1
|
Sommerfield AG, Wang M, Mamana J, Darwin AJ. In vivo and in vitro analyses of the role of the Prc protease in inducing mucoidy in Pseudomonas aeruginosa. J Bacteriol 2024; 206:e0022224. [PMID: 39287400 PMCID: PMC11500579 DOI: 10.1128/jb.00222-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
In Pseudomonas aeruginosa, alginate biosynthesis gene expression is inhibited by the transmembrane anti-sigma factor MucA, which sequesters the AlgU sigma factor. Cell envelope stress initiates cleavage of the MucA periplasmic domain by site-1 protease AlgW, followed by further MucA degradation to release AlgU. However, after colonizing the lungs of people with cystic fibrosis, P. aeruginosa converts to a mucoid form that produces alginate constitutively. Mucoid isolates often have mucA mutations, with the most common being mucA22, which truncates the periplasmic domain. MucA22 is degraded constitutively, and genetic studies suggested that the Prc protease is responsible. Some studies also suggested that Prc contributes to induction in strains with wild-type MucA, whereas others suggested the opposite. However, missing from all previous studies is a demonstration that Prc cleaves any protein directly, which leaves open the possibility that the effect of a prc null mutation is indirect. To address the ambiguities and shortfalls, we reevaluated the roles of AlgW and Prc as MucA and MucA22 site-1 proteases. In vivo analyses using three different assays and two different inducing conditions all suggested that AlgW is the only site-1 protease for wild-type MucA in any condition. In contrast, genetics suggested that AlgW or Prc act as MucA22 site-1 proteases in inducing conditions, whereas Prc is the only MucA22 site-1 protease in non-inducing conditions. For the first time, we also show that Prc is unable to degrade the periplasmic domain of wild-type MucA but does degrade the mutated periplasmic domain of MucA22 directly. IMPORTANCE After colonizing the lungs of individuals with cystic fibrosis, Pseudomonas aeruginosa undergoes mutagenic conversion to a mucoid form, worsening the prognosis. Most mucoid isolates have a truncated negative regulatory protein MucA, which leads to constitutive production of the extracellular polysaccharide alginate. The protease Prc has been implicated, but not shown, to degrade the most common MucA variant, MucA22, to trigger alginate production. This work provides the first demonstration that the molecular mechanism of Prc involvement is direct degradation of the MucA22 periplasmic domain and perhaps other truncated MucA variants as well. MucA truncation and degradation by Prc might be the predominant mechanism of mucoid conversion in cystic fibrosis infections, suggesting that Prc activity could be a useful therapeutic target.
Collapse
Affiliation(s)
- Alexis G. Sommerfield
- Department of Microbiology, NYU Grossman School of Medicine, New York, New York, USA
| | - Michelle Wang
- Department of Microbiology, NYU Grossman School of Medicine, New York, New York, USA
| | - Julia Mamana
- Department of Microbiology, NYU Grossman School of Medicine, New York, New York, USA
| | - Andrew J. Darwin
- Department of Microbiology, NYU Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
2
|
Sommerfield AG, Wang M, Mamana J, Darwin AJ. In vivo and in vitro analysis of the role of the Prc protease in inducing mucoidy in Pseudomonas aeruginosa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596254. [PMID: 38854061 PMCID: PMC11160602 DOI: 10.1101/2024.05.28.596254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
In Pseudomonas aeruginosa, alginate biosynthesis gene expression is inhibited by the transmembrane anti-sigma factor MucA, which sequesters the AlgU sigma factor. Cell envelope stress initiates cleavage of the MucA periplasmic domain by site-1 protease AlgW, followed by further MucA degradation to release AlgU. However, after colonizing the lungs of people with cystic fibrosis, P. aeruginosa converts to a mucoid form that produces alginate constitutively. Mucoid isolates often have mucA mutations, with the most common being mucA22 , which truncates the periplasmic domain. MucA22 is degraded constitutively, and genetic studies suggested that the Prc protease is responsible. Some studies also suggested that Prc contributes to induction in strains with wild type MucA, whereas others suggested the opposite. However, missing from all previous studies is a demonstration that Prc cleaves any protein directly, which leaves open the possibility that the effect of a prc null mutation is indirect. To address the ambiguities and shortfalls, we reevaluated the roles of AlgW and Prc as MucA and MucA22 site-1 proteases. In vivo analyses using three different assays, and two different inducing conditions, all suggested that AlgW is the only site-1 protease for wild type MucA in any condition. In contrast, genetics suggested that AlgW or Prc act as MucA22 site-1 proteases in inducing conditions, whereas Prc is the only MucA22 site-1 protease in non-inducing conditions. For the first time, we also show that Prc is unable to degrade the periplasmic domain of wild type MucA, but does degrade the mutated periplasmic domain of MucA22 directly. IMPORTANCE After colonizing the lungs of individuals with cystic fibrosis, P. aeruginosa undergoes mutagenic conversion to a mucoid form, worsening the prognosis. Most mucoid isolates have a truncated negative regulatory protein MucA, which leads to constitutive production of the extracellular polysaccharide alginate. The protease Prc has been implicated, but not shown, to degrade the most common MucA variant, MucA22, to trigger alginate production. This work provides the first demonstration that the molecular mechanism of Prc involvement is direct degradation of the MucA22 periplasmic domain, and perhaps other truncated MucA variants as well. MucA truncation and degradation by Prc might be the predominant mechanism of mucoid conversion in cystic fibrosis infections, suggesting that Prc activity could be a useful therapeutic target.
Collapse
|
3
|
Chowdhury-Paul S, Martínez-Ortíz IC, Pando-Robles V, Moreno S, Espín G, Merino E, Núñez C. The Azotobacter vinelandii AlgU regulon during vegetative growth and encysting conditions: A proteomic approach. PLoS One 2023; 18:e0286440. [PMID: 37967103 PMCID: PMC10651043 DOI: 10.1371/journal.pone.0286440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/24/2023] [Indexed: 11/17/2023] Open
Abstract
In the Pseduomonadacea family, the extracytoplasmic function sigma factor AlgU is crucial to withstand adverse conditions. Azotobacter vinelandii, a closed relative of Pseudomonas aeruginosa, has been a model for cellular differentiation in Gram-negative bacteria since it forms desiccation-resistant cysts. Previous work demonstrated the essential role of AlgU to withstand oxidative stress and on A. vinelandii differentiation, particularly for the positive control of alginate production. In this study, the AlgU regulon was dissected by a proteomic approach under vegetative growing conditions and upon encystment induction. Our results revealed several molecular targets that explained the requirement of this sigma factor during oxidative stress and extended its role in alginate production. Furthermore, we demonstrate that AlgU was necessary to produce alkyl resorcinols, a type of aromatic lipids that conform the cell membrane of the differentiated cell. AlgU was also found to positively regulate stress resistance proteins such as OsmC, LEA-1, or proteins involved in trehalose synthesis. A position-specific scoring-matrix (PSSM) was generated based on the consensus sequence recognized by AlgU in P. aeruginosa, which allowed the identification of direct AlgU targets in the A. vinelandii genome. This work further expands our knowledge about the function of the ECF sigma factor AlgU in A. vinelandii and contributes to explains its key regulatory role under adverse conditions.
Collapse
Affiliation(s)
- Sangita Chowdhury-Paul
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Iliana C. Martínez-Ortíz
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Victoria Pando-Robles
- Instituto Nacional de Salud Pública, Centro de Investigación Sobre Enfermedades Infecciosas, Cuernavaca, Morelos, México
| | - Soledad Moreno
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Guadalupe Espín
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Enrique Merino
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Cinthia Núñez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| |
Collapse
|
4
|
Mi Y, He Y, Mi J, Huang Y, Fan H, Song L, An X, Xu S, Li M, Tong Y. Genetic and Phenotypic Analysis of Phage-Resistant Mutant Fitness Triggered by Phage-Host Interactions. Int J Mol Sci 2023; 24:15594. [PMID: 37958578 PMCID: PMC10648725 DOI: 10.3390/ijms242115594] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
The emergence of phage-resistant bacterial strains is one of the biggest challenges for phage therapy. However, the emerging phage-resistant bacteria are often accompanied by adaptive trade-offs, which supports a therapeutic strategy called "phage steering". The key to phage steering is to guide the bacterial population toward an evolutionary direction that is favorable for treatment. Thus, it is important to systematically investigate the impacts of phages targeting different bacterial receptors on the fitness of the bacterial population. Herein, we employed 20 different phages to impose strong evolutionary pressure on the host Pseudomonas aeruginosa PAO1 and examined the genetic and phenotypic responses of their phage-resistant mutants. Among these strains with impaired adsorptions, four types of mutations associated with bacterial receptors were identified, namely, lipopolysaccharides (LPSs), type IV pili (T4Ps), outer membrane proteins (OMPs), and exopolysaccharides (EPSs). PAO1, responding to LPS- and EPS-dependent phage infections, mostly showed significant growth impairment and virulence attenuation. Most mutants with T4P-related mutations exhibited a significant decrease in motility and biofilm formation ability, while the mutants with OMP-related mutations required the lowest fitness cost out of the bacterial populations. Apart from fitness costs, PAO1 strains might lose their resistance to antibiotics when counteracting with phages, such as the presence of large-fragment mutants in this study, which may inspire the usage of phage-antibiotic combination strategies. This work provides methods that leverage the merits of phage resistance relative to obtaining therapeutically beneficial outcomes with respect to phage-steering strategies.
Collapse
Affiliation(s)
- Yanze Mi
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (Y.M.); (Y.H.); (J.M.); (Y.H.); (H.F.); (L.S.); (X.A.); (S.X.)
| | - Yile He
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (Y.M.); (Y.H.); (J.M.); (Y.H.); (H.F.); (L.S.); (X.A.); (S.X.)
| | - Jinhui Mi
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (Y.M.); (Y.H.); (J.M.); (Y.H.); (H.F.); (L.S.); (X.A.); (S.X.)
| | - Yunfei Huang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (Y.M.); (Y.H.); (J.M.); (Y.H.); (H.F.); (L.S.); (X.A.); (S.X.)
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (Y.M.); (Y.H.); (J.M.); (Y.H.); (H.F.); (L.S.); (X.A.); (S.X.)
| | - Lihua Song
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (Y.M.); (Y.H.); (J.M.); (Y.H.); (H.F.); (L.S.); (X.A.); (S.X.)
| | - Xiaoping An
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (Y.M.); (Y.H.); (J.M.); (Y.H.); (H.F.); (L.S.); (X.A.); (S.X.)
| | - Shan Xu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (Y.M.); (Y.H.); (J.M.); (Y.H.); (H.F.); (L.S.); (X.A.); (S.X.)
| | - Mengzhe Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (Y.M.); (Y.H.); (J.M.); (Y.H.); (H.F.); (L.S.); (X.A.); (S.X.)
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (Y.M.); (Y.H.); (J.M.); (Y.H.); (H.F.); (L.S.); (X.A.); (S.X.)
