1
|
Bharathi S, Dhanraj G, Sundramurthy VP, Mohanasundaram S. Comprehensive strategies for overcoming dental biofilms: Microbial dynamics and innovative methods. Microb Pathog 2025; 205:107690. [PMID: 40349996 DOI: 10.1016/j.micpath.2025.107690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 04/27/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
Dental biofilm develops through a complex process initiated by the attachment of early colonising bacteria to the surface of teeth. These bacteria use specific adhesion molecules to bind to the enamel, after which they proliferate and secrete an extracellular polymeric substance. As a result, the early colonisers eventually form a resilient, multispecies community encased in an extracellular polymeric matrix, reinforcing the biofilm structure. This matrix enables microbes to withstand the mechanical disruption, evade host immune defences and resist many antimicrobials. Diseases associated with dental biofilm are among the most prevalent oral health issues, highlighting the importance of effective biofilm management in maintaining oral health. This review explores the progression of biofilm development and evaluates various strategies, from conventional antibiotics and herbal medicine to advanced strategies like antimicrobial peptides, nanoparticles, probiotics, cold atmospheric plasma, quorum sensing inhibitors and enzymes. In particular, enzymatic agents such as Dispersin B, DNAases, and glucanohydrolases, including mutanase and dextranase, have shown promise in disrupting the biofilm structure, thereby offering potential avenues for managing dental biofilm.
Collapse
Affiliation(s)
- Selvaraj Bharathi
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600007, India
| | - Ganapathy Dhanraj
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600007, India
| | - Venkatesa Prabhu Sundramurthy
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641 021, India; Centre for Natural Products and Functional Foods, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641 021, India
| | - Sugumar Mohanasundaram
- Department of Biochemistry and Crop Physiology, SRM College of Agricultural Sciences, SRM Institute of Science and Technology, Baburayanpettai, Maduranthagam Taluk, Chengalpattu District, Tamilnadu, 603201, India.
| |
Collapse
|
2
|
Males A, Moroz OV, Blagova E, Munch A, Hansen GH, Johansen AH, Østergaard LH, Segura DR, Eddenden A, Due AV, Gudmand M, Salomon J, Sørensen SR, Franco Cairo JPL, Nitz M, Pache RA, Vejborg RM, Bhosale S, Vocadlo DJ, Davies GJ, Wilson KS. Expansion of the diversity of dispersin scaffolds. Acta Crystallogr D Struct Biol 2025; 81:130-146. [PMID: 40019001 PMCID: PMC11883664 DOI: 10.1107/s205979832500110x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 02/06/2025] [Indexed: 03/01/2025] Open
Abstract
Microorganisms are known to secrete copious amounts of extracellular polymeric substances (EPS) that form complex matrices around the cells to shield them against external stresses, to maintain structural integrity and to influence their environment. Many microorganisms also secrete enzymes that are capable of remodelling or degrading EPS in response to various environmental cues. One key enzyme class is the poly-β-1,6-linked N-acetyl-D-glucosamine (PNAG)-degrading glycoside hydrolases, of which the canonical member is dispersin B (DspB) from CAZy family GH20. We sought to test the hypothesis that PNAG-degrading enzymes would be present across family GH20, resulting in expansion of the sequence and structural space and thus the availability of PNAGases. Phylogenetic analysis revealed that several microorganisms contain potential DspB-like enzymes. Six of these were expressed and characterized, and four crystal structures were determined (two of which were in complex with the established GH20 inhibitor 6-acetamido-6-deoxy-castanospermine and one with a bespoke disaccharide β-1,6-linked thiazoline inhibitor). One enzyme expressed rather poorly, which restricted crystal screening and did not allow activity measurements. Using synthetic PNAG oligomers and MALDI-TOF analysis, two of the five enzymes tested showed preferential endo hydrolytic activity. Their sequences, having only 26% identity to the pioneer enzyme DspB, highlight the considerable array of previously unconsidered dispersins in nature, greatly expanding the range of potential dispersin backbones available for societal application and engineering.
Collapse
Affiliation(s)
- Alexandra Males
- York Structural Biology Laboratory, Department of ChemistryUniversity of YorkYorkYO10 5DDUnited Kingdom
| | - Olga V. Moroz
- York Structural Biology Laboratory, Department of ChemistryUniversity of YorkYorkYO10 5DDUnited Kingdom
| | - Elena Blagova
- York Structural Biology Laboratory, Department of ChemistryUniversity of YorkYorkYO10 5DDUnited Kingdom
| | - Astrid Munch
- Novonesis A/S, Biologiens Vej 2, 2800Kongens Lyngby, Denmark
| | | | | | | | | | | | - Anne V. Due
- Novonesis A/S, Krogshøjvej 36, 2880Bagsvaerd, Denmark
| | - Martin Gudmand
- Novonesis A/S, Biologiens Vej 2, 2800Kongens Lyngby, Denmark
| | - Jesper Salomon
- Novonesis A/S, Biologiens Vej 2, 2800Kongens Lyngby, Denmark
| | | | | | - Mark Nitz
- Department of ChemistryUniversity of TorontoTorontoOntarioCanada
| | - Roland A. Pache
- Novonesis A/S, Biologiens Vej 2, 2800Kongens Lyngby, Denmark
| | | | - Sandeep Bhosale
- Department of ChemistrySimon Fraser UniversityBurnabyBritish ColumbiaV5A 1S6Canada
| | - David J. Vocadlo
- Department of ChemistrySimon Fraser UniversityBurnabyBritish ColumbiaV5A 1S6Canada
| | - Gideon J. Davies
- York Structural Biology Laboratory, Department of ChemistryUniversity of YorkYorkYO10 5DDUnited Kingdom
| | - Keith S. Wilson
- York Structural Biology Laboratory, Department of ChemistryUniversity of YorkYorkYO10 5DDUnited Kingdom
| |
Collapse
|
3
|
Jacob S, Gusmao L, Godboley D, Velusamy SK, George N, Schreiner H, Cugini C, Fine DH. Molecular Analysis of Aggregatibacter actinomycetemcomitans ApiA, a Multi-Functional Protein. Pathogens 2024; 13:1011. [PMID: 39599564 PMCID: PMC11597641 DOI: 10.3390/pathogens13111011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/01/2024] [Accepted: 11/10/2024] [Indexed: 11/29/2024] Open
Abstract
Aggregatibacter actinomycetemcomitans ApiA is a trimeric autotransporter outer membrane protein (Omp) that participates in multiple functions, enabling A. actinomycetemcomitans to adapt to a variety of environments. The goal of this study is to identify regions in the apiA gene responsible for three of these functions: auto-aggregation, buccal epithelial cell binding, and complement resistance. Initially, apiA was expressed in Escherichia coli. Finally, wild-type A. actinomycetemcomitans and an apiA-deleted version were tested for their expression in the presence and absence of serum and genes related to stress adaptation, such as oxygen regulation, catalase activity, and Omp proteins. Sequential deletions in specific regions in the apiA gene as expressed in E. coli were examined for membrane proteins, which were confirmed by microscopy. The functional activity of epithelial cell binding, auto-aggregation, and complement resistance were then assessed, and regions in the apiA gene responsible for these functions were identified. A region spanning amino acids 186-217, when deleted, abrogated complement resistance and Factor H (FH) binding, while a region spanning amino acids 28-33 was related to epithelial cell binding. A 13-amino-acid peptide responsible for FH binding was shown to promote serum resistance. An apiA deletion in a clinical isolate (IDH781) was created and tested in the presence and/or absence of active and inactive serum and genes deemed responsible for prominent functional activity related to A. actinomycetemcomitans survival using qRT-PCR. These experiments suggested that apiA expression in IDH781 is involved in global regulatory mechanisms that are serum-dependent and show complement resistance. This is the first study to identify specific apiA regions in A. actinomycetemcomitans responsible for FH binding, complement resistance, and other stress-related functions. Moreover, the role of apiA in overall gene regulation was observed.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Carla Cugini
- Department of Oral Biology, Rutgers School of Dental Medicine, 110 Bergen, Newark, NJ 07103, USA; (S.J.); (L.G.); (D.G.); (S.K.V.); (N.G.); (H.S.)
| | - Daniel H. Fine
- Department of Oral Biology, Rutgers School of Dental Medicine, 110 Bergen, Newark, NJ 07103, USA; (S.J.); (L.G.); (D.G.); (S.K.V.); (N.G.); (H.S.)
| |
Collapse
|
4
|
Kaplan JB, Sukhishvili SA, Sailer M, Kridin K, Ramasubbu N. Aggregatibacter actinomycetemcomitans Dispersin B: The Quintessential Antibiofilm Enzyme. Pathogens 2024; 13:668. [PMID: 39204268 PMCID: PMC11357414 DOI: 10.3390/pathogens13080668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
The extracellular matrix of most bacterial biofilms contains polysaccharides, proteins, and nucleic acids. These biopolymers have been shown to mediate fundamental biofilm-related phenotypes including surface attachment, intercellular adhesion, and biocide resistance. Enzymes that degrade polymeric biofilm matrix components, including glycoside hydrolases, proteases, and nucleases, are useful tools for studying the structure and function of biofilm matrix components and are also being investigated as potential antibiofilm agents for clinical use. Dispersin B is a well-studied, broad-spectrum antibiofilm glycoside hydrolase produced by Aggregatibacter actinomycetemcomitans. Dispersin B degrades poly-N-acetylglucosamine, a biofilm matrix polysaccharide that mediates biofilm formation, stress tolerance, and biocide resistance in numerous Gram-negative and Gram-positive pathogens. Dispersin B has been shown to inhibit biofilm and pellicle formation; detach preformed biofilms; disaggregate bacterial flocs; sensitize preformed biofilms to detachment by enzymes, detergents, and metal chelators; and sensitize preformed biofilms to killing by antiseptics, antibiotics, bacteriophages, macrophages, and predatory bacteria. This review summarizes the results of nearly 100 in vitro and in vivo studies that have been carried out on dispersin B since its discovery 20 years ago. These include investigations into the biological function of the enzyme, its structure and mechanism of action, and its in vitro and in vivo antibiofilm activities against numerous bacterial species. Also discussed are potential clinical applications of dispersin B.
Collapse
Affiliation(s)
- Jeffrey B. Kaplan
- Laboratory for Skin Research, Institute for Medical Research, Galilee Medical Center, Nahariya 2210001, Israel;
| | - Svetlana A. Sukhishvili
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA;
| | | | - Khalaf Kridin
- Laboratory for Skin Research, Institute for Medical Research, Galilee Medical Center, Nahariya 2210001, Israel;
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Narayanan Ramasubbu
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ 07103, USA;
| |
Collapse
|
5
|
Zhang J, Liu Y, Hu J, Leng G, Liu X, Cui Z, Wang W, Ma Y, Sha S. Cellulase Promotes Mycobacterial Biofilm Dispersal in Response to a Decrease in the Bacterial Metabolite Gamma-Aminobutyric Acid. Int J Mol Sci 2024; 25:1051. [PMID: 38256125 PMCID: PMC10816823 DOI: 10.3390/ijms25021051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/08/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
Biofilm dispersal contributes to bacterial spread and disease transmission. However, its exact mechanism, especially that in the pathogen Mycobacterium tuberculosis, is unclear. In this study, the cellulase activity of the M. tuberculosis Rv0062 protein was characterized, and its effect on mycobacterial biofilm dispersal was analyzed by observation of the structure and components of Rv0062-treated biofilm in vitro. Meanwhile, the metabolite factors that induced cellulase-related biofilm dispersal were also explored with metabolome analysis and further validations. The results showed that Rv0062 protein had a cellulase activity with a similar optimum pH (6.0) and lower optimum temperature (30 °C) compared to the cellulases from other bacteria. It promoted mycobacterial biofilm dispersal by hydrolyzing cellulose, the main component of extracellular polymeric substrates of mycobacterial biofilm. A metabolome analysis revealed that 107 metabolites were significantly altered at different stages of M. smegmatis biofilm development. Among them, a decrease in gamma-aminobutyric acid (GABA) promoted cellulase-related biofilm dispersal, and this effect was realized with the down-regulation of the bacterial signal molecule c-di-GMP. All these findings suggested that cellulase promotes mycobacterial biofilm dispersal and that this process is closely associated with biofilm metabolite alterations.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (J.Z.); (Y.L.); (J.H.); (G.L.); (X.L.); (Z.C.); (W.W.)
| | - Yingying Liu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (J.Z.); (Y.L.); (J.H.); (G.L.); (X.L.); (Z.C.); (W.W.)
| | - Junxing Hu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (J.Z.); (Y.L.); (J.H.); (G.L.); (X.L.); (Z.C.); (W.W.)
| | - Guangxian Leng
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (J.Z.); (Y.L.); (J.H.); (G.L.); (X.L.); (Z.C.); (W.W.)
| | - Xining Liu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (J.Z.); (Y.L.); (J.H.); (G.L.); (X.L.); (Z.C.); (W.W.)
| | - Zailin Cui
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (J.Z.); (Y.L.); (J.H.); (G.L.); (X.L.); (Z.C.); (W.W.)
| | - Wenzhen Wang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (J.Z.); (Y.L.); (J.H.); (G.L.); (X.L.); (Z.C.); (W.W.)
| | - Yufang Ma
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (J.Z.); (Y.L.); (J.H.); (G.L.); (X.L.); (Z.C.); (W.W.)
