1
|
Viljoen N, Ismail A, Weyer J, Markotter W. A rabies-related lyssavirus from a Nycticeinops schlieffeni bat with neurological signs, South Africa. Microbiol Resour Announc 2023; 12:e0062123. [PMID: 37800932 PMCID: PMC10652934 DOI: 10.1128/mra.00621-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/30/2023] [Indexed: 10/07/2023] Open
Abstract
We report the coding-complete sequence of a lyssavirus, provisionally designated Phala bat lyssavirus (PBLV), characterized using a metagenomics approach. PBLV was identified in a Nycticeinops schlieffeni bat that exhibited neurological signs and died within 24 hours of admission to a wildlife rehabilitation center in Phalaborwa, South Africa.
Collapse
Affiliation(s)
- Natalie Viljoen
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Disease of the National Health Laboratory Service, Sandringham, South Africa
| | - Arshad Ismail
- Sequencing Core Facility, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham, South Africa
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou, South Africa
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Jacqueline Weyer
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Disease of the National Health Laboratory Service, Sandringham, South Africa
- Department of Microbiology and Infectious Diseases, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
2
|
Coertse J, Viljoen N, Weyer J, Markotter W. Comparative Neutralization Activity of Commercial Rabies Immunoglobulin against Diverse Lyssaviruses. Vaccines (Basel) 2023; 11:1255. [PMID: 37515070 PMCID: PMC10383743 DOI: 10.3390/vaccines11071255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Novel lyssaviruses, the causative agents of rabies, continue to be described mostly due to increased surveillance in bat hosts. Biologicals for the prevention of rabies in humans have, however, remained largely unchanged for decades. This study aimed to determine if commercial rabies immunoglobulin (RIG) could neutralize diverse lyssaviruses. Two commercial preparations, of human or equine origin, were evaluated against a panel consisting of 13 lyssavirus species. Reduced neutralization was observed for the majority of lyssaviruses compared to rabies virus and was more evident for lyssaviruses outside of phylogroup I. Neutralization of more diverse lyssaviruses only occurred at very high doses, except for Ikoma lyssavirus, which could not be neutralized by the RIG evaluated in this study. The use of RIG is a crucial component of rabies post-exposure prophylaxis and the data generated here indicate that RIG, in its current form, will not protect against all lyssaviruses. In addition, higher doses of RIG may be required for neutralization as the genetic distance from vaccine strains increases. Given the limitations of current RIG preparations, alternative passive immunization options should be investigated.
Collapse
Affiliation(s)
- Jessica Coertse
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, Johannesburg 2131, South Africa
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Natalie Viljoen
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, Johannesburg 2131, South Africa
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Jacqueline Weyer
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, Johannesburg 2131, South Africa
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
- Department of Microbiology and Infectious Diseases, School of Pathology, University of Witwatersrand, Johannesburg 2131, South Africa
| | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| |
Collapse
|
3
|
Rabies Virus Seroprevalence among Dogs in Limpopo National Park and the Phylogenetic Analyses of Rabies Viruses in Mozambique. Pathogens 2022; 11:pathogens11091043. [PMID: 36145475 PMCID: PMC9506193 DOI: 10.3390/pathogens11091043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 11/25/2022] Open
Abstract
Rabies is considered a neglected disease among many developing Asian and African countries, including Mozambique, where its re-emergence is often attributed to low dog parenteral vaccination coverage. The objectives of this study were two-fold: (1) to assess the level of antibodies against rabies virus in dogs (n = 418) in Limpopo National Park (LNP), and (2) to genetically characterise selected rabies viruses from brain tissue samples collected in 2017 and 2018. To meet the first objective, we used the BioProTM Rabies blocking ELISA antibody kit, and the results were expressed as the percentage of blocking (%PB). Dog sera with PB ≥ 40% were considered positive for antibodies to rabies virus, whereas sera with PB < 40% were negative. Just under ninety percent (89.2%; n = 373) of dogs were seronegative, and the rest (10.8%; n = 45) had detectable levels of rabies virus-specific antibodies. All eight brain tissue samples were positive for rabies virus antigen using a direct fluorescent antibody test and amplified in a quantitative real-time PCR, but only five (n = 4 from dogs and n = 1 from a cat) were amplified in a conventional reverse-transcription PCR targeting partial regions of the nucleoprotein (N) and the glycoprotein (G) genes. All samples were successfully sequenced. Phylogenetically, the rabies viruses were all of dog origin and were very closely related to each other (Africa 1b rabies virus lineage). Furthermore, the sequences had a common progenitor with other rabies viruses from southern Africa, confirming the transboundary nature of rabies and the pivotal role of dogs in maintaining rabies cycles. The study demonstrates the principal application of the BioProTM rabies ELISA antibody for the detection of anti-lyssavirus-specific antibodies in the serum samples of dogs, and most importantly, it highlights the low levels of antibodies against rabies virus in this dog population.
Collapse
|
4
|
Coertse J, Grobler CS, Sabeta CT, Seamark ECJ, Kearney T, Paweska JT, Markotter W. Lyssaviruses in Insectivorous Bats, South Africa, 2003-2018. Emerg Infect Dis 2021; 26:3056-3060. [PMID: 33219800 PMCID: PMC7706942 DOI: 10.3201/eid2612.203592] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We detected 3 lyssaviruses in insectivorous bats sampled in South Africa during 2003–2018. We used phylogenetic analysis to identify Duvenhage lyssavirus and a potentially new lyssavirus, provisionally named Matlo bat lyssavirus, that is related to West Caucasian bat virus. These new detections highlight that much about lyssaviruses remains unknown.
Collapse
|
5
|
Scott TP, Nel LH. Rabies Prophylactic and Treatment Options: An In Vitro Study of siRNA- and Aptamer-Based Therapeutics. Viruses 2021; 13:881. [PMID: 34064911 PMCID: PMC8150346 DOI: 10.3390/v13050881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/28/2021] [Accepted: 05/06/2021] [Indexed: 10/26/2022] Open
Abstract
If the goal of eliminating dog-mediated human rabies by 2030 is to be achieved, effective mass dog vaccination needs to be complemented by effective prophylaxis for individuals exposed to rabies. Aptamers and short-interfering RNAs (siRNAs) have been successful in therapeutics, but few studies have investigated their potential as rabies therapeutics. In this study, siRNAs and aptamers-using a novel selection method-were developed and tested against rabies virus (RABV) in a post-infection (p.i.) scenario. Multiple means of delivery were tested for siRNAs, including the use of Lipofectamine and conjugation with the developed aptamers. One siRNA (N53) resulted in an 80.13% reduction in viral RNA, while aptamer UPRET 2.03 demonstrated a 61.3% reduction when used alone at 2 h p.i. At 24 h p.i., chimera UPRET 2.03-N8 (aptamer-siRNA) resulted in a 36.5% inhibition of viral replication. To our knowledge, this is the first study using siRNAs or aptamers that (1) demonstrated significant inhibition of RABV using an aptamer, (2) tested Lipofectamine RNAi-Max as a means for delivery, and (3) produced significant RABV inhibition at 24 h p.i. This study serves as a proof-of-concept to potentially use aptamers and siRNAs as rabies immunoglobulin (RIG) replacements or therapeutic options for RABV and provides strong evidence towards their further investigation.
Collapse
Affiliation(s)
| | - Louis Hendrik Nel
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa;
| |
Collapse
|
6
|
Coertse J, Geldenhuys M, le Roux K, Markotter W. Lagos Bat Virus, an Under-Reported Rabies-Related Lyssavirus. Viruses 2021; 13:576. [PMID: 33805487 PMCID: PMC8067007 DOI: 10.3390/v13040576] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/25/2022] Open
Abstract
Lagos bat virus (LBV), one of the 17 accepted viral species of the Lyssavirus genus, was the first rabies-related virus described in 1956. This virus is endemic to the African continent and is rarely encountered. There are currently four lineages, although the observed genetic diversity exceeds existing lyssavirus species demarcation criteria. Several exposures to rabid bats infected with LBV have been reported; however, no known human cases have been reported to date. This review provides the history of LBV and summarizes previous knowledge as well as new detections. Genetic diversity, pathogenesis and prevention are re-evaluated and discussed.
Collapse
Affiliation(s)
- Jessica Coertse
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Services, Sandringham 2192, South Africa;
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa;
| | - Marike Geldenhuys
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa;
| | - Kevin le Roux
- Epidemiology Unit, Allerton Veterinary Laboratory, Pietermaritzburg, KwaZulu-Natal 3200, South Africa;
| | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa;
| |
Collapse
|
7
|
Robardet E, Servat A, Rieder J, Picard-Meyer E, Cliquet F. Multi-annual performance evaluation of laboratories in post-mortem diagnosis of animal rabies: Which techniques lead to the most reliable results in practice? PLoS Negl Trop Dis 2021; 15:e0009111. [PMID: 33544702 PMCID: PMC7891719 DOI: 10.1371/journal.pntd.0009111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/18/2021] [Accepted: 01/06/2021] [Indexed: 11/25/2022] Open
Abstract
Rabies diagnosis proficiency tests on animal specimens using four techniques (FAT, RTCIT, conventional RT-PCR and real-time RT-PCR) were organised over 10 years (2009–2019). Seventy-three laboratories, of which 59% were from Europe, took part. As the panels were prepared with experimentally-infected samples, the error rate of laboratories on positive and negative samples was accurately estimated. Based on fitted values produced by mixed modelling including the variable “laboratory” as a random variable to take into account the longitudinal design of our dataset, the technique that provided the most concordant results was conventional RT-PCR (99.3%; 95% CI 99.0–99.6), closely followed by FAT (99.1%; 95% CI 98.7–99.4), real-time RT-PCR (98.7%; 95% CI 98.1–99.3) and then RTCIT (96.8%; 95% CI 95.8–97.7). We also found that conventional RT-PCR provided a better diagnostic sensitivity level (99.3% ±4.4%) than FAT (98.7% ±1.6%), real-time RT-PCR (97.9% ±0.8%) and RTCIT (95.3% ±5.1%). Regarding diagnostic specificity, RTCIT was the most specific technique (96.4% ±3.9%) followed closely by FAT (95.6% ±3.8%), real-time RT-PCR (95.0% ±1.8%) and conventional RT-PCR (92.9% ±0.5%). Due to multiple testing of the samples with different techniques, the overall diagnostic conclusion was also evaluated, and found to reach an inter-laboratory concordance level of 99.3%. The concordance for diagnostic sensitivity was 99.6% ±2.0% and for diagnostic specificity, 98.0% ±8.5%. Molecular biology techniques were, however, found to be less specific than expected. The potential reasons for such findings are discussed herein. The regular organisation of performance tests has contributed to an increase in the performance of participating laboratories over time, demonstrating the benefits of such testing. Maintaining a high-quality rabies diagnosis capability on a global scale is key to achieving the goal of eliminating dog-mediated human rabies deaths. The regular organisation of exercises on each continent using selected local strains to be tested according to the local epidemiological situation is one factor that could help increase reliable diagnosis worldwide. Rabies diagnosis capabilities could indeed be enhanced by providing adequate and sustainable proficiency testing on a large scale and in the long term This study shares the rabies diagnosis proficiency test results of 73 laboratories on animal specimens using four techniques (FAT, RTCIT, conventional RT-PCR and real-time RT-PCR) organised over a 10-year period. This long-term exercise allowed us to compute accurate sensitivity and specificity values for the rabies diagnosis test for a large panel of laboratories. Conventional RT-PCR provided a better diagnostic sensitivity level than FAT, real-time RT-PCR and RTCIT. Regarding diagnostic specificity, RTCIT was the most specific technique followed closely by FAT, real-time RT-PCR and conventional RT-PCR. The specificity of molecular biology techniques was found to be lower than expected. The potential reasons for such findings are discussed herein. The regular organisation of performance tests has contributed to an increase in the performance of participating laboratories over time, demonstrating the likely benefits of such testing.