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
5
|
Giallonardi G, Letizia M, Mellini M, Frangipani E, Halliday N, Heeb S, Cámara M, Visca P, Imperi F, Leoni L, Williams P, Rampioni G. Alkyl-quinolone-dependent quorum sensing controls prophage-mediated autolysis in Pseudomonas aeruginosa colony biofilms. Front Cell Infect Microbiol 2023; 13:1183681. [PMID: 37305419 PMCID: PMC10250642 DOI: 10.3389/fcimb.2023.1183681] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Pseudomonas aeruginosa is a model quorum sensing (QS) pathogen with three interconnected QS circuits that control the production of virulence factors and antibiotic tolerant biofilms. The pqs QS system of P. aeruginosa is responsible for the biosynthesis of diverse 2-alkyl-4-quinolones (AQs), of which 2-heptyl-4-hydroxyquinoline (HHQ) and 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS) function as QS signal molecules. Transcriptomic analyses revealed that HHQ and PQS influenced the expression of multiple genes via PqsR-dependent and -independent pathways whereas 2-heptyl-4-hydroxyquinoline N-oxide (HQNO) had no effect on P. aeruginosa transcriptome. HQNO is a cytochrome bc 1 inhibitor that causes P. aeruginosa programmed cell death and autolysis. However, P. aeruginosa pqsL mutants unable to synthesize HQNO undergo autolysis when grown as colony biofilms. The mechanism by which such autolysis occurs is not understood. Through the generation and phenotypic characterization of multiple P. aeruginosa PAO1 mutants producing altered levels of AQs in different combinations, we demonstrate that mutation of pqsL results in the accumulation of HHQ which in turn leads to Pf4 prophage activation and consequently autolysis. Notably, the effect of HHQ on Pf4 activation is not mediated via its cognate receptor PqsR. These data indicate that the synthesis of HQNO in PAO1 limits HHQ-induced autolysis mediated by Pf4 in colony biofilms. A similar phenomenon is shown to occur in P. aeruginosa cystic fibrosis (CF) isolates, in which the autolytic phenotype can be abrogated by ectopic expression of pqsL.
Collapse
Affiliation(s)
| | | | - Marta Mellini
- Department of Science, University Roma Tre, Rome, Italy
| | | | - Nigel Halliday
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Stephan Heeb
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Miguel Cámara
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Paolo Visca
- Department of Science, University Roma Tre, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Francesco Imperi
- Department of Science, University Roma Tre, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Livia Leoni
- Department of Science, University Roma Tre, Rome, Italy
| | - Paul Williams
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Giordano Rampioni
- Department of Science, University Roma Tre, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
6
|
Srimahaeak T, Thongdee N, Chittrakanwong J, Atichartpongkul S, Jaroensuk J, Phatinuwat K, Phaonakrop N, Jaresitthikunchai J, Roytrakul S, Mongkolsuk S, Fuangthong M. Pseudomonas aeruginosa GidA modulates the expression of catalases at the posttranscriptional level and plays a role in virulence. Front Microbiol 2023; 13:1079710. [PMID: 36726575 PMCID: PMC9884967 DOI: 10.3389/fmicb.2022.1079710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/29/2022] [Indexed: 01/19/2023] Open
Abstract
Pseudomonas aeruginosa gidA, which encodes a putative tRNA-modifying enzyme, is associated with a variety of virulence phenotypes. Here, we demonstrated that P. aeruginosa gidA is responsible for the modifications of uridine in tRNAs in vivo. Loss of gidA was found to have no impact on the mRNA levels of katA and katB, but it decreased KatA and KatB protein levels, resulting in decreased total catalase activity and a hydrogen peroxide-sensitive phenotype. Furthermore, gidA was found to affect flagella-mediated motility and biofilm formation; and it was required for the full virulence of P. aeruginosa in both Caenorhabditis elegans and macrophage models. Together, these observations reveal the posttranscriptional impact of gidA on the oxidative stress response, highlight the complexity of catalase gene expression regulation, and further support the involvement of gidA in the virulence of P. aeruginosa.
Collapse
Affiliation(s)
- Thanyaporn Srimahaeak
- Program in Applied Biological Sciences, Chulabhorn Graduate Institute, Bangkok, Thailand,Department of Biotechnology, Faculty of Engineering and Industrial Technology, Silpakorn University, Sanamchandra Palace Campus, Nakhon Pathom, Thailand
| | - Narumon Thongdee
- Program in Applied Biological Sciences, Chulabhorn Graduate Institute, Bangkok, Thailand
| | | | | | - Juthamas Jaroensuk
- Program in Applied Biological Sciences, Chulabhorn Graduate Institute, Bangkok, Thailand
| | - Kamonwan Phatinuwat
- Program in Applied Biological Sciences, Chulabhorn Graduate Institute, Bangkok, Thailand
| | - Narumon Phaonakrop
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Janthima Jaresitthikunchai
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Skorn Mongkolsuk
- Program in Applied Biological Sciences, Chulabhorn Graduate Institute, Bangkok, Thailand,Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand,Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | - Mayuree Fuangthong
- Program in Applied Biological Sciences, Chulabhorn Graduate Institute, Bangkok, Thailand,Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand,Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand,*Correspondence: Mayuree Fuangthong, ✉
| |
Collapse
|
7
|
Lou X, Wang R, Yan J, Li W, Liu R, Zhang Q, Bartlam M. Structural characterization of the novel stress response facilitator (SrfA) from Pseudomonas aeruginosa. Biochem Biophys Res Commun 2022; 625:147-153. [DOI: 10.1016/j.bbrc.2022.07.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 11/26/2022]
|
8
|
Ido N, Lybman A, Hayet S, Azulay DN, Ghrayeb M, Liddawieh S, Chai L. Bacillus subtilis biofilms characterized as hydrogels. Insights on water uptake and water binding in biofilms. SOFT MATTER 2020; 16:6180-6190. [PMID: 32567645 DOI: 10.1039/d0sm00581a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Biofilms are aggregates of cells that form on surfaces or at the air-water interface. Cells in a biofilm are encased in a self-secreted extracellular matrix (ECM) that provides them with mechanical stability and protects them from antibiotic treatment. From a soft matter perspective, biofilms are regarded as colloidal hydrogels, with the cells playing the role of colloids and the ECM compared with a cross-linked hydrogel. Here, we examined whole biofilms of the soil bacterium Bacillus subtilis utilizing methods that are commonly used to characterize hydrogels in order to evaluate the uptake of water and the water properties in the biofilms. Specifically, we studied wild-type as well ECM mutants, lacking the protein TasA and the exopolysaccharide (EPS). We characterized the morphology and mesh size of biofilms using electron microscopy, studied the state of water in the biofilms using differential scanning calorimetry, and finally, we tested the biofilms' swelling properties. Our study revealed that Bacillus subtilis biofilms resemble cross-linked hydrogels in their morphology and swelling properties. Strikingly, we discovered that all the water in biofilms was bound water and there was no free water in the biofilms. Water binding was mostly related with the presence of solutes and much less so with the major ECM components, the protein TasA and the polysaccharide EPS. This study sheds light on water uptake and water binding in biofilms and it is therefore important for the understanding of solute transport and enzymatic function inside biofilms.
Collapse
Affiliation(s)
- Nir Ido
- The Israel Institute for Biological Research, Ness Ziona, Israel
| | - Amir Lybman
- The Israel Institute for Biological Research, Ness Ziona, Israel
| | - Shahar Hayet
- Institute of Chemistry, The Hebrew University of Jerusalem and The Center for Nanoscience and Nanotechnology, Edmond J. Safra Campus, Jerusalem 91904, Israel.
| | - David N Azulay
- Institute of Chemistry, The Hebrew University of Jerusalem and The Center for Nanoscience and Nanotechnology, Edmond J. Safra Campus, Jerusalem 91904, Israel.
| | - Mnar Ghrayeb
- Institute of Chemistry, The Hebrew University of Jerusalem and The Center for Nanoscience and Nanotechnology, Edmond J. Safra Campus, Jerusalem 91904, Israel.
| | - Sajeda Liddawieh
- Institute of Chemistry, The Hebrew University of Jerusalem and The Center for Nanoscience and Nanotechnology, Edmond J. Safra Campus, Jerusalem 91904, Israel.
| | - Liraz Chai
- Institute of Chemistry, The Hebrew University of Jerusalem and The Center for Nanoscience and Nanotechnology, Edmond J. Safra Campus, Jerusalem 91904, Israel.
| |
Collapse
|
9
|
Valentine ME, Kirby BD, Withers TR, Johnson SL, Long TE, Hao Y, Lam JS, Niles RM, Yu HD. Generation of a highly attenuated strain of Pseudomonas aeruginosa for commercial production of alginate. Microb Biotechnol 2020; 13:162-175. [PMID: 31006977 PMCID: PMC6922527 DOI: 10.1111/1751-7915.13411] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/29/2019] [Accepted: 04/04/2019] [Indexed: 12/19/2022] Open
Abstract
Alginate is an important polysaccharide that is commonly used as a gelling agent in foods, cosmetics and healthcare products. Currently, all alginate used commercially is extracted from brown seaweed. However, with environmental changes such as increasing ocean temperature and the increasing number of biotechnological uses of alginates with specific properties, there is an emerging need for more reliable and customizable sources of alginate. An alternative to seaweed for alginate production is Pseudomonas aeruginosa, a common Gram-negative bacterium that can form alginate-containing biofilms. However, P. aeruginosa is an opportunistic pathogen that can cause life-threatening infections in immunocompromised patients. Therefore, we sought to engineer a non-pathogenic P. aeruginosa strain that is safe for commercial production of alginate. Using a homologous recombination strategy, we sequentially deleted five key pathogenicity genes from the P. aeruginosa chromosome, resulting in the marker-free strain PGN5. Intraperitoneal injection of mice with PGN5 resulted in 0% mortality, while injection with wild-type P. aeruginosa resulted in 95% mortality, providing evidence that the systemic virulence of PGN5 is highly attenuated. Importantly, PGN5 produces large amounts of alginate in response to overexpression of MucE, an activator of alginate biosynthesis. The alginate produced by PGN5 is structurally identical to alginate produced by wild-type P. aeruginosa, indicating that the alginate biosynthetic pathway remains functional in this modified strain. The genetic versatility of P. aeruginosa will allow us to further engineer PGN5 to produce alginates with specific chemical compositions and physical properties to meet different industrial and biomedical needs.