- Department of Microbiology, Dalian Medical University, Dalian 116044, China
| | - Shanshan Sha
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (J.Z.); (Y.L.); (J.H.); (G.L.); (X.L.); (Z.C.); (W.W.)
| |
Collapse
|
6
|
Li Z, Huang Q, Wang Z, Huang L, Gu L. Effects of Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans on Modeling Subgingival Microbiome and Impairment of Oral Epithelial Barrier. J Infect Dis 2024; 229:262-272. [PMID: 37855446 DOI: 10.1093/infdis/jiad461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 10/20/2023] Open
Abstract
Periodontitis is an exemplar of dysbiosis associated with the coordinated action of multiple members within the microbial consortium. The polymicrobial synergy and dysbiosis hypothesis proposes a dynamic host-microbiome balance, with certain modulators capable of disrupting eubiosis and driving shifts towards dysbiosis within the community. However, these factors remain to be explored. We established a Porphyromonas gingivalis- or Aggregatibacter actinomycetemcomitans-modified subgingival microbiome model and 16S rRNA sequencing revealed that P. gingivalis and A. actinomycetemcomitans altered the microbiome structure and composition indicated by α and β diversity metrics. P. gingivalis increased the subgingival dysbiosis index (SDI), while A. actinomycetemcomitans resulted in a lower SDI. Furthermore, P. gingivalis-stimulated microbiomes compromised epithelium function and reduced expression of tight junction proteins, whereas A. actinomycetemcomitans yielded mild effects. In conclusion, by inoculating P. gingivalis, we created dysbiotic microcosm biofilms in vitro resembling periodontitis-related subgingival microbiota, exhibiting enhanced dysbiosis and impaired epithelium integrity.
Collapse
Affiliation(s)
- Zihan Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Qiuxia Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Zhuoran Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Lijia Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Lisha Gu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
7
|
Bajrami D, Fischer S, Barth H, Sarquis MA, Ladero VM, Fernández M, Sportelli MC, Cioffi N, Kranz C, Mizaikoff B. In situ monitoring of Lentilactobacillus parabuchneri biofilm formation via real-time infrared spectroscopy. NPJ Biofilms Microbiomes 2022; 8:92. [PMID: 36402858 PMCID: PMC9675856 DOI: 10.1038/s41522-022-00353-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 10/26/2022] [Indexed: 11/20/2022] Open
Abstract
Foodborne pathogenic microorganisms form biofilms at abiotic surfaces, which is a particular challenge in food processing industries. The complexity of biofilm formation requires a fundamental understanding on the involved molecular mechanisms, which may then lead to efficient prevention strategies. In the present study, biogenic amine producing bacteria, i.e., Lentilactobacillus parabuchneri DSM 5987 strain isolated from cheese were studied in respect with biofilm formation, which is of substantial relevance given their contribution to the presence of histamine in dairy products. While scanning electron microscopy was used to investigate biofilm adhesion at stainless steel surfaces, in situ infrared attenuated total reflection spectroscopy (IR-ATR) using a custom flow-through assembly was used for real-time and non-destructive observations of biofilm formation during a period of several days. The spectral window of 1700-600 cm-1 provides access to vibrational signatures characteristic for identifying and tracking L. parabuchneri biofilm formation and maturation. Especially, the amide I and II bands, lactic acid produced as the biofilm matures, and a pronounced increase of bands characteristic for extracellular polymeric substances (EPS) provide molecular insight into biofilm formation, maturation, and changes in biofilm architecture. Finally, multivariate data evaluation strategies were applied facilitating the unambiguous classification of the observed biofilm changes via IR spectroscopic data.
Collapse
Affiliation(s)
- Diellza Bajrami
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert Einstein-Allee 11, 89081, Ulm, Germany
| | - Stephan Fischer
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Albert Einstein-Allee 11, 89081, Ulm, Germany
| | - Holger Barth
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Albert Einstein-Allee 11, 89081, Ulm, Germany
| | - María A Sarquis
- Dairy Research Institute (IPLA-CSIC), Paseo Rio Linares s/n, 33300, Villaviciosa, Spain
| | - Victor M Ladero
- Dairy Research Institute (IPLA-CSIC), Paseo Rio Linares s/n, 33300, Villaviciosa, Spain
| | - María Fernández
- Dairy Research Institute (IPLA-CSIC), Paseo Rio Linares s/n, 33300, Villaviciosa, Spain
| | - Maria C Sportelli
- Chemistry Department, University of Bari ''Aldo Moro", V. Orabona, 4, 70126, Bari, Italy
| | - Nicola Cioffi
- Chemistry Department, University of Bari ''Aldo Moro", V. Orabona, 4, 70126, Bari, Italy
| | - Christine Kranz
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert Einstein-Allee 11, 89081, Ulm, Germany
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
8
|
Pouget C, Dunyach-Remy C, Magnan C, Pantel A, Sotto A, Lavigne JP. Polymicrobial Biofilm Organization of Staphylococcus aureus and Pseudomonas aeruginosa in a Chronic Wound Environment. Int J Mol Sci 2022; 23:ijms231810761. [PMID: 36142675 PMCID: PMC9504628 DOI: 10.3390/ijms231810761] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/31/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Biofilm on the skin surface of chronic wounds is an important step that involves difficulties in wound healing. The polymicrobial nature inside this pathogenic biofilm is key to understanding the chronicity of the lesion. Few in vitro models have been developed to study bacterial interactions inside this chronic wound. We evaluated the biofilm formation and the evolution of bacteria released from this biofilm on the two main bacteria isolated in this condition, Staphylococcus aureus and Pseudomonas aeruginosa, using a dynamic system (BioFlux™ 200) and a chronic wound-like medium (CWM) that mimics the chronic wound environment. We observed that all species constituted a faster biofilm in the CWM compared to a traditional culture medium (p < 0.01). The percentages of biofilm formation were significantly higher in the mixed biofilm compared to those determined for the bacterial species alone (p < 0.01). Biofilm organization was a non-random structure where S. aureus aggregates were located close to the wound surface, whereas P. aeruginosa was located deeper in the wound bed. Planktonic biofilm-detached bacteria showed decreased growth, overexpression of genes encoding biofilm formation, and an increase in the mature biofilm biomass formed. Our data confirmed the impact of the chronic wound environment on biofilm formation and on bacterial lifecycle inside the biofilm.
Collapse
Affiliation(s)
- Cassandra Pouget
- Bacterial Virulence and Chronic Infections, INSERM U1047, Department of Microbiology and Hospital Hygiene, CHU Nîmes, University Montpellier, CEDEX 09, 30029 Nîmes, France
| | - Catherine Dunyach-Remy
- Bacterial Virulence and Chronic Infections, INSERM U1047, Department of Microbiology and Hospital Hygiene, CHU Nîmes, University Montpellier, CEDEX 09, 30029 Nîmes, France
| | - Chloé Magnan
- Bacterial Virulence and Chronic Infections, INSERM U1047, Department of Microbiology and Hospital Hygiene, CHU Nîmes, University Montpellier, CEDEX 09, 30029 Nîmes, France
| | - Alix Pantel
- Bacterial Virulence and Chronic Infections, INSERM U1047, Department of Microbiology and Hospital Hygiene, CHU Nîmes, University Montpellier, CEDEX 09, 30029 Nîmes, France
| | - Albert Sotto
- Bacterial Virulence and Chronic Infections, INSERM U1047, Department of Infectious Diseases, CHU Nîmes, University Montpellier, CEDEX 09, 30029 Nîmes, France
| | - Jean-Philippe Lavigne
- Bacterial Virulence and Chronic Infections, INSERM U1047, Department of Microbiology and Hospital Hygiene, CHU Nîmes, University Montpellier, CEDEX 09, 30029 Nîmes, France
- Correspondence: ; Tel.: +33-466-683-202
| |
Collapse
|
9
|
Schwartzman JA, Ebrahimi A, Chadwick G, Sato Y, Roller BRK, Orphan VJ, Cordero OX. Bacterial growth in multicellular aggregates leads to the emergence of complex life cycles. Curr Biol 2022; 32:3059-3069.e7. [PMID: 35777363 PMCID: PMC9496226 DOI: 10.1016/j.cub.2022.06.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/03/2022] [Accepted: 06/07/2022] [Indexed: 01/12/2023]
Abstract
Facultative multicellular behaviors expand the metabolic capacity and physiological resilience of bacteria. Despite their ubiquity in nature, we lack an understanding of how these behaviors emerge from cellular-scale phenomena. Here, we show how the coupling between growth and resource gradient formation leads to the emergence of multicellular lifecycles in a marine bacterium. Under otherwise carbon-limited growth conditions, Vibrio splendidus 12B01 forms clonal multicellular groups to collectively harvest carbon from soluble polymers of the brown-algal polysaccharide alginate. As they grow, groups phenotypically differentiate into two spatially distinct sub-populations: a static "shell" surrounding a motile, carbon-storing "core." Differentiation of these two sub-populations coincides with the formation of a gradient in nitrogen-source availability within clusters. Additionally, we find that populations of cells containing a high proportion of carbon-storing individuals propagate and form new clusters more readily on alginate than do populations with few carbon-storing cells. Together, these results suggest that local metabolic activity and differential partitioning of resources leads to the emergence of reproductive cycles in a facultatively multicellular bacterium.
Collapse
Affiliation(s)
- Julia A Schwartzman
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Ali Ebrahimi
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Grayson Chadwick
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yuya Sato
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Benjamin R K Roller
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Center for Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, Vienna 1030, Austria; Department of Environmental Systems Sciences, ETH Zürich, Universitätsstrasse 16, Zürich 8092, Switzerland; Department of Environmental Microbiology, Eawag, Ueberlandstrasse 133, Dübendorf 8600, Switzerland
| | - Victoria J Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Otto X Cordero
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
10
|
Complete Genome Sequence of Aggregatibacter actinomycetemcomitans Strain CU1000N. Microbiol Resour Announc 2022; 11:e0104221. [PMID: 35254109 PMCID: PMC9022580 DOI: 10.1128/mra.01042-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we report the complete genome sequence of Aggregatibacter actinomycetemcomitans strain CU1000N. This rough strain is used extensively as a model organism to characterize localized aggressive periodontitis pathogenesis, the basic biology and oral cavity colonization of A. actinomycetemcomitans, and its interactions with other members of the oral microbiome.
Collapse
|
11
|
Danforth DR, Melloni M, Tristano J, Mintz KP. Contribution of adhesion proteins to Aggregatibacter actinomycetemcomitans biofilm formation. Mol Oral Microbiol 2021; 36:243-253. [PMID: 34085776 DOI: 10.1111/omi.12346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/19/2021] [Accepted: 05/27/2021] [Indexed: 01/08/2023]
Abstract
Aggregatibacter actinomycetemcomitans is a Gram-negative bacterium associated with periodontal disease and multiple disseminated extra-oral infections. Colonization of these distinct physiological niches is contingent on the expression of specific surface proteins during the initiation of developing biofilms. In this investigation, we studied fimbriae and three well-characterized nonfimbrial surface proteins (EmaA, Aae, and ApiA/Omp100) for their contribution to biofilm formation. Mutations of these proteins in multiple strains covering four different serotypes demonstrated variance in biofilm development that was strain dependent but independent of serotype. In a fimbriated background, only inactivation of emaA impacted biofilm mass. In contrast, inactivation of emaA and/or aae affected biofilm formation in nonfimbriated A. actinomycetemcomitans strains, whereas inactivation of apiA/omp100 had little effect on biofilm formation. When these genes were expressed individually in Escherichia coli, all transformed strains demonstrated an increase in biofilm mass compared to the parent strain. The strain expressing emaA generated the greatest mass of biofilm, whereas the strains expressing either aae or apiA/omp100 were greatly reduced and similar in mass. These data suggest a redundancy in function of these nonfimbrial adhesins, which is dependent on the genetic background of the strain investigated.