Collapse
Affiliation(s)
- Emmanuelle Robardet
- ANSES, Nancy Laboratory for Rabies and Wildlife–WHO Collaborating Centre for Research and Management in Zoonoses Control; OIE Reference Laboratory for Rabies; European Union Reference Laboratory for Rabies; European Union Reference Laboratory for Rabies Serology—Bâtiment H, Technopôle Agricole et Vétérinaire, Malzéville, France
- * E-mail:
| | - Alexandre Servat
- ANSES, Nancy Laboratory for Rabies and Wildlife–WHO Collaborating Centre for Research and Management in Zoonoses Control; OIE Reference Laboratory for Rabies; European Union Reference Laboratory for Rabies; European Union Reference Laboratory for Rabies Serology—Bâtiment H, Technopôle Agricole et Vétérinaire, Malzéville, France
| | - Jonathan Rieder
- ANSES, Nancy Laboratory for Rabies and Wildlife–WHO Collaborating Centre for Research and Management in Zoonoses Control; OIE Reference Laboratory for Rabies; European Union Reference Laboratory for Rabies; European Union Reference Laboratory for Rabies Serology—Bâtiment H, Technopôle Agricole et Vétérinaire, Malzéville, France
| | - Evelyne Picard-Meyer
- ANSES, Nancy Laboratory for Rabies and Wildlife–WHO Collaborating Centre for Research and Management in Zoonoses Control; OIE Reference Laboratory for Rabies; European Union Reference Laboratory for Rabies; European Union Reference Laboratory for Rabies Serology—Bâtiment H, Technopôle Agricole et Vétérinaire, Malzéville, France
| | - Florence Cliquet
- ANSES, Nancy Laboratory for Rabies and Wildlife–WHO Collaborating Centre for Research and Management in Zoonoses Control; OIE Reference Laboratory for Rabies; European Union Reference Laboratory for Rabies; European Union Reference Laboratory for Rabies Serology—Bâtiment H, Technopôle Agricole et Vétérinaire, Malzéville, France
| |
Collapse
|
8
|
Torquato RBC, Iamamoto K, Fernandes ER, Achkar S, Silva SR, Katz ISS, Guedes F. Detection of rabies virus antigen by the indirect rapid immunohistochemistry test in equines and comparisons with other diagnostic techniques. Zoonoses Public Health 2020; 67:651-657. [PMID: 32537888 DOI: 10.1111/zph.12745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 04/03/2020] [Accepted: 05/17/2020] [Indexed: 11/30/2022]
Abstract
Laboratory diagnosis of rabies in equines is essential for distinguishing the disease from other sources of encephalitis. Diagnosis by conventional techniques such as a direct fluorescent antibody test (dFAT) or viral isolation in mice or cell culture can be difficult, and the application of molecular biological methods may be necessary. We performed an indirect rapid immunohistochemistry test (iRIT) for the detection of the rabies virus (RABV) antigen in the central nervous system (CNS) of equines and compared the results with those of other diagnostic techniques. We reviewed result records from the Rabies Diagnosis Laboratory at Instituto Pasteur, São Paulo, Brazil, of 174 samples of equine CNS from July 2014 to June 2016, which were investigated by dFAT, rabies tissue culture infection test (RTCIT), mouse inoculation test (MIT) and reverse transcription-polymerase chain reaction (RT-PCR) followed by genetic sequencing. These samples, 29 presented divergent results among techniques and were selected for the performed in the iRIT. The detected positivity rate was 4/29 (14%) by dFAT, 5/28 (18%) by RTCIT, 10/29 (35%) by MIT and 26/27 (96%) by RT-PCR. We analysed 29 samples through imprints of the cortex, hippocampus, cerebellum and brainstem in slides fixed in 10% buffered formaldehyde. Eighteen samples were identified as positive (62%) by iRIT assay, representing a greater number of positive cases than that detected by dFAT, MIT and RTCIT but not by RT-PCR. Among the brain regions, the brainstem presented the highest positivity (78%), followed by the hippocampus (69%), cerebellum (67%) and cortex (67%). Our results provide evidence that iRIT can contribute to a rapid diagnosis of rabies in equines and that complementary tests should be used to improve diagnostic accuracy in this species.
Collapse
|
9
|
Ukamaka EU, Coetzer A, Scott TP, Anene BM, Ezeokonkwo RC, Nwosuh CI, Nel LH, Sabeta CT. Economic and feasibility comparison of the dRIT and DFA for decentralized rabies diagnosis in resource-limited settings: The use of Nigerian dog meat markets as a case study. PLoS Negl Trop Dis 2020; 14:e0008088. [PMID: 32109246 PMCID: PMC7065817 DOI: 10.1371/journal.pntd.0008088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/11/2020] [Accepted: 01/26/2020] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Rabies lyssavirus (RABV) is the aetiologic agent of rabies, a disease that is severely underreported in Nigeria as well as elsewhere in Africa and Asia. Despite the role that rabies diagnosis plays towards elucidating the true burden of the disease, Nigeria-a country of 180 million inhabitants-has a limited number of diagnostic facilities. In this study, we sought to investigate two of the World Organization for Animal Health (OIE)-recommended diagnostic assays for rabies-viz; the direct fluorescent antibody test (DFA) and the direct rapid immunohistochemical test (dRIT) in terms of their relative suitability in resource-limited settings. Our primary considerations were (1) the financial feasibility for implementation and (2) the diagnostic efficacy. As a case study, we used suspect rabies samples from dog meat markets in Nigeria. METHODS/PRINCIPAL FINDINGS By developing a simple simulation framework, we suggested that the assay with the lowest cost to implement and routinely use was the dRIT assay. The costs associated with the dRIT were lower in all simulated scenarios, irrespective of the number of samples tested per year. In addition to the cost analysis, the diagnostic efficacies of the two assays were evaluated. To do this, a cohort of DFA-positive and -negative samples collected from dog meat markets in Nigeria were initially diagnosed using the DFA in Nigeria and subsequently sent to South Africa for diagnostic confirmation. In South Africa, all the specimens were re-tested with the DFA, the dRIT and a quantitative real-time polymerase chain reaction (qRT-PCR). In our investigation, discrepancies were observed between the three diagnostic assays; with the incongruent results being resolved by means of confirmatory testing using the heminested reverse transcription polymerase reaction and sequencing to confirm that they were not contamination. CONCLUSIONS/SIGNIFICANCE The data obtained from this study suggested that the dRIT was not only an effective diagnostic assay that could be used to routinely diagnose rabies, but that the assay was also the most cost-effective option among all of the OIE recommended methods. In addition, the results of our investigation confirmed that some of the dogs slaughtered in dog markets were rabies-positive and that the markets posed a potential public health threat. Lastly, our data showed that the DFA, although regarded as the gold standard test for rabies, has some limitations-particularly at low antigen levels. Based on the results reported here and the current challenges faced in Nigeria, we believe that the dRIT assay would be the most suitable laboratory test for decentralized or confirmatory rabies diagnosis in Nigeria, given its relative speed, accuracy, cost and ease of use.
Collapse
Affiliation(s)
- Eze U. Ukamaka
- Department of Veterinary Medicine, University of Nigeria, Nsukka, Nigeria
- * E-mail:
| | - Andre Coetzer
- Department of Biochemistry, Genetics and Microbiology,University of Pretoria, Pretoria, South Africa
- Global Alliance for Rabies Control SA NPC, Pretoria, South Africa
| | - Terence P. Scott
- Department of Biochemistry, Genetics and Microbiology,University of Pretoria, Pretoria, South Africa
- Global Alliance for Rabies Control SA NPC, Pretoria, South Africa
| | - Boniface M. Anene
- Department of Veterinary Medicine, University of Nigeria, Nsukka, Nigeria
| | - Romanus C. Ezeokonkwo
- Department of Veterinary Parasitology and Entomology, Faculty of Veterinary Medicine, University of Nigeria, Nsukka, Nigeria
| | - Chika I. Nwosuh
- Rabies Unit, Central Diagnostic Laboratory, National Veterinary Research Institute, Vom, Jos, Nigeria
| | - Louis H. Nel
- Department of Biochemistry, Genetics and Microbiology,University of Pretoria, Pretoria, South Africa
- Global Alliance for Rabies Control SA NPC, Pretoria, South Africa
| | - Claude T. Sabeta
- OIE Rabies Reference Laboratory, Agricultural Research Council-Onderstepoort Veterinary Institute, Pretoria, South Africa
- Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
10
|
Naji E, Fadajan Z, Afshar D, Fazeli M. Comparison of Reverse Transcription Loop-Mediated Isothermal Amplification Method with SYBR Green Real-Time RT-PCR and Direct Fluorescent Antibody Test for Diagnosis of Rabies. Jpn J Infect Dis 2019; 73:19-25. [PMID: 31474697 DOI: 10.7883/yoken.jjid.2019.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Rabies as an endemic disease in most Asian and African countries, especially in remote areas, and requires a reliable diagnostic method. This study aimed to develop a reverse transcription loop-mediated isothermal amplification (RT-LAMP) method for rapid detection of rabies virus RNA in the brain samples, compared to SYBR Green real time RT-PCR test as a molecular technique and direct fluorescent antibody test as a serological method. In this study, RT-LAMP was developed to diagnose rabies. Six primers were designed based on the nucleoprotein (N) of rabies virus. The sensitivity and specificity of SYBR Green real-time RT-PCR and RT-LAMP methods were also determined.RT-LAMP was optimized at 58 ℃ for 60 min. The sensitivity and specificity of RT-LAMP and SYBR Green real-time RT-PCR were 91.2% and 84.2%, and 94.12% and 88.9%, respectively. The slight difference between the sensitivity and specificity of RT-LAMP and that of SYBR Green Real-Time RT-PCR demonstrated that RT-LAMP could be used as a reliable and cost-effective method for the diagnosis of rabies.
Collapse
Affiliation(s)
- Elahe Naji
- The National Center for Reference and Research on Rabies, Virology Department, Pasteur Institute of Iran
| | - Zohreh Fadajan
- The National Center for Reference and Research on Rabies, Virology Department, Pasteur Institute of Iran
| | - Davoud Afshar
- Department of Microbiology, School of Medicine, Zanjan University of Medical Sciences
| | - Maryam Fazeli
- The National Center for Reference and Research on Rabies, Virology Department, Pasteur Institute of Iran
| |
Collapse
|
11
|
Coertse J, Weyer J, Nel LH, Markotter W. Reverse transcription recombinase polymerase amplification assay for rapid detection of canine associated rabies virus in Africa. PLoS One 2019; 14:e0219292. [PMID: 31276479 PMCID: PMC6611627 DOI: 10.1371/journal.pone.0219292] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/20/2019] [Indexed: 12/22/2022] Open
Abstract
Rabies is a neglected disease mostly affecting the developing world. Accurate and reliable diagnostic and surveillance data forms the foundation for the formulation and monitoring of control strategies. Although various sensitive and specific tests are available for detection of rabies virus, implementation of these tests in low-resource settings are challenging and remains limited. In this study, we describe the developed of a reverse transcription recombinase polymerase amplification assay for the detection of rabies virus. The analytical sensitivity of this assay was determined to be 562 RNA copies and was performed in 20 minutes. The diagnostic sensitivity of the RT-RPA was 100% for detection of rabies virus in field samples. In conclusion, the RT-RPA assay allowed for very quick and sensitive detection of rabies virus and could be adapted for use in low-source settings.
Collapse
Affiliation(s)
- Jessica Coertse
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Jacqueline Weyer
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- The Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, a Division of the National Health Laboratory Services, Sandringham, South Africa
| | - Louis H. Nel
- Centre for Viral Zoonoses, Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
12
|
Picard-Meyer E, Peytavin de Garam C, Schereffer JL, Robardet E, Cliquet F. Evaluation of six TaqMan RT-rtPCR kits on two thermocyclers for the reliable detection of rabies virus RNA. J Vet Diagn Invest 2018; 31:47-57. [PMID: 30541405 DOI: 10.1177/1040638718818223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Rabies is diagnosed postmortem in animals, based on tests prescribed by the World Organization for Animal Health (OIE), such as the fluorescent antibody test, the direct rapid immunohistochemistry test, or pan-lyssavirus PCR assays. Several reverse-transcription real-time PCR (RT-rtPCR) methods have been developed and validated for rapid and accurate detection of lyssaviruses. We evaluated the performance of 6 TaqMan RT-rtPCR kits using different commercial master mixes and 2 real-time thermocyclers. Changing the master mix overall did not influence the TaqMan RT-rtPCR performance, regardless of the thermocycler used. The limits of detection at the 95% confidence level were 18.1-25.8 copies/µL for the Rotor-Gene Q MDx thermocycler and 16.7-21.5 for the Mx3005P thermocycler. Excellent repeatability was demonstrated for rabies virus (RABV) RNA samples of 100, 50, and 25 copies/µL regardless of the thermocycler used. RABV field samples ( n = 35) isolated worldwide gave positive results using the most efficient of the 6 kits tested, with a copy number of 6.03 × 102 to 6.78 × 107 RNA copies per reaction. The TaqMan RT-rtPCR assay provides sensitive and rapid amplification of RABV RNA.