Collapse
Affiliation(s)
- Meagan E. Valentine
- Robert C. Byrd Biotechnology Science CenterProgenesis Technologies, LLCOne John Marshall Drive, Suite 314HuntingtonWV25755USA
| | - Brandon D. Kirby
- Robert C. Byrd Biotechnology Science CenterProgenesis Technologies, LLCOne John Marshall Drive, Suite 314HuntingtonWV25755USA
| | - Thomas R. Withers
- Robert C. Byrd Biotechnology Science CenterProgenesis Technologies, LLCOne John Marshall Drive, Suite 314HuntingtonWV25755USA
- Present address:
U. S. Food and Drug AdministrationBaltimore District/Morgantown Resident Post604 Cheat Road, Suite 140MorgantownWV26508USA
| | - Shannon L. Johnson
- Los Alamos National LaboratoryBiosecurity and Public HealthPO Box 1663 M888Los AlamosNM 87545NMUSA
| | - Timothy E. Long
- Department of Pharmaceutical Science and ResearchSchool of PharmacyMarshall UniversityHuntingtonWV25755USA
| | - Youai Hao
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphONCanada
- Present address:
Emmune Inc.130 Scripps WayJupiterFLUSA
| | - Joseph S. Lam
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphONCanada
| | - Richard M. Niles
- Robert C. Byrd Biotechnology Science CenterProgenesis Technologies, LLCOne John Marshall Drive, Suite 314HuntingtonWV25755USA
| | - Hongwei D. Yu
- Robert C. Byrd Biotechnology Science CenterProgenesis Technologies, LLCOne John Marshall Drive, Suite 314HuntingtonWV25755USA
- Department of Biomedical Sciences, PediatricsJoan C. Edwards School of Medicine at Marshall UniversityHuntingtonWV25755‐9320USA
| |
Collapse
|
10
|
Hassan AA, Vitorino MV, Robalo T, Rodrigues MS, Sá-Correia I. Variation of Burkholderia cenocepacia cell wall morphology and mechanical properties during cystic fibrosis lung infection, assessed by atomic force microscopy. Sci Rep 2019; 9:16118. [PMID: 31695169 PMCID: PMC6834607 DOI: 10.1038/s41598-019-52604-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 10/21/2019] [Indexed: 12/13/2022] Open
Abstract
The influence that Burkholderia cenocepacia adaptive evolution during long-term infection in cystic fibrosis (CF) patients has on cell wall morphology and mechanical properties is poorly understood despite their crucial role in cell physiology, persistent infection and pathogenesis. Cell wall morphology and physical properties of three B. cenocepacia isolates collected from a CF patient over a period of 3.5 years were compared using atomic force microscopy (AFM). These serial clonal variants include the first isolate retrieved from the patient and two late isolates obtained after three years of infection and before the patient's death with cepacia syndrome. A consistent and progressive decrease of cell height and a cell shape evolution during infection, from the typical rods to morphology closer to cocci, were observed. The images of cells grown in biofilms showed an identical cell size reduction pattern. Additionally, the apparent elasticity modulus significantly decreases from the early isolate to the last clonal variant retrieved from the patient but the intermediary highly antibiotic resistant clonal isolate showed the highest elasticity values. Concerning the adhesion of bacteria surface to the AFM tip, the first isolate was found to adhere better than the late isolates whose lipopolysaccharide (LPS) structure loss the O-antigen (OAg) during CF infection. The OAg is known to influence Gram-negative bacteria adhesion and be an important factor in B. cenocepacia adaptation to chronic infection. Results reinforce the concept of the occurrence of phenotypic heterogeneity and adaptive evolution, also at the level of cell size, form, envelope topography and physical properties during long-term infection.
Collapse
Affiliation(s)
- A Amir Hassan
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, 1049-001, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, 1049-001, Portugal
| | - Miguel V Vitorino
- BioISI - Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Tiago Robalo
- BioISI - Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Mário S Rodrigues
- BioISI - Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal.
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal.
| | - Isabel Sá-Correia
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, 1049-001, Portugal.
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, 1049-001, Portugal.
| |
Collapse
|
11
|
Flockton TR, Schnorbus L, Araujo A, Adams J, Hammel M, Perez LJ. Inhibition of Pseudomonas aeruginosa Biofilm Formation with Surface Modified Polymeric Nanoparticles. Pathogens 2019; 8:pathogens8020055. [PMID: 31022836 PMCID: PMC6631850 DOI: 10.3390/pathogens8020055] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/09/2019] [Accepted: 04/17/2019] [Indexed: 01/02/2023] Open
Abstract
The gram-negative bacterial pathogen Pseudomonas aeruginosa represents a prominent clinical concern. Due to the observed high levels of antibiotic resistance, copious biofilm formation, and wide array of virulence factors produced by these bacteria, new treatment technologies are required. Here, we present the development of a series of P. aeruginosa LecA-targeted polymeric nanoparticles and demonstrate the anti-adhesion and biofilm inhibitory properties of these constructs.
Collapse
Affiliation(s)
- Tyler R Flockton
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, USA.
| | - Logan Schnorbus
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, USA.
| | - Agustin Araujo
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, USA.
| | - Jill Adams
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, USA.
| | - Maryjane Hammel
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, USA.
| | - Lark J Perez
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, USA.
| |
Collapse
|
12
|
Fenker DE, McDaniel CT, Panmanee W, Panos RJ, Sorscher EJ, Sabusap C, Clancy JP, Hassett DJ. A Comparison between Two Pathophysiologically Different yet Microbiologically Similar Lung Diseases: Cystic Fibrosis and Chronic Obstructive Pulmonary Disease. INTERNATIONAL JOURNAL OF RESPIRATORY AND PULMONARY MEDICINE 2018; 5:098. [PMID: 30627668 PMCID: PMC6322854 DOI: 10.23937/2378-3516/1410098] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) are chronic pulmonary diseases that affect ~70,000 and 251 million individuals worldwide, respectively. Although these two diseases have distinctly different pathophysiologies, both cause chronic respiratory insufficiency that erodes quality of life and causes significant morbidity and eventually death. In both CF and COPD, the respiratory microbiome plays a major contributing role in disease progression and morbidity. Pulmonary pathogens can differ dramatically during various stages of each disease and frequently cause acute worsening of lung function due to disease exacerbation. Despite some similarities, outcome and timing/type of exacerbation can also be quite different between CF and COPD. Given these clinical distinctions, both patients and physicians should be aware of emerging therapeutic options currently being offered or in development for the treatment of lung infections in individuals with CF and COPD. Although interventions are available that prolong life and mitigate morbidity, neither disorder is curable. Both acute and chronic pulmonary infections contribute to an inexorable downward course and may trigger exacerbations, culminating in loss of lung function or respiratory failure. Knowledge of the pulmonary pathogens causing these infections, their clinical presentation, consequences, and management are, therefore, critical. In this review, we compare and contrast CF and COPD, including underlying causes, general outcomes, features of the lung microbiome, and potential treatment strategies.
Collapse
Affiliation(s)
- Daniel E Fenker
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Cameron T McDaniel
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Warunya Panmanee
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Ralph J Panos
- Department of Medicine, Cincinnati VA Medical Center, Cincinnati, USA
| | | | | | - John P Clancy
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | - Daniel J Hassett
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, USA
| |
Collapse
|
13
|
Liu H, Yan H, Xiao Y, Nie H, Huang Q, Chen W. The exopolysaccharide gene cluster pea is transcriptionally controlled by RpoS and repressed by AmrZ in Pseudomonas putida KT2440. Microbiol Res 2018; 218:1-11. [PMID: 30454651 DOI: 10.1016/j.micres.2018.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/29/2018] [Accepted: 09/05/2018] [Indexed: 10/28/2022]
Abstract
In Pseudomonas putida KT2440, the exopolysaccharide Pea is associated with biofilm stability and pellicle formation; however, little is known about its regulatory pathway. In this study, we identified that the gene cluster pea was transcribed from 25 bp upstream of the operon and the stationary phase alternative sigma factor RpoS regulated the transcription of pea. When RpoS was absent, another sigma factor, likely the housekeeping sigma factor RpoD, could also mediate pea transcription but at a low level. The function of Pea polysaccharide was further confirmed to be necessary for full production of biofilm, formation of pellicle and c-di-GMP-dependent wrinkly colony morphology. Additionally, evidences were provided to demonstrate that the transcriptional regulator AmrZ was a negative regulator for pea expression. DNase I footprinting studies verified that AmrZ bound directly to the site overlapping the pea promoter, which might interfere with the binding of RNA polymerase to the promoter and resulted in inhibition of transcription initiation.
Collapse
Affiliation(s)
- Huizhong Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Huaduo Yan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Yujie Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Hailing Nie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| |
Collapse
|
14
|
Stanbery L, Matson JS. Assay development and high-throughput screening for small molecule inhibitors of a Vibrio cholerae stress response pathway. Drug Des Devel Ther 2017; 11:2777-2785. [PMID: 29033540 PMCID: PMC5614740 DOI: 10.2147/dddt.s144391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Antibiotics are important adjuncts to oral rehydration therapy in cholera disease management. However, due to the rapid emergence of resistance to the antibiotics used to treat cholera, therapeutic options are becoming limited. Therefore, there is a critical need to develop additional therapeutics to aid in the treatment of cholera. Previous studies showed that the extracytoplasmic stress response (σE) pathway of Vibrio cholerae is required for full virulence of the organism. The pathway is also required for bacterial growth in the presence of ethanol. Therefore, we exploited this ethanol sensitivity phenotype in order to develop a screen for inhibitors of the pathway, with the aim of also inhibiting virulence of the pathogen. Here we describe the optimization and implementation of our high-throughput screening strategy. From a primary screen of over 100,000 compounds, we have identified seven compounds that validated the growth phenotypes from the primary and counterscreens. These compounds have the potential to be developed into therapeutic agents for cholera and will also be valuable probes for uncovering basic molecular mechanisms of an important cause of diarrheal disease.
Collapse
Affiliation(s)
- Laura Stanbery
- Department of Medical Microbiology and Immunology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, USA
| | - Jyl S Matson
- Department of Medical Microbiology and Immunology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, USA
| |
Collapse
|
15
|
Morales-Espinosa R, Delgado G, Espinosa LF, Isselo D, Méndez JL, Rodriguez C, Miranda G, Cravioto A. Fingerprint Analysis and Identification of Strains ST309 as a Potential High Risk Clone in a Pseudomonas aeruginosa Population Isolated from Children with Bacteremia in Mexico City. Front Microbiol 2017; 8:313. [PMID: 28298909 PMCID: PMC5331068 DOI: 10.3389/fmicb.2017.00313] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/15/2017] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen and is associated with nosocomial infections. Its ability to thrive in a broad range of environments is due to a large and diverse genome of which its accessory genome is part. The objective of this study was to characterize P. aeruginosa strains isolated from children who developed bacteremia, using pulse-field gel electrophoresis, and in terms of its genomic islands, virulence genes, multilocus sequence type, and antimicrobial susceptibility. Our results showed that P. aeruginosa strains presented the seven virulence genes: toxA, lasB, lecA, algR, plcH, phzA1, and toxR, a type IV pilin alleles (TFP) group I or II. Additionally, we detected a novel pilin and accessory gene, expanding the number of TFP alleles to group VI. All strains presented the PAPI-2 Island and the majority were exoU+ and exoS+ genotype. Ten percent of the strains were multi-drug resistant phenotype, 18% extensively drug-resistant, 68% moderately resistant and only 3% were susceptible to all the antimicrobial tested. The most prevalent acquired β-Lactamase was KPC. We identified a group of ST309 strains, as a potential high risk clone. Our finding also showed that the strains isolated from patients with bacteremia have important virulence factors involved in colonization and dissemination as: a TFP group I or II; the presence of the exoU gene within the PAPI-2 island and the presence of the exoS gene.