Collapse
Affiliation(s)
- David R Danforth
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA
| | - Marcella Melloni
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA
| | - Jake Tristano
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA
| | - Keith P Mintz
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
12
|
Lahiri D, Nag M, Banerjee R, Mukherjee D, Garai S, Sarkar T, Dey A, Sheikh HI, Pathak SK, Edinur HA, Pati S, Ray RR. Amylases: Biofilm Inducer or Biofilm Inhibitor? Front Cell Infect Microbiol 2021; 11:660048. [PMID: 33987107 PMCID: PMC8112260 DOI: 10.3389/fcimb.2021.660048] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/12/2021] [Indexed: 12/30/2022] Open
Abstract
Biofilm is a syntrophic association of sessile groups of microbial cells that adhere to biotic and abiotic surfaces with the help of pili and extracellular polymeric substances (EPS). EPSs also prevent penetration of antimicrobials/antibiotics into the sessile groups of cells. Hence, methods and agents to avoid or remove biofilms are urgently needed. Enzymes play important roles in the removal of biofilm in natural environments and may be promising agents for this purpose. As the major component of the EPS is polysaccharide, amylase has inhibited EPS by preventing the adherence of the microbial cells, thus making amylase a suitable antimicrobial agent. On the other hand, salivary amylase binds to amylase-binding protein of plaque-forming Streptococci and initiates the formation of biofilm. This review investigates the contradictory actions and microbe-associated genes of amylases, with emphasis on their structural and functional characteristics.
Collapse
Affiliation(s)
- Dibyajit Lahiri
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Moupriya Nag
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Ritwik Banerjee
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Dipro Mukherjee
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Sayantani Garai
- Department of Biotechnology, University of Engineering & Management, Kolkata, India
| | - Tanmay Sarkar
- Department of Food Technology and Bio-Chemical Engineering, Jadavpur University, Kolkata, India.,Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, India
| | - Ankita Dey
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, India
| | - Hassan I Sheikh
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Sushil Kumar Pathak
- Department of Bioscience and Bioinformatics, Khallikote University, Berhampur, India
| | | | - Siddhartha Pati
- Centre of Excellence, Khallikote University, Berhampur, India.,Research Division, Association for Biodiversity Conservation and Research (ABC), Balasore, India
| | - Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, India
| |
Collapse
|
13
|
Attenuation of Aggregatibacter actinomycetemcomitans virulence using curcumin-decorated nanophytosomes-mediated photo-sonoantimicrobial chemotherapy. Sci Rep 2021; 11:6012. [PMID: 33727630 PMCID: PMC7966776 DOI: 10.1038/s41598-021-85437-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
This study aimed to focus on the simultaneous use of antimicrobial photodynamic therapy (aPDT) and sonodynamic antimicrobial chemotherapy (SACT), which is called photo-sonodynamic antimicrobial chemotherapy (PSACT) to attenuate the virulence of Aggregatibacter actinomycetemcomitans. Following the synthesis of Curcumin-decorated nanophytosomes (Cur-NPhs) as a novel photo-sonosensitizer, its particle size, polydispersity, ζ-potential surface morphology, physical stability, drug release, and entrapment efficiency were determined. In the Cur-NPhs-PSACT, the antimicrobial activities of Cur-NPhs against A. actinomycetemcomitans were investigated using cell viability, biofilm killing/degradation, metabolic activity, expression of quorum-sensing-associated qseB and qseC genes, and biofilm-associated rcpA gene under blue laser irradiation plus ultrasonic waves. Characterization tests showed the presence of a sphere-shaped vesicle and the self-closed structure of Cur-NPhs, resulting in a high drug-loading content and encapsulation efficiency. However, the antimicrobial effect of Cur-NPhs-PSACT was dose-dependent, PSACT using the high concentrations of Cur-NPhs (50 × 10-4 g/L) showed significant reductions (P < 0.05) in cell viability (13.6 log10 CFU/mL), biofilm killing/degradation (65%), metabolic activity (89.6%,), and mRNA levels of virulence determinant genes (qseB; 9.8-fold, qseC; 10.2-fold, and recA; 10.2-fold). This study concludes that the Cur-NPhs-PSACT had antimicrobial activities against A. actinomycetemcomitans by downregulating the expression of virulence genes, and may attenuate this bacterium that decreases periodontal disease severity in patients.
Collapse
|
14
|
Effectiveness of bacterial biofilms photodynamic inactivation mediated by curcumin extract, nanodoxycycline and laser diode. BIOMEDICAL PHOTONICS 2021. [DOI: 10.24931/2413-9432-2020-9-4-4-14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Biofilms have higher levels of antibiotic resistance compared to bacteria, so the alternatives are needed as therapy for diseases caused by biofilm infections. Photodynamic Therapy (PDT) has the advantage of being a safe alternative that involves molecular-level photochemical reactions. The use of different types of exogenous photosensitizers (PS) was done to compare their effectiveness. Turmeric extract containing curcumin has good effectiveness in PDT, whereas nanodoxycycline as an antibiotic has a fairly broad absorption spectrum and is effective as PS. The purpose of this study is to compare the effectiveness of photodynamic therapy on infections by Aggregatibacter actinomycetemcomitans causing periodontitis using exogenous organic and non-organic photosensitisers (PS). The A. actinomycetemcomitans biofilm had been grown on 96-well microplate for 72 hours incubation time. The samples were divided into three groups, treated with Laser diode, Laser + Turmeric Extract 0.5%, and Laser + Nanodoxycycline 0.1%. Treatment was done with a variety of exposure times: 30, 60, 90, 120, and 150 seconds. The data were analyzed using ANOVA test. The results of data analysis showed that diode laser irradiation treatment with endogenous porphyrin, diode laser with Curcumin and diode laser with nanodoxycycline produced significantly different biofilm reductions. Treatment with diode laser irradiation at various energy densities (4.15, 8.28, 12.44, 16.59, and 20.73 J/cm2) showed no significant difference in reducing bacterial biofilm. The treatment with diode and curcumin, and the treatment with diode laser irradiation and nanodoxycyclin showed a significant difference. Diode laser irradiation of 20.73 J/cm2 with irradiation time of 150 seconds resulted in the greatest reduction of biofilm 14.94%, diode laser irradiation + Curcumin 47.82%, and diode laser irradiation + nanodoxycyclin 53.76%. Therefore, PDT using a diode laser combined with exogenous PS extract of curcumin and nanodoxycycline is more effective to reduce bacterial biofilms.
Collapse
|
15
|
Abstract
The etiopathogenesis of severe periodontitis includes herpesvirus-bacteria coinfection. This article evaluates the pathogenicity of herpesviruses (cytomegalovirus and Epstein-Barr virus) and periodontopathic bacteria (Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis) and coinfection of these infectious agents in the initiation and progression of periodontitis. Cytomegalovirus and A. actinomycetemcomitans/P. gingivalis exercise synergistic pathogenicity in the development of localized ("aggressive") juvenile periodontitis. Cytomegalovirus and Epstein-Barr virus are associated with P. gingivalis in adult types of periodontitis. Periodontal herpesviruses that enter the general circulation may also contribute to disease development in various organ systems. A 2-way interaction is likely to occur between periodontal herpesviruses and periodontopathic bacteria, with herpesviruses promoting bacterial upgrowth, and bacterial factors reactivating latent herpesviruses. Bacterial-induced gingivitis may facilitate herpesvirus colonization of the periodontium, and herpesvirus infections may impede the antibacterial host defense and alter periodontal cells to predispose for bacterial adherence and invasion. Herpesvirus-bacteria synergistic interactions, are likely to comprise an important pathogenic determinant of aggressive periodontitis. However, mechanistic investigations into the molecular and cellular interaction between periodontal herpesviruses and bacteria are still scarce. Herpesvirus-bacteria coinfection studies may yield significant new discoveries of pathogenic determinants, and drug and vaccine targets to minimize or prevent periodontitis and periodontitis-related systemic diseases.
Collapse
Affiliation(s)
- Casey Chen
- Division of Periodontology, Diagnostic Sciences & Dental Hygiene, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| | - Jørgen Slots
- Division of Periodontology, Diagnostic Sciences & Dental Hygiene, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
16
|
Sztukowska MN, Roky M, Demuth DR. Peptide and non-peptide mimetics as potential therapeutics targeting oral bacteria and oral biofilms. Mol Oral Microbiol 2019; 34:169-182. [PMID: 31389653 PMCID: PMC6772003 DOI: 10.1111/omi.12267] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/16/2019] [Accepted: 07/25/2019] [Indexed: 12/23/2022]
Abstract
The development of the oral biofilm requires a complex series of interactions between host tissues and the colonizing bacteria as well as numerous interspecies interactions between the organisms themselves. Disruption of normal host-microbe homoeostasis in the oral cavity can lead to a dysbiotic microbial community that contributes to caries or periodontal disease. A variety of approaches have been pursued to develop novel potential therapeutics that are active against the oral biofilm and/or target specific oral bacteria. The structure and function of naturally occurring antimicrobial peptides from oral tissues and secretions as well as external sources such as frog skin secretions have been exploited to develop numerous peptide mimetics and small molecule peptidomimetics that show improved antimicrobial activity, increased stability and other desirable characteristics relative to the parent peptides. In addition, a rational and minimalist approach has been developed to design small artificial peptides with amphipathic α-helical properties that exhibit potent antibacterial activity. Furthermore, with an increased understanding of the molecular mechanisms of beneficial and/or antagonistic interspecies interactions that contribute to the formation of the oral biofilm, new potential targets for therapeutic intervention have been identified and both peptide-based and small molecule mimetics have been developed that target these key components. Many of these mimetics have shown promising results in in vitro and pre-clinical testing and the initial clinical evaluation of several novel compounds has demonstrated their utility in humans.
Collapse
Affiliation(s)
- Maryta N. Sztukowska
- Department of Oral Immunology and Infectious DiseasesUniversity of Louisville School of DentistryLouisvilleKentucky
| | - Mohammad Roky
- Department of Oral Immunology and Infectious DiseasesUniversity of Louisville School of DentistryLouisvilleKentucky
| | - Donald R. Demuth
- Department of Oral Immunology and Infectious DiseasesUniversity of Louisville School of DentistryLouisvilleKentucky
| |
Collapse
|
17
|
Maquera Huacho PM, Rodriguez Herrero E, Verspecht T, Pauwels M, Marcantonio E, Palomari Spolidorio DM, Teughels W. Terpinen-4-ol and carvacrol affect multi-species biofilm composition. BIOFOULING 2019; 35:561-572. [PMID: 31282200 DOI: 10.1080/08927014.2019.1630386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/04/2019] [Accepted: 06/07/2019] [Indexed: 06/09/2023]
Abstract
The aim of this study was to investigate the cytotoxic activity and inhibitory effect of terpinen-4-ol (T4ol) and carvacrol against single- and multi-species biofilms. The toxicity of each compound was tested on oral keratinocytes and evaluated by XTT assay. Inhibition and eradication of single-species biofilms were analyzed by crystal violet assay and the effect on multi-species biofilm composition was evaluated by qPCR. T4ol and carvacrol did not affect the epithelial cell viability, in contrast to chlorhexidine, which showed a high cytotoxic effect. Inhibition and eradication of single-species biofilms treated with T4ol and carvacrol were observed. The same inhibitory effect was observed for multi-species biofilms, especially on periodontal pathogens. In conclusion, specific concentrations of T4ol and carvacrol without toxicity towards the epithelial cells reduced the numbers of periodontal pathogens in single- and multi-species biofilms.
Collapse
Affiliation(s)
| | - Esteban Rodriguez Herrero
- Department of Oral Health Sciences, University of Leuven & Dentistry University Hospitals Leuven , Leuven , Belgium
| | - Tim Verspecht
- Department of Oral Health Sciences, University of Leuven & Dentistry University Hospitals Leuven , Leuven , Belgium
| | - Martine Pauwels
- Department of Oral Health Sciences, University of Leuven & Dentistry University Hospitals Leuven , Leuven , Belgium
| | - Elcio Marcantonio
- Department of Oral Diagnosis and Surgery, School of Dentistry, São Paulo State University (Unesp) , Araraquara , Brazil
| | | | - Wim Teughels
- Department of Oral Health Sciences, University of Leuven & Dentistry University Hospitals Leuven , Leuven , Belgium
| |
Collapse
|
18
|
Fine DH, Patil AG, Velusamy SK. Aggregatibacter actinomycetemcomitans ( Aa) Under the Radar: Myths and Misunderstandings of Aa and Its Role in Aggressive Periodontitis. Front Immunol 2019; 10:728. [PMID: 31040843 PMCID: PMC6476972 DOI: 10.3389/fimmu.2019.00728] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/19/2019] [Indexed: 11/23/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans (Aa) is a low-abundance Gram-negative oral pathobiont that is highly associated with a silent but aggressive orphan disease that results in periodontitis and tooth loss in adolescents of African heritage. For the most part Aa conducts its business by utilizing strategies allowing it to conceal itself below the radar of the host mucosal immune defense system. A great deal of misinformation has been conveyed with respect to Aa biology in health and disease. The purpose of this review is to present misconceptions about Aa and the strategies that it uses to colonize, survive, and evade the host. In the process Aa manages to undermine host mucosal defenses and contribute to disease initiation. This review will present clinical observational, molecular, and interventional studies that illustrate genetic, phenotypic, and biogeographical tactics that have been recently clarified and demonstrate how Aa survives and suppresses host mucosal defenses to take part in disease pathogenesis. At one point in time Aa was considered to be the causative agent of Localized Aggressive Periodontitis. Currently, it is most accurate to look at Aa as a community activist and necessary partner of a pathogenic consortium that suppresses the initial host response so as to encourage overgrowth of its partners. The data for Aa's activist role stems from molecular genetic studies complemented by experimental animal investigations that demonstrate how Aa establishes a habitat (housing), nutritional sustenance in that habitat (food), and biogeographical mobilization and/or relocation from its initial habitat (transportation). In this manner Aa can transfer to a protected but vulnerable domain (pocket or sulcus) where its community activism is most useful. Aa's “strategy” includes obtaining housing, food, and transportation at no cost to its partners challenging the economic theory that “there ain't no such thing as a free lunch.” This “strategy” illustrates how co-evolution can promote Aa's survival, on one hand, and overgrowth of community members, on the other, which can result in local host dysbiosis and susceptibility to infection.