Collapse
Affiliation(s)
| | | | | | | | - Florence Cliquet
- ANSES Nancy Laboratory for Rabies and Wildlife, Malzéville, France
| |
Collapse
|
13
|
Gigante CM, Dettinger L, Powell JW, Seiders M, Condori REC, Griesser R, Okogi K, Carlos M, Pesko K, Breckenridge M, Simon EMM, Chu MYJV, Davis AD, Brunt SJ, Orciari L, Yager P, Carson WC, Hartloge C, Saliki JT, Sanchez S, Deldari M, Hsieh K, Wadhwa A, Wilkins K, Peredo VY, Rabideau P, Gruhn N, Cadet R, Isloor S, Nath SS, Joseph T, Gao J, Wallace R, Reynolds M, Olson VA, Li Y. Multi-site evaluation of the LN34 pan-lyssavirus real-time RT-PCR assay for post-mortem rabies diagnostics. PLoS One 2018; 13:e0197074. [PMID: 29768505 PMCID: PMC5955534 DOI: 10.1371/journal.pone.0197074] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/25/2018] [Indexed: 12/15/2022] Open
Abstract
Rabies is a fatal zoonotic disease that requires fast, accurate diagnosis to prevent disease in an exposed individual. The current gold standard for post-mortem diagnosis of human and animal rabies is the direct fluorescent antibody (DFA) test. While the DFA test has proven sensitive and reliable, it requires high quality antibody conjugates, a skilled technician, a fluorescence microscope and diagnostic specimen of sufficient quality. The LN34 pan-lyssavirus real-time RT-PCR assay represents a strong candidate for rabies post-mortem diagnostics due to its ability to detect RNA across the diverse Lyssavirus genus, its high sensitivity, its potential for use with deteriorated tissues, and its simple, easy to implement design. Here, we present data from a multi-site evaluation of the LN34 assay in 14 laboratories. A total of 2,978 samples (1,049 DFA positive) from Africa, the Americas, Asia, Europe, and the Middle East were tested. The LN34 assay exhibited low variability in repeatability and reproducibility studies and was capable of detecting viral RNA in fresh, frozen, archived, deteriorated and formalin-fixed brain tissue. The LN34 assay displayed high diagnostic specificity (99.68%) and sensitivity (99.90%) when compared to the DFA test, and no DFA positive samples were negative by the LN34 assay. The LN34 assay produced definitive findings for 80 samples that were inconclusive or untestable by DFA; 29 were positive. Five samples were inconclusive by the LN34 assay, and only one sample was inconclusive by both tests. Furthermore, use of the LN34 assay led to the identification of one false negative and 11 false positive DFA results. Together, these results demonstrate the reliability and robustness of the LN34 assay and support a role for the LN34 assay in improving rabies diagnostics and surveillance.
Collapse
Affiliation(s)
- Crystal M. Gigante
- Poxvirus and Rabies Branch, Division of High Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Lisa Dettinger
- Bureau of Laboratories, Pennsylvania Department of Health, Exton, Pennsylvania, United States of America
| | - James W. Powell
- Rabies Unit, Wisconsin State Laboratory of Hygiene, Madison, Wisconsin, United States of America
| | - Melanie Seiders
- Bureau of Laboratories, Pennsylvania Department of Health, Exton, Pennsylvania, United States of America
| | - Rene Edgar Condori Condori
- Poxvirus and Rabies Branch, Division of High Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Richard Griesser
- Rabies Unit, Wisconsin State Laboratory of Hygiene, Madison, Wisconsin, United States of America
| | - Kenneth Okogi
- Rabies Laboratory, Center for Zoonotic and Vectorborne Diseases, Maryland Department of Health, Baltimore, Maryland, United States of America
| | - Maria Carlos
- Rabies Laboratory, Center for Zoonotic and Vectorborne Diseases, Maryland Department of Health, Baltimore, Maryland, United States of America
| | - Kendra Pesko
- Scientific Laboratory Division, New Mexico Department of Health, Santa Fe, New Mexico, United States of America
| | - Mike Breckenridge
- Scientific Laboratory Division, New Mexico Department of Health, Santa Fe, New Mexico, United States of America
| | - Edson Michael M. Simon
- Special Pathogens Laboratory, Department of Health, Research Institute for Tropical Medicine, Alabang Muntinlupa City, Manila, Philippines
| | - Maria Yna Joyce V. Chu
- Special Pathogens Laboratory, Department of Health, Research Institute for Tropical Medicine, Alabang Muntinlupa City, Manila, Philippines
| | - April D. Davis
- Rabies Laboratory, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Scott J. Brunt
- Rabies Laboratory, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Lillian Orciari
- Poxvirus and Rabies Branch, Division of High Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Pamela Yager
- Poxvirus and Rabies Branch, Division of High Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - William C. Carson
- Poxvirus and Rabies Branch, Division of High Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Claire Hartloge
- Poxvirus and Rabies Branch, Division of High Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jeremiah T. Saliki
- Athens Veterinary Diagnostic Laboratory, University of Georgia, Athens, Georgia, United States of America
| | - Susan Sanchez
- Athens Veterinary Diagnostic Laboratory, University of Georgia, Athens, Georgia, United States of America
| | - Mojgan Deldari
- California Department of Public Health, Sacramento, California, United States of America
| | - Kristina Hsieh
- California Department of Public Health, Sacramento, California, United States of America
| | - Ashutosh Wadhwa
- Poxvirus and Rabies Branch, Division of High Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Kimberly Wilkins
- Poxvirus and Rabies Branch, Division of High Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Veronica Yung Peredo
- Rabies section, Viral Disease, Public Health Institute of Chile, Santiago, Chile
| | - Patricia Rabideau
- Public Health Command Europe, Laboratory Sciences, Biological Analysis Division, Kirchberg Kaserne, Landstuhl, Germany
| | - Nina Gruhn
- Public Health Command Europe, Laboratory Sciences, Biological Analysis Division, Kirchberg Kaserne, Landstuhl, Germany
| | - Rolain Cadet
- Ministère de l’Agriculture, Port-au-Prince, Haiti
| | - Shrikrishna Isloor
- OIE Twinned KVAFSU-CVA-Crucell Rabies Diagnostic Laboratory, Deptartment of Veterinary Microbiology, Veterinary College, KVAFSU, Hebbal, Bangalore, India
| | - Sujith S. Nath
- OIE Twinned KVAFSU-CVA-Crucell Rabies Diagnostic Laboratory, Deptartment of Veterinary Microbiology, Veterinary College, KVAFSU, Hebbal, Bangalore, India
| | - Tomy Joseph
- Animal Health Centre, Ministry of Agriculture, Abbotsford, British Columbia, Canada
| | - Jinxin Gao
- Poxvirus and Rabies Branch, Division of High Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Ryan Wallace
- Poxvirus and Rabies Branch, Division of High Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Mary Reynolds
- Poxvirus and Rabies Branch, Division of High Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Victoria A. Olson
- Poxvirus and Rabies Branch, Division of High Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Yu Li
- Poxvirus and Rabies Branch, Division of High Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
14
|
Dedkov V, Deviatkin A, Poleshchuk Е, Safonova M, Blinova E, Shchelkanov MY, Sidorov G, Simonova E, Shipulin G. Development and evaluation of a RT-qPCR assay for fast and sensitive rabies diagnosis. Diagn Microbiol Infect Dis 2018; 90:18-25. [DOI: 10.1016/j.diagmicrobio.2017.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 12/17/2022]
|
15
|
Singh R, Singh KP, Cherian S, Saminathan M, Kapoor S, Manjunatha Reddy GB, Panda S, Dhama K. Rabies - epidemiology, pathogenesis, public health concerns and advances in diagnosis and control: a comprehensive review. Vet Q 2017. [PMID: 28643547 DOI: 10.1080/01652176.2017.1343516] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Rabies is a zoonotic, fatal and progressive neurological infection caused by rabies virus of the genus Lyssavirus and family Rhabdoviridae. It affects all warm-blooded animals and the disease is prevalent throughout the world and endemic in many countries except in Islands like Australia and Antarctica. Over 60,000 peoples die every year due to rabies, while approximately 15 million people receive rabies post-exposure prophylaxis (PEP) annually. Bite of rabid animals and saliva of infected host are mainly responsible for transmission and wildlife like raccoons, skunks, bats and foxes are main reservoirs for rabies. The incubation period is highly variable from 2 weeks to 6 years (avg. 2-3 months). Though severe neurologic signs and fatal outcome, neuropathological lesions are relatively mild. Rabies virus exploits various mechanisms to evade the host immune responses. Being a major zoonosis, precise and rapid diagnosis is important for early treatment and effective prevention and control measures. Traditional rapid Seller's staining and histopathological methods are still in use for diagnosis of rabies. Direct immunofluoroscent test (dFAT) is gold standard test and most commonly recommended for diagnosis of rabies in fresh brain tissues of dogs by both OIE and WHO. Mouse inoculation test (MIT) and polymerase chain reaction (PCR) are superior and used for routine diagnosis. Vaccination with live attenuated or inactivated viruses, DNA and recombinant vaccines can be done in endemic areas. This review describes in detail about epidemiology, transmission, pathogenesis, advances in diagnosis, vaccination and therapeutic approaches along with appropriate prevention and control strategies.
Collapse
Affiliation(s)
- Rajendra Singh
- a Division of Pathology , ICAR-Indian Veterinary Research Institute , Bareilly , Uttar Pradesh , India
| | - Karam Pal Singh
- b Centre for Animal Disease Research and Diagnosis (CADRAD) , ICAR-Indian Veterinary Research Institute , Bareilly , Uttar Pradesh , India
| | - Susan Cherian
- a Division of Pathology , ICAR-Indian Veterinary Research Institute , Bareilly , Uttar Pradesh , India
| | - Mani Saminathan
- a Division of Pathology , ICAR-Indian Veterinary Research Institute , Bareilly , Uttar Pradesh , India
| | - Sanjay Kapoor
- c Department of Veterinary Microbiology , LLR University of Veterinary and Animal Sciences , Hisar , Haryana , India
| | - G B Manjunatha Reddy
- d ICAR-National Institute of Veterinary Epidemiology and Disease Informatics , Bengaluru , Karnataka , India
| | - Shibani Panda
- a Division of Pathology , ICAR-Indian Veterinary Research Institute , Bareilly , Uttar Pradesh , India
| | - Kuldeep Dhama
- a Division of Pathology , ICAR-Indian Veterinary Research Institute , Bareilly , Uttar Pradesh , India
| |
Collapse
|
16
|
Schlottau K, Freuling CM, Müller T, Beer M, Hoffmann B. Development of molecular confirmation tools for swift and easy rabies diagnostics. Virol J 2017; 14:184. [PMID: 28938887 PMCID: PMC5610444 DOI: 10.1186/s12985-017-0853-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 09/20/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND As rabies still represents a major public threat with tens of thousands of deaths per year, particularly in developing countries, adequate surveillance based on rapid and reliable rabies diagnosis for both humans and animals is essential. Rabies diagnosis relies on highly sensitive and specific laboratory tests for detection of viral antigens. Among those tests, at present the immunofluorescence antibody test is the "gold standard test" for rabies diagnosis, followed by virus isolation in either mice or cell culture. Because of the advantages of molecular assays in terms of sensitivity and applicability their approval as confirmatory diagnostic test by international organizations (OIE, WHO) is envisaged. Therefore, the objective was to develop and validate novel molecular assays and RNA extraction methods for rabies that reduce the turnaround time but remain highly sensitive and specific. METHODS Here, novel assays, i.e. HighSpeed RT-qPCR and isothermal recombinase polymerase amplification (RPA) were designed and tested. Furthermore, three magnetic bead-based rapid extraction methods for manual or automated extraction were validated and combined with the new downstream assays. RESULTS While the conventional column based RNA extraction method showed the highest intra-run variations, all magnetic bead-based rapid extraction methods delivered nearly comparable sensitivity and efficiency of RNA recovery. All newly developed molecular tests were able to detect different rabies virus strains in a markedly reduced timeframe in comparison to the standard diagnostic assays. The observed detection limit for the HighSpeed RT-qPCR was 10 genome copies per reaction, and 1000 genome copies per reaction for the RPA assay. CONCLUSION Magnetic bead-based rapid RNA extraction methods are highly sensitive and show a high level of reproducibility and therefore, are particularly suitable for molecular diagnostic assays including rabies. In addition, with a detection limit of 10 genome copies per reaction, the HighSpeed RT-qPCR is suitable for rapid ante mortem rabies diagnosis in humans as well as confirmatory test in integrated bite management and subsequent post-exposure prophylaxis.