Collapse
Affiliation(s)
- Rosario Morales-Espinosa
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México Mexico City, Mexico
| | - Gabriela Delgado
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México Mexico City, Mexico
| | - Luis F Espinosa
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México Mexico City, Mexico
| | - Dassaev Isselo
- Servicio de Pediatría, Hospital Regional 36 San Alejandro, IMSS Puebla, Mexico
| | - José L Méndez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México Mexico City, Mexico
| | - Cristina Rodriguez
- Laboratorio de Bacteriología, Facultad de Veterinaria y Zootecnia, Universidad Nacional Autónoma de México Mexico City, Mexico
| | - Guadalupe Miranda
- Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Unidad de Investigación en Epidemiología Hospitalaria Mexico City, Mexico
| | | |
Collapse
|
16
|
Influence of Nutrient Availability and Quorum Sensing on the Formation of Metabolically Inactive Microcolonies Within Structurally Heterogeneous Bacterial Biofilms: An Individual-Based 3D Cellular Automata Model. Bull Math Biol 2017; 79:594-618. [PMID: 28127665 DOI: 10.1007/s11538-017-0246-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 01/13/2017] [Indexed: 10/20/2022]
Abstract
The resistance of bacterial biofilms to antibiotic treatment has been attributed to the emergence of structurally heterogeneous microenvironments containing metabolically inactive cell populations. In this study, we use a three-dimensional individual-based cellular automata model to investigate the influence of nutrient availability and quorum sensing on microbial heterogeneity in growing biofilms. Mature biofilms exhibited at least three structurally distinct strata: a high-volume, homogeneous region sandwiched between two compact sections of high heterogeneity. Cell death occurred preferentially in layers in close proximity to the substratum, resulting in increased heterogeneity in this section of the biofilm; the thickness and heterogeneity of this lowermost layer increased with time, ultimately leading to sloughing. The model predicted the formation of metabolically dormant cellular microniches embedded within faster-growing cell clusters. Biofilms utilizing quorum sensing were more heterogeneous compared to their non-quorum sensing counterparts, and resisted sloughing, featuring a cell-devoid layer of EPS atop the substratum upon which the remainder of the biofilm developed. Overall, our study provides a computational framework to analyze metabolic diversity and heterogeneity of biofilm-associated microorganisms and may pave the way toward gaining further insights into the biophysical mechanisms of antibiotic resistance.
Collapse
|
17
|
Affiliation(s)
- J.W. Costerton
- Center for Biofilm Engineering Montana State University 409 Cobleigh Hall Bozeman, Montana 59717
| | - Zbigniew Lewandowski
- Center for Biofilm Engineering Montana State University 409 Cobleigh Hall Bozeman, Montana 59717
| |
Collapse
|
18
|
Seifi K, Kazemian H, Heidari H, Rezagholizadeh F, Saee Y, Shirvani F, Houri H. Evaluation of Biofilm Formation Among Klebsiella pneumoniae Isolates and Molecular Characterization by ERIC-PCR. Jundishapur J Microbiol 2016; 9:e30682. [PMID: 27099694 PMCID: PMC4834130 DOI: 10.5812/jjm.30682] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 09/16/2015] [Accepted: 09/29/2015] [Indexed: 12/31/2022] Open
Abstract
Background: Klebsiella pneumoniae is among the most frequently recovered etiologic agents from nosocomial infections. This opportunistic pathogen can generate a thick layer of biofilm as one of its important virulence factors, enabling the bacteria to attach to living or abiotic surfaces, which contributes to drug resistance. Objectives: The resistance of biofilm-mediated infections to effective chemotherapy has adverse effects on patient outcomes and survival. Therefore, the aim of the present study was to evaluate the biofilm-formation capacity of clinical K. pneumoniae isolates and to perform a molecular characterization using enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR) to determine the dominant biofilm-producing genotype. Patients and Methods: In the present study, 94 K. pneumoniae isolates were obtained from two hospitals in Tehran, Iran. Biofilm formation was assayed by a modified procedure, then ERIC-PCR was carried out. Results: The distributions of the clinical specimens used in this study were 61.7% from urine, 18.1% from wounds, 11.7% from sputum, and 8.5% from blood. Among these isolates, 33% formed fully established biofilms, 52.1% were categorized as moderately biofilm-producing, 8.5% formed weak biofilms, and 6.4% were non-biofilm-producers. Genotyping of K. pneumoniae revealed 31 different ERIC types. Biofilm-formation ability in a special ERIC type was not observed. Conclusions: Our results indicated that an enormous proportion of K. pneumoniae isolated from sputum and surgical-wound swabs produced fully established biofilms. It is reasonable to assume the existence of a relationship between the site of infection and the formation of biofilm. A high level of genetic diversity among the K. pneumoniae strains was observed.
Collapse
Affiliation(s)
- Kimia Seifi
- Pediatric Infections Research Center, Mofid Children’s Hospital, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Hossein Kazemian
- Department of Medical Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Hamid Heidari
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Fereshteh Rezagholizadeh
- Department of Medical Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Yasaman Saee
- Department of Microbiology, Islamic Azad University, Pharmaceutical Branch, Tehran, IR Iran
| | - Fariba Shirvani
- Pediatric Infections Research Center, Mofid Children’s Hospital, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Hamidreza Houri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
- Corresponding author: Hamidreza Houri, Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran. Tel: +98-9126662543, Fax: +98-2123872556, E-mail:
| |
Collapse
|
19
|
Schulz S, Eckweiler D, Bielecka A, Nicolai T, Franke R, Dötsch A, Hornischer K, Bruchmann S, Düvel J, Häussler S. Elucidation of sigma factor-associated networks in Pseudomonas aeruginosa reveals a modular architecture with limited and function-specific crosstalk. PLoS Pathog 2015; 11:e1004744. [PMID: 25780925 PMCID: PMC4362757 DOI: 10.1371/journal.ppat.1004744] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/11/2015] [Indexed: 12/31/2022] Open
Abstract
Sigma factors are essential global regulators of transcription initiation in bacteria which confer promoter recognition specificity to the RNA polymerase core enzyme. They provide effective mechanisms for simultaneously regulating expression of large numbers of genes in response to challenging conditions, and their presence has been linked to bacterial virulence and pathogenicity. In this study, we constructed nine his-tagged sigma factor expressing and/or deletion mutant strains in the opportunistic pathogen Pseudomonas aeruginosa. To uncover the direct and indirect sigma factor regulons, we performed mRNA profiling, as well as chromatin immunoprecipitation coupled to high-throughput sequencing. We furthermore elucidated the de novo binding motif of each sigma factor, and validated the RNA- and ChIP-seq results by global motif searches in the proximity of transcriptional start sites (TSS). Our integrated approach revealed a highly modular network architecture which is composed of insulated functional sigma factor modules. Analysis of the interconnectivity of the various sigma factor networks uncovered a limited, but highly function-specific, crosstalk which orchestrates complex cellular processes. Our data indicate that the modular structure of sigma factor networks enables P. aeruginosa to function adequately in its environment and at the same time is exploited to build up higher-level functions by specific interconnections that are dominated by a participation of RpoN. Pseudomonas aeruginosa is well known for its high adaptability to a large range of environmental conditions, including those encountered within the human host. Transcription initiation represents a major regulatory target which drives versatility, and enables bacterial adaptation to challenging conditions and expression of virulence and pathogenicity. In bacteria, this process is largely orchestrated by sigma factors. Here, we performed an integrative approach, and by the combined use of three global profiling technologies uncovered the networks of 10 alternative sigma factors in the opportunistic pathogen P. aeruginosa. We demonstrate that these networks largely represent self-contained functional modules which exhibit a limited but highly specific crosstalk to build up higher-level functions. Our results do not only give extensive information on sigma factor binding sites throughout the P. aeruginosa genome, but also advance the understanding of sigma factor network architecture which provides bacteria with a framework to function adequately in their environment.
Collapse
Affiliation(s)
- Sebastian Schulz
- Institute for Molecular Bacteriology, TWINCORE GmbH, Center for Clinical and Experimental Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Denitsa Eckweiler
- Institute for Molecular Bacteriology, TWINCORE GmbH, Center for Clinical and Experimental Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Agata Bielecka
- Institute for Molecular Bacteriology, TWINCORE GmbH, Center for Clinical and Experimental Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Tanja Nicolai
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Raimo Franke
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Andreas Dötsch
- Institute for Molecular Bacteriology, TWINCORE GmbH, Center for Clinical and Experimental Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Klaus Hornischer
- Institute for Molecular Bacteriology, TWINCORE GmbH, Center for Clinical and Experimental Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sebastian Bruchmann
- Institute for Molecular Bacteriology, TWINCORE GmbH, Center for Clinical and Experimental Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Juliane Düvel
- Institute for Molecular Bacteriology, TWINCORE GmbH, Center for Clinical and Experimental Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Susanne Häussler
- Institute for Molecular Bacteriology, TWINCORE GmbH, Center for Clinical and Experimental Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- * E-mail:
| |
Collapse
|
20
|
Schneider JS, Glickman MS. Function of site-2 proteases in bacteria and bacterial pathogens. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2808-14. [PMID: 24099002 DOI: 10.1016/j.bbamem.2013.04.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 04/11/2013] [Accepted: 04/15/2013] [Indexed: 01/02/2023]
Abstract
Site-2 proteases (S2Ps) are a class of intramembrane metalloproteases named after the founding member of this protein family, human S2P, which control cholesterol and fatty acid biosynthesis by cleaving Sterol Regulatory Element Binding Proteins which control cholesterol and fatty acid biosynthesis. S2Ps are widely distributed in bacteria and participate in diverse pathways that control such diverse functions as membrane integrity, sporulation, lipid biosynthesis, pheromone production, virulence, and others. The most common signaling mechanism mediated by S2Ps is the coupled degradation of transmembrane anti-Sigma factors to activate ECF Sigma factor regulons. However, additional signaling mechanisms continue to emerge as more prokaryotic S2Ps are characterized, including direct proteolysis of membrane embedded transcription factors and proteolysis of non-transcriptional membrane proteins or membrane protein remnants. In this review we seek to comprehensively review the functions of S2Ps in bacteria and bacterial pathogens and attempt to organize these proteases into conceptual groups that will spur further study. This article is part of a Special Issue entitled: Intramembrane Proteases.