Collapse
Affiliation(s)
- Daniel H Fine
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, United States
| | - Amey G Patil
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, United States
| | - Senthil K Velusamy
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, United States
| |
Collapse
|
19
|
Alyami HM, Finoti LS, Teixeira HS, Aljefri A, Kinane DF, Benakanakere MR. Role of NOD1/NOD2 receptors in Fusobacterium nucleatum mediated NETosis. Microb Pathog 2019; 131:53-64. [PMID: 30940608 DOI: 10.1016/j.micpath.2019.03.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 12/23/2022]
Abstract
Polymorphonuclear neutrophils (PMNs) are indispensable in fighting infectious microbes by adopting various antimicrobial strategies including phagocytosis and neutrophil extracellular traps (NETs). Although the role and importance of PMNs in periodontal disease are well established, the specific molecular mechanisms involved in NET formation are yet to be characterized. In the present study, we sought to determine the role of periodontal pathogen on NET formation by utilizing Fusobacterium nucleatum. Our data demonstrates that F. nucleatum activates neutrophils and induces robust NETosis in a time-dependent manner via the upregulation of the Nucleotide oligomerization domain 1 (NOD1) and NOD2 receptors. Furthermore, CRISPR/Cas9 knockout of HL-60 cells and the use of ligands/inhibitors confirmed the involvement of NOD1 and NOD2 receptors in F. nucleatum-mediated NET formation. When treated with NOD1 and NOD2 inhibitors, we observed a significant downregulation of peptidylarginine deiminase 4 (PAD4) activity. In addition, neutrophils showed a significant increase and decrease of myeloperoxidase (MPO) and neutrophil elastase (NE) when treated with NOD1/NOD2 ligands and inhibitors, respectively. Taken together, CRISPR/Cas9 knockout of NOD1/NOD2 HL-60 cells and inhibitors of NOD signaling confirmed the role of NLRs in F. nucleatum-mediated NETosis. Our data demonstrates an important pathway linking NOD1 and NOD2 to NETosis by F. nucleatum, a prominent microbe in periodontal biofilms. This is the first study to elucidate the role of NOD-like receptors in NETosis and their downstream signaling network.
Collapse
Affiliation(s)
- Hanadi M Alyami
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA; Dentistry Department, King Fahad Medical City, P.O. Box. 59046, Riyadh, 11525, Saudi Arabia
| | - Livia S Finoti
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hellen S Teixeira
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Abdulelah Aljefri
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Denis F Kinane
- Division of Periodontology, School of Dental Medicine, University of Geneva Faculty of Medicine, Geneva, Switzerland
| | - Manjunatha R Benakanakere
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
20
|
Danforth DR, Tang-Siegel G, Ruiz T, Mintz KP. A Nonfimbrial Adhesin of Aggregatibacter actinomycetemcomitans Mediates Biofilm Biogenesis. Infect Immun 2019; 87:e00704-18. [PMID: 30297525 PMCID: PMC6300624 DOI: 10.1128/iai.00704-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 10/03/2018] [Indexed: 11/20/2022] Open
Abstract
Periodontitis is an inflammatory disease caused by polymicrobial biofilms. The periodontal pathogen Aggregatibacter actinomycetemcomitans displays two proteinaceous surface structures, the fimbriae and the nonfimbrial extracellular matrix binding protein A (EmaA), as observed by electron microscopy. Fimbriae participate in biofilm biogenesis and the EmaA adhesins mediate collagen binding. However, in the absence of fimbriae, A. actinomycetemcomitans still retains the potential to form robust biofilms, suggesting that other surface macromolecules participate in biofilm development. Here, isogenic mutant strains lacking EmaA structures, but still expressing fimbriae, were observed to have reduced biofilm potential. In strains lacking both EmaA and fimbriae, biofilm mass was reduced by 80%. EmaA enhanced biofilm formation in different strains, independent of the fimbriation state or serotype. Confocal microscopy revealed differences in cell density within microcolonies between the EmaA positive and mutant strains. EmaA-mediated biofilm formation was found to be independent of the glycosylation state and the precise three-dimensional conformation of the protein, and thus this function is uncorrelated with collagen binding activity. The data suggest that EmaA is a multifunctional adhesin that utilizes different mechanisms to enhance bacterial binding to collagen and to enhance biofilm formation, both of which are important for A. actinomycetemcomitans colonization and subsequent infection.
Collapse
Affiliation(s)
- David R Danforth
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA
| | - Gaoyan Tang-Siegel
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont, USA
| | - Teresa Ruiz
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont, USA
| | - Keith P Mintz
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
21
|
Ahlstrand T, Torittu A, Elovaara H, Välimaa H, Pöllänen MT, Kasvandik S, Högbom M, Ihalin R. Interactions between the Aggregatibacter actinomycetemcomitans secretin HofQ and host cytokines indicate a link between natural competence and interleukin-8 uptake. Virulence 2018; 9:1205-1223. [PMID: 30088437 PMCID: PMC6086316 DOI: 10.1080/21505594.2018.1499378] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Naturally competent bacteria acquire DNA from their surroundings to survive in nutrient-poor environments and incorporate DNA into their genomes as new genes for improved survival. The secretin HofQ from the oral pathogen Aggregatibacter actinomycetemcomitans has been associated with DNA uptake. Cytokine sequestering is a potential virulence mechanism in various bacteria and may modulate both host defense and bacterial physiology. The objective of this study was to elucidate a possible connection between natural competence and cytokine uptake in A. actinomycetemcomitans. The extramembranous domain of HofQ (emHofQ) was shown to interact with various cytokines, of which IL-8 exhibited the strongest interaction. The dissociation constant between emHofQ and IL-8 was 43 nM in static settings and 2.4 μM in dynamic settings. The moderate binding affinity is consistent with the hypothesis that emHofQ recognizes cytokines before transporting them into the cells. The interaction site was identified via crosslinking and mutational analysis. By structural comparison, relateda type I KH domain with a similar interaction site was detected in the Neisseria meningitidis secretin PilQ, which has been shown to participate in IL-8 uptake. Deletion of hofQ from the A. actinomycetemcomitans genome decreased the overall biofilm formation of this organism, abolished the response to cytokines, i.e., decreased eDNA levels in the presence of cytokines, and increased the susceptibility of the biofilm to tested β-lactams. Moreover, we showed that recombinant IL-8 interacted with DNA. These results can be used in further studies on the specific role of cytokine uptake in bacterial virulence without interfering with natural-competence-related DNA uptake.
Collapse
Affiliation(s)
- Tuuli Ahlstrand
- a Department of Biochemistry , University of Turku , Turku , Finland
| | - Annamari Torittu
- a Department of Biochemistry , University of Turku , Turku , Finland
| | - Heli Elovaara
- a Department of Biochemistry , University of Turku , Turku , Finland
| | - Hannamari Välimaa
- b Department of Virology , University of Helsinki , Helsinki , Finland.,c Department of Oral and Maxillofacial Surgery , Helsinki University Hospital , Helsinki , Finland
| | - Marja T Pöllänen
- d Institute of Dentistry , University of Turku , Turku , Finland
| | - Sergo Kasvandik
- e Institute of Technology , University of Tartu , Tartu , Estonia
| | - Martin Högbom
- f Department of Biochemistry and Biophysics , Stockholm University , Stockholm , Sweden
| | - Riikka Ihalin
- a Department of Biochemistry , University of Turku , Turku , Finland
| |
Collapse
|
22
|
Bao K, Bostanci N, Thurnheer T, Grossmann J, Wolski WE, Thay B, Belibasakis GN, Oscarsson J. Aggregatibacter actinomycetemcomitans H-NS promotes biofilm formation and alters protein dynamics of other species within a polymicrobial oral biofilm. NPJ Biofilms Microbiomes 2018; 4:12. [PMID: 29844920 PMCID: PMC5964231 DOI: 10.1038/s41522-018-0055-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/03/2018] [Accepted: 04/19/2018] [Indexed: 12/12/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans is a Gram-negative organism, strongly associated with aggressive forms of periodontitis. An important virulence property of A. actinomycetemcomitans is its ability to form tenacious biofilms that can attach to abiotic as well as biotic surfaces. The histone-like (H-NS) family of nucleoid-structuring proteins act as transcriptional silencers in many Gram-negative bacteria. To evaluate the role of H-NS in A. actinomycetemcomitans, hns mutant derivatives of serotype a strain D7S were generated. Characteristics of the hns mutant phenotype included shorter and fewer pili, and substantially lower monospecies biofilm formation relative to the wild type. Furthermore, the D7S hns mutant exhibited significantly reduced growth within a seven-species oral biofilm model. However, no apparent difference was observed regarding the numbers and proportions of the remaining six species regardless of being co-cultivated with D7S hns or its parental strain. Proteomics analysis of the strains grown in monocultures confirmed the role of H-NS as a repressor of gene expression in A. actinomycetemcomitans. Interestingly, proteomics analysis of the multispecies biofilms indicated that the A. actinomycetemcomitans wild type and hns mutant imposed different regulatory effects on the pattern of protein expression in the other species, i.e., mainly Streptococcus spp., Fusobacterium nucleatum, and Veillonella dispar. Gene ontology analysis revealed that a large portion of the differentially regulated proteins was related to translational activity. Taken together, our data suggest that, apart from being a negative regulator of protein expression in A. actinomycetemcomitans, H-NS promotes biofilm formation and may be an important factor for survival of this species within a multispecies biofilm. A member of a specific group of gene-regulating proteins promotes biofilm formation by a bacterium associated with aggressive forms of gum disease. Forming biofilms helps the bacterium to cause persistent infections. Researchers at Karolinska Institutet and Umeå University (Sweden), and University of Zürich (Switzerland), led by Jan Oscarsson at Umeå University, investigated the role of the “histone-like” protein H-NS in Aggregatibacter actinomycetemcomitans infections. These proteins are known to suppress the activity of specific genes in many bacteria, a property confirmed in this research. By studying mutant bacterial strains deficient in H-NS protein, the researchers demonstrated that this protein promotes the formation of biofilms by the bacteria. The results suggest that H-NS plays a significant role in allowing Aggregatibacter actinomycetemcomitans to thrive in biofilms containing mixed populations of bacteria. This effect appears to involve activating production of hair-like appendages called pili on the bacterial surface.
Collapse
Affiliation(s)
- Kai Bao
- 1Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Huddinge, Solnavägen, Sweden.,2Division of Oral Microbiology and Immunology, Center of Dental Medicine, University of Zürich, Zürich, Switzerland
| | - Nagihan Bostanci
- 1Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Huddinge, Solnavägen, Sweden
| | - Thomas Thurnheer
- 2Division of Oral Microbiology and Immunology, Center of Dental Medicine, University of Zürich, Zürich, Switzerland
| | - Jonas Grossmann
- 3Functional Genomics Center, ETH Zürich and University of Zürich, Zürich, Switzerland
| | - Witold E Wolski
- 3Functional Genomics Center, ETH Zürich and University of Zürich, Zürich, Switzerland
| | - Bernard Thay
- 4Oral Microbiology, Department of Odontology, Umeå University, Umeå, Sweden
| | - Georgios N Belibasakis
- 1Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Huddinge, Solnavägen, Sweden
| | - Jan Oscarsson
- 4Oral Microbiology, Department of Odontology, Umeå University, Umeå, Sweden
| |
Collapse
|
23
|
Abstract
One common feature of biofilm development is the active dispersal of cells from the mature biofilm, which completes the biofilm life cycle and allows for the subsequent colonization of new habitats. Dispersal is likely to be critical for species survival and appears to be a precisely regulated process that involves a complex network of genes and signal transduction systems. Sophisticated molecular mechanisms control the transition of sessile biofilm cells into dispersal cells and their coordinated detachment and release in the bulk liquid. Dispersal cells appear to be specialized and exhibit a unique phenotype different from biofilm or planktonic bacteria. Further, the dispersal population is characterized by a high level of heterogeneity, reminiscent of, but distinct from, that in the biofilm, which could potentially allow for improved colonization under various environmental conditions. Here we review recent advances in characterizing the molecular mechanisms that regulate biofilm dispersal events and the impact of dispersal in a broader ecological context. Several strategies that exploit the mechanisms controlling biofilm dispersal to develop as applications for biofilm control are also presented.