Collapse
Affiliation(s)
- Kore Schlottau
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, D-17493, Greifswald-Insel Riems, Germany
| | - Conrad M Freuling
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, D-17493, Greifswald-Insel Riems, Germany
| | - Thomas Müller
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, D-17493, Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, D-17493, Greifswald-Insel Riems, Germany
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, D-17493, Greifswald-Insel Riems, Germany.
| |
Collapse
|
17
|
Coetzer A, Coertse J, Makalo MJ, Molomo M, Markotter W, Nel LH. Epidemiology of Rabies in Lesotho: The Importance of Routine Surveillance and Virus Characterization. Trop Med Infect Dis 2017; 2:E30. [PMID: 30270887 PMCID: PMC6082089 DOI: 10.3390/tropicalmed2030030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/14/2017] [Accepted: 07/16/2017] [Indexed: 12/25/2022] Open
Abstract
Rabies is widespread throughout Africa and Asia, despite the fact that the control and elimination of this disease has been proven to be feasible. Lesotho, a small landlocked country surrounded by South Africa, has been known to be endemic for rabies since the 1980s but the epidemiology of the disease remains poorly understood due to limited sample submission, constrained diagnostic capabilities, and a lack of molecular epidemiological data. Considering the existing challenges experienced in Lesotho, we aimed to evaluate the direct, rapid immunohistochemical test (DRIT) as an alternative to the direct fluorescent antibody (DFA) test for rabies diagnosis in Lesotho. Towards this aim, extensive training on the implementation and interpretation of the DRIT was hosted in Lesotho in April 2016 before both tests were applied to all samples subjected to routine rabies diagnosis at the Central Veterinary Laboratory (CVL). We found agreement between the DFA and DRIT assays in 90/96 samples (93.75%). The samples that produced inconsistent results (n = 6) were re-tested a further two times with both assays before being subjected to a real-time qPCR to confirm the diagnosis. Additionally, a statistically significant three-fold increase in the average number of samples submitted per month was observed after the DRIT implementation started, following continuous rabies awareness initiatives amongst the animal health professionals in the country over a 12-month period (p = 0.0279). Partial G-L intergenic regions of selected rabies-positive samples (n = 21) were amplified, sequenced, and subjected to phylogenetic analyses. Molecular epidemiological analyses, that included viruses from neighbouring provinces in South Africa, suggested that at least three independent rabies cycles within Lesotho were implicated in instances of cross-border transmission. This study has evaluated alternative methods for diagnosing and improving rabies surveillance in Lesotho, as well as providing new information that would be of importance in the planning of future disease intervention campaigns, not only in Lesotho, but also in neighbouring South Africa.
Collapse
Affiliation(s)
- Andre Coetzer
- Department of Microbiology and Plant Pathology, Faculty of Natural and Agricultural Sciences, University of Pretoria, 0001 Pretoria, South Africa.
- Global Alliance for Rabies Control SA NPC, Erasmus Forum A434, South Erasmus Rand, 0181 Pretoria, South Africa.
| | - Jessica Coertse
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, 0001 Pretoria, South Africa.
| | - Mabusetsa Joseph Makalo
- Department of Livestock Services, Ministry of Agriculture and Food Security, Private Bag A82, 100 Maseru, Lesotho.
| | - Marosi Molomo
- Department of Livestock Services, Ministry of Agriculture and Food Security, Private Bag A82, 100 Maseru, Lesotho.
| | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, 0001 Pretoria, South Africa.
| | - Louis Hendrik Nel
- Department of Microbiology and Plant Pathology, Faculty of Natural and Agricultural Sciences, University of Pretoria, 0001 Pretoria, South Africa.
- Global Alliance for Rabies Control SA NPC, Erasmus Forum A434, South Erasmus Rand, 0181 Pretoria, South Africa.
| |
Collapse
|
18
|
Evaluation of a TaqMan Array Card for Detection of Central Nervous System Infections. J Clin Microbiol 2017; 55:2035-2044. [PMID: 28404679 DOI: 10.1128/jcm.02469-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/06/2017] [Indexed: 11/20/2022] Open
Abstract
Infections of the central nervous system (CNS) are often acute, with significant morbidity and mortality. Routine diagnosis of such infections is limited in developing countries and requires modern equipment in advanced laboratories that may be unavailable to a number of patients in sub-Saharan Africa. We developed a TaqMan array card (TAC) that detects multiple pathogens simultaneously from cerebrospinal fluid. The 21-pathogen CNS multiple-pathogen TAC (CNS-TAC) assay includes two parasites (Balamuthia mandrillaris and Acanthamoeba), six bacterial pathogens (Streptococcus pneumoniae, Haemophilus influenzae, Neisseria meningitidis, Mycoplasma pneumoniae, Mycobacterium tuberculosis, and Bartonella), and 13 viruses (parechovirus, dengue virus, Nipah virus, varicella-zoster virus, mumps virus, measles virus, lyssavirus, herpes simplex viruses 1 and 2, Epstein-Barr virus, enterovirus, cytomegalovirus, and chikungunya virus). The card also includes human RNase P as a nucleic acid extraction control and an internal manufacturer control, GAPDH (glyceraldehyde-3-phosphate dehydrogenase). This CNS-TAC assay can test up to eight samples for all 21 agents within 2.5 h following nucleic acid extraction. The assay was validated for linearity, limit of detection, sensitivity, and specificity by using either live viruses (dengue, mumps, and measles viruses) or nucleic acid material (Nipah and chikungunya viruses). Of 120 samples tested by individual real-time PCR, 35 were positive for eight different targets, whereas the CNS-TAC assay detected 37 positive samples across nine different targets. The CNS-TAC assays showed 85.6% sensitivity and 96.7% specificity. Therefore, the CNS-TAC assay may be useful for outbreak investigation and surveillance of suspected neurological disease.
Collapse
|
19
|
Coetzer A, Anahory I, Dias PT, Sabeta CT, Scott TP, Markotter W, Nel LH. Enhanced diagnosis of rabies and molecular evidence for the transboundary spread of the disease in Mozambique. J S Afr Vet Assoc 2017; 88:e1-e9. [PMID: 28397511 PMCID: PMC6138130 DOI: 10.4102/jsava.v88i0.1397] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 10/31/2016] [Accepted: 12/08/2016] [Indexed: 12/03/2022] Open
Abstract
Rabies is a neglected zoonotic disease with veterinary and public health significance, particularly in Africa and Asia. The current knowledge of the epidemiology of rabies in Mozambique is limited because of inadequate sample submission, constrained diagnostic capabilities and a lack of molecular epidemiological research. We wanted to consider the direct, rapid immunohistochemical test (DRIT) as an alternative to the direct fluorescent antibody (DFA) for rabies diagnosis at the diagnostic laboratory of the Central Veterinary Laboratory (CVL), Directorate of Animal Science, Maputo, Mozambique. Towards this aim, as a training exercise at the World Organisation for Animal Health (OIE) Rabies Reference Laboratory in South Africa, we performed the DRIT on 29 rabies samples from across Mozambique. With the use of the DRIT, we found 15 of the 29 samples (52%) to be negative. The DRIT-negative samples were retested by DFA at the OIE Rabies Reference Laboratory, as well as with an established real-time Polymerase chain reaction, confirming the DRIT-negative results. The DRIT-positive results (14/29) were retested with the DFA and subsequently amplified, sequenced and subjected to phylogenetic analyses, confirming the presence of rabies RNA. Molecular epidemiological analyses that included viruses from neighbouring countries suggested that rabies cycles within Mozambique might be implicated in multiple instances of cross-border transmission. In this regard, our study has provided new insights that should be helpful in informing the next steps required to better diagnose, control and hopefully eliminate rabies in Mozambique.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Louis H Nel
- Department of Microbiology and Plant Pathology, University of Pretoria.
| |
Collapse
|
20
|
Development and validation of sensitive real-time RT-PCR assay for broad detection of rabies virus. J Virol Methods 2017; 243:120-130. [PMID: 28174073 DOI: 10.1016/j.jviromet.2016.12.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/26/2016] [Accepted: 12/27/2016] [Indexed: 01/17/2023]
Abstract
Rabies virus (RABV) remains one of the most important global zoonotic pathogens. RABV causes rabies, an acute encephalomyelitis associated with a high rate of mortality in humans and animals and affecting different parts of the world, particularly in Asia and Africa. Confirmation of rabies diagnosis relies on laboratory diagnosis, in which molecular techniques such as detection of viral RNA by reverse transcription polymerase chain reaction (RT-PCR) are increasingly being used. In this study, two real-time quantitative RT-PCR assays were developed for large-spectrum detection of RABV, with a focus on African isolates. The primer and probe sets were targeted highly conserved regions of the nucleoprotein (N) and polymerase (L) genes. The results indicated the absence of non-specific amplification and cross-reaction with a range of other viruses belonging to the same taxonomic family, i.e. Rhabdoviridae, as well as negative brain tissues from various host species. Analytical sensitivity ranged between 100 to 10 standard RNA copies detected per reaction for N-gene and L-gene assays, respectively. Effective detection and high sensitivity of these assays on African isolates showed that they can be successfully applied in general research and used in diagnostic process and epizootic surveillance in Africa using a double-check strategy.
Collapse
|
21
|
Coertse J, Markotter W, le Roux K, Stewart D, Sabeta CT, Nel LH. New isolations of the rabies-related Mokola virus from South Africa. BMC Vet Res 2017; 13:37. [PMID: 28143485 PMCID: PMC5282659 DOI: 10.1186/s12917-017-0948-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/12/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Mokola virus (MOKV) is a rabies-related lyssavirus and appears to be exclusive to the African continent. Only 24 cases of MOKV, which includes two human cases, have been reported since its identification in 1968. MOKV has an unknown reservoir host and current commercial vaccines do not confer protection against MOKV. RESULTS We describe three new isolations of MOKV from domestic cats in South Africa. Two cases were retrospectively identified from 2012 and an additional one in 2014. CONCLUSIONS These cases emphasize the generally poor surveillance for rabies-related lyssaviruses and our inadequate comprehension of the epidemiology and ecology of Mokola lyssavirus per se.
Collapse
Affiliation(s)
- Jessica Coertse
- Center for Viral Zoonoses, Department of Medical Virology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, 0001, South Africa
| | - Wanda Markotter
- Center for Viral Zoonoses, Department of Medical Virology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, 0001, South Africa
| | - Kevin le Roux
- Allerton Provincial Veterinary Laboratory, Pietermaritzburg, KwaZulu-Natal, 3200, South Africa
| | - Daniel Stewart
- Department of Agriculture and Environmental Affairs, KwaZulu-Natal Rabies Project, Pietermaritzburg, KwaZulu-Natal, South Africa
| | - Claude T Sabeta
- Agricultural Research Council-Onderstepoort Veterinary Institute (ARC-OVI), Pretoria, 0110, South Africa
| | - Louis H Nel
- Department of Microbiology and Plant Pathology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, 0001, South Africa.