Collapse
Affiliation(s)
- Jessica S Schneider
- Immunology Program, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY 10065, USA; Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Biomedical Sciences, USA
| | | |
Collapse
|
21
|
Comparative physiological study of the wild type and the small colony variant of Pseudomonas aeruginosa 20265 under controlled growth conditions. World J Microbiol Biotechnol 2013; 30:1027-36. [DOI: 10.1007/s11274-013-1521-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Accepted: 10/08/2013] [Indexed: 10/26/2022]
|
22
|
Hay ID, Ur Rehman Z, Moradali MF, Wang Y, Rehm BHA. Microbial alginate production, modification and its applications. Microb Biotechnol 2013; 6:637-50. [PMID: 24034361 PMCID: PMC3815931 DOI: 10.1111/1751-7915.12076] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/25/2013] [Accepted: 07/06/2013] [Indexed: 11/29/2022] Open
Abstract
Alginate is an important polysaccharide used widely in the food, textile, printing and pharmaceutical industries for its viscosifying, and gelling properties. All commercially produced alginates are isolated from farmed brown seaweeds. These algal alginates suffer from heterogeneity in composition and material properties. Here, we will discuss alginates produced by bacteria; the molecular mechanisms involved in their biosynthesis; and the potential to utilize these bacterially produced or modified alginates for high-value applications where defined material properties are required.
Collapse
Affiliation(s)
- Iain D Hay
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | | | | | | | | |
Collapse
|
23
|
Hosseinidoust Z, Tufenkji N, van de Ven TGM. Predation in homogeneous and heterogeneous phage environments affects virulence determinants of Pseudomonas aeruginosa. Appl Environ Microbiol 2013; 79:2862-71. [PMID: 23435883 PMCID: PMC3623153 DOI: 10.1128/aem.03817-12] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 02/14/2013] [Indexed: 01/21/2023] Open
Abstract
The rise of bacterial variants in the presence of lytic phages has been one of the basic grounds for evolution studies. However, there are incongruent results among different studies investigating the effect of phage resistance acquisition on bacterial fitness and virulence. We used experimental evolution to generate three classes of Pseudomonas aeruginosa variants under selective pressure from two different homogeneous phage environments and one heterogeneous phage environment. The fitness and virulence determinants of the variants, such as growth, motility, biofilm formation, resistance to oxidative stress, and the production of siderophores and chromophores, changed significantly compared to the control. Variants with similar colony morphology that were developed through different phage treatments have different phenotypic traits. Also, mRNA transcription for genes associated with certain phenotypic traits changed significantly; however, sequencing did not reveal any point mutations in selected gene loci. Furthermore, the appearance of small colony variants and melanogenic variants and the increase in pyocyanin and pyoverdin production for some variants are believed to affect the virulence of the population. The knowledge gained from this study will fundamentally contribute to our understanding of the evolutionary dynamics of bacteria under phage selective pressure which is crucial to the efficient utilization of bacteriophages in medical contexts.
Collapse
Affiliation(s)
| | - Nathalie Tufenkji
- Department of Chemical Engineering, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
24
|
Giacani L, Denisenko O, Tompa M, Centurion-Lara A. Identification of the Treponema pallidum subsp. pallidum TP0092 (RpoE) regulon and its implications for pathogen persistence in the host and syphilis pathogenesis. J Bacteriol 2013; 195:896-907. [PMID: 23243302 PMCID: PMC3562100 DOI: 10.1128/jb.01973-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 12/06/2012] [Indexed: 12/16/2022] Open
Abstract
Bacteria often respond to harmful environmental stimuli with the induction of extracytoplasmic function (ECF) sigma (σ) factors that in turn direct RNA polymerase to transcribe specific groups of response genes (or regulons) to minimize cellular damage and favor adaptation to the changed extracellular milieu. In Treponema pallidum subsp. pallidum, the agent of syphilis, the TP0092 gene is predicted to code for the pathogen's only annotated ECF σ factor, homologous to RpoE, known in Escherichia coli to control a key transduction pathway for maintenance of envelope homeostasis in response to external stress and cell growth. Here we have shown that TP0092 is highly transcribed during experimental syphilis. Furthermore, TP0092 transcription levels significantly increase as infection progresses toward immune clearance of the pathogen, suggesting a role for TP0092 in helping T. pallidum respond to harmful stimuli in the host environment. To investigate this hypothesis, we determined the TP0092 regulon at two different time points during infection using chromatin immunoprecipitation followed by high-throughput sequencing. A total of 22 chromosomal regions, all containing putative TP0092-binding sites and corresponding to as many T. pallidum genes, were identified. Noteworthy among them are the genes encoding desulfoferrodoxin and thioredoxin, involved in detoxification of reactive oxygen species (ROS). Because T. pallidum does not possess other enzymes for ROS detoxification, such as superoxide dismutase, catalase, or glutathione peroxidase, our results suggest that the TP0092 regulon is important in protecting the syphilis spirochete from damage caused by ROS produced at the site of infection during the inflammatory response.
Collapse
Affiliation(s)
- Lorenzo Giacani
- Departments of Medicine, University of Washington, Seattle, WA, USA.
| | | | | | | |
Collapse
|
25
|
Folkesson A, Jelsbak L, Yang L, Johansen HK, Ciofu O, Høiby N, Molin S. Adaptation of Pseudomonas aeruginosa to the cystic fibrosis airway: an evolutionary perspective. Nat Rev Microbiol 2012; 10:841-51. [DOI: 10.1038/nrmicro2907] [Citation(s) in RCA: 514] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
26
|
Matz C, Deines P, Jürgens K. Phenotypic variation in Pseudomonas sp. CM10 determines microcolony formation and survival under protozoan grazing. FEMS Microbiol Ecol 2012; 39:57-65. [PMID: 19709184 DOI: 10.1111/j.1574-6941.2002.tb00906.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Abstract We investigated the survival mechanism of the bacterium Pseudomonas sp. CM10 in the presence of a flagellate predator. The bacterium had been isolated from a continuous culture containing bacterivorous nanoflagellates. On agar plates, we found intraclonal dimorphism of Pseudomonas sp. CM10 colonies at high frequencies: The primary mucoid colony type generated a secondary non-mucoid form. Unlike the repeated generation of non-mucoid colonies from mucoid clones, we did not observe the occurrence of mucoid forms in non-mucoid populations. In semicontinuous and batch cultures, we investigated the ability of the two morphs to survive predation by the bacterivorous flagellate Ochromonas sp. under conditions of growth and starvation. In predator-free cultures, populations of both variants were unicellular but differed in some phenotypic characteristics such as cell motility and hydrophobicity. Grazing treatments revealed that the non-mucoid morph was reduced severely whereas the primary mucoid type survived due to the formation of inert suspended microcolonies stabilized by an extracellular matrix. Effectiveness and competitive trade-offs of microcolony formation were revealed by a competition experiment with the bacterium Pseudomonas putida MM1: Pseudomonas sp. CM10 was displaced in predator-free cultures but outgrew the defenseless and monomorphic competitor under flagellate grazing pressure. We conclude that intraclonal polymorphism may regulate the ability of Pseudomonas sp. CM10 to survive in situations of severe protistan grazing. The formation of inert microcolonies, however, is suggested to be detrimental to rapid growth and dispersal.
Collapse
Affiliation(s)
- Carsten Matz
- Department of Physiological Ecology, Max Planck Institute for Limnology, PO Box 165, D-24302 Plön, Germany
| | | | | |
Collapse
|
27
|
Barchinger SE, Zhang X, Hester SE, Rodriguez ME, Harvill ET, Ades SE. sigE facilitates the adaptation of Bordetella bronchiseptica to stress conditions and lethal infection in immunocompromised mice. BMC Microbiol 2012; 12:179. [PMID: 22897969 PMCID: PMC3490749 DOI: 10.1186/1471-2180-12-179] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 06/25/2012] [Indexed: 11/28/2022] Open
Abstract
Background The cell envelope of a bacterial pathogen can be damaged by harsh conditions in the environment outside a host and by immune factors during infection. Cell envelope stress responses preserve the integrity of this essential compartment and are often required for virulence. Bordetella species are important respiratory pathogens that possess a large number of putative transcription factors. However, no cell envelope stress responses have been described in these species. Among the putative Bordetella transcription factors are a number of genes belonging to the extracytoplasmic function (ECF) group of alternative sigma factors, some of which are known to mediate cell envelope stress responses in other bacteria. Here we investigate the role of one such gene, sigE, in stress survival and pathogenesis of Bordetella bronchiseptica. Results We demonstrate that sigE encodes a functional sigma factor that mediates a cell envelope stress response. Mutants of B. bronchiseptica strain RB50 lacking sigE are more sensitive to high temperature, ethanol, and perturbation of the envelope by SDS-EDTA and certain β-lactam antibiotics. Using a series of immunocompromised mice deficient in different components of the innate and adaptive immune responses, we show that SigE plays an important role in evading the innate immune response during lethal infections of mice lacking B cells and T cells. SigE is not required, however, for colonization of the respiratory tract of immunocompetent mice. The sigE mutant is more efficiently phagocytosed and killed by peripheral blood polymorphonuclear leukocytes (PMNs) than RB50, and exhibits decreased cytotoxicity toward macrophages. These altered interactions with phagocytes could contribute to the defects observed during lethal infection. Conclusions Much of the work on transcriptional regulation during infection in B. bronchiseptica has focused on the BvgAS two-component system. This study reveals that the SigE regulon also mediates a discrete subset of functions associated with virulence. SigE is the first cell envelope stress-sensing system to be described in the bordetellae. In addition to its role during lethal infection of mice deficient in adaptive immunity, our results indicate that SigE is likely to be important for survival in the face of stresses encountered in the environment between hosts.