Collapse
|
24
|
Baslé A, Hewitt L, Koh A, Lamb HK, Thompson P, Burgess JG, Hall MJ, Hawkins AR, Murray H, Lewis RJ. Crystal structure of NucB, a biofilm-degrading endonuclease. Nucleic Acids Res 2018; 46:473-484. [PMID: 29165717 PMCID: PMC5758888 DOI: 10.1093/nar/gkx1170] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/13/2017] [Indexed: 01/23/2023] Open
Abstract
Bacterial biofilms are a complex architecture of cells that grow on moist interfaces, and are held together by a molecular glue of extracellular proteins, sugars and nucleic acids. Biofilms are particularly problematic in human healthcare as they can coat medical implants and are thus a potential source of disease. The enzymatic dispersal of biofilms is increasingly being developed as a new strategy to treat this problem. Here, we have characterized NucB, a biofilm-dispersing nuclease from a marine strain of Bacillus licheniformis, and present its crystal structure together with the biochemistry and a mutational analysis required to confirm its active site. Taken together, these data support the categorization of NucB into a unique subfamily of the ββα metal-dependent non-specific endonucleases. Understanding the structure and function of NucB will facilitate its future development into an anti-biofilm therapeutic agent.
Collapse
Affiliation(s)
- Arnaud Baslé
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Lorraine Hewitt
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Alan Koh
- Centre for Bacterial Cell Biology, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4AX, UK
| | - Heather K Lamb
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Paul Thompson
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - J Grant Burgess
- Marine Biology, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Michael J Hall
- Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Alastair R Hawkins
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Heath Murray
- Centre for Bacterial Cell Biology, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4AX, UK
| | - Richard J Lewis
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK,To whom correspondence should be addressed. Tel: +44 191 208 5482;
| |
Collapse
|
25
|
Nepomuceno NC, Barbosa MA, Bonan RF, Oliveira JE, Sampaio FC, Medeiros ES. Antimicrobial activity of PLA/PEG nanofibers containing terpinen-4-ol against Aggregatibacter actinomycetemcomitans. J Appl Polym Sci 2017. [DOI: 10.1002/app.45782] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Neymara C. Nepomuceno
- Materials and Biosystems Laboratory (LAMAB), Department of Materials Science and Engineering (DEMAT); Federal University of Paraíba (UFPB); João Pessoa PB 58.051-900 Brazil
| | - Mariângela A. Barbosa
- Post-Graduation Program in Dentistry (PPGO/CCS/UFPB); Federal University of Paraíba (UFPB); João Pessoa PB C58.051-900 Brazil
- Health Sciences Center (CCS); Federal University of Paraíba (UFPB); João Pessoa PB C58.051-900 Brazil
| | - Roberta F. Bonan
- Health Sciences Center (CCS); Federal University of Paraíba (UFPB); João Pessoa PB C58.051-900 Brazil
| | - Juliano E. Oliveira
- Department of Materials Engineering (DEMat); Federal University of Lavras (UFLA); Lavras-MG CEP 37200-000 Brazil
| | - Fábio C. Sampaio
- Post-Graduation Program in Dentistry (PPGO/CCS/UFPB); Federal University of Paraíba (UFPB); João Pessoa PB C58.051-900 Brazil
- Social and Clinical Dentistry Department (DCOS); Paraiba Federal University (UFPB), Bucal Biology Laboratory-LABIAL; João Pessoa PB 58.051-900 Brazil
| | - Eliton S. Medeiros
- Materials and Biosystems Laboratory (LAMAB), Department of Materials Science and Engineering (DEMAT); Federal University of Paraíba (UFPB); João Pessoa PB 58.051-900 Brazil
- Post-Graduation Program in Dentistry (PPGO/CCS/UFPB); Federal University of Paraíba (UFPB); João Pessoa PB C58.051-900 Brazil
| |
Collapse
|
26
|
Bridier A, Piard JC, Pandin C, Labarthe S, Dubois-Brissonnet F, Briandet R. Spatial Organization Plasticity as an Adaptive Driver of Surface Microbial Communities. Front Microbiol 2017; 8:1364. [PMID: 28775718 PMCID: PMC5517491 DOI: 10.3389/fmicb.2017.01364] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/05/2017] [Indexed: 01/08/2023] Open
Abstract
Biofilms are dynamic habitats which constantly evolve in response to environmental fluctuations and thereby constitute remarkable survival strategies for microorganisms. The modulation of biofilm functional properties is largely governed by the active remodeling of their three-dimensional structure and involves an arsenal of microbial self-produced components and interconnected mechanisms. The production of matrix components, the spatial reorganization of ecological interactions, the generation of physiological heterogeneity, the regulation of motility, the production of actives enzymes are for instance some of the processes enabling such spatial organization plasticity. In this contribution, we discussed the foundations of architectural plasticity as an adaptive driver of biofilms through the review of the different microbial strategies involved. Moreover, the possibility to harness such characteristics to sculpt biofilm structure as an attractive approach to control their functional properties, whether beneficial or deleterious, is also discussed.
Collapse
Affiliation(s)
- Arnaud Bridier
- Antibiotics, Biocides, Residues and Resistance Unit, Fougères Laboratory, ANSESFougères, France
| | - Jean-Christophe Piard
- Micalis Institute, INRA, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France
| | - Caroline Pandin
- Micalis Institute, INRA, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France
| | - Simon Labarthe
- MaIAGE, INRA, Université Paris-SaclayJouy-en-Josas, France
| | | | - Romain Briandet
- Micalis Institute, INRA, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France
| |
Collapse
|
27
|
Francolini I, Vuotto C, Piozzi A, Donelli G. Antifouling and antimicrobial biomaterials: an overview. APMIS 2017; 125:392-417. [PMID: 28407425 DOI: 10.1111/apm.12675] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 01/14/2017] [Indexed: 12/12/2022]
Abstract
The use of implantable medical devices is a common and indispensable part of medical care for both diagnostic and therapeutic purposes. However, as side effect, the implant of medical devices quite often leads to the occurrence of difficult-to-treat infections, as a consequence of the colonization of their abiotic surfaces by biofilm-growing microorganisms increasingly resistant to antimicrobial therapies. A promising strategy to combat device-related infections is based on anti-infective biomaterials that either repel microbes, so they cannot attach to the device surfaces, or kill them in the surrounding areas. In general, such biomaterials are characterized by antifouling coatings, exhibiting low adhesion or even repellent properties towards microorganisms, or antimicrobial coatings, able to kill microbes approaching the surface. In this light, the present overview will address the development in the last two decades of antifouling and antimicrobial biomaterials designed to potentially limit the initial stages of microbial adhesion, as well as the microbial growth and biofilm formation on medical device surfaces.
Collapse
Affiliation(s)
| | - Claudia Vuotto
- Microbial Biofilm Laboratory, IRCCS Fondazione Santa Lucia, Rome
| | | | | |
Collapse
|
28
|
Wei XY, Zhang R, Xiao BB, Liao QP. Biofilms of vaginal Lactobacillus in vitro test. J OBSTET GYNAECOL 2016; 37:69-73. [PMID: 27625157 DOI: 10.1080/01443615.2016.1217508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This paper focuses on biofilms of Lactobacillus spp. - a type of normal flora isolated from healthy human vaginas of women of childbearing age; thereupon, it broadens the research scope of investigation of vaginal normal flora. The static slide culture method was adopted to foster biofilms, marked by specific fluorescence staining. Laser scanning confocal and scanning electron microscopy were used to observe the microstructure of the biofilms. Photographs taken from the microstructure were analysed to calculate the density of the biofilms. The body of Lactobacillus spp., though red, turned yellow when interacting with the green extracellular polysaccharides. The structure of the biofilm and aquaporin within the biofilm were imaged. Lactobacillus density increases over time. This study provides convincing evidence that Lactobacillus can form biofilms and grow over time in vitro. This finding establishes an important and necessary condition for selecting proper strains for the pharmaceutics of vaginal ecology.
Collapse
Affiliation(s)
- Xiao-Yu Wei
- a Department of Gynaecology and Obstetrics , Peking University First Hospital , Beijing , China
| | - Rui Zhang
- a Department of Gynaecology and Obstetrics , Peking University First Hospital , Beijing , China
| | - Bing-Bing Xiao
- a Department of Gynaecology and Obstetrics , Peking University First Hospital , Beijing , China
| | - Qin-Ping Liao
- a Department of Gynaecology and Obstetrics , Peking University First Hospital , Beijing , China
| |
Collapse
|
29
|
Ragunath C, DiFranco K, Shanmugam M, Gopal P, Vyas V, Fine DH, Cugini C, Ramasubbu N. Surface display of Aggregatibacter actinomycetemcomitans autotransporter Aae and dispersin B hybrid act as antibiofilm agents. Mol Oral Microbiol 2016; 31:329-39. [PMID: 26280561 PMCID: PMC6118125 DOI: 10.1111/omi.12126] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2015] [Indexed: 11/30/2022]
Abstract
Among the various proteins expressed by the periodontopathogen Aggregatibacter actinomycetemcomitans, two proteins play important roles for survival in the oral cavity. The autotransporter Aae facilitates the attachment of the pathogen to oral epithelial cells, which act as a reservoir, while the biofilm-degrading glycoside hydrolase dispersin B facilitates the movement of daughter cells from the mature biofilm to a new site. The objective of this study was to use the potential of these two proteins to control biofilms. To this end, we generated a hybrid construct between the Aae C-terminal translocating domain and dispersin B, and mobilized it into Escherichia coli Rosetta (DE3) pLysS cells. Immunofluorescence analysis of the modified E. coli cells confirmed the presence of dispersin B on the surface. Further, the membrane localization of the displayed dispersin B was confirmed with Western blot analysis. The integrity of the E. coli cells displaying the dispersin B was confirmed through FACS analysis. The hydrolytic activity of the surface-displayed dispersin B was confirmed by using 4-methylumbelliferyl-β-d-glucopyranoside as the substrate. The detachment ability of the dispersin B surface-displaying E. coli cells was shown using Staphylococcus epidermidis and Actinobacillus pleuropneumoniae biofilms in a microtiter assay. We concluded that the Aae β-domain is sufficient to translocate foreign enzymes in the native folded form and that the method of Aae-mediated translocation of surface displayed enzymes might be useful for control of biofilms.
Collapse
Affiliation(s)
| | | | - Mayilvahanan Shanmugam
- Department of Oral Biology, Rutgers School of Dental Medicine, 185 South Orange Ave, Newark NJ 07103, USA
| | - Prerna Gopal
- Department of Oral Biology, Rutgers School of Dental Medicine, 185 South Orange Ave, Newark NJ 07103, USA
| | - Vishal Vyas
- Department of Oral Biology, Rutgers School of Dental Medicine, 185 South Orange Ave, Newark NJ 07103, USA
| | - Daniel H. Fine
- Department of Oral Biology, Rutgers School of Dental Medicine, 185 South Orange Ave, Newark NJ 07103, USA
| | - Carla Cugini
- Department of Oral Biology, Rutgers School of Dental Medicine, 185 South Orange Ave, Newark NJ 07103, USA
| | - Narayanan Ramasubbu
- Department of Oral Biology, Rutgers School of Dental Medicine, 185 South Orange Ave, Newark NJ 07103, USA
| |
Collapse
|
30
|
Ahlstrand T, Tuominen H, Beklen A, Torittu A, Oscarsson J, Sormunen R, Pöllänen MT, Permi P, Ihalin R. A novel intrinsically disordered outer membrane lipoprotein of Aggregatibacter actinomycetemcomitans binds various cytokines and plays a role in biofilm response to interleukin-1β and interleukin-8. Virulence 2016; 8:115-134. [PMID: 27459270 PMCID: PMC5383217 DOI: 10.1080/21505594.2016.1216294] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) do not have a well-defined and stable 3-dimensional fold. Some IDPs can function as either transient or permanent binders of other proteins and may interact with an array of ligands by adopting different conformations. A novel outer membrane lipoprotein, bacterial interleukin receptor I (BilRI) of the opportunistic oral pathogen Aggregatibacter actinomycetemcomitans binds a key gatekeeper proinflammatory cytokine interleukin (IL)-1β. Because the amino acid sequence of the novel lipoprotein resembles that of fibrinogen binder A of Haemophilus ducreyi, BilRI could have the potential to bind other proteins, such as host matrix proteins. However, from the tested host matrix proteins, BilRI interacted with neither collagen nor fibrinogen. Instead, the recombinant non-lipidated BilRI, which was intrinsically disordered, bound various pro/anti-inflammatory cytokines, such as IL-8, tumor necrosis factor (TNF)-α, interferon (IFN)-γ and IL-10. Moreover, BilRI played a role in the in vitro sensing of IL-1β and IL-8 because low concentrations of cytokines did not decrease the amount of extracellular DNA in the matrix of bilRI− mutant biofilm as they did in the matrix of wild-type biofilm when the biofilms were exposed to recombinant cytokines for 22 hours. BilRI played a role in the internalization of IL-1β in the gingival model system but did not affect either IL-8 or IL-6 uptake. However, bilRI deletion did not entirely prevent IL-1β internalization, and the binding of cytokines to BilRI was relatively weak. Thus, BilRI might sequester cytokines on the surface of A. actinomycetemcomitans to facilitate the internalization process in low local cytokine concentrations.