| |
Collapse
|
22
|
Wadhwa A, Wilkins K, Gao J, Condori Condori RE, Gigante CM, Zhao H, Ma X, Ellison JA, Greenberg L, Velasco-Villa A, Orciari L, Li Y. A Pan-Lyssavirus Taqman Real-Time RT-PCR Assay for the Detection of Highly Variable Rabies virus and Other Lyssaviruses. PLoS Negl Trop Dis 2017; 11:e0005258. [PMID: 28081126 PMCID: PMC5230753 DOI: 10.1371/journal.pntd.0005258] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 12/14/2016] [Indexed: 11/19/2022] Open
Abstract
Rabies, resulting from infection by Rabies virus (RABV) and related lyssaviruses, is one of the most deadly zoonotic diseases and is responsible for up to 70,000 estimated human deaths worldwide each year. Rapid and accurate laboratory diagnosis of rabies is essential for timely administration of post-exposure prophylaxis in humans and control of the disease in animals. Currently, only the direct fluorescent antibody (DFA) test is recommended for routine rabies diagnosis. Reverse-transcription polymerase chain reaction (RT-PCR) based diagnostic methods have been widely adapted for the diagnosis of other viral pathogens, but there is currently no widely accepted rapid real-time RT-PCR assay for the detection of all lyssaviruses. In this study, we demonstrate the validation of a newly developed multiplex real-time RT-PCR assay named LN34, which uses a combination of degenerate primers and probes along with probe modifications to achieve superior coverage of the Lyssavirus genus while maintaining sensitivity and specificity. The primers and probes of the LN34 assay target the highly conserved non-coding leader region and part of the nucleoprotein (N) coding sequence of the Lyssavirus genome to maintain assay robustness. The probes were further modified by locked nucleotides to increase their melting temperature to meet the requirements for an optimal real-time RT-PCR assay. The LN34 assay was able to detect all RABV variants and other lyssaviruses in a validation panel that included representative RABV isolates from most regions of the world as well as representatives of 13 additional Lyssavirus species. The LN34 assay was successfully used for both ante-mortem and post-mortem diagnosis of over 200 clinical samples as well as field derived surveillance samples. This assay represents a major improvement over previously published rabies specific RT-PCR and real-time RT-PCR assays because of its ability to universally detect RABV and other lyssaviruses, its high throughput capability and its simplicity of use, which can be quickly adapted in a laboratory to enhance the capacity of rabies molecular diagnostics. The LN34 assay provides an alternative approach for rabies diagnostics, especially in rural areas and rabies endemic regions that lack the conditions and broad experience required to run the standard DFA assay. Rabies is a preventable disease–but is still responsible for approximately 70,000 human deaths worldwide each year. The majority of human deaths occur in Asia and Africa where there is a lack of diagnostic resources and expertise, making it difficult to develop effective prevention and control strategies. In recent years, several real-time RT-PCR based diagnostic assays have been introduced to many developing countries in an effort to control the H1N1 pandemic flu, Ebola outbreak, and other tropical viral infections. In an effort to further improve rabies diagnostics, we developed a pan-lyssavirus Taqman real-time RT-PCR assay called LN34 for the detection of all known RABV variants and other lyssavirus species. The LN34 assay uses a combination of degenerate nucleotides, multiplex primers and probes, and unique probe modifications to achieve superior sensitivity and specificity compared to previously published RT-PCR based rabies diagnostics. Equally important, the LN34 assay is simple to set up, high throughput, combines multiple standard controls and can be used directly in widely available real-time RT-PCR systems. The LN34 assay was validated using a broad and comprehensive panel of highly diverse RABV variants and other lyssaviruses. A validated universal rabies diagnostic assay will be important in regions where RABV and other lyssaviruses co-circulate and for establishing a widely accepted diagnostic protocol. Over 200 clinical samples (including ante-mortem, post-mortem, and field derived samples) were tested with the LN34 assay, and the assay achieved 100% diagnostic sensitivity and specificity in our laboratory. Over 300 published genome sequences from representatives of RABV and other lyssaviruses were found to contain the conserved LN34 primer and probe targeting sites in an in silico analysis. We are expanding the validation of the LN34 assay to multiple domestic and international laboratories and expect the LN34 assay will drastically improve rabies diagnostic capacities globally.
Collapse
Affiliation(s)
- Ashutosh Wadhwa
- Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Kimberly Wilkins
- Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Jinxin Gao
- Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Rene Edgar Condori Condori
- Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Crystal M. Gigante
- Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Hui Zhao
- Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Xiaoyue Ma
- Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - James A. Ellison
- Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Lauren Greenberg
- Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Andres Velasco-Villa
- Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Lillian Orciari
- Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Yu Li
- Poxvirus and Rabies Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
- * E-mail:
| |
Collapse
|
23
|
Schwarz NG, Loderstaedt U, Hahn A, Hinz R, Zautner AE, Eibach D, Fischer M, Hagen RM, Frickmann H. Microbiological laboratory diagnostics of neglected zoonotic diseases (NZDs). Acta Trop 2017; 165:40-65. [PMID: 26391646 DOI: 10.1016/j.actatropica.2015.09.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 08/03/2015] [Accepted: 09/04/2015] [Indexed: 02/06/2023]
Abstract
This review reports on laboratory diagnostic approaches for selected, highly pathogenic neglected zoonotic diseases, i.e. anthrax, bovine tuberculosis, brucellosis, echinococcosis, leishmaniasis, rabies, Taenia solium-associated diseases (neuro-/cysticercosis & taeniasis) and trypanosomiasis. Diagnostic options, including microscopy, culture, matrix-assisted laser-desorption-ionisation time-of-flight mass spectrometry, molecular approaches and serology are introduced. These procedures are critically discussed regarding their diagnostic reliability and state of evaluation. For rare diseases reliable evaluation data are scarce due to the rarity of samples. If bio-safety level 3 is required for cultural growth, but such high standards of laboratory infrastructure are not available, serological and molecular approaches from inactivated sample material might be alternatives. Multiple subsequent testing using various test platforms in a stepwise approach may improve sensitivity and specificity. Cheap and easy to use tests, usually called "rapid diagnostic tests" (RDTs) may impact disease control measures, but should not preclude developing countries from state of the art diagnostics.
Collapse
|
24
|
Mélade J, McCulloch S, Ramasindrazana B, Lagadec E, Turpin M, Pascalis H, Goodman SM, Markotter W, Dellagi K. Serological Evidence of Lyssaviruses among Bats on Southwestern Indian Ocean Islands. PLoS One 2016; 11:e0160553. [PMID: 27501458 PMCID: PMC4976896 DOI: 10.1371/journal.pone.0160553] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/21/2016] [Indexed: 12/28/2022] Open
Abstract
We provide serological evidence of lyssavirus circulation among bats on southwestern Indian Ocean (SWIO) islands. A total of 572 bats belonging to 22 species were collected on Anjouan, Mayotte, La Réunion, Mauritius, Mahé and Madagascar and screened by the Rapid Fluorescent Focus Inhibition Test for the presence of neutralising antibodies against the two main rabies related lyssaviruses circulating on the African continent: Duvenhage lyssavirus (DUVV) and Lagos bat lyssavirus (LBV), representing phylogroups I and II, respectively. A total of 97 and 42 sera were able to neutralise DUVV and LBV, respectively. No serum neutralised both DUVV and LBV but most DUVV-seropositive bats (n = 32/220) also neutralised European bat lyssavirus 1 (EBLV-1) but not Rabies lyssavirus (RABV), the prototypic lyssavirus of phylogroup I. These results highlight that lyssaviruses belonging to phylogroups I and II circulate in regional bat populations and that the putative phylogroup I lyssavirus is antigenically closer to DUVV and EBLV-1 than to RABV. Variation between bat species, roost sites and bioclimatic regions were observed. All brain samples tested by RT-PCR specific for lyssavirus RNA were negative.
Collapse
Affiliation(s)
- Julien Mélade
- Centre de Recherche et de Veille sur les Maladies Emergentes dans l’Océan Indien (CRVOI), Plateforme de Recherche CYROI, Sainte Clotilde, La Réunion, France
- Université de La Réunion, UMR PIMIT «Processus Infectieux en Milieu Insulaire Tropical», INSERM U1187, CNRS 9192, IRD 249. Plateforme de Recherche CYROI, Saint Denis, La Réunion, France
- Institut de Recherche pour le Développement (IRD), Sainte-Clotilde, La Réunion, France
| | - Stewart McCulloch
- Center for Viral Zoonoses, Department of Medical Virology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Beza Ramasindrazana
- Centre de Recherche et de Veille sur les Maladies Emergentes dans l’Océan Indien (CRVOI), Plateforme de Recherche CYROI, Sainte Clotilde, La Réunion, France
- Université de La Réunion, UMR PIMIT «Processus Infectieux en Milieu Insulaire Tropical», INSERM U1187, CNRS 9192, IRD 249. Plateforme de Recherche CYROI, Saint Denis, La Réunion, France
- Institut de Recherche pour le Développement (IRD), Sainte-Clotilde, La Réunion, France
- Association Vahatra, Antananarivo, Madagascar
- Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Erwan Lagadec
- Centre de Recherche et de Veille sur les Maladies Emergentes dans l’Océan Indien (CRVOI), Plateforme de Recherche CYROI, Sainte Clotilde, La Réunion, France
- Université de La Réunion, UMR PIMIT «Processus Infectieux en Milieu Insulaire Tropical», INSERM U1187, CNRS 9192, IRD 249. Plateforme de Recherche CYROI, Saint Denis, La Réunion, France
- Institut de Recherche pour le Développement (IRD), Sainte-Clotilde, La Réunion, France
| | - Magali Turpin
- Centre de Recherche et de Veille sur les Maladies Emergentes dans l’Océan Indien (CRVOI), Plateforme de Recherche CYROI, Sainte Clotilde, La Réunion, France
- Université de La Réunion, UMR PIMIT «Processus Infectieux en Milieu Insulaire Tropical», INSERM U1187, CNRS 9192, IRD 249. Plateforme de Recherche CYROI, Saint Denis, La Réunion, France
- Institut de Recherche pour le Développement (IRD), Sainte-Clotilde, La Réunion, France
| | - Hervé Pascalis
- Centre de Recherche et de Veille sur les Maladies Emergentes dans l’Océan Indien (CRVOI), Plateforme de Recherche CYROI, Sainte Clotilde, La Réunion, France
- Université de La Réunion, UMR PIMIT «Processus Infectieux en Milieu Insulaire Tropical», INSERM U1187, CNRS 9192, IRD 249. Plateforme de Recherche CYROI, Saint Denis, La Réunion, France
- Institut de Recherche pour le Développement (IRD), Sainte-Clotilde, La Réunion, France
| | - Steven M. Goodman
- Association Vahatra, Antananarivo, Madagascar
- Field Museum of Natural History, Chicago, Illinois, United States of America
| | - Wanda Markotter
- Center for Viral Zoonoses, Department of Medical Virology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Koussay Dellagi
- Centre de Recherche et de Veille sur les Maladies Emergentes dans l’Océan Indien (CRVOI), Plateforme de Recherche CYROI, Sainte Clotilde, La Réunion, France
- Université de La Réunion, UMR PIMIT «Processus Infectieux en Milieu Insulaire Tropical», INSERM U1187, CNRS 9192, IRD 249. Plateforme de Recherche CYROI, Saint Denis, La Réunion, France
- Institut de Recherche pour le Développement (IRD), Sainte-Clotilde, La Réunion, France
| |
Collapse
|
25
|
Dacheux L, Larrous F, Lavenir R, Lepelletier A, Faouzi A, Troupin C, Nourlil J, Buchy P, Bourhy H. Dual Combined Real-Time Reverse Transcription Polymerase Chain Reaction Assay for the Diagnosis of Lyssavirus Infection. PLoS Negl Trop Dis 2016; 10:e0004812. [PMID: 27380028 PMCID: PMC4933377 DOI: 10.1371/journal.pntd.0004812] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 06/07/2016] [Indexed: 12/25/2022] Open
Abstract
The definitive diagnosis of lyssavirus infection (including rabies) in animals and humans is based on laboratory confirmation. The reference techniques for post-mortem rabies diagnosis are still based on direct immunofluorescence and virus isolation, but molecular techniques, such as polymerase chain reaction (PCR) based methods, are increasingly being used and now constitute the principal tools for diagnosing rabies in humans and for epidemiological analyses. However, it remains a key challenge to obtain relevant specificity and sensitivity with these techniques while ensuring that the genetic diversity of lyssaviruses does not compromise detection. We developed a dual combined real-time reverse transcription polymerase chain reaction (combo RT-qPCR) method for pan-lyssavirus detection. This method is based on two complementary technologies: a probe-based (TaqMan) RT-qPCR for detecting the RABV species (pan-RABV RT-qPCR) and a second reaction using an intercalating dye (SYBR Green) to detect other lyssavirus species (pan-lyssa RT-qPCR). The performance parameters of this combined assay were evaluated with a large panel of primary animal samples covering almost all the genetic variability encountered at the viral species level, and they extended to almost all lyssavirus species characterized to date. This method was also evaluated for the diagnosis of human rabies on 211 biological samples (positive n = 76 and negative n = 135) including saliva, skin and brain biopsies. It detected all 41 human cases of rabies tested and confirmed the sensitivity and the interest of skin biopsy (91.5%) and saliva (54%) samples for intra-vitam diagnosis of human rabies. Finally, this method was successfully implemented in two rabies reference laboratories in enzootic countries (Cambodia and Morocco). This combined RT-qPCR method constitutes a relevant, useful, validated tool for the diagnosis of rabies in both humans and animals, and represents a promising tool for lyssavirus surveillance.