Collapse
Affiliation(s)
- Sarah E Barchinger
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, 16802, USA
| | | | | | | | | | | |
Collapse
|
28
|
Identification of genes in the σ²² regulon of Pseudomonas aeruginosa required for cell envelope homeostasis in either the planktonic or the sessile mode of growth. mBio 2012; 3:mBio.00094-12. [PMID: 22589289 PMCID: PMC3372973 DOI: 10.1128/mbio.00094-12] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The Pseudomonas aeruginosa extracytoplasmic functioning (ECF) sigma factor σ22 is encoded by algT/algU and is inhibited by anti-sigma factor MucA. σ22 was originally discovered for its essential role in the expression of the exopolysaccharide alginate by mucoid strains associated with chronic pulmonary infection. However, σ22 is now known to also have a large regulon associated with the response to cell wall stress. Our recent transcriptome analysis identified 293 open reading frames (ORFs) in the σ22 stress stimulon that include genes for outer envelope biogenesis and remodeling, although most of the genes have undefined functions. To better understand the σ22-dependent stress response, mutants affected in 27 genes of the σ22 stimulon were examined and expression was studied with lacZ fusions. Mutants constructed in the 27 genes showed no major change in response to cell wall-acting antibiotics or growth at elevated temperatures nor in alginate production. The mutants were examined for their effects on the expression of the σ22-dependent promoter of the alginate biosynthetic operon (PalgD) as a measure of σ22 derepression from MucA. By testing PalgD expression under both planktonic and sessile growth conditions, 11 genes were found to play a role in the stress response that activates σ22. Some mutations caused an increase or a decrease in the response to cell wall stress. Interestingly, mutations in 7 of the 11 genes caused constitutive PalgD expression under nonstressed conditions and thus showed that these genes are involved in maintaining envelope homeostasis. Mutations in PA0062 and PA1324 showed constitutive PalgD expression during both the planktonic and the sessile modes of growth. However, the PA5178 mutation caused constitutive PalgD expression only during planktonic growth. In contrast, mutations in PA2717, PA0567, PA3040, and PA0920 caused constitutive PalgD expression only in the sessile/biofilm mode of growth. This provides evidence that the σ22 stimulon for cell envelope homeostasis overlaps with biofilm control mechanisms. During chronic lung infections, such as in cystic fibrosis patients, Pseudomonas aeruginosa produces the exopolysaccharide alginate and forms biofilms that shield the organisms from the immune response and increase resistance to antibiotics. Activation of alginate genes is under the control of an extracytoplasmic stress response system that releases an alternative sigma factor (σ22) in response to cell wall stress and then activates expression of a large regulon. In this study, a mutant analysis of 27 members of the regulon showed that 11 play a role in envelope homeostasis and affect the stress response system itself. Interestingly, some genes demonstrate effects only in either the planktonic (free-swimming) or the sessile (biofilm) mode of growth, which leads to persistence and antibiotic tolerance. The studies presented here provide an important initial step in dissecting the mechanisms that regulate a critical signal transduction pathway that impacts P. aeruginosa pathogenesis.
Collapse
|
29
|
Chen SH, Chen RY, Xu XL, Xiao WB. Microarray analysis and phenotypic response of Pseudomonas aeruginosa PAO1 under hyperbaric oxyhelium conditions. Can J Microbiol 2012; 58:158-69. [PMID: 22280841 DOI: 10.1139/w11-121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pseudomonas aeruginosa is an important opportunistic pathogen associated with multiple diseases including cystic fibrosis and nosocomial infections. Pseudomonas aeruginosa is also the microbe most often isolated from ear and skin infections in divers. Saturation divers often suffer from various skin and mucous disorders, of which P. aeruginosa infections are the most serious and frequent. Previous studies mainly focused on adaptive and regulatory mechanisms of P. aeruginosa virulence in inducing clinical acute and chronic infections under different environmental conditions. However, there are few studies describing the physiological adaptive and regulatory mechanisms of P. aeruginosa in inducing high infectivity in healthy divers under hyperbaric oxyhelium conditions and even fewer studies describing the overall influence of the hyperbaric oxyhelium environment on regulating mRNA and protein expression levels of P. aeruginosa. The present study used transcriptomic and virulence phenotype analysis to identify factors that allow P. aeruginosa to become established in a hyperbaric oxyhelium environment to facilitate infections in divers. Transcriptional profiling of P. aeruginosa grown under steady-state hyperbaric oxyhelium stress conditions showed an upregulation of genes associated with stress-sense/response, protein folding, transcriptional regulation, pili and flagellum metabolism, virulence adaptation, and membrane protein metabolism. Some of these genes (including several two-component systems not previously known to be influenced by hyperbaric oxyhelium) were differentially expressed by P. aeruginosa in response to 72 h of exposure to hyperbaric oxyhelium stress. Detection of the virulence phenotype confirmed the results of cDNA microarrays. Based on these results, we conclude that hyperbaric oxyhelium conditions affect PAO1 gene expression and upregulate the expression of most virulence genes. The data obtained in our study may provide new insight into the molecular mechanism of hyperbaric oxyhelium exposure against P. aeruginosa virulence adaptation.
Collapse
Affiliation(s)
- Shuang-Hong Chen
- Department of Ship Sanitation, Army Key Laboratory of Hyperbaric and Diving Physiology, The Institution of Naval Medicine, 880 Xiangyin Road, Shanghai, People's Republic of China.
| | | | | | | |
Collapse
|
30
|
Sansgiry SS, Joish VN, Boklage S, Goyal RK, Chopra P, Sethi S. Economic burden of Pseudomonas aeruginosa infection in patients with cystic fibrosis. J Med Econ 2012; 15:219-24. [PMID: 22084956 DOI: 10.3111/13696998.2011.638954] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Chronic infection with Pseudomonas aeruginosa (PA) is the primary cause of pulmonary deterioration in cystic fibrosis (CF). This study describes healthcare costs and resource utilization among CF patients following PA infection in the US. METHODS This retrospective study utilized data from MarketScan claims database. CF patients with an initial PA infection were identified, and their healthcare utilization, medical and pharmacy costs were extracted for 12 months, pre- and post-PA infection. Descriptive and pair-wise non-parametric statistical analyses compared healthcare utilization and costs before and after infection. RESULTS Three hundred and fifty-eight CF patients met study criteria (mean age 20.1 years; 48% female). Mean annual per-patient costs following initial PA infection increased by an estimated $18,516 (outpatient: $3113; inpatient: $10,123; pharmacy: $4943). Overall healthcare costs were significantly higher (p < 0.0001) following PA infection, as were overall inpatient visits, outpatient visits, and unique prescriptions (p < 0.0001). CONCLUSIONS PA infection in cystic fibrosis creates a significant economic burden and the cost is not uniformly distributed across the healthcare components. LIMITATIONS Key limitations of this study include the absence of clinical parameters to characterize PA infections and data on indirect costs such as loss of productivity or caretaker-related burden.
Collapse
Affiliation(s)
- Sujit S Sansgiry
- College of Pharmacy, University of Houston , Houston, TX 77030, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Sautter R, Ramos D, Schneper L, Ciofu O, Wassermann T, Koh CL, Heydorn A, Hentzer M, Høiby N, Kharazmi A, Molin S, Devries CA, Ohman DE, Mathee K. A complex multilevel attack on Pseudomonas aeruginosa algT/U expression and algT/U activity results in the loss of alginate production. Gene 2011; 498:242-53. [PMID: 22088575 DOI: 10.1016/j.gene.2011.11.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Revised: 09/27/2011] [Accepted: 11/01/2011] [Indexed: 11/18/2022]
Abstract
Infection by the opportunistic pathogen Pseudomonas aeruginosa is a leading cause of morbidity and mortality seen in cystic fibrosis (CF) patients. This is mainly due to the genotypic and phenotypic changes of the bacteria that cause conversion from a typical nonmucoid to a mucoid form in the CF lung. Mucoid conversion is indicative of overproduction of a capsule-like polysaccharide called alginate. The alginate-overproducing (Alg(+)) mucoid phenotype seen in the CF isolates is extremely unstable. Low oxygen tension growth of mucoid variants readily selects for nonmucoid variants. The switching off mechanism has been mapped to the algT/U locus, and the molecular basis for this conversion was partially attributed to mutations in the algT/U gene itself. To further characterize molecular changes resulting in the unstable phenotype, an isogenic PAO1 derivative that is constitutively Alg(+) due to the replacement of the mucA with mucA22 (PDO300) was used. The mucA22 allele is common in mucoid CF isolates. Thirty-four spontaneous nonmucoid variants, or sap (suppressor of alginate production) mutants, of PDO300 were isolated under low oxygen tension. About 40% of the sap mutants were rescued by a plasmid carrying algT/U (Group A). The remaining sap mutants were not (Group B). The members of Group B fall into two subsets: one similar to PAO1, and another comparable to PDO300. Sequence analysis of the algT/U and mucA genes in Group A shows that mucA22 is intact, whereas algT/U contains mutations. Genetic complementation and sequencing of one Group B sap mutant, sap22, revealed that the nonmucoid phenotype was due to the presence of a mutation in PA3257. PA3257 encodes a putative periplasmic protease. Mutation of PA3257 resulted in decreased algT/U expression. Thus, inhibition of algT/U is a primary mechanism for alginate synthesis suppression.
Collapse
Affiliation(s)
- Robert Sautter
- Department of Biological Sciences, College of Arts and Sciences, Florida International University, Miami, FL 33199, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Hay ID, Schmidt O, Filitcheva J, Rehm BHA. Identification of a periplasmic AlgK-AlgX-MucD multiprotein complex in Pseudomonas aeruginosa involved in biosynthesis and regulation of alginate. Appl Microbiol Biotechnol 2011; 93:215-27. [PMID: 21713511 DOI: 10.1007/s00253-011-3430-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/01/2011] [Accepted: 06/01/2011] [Indexed: 10/18/2022]
Abstract
The opportunistic human pathogen Pseudomonas aeruginosa produces an extracellular polysaccharide called alginate. This is especially relevant in pulmonary infection of cystic fibrosis patients where it protects the bacteria from the hosts' immune system and the diffusion of antibiotics. Here a connection between the stability of a proposed alginate polymerisation/secretion complex and the regulation of the operon encoding these proteins was assessed. Experimental evidence was provided for a periplasmic multiprotein complex composed of AlgX, AlgK, and the regulatory protein MucD. Disruption of the alginate machinery in a mucoid strain, either by removal, or over production of various essential proteins resulted in an at least 2-fold increase in transcription of a lacZ reporter under the control of the algD promoter. Instability of the complex was indicated by an increase in secretion of alginate degradation products. This increase in transcription was found to be dependent on the negative regulatory protein MucD. Surprisingly, over production of MucD leads to a 3.3-fold increase in transcription from the alginate promoter and a 1.7-fold increase in the levels of alginate produced, suggesting an additional positive regulatory role for MucD in mucoid strains. Overall, this study provided experimental evidence for the proposed periplasmic multiprotein complex and established a link of a constituent of this complex, MucD, to transcriptional regulation of alginate biosynthesis genes.