Collapse
Affiliation(s)
- Tuuli Ahlstrand
- a Department of Biochemistry , University of Turku , Turku , Finland
| | - Heidi Tuominen
- a Department of Biochemistry , University of Turku , Turku , Finland
| | - Arzu Beklen
- a Department of Biochemistry , University of Turku , Turku , Finland
| | - Annamari Torittu
- a Department of Biochemistry , University of Turku , Turku , Finland
| | - Jan Oscarsson
- b Oral Microbiology , Department of Odontology, Umeå University , Umeå , Sweden
| | - Raija Sormunen
- c Biocenter Oulu and Department of Pathology , University of Oulu , Oulu Finland
| | | | - Perttu Permi
- e Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki , Helsinki , Finland.,f Department of Biological and Environmental Sciences , Nanoscience Center, University of Jyväskylä , Jyväskylä , Finland.,g Department of Chemistry , Nanoscience Center, University of Jyväskylä , Jyväskylä , Finland
| | - Riikka Ihalin
- a Department of Biochemistry , University of Turku , Turku , Finland
| |
Collapse
|
31
|
Jaffar N, Miyazaki T, Maeda T. Biofilm formation of periodontal pathogens on hydroxyapatite surfaces: Implications for periodontium damage. J Biomed Mater Res A 2016; 104:2873-80. [PMID: 27390886 DOI: 10.1002/jbm.a.35827] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/24/2016] [Accepted: 07/06/2016] [Indexed: 11/05/2022]
Abstract
Biofilm formation of periodontal pathogens on teeth surfaces promotes the progression of periodontal disease. Hence, understanding the mechanisms of bacterial attachment to the dental surfaces may inform strategies for the maintenance of oral health. Although hydroxyapatite (HA) is a major calcium phosphate component of teeth, effect of biofilm formation on HA surfaces remains poorly characterized. In this study, biofilm-forming abilities by the periodontal pathogens Aggregatibacter actinomycetemcomitans Y4 and Porphyromonas gingivalis 381 were investigated on dense and porous HAs that represent enamel and dentin surfaces, respectively. These experiments showed greater biofilm formation on porous HA, but differing attachment profiles and effects of the two pathogens. Specifically, while the detachment of A. actinomycetemcomitans Y4 biofilm was observed, P. gingivalis 381 biofilm increased with time. Moreover, observations of HA morphology following formation of A. actinomycetemcomitans Y4 biofilm revealed gaps between particles, whereas no significant changes were observed in the presence of P. gingivalis 381. Finally, comparisons of calcium leakage showed only slight differences between bacterial species and HA types and may be masked by bacterial calcium uptake. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2873-2880, 2016.
Collapse
Affiliation(s)
- Norzawani Jaffar
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0196, Japan.,Faculty of Health Sciences, Gong Badak Campus, Universiti Sultan Zainal Abidin (UniSZA), Kuala Terengganu, Terengganu Darul Iman, Malaysia
| | - Toshiki Miyazaki
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0196, Japan
| | - Toshinari Maeda
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0196, Japan. .,Research Center for Advanced Eco-Fitting Technology, Kyushu Institute of Technology, Kitakyushu, Japan.
| |
Collapse
|
32
|
Jaffar N, Ishikawa Y, Mizuno K, Okinaga T, Maeda T. Mature Biofilm Degradation by Potential Probiotics: Aggregatibacter actinomycetemcomitans versus Lactobacillus spp. PLoS One 2016; 11:e0159466. [PMID: 27438340 PMCID: PMC4954673 DOI: 10.1371/journal.pone.0159466] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 07/01/2016] [Indexed: 02/07/2023] Open
Abstract
The biofilm degradation of Aggregatibacter actinomycetemcomitans is essential as a complete periodontal disease therapy, and here we show the effects of potential probiotic bacteria such as Lactobacillus spp. for the biofilm of several serotypes of A. actinomycetemcomitans strains. Eight of the 13 species showed the competent biofilm degradation of ≥ 90% reduction in biofilm values in A. actinomycetemcomitans Y4 (serotype b) as well as four of the seven species for the biofilm of A. actinomycetemcomitans OMZ 534 (serotype e). In contrast, the probiotic bacteria did not have a big impact for the degradation of A. actinomycetemcomitans SUNY 75 (serotype a) biofilm. The dispersed A. actinomycetemcomitans Y4 cells through the biofilm detachment were still viable and plausible factors for the biofilm degradation were not due to the lactic acid and low pH conditions. The three enzymes, protease, lipase, and amylase may be responsible for the biofilm degradation; in particular, lipase was the most effective enzyme for the biofilm degradation of A. actinomycetemcomitans Y4 along with the protease activity which should be also important for the other serotypes. Remarkable lipase enzyme activities were detected from some of the potential probiotics and a supporting result using a lipase inhibitor presented corroborating evidence that lipase activity is one of the contributing factors for biofilm degradation outside of the protease which is also another possible factor for the biofilm of the other serotype of A. actinomycetemcomitans strains. On the other hand, the biofilm of A. actinomycetemcomitans SUNY 75 (serotype a) was not powerfully degraded by the lipase enzyme because the lipase inhibitor was slightly functional for only two of potential probiotics.
Collapse
Affiliation(s)
- Norzawani Jaffar
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Wakamatsu-ku, Kitakyushu, Japan
- Faculty of Health Sciences, Gong Badak Campus, Universiti Sultan Zainal Abidin (UniSZA), Kuala Terengganu, Terengganu Darul Iman, Malaysia
| | - Yuya Ishikawa
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Wakamatsu-ku, Kitakyushu, Japan
| | - Kouhei Mizuno
- Department of Materials Science and Chemical Engineering, Kitakyushu National College of Technology, Kitakyushu, Japan
| | - Toshinori Okinaga
- School of Oral Health Sciences, Faculty of Dentistry, Kyushu Dental University, Kitakyushu, Japan
| | - Toshinari Maeda
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Wakamatsu-ku, Kitakyushu, Japan
- Research Center for Advanced Eco-fitting Technology, Kyushu Institute of Technology, Kitakyushu, Japan
- * E-mail:
| |
Collapse
|
33
|
Kim SK, Lee JH. Biofilm dispersion in Pseudomonas aeruginosa. J Microbiol 2016; 54:71-85. [PMID: 26832663 DOI: 10.1007/s12275-016-5528-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/22/2015] [Accepted: 12/22/2015] [Indexed: 02/07/2023]
Abstract
In recent decades, many researchers have written numerous articles about microbial biofilms. Biofilm is a complex community of microorganisms and an example of bacterial group behavior. Biofilm is usually considered a sessile mode of life derived from the attached growth of microbes to surfaces, and most biofilms are embedded in self-produced extracellular matrix composed of extracellular polymeric substances (EPSs), such as polysaccharides, extracellular DNAs (eDNA), and proteins. Dispersal, a mode of biofilm detachment indicates active mechanisms that cause individual cells to separate from the biofilm and return to planktonic life. Since biofilm cells are cemented and surrounded by EPSs, dispersal is not simple to do and many researchers are now paying more attention to this active detachment process. Unlike other modes of biofilm detachment such as erosion or sloughing, which are generally considered passive processes, dispersal occurs as a result of complex spatial differentiation and molecular events in biofilm cells in response to various environmental cues, and there are many biological reasons that force bacterial cells to disperse from the biofilms. In this review, we mainly focus on the spatial differentiation of biofilm that is a prerequisite for dispersal, as well as environmental cues and molecular events related to the biofilm dispersal. More specifically, we discuss the dispersal-related phenomena and mechanisms observed in Pseudomonas aeruginosa, an important opportunistic human pathogen and representative model organism for biofilm study.
Collapse
Affiliation(s)
- Soo-Kyoung Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 609-735, Republic of Korea
| | - Joon-Hee Lee
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, 609-735, Republic of Korea.
| |
Collapse
|
34
|
Yu S, Su T, Wu H, Liu S, Wang D, Zhao T, Jin Z, Du W, Zhu MJ, Chua SL, Yang L, Zhu D, Gu L, Ma LZ. PslG, a self-produced glycosyl hydrolase, triggers biofilm disassembly by disrupting exopolysaccharide matrix. Cell Res 2015; 25:1352-67. [PMID: 26611635 PMCID: PMC4670989 DOI: 10.1038/cr.2015.129] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 10/10/2015] [Accepted: 10/10/2015] [Indexed: 01/07/2023] Open
Abstract
Biofilms are surface-associated communities of microorganism embedded in extracellular matrix. Exopolysaccharide is a critical component in the extracellular matrix that maintains biofilm architecture and protects resident biofilm bacteria from antimicrobials and host immune attack. However, self-produced factors that target the matrix exopolysaccharides, are still poorly understood. Here, we show that PslG, a protein involved in the synthesis of a key biofilm matrix exopolysaccharide Psl in Pseudomonas aeruginosa, prevents biofilm formation and disassembles existing biofilms within minutes at nanomolar concentrations when supplied exogenously. The crystal structure of PslG indicates the typical features of an endoglycosidase. PslG mainly disrupts the Psl matrix to disperse bacteria from biofilms. PslG treatment markedly enhances biofilm sensitivity to antibiotics and macrophage cells, resulting in improved biofilm clearance in a mouse implant infection model. Furthermore, PslG shows biofilm inhibition and disassembly activity against a wide range of Pseudomonas species, indicating its great potential in combating biofilm-related complications.
Collapse
Affiliation(s)
- Shan Yu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Tiantian Su
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Huijun Wu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shiheng Liu
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Di Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tianhu Zhao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zengjun Jin
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wenbin Du
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA 99164-6120, USA
| | - Song Lin Chua
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore 637551
| | - Liang Yang
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore 637551
| | - Deyu Zhu
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Lichuan Gu
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China,E-mail:
| | - Luyan Z Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China,E-mail:
| |
Collapse
|
35
|
Gutiérrez D, Briers Y, Rodríguez-Rubio L, Martínez B, Rodríguez A, Lavigne R, García P. Role of the Pre-neck Appendage Protein (Dpo7) from Phage vB_SepiS-phiIPLA7 as an Anti-biofilm Agent in Staphylococcal Species. Front Microbiol 2015; 6:1315. [PMID: 26635776 PMCID: PMC4658415 DOI: 10.3389/fmicb.2015.01315] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/09/2015] [Indexed: 01/10/2023] Open
Abstract
Staphylococcus epidermidis and Staphylococcus aureus are important causative agents of hospital-acquired infections and bacteremia, likely due to their ability to form biofilms. The production of a dense exopolysaccharide (EPS) matrix enclosing the cells slows the penetration of antibiotic down, resulting in therapy failure. The EPS depolymerase (Dpo7) derived from bacteriophage vB_SepiS-phiIPLA7, was overexpressed in Escherichia coli and characterized. A dose dependent but time independent response was observed after treatment of staphylococcal 24 h-biofilms with Dpo7. Maximum removal (>90%) of biofilm-attached cells was obtained with 0.15 μM of Dpo7 in all polysaccharide producer strains but Dpo7 failed to eliminate polysaccharide-independent biofilm formed by S. aureus V329. Moreover, the pre-treatment of polystyrene surfaces with Dpo7 reduced the biofilm biomass by 53–85% in the 67% of the tested strains. This study supports the use of phage-encoded EPS depolymerases to prevent and disperse staphylococcal biofilms, thereby making bacteria more susceptible to the action of antimicrobials.
