and preferred those with substituted phenyl alcohol and short-chain fatty acid groups. Site-directed mutagenesis suggested that the S10 and H164 residues were essential for EstA activity.
Collapse
Affiliation(s)
- K M Fenster
- Department of Food Science, University of Wisconsin-Madison, WI 53706, USA
| | | | | |
Collapse
|
48
|
Insecticidal toxin fromXenorhabdus nematophilus, symbiotic bacterium associated with entomopathogenic nematodeSteinernema glaseri. BIOTECHNOL BIOPROC E 2000. [DOI: 10.1007/bf02931886] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
49
|
Bowen D, Blackburn M, Rocheleau T, Grutzmacher C, ffrench-Constant RH. Secreted proteases from Photorhabdus luminescens: separation of the extracellular proteases from the insecticidal Tc toxin complexes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2000; 30:69-74. [PMID: 10646972 DOI: 10.1016/s0965-1748(99)00098-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Photorhabdus luminescens secretes both high molecular weight insecticidal toxin complexes and also a range of extracellular proteases into culture broth. Previous studies by others have suggested that insecticidal activity of the broth is associated with these proteases. However, by gene cloning and targeted knock-out, we have previously shown that oral insecticidal activity is associated with high molecular weight 'toxin complexes' (Tc) encoded by toxin complex or tc genes. Here we further clarify this distinction by biochemically separating the protease fractions away from the oral insecticidal activity of the Tc proteins. We purified three distinct protease fractions from the broth: one consisting of a single species of 55 kDa and two of several putatively related species of approximately 40 kDa. All of these clearly separate from the oral insecticidal activity associated with the high molecular weight Tc proteins and also show no effect on insect weight gain following injection into the haemocoel. Here we examine the substrate preferences and inhibitor profiles of these protease fractions and discuss their relationship with those previously described from other P. luminescens strains and phase variants.
Collapse
Affiliation(s)
- D Bowen
- Department of Entomology, University of Wisconsin, Madison 53706, USA
| | | | | | | | | |
Collapse
|
50
|
Wilhelm S, Tommassen J, Jaeger KE. A novel lipolytic enzyme located in the outer membrane of Pseudomonas aeruginosa. J Bacteriol 1999; 181:6977-86. [PMID: 10559163 PMCID: PMC94172 DOI: 10.1128/jb.181.22.6977-6986.1999] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A lipase-negative deletion mutant of Pseudomonas aeruginosa PAO1 still showed extracellular lipolytic activity toward short-chain p-nitrophenylesters. By screening a genomic DNA library of P. aeruginosa PAO1, an esterase gene, estA, was identified, cloned, and sequenced, revealing an open reading frame of 1,941 bp. The product of estA is a 69.5-kDa protein, which is probably processed by removal of an N-terminal signal peptide to yield a 67-kDa mature protein. A molecular mass of 66 kDa was determined for (35)S-labeled EstA by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. The amino acid sequence of EstA indicated that the esterase is a member of a novel GDSL family of lipolytic enzymes. The estA gene showed high similarity to an open reading frame of unknown function located in the trpE-trpG region of P. putida and to a gene encoding an outer membrane esterase of Salmonella typhimurium. Amino acid sequence alignments led us to predict that this esterase is an autotransporter protein which possesses a carboxy-terminal beta-barrel domain, allowing the secretion of the amino-terminal passenger domain harboring the catalytic activity. Expression of estA in P. aeruginosa and Escherichia coli and subsequent cell fractionation revealed that the enzyme was associated with the cellular membranes. Trypsin treatment of whole cells released a significant amount of esterase, indicating that the enzyme was located in the outer membrane with the catalytic domain exposed to the surface. To our knowledge, this esterase is unique in that it exemplifies in P. aeruginosa (i) the first enzyme identified in the outer membrane and (ii) the first example of a type IV secretion mechanism.
Collapse
Affiliation(s)
- S Wilhelm
- Lehrstuhl Biologie der Mikroorganismen, Ruhr Universität, D-44780 Bochum, Germany
| | | | | |
Collapse
|