Collapse
Affiliation(s)
- Iain David Hay
- Institute of Molecular Biosciences, Massey University, Palmerston North, New Zealand
| | | | | | | |
Collapse
|
33
|
Cook GS, Costerton JW, Lamont RJ. Biofilm formation by Porphyromonas gingivalis and Streptococcus gordonii. J Periodontal Res 2010. [DOI: 10.1111/j.1600-0765.1998.tb02326.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Fu W, Forster T, Mayer O, Curtin JJ, Lehman SM, Donlan RM. Bacteriophage cocktail for the prevention of biofilm formation by Pseudomonas aeruginosa on catheters in an in vitro model system. Antimicrob Agents Chemother 2010; 54:397-404. [PMID: 19822702 PMCID: PMC2798481 DOI: 10.1128/aac.00669-09] [Citation(s) in RCA: 253] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 09/05/2009] [Accepted: 10/02/2009] [Indexed: 11/20/2022] Open
Abstract
Microorganisms develop biofilms on indwelling medical devices and are associated with device-related infections, resulting in substantial morbidity and mortality. This study investigated the effect of pretreating hydrogel-coated catheters with Pseudomonas aeruginosa bacteriophages on biofilm formation by P. aeruginosa in an in vitro model. Hydrogel-coated catheters were exposed to a 10 log(10) PFU ml(-1) lysate of P. aeruginosa phage M4 for 2 h at 37 degrees C prior to bacterial inoculation. The mean viable biofilm count on untreated catheters was 6.87 log(10) CFU cm(-2) after 24 h. The pretreatment of catheters with phage reduced this value to 4.03 log(10) CFU cm(-2) (P < 0.001). Phage treatment immediately following bacterial inoculation also reduced biofilm viable counts (4.37 log(10) CFU cm(-2) reduction; P < 0.001). The regrowth of biofilms on phage-treated catheters occurred between 24 and 48 h, but supplemental treatment with phage at 24 h significantly reduced biofilm regrowth (P < 0.001). Biofilm isolates resistant to phage M4 were recovered from catheters pretreated with phage. The phage susceptibility profiles of these isolates were used to guide the development of a five-phage cocktail from a larger library of P. aeruginosa phages. The pretreatment of catheters with this cocktail reduced the 48-h mean biofilm cell density by 99.9% (from 7.13 to 4.13 log(10) CFU cm(-2); P < 0.001), but fewer biofilm isolates were resistant to these phages. These results suggest the potential of applying phages, especially phage cocktails, to the surfaces of indwelling medical devices for mitigating biofilm formation by clinically relevant bacteria.
Collapse
Affiliation(s)
- Weiling Fu
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Terri Forster
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Oren Mayer
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - John J. Curtin
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Susan M. Lehman
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Rodney M. Donlan
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
35
|
Mirpuri R, Jones W, Bryers JD. Toluene degradation kinetics for planktonic and biofilm-grown cells of Pseudomonas putida 54G. Biotechnol Bioeng 2009; 53:535-46. [PMID: 18634054 DOI: 10.1002/(sici)1097-0290(19970320)53:6<535::aid-bit1>3.0.co;2-n] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Toluene degradation kinetics by biofilm and planktonic cells of Pseudomonas putida 54G were compared in this study. Batch degradation of (14)C toluene was used to evaluate kinetic parameters for planktonic cells. The kinetic parameters determined for toluene degradation were: specific growth rate, micro(max) = 10.08 +/- 1.2/day; half-saturation constant, K(S) = 3.98 +/- 1.28 mg/L; substrate inhibition constant, K(I) = 42.78 +/- 3.87 mg/L. Biofilm cells, grown on ceramic rings in vapor phase bioreactors, were removed and suspended in batch cultures to calculate (14)C toluene degradation rates. Specific activities measured for planktonic and biofilm cells were similar based on toluene degrading cells and total biomass. Long-term toluene exposure reduced specific activities that were based on total biomass for both biofilm and planktonic cells. These results suggest that long-term toluene exposure caused a large portion of the biomass to become inactive, even though the biofilm was not substrate limited. Conversely, specific activities based on numbers of toluene-culturable cells were comparable for both biofilm and planktonically grown cultures. Planktonic cell kinetics are often used in bioreactor models to model substrate degradation and growth of bacteria in biofilms, a procedure we found to be appropriate for this organism. For superior bioreactor design, however, changes in cellular activity that occur during biofilm development should be investigated under conditions relevant to reactor operation before predictive models for bioreactor systems are developed.
Collapse
Affiliation(s)
- R Mirpuri
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana 59717-3980, USA
| | | | | |
Collapse
|
36
|
Dror N, Mandel M, Hazan Z, Lavie G. Advances in microbial biofilm prevention on indwelling medical devices with emphasis on usage of acoustic energy. SENSORS (BASEL, SWITZERLAND) 2009; 9:2538-54. [PMID: 22574031 PMCID: PMC3348827 DOI: 10.3390/s90402538] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 03/27/2009] [Accepted: 04/14/2009] [Indexed: 12/12/2022]
Abstract
Microbial biofilms are a major impediment to the use of indwelling medical devices, generating device-related infections with high morbidity and mortality. Major efforts directed towards preventing and eradicating the biofilm problem face difficulties because biofilms protect themselves very effectively by producing a polysaccharide coating, reducing biofilm sensitivity to antimicrobial agents. Techniques applied to combating biofilms have been primarily chemical. These have met with partial and limited success rates, leading to current trends of eradicating biofilms through physico-mechanical strategies. Here we review the different approaches that have been developed to control biofilm formation and removal, focusing on the utilization of acoustic energy to achieve these objectives.
Collapse
Affiliation(s)
- Naama Dror
- Department of Cellular and Developmental Biology, Tel-Aviv University, Tel-Aviv, Israel; E-mail: (N.D)
| | - Mathilda Mandel
- Blood Center, Sheba Medical Center, Tel-Hashomer, Israel; E-mail: (M.M)
| | - Zadik Hazan
- Regenera Pharma Ltd., Rehovot, Israel; E-mail: (Z.H)
| | - Gad Lavie
- Department of Cellular and Developmental Biology, Tel-Aviv University, Tel-Aviv, Israel; E-mail: (N.D)
- Blood Center, Sheba Medical Center, Tel-Hashomer, Israel; E-mail: (M.M)
| |
Collapse
|
37
|
Ultrasound as a treatment for chronic rhinosinusitis. Med Hypotheses 2009; 73:15-7. [PMID: 19264415 DOI: 10.1016/j.mehy.2008.12.049] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 12/12/2008] [Accepted: 12/13/2008] [Indexed: 11/21/2022]
Abstract
Bacteria are now recognised as existing in two forms--free floating (planktonic) or in sophisticated communities called biofilms. Bacteria within biofilms are difficult to culture and highly refractory to antibiotic treatment. Biofilms could explain some of the paradoxes associated with chronic rhinosinusitis. Many patients are refractory to antibiotic therapy, bacteriology culture swabs frequently do not grow bacteria and positive bacteriology swabs often do not correlate with clinical findings. As antibiotics are largely ineffective in the treatment of bacterial biofilms, alternative therapeutic strategies including blocking molecular communication (quorum sensing) between bacteria, inhibiting biofilm matrix production and interventions that damage bacterial membranes are being explored as treatment options. So far these approaches have been largely unproductive. While physical therapies such as short wave diathermy and therapeutic ultrasound have been advocated as treatments for rhinosinusitis for many years, critical evaluation of these therapeutic interventions is virtually non-existent. Until recently any benefit has been difficult to explain using conventional microbiological paradigms. However, in the laboratory setting ultrasound enhances the killing of bacteria in biofilms both in vitro and in animal models. The successful application of ultrasound to sinus disease could mean the development of a new paradigm in our treatment of chronic rhinosinusits, a reduction in antibiotic resistance and improved medical management with a subsequent reduction in surgical intervention.
Collapse
|
38
|
Pseudomonas aeruginosa hypoxic or anaerobic biofilm infections within cystic fibrosis airways. Trends Microbiol 2009; 17:130-8. [DOI: 10.1016/j.tim.2008.12.003] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 10/30/2008] [Accepted: 12/15/2008] [Indexed: 11/23/2022]
|
39
|
Wood LF, Ohman DE. Use of cell wall stress to characterize sigma 22 (AlgT/U) activation by regulated proteolysis and its regulon in Pseudomonas aeruginosa. Mol Microbiol 2009; 72:183-201. [PMID: 19226327 DOI: 10.1111/j.1365-2958.2009.06635.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
MucA sequesters extracytoplasmic function (ECF) sigma(22) (algT/U encoded) from target promoters including PalgD for alginate biosynthesis. We have shown that cell wall stress (e.g. d-cycloserine) is a potent inducer of the algD operon. Here we showed that MucB, encoded by the algT-mucABCD operon, interacts with MucA in the sigma-sequestration complex. We hypothesized that AlgW protease (a DegS homologue) is activated by cell wall stress to cleave MucA and release sigma(22). When strain PAO1 was exposed to d-cycloserine, MucA was degraded within just 10 min, and sigma(22) was activated. However, in an algW mutant, MucA was stable with no increased sigma(22) activity. Studies on a yaeL mutant, defective in an RseP/YaeL homologue, suggest that YaeL protease cleaves MucA only after cleavage by AlgW. A defect in mucD, encoding a periplasmic HtrA/DegP homologue, caused MucA instability, suggesting MucD degrades cell wall stress signals. Overall, these data indicate that cell wall stress signals release sigma(22) by regulated intramembrane proteolysis (RIP). Microarray analyses identified genes of the early and late cell wall stress stimulon, which included genes for alginate production. The subset of genes in the sigma(22) regulon was then determined, which included gene products predicted to contribute to recovery from cell wall stress.
Collapse
Affiliation(s)
- Lynn F Wood
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, VA, USA
| | | |
Collapse
|
40
|
|
41
|
|
42
|
MacRitchie DM, Buelow DR, Price NL, Raivio TL. Two-component signaling and gram negative envelope stress response systems. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 631:80-110. [PMID: 18792683 DOI: 10.1007/978-0-387-78885-2_6] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Dawn M MacRitchie
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | | | | | | |
Collapse
|
43
|
Abstract
We previously reported that the novel Pseudomonas aeruginosa toxin Cif is capable of decreasing apical membrane expression of the cystic fibrosis transmembrane conductance regulator (CFTR). We further demonstrated that Cif is capable of degrading the synthetic epoxide hydrolase (EH) substrate S-NEPC [(2S,3S)-trans-3-phenyl-2-oxiranylmethyl 4-nitrophenol carbonate], suggesting that Cif may be reducing apical membrane expression of CFTR via its EH activity. Here we report that Cif is capable of degrading the xenobiotic epoxide epibromohydrin (EBH) to its vicinal diol 3-bromo-1,2-propanediol. We also demonstrate that this epoxide is a potent inducer of cif gene expression. We show that the predicted TetR family transcriptional repressor encoded by the PA2931 gene, which is immediately adjacent to and divergently transcribed from the cif-containing, three-gene operon, negatively regulates cif gene expression by binding to the promoter region immediately upstream of the cif-containing operon. Furthermore, this protein-DNA interaction is disrupted by the epoxide EBH in vitro, suggesting that the binding of EBH by the PA2931 protein product drives the disassociation from its DNA-binding site. Given its role as a repressor of cif gene expression, we have renamed PA2931 as CifR. Finally, we demonstrate that P. aeruginosa strains isolated from cystic fibrosis patient sputum with increased cif gene expression are impaired for the expression of the cifR gene.