Collapse
Affiliation(s)
- Diana Gutiérrez
- Consejo Superior de Investigaciones Científicas - Instituto de Productos Lácteos de Asturias Villaviciosa, Spain
| | - Yves Briers
- Laboratory of Gene Technology, KU Leuven Heverlee, Belgium ; Laboratory of Applied Biotechnology, Ghent University Ghent, Belgium
| | - Lorena Rodríguez-Rubio
- Consejo Superior de Investigaciones Científicas - Instituto de Productos Lácteos de Asturias Villaviciosa, Spain ; Laboratory of Gene Technology, KU Leuven Heverlee, Belgium
| | - Beatriz Martínez
- Consejo Superior de Investigaciones Científicas - Instituto de Productos Lácteos de Asturias Villaviciosa, Spain
| | - Ana Rodríguez
- Consejo Superior de Investigaciones Científicas - Instituto de Productos Lácteos de Asturias Villaviciosa, Spain
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven Heverlee, Belgium
| | - Pilar García
- Consejo Superior de Investigaciones Científicas - Instituto de Productos Lácteos de Asturias Villaviciosa, Spain
| |
Collapse
|
36
|
Photocatalytical Antibacterial Activity of Mixed-Phase TiO2 Nanocomposite Thin Films against Aggregatibacter actinomycetemcomitans. BIOMED RESEARCH INTERNATIONAL 2015; 2015:705871. [PMID: 26576430 PMCID: PMC4631860 DOI: 10.1155/2015/705871] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 09/30/2015] [Indexed: 11/18/2022]
Abstract
Mixed-phase TiO2 nanocomposite thin films consisting of anatase and rutile prepared on commercially pure Ti sheets via the electrochemical anodization and annealing treatments were investigated in terms of their photocatalytic activity for antibacterial use around dental implants. The resulting films were characterized by scanning electron microscopy (SEM), and X-ray diffraction (XRD). The topology was assessed by White Light Optical Profiling (WLOP) in the Vertical Scanning Interferometer (VSI) mode. Representative height descriptive parameters of roughness Ra and Rz were calculated. The photocatalytic activity of the resulting TiO2 films was evaluated by the photodegradation of Rhodamine B (RhB) dye solution. The antibacterial ability of the photocatalyst was examined by Aggregatibacter actinomycetemcomitans suspensions in a colony-forming assay. XRD showed that anatase/rutile mixed-phase TiO2 thin films were predominantly in anatase and rutile that were 54.6 wt% and 41.9 wt%, respectively. Craters (2–5 µm) and protruding hills (10–50 µm) on Ti substrates were produced after electrochemical anodization with higher Ra and Rz surface roughness values. Anatase/rutile mixed-phase TiO2 thin films showed 26% photocatalytic decolorization toward RhB dye solution. The number of colonizing bacteria on anatase/rutile mixed-phase TiO2 thin films was decreased significantly in vitro. The photocatalyst was effective against A. actinomycetemcomitans colonization.
Collapse
|
37
|
Bacterial growth, detachment and cell size control on polyethylene terephthalate surfaces. Sci Rep 2015; 5:15159. [PMID: 26464114 PMCID: PMC4604555 DOI: 10.1038/srep15159] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 09/16/2015] [Indexed: 12/30/2022] Open
Abstract
In medicine and food industry, bacterial colonisation on surfaces is a common cause of infections and severe illnesses. However, the detailed quantitative information about the dynamics and the mechanisms involved in bacterial proliferation on solid substrates is still lacking. In this study we investigated the adhesion and detachment, the individual growth and colonisation, and the cell size control of Escherichia coli (E. coli) MG1655 on polyethylene terephthalate (PET) surfaces. The results show that the bacterial growth curve on PET exhibits the distinct lag and log phases, but the generation time is more than twice longer than in bulk medium. Single cells in the lag phase are more likely to detach than clustered ones in the log phase; clustered bacteria in micro-colonies have stronger adhesive bonds with surfaces and their neighbours with the progressing colonisation. We show that the cell size is under the density-dependent pathway control: when the adherent cells are at low density, the culture medium is responsible for coordinating cell division and cell size; when the clustered cells are at high population density, we demonstrate that the effect of quorum sensing causes the cell size decrease as the cell density on surfaces increases.
Collapse
|
38
|
Sager M, Benten WPM, Engelhardt E, Gougoula C, Benga L. Characterization of Biofilm Formation in [Pasteurella] pneumotropica and [Actinobacillus] muris Isolates of Mouse Origin. PLoS One 2015; 10:e0138778. [PMID: 26430880 PMCID: PMC4592018 DOI: 10.1371/journal.pone.0138778] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/03/2015] [Indexed: 12/24/2022] Open
Abstract
[Pasteurella] pneumotropica biotypes Jawetz and Heyl and [Actinobacillus] muris are the most prevalent Pasteurellaceae species isolated from laboratory mouse. However, mechanisms contributing to their high prevalence such as the ability to form biofilms have not been studied yet. In the present investigation we analyze if these bacterial species can produce biofilms in vitro and investigate whether proteins, extracellular DNA and polysaccharides are involved in the biofilm formation and structure by inhibition and dispersal assays using proteinase K, DNase I and sodium periodate. Finally, the capacity of the biofilms to confer resistance to antibiotics is examined. We demonstrate that both [P.] pneumotropica biotypes but not [A.] muris are able to form robust biofilms in vitro, a phenotype which is widely spread among the field isolates. The biofilm inhibition and dispersal assays by proteinase and DNase lead to a strong inhibition in biofilm formation when added at the initiation of the biofilm formation and dispersed pre-formed [P.] pneumotropica biofilms, revealing thus that proteins and extracellular DNA are essential in biofilm formation and structure. Sodium periodate inhibited the bacterial growth when added at the beginning of the biofilm formation assay, making difficult the assessment of the role of β-1,6-linked polysaccharides in the biofilm formation, and had a biofilm stimulating effect when added on pre-established mature biofilms of [P.] pneumotropica biotype Heyl and a majority of [P.] pneumotropica biotype Jawetz strains, suggesting that the presence of β-1,6-linked polysaccharides on the bacterial surface might attenuate the biofilm production. Conversely, no effect or a decrease in the biofilm quantity was observed by biofilm dispersal using sodium periodate on further biotype Jawetz isolates, suggesting that polysaccharides might be incorporated in the biofilm structure. We additionally show that [P.] pneumotropica cells enclosed in biofilms were less sensitive to treatment with amoxicillin and enrofloxacin than planktonic bacteria. Taken together, these findings provide a first step in understanding of the biofilm mechanisms in [P.] pneumotropica, which might contribute to elucidation of colonization and pathogenesis mechanisms for these obligate inhabitants of the mouse mucosa.
Collapse
Affiliation(s)
- Martin Sager
- Central Animal Research Facility, Heinrich—Heine—University, University Hospital, Düsseldorf, Germany
| | - W. Peter M. Benten
- Central Animal Research Facility, Heinrich—Heine—University, University Hospital, Düsseldorf, Germany
| | - Eva Engelhardt
- Central Animal Research Facility, Heinrich—Heine—University, University Hospital, Düsseldorf, Germany
| | - Christina Gougoula
- Central Animal Research Facility, Heinrich—Heine—University, University Hospital, Düsseldorf, Germany
| | - Laurentiu Benga
- Central Animal Research Facility, Heinrich—Heine—University, University Hospital, Düsseldorf, Germany
| |
Collapse
|
39
|
Machado D, Palmeira-de-Oliveira A, Cerca N. Optimization of culture conditions for Gardnerella vaginalis biofilm formation. J Microbiol Methods 2015; 118:143-6. [PMID: 26381661 DOI: 10.1016/j.mimet.2015.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/10/2015] [Accepted: 09/10/2015] [Indexed: 11/25/2022]
Abstract
Bacterial vaginosis is the leading vaginal disorder in women in reproductive age. Although bacterial vaginosis is related with presence of a biofilm composed predominantly by Gardnerella vaginalis, there has not been a detailed information addressing the environmental conditions that influence the biofilm formation of this bacterial species. Here, we evaluated the influence of some common culture conditions on G. vaginalis biofilm formation, namely inoculum concentration, incubation period, feeding conditions and culture medium composition. Our results showed that culture conditions strongly influenced G. vaginalis biofilm formation and that biofilm formation was enhanced when starting the culture with a higher inoculum, using a fed-batch system and supplementing the growth medium with maltose.
Collapse
Affiliation(s)
- Daniela Machado
- Centre of Biological Engineering, LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Ana Palmeira-de-Oliveira
- CICS-UBI, Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; Labfit - HPRD: Health Products Research and Development Lda, Edificio UBIMEDICAL, Estrada Municipal 506, 6200-284 Covilhã, Portugal
| | - Nuno Cerca
- Centre of Biological Engineering, LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
40
|
Bakunina IY, Balabanova LA, Pennacchio A, Trincone A. Hooked on α-d-galactosidases: from biomedicine to enzymatic synthesis. Crit Rev Biotechnol 2015; 36:233-45. [PMID: 25394540 DOI: 10.3109/07388551.2014.949618] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
α-d-Galactosidases (EC 3.2.1.22) are enzymes employed in a number of useful bio-based applications. We have depicted a comprehensive general survey of α-d-galactosidases from different origin with special emphasis on marine example(s). The structures of natural α-galactosyl containing compounds are described. In addition to 3D structures and mechanisms of action of α-d-galactosidases, different sources, natural function and genetic regulation are also covered. Finally, hydrolytic and synthetic exploitations as free or immobilized biocatalysts are reviewed. Interest in the synthetic aspects during the next years is anticipated for access to important small molecules by green technology with an emphasis on alternative selectivity of this class of enzymes from different sources.
Collapse
Affiliation(s)
- Irina Yu Bakunina
- a G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences , Vladivostok , Russia and
| | - Larissa A Balabanova
- a G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences , Vladivostok , Russia and
| | - Angela Pennacchio
- b Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche , Pozzuoli , Napoli , Italy
| | - Antonio Trincone
- b Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche , Pozzuoli , Napoli , Italy
| |
Collapse
|
41
|
Sadekuzzaman M, Yang S, Mizan M, Ha S. Current and Recent Advanced Strategies for Combating Biofilms. Compr Rev Food Sci Food Saf 2015. [DOI: 10.1111/1541-4337.12144] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- M. Sadekuzzaman
- School of Food Science and Technology; Chung-Ang Univ; 72-1 Nae-Ri Daedeok-Myun, Anseong Gyunggido 456-756 South Korea Dept. of Livestock Services, People's Republic of Bangladesh
| | - S. Yang
- Chung-Ang Univ; 72-1 Nae-Ri Daedeok-Myun, Anseong Gyunggido 456-756 South Korea
| | - M.F.R. Mizan
- Chung-Ang Univ; 72-1 Nae-Ri Daedeok-Myun, Anseong Gyunggido 456-756 South Korea
| | - S.D. Ha
- Chung-Ang Univ; 72-1 Nae-Ri Daedeok-Myun, Anseong Gyunggido 456-756 South Korea
| |
Collapse
|
42
|
Karched M, Bhardwaj RG, Inbamani A, Asikainen S. Quantitation of biofilm and planktonic life forms of coexisting periodontal species. Anaerobe 2015; 35:13-20. [PMID: 25926392 DOI: 10.1016/j.anaerobe.2015.04.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/21/2015] [Accepted: 04/24/2015] [Indexed: 12/23/2022]
Abstract
BACKGROUND Complexity of oral polymicrobial communities has prompted a need for developing in vitro models to study behavior of coexisting bacteria. Little knowledge is available of in vitro co-growth of several periodontitis-associated species without early colonizers of dental plaque. THE AIM was to determine temporal changes in the quantities of six periodontal species in an in vitro biofilm model in comparison with parallel planktonic cultures. MATERIAL AND METHODS Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Prevotella intermedia, Parvimonas micra, Campylobacter rectus and Fusobacterium nucleatum were anaerobically grown as multispecies and monospecies biofilms and parallel planktonic cultures using cell culture plates and microfuge tubes, respectively. After incubating 2, 4, 6, 8 days, biofilms and planktonic cultures were harvested, DNA extracted and the target species quantified using qPCR with species-specific 16S rDNA primers. Biofilm growth as monocultures was visualized at day 2 and 8 with confocal microscopy and crystal violet staining. RESULTS The six species were found throughout the test period in all culture conditions, except that P. gingivalis and F. nucleatum were not detected in multispecies planktonic cultures at day 8. In multispecies biofilm, P. gingivalis qPCR counts (cells/ml) increased (P<0.05) from day 2-8 and were then higher (P<0.05) than those of A. actinomycetemcomitans and C. rectus, whereas in monospecies biofilm, P. gingivalis counts were lower (P<0.05) than those of the other species, except A. actinomycetemcomitans. When multi- and monospecies biofilm cultures were compared, P. gingivalis counts were higher (P<0.05) but those of the other species, except P. intermedia, lower (P<0.05) in multispecies biofilm. Comparison between planktonic and biofilm cultures showed that A. actinomycetemcomitans, P. micra and C. rectus had higher (P<0.05) counts in planktonic cultures no matter whether grown in mono- or multispecies environment. CONCLUSIONS Six periodontal species were able to form multispecies biofilm up to 8 days in vitro without pioneer plaque bacteria. P. gingivalis seemed to prefer multispecies biofilm environment whereas P. micra and A. actinomycetemcomitans planktonic culture.