Collapse
Affiliation(s)
- Laurent Dacheux
- Institut Pasteur, Lyssavirus Dynamics and Host Adaptation Unit, National Reference Centre for Rabies, WHO Collaborating Center for Reference and Research on Rabies, Paris, France
| | - Florence Larrous
- Institut Pasteur, Lyssavirus Dynamics and Host Adaptation Unit, National Reference Centre for Rabies, WHO Collaborating Center for Reference and Research on Rabies, Paris, France
| | - Rachel Lavenir
- Institut Pasteur, Lyssavirus Dynamics and Host Adaptation Unit, National Reference Centre for Rabies, WHO Collaborating Center for Reference and Research on Rabies, Paris, France
| | - Anthony Lepelletier
- Institut Pasteur, Lyssavirus Dynamics and Host Adaptation Unit, National Reference Centre for Rabies, WHO Collaborating Center for Reference and Research on Rabies, Paris, France
| | - Abdellah Faouzi
- Institut Pasteur du Maroc, Medical Virology and BSL3 Laboratory, Casablanca, Morocco
| | - Cécile Troupin
- Institut Pasteur, Lyssavirus Dynamics and Host Adaptation Unit, National Reference Centre for Rabies, WHO Collaborating Center for Reference and Research on Rabies, Paris, France
| | - Jalal Nourlil
- Institut Pasteur du Maroc, Medical Virology and BSL3 Laboratory, Casablanca, Morocco
| | - Philippe Buchy
- Institut Pasteur du Cambodge, Virology Unit, Phnom Penh, Cambodia
| | - Herve Bourhy
- Institut Pasteur, Lyssavirus Dynamics and Host Adaptation Unit, National Reference Centre for Rabies, WHO Collaborating Center for Reference and Research on Rabies, Paris, France
| |
Collapse
|
26
|
Weyer J, Msimang-Dermaux V, Paweska JT, le Roux K, Govender P, Coertse J, Markotter W, Nel LH, Blumberg LH. A case of human survival of rabies, South Africa. S Afr J Infect Dis 2016. [DOI: 10.1080/23120053.2016.1128151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
27
|
Mani RS, Anand AM, Madhusudana SN. Human rabies in India: an audit from a rabies diagnostic laboratory. Trop Med Int Health 2016; 21:556-63. [PMID: 26799375 DOI: 10.1111/tmi.12669] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Rabies, an acute progressive encephalomyelitis, continues to be a serious public health problem in India and many other countries in Asia and Africa. The low level of commitment to rabies control is partly attributable to challenges in laboratory diagnosis and lack of adequate surveillance to indicate the disease burden. A laboratory audit of human rabies cases was undertaken to disseminate information on the clinical, demographic, prophylactic and most importantly the laboratory diagnostic aspects of rabies. METHODS A retrospective analysis of all clinically suspected human rabies cases, whose samples were received at a rabies diagnostic laboratory in South India in the last 3 years, was performed. Clinical and demographic details of patients were obtained. The clinical samples included cerebrospinal fluid (CSF), serum, saliva and nuchal skin biopsy collected antemortem, and brain tissue obtained post-mortem. Various laboratory tests were performed for diagnosis. RESULTS Clinical samples from 128 patients with suspected rabies, from 11 states in India, were received for diagnostic confirmation. About 94% of the victims reported dog-bites, more than a third of them were children and most of the victims did not receive adequate post-exposure prophylaxis. Antemortem confirmation of rabies by a combination of laboratory diagnostic assays (detection of viral RNA in CSF, skin and saliva, and neutralising antibodies in CSF) could be achieved in 40.6% cases. CONCLUSIONS Increasing awareness about adequate post-exposure prophylaxis, additional rabies diagnostic facilities, and enhanced human and animal rabies surveillance to indicate the true disease burden are essential to control this fatal disease.
Collapse
Affiliation(s)
- Reeta Subramaniam Mani
- Department of Neurovirology, National Institute of Mental Health and Neurosciences, WHO Collaborating Centre for Reference and Research on Rabies, Bangalore, India
| | - Ashwini Manoor Anand
- Department of Neurovirology, National Institute of Mental Health and Neurosciences, WHO Collaborating Centre for Reference and Research on Rabies, Bangalore, India
| | - Shampur Narayan Madhusudana
- Department of Neurovirology, National Institute of Mental Health and Neurosciences, WHO Collaborating Centre for Reference and Research on Rabies, Bangalore, India
| |
Collapse
|
28
|
Markotter W, Coertse J, le Roux K, Peens J, Weyer J, Blumberg L, Nel LH. Utility of forensic detection of rabies virus in decomposed exhumed dog carcasses. J S Afr Vet Assoc 2015; 86:1220. [PMID: 26016574 PMCID: PMC6138121 DOI: 10.4102/jsava.v86i1.1220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 12/08/2014] [Accepted: 12/18/2014] [Indexed: 11/18/2022] Open
Abstract
This report describes four suspected rabies cases in domestic dogs that were involved in human exposures. In all these cases, the animals were buried for substantial times before rabies testing was performed. Animal rabies is endemic in South Africa and domestic dogs are the main vector for transmission to humans. Diagnosis of rabies in humans is complicated, and diagnosis in the animal vector can provide circumstantial evidence to support clinical diagnosis of rabies in humans. The gold standard diagnostic method, fluorescent antibody test (FAT), only delivers reliable results when performed on fresh brain material and therefore decomposed samples are rarely submitted for diagnostic testing. Severely decomposed brain material was tested for the presence of rabies virus genomic material using a quantitative real-time reverse transcription polymerase chain reaction (q-real-time RT-PCR) assay when conventional molecular methods were unsuccessful. This may be a useful tool in the investigation of cases where the opportunity to sample the suspected animals post mortem was forfeited and which would not be possible with conventional testing methodologies because of the decomposition of the material.
Collapse
Affiliation(s)
- Wanda Markotter
- Department of Microbiology and Plant Pathology, University of Pretoria.
| | | | | | | | | | | | | |
Collapse
|
29
|
Picard-Meyer E, Peytavin de Garam C, Schereffer JL, Marchal C, Robardet E, Cliquet F. Cross-platform evaluation of commercial real-time SYBR green RT-PCR kits for sensitive and rapid detection of European bat Lyssavirus type 1. BIOMED RESEARCH INTERNATIONAL 2015; 2015:839518. [PMID: 25785274 PMCID: PMC4345247 DOI: 10.1155/2015/839518] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 01/12/2015] [Indexed: 12/25/2022]
Abstract
This study evaluates the performance of five two-step SYBR Green RT-qPCR kits and five one-step SYBR Green qRT-PCR kits using real-time PCR assays. Two real-time thermocyclers showing different throughput capacities were used. The analysed performance evaluation criteria included the generation of standard curve, reaction efficiency, analytical sensitivity, intra- and interassay repeatability as well as the costs and the practicability of kits, and thermocycling times. We found that the optimised one-step PCR assays had a higher detection sensitivity than the optimised two-step assays regardless of the machine used, while no difference was detected in reaction efficiency, R (2) values, and intra- and interreproducibility between the two methods. The limit of detection at the 95% confidence level varied between 15 to 981 copies/µL and 41 to 171 for one-step kits and two-step kits, respectively. Of the ten kits tested, the most efficient kit was the Quantitect SYBR Green qRT-PCR with a limit of detection at 95% of confidence of 20 and 22 copies/µL on the thermocyclers Rotor gene Q MDx and MX3005P, respectively. The study demonstrated the pivotal influence of the thermocycler on PCR performance for the detection of rabies RNA, as well as that of the master mixes.
Collapse
Affiliation(s)
- Evelyne Picard-Meyer
- Anses, Laboratory for Rabies and Wildlife, WHO Collaborating Centre for Research and Management in Zoonoses Control, OIE Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies Serology, Technopôle Agricole et Vétérinaire, CS 40009, 54220 Malzéville, France
| | - Carine Peytavin de Garam
- Anses, Laboratory for Rabies and Wildlife, WHO Collaborating Centre for Research and Management in Zoonoses Control, OIE Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies Serology, Technopôle Agricole et Vétérinaire, CS 40009, 54220 Malzéville, France
| | - Jean Luc Schereffer
- Anses, Laboratory for Rabies and Wildlife, WHO Collaborating Centre for Research and Management in Zoonoses Control, OIE Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies Serology, Technopôle Agricole et Vétérinaire, CS 40009, 54220 Malzéville, France
| | - Clotilde Marchal
- Anses, Laboratory for Rabies and Wildlife, WHO Collaborating Centre for Research and Management in Zoonoses Control, OIE Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies Serology, Technopôle Agricole et Vétérinaire, CS 40009, 54220 Malzéville, France
| | - Emmanuelle Robardet
- Anses, Laboratory for Rabies and Wildlife, WHO Collaborating Centre for Research and Management in Zoonoses Control, OIE Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies Serology, Technopôle Agricole et Vétérinaire, CS 40009, 54220 Malzéville, France
| | - Florence Cliquet
- Anses, Laboratory for Rabies and Wildlife, WHO Collaborating Centre for Research and Management in Zoonoses Control, OIE Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies Serology, Technopôle Agricole et Vétérinaire, CS 40009, 54220 Malzéville, France
| |
Collapse
|
30
|
Abstract
Several rabies-related lyssaviruses have been associated with bat species in southern Africa, the rarest of these being Duvenhage virus (DUVV), for which only five isolations have been made over five decades. Three of these were from human fatalities, and it is not known which bat species acts as reservoir. In studying a population of Nycteris thebaica in the kingdom of Swaziland, a landlocked country bordering Mozambique and South Africa, we found evidence of the circulation of a lyssavirus. Virus-neutralization assays indicated DUVV-neutralizing antibodies in 30% of the sera collected from this population of N. thebaica, providing the first indication of a Duvenhage virus circulating in this particular species and the first evidence of a bat lyssavirus circulating in Swaziland bats.
Collapse
|
31
|
Deubelbeiss A, Zahno ML, Zanoni M, Bruegger D, Zanoni R. Real-Time RT-PCR for the Detection of Lyssavirus Species. J Vet Med 2014; 2014:476091. [PMID: 26464934 PMCID: PMC4590848 DOI: 10.1155/2014/476091] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/19/2014] [Accepted: 09/24/2014] [Indexed: 11/17/2022] Open
Abstract
The causative agents of rabies are single-stranded, negative-sense RNA viruses in the genus Lyssavirus of Rhabdoviridae, consisting of twelve classified and three as yet unclassified species including classical rabies virus (RABV). Highly neurotropic RABV causes rapidly progressive encephalomyelitis with nearly invariable fatal outcome. Rapid and reliable diagnosis of rabies is highly relevant for public and veterinary health. Due to growing variety of the genus Lyssavirus observed, the development of suitable molecular assays for diagnosis and differentiation is challenging. This work focused on the establishment of a suitable real-time RT-PCR technique for rabies diagnosis as a complement to fluorescent antibody test and rabies tissue culture infection test as gold standard for diagnosis and confirmation. The real-time RT-PCR was adapted with the goal to detect the whole spectrum of lyssavirus species, for nine of which synthesized DNA fragments were used. For the detection of species, seven probes were developed. Serial dilutions of the rabies virus strain CVS-11 showed a 100-fold higher sensitivity of real-time PCR compared to heminested RT-PCR. Using a panel of thirty-one lyssaviruses representing four species, the suitability of the protocol could be shown. Phylogenetic analysis of the sequences obtained by heminested PCR allowed correct classification of all viruses used.
Collapse
Affiliation(s)
- A. Deubelbeiss
- Institute of Virology and Immunology, 3012 Berne, Switzerland
| | - M.-L. Zahno
- Institute of Virology and Immunology, 3012 Berne, Switzerland
| | - M. Zanoni
- Institute of Virology and Immunology, 3012 Berne, Switzerland
| | - D. Bruegger
- Institute of Virology and Immunology, 3012 Berne, Switzerland
| | - R. Zanoni
- Institute of Virology and Immunology, 3012 Berne, Switzerland
| |
Collapse
|
32
|
Coetzer A, Sabeta CT, Markotter W, Rupprecht CE, Nel LH. Comparison of biotinylated monoclonal and polyclonal antibodies in an evaluation of a direct rapid immunohistochemical test for the routine diagnosis of rabies in southern Africa. PLoS Negl Trop Dis 2014; 8:e3189. [PMID: 25254652 PMCID: PMC4177867 DOI: 10.1371/journal.pntd.0003189] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 08/14/2014] [Indexed: 12/25/2022] Open
Abstract
The major etiological agent of rabies, rabies virus (RABV), accounts for tens of thousands of human deaths per annum. The majority of these deaths are associated with rabies cycles in dogs in resource-limited countries of Africa and Asia. Although routine rabies diagnosis plays an integral role in disease surveillance and management, the application of the currently recommended direct fluorescent antibody (DFA) test in countries on the African and Asian continents remains quite limited. A novel diagnostic assay, the direct rapid immunohistochemical test (dRIT), has been reported to have a diagnostic sensitivity and specificity equal to that of the DFA test while offering advantages in cost, time and interpretation. Prior studies used the dRIT utilized monoclonal antibody (MAb) cocktails. The objective of this study was to test the hypothesis that a biotinylated polyclonal antibody (PAb) preparation, applied in the dRIT protocol, would yield equal or improved results compared to the use of dRIT with MAbs. We also wanted to compare the PAb dRIT with the DFA test, utilizing the same PAb preparation with a fluorescent label. The PAb dRIT had a diagnostic sensitivity and specificity of 100%, which was shown to be marginally higher than the diagnostic efficacy observed for the PAb DFA test. The classical dRIT, relying on two-biotinylated MAbs, was applied to the same panel of samples and a reduced diagnostic sensitivity (83.50% and 90.78% respectively) was observed. Antigenic typing of the false negative samples indicated all of these to be mongoose RABV variants. Our results provided evidence that a dRIT with alternative antibody preparations, conjugated to a biotin moiety, has a diagnostic efficacy equal to that of a DFA relying on the same antibody and that the antibody preparation should be optimized for virus variants specific to the geographical area of focus.
Collapse
Affiliation(s)
- Andre Coetzer
- Department of Microbiology and Plant Pathology, University of Pretoria, Gauteng, South Africa
| | - Claude T. Sabeta
- Agricultural Research Council-Onderstepoort Veterinary Institute, Rabies Division, Gauteng, South Africa
| | - Wanda Markotter
- Department of Microbiology and Plant Pathology, University of Pretoria, Gauteng, South Africa
| | - Charles E. Rupprecht
- Ross University School of Veterinary Medicine, Basseterre, St. Kitts, West Indies
| | - Louis H. Nel
- Department of Microbiology and Plant Pathology, University of Pretoria, Gauteng, South Africa
| |
Collapse
|
33
|
Suin V, Nazé F, Francart A, Lamoral S, De Craeye S, Kalai M, Van Gucht S. A two-step lyssavirus real-time polymerase chain reaction using degenerate primers with superior sensitivity to the fluorescent antigen test. BIOMED RESEARCH INTERNATIONAL 2014; 2014:256175. [PMID: 24822188 PMCID: PMC4009295 DOI: 10.1155/2014/256175] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 03/15/2014] [Accepted: 03/15/2014] [Indexed: 12/25/2022]
Abstract
A generic two-step lyssavirus real-time reverse transcriptase polymerase chain reaction (qRT-PCR), based on a nested PCR strategy, was validated for the detection of different lyssavirus species. Primers with 17 to 30% of degenerate bases were used in both consecutive steps. The assay could accurately detect RABV, LBV, MOKV, DUVV, EBLV-1, EBLV-2, and ABLV. In silico sequence alignment showed a functional match with the remaining lyssavirus species. The diagnostic specificity was 100% and the sensitivity proved to be superior to that of the fluorescent antigen test. The limit of detection was ≤ 1 50% tissue culture infectious dose. The related vesicular stomatitis virus was not recognized, confirming the selectivity for lyssaviruses. The assay was applied to follow the evolution of rabies virus infection in the brain of mice from 0 to 10 days after intranasal inoculation. The obtained RNA curve corresponded well with the curves obtained by a one-step monospecific RABV-qRT-PCR, the fluorescent antigen test, and virus titration. Despite the presence of degenerate bases, the assay proved to be highly sensitive, specific, and reproducible.
Collapse
Affiliation(s)
- Vanessa Suin
- National Reference Centre of Rabies, Viral Diseases, Communicable and Infectious Diseases, Scientific Institute of Public Health (WIV-ISP), Engeland Street 642, 1180 Brussels, Belgium
| | - Florence Nazé
- National Reference Centre of Rabies, Viral Diseases, Communicable and Infectious Diseases, Scientific Institute of Public Health (WIV-ISP), Engeland Street 642, 1180 Brussels, Belgium
| | - Aurélie Francart
- National Reference Centre of Rabies, Viral Diseases, Communicable and Infectious Diseases, Scientific Institute of Public Health (WIV-ISP), Engeland Street 642, 1180 Brussels, Belgium
| | - Sophie Lamoral
- National Reference Centre of Rabies, Viral Diseases, Communicable and Infectious Diseases, Scientific Institute of Public Health (WIV-ISP), Engeland Street 642, 1180 Brussels, Belgium
| | - Stéphane De Craeye
- Toxoplasma Laboratory, Food-borne Pathogens, Communicable and Infectious Diseases, Scientific Institute of Public Health (WIV-ISP), Engeland Street 642, 1180 Brussels, Belgium
| | - Michael Kalai
- National Reference Centre of Rabies, Viral Diseases, Communicable and Infectious Diseases, Scientific Institute of Public Health (WIV-ISP), Engeland Street 642, 1180 Brussels, Belgium
| | - Steven Van Gucht
- National Reference Centre of Rabies, Viral Diseases, Communicable and Infectious Diseases, Scientific Institute of Public Health (WIV-ISP), Engeland Street 642, 1180 Brussels, Belgium
| |
Collapse
|
34
|
Fischer M, Freuling CM, Müller T, Wegelt A, Kooi EA, Rasmussen TB, Voller K, Marston DA, Fooks AR, Beer M, Hoffmann B. Molecular double-check strategy for the identification and characterization of European Lyssaviruses. J Virol Methods 2014; 203:23-32. [PMID: 24681051 DOI: 10.1016/j.jviromet.2014.03.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 03/14/2014] [Accepted: 03/18/2014] [Indexed: 10/25/2022]
Abstract
The "gold standard" for post-mortem rabies diagnosis is the direct fluorescent antibody test (FAT). However, in the case of ante-mortem non-neural sample material or decomposed tissues, the FAT reaches its limit, and the use of molecular techniques can be advantageous. In this study, we developed and validated a reverse transcription PCR cascade protocol feasible for the classification of samples, even those for which there is no epidemiological background knowledge. This study emphasises on the most relevant European lyssaviruses. In a first step, two independent N- and L-gene based pan-lyssavirus intercalating dye assays are performed in a double-check application to increase the method's diagnostic safety. For the second step, characterization of the lyssavirus positive samples via two independent multiplex PCR-systems was performed. Both assays were probe-based, species-specific multiplex PCR-systems for Rabies virus, European bat lyssavirus type 1 and 2 as well as Bokeloh bat lyssavirus. All assays were validated successfully with a comprehensive panel of lyssavirus positive samples, as well as negative material from various host species. This double-check strategy allows for both safe and sensitive screening, detection and characterization of all lyssavirus species of humans and animals, as well as the rapid identification of currently unknown lyssaviruses in bats in Europe.
Collapse
Affiliation(s)
- Melina Fischer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, D-17493 Greifswald-Insel Riems, Germany
| | - Conrad M Freuling
- Institute of Molecular Biology, Friedrich-Loeffler-Institut, Südufer 10, D-17493 Greifswald-Insel Riems, Germany
| | - Thomas Müller
- Institute of Molecular Biology, Friedrich-Loeffler-Institut, Südufer 10, D-17493 Greifswald-Insel Riems, Germany
| | - Anne Wegelt
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, D-17493 Greifswald-Insel Riems, Germany
| | - Engbert A Kooi
- Central Veterinary Institute of Wageningen UR, Houtribweg 39, NL-8221 RA Lelystad, The Netherlands
| | - Thomas B Rasmussen
- DTU National Veterinary Institute, Technical University of Denmark, Lindholm, DK-4771 Kalvehave, Denmark
| | - Katja Voller
- Animal Health & Veterinary Laboratories Agency (AHVLA, Weybridge), New Haw, Addlestone, Surrey KT15 3NB, United Kingdom
| | - Denise A Marston
- Animal Health & Veterinary Laboratories Agency (AHVLA, Weybridge), New Haw, Addlestone, Surrey KT15 3NB, United Kingdom
| | - Anthony R Fooks
- Animal Health & Veterinary Laboratories Agency (AHVLA, Weybridge), New Haw, Addlestone, Surrey KT15 3NB, United Kingdom; Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, Merseyside L69 7BE, United Kingdom
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, D-17493 Greifswald-Insel Riems, Germany
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, D-17493 Greifswald-Insel Riems, Germany.
| |
Collapse
|
35
|
Mani RS, Madhusudana SN. Laboratory diagnosis of human rabies: recent advances. ScientificWorldJournal 2013; 2013:569712. [PMID: 24348170 PMCID: PMC3848253 DOI: 10.1155/2013/569712] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 09/26/2013] [Indexed: 12/25/2022] Open
Abstract
Rabies, an acute progressive, fatal encephalomyelitis, transmitted most commonly through the bite of a rabid animal, is responsible for an estimated 61,000 human deaths worldwide. The true disease burden and public health impact due to rabies remain underestimated due to lack of sensitive laboratory diagnostic methods. Rapid diagnosis of rabies can help initiate prompt infection control and public health measures, obviate the need for unnecessary treatment/medical tests, and assist in timely administration of pre- or postexposure prophylactic vaccination to family members and medical staff. Antemortem diagnosis of human rabies provides an impetus for clinicians to attempt experimental therapeutic approaches in some patients, especially after the reported survival of a few cases of human rabies. Traditional methods for antemortem and postmortem rabies diagnosis have several limitations. Recent advances in technology have led to the improvement or development of several diagnostic assays which include methods for rabies viral antigen and antibody detection and assays for viral nucleic acid detection and identification of specific biomarkers. These assays which complement traditional methods have the potential to revolutionize rabies diagnosis in future.
Collapse
Affiliation(s)
- Reeta Subramaniam Mani
- Department of Neurovirology, WHO Collaborating Centre for Reference and Research on Rabies, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore 560029, India
| | - Shampur Narayan Madhusudana
- Department of Neurovirology, WHO Collaborating Centre for Reference and Research on Rabies, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore 560029, India
| |
Collapse
|
36
|
Mani RS, Madhusudana SN, Mahadevan A, Reddy V, Belludi AY, Shankar SK. Utility of real-time Taqman PCR for antemortem and postmortem diagnosis of human rabies. J Med Virol 2013; 86:1804-12. [PMID: 24136727 DOI: 10.1002/jmv.23814] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2013] [Indexed: 12/25/2022]
Abstract
Rabies, a fatal zoonotic viral encephalitis remains a neglected disease in India despite a high disease burden. Laboratory confirmation is essential, especially in patients with paralytic rabies who pose a diagnostic dilemma. However, conventional tests for diagnosis of rabies have several limitations. In the present study the utility of a real-time TaqMan PCR assay was evaluated for antemortem/postmortem diagnosis of rabies. Human clinical samples received for antemortem rabies diagnosis (CSF, saliva, nuchal skin biopsy, serum), and samples obtained postmortem from laboratory confirmed rabies in humans (brain tissue, CSF, serum) and animals (brain tissue) were included in the study. All CSF and sera were tested for rabies viral neutralizing antibodies (RVNA) by rapid fluorescent focus inhibition test (RFFIT) and all samples (except sera) were processed for detection of rabies viral RNA by real-time TaqMan PCR. All the 29 (100%) brain tissues from confirmed cases of human and animal rabies, and 11/14 (78.5%) CSF samples obtained postmortem from confirmed human rabies cases were positive by real-time TaqMan PCR. Rabies viral RNA was detected in 5/11 (45.4%) CSF samples, 6/10 (60%) nuchal skin biopsies, and 6/7 (85.7%) saliva samples received for antemortem diagnosis. Real-time TaqMan PCR alone could achieve antemortem rabies diagnosis in 11/13 (84.6%) cases; combined with RVNA detection in CSF antemortem rabies diagnosis could be achieved in all 13 (100%) cases. Real-time TaqMan PCR should be made available widely as an adjunctive test for diagnosis of human rabies in high disease burden countries like India.
Collapse
Affiliation(s)
- Reeta Subramaniam Mani
- Department of Neurovirology, WHO Collaborating Centre for Reference and Research on Rabies, Bangalore, India
| | | | | | | | | | | |
Collapse
|
37
|
Silva SR, Katz ISS, Mori E, Carnieli P, Vieira LFP, Batista HBCR, Chaves LB, Scheffer KC. Biotechnology advances: a perspective on the diagnosis and research of Rabies Virus. Biologicals 2013; 41:217-23. [PMID: 23683880 DOI: 10.1016/j.biologicals.2013.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 04/05/2013] [Accepted: 04/06/2013] [Indexed: 11/15/2022] Open
Abstract
Rabies is a widespread zoonotic disease responsible for approximately 55,000 human deaths/year. The direct fluorescent antibody test (DFAT) and the mouse inoculation test (MIT) used for rabies diagnosis, have high sensitivity and specificity, but are expensive and time-consuming. These disadvantages and the identification of new strains of the virus encourage the use of new techniques that are rapid, sensitive, specific and economical for the detection and research of the Rabies Virus (RABV). Real-time RT-PCR, phylogeographic analysis, proteomic assays and DNA recombinant technology have been used in research laboratories. Together, these techniques are effective on samples with low virus titers in the study of molecular epidemiology or in the identification of new disease markers, thus improving the performance of biological assays. In this context, modern advances in molecular technology are now beginning to complement more traditional approaches and promise to revolutionize the diagnosis of rabies. This brief review presents some of the recent molecular tools used for RABV analysis, with emphasis on rabies diagnosis and research.