Collapse
|
44
|
[Kinetics of Pseudomonas aeruginosa virulence gene expression during chronic lung infection in the murine model]. Med Mal Infect 2008; 38:318-23. [PMID: 18455339 DOI: 10.1016/j.medmal.2008.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Accepted: 03/03/2008] [Indexed: 12/28/2022]
Abstract
UNLABELLED Pseudomonas aeruginosa is a Gram-negative bacillus frequently encountered in human diseases. P. aeruginosa produces a large number of secreted and cell associated virulence factors. Their production is coordinated by various systems of gene regulation. The correlation and sequential intervention of regulation systems during a pulmonary infection have not been determined yet. OBJECTIVE The aim of this study was to analyze the expression of three P. aeruginosa virulence genes (exoS, lasI, and algD) during the first seven days of chronic lung infection. To do so, mice were infected intratracheally with agarose beads containing P. aeruginosa. RESULTS The results were a progressive decrease of exoS transcription and an increase of algD, and lasI transcription during infection. This dynamic evolution was consistent with the clinical observation, which demonstrated a progressive loss of type III secretion system function and an increase in the mucoid phenotype development in P. aeruginosa strains from cystic fibrosis patients. CONCLUSION The development of a P. aeruginosa pulmonary chronic infection associates a decrease of gene expression related to a type III secretion system and an increase of alginate production.
Collapse
|
45
|
Shi XY, Dumenyo CK, Hernandez-Martinez R, Azad H, Cooksey DA. Characterization of regulatory pathways in Xylella fastidiosa: genes and phenotypes controlled by algU. Appl Environ Microbiol 2007; 73:6748-56. [PMID: 17827317 PMCID: PMC2074953 DOI: 10.1128/aem.01232-07] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2007] [Accepted: 08/29/2007] [Indexed: 11/20/2022] Open
Abstract
Many virulence genes in plant bacterial pathogens are coordinately regulated by "global" regulatory genes. Conducting DNA microarray analysis of bacterial mutants of such genes, compared with the wild type, can help to refine the list of genes that may contribute to virulence in bacterial pathogens. The regulatory gene algU, with roles in stress response and regulation of the biosynthesis of the exopolysaccharide alginate in Pseudomonas aeruginosa and many other bacteria, has been extensively studied. The role of algU in Xylella fastidiosa, the cause of Pierce's disease of grapevines, was analyzed by mutation and whole-genome microarray analysis to define its involvement in aggregation, biofilm formation, and virulence. In this study, an algU::nptII mutant had reduced cell-cell aggregation, attachment, and biofilm formation and lower virulence in grapevines. Microarray analysis showed that 42 genes had significantly lower expression in the algU::nptII mutant than in the wild type. Among these are several genes that could contribute to cell aggregation and biofilm formation, as well as other physiological processes such as virulence, competition, and survival.
Collapse
Affiliation(s)
- Xiang Yang Shi
- Department of Plant Pathology and Microbiology, University of California, 900 University Avenue, Riverside, CA 92521, USA
| | | | | | | | | |
Collapse
|
46
|
Merighi M, Lee VT, Hyodo M, Hayakawa Y, Lory S. The second messenger bis-(3'-5')-cyclic-GMP and its PilZ domain-containing receptor Alg44 are required for alginate biosynthesis in Pseudomonas aeruginosa. Mol Microbiol 2007; 65:876-95. [PMID: 17645452 DOI: 10.1111/j.1365-2958.2007.05817.x] [Citation(s) in RCA: 253] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ubiquitous bacterial second messenger c-di-GMP regulates the expression of various virulence determinants in a wide range of bacterial pathogens. Several studies have suggested that proteins with a PilZ domain function as c-di-GMP receptors. We have identified in the Pseudomonas aeruginosa genome eight genes encoding for PilZ orhologues and demonstrated binding of c-di-GMP to all but one of these proteins in a direct ligand binding assay. One protein with the PilZ domain, Alg44, is involved in biosynthesis of the extracellular polysaccharide alginate. We have shown that increasing c-di-GMP levels by overexpression of highly active diguanylate cyclases, or hydrolysis of c-di-GMP by phosphodiesterases, enhanced or reduced formation of alginate in mucoid strains, respectively. We have engineered substitutions in several conserved residues of the PilZ domain of Alg44 determined that they resulted in simultaneous loss of c-di-GMP binding and the ability to support production of alginate in P. aeruginosa. A 6xHis-tagged Alg44 fusion was also shown to localize in the membrane fraction of P. aeruginosa independently from its ability to bind c-di-GMP. Alg44 appears to be an essential component of the alginate biosynthetic apparatus, where, following binding of c-di-GMP, it controls polymerization or transport of the polysaccharide.
Collapse
Affiliation(s)
- Massimo Merighi
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
47
|
Wood SR, Firoved AM, Ornatowski W, Mai T, Deretic V, Timmins GS. Nitrosative stress inhibits production of the virulence factor alginate in mucoid Pseudomonas aeruginosa. Free Radic Res 2007; 41:208-15. [PMID: 17364947 DOI: 10.1080/10715760601052610] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Alginate is a critical virulence factor contributing to the poor clinical prognosis associated with the conversion of Pseudomonas aeruginosa to mucoid phenotypes in cystic fibrosis (CF). An important mechanism of action is its ability to scavenge host innate-immune reactive species. We have previously analyzed the bacterial response to nitrosative stress by S-nitrosoglutathione (GSNO), a physiological NO radical donor with diminished levels in the CF lung. GSNO substantially increased bacterial nitrosative and oxidative defenses and so we hypothesized a similar increase in alginate production would occur. However, in mucoid P. aeruginosa, there was decreased expression of the majority of alginate synthetic genes. This microarray data was confirmed both by RT-PCR and at the functional level by direct measurements of alginate production. Our data suggest that the lowered levels of innate-immune nitrosative mediators (such as GSNO) in the CF lung exacerbate the effects of mucoid P. aeruginosa, by failing to suppress alginate biosynthesis.
Collapse
Affiliation(s)
- Simon R Wood
- College of Pharmacy, Toxicology Program, Health Sciences Center, University of New Mexico, Albuquerque, NM 87131, USA
| | | | | | | | | | | |
Collapse
|
48
|
Muhammadi, Ahmed N. Genetics of bacterial alginate: alginate genes distribution, organization and biosynthesis in bacteria. Curr Genomics 2007; 8:191-202. [PMID: 18645604 PMCID: PMC2435354 DOI: 10.2174/138920207780833810] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 02/26/2007] [Accepted: 03/21/2007] [Indexed: 11/22/2022] Open
Abstract
Bacterial alginate genes are chromosomal and fairly widespread among rRNA homology group I Pseudomonads and Azotobacter. In both genera, the genetic pathway of alginate biosynthesis is mostly similar and the identified genes are identically organized into biosynthetic, regulatory and genetic switching clusters. In spite of these similarities,still there are transcriptional and functional variations between P. aeruginosa and A. vinelandii. In P. aeruginosa all biosynthetic genes except algC transcribe in polycistronic manner under the control of algD promoter while in A. vinelandii, these are organized into many transcriptional units. Of these, algA and algC are transcribed each from two different and algD from three different promoters. Unlike P. aeruginosa, the promoters of these transcriptional units except one of algC and algD are algT-independent. Both bacterial species carry homologous algG gene for Ca(2+)-independent epimerization. But besides algG, A. vinelandii also has algE1-7 genes which encode C-5-epimerases involved in the complex steps of Ca(2+)-dependent epimerization. A hierarchy of alginate genes expression under sigma(22)(algT) control exists in P. aeruginosa where algT is required for transcription of the response regulators algB and algR, which in turn are necessary for expression of algD and its downstream biosynthetic genes. Although algTmucABCD genes cluster play similar regulatory roles in both P. aeruginosa and A. vinelandii but unlike, transcription of A. vinelandii, algR is independent of sigma(22). These differences could be due to the fact that in A. vinelandii alginate plays a role as an integrated part in desiccation-resistant cyst which is not found in P. aeruginosa.
Collapse
Affiliation(s)
| | - Nuzhat Ahmed
- Centre for Molecular Genetics, University of Karachi, Karachi-75270,
Pakistan
| |
Collapse
|
49
|
Husson RN. Leaving on the lights: host-specific derepression of Mycobacterium tuberculosis gene expression by anti-sigma factor gene mutations. Mol Microbiol 2006; 62:1217-9. [PMID: 17064363 DOI: 10.1111/j.1365-2958.2006.05466.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Regulation of transcription by alternative sigma factors is a strategy widely used by bacteria to adapt to changes in environmental conditions. For several pathogenic bacteria, alternative sigma factor-regulated gene expression is critical for virulence. The activity of many alternative sigma factors is in turn controlled by regulatory proteins that transduce and integrate environmental signals. In this issue of Molecular Microbiology, Said-Salim et al. demonstrate high-level expression of genes encoding major protein antigens in the bovine subspecies of Mycobacterium tuberculosis, in contrast to low-level expression in the human subspecies. Having previously suggested that SigK regulates the expression of these genes, the authors found that the high-expressers have point mutations in Rv0444c, a gene adjacent to sigK, and provided evidence that this gene encodes an anti-sigma factor whose function is abrogated by these mutations. These findings not only demonstrate an adaptive mechanism of potential importance in tuberculosis immunity and pathogenesis, but also raise interesting questions regarding the origin of these mutations and their effects on anti-sigma factor function.
Collapse
Affiliation(s)
- Robert N Husson
- Division of Infectious Diseases, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
50
|
Wood LF, Leech AJ, Ohman DE. Cell wall-inhibitory antibiotics activate the alginate biosynthesis operon inPseudomonas aeruginosa: roles of σ22(AlgT) and the AlgW and Prc proteases. Mol Microbiol 2006; 62:412-26. [PMID: 17020580 DOI: 10.1111/j.1365-2958.2006.05390.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A bioassay was developed to identify stimuli that promote the transcriptional induction of the algD operon for alginate biosynthesis in Pseudomonas aeruginosa. Strain PAO1 carried the algD promoter fused to a chloramphenicol acetyl-transferase cartridge (PalgD-cat), and > 50 compounds were tested for promoting chloramphenicol resistance. Most compounds showing PalgD-cat induction were cell wall-active antibiotics that blocked peptidoglycan synthesis. PalgD-cat induction was blocked by mutations in the genes for sigma22 (algT/algU) or regulators AlgB and AlgR. Anti-sigma factor MucA was the primary regulator of sigma22 activity. A transcriptome analysis using microarrays verified that the algD operon undergoes high induction by D-cycloserine. A similar sigma(E)-RseAB complex in Escherichia coli responds to envelope stress, which requires DegS protease in a regulated intramembrane proteolysis (RIP) cascade to derepress the sigma. Mutant phenotypic studies in P. aeruginosa showed that AlgW (PA4446) is likely to be the DegS functional homologue. A mutation in algW resulted in a complete lack of PalgD-cat induction by D-cycloserine. Overexpression of algW in PAO1 resulted in a mucoid phenotype and alginate production, even in the absence of cell wall stress, suggesting that AlgW protease plays a role in sigma22 activation. In addition, a mutation in gene PA3257 (prc), encoding a Prc-like protease, resulted in poor induction of PalgD-cat by D-cycloserine, suggesting that it also plays a role in the response to cell wall stress.
Collapse
Affiliation(s)
- Lynn F Wood
- Department of Microbiology and Immunology, Medical College of Virginia Campus of Virginia Commonwealth University, Richmond, VA 23298-0678, USA
| | | | | |
Collapse
|