Collapse
Affiliation(s)
- Maribasappa Karched
- Oral Microbiology, General Facility Laboratory, Faculty of Dentistry, Kuwait University, Kuwait
| | - Radhika G Bhardwaj
- Oral Microbiology, General Facility Laboratory, Faculty of Dentistry, Kuwait University, Kuwait
| | - Anandavalli Inbamani
- Oral Microbiology, General Facility Laboratory, Faculty of Dentistry, Kuwait University, Kuwait
| | - Sirkka Asikainen
- Oral Microbiology, General Facility Laboratory, Faculty of Dentistry, Kuwait University, Kuwait.
| |
Collapse
|
43
|
Juzwa W, Myszka K, Białas W, Dobrucka R, Konieczny P, Czaczyk K. Investigation of the effectiveness of disinfectants against planktonic and biofilm forms of P. aeruginosa and E. faecalis cells using a compilation of cultivation, microscopic and flow cytometric techniques. BIOFOULING 2015; 31:587-597. [PMID: 26313563 DOI: 10.1080/08927014.2015.1075126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This study evaluated the effectiveness of selected disinfectants against bacterial cells within a biofilm using flow cytometry, the conventional total viable count test and scanning electron microscopy (SEM). A flow cytometric procedure based on measurement of the cellular redox potential (CRP) was demonstrated to have potential for the rapid evaluation of activity against biofilm and planktonic forms of microbes. Quaternary ammonium compound-based disinfectant (QACB) demonstrated a higher level of anti-microbial activity than a performic acid preparation (PAP), with mean CRP values against P. aeruginosa cells of 2 and 1.33 relative fluorescence units (RFU) vs 63.33 and 61.33 RFU for 8 and 24 h cultures respectively. Flow cytometric evaluation of the anti-biofilm activity demonstrated a higher efficacy of QACB compared to PAP for P. aeruginosa cells of 1 and 0.66 RFU vs 18.33 and 22.66 RFU for 8 and 24 h cultures respectively. SEM images of treated P. aeruginosa cells demonstrated disinfectant-specific effects on cell morphology.
Collapse
Affiliation(s)
- Wojciech Juzwa
- a Department of Biotechnology and Food Microbiology , Poznań University of Life Sciences , Poznań , Poland
| | | | | | | | | | | |
Collapse
|
44
|
Culotti A, Packman AI. Pseudomonas aeruginosa promotes Escherichia coli biofilm formation in nutrient-limited medium. PLoS One 2014; 9:e107186. [PMID: 25198725 PMCID: PMC4157881 DOI: 10.1371/journal.pone.0107186] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 08/14/2014] [Indexed: 11/19/2022] Open
Abstract
Biofilms have been implicated as an important reservoir for pathogens and commensal enteric bacteria such as Escherichia coli in natural and engineered water systems. However, the processes that regulate the survival of E. coli in aquatic biofilms have not been thoroughly studied. We examined the effects of hydrodynamic shear and nutrient concentrations on E. coli colonization of pre-established Pseudomonas aeruginosa biofilms, co-inoculation of E. coli and P. aeruginosa biofilms, and P. aeruginosa colonization of pre-established E. coli biofilms. In nutritionally-limited R2A medium, E. coli dominated biofilms when co-inoculated with P. aeruginosa, and successfully colonized and overgrew pre-established P. aeruginosa biofilms. In more enriched media, P. aeruginosa formed larger clusters, but E. coli still extensively overgrew and colonized the interior of P. aeruginosa clusters. In mono-culture, E. coli formed sparse and discontinuous biofilms. After P. aeruginosa was introduced to these biofilms, E. coli growth increased substantially, resulting in patterns of biofilm colonization similar to those observed under other sequences of organism introduction, i.e., E. coli overgrew P. aeruginosa and colonized the interior of P. aeruginosa clusters. These results demonstrate that E. coli not only persists in aquatic biofilms under depleted nutritional conditions, but interactions with P. aeruginosa can greatly increase E. coli growth in biofilms under these experimental conditions.
Collapse
Affiliation(s)
- Alessandro Culotti
- Department of Civil and Environmental Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - Aaron I. Packman
- Department of Civil and Environmental Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois, United States of America
- * E-mail:
| |
Collapse
|
45
|
Nørskov-Lauritsen N. Classification, identification, and clinical significance of Haemophilus and Aggregatibacter species with host specificity for humans. Clin Microbiol Rev 2014; 27:214-40. [PMID: 24696434 PMCID: PMC3993099 DOI: 10.1128/cmr.00103-13] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The aim of this review is to provide a comprehensive update on the current classification and identification of Haemophilus and Aggregatibacter species with exclusive or predominant host specificity for humans. Haemophilus influenzae and some of the other Haemophilus species are commonly encountered in the clinical microbiology laboratory and demonstrate a wide range of pathogenicity, from life-threatening invasive disease to respiratory infections to a nonpathogenic, commensal lifestyle. New species of Haemophilus have been described (Haemophilus pittmaniae and Haemophilus sputorum), and the new genus Aggregatibacter was created to accommodate some former Haemophilus and Actinobacillus species (Aggregatibacter aphrophilus, Aggregatibacter segnis, and Aggregatibacter actinomycetemcomitans). Aggregatibacter species are now a dominant etiology of infective endocarditis caused by fastidious organisms (HACEK endocarditis), and A. aphrophilus has emerged as an important cause of brain abscesses. Correct identification of Haemophilus and Aggregatibacter species based on phenotypic characterization can be challenging. It has become clear that 15 to 20% of presumptive H. influenzae isolates from the respiratory tracts of healthy individuals do not belong to this species but represent nonhemolytic variants of Haemophilus haemolyticus. Due to the limited pathogenicity of H. haemolyticus, the proportion of misidentified strains may be lower in clinical samples, but even among invasive strains, a misidentification rate of 0.5 to 2% can be found. Several methods have been investigated for differentiation of H. influenzae from its less pathogenic relatives, but a simple method for reliable discrimination is not available. With the implementation of identification by matrix-assisted laser desorption ionization-time of flight mass spectrometry, the more rarely encountered species of Haemophilus and Aggregatibacter will increasingly be identified in clinical microbiology practice. However, identification of some strains will still be problematic, necessitating DNA sequencing of multiple housekeeping gene fragments or full-length 16S rRNA genes.
Collapse
|
46
|
Gu Y, Zhang W, Wang H, Lee WY. Chitosan surface enhances the mobility, cytoplasm spreading, and phagocytosis of macrophages. Colloids Surf B Biointerfaces 2014; 117:42-50. [PMID: 24632029 DOI: 10.1016/j.colsurfb.2014.01.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/20/2014] [Accepted: 01/27/2014] [Indexed: 11/27/2022]
Abstract
A chitosan micropattern was prepared on glass by inkjet printing to visualize and compare in real-time macrophage developments on chitosan versus glass during microfluidic culture. The mobility of macrophages on chitosan was significantly higher, since the cells on glass were anchored by the development of podosomes whereas those on chitosan did not form podosomes. The phagocytosis of bacteria by macrophages was considerably more effective on chitosan because of: (1) the macrophages' higher mobility to scavenge nearby bacteria and (2) their cyotoplasm's ability to spread, re-distribute, and recover more freely to engulf the bacteria. Consequently, bacteria growth on chitosan surface was significantly reduced in the presence of macrophages in comparison to that on glass surface, as measured by surface bacteria density and effluent bacteria concentration. These findings suggest the synergistic effect of chitosan as a potential coating material on biomedical implants in promoting macrophage response upon the arrival of opportunistic bacteria.
Collapse
Affiliation(s)
- Yexin Gu
- Department of Chemical Engineering and Materials Science
| | - Wenting Zhang
- Department of Chemical Engineering and Materials Science
| | - Hongjun Wang
- Department of Chemistry, Chemical Biology and Biomedical Engineering, Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken, NJ 07030, USA
| | - Woo Y Lee
- Department of Chemical Engineering and Materials Science.
| |
Collapse
|
47
|
Molecular investigation of bacterial communities on intravascular catheters: no longer just Staphylococcus. Eur J Clin Microbiol Infect Dis 2014; 33:1189-98. [DOI: 10.1007/s10096-014-2058-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 01/08/2014] [Indexed: 01/18/2023]
|
48
|
Paino A, Ahlstrand T, Nuutila J, Navickaite I, Lahti M, Tuominen H, Välimaa H, Lamminmäki U, Pöllänen MT, Ihalin R. Identification of a novel bacterial outer membrane interleukin-1Β-binding protein from Aggregatibacter actinomycetemcomitans. PLoS One 2013; 8:e70509. [PMID: 23936223 PMCID: PMC3729834 DOI: 10.1371/journal.pone.0070509] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 06/24/2013] [Indexed: 12/23/2022] Open
Abstract
Aggregatibacteractinomycetemcomitans is a gram-negative opportunistic oral pathogen. It is frequently associated with subgingival biofilms of both chronic and aggressive periodontitis, and the diseased sites of the periodontium exhibit increased levels of the proinflammatory mediator interleukin (IL)-1β. Some bacterial species can alter their physiological properties as a result of sensing IL-1β. We have recently shown that this cytokine localizes to the cytoplasm of A. actinomycetemcomitans in co-cultures with organotypic gingival mucosa. However, current knowledge about the mechanism underlying bacterial IL-1β sensing is still limited. In this study, we characterized the interaction of A. actinomycetemcomitans total membrane protein with IL-1β through electrophoretic mobility shift assays. The interacting protein, which we have designated bacterial interleukin receptor I (BilRI), was identified through mass spectrometry and was found to be Pasteurellaceae specific. Based on the results obtained using protein function prediction tools, this protein localizes to the outer membrane and contains a typical lipoprotein signal sequence. All six tested biofilm cultures of clinical A. actinomycetemcomitans strains expressed the protein according to phage display-derived antibody detection. Moreover, proteinase K treatment of whole A. actinomycetemcomitans cells eliminated BilRI forms that were outer membrane specific, as determined through immunoblotting. The protein was overexpressed in Escherichia coli in both the outer membrane-associated form and a soluble cytoplasmic form. When assessed using flow cytometry, the BilRI-overexpressing E. coli cells were observed to bind 2.5 times more biotinylated-IL-1β than the control cells, as detected with avidin-FITC. Overexpression of BilRI did not cause binding of a biotinylated negative control protein. In a microplate assay, soluble BilRI bound to IL-1β, but this binding was not specific, as a control protein for IL-1β also interacted with BilRI. Our findings suggest that A. actinomycetemcomitans expresses an IL-1β-binding surface-exposed lipoprotein that may be part of the bacterial IL-1β-sensing system.
Collapse
Affiliation(s)
- Annamari Paino
- Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Tuuli Ahlstrand
- Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Jari Nuutila
- Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Indre Navickaite
- Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Maria Lahti
- Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Heidi Tuominen
- Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Hannamari Välimaa
- Haartman Institute, Department of Virology, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital Laboratory (HUSLAB), Helsinki University Hospital, Helsinki, Finland
| | - Urpo Lamminmäki
- Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | | | - Riikka Ihalin
- Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
- * E-mail:
| |
Collapse
|
49
|
Wahasugui TC, Nakano V, Piazza RM, Avila-Campos MJ. Phenotypic and genotypic features of Aggregatibacter actinomycetemcomitans isolated from patients with periodontal disease. Diagn Microbiol Infect Dis 2013; 75:366-72. [DOI: 10.1016/j.diagmicrobio.2012.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 12/17/2012] [Accepted: 12/19/2012] [Indexed: 12/15/2022]
|
50
|
Garnett JA, Matthews S. Interactions in bacterial biofilm development: a structural perspective. Curr Protein Pept Sci 2012; 13:739-55. [PMID: 23305361 PMCID: PMC3601411 DOI: 10.2174/138920312804871166] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 07/16/2012] [Accepted: 08/03/2012] [Indexed: 11/24/2022]
Abstract
A community-based life style is the normal mode of growth and survival for many bacterial species. These cellular accretions or biofilms are initiated upon recognition of solid phases by cell surface exposed adhesive moieties. Further cell-cell interactions, cell signalling and bacterial replication leads to the establishment of dense populations encapsulated in a mainly self-produced extracellular matrix; this comprises a complex mixture of macromolecules. These fascinating architectures protect the inhabitants from radiation damage, dehydration, pH fluctuations and antimicrobial compounds. As such they can cause bacterial persistence in disease and problems in industrial applications. In this review we discuss the current understandings of these initial biofilm-forming processes based on structural data. We also briefly describe latter biofilm maturation and dispersal events, which although lack high-resolution insights, are the present focus for many structural biologists working in this field. Finally we give an overview of modern techniques aimed at preventing and disrupting problem biofilms.
Collapse
Affiliation(s)
| | - Steve Matthews
- Centre for Structural Biology, Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, UK
| |
Collapse
|