Collapse
Affiliation(s)
- S R Silva
- Pasteur Institute, São Paulo, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Sabeta CT, Weyer J, Geertsma P, Mohale D, Miyen J, Blumberg LH, Leman PA, Phahladira B, Shumba W, Walters J, Paweska JT. Emergence of rabies in the Gauteng Province, South Africa: 2010-2011. J S Afr Vet Assoc 2013; 84:E1-5. [PMID: 23718320 DOI: 10.4102/jsava.v84i1.923] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 02/04/2013] [Accepted: 03/18/2013] [Indexed: 11/01/2022] Open
Abstract
Canine rabies is enzootic throughout Sub-Saharan Africa, including the Republic of South Africa. Historically, in South Africa the coastal provinces of KwaZulu-Natal and Eastern Cape were most affected. Alarmingly, outbreaks of canine rabies have been increasingly reported in the past decade from sites where it has previously been under control. From January 2010 to December 2011, 53 animal rabies cases were confirmed; these were mostly in domestic dogs from southern Johannesburg, which was previously considered to be rabies free. In addition, one case was confirmed in a 26-month old girl who had been scratched by a pet puppy during this period. The introduction of rabies into Gauteng Province was investigated through genetic analysis of rabies positive samples confirmed during the outbreak period. In addition, the nucleotide sequences of incidental cases reported in the province for the past ten years were also included in the analysis. It was found that the recent canine rabies outbreak in the Gauteng Province came from the introduction of the rabies virus from KwaZulu-Natal, with subsequent local spread in the susceptible domestic dog population of southern Johannesburg. The vulnerability of the province was also highlighted through multiple, dead-end introductions in the past ten years. This is the first report of a rabies outbreak in the greater Johannesburg area with evidence of local transmission in the domestic dog population.
Collapse
Affiliation(s)
- Claude T Sabeta
- OIE Rabies Reference Laboratory, Agricultural Research Council-Onderstepoort Veterinary Institute ARC-OVI, Onderstepoort, South Africa.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kgaladi J, Nel LH, Markotter W. Comparison of pathogenic domains of rabies and African rabies-related lyssaviruses and pathogenicity observed in mice. ACTA ACUST UNITED AC 2013; 80:511. [PMID: 23718883 DOI: 10.4102/ojvr.v80i1.511] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 11/24/2012] [Indexed: 12/25/2022]
Abstract
Several lyssavirus species occur in Africa (Rabies virus, Lagos bat virus, Mokola virus, Duvenhage virus, Shimoni bat virus and Ikoma lyssavirus), displaying a high sequence diversity between isolates belonging to the same species. There is limited information about comparative pathogenesis of these African lyssaviruses and this precludes authoritative opinion on the potential public and veterinary health impact. In this study, an analysis of representative African lyssaviruses attempted to correlate viral genomic sequence similarities and differences with the corresponding pathogenic profiles observed in mice. The study demonstrated that the virus isolates evaluated could be lethal to mice when introduced intramuscularly and that different isolates of the same lyssavirus species differ in their virulence. Using real-time polymerase chain reaction (PCR), viral RNA was detected in brain tissue, but no viral RNA was detected in the salivary glands or blood of mice that succumbed to infection. Comparison of known pathogenic domains indicated that pathogenicity is likely to be dependent on multiple domains. Cumulatively, our results re-emphasised the realisation that the pathogenicity of a lyssavirus species cannot be deduced based on studies of only a single isolate of the species or a single pathogenic domain.
Collapse
Affiliation(s)
- Joe Kgaladi
- Department of Microbiology and Plant Pathology, University of Pretoria.
| | | | | |
Collapse
|
40
|
Fischer M, Wernike K, Freuling CM, Müller T, Aylan O, Brochier B, Cliquet F, Vázquez-Morón S, Hostnik P, Huovilainen A, Isaksson M, Kooi EA, Mooney J, Turcitu M, Rasmussen TB, Revilla-Fernández S, Smreczak M, Fooks AR, Marston DA, Beer M, Hoffmann B. A step forward in molecular diagnostics of lyssaviruses--results of a ring trial among European laboratories. PLoS One 2013; 8:e58372. [PMID: 23520505 PMCID: PMC3592807 DOI: 10.1371/journal.pone.0058372] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 02/04/2013] [Indexed: 11/18/2022] Open
Abstract
Rabies is a lethal and notifiable zoonotic disease for which diagnostics have to meet the highest standards. In recent years, an evolution was especially seen in molecular diagnostics with a wide variety of different detection methods published. Therefore, a first international ring trial specifically designed on the use of reverse transcription polymerase chain reaction (RT-PCR) for detection of lyssavirus genomic RNA was organized. The trial focussed on assessment and comparison of the performance of conventional and real-time assays. In total, 16 European laboratories participated. All participants were asked to investigate a panel of defined lyssavirus RNAs, consisting of Rabies virus (RABV) and European bat lyssavirus 1 and 2 (EBLV-1 and -2) RNA samples, with systems available in their laboratory. The ring trial allowed the important conclusion that conventional RT-PCR assays were really robust assays tested with a high concordance between different laboratories and assays. The real-time RT-PCR system by Wakeley et al. (2005) in combination with an intercalating dye, and the combined version by Hoffmann and co-workers (2010) showed good sensitivity for the detection of all RABV samples included in this test panel. Furthermore, all used EBLV-specific assays, real-time RT-PCRs as well as conventional RT-PCR systems, were shown to be suitable for a reliable detection of EBLVs. It has to be mentioned that differences were seen in the performance between both the individual RT-PCR systems and the laboratories. Laboratories which used more than one molecular assay for testing the sample panel always concluded a correct sample result. Due to the markedly high genetic diversity of lyssaviruses, the application of different assays in diagnostics is needed to achieve a maximum of diagnostic accuracy. To improve the knowledge about the diagnostic performance proficiency testing at an international level is recommended before using lyssavirus molecular diagnostics e.g. for confirmatory testing.
Collapse
Affiliation(s)
- Melina Fischer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Conrad M. Freuling
- Institute of Molecular Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Thomas Müller
- Institute of Molecular Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Orhan Aylan
- Etlik Central Veterinary Control and Research Institute, Ankara, Turkey
| | | | - Florence Cliquet
- Anses Nancy technopole agricole et vétérinaire, Malzeville, France
| | - Sonia Vázquez-Morón
- Instituto de Salud Carlos III; Centro Nacional de Microbiología, Majadahonda, Spain
| | | | | | - Mats Isaksson
- Swedish National Veterinary Institute, Uppsala, Sweden
| | | | - Jean Mooney
- Virology Division, Central Veterinary Research Laboratory, Celbridge, Ireland
| | - Mihai Turcitu
- Institute for Diagnosis and Animal Health, Bucharest, Romania
| | - Thomas B. Rasmussen
- National Veterinary Institute, Technical University of Denmark, Lindholm, Denmark
| | | | | | - Anthony R. Fooks
- Animal Health and Veterinary Laboratories Agency, Addlestone, United Kingdom
| | - Denise A. Marston
- Animal Health and Veterinary Laboratories Agency, Addlestone, United Kingdom
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
- * E-mail:
| |
Collapse
|
41
|
Calisher CH, Ellison JA. The other rabies viruses: The emergence and importance of lyssaviruses from bats and other vertebrates. Travel Med Infect Dis 2012; 10:69-79. [PMID: 22386761 PMCID: PMC7105966 DOI: 10.1016/j.tmaid.2012.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 01/11/2012] [Accepted: 01/11/2012] [Indexed: 02/06/2023]
Abstract
The recognition that viruses related to rabies virus cause rabies in humans has stimulated research into the relationships, geographic distribution and natural histories of these viruses. This paper reviews what is known of these fascinating viruses and the complexity of prevention and treatment of the disease they cause.
Collapse
Affiliation(s)
- Charles H. Calisher
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 3195 Rampart Rd., Delivery Code 1690, Foothills Campus, Fort Collins, CO 80523-1690, USA
| | - James A. Ellison
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases (NCEZID), Centers for Disease Control and Prevention (CDC), 1600 Clifton Rd., N.E., Mailstop G-33, Atlanta, GA 30329, USA
| |
Collapse
|
42
|
Hayman DTS, Banyard AC, Wakeley PR, Harkess G, Marston D, Wood JLN, Cunningham AA, Fooks AR. A universal real-time assay for the detection of Lyssaviruses. J Virol Methods 2011; 177:87-93. [PMID: 21777619 PMCID: PMC3191275 DOI: 10.1016/j.jviromet.2011.07.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 06/29/2011] [Accepted: 07/04/2011] [Indexed: 12/25/2022]
Abstract
Rabies virus (RABV) is enzootic throughout most of the world. It is now widely accepted that RABV had its origins in bats. Ten of the 11 Lyssavirus species recognised, including RABV, have been isolated from bats. There is, however, a lack of understanding regarding both the ecology and host reservoirs of Lyssaviruses. A real-time PCR assay for the detection of all Lyssaviruses using universal primers would be beneficial for Lyssavirus surveillance. It was shown that using SYBR® Green, a universal real-time PCR primer pair previously demonstrated to detect European bat Lyssaviruses 1 and 2, and RABV, was able to detect reverse transcribed RNA for each of the seven virus species available to us. Target sequences of bat derived virus species unavailable for analysis were synthesized to produce oligonucleotides. Lagos Bat-, Duvenhage- and Mokola virus full nucleoprotein gene clones enabled a limit of 5–50 plasmid copies to be detected. Five copies of each of the synthetic DNA oligonucleotides of Aravan-, Khujand-, Irkut-, West Caucasian bat- and Shimoni bat virus were detected. The single universal primer pair was therefore able to detect each of the most divergent known Lyssaviruses with great sensitivity.
Collapse
Affiliation(s)
- David T S Hayman
- Rabies and Wildlife Zoonoses Group, Veterinary Laboratories Agency - Weybridge, Woodham Lane, Surrey KT15 3NB, UK.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
De Benedictis P, De Battisti C, Dacheux L, Marciano S, Ormelli S, Salomoni A, Caenazzo ST, Lepelletier A, Bourhy H, Capua I, Cattoli G. Lyssavirus detection and typing using pyrosequencing. J Clin Microbiol 2011; 49:1932-8. [PMID: 21389152 PMCID: PMC3122702 DOI: 10.1128/jcm.02015-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 02/24/2011] [Indexed: 10/18/2022] Open
Abstract
Rabies is a fatal zoonosis caused by a nonsegmented negative-strand RNA virus, namely, rabies virus (RABV). Apart from RABV, at least 10 additional species are known as rabies-related lyssaviruses (RRVs), and some of them are responsible for occasional spillovers into humans. More lyssaviruses have also been detected recently in different bat ecosystems, thanks to the application of molecular diagnostic methods. Due to the variety of the members of the genus Lyssavirus, there is the necessity to develop a reliable molecular assay for rabies diagnosis able to detect and differentiate among the existing rabies and rabies-related viruses. In the present study, a pyrosequencing protocol targeting the 3' terminus of the nucleoprotein (N) gene was applied for the rapid characterization of lyssaviruses. Correct identification of species was achieved for each sample tested. Results from the pyrosequencing assay were also confirmed by those obtained using the Sanger sequencing method. A pan-lyssavirus one-step reverse transcription (RT)-PCR was developed within the framework of the pyrosequencing procedure. The sensitivity (Se) of the one-step RT-PCR assay was determined by using in vitro-transcribed RNA and serial dilutions of titrated viruses. The assay demonstrated high analytical and relative specificity (Sp) (98.94%) and sensitivity (99.71%). To date, this is the first case in which pyrosequencing has been applied for lyssavirus identification using a cheaper diagnostic approach than the one for all the other protocols for rapid typing that we are acquainted with. Results from this study indicate that this procedure is suitable for lyssavirus detection in samples of both human and animal origin.
Collapse
Affiliation(s)
- Paola De Benedictis
- OIE and National Collaborating Centre for Diseases at the Animal-Human Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020 Legnaro, Padova, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|