1
|
Li R, Chen J, Wu Y, Lu M, Cheng G, Jia P, Yu S, Xie X, Zhang G, Xu Y, Zhang L, Liu Y. Molecular and biological characteristics of two rare bloodstream Candida isolates: Candida nonsorbophila and Candida sonorensis. BMC Infect Dis 2025; 25:348. [PMID: 40075268 PMCID: PMC11905472 DOI: 10.1186/s12879-025-10696-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND The incidence of new infections caused by rare Candida species has been steadily increasing, particularly in immunocompromised patients. This study investigates two rare Candida species responsible for Candida bloodstream infections and explores their molecular characteristics. METHODS Clinical Candida strains were continuously isolated from the lower respiratory tract and blood specimens of a patient. Identification was performed using conventional culture techniques, ITS sequencing, and whole-genome sequencing. Additionally, antifungal susceptibility testing, phylogenetic analysis, macrophage survival assays, and in vivo survival experiments were conducted to evaluate the antifungal resistance, infection source, and pathogenicity of the isolates. RESULTS Molecular identification confirmed that the RP (pinkish-purple colonies from respiratory specimens), RW (pinkish-white colonies from respiratory specimens), and BP (pinkish-purple colonies from peripheral blood) strains were Candida nonsorbophila, while the BW (pinkish-white colonies from peripheral blood) strain was identified as Candida sonorensis. Phylogenetic analysis revealed that the RP strain from the lower respiratory tract and the BP strain from the bloodstream belonged to the same clonal lineage, suggesting that the pulmonary isolate entered the bloodstream, resulting in candidemia. Antifungal susceptibility testing showed that C. nonsorbophila RW strain exhibited significant resistance to fluconazole, likely due to the E70D mutation in the ERG11 gene. Both C. sonorensis and C. nonsorbophila exhibited relatively weak virulence, with no significant differences in pathogenicity between single-strain infections and mixed infections of both species (P > 0.05). CONCLUSION This study successfully isolated C. nonsorbophila and C. sonorensis from clinical specimens, providing detailed microbiological and molecular characterization. Rare fungal infections in immunocompromised patients require careful consideration.
Collapse
Affiliation(s)
- Rui Li
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, Beijing, China
| | - Jiawei Chen
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, Beijing, China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yun Wu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, Beijing, China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Minya Lu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, Beijing, China
| | - Guixue Cheng
- Department of Clinical Laboratory, Shengjing Hospital of China Medical University, No.36, Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Peiyao Jia
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, Beijing, China
| | - Shuying Yu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, Beijing, China
| | - Xiuli Xie
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, Beijing, China
| | - Ge Zhang
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, Beijing, China
| | - Yingchun Xu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, Beijing, China.
| | - Li Zhang
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, Beijing, China.
| | - Yali Liu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, Beijing, China.
| |
Collapse
|
2
|
Zhang Y, Han J, Ma Y, Zhang F, Li C, Zhao J, Lu B, Cao B. Two outbreaks and sporadic occurrences of Candida auris from one hospital in China: an epidemiological, genomic retrospective study. Infection 2025; 53:349-358. [PMID: 39186218 DOI: 10.1007/s15010-024-02378-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
OBJECTIVES To investigate the clinical relevance, origin, transmission, and resistance of Candida auris (C. auris) isolates from two outbreaks and sporadic occurrences from one hospital in China. METHODS A total of 135 C. auris isolates were collected. Clinical characteristics were obtained and antifungal susceptibility testing (AFST) was performed using the method of broth microdilution. Phylogenetic tree, WGS analysis, and single nucleotide polymorphisms (SNPs) were used to determine the origin, transmission, and resistance mechanisms. RESULTS A total of 31 patients (91.2%, 31/34) received invasive medical procedures and 13 patients (38.2%, 13/34) had antifungal agents before C. auris infection/colonization, except one patient whose clinical information was missing. Only 4 cases of C. auris candidemia were observed. 18 patients died, 13 patients recovered, and the outcomes of 3 patients were not available. A total of 35 C. auris isolates, which were successfully cultivated and the first isolated or harbored specific drug-resistant phenotype from each patient, were selected to be sequenced and further analyzed. C. auris isolates presented low genetic variability and belonged to clade I, possibly originating from BJ004-H7 in Beijing. All 35 isolates were resistant to Fluconazole (FCZ) and amphotericin B (AMB), and 3 isolates were resistant to caspofungin (CAS). Mutations in ERG11 and FKS1 were linked to reduced azole and echinocandin susceptibility, respectively. CONCLUSIONS Two outbreaks of highly clonal, multidrug-resistant C. auris isolates within the medical facility were reported. The intensive performance of disinfection measures helped block in-hospital transmission. Understanding the epidemiology, drug resistance and management of C. auris will be helpful for implementing effective infection control and treatment strategies.
Collapse
Affiliation(s)
- Yulin Zhang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Jiajing Han
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Yiqun Ma
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Feilong Zhang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Chen Li
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Jiankang Zhao
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Binghuai Lu
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, China-Japan Friendship Hospital, Beijing, China.
| | - Bin Cao
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, China-Japan Friendship Hospital, Beijing, China.
- Clinical Center for Pulmonary Infections, Capital Medical University, Beijing, China.
- Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, China.
| |
Collapse
|
3
|
Ramos LS, Barbosa PF, Lorentino CM, Lima JC, Braga AL, Lima RV, Giovanini L, Casemiro AL, Siqueira NL, Costa SC, Rodrigues CF, Roudbary M, Branquinha MH, Santos AL. The multidrug-resistant Candida auris, Candida haemulonii complex and phylogenetic related species: Insights into antifungal resistance mechanisms. CURRENT RESEARCH IN MICROBIAL SCIENCES 2025; 8:100354. [PMID: 39995443 PMCID: PMC11847750 DOI: 10.1016/j.crmicr.2025.100354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025] Open
Abstract
The rise of multidrug-resistant (MDR) fungal pathogens poses a serious global threat to human health. Of particular concern are Candida auris, the Candida haemulonii complex (which includes C. haemulonii sensu stricto, C. duobushaemulonii and C. haemulonii var. vulnera), and phylogenetically related species, including C. pseudohaemulonii and C. vulturna. These emerging, widespread, and opportunistic pathogens have drawn significant attention due to their reduced susceptibility to commonly used antifungal agents, particularly azoles and polyenes, and, in some cases, therapy-induced resistance to echinocandins. Notably, C. auris is classified in the critical priority group on the World Health Organization's fungal priority pathogens list, which highlights fungal species capable of causing systemic infections with significant mortality and morbidity risks as well as the challenges posed by their MDR profiles, limited treatment and management options. The mechanisms underlying antifungal resistance within these emerging fungal species is still being explored, but some advances have been achieved in the past few years. In this review, we compile current literature on the distribution of susceptible and resistant clinical strains of C. auris, C. haemulonii complex, C. pseudohaemulonii and C. vulturna across various antifungal classes, including azoles (fluconazole, voriconazole, itraconazole), polyenes (amphotericin B), echinocandins (caspofungin, micafungin, anidulafungin), and pyrimidine analogues (flucytosine). We also outline the main antifungal resistance mechanisms identified in planktonic cells of these yeast species. Finally, we explore the impact of biofilm formation, a classical virulence attribute of fungi, on antifungal resistance, highlighting the resistance mechanisms associated with this complex microbial structure that have been uncovered to date.
Collapse
Affiliation(s)
- Lívia S. Ramos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
| | - Pedro F. Barbosa
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
- Programa de Pós-Graduação em Ciências (Microbiologia), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
| | - Carolline M.A. Lorentino
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
- Programa de Pós-Graduação em Ciências (Microbiologia), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
| | - Joice C. Lima
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
- Programa de Pós-Graduação em Ciências (Microbiologia), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
| | - Antonio L. Braga
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
- Programa de Pós-Graduação em Ciências (Microbiologia), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
| | - Raquel V. Lima
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
- Programa de Pós-Graduação em Ciências (Microbiologia), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
| | - Lucas Giovanini
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
- Programa de Pós-Graduação em Ciências (Microbiologia), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
| | - Ana Lúcia Casemiro
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
- Programa de Pós-Graduação em Ciências (Microbiologia), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
| | - Nahyara L.M. Siqueira
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
- Programa de Pós-Graduação em Ciências (Microbiologia), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
| | - Stefanie C. Costa
- Laboratório de Resistência Bacteriana, Departamento de Patologia, Universidade Federal do Espírito Santo (UFES), Vitória, Brasil
| | - Célia F. Rodrigues
- Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Maryam Roudbary
- Sydney Infectious Diseases Institute, University of Sydney, Australia
- Westmead Hospital, NSW Health, Sydney, Australia
| | - Marta H. Branquinha
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
- Programa de Pós-Graduação em Ciências (Microbiologia), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
- Rede Micologia RJ, Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro, Brasil
| | - André L.S. Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
- Programa de Pós-Graduação em Ciências (Microbiologia), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
- Rede Micologia RJ, Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro, Brasil
| |
Collapse
|
4
|
Li J, Brandalise D, Coste AT, Sanglard D, Lamoth F. Exploration of novel mechanisms of azole resistance in Candida auris. Antimicrob Agents Chemother 2024; 68:e0126524. [PMID: 39480072 PMCID: PMC11619343 DOI: 10.1128/aac.01265-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/03/2024] [Indexed: 11/02/2024] Open
Abstract
Candida auris is a pathogenic yeast of particular concern because of its ability to cause nosocomial outbreaks of invasive candidiasis (IC) and to develop resistance to all current antifungal drug classes. Most C. auris clinical isolates are resistant to fluconazole, an azole drug that is used for the treatment of IC. Azole resistance may arise from diverse mechanisms, such as mutations of the target gene (ERG11) or upregulation of efflux pumps via gain of function mutations of the transcription factors TAC1 and/or MRR1. To explore novel mechanisms of azole resistance in C. auris, we applied an in vitro evolutionary protocol to induce azole resistance in a TAC1A/TAC1B/MRR1 triple-deletion strain. Azole-resistant isolates without ERG11 mutations were further analyzed. In addition to a whole chromosome aneuploidy of chromosome 5, amino acid substitutions were recovered in the transcription factor Upc2 (N592S, L499F), the ubiquitin ligase complex consisting of Ubr2 (P708T, H1275P) and Mub1 (Y765*), and the mitochondrial protein Mrs7 (D293H). Genetic introduction of these mutations in an azole-susceptible wild-type C. auris isolate of clade IV resulted in significantly decreased azole susceptibility. Real-time reverse transcription PCR analyses were performed to assess the impact of these mutations on the expression of genes involved in azole resistance, such as ERG11, the efflux pumps CDR1 and MDR1 or the transcription factor RPN4. In conclusion, this work provides further insights in the complex and multiple pathways of azole resistance of C. auris. Further analyses would be warranted to assess their respective role in azole resistance of clinical isolates.
Collapse
Affiliation(s)
- Jizhou Li
- Institute of Microbiology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Danielle Brandalise
- Institute of Microbiology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Alix T. Coste
- Institute of Microbiology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Dominique Sanglard
- Institute of Microbiology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Frederic Lamoth
- Institute of Microbiology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Peng Y, Liu Y, Yu X, Fang J, Guo Z, Liao K, Chen P, Guo P. First report of Candida auris in Guangdong, China: clinical and microbiological characteristics of 7 episodes of candidemia. Emerg Microbes Infect 2024; 13:2300525. [PMID: 38164742 PMCID: PMC10773663 DOI: 10.1080/22221751.2023.2300525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Candida auris is an emerging multidrug-resistant fungal pathogen worldwide. To date, it has not been reported in Guangdong, China. For the first time, we reported 7 cases of C. auris candidemia from two hospitals in Guangdong. The clinical and microbiological characteristics of these cases were investigated carefully. Two geographic clades, i.e. III and I, were found popular in different hospitals by whole genome sequencing analyses. All C. auris isolates from bloodstream were resistant to fluconazole, 5 of which belonged to Clade III harbouring VF125AL mutation in the ERG11 gene. The isolates with Clade I presented Y132F mutation in the ERG11 gene as well as resistance to amphotericin B. All isolates exhibited strong biofilm-forming capacity and non-aggregative phenotype. The mean time from admission to onset of C. auris candidemia was 39.4 days (range: 12 - 80 days). Despite performing appropriate therapeutic regimen, 42.9% (3/7) of patients experienced occurrences of C. auris candidemia and colonization after the first positive bloodstream. C. auris colonization was still observed after the first C. auris candidemia for 81 days in some patient. Microbiologic eradication from bloodstream was achieved in 85.7% (6/7) of patients at discharge. In conclusion, this study offers a crucial insight into unravelling the multiple origins of C. auris in Guangdong, highlighting great challenges in clinical prevention and control.
Collapse
Affiliation(s)
- Yaqin Peng
- Department of Clinical Laboratory, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yue Liu
- Department of Clinical Laboratory, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Xuegao Yu
- Department of Clinical Laboratory, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Jingchun Fang
- Department of Clinical Microbiology Laboratory, Nansha Division of The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Zhaowang Guo
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, People’s Republic of China
| | - Kang Liao
- Department of Clinical Laboratory, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Peisong Chen
- Department of Clinical Laboratory, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Penghao Guo
- Department of Clinical Laboratory, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
6
|
Bing J, Du H, Guo P, Hu T, Xiao M, Lu S, Nobile CJ, Chu H, Huang G. Candida auris-associated hospitalizations and outbreaks, China, 2018-2023. Emerg Microbes Infect 2024; 13:2302843. [PMID: 38238874 PMCID: PMC10802803 DOI: 10.1080/22221751.2024.2302843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024]
Abstract
The emerging human fungal pathogen Candida auris has become a serious threat to public health. This pathogen has spread to 10 provinces in China as of December 2023. Here we describe 312 C. auris-associated hospitalizations and 4 outbreaks in healthcare settings in China from 2018 to 2023. Three genetic clades of C. auris have been identified during this period. Molecular epidemiological analyses indicate that C. auris has been introduced and local transmission has occurred in multiple instances in China. Most C. auris isolated from China (98.7%) exhibited resistance to fluconazole, while only a small subset of strains were resistant to amphotericin B (4.2%) and caspofungin (2.2%).
Collapse
Affiliation(s)
- Jian Bing
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
- Department of Infectious Diseases, Huashan Hospital, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, People’s Republic of China
| | - Han Du
- Department of Infectious Diseases, Huashan Hospital, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, People’s Republic of China
| | - Penghao Guo
- Department of Clinical Laboratory, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Tianren Hu
- Department of Infectious Diseases, Huashan Hospital, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, People’s Republic of China
| | - Meng Xiao
- Department of Laboratory Medicine, Sate Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Sha Lu
- Department of Dermatology and Venereology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Clarissa J. Nobile
- Department of Molecular and Cell Biology, University of California, Merced, Merced, USA
- Health Sciences Research Institute, University of California, Merced, Merced, USA
| | - Haiqing Chu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Guanghua Huang
- Department of Infectious Diseases, Huashan Hospital, Shanghai Institute of Infectious Disease and Biosecurity, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
7
|
Balakumar A, Cox A, Thangamani S. Cell aggregation mediated by ACE2 deletion in Candida auris modulates fungal colonization and host immune responses in the skin. mSphere 2024; 9:e0073424. [PMID: 39475280 PMCID: PMC11580408 DOI: 10.1128/msphere.00734-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/03/2024] [Indexed: 11/22/2024] Open
Abstract
Candida auris is an emerging multi-drug-resistant fungal pathogen that colonizes the skin and causes invasive infections in hospitalized patients. Multi-cellular aggregative phenotype is widely reported in the C. auris isolates, but its role in skin colonization and host immune response is not yet known. In this study, we generated aggregative phenotype by deleting the ACE2 gene in C. auris and determined the fungal colonization and host immune response using an intradermal mouse model of C. auris skin infection. Our results indicate that mice infected with ace2Δ strain had significantly lower fungal load after 3 and 14 days post-infections compared to the non-aggregative wild-type and the ACE2 reintegrated strain. The colonization of ace2Δ is associated with increased recruitment of CD11b+ Ly6G+ neutrophils and decreased accumulation of CD11b+ Ly6 Chi inflammatory monocytes and CD11b+ MHCII+ CD64+ macrophages. Furthermore, Th17 cells and type 3 innate lymphoid cells (ILCs) were significantly increased in the skin tissue of ace2Δ infected mice. Our findings suggest that aggregative phenotype mediated by ACE2 deletion in C. auris induces potent neutrophil and IL-17-mediated immune response and reduces fungal colonization in the skin.IMPORTANCEC. auris is a rapidly emerging fungal pathogen that can colonize hospitalized patients, especially in skin tissue, and cause invasive infections. C. auris isolates exhibit morphological heterogeneity, and the multicellular aggregative phenotype of C. auris is reported frequently in clinical settings. Understanding the role of fungal morphotypes in colonization, persistence, and immune response in the skin microenvironment will have potential applications in clinical diagnosis and novel preventive and therapeutic measures. Here, we utilized the murine model of intradermal infection and determined that the aggregative phenotype of C. auris as the result of ACE2 gene deletion elicits potential innate and adaptive immune responses in mice. These observations will help explain the differences in the skin colonization and immune responses of the aggregative morphotype of C. auris and open the door to developing novel antifungal therapeutics.
Collapse
Affiliation(s)
- Abishek Balakumar
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| | - Abigail Cox
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| | - Shankar Thangamani
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Immunology, Inflammation and Infectious Diseases (PI4D), West Lafayette, Indiana, USA
| |
Collapse
|
8
|
Louvet M, Li J, Brandalise D, Bachmann D, Sala de Oyanguren F, Labes D, Jacquier N, Genoud C, Mucciolo A, Coste AT, Sanglard D, Lamoth F. Ume6-dependent pathways of morphogenesis and biofilm formation in Candida auris. Microbiol Spectr 2024; 12:e0153124. [PMID: 39297645 PMCID: PMC11537075 DOI: 10.1128/spectrum.01531-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/05/2024] [Indexed: 11/07/2024] Open
Abstract
Candida auris is a yeast pathogen causing nosocomial outbreaks of candidemia. Its ability to adhere to inert surfaces and to be transmitted from one patient to another via medical devices is of particular concern. Like other Candida spp., C. auris has the ability to transition from the yeast form to pseudohyphae and to build biofilms. Moreover, some isolates have a unique capacity to form aggregates. These morphogenetic changes may impact virulence. In this study, we demonstrated the role of the transcription factor Ume6 in C. auris morphogenesis. Genetic hyperactivation of Ume6 induced filamentation and aggregation. The Ume6-hyperactivated strain (UME6HA) also exhibited increased adhesion to inert surface and formed biofilms of higher biomass compared to the parental strain. Transcriptomic analyses of UME6HA revealed enrichment of genes encoding for adhesins, proteins involved in cell wall organization, sterol biosynthesis, and aspartic protease activities. The three most upregulated genes compared to wild-type were those encoding for the agglutin-like sequence adhesin Als4498, the C. auris-specific adhesin Scf1, and the hypha-specific G1 cyclin-related protein Hgc1. The deletion of these genes in the UME6HA background showed that Ume6 controls filamentation via Hgc1 and aggregation via Als4498 and Scf1. Adhesion to inert surface was essentially triggered by Scf1. However, Als4498 and Hgc1 were also crucial for biofilm formation. Our data show that Ume6 is a universal regulator of C. auris morphogenesis via distinct modulators.IMPORTANCEC. auris represents a public health threat because of its ability to cause difficult-to-treat infections and hospital outbreaks. The morphogenetic plasticity of C. auris, including its ability to filament, to form aggregates or biofilms on inert surfaces, is important to the fungus for interhuman transmission, skin or catheter colonization, tissue invasion, antifungal resistance, and escape of the host immune system. This work deciphered the importance of Ume6 in the control of distinct pathways involved in filamentation, aggregation, adhesion, and biofilm formation of C. auris. A better understanding of the mechanisms of C. auris morphogenesis may help identify novel antifungal targets.
Collapse
Affiliation(s)
- Marine Louvet
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jizhou Li
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Danielle Brandalise
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Daniel Bachmann
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | - Danny Labes
- Flow Cytometry Facility, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Jacquier
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Christel Genoud
- Electron Microscopy Facility, University of Lausanne, Lausanne, Switzerland
| | - Antonio Mucciolo
- Electron Microscopy Facility, University of Lausanne, Lausanne, Switzerland
| | - Alix T. Coste
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Dominique Sanglard
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Frederic Lamoth
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
9
|
Wang TW, Sofras D, Montelongo-Jauregui D, Paiva TO, Carolus H, Dufrêne YF, Alfaifi AA, McCracken C, Bruno VM, Van Dijck P, Jabra-Rizk MA. Functional redundancy in Candida auris cell surface adhesins crucial for cell-cell interaction and aggregation. Nat Commun 2024; 15:9212. [PMID: 39455573 PMCID: PMC11511831 DOI: 10.1038/s41467-024-53588-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Candida auris is an emerging nosocomial fungal pathogen associated with life-threatening invasive disease due to its persistent colonization, high level of transmissibility and multi-drug resistance. Aggregative and non-aggregative growth phenotypes for C. auris strains with different biofilm forming abilities, drug susceptibilities and virulence characteristics have been described. Using comprehensive transcriptional analysis we identified key cell surface adhesins that were highly upregulated in the aggregative phenotype during in vitro and in vivo grown biofilms using a mouse model of catheter infection. Phenotypic and functional evaluations of generated null mutants demonstrated crucial roles for the adhesins Als4112 and Scf1 in mediating cell-cell adherence, coaggregation and biofilm formation. While individual mutants were largely non-aggregative, in combination cells were able to co-adhere and aggregate, as directly demonstrated by measuring cell adhesion forces using single-cell atomic force spectroscopy. This co-adherence indicates their role as complementary adhesins, which despite their limited similarity, may function redundantly to promote cell-cell interaction and biofilm formation. Functional diversity of cell wall proteins may be a form of regulation that provides the aggregative phenotype of C. auris with flexibility and rapid adaptation to the environment, potentially impacting persistence and virulence.
Collapse
Affiliation(s)
- Tristan W Wang
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Dimitrios Sofras
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Daniel Montelongo-Jauregui
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Telmo O Paiva
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, L7.07.07, Louvain-la-Neuve, Belgium
| | - Hans Carolus
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Yves F Dufrêne
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, L7.07.07, Louvain-la-Neuve, Belgium
| | - Areej A Alfaifi
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD, USA
- Department of Restorative and Prosthetic Dental Sciences, College of Dentistry King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Carrie McCracken
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Vincent M Bruno
- Department of Microbiology and Immunology, School of Medicine University of Maryland, Baltimore, MD, USA
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium.
- KU Leuven One-Health Institute, KU Leuven, Leuven, Belgium.
| | - Mary Ann Jabra-Rizk
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD, USA.
- Department of Microbiology and Immunology, School of Medicine University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
10
|
Delma FZ, Melchers WJG, Verweij PE, Buil JB. Wild-type MIC distributions and epidemiological cutoff values for 5-flucytosine and Candida species as determined by EUCAST broth microdilution. JAC Antimicrob Resist 2024; 6:dlae153. [PMID: 39372819 PMCID: PMC11450473 DOI: 10.1093/jacamr/dlae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/13/2024] [Indexed: 10/08/2024] Open
Abstract
Objectives EUCAST has established clinical breakpoints and epidemiological cutoff values (ECOFFs) for Candida spp. However, limited data are available for 5-flucytosine (5-FC). We assessed the in vitro susceptibility of 5-FC against a large collection of clinical Candida species using EUCAST methodology and determined the associated ECOFFs. Methods A total of 5622 Candida isolates were collected from patients across the Netherlands between 2008 and 2024. 5-FC MICs were determined using the EUCAST microbroth dilution reference method. Furthermore, MICs were extracted from the EUCAST website. The MICs from this study and those extracted were used to determine ECOFFs and local ECOFFs (L-ECOFFs). Results 5-FC exhibited potent in vitro activity against C. albicans, N. glabratus and C. parapsilosis, while decreased susceptibility was observed for C. tropicalis, Pichia species, K. marxianus, Y. lipolytica, and C. auris. The ECOFFs (mg/L) and the percentages of WT isolates for 5-FC were: C. albicans: 0.5 (97.2%), N. glabratus: 0.5 (96.6%), C. parapsilosis: 0.5 (99.5%) and P. kudriavzevii: 8 (99.4%). The L-ECOFF (mg/L) and the percentages of WT isolates for 5-FC were: C. dubliniensis: 0.25 (96.8%), C. tropicalis: 0.25 (67.2%), K. marxianus: 0.25 (48.0%), C. lusitaniae: 0.25 (86.5%), M. guillermondii: 0.125 (95.9%) and P. norvegiensis: 8 (94.2%). Conclusions 5-FC remains a valuable drug to manage difficult-to-treat invasive Candida infections. In vitro susceptibility cannot be predicted based on species identification for most Candida species, but requires MIC-testing. ECOFFs will help to interpret the MICs to support treatment decisions.
Collapse
Affiliation(s)
- Fatima Zohra Delma
- Radboudumc-CWZ Center of Expertise for Mycology, Radboudumc Community for Infectious Diseases, Radboudumc, Nijmegen, the Netherlands
- Department of Medical Microbiology, Radboudumc, Nijmegen, the Netherlands
| | - Willem J G Melchers
- Radboudumc-CWZ Center of Expertise for Mycology, Radboudumc Community for Infectious Diseases, Radboudumc, Nijmegen, the Netherlands
- Department of Medical Microbiology, Radboudumc, Nijmegen, the Netherlands
| | - Paul E Verweij
- Radboudumc-CWZ Center of Expertise for Mycology, Radboudumc Community for Infectious Diseases, Radboudumc, Nijmegen, the Netherlands
- Department of Medical Microbiology, Radboudumc, Nijmegen, the Netherlands
| | - Jochem B Buil
- Radboudumc-CWZ Center of Expertise for Mycology, Radboudumc Community for Infectious Diseases, Radboudumc, Nijmegen, the Netherlands
- Department of Medical Microbiology, Radboudumc, Nijmegen, the Netherlands
| |
Collapse
|
11
|
Balázsi D, Tóth Z, Locke JB, Borman AM, Forgács L, Balla N, Kovács F, Kovács R, Amano C, Baran TI, Majoros L. In Vivo Efficacy of Rezafungin, Anidulafungin, Caspofungin, and Micafungin against Four Candida auris Clades in a Neutropenic Mouse Bloodstream Infection Model. J Fungi (Basel) 2024; 10:617. [PMID: 39330378 PMCID: PMC11433204 DOI: 10.3390/jof10090617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
OBJECTIVES Rezafungin is the first new drug approved to treat candidaemia and invasive candidiasis in more than 10 years. However, data are scant on the in vivo efficacy of rezafungin and the other three approved echinocandins against different Candida auris clades. METHODS This study involved 10 isolates representing 4 C. auris clades: South Asian (n = 2), East Asian (n = 2), South African (n = 2), and South American (n = 4, including 2 environmental isolates). In the lethality experiment and fungal tissue burden experiment (kidney, heart, and brain), cyclophosphamide-treated BALB/c male mice were intravenously infected (107 and 8 × 106 colony-forming units [CFU]/mouse, respectively). A 20 mg/kg dose of rezafungin was administered on days 1, 3, and 6. Alternatively, beginning 24 h post-infection, mice received 3 mg/kg of caspofungin, 5 mg/kg of micafungin, or 5 mg/kg of anidulafungin once daily for 6 days. RESULTS Regardless of isolate and clade, all echinocandin regimens improved survival after 21 days (p = 0.0041 to p < 0.0001). All echinocandins frequently produced >3-log mean CFU/g decreases in the fungal kidney and heart burdens, although some of these decreases were not statistically significant. Rezafungin, regardless of clade, produced 3-5 and 2-4 log CFU/g decreases in the kidney and heart burdens, respectively. Echinocandins did not inhibit fungal growth in the brain. Histopathological examination performed on day 7 showed no fungal cells in the heart and kidneys of rezafungin-treated mice and to a lesser extent, caspofungin-treated mice, regardless of the clinical isolate. All echinocandin-treated mice showed medium and/or large foci of fungal cells in their cerebrum or cerebellum. CONCLUSIONS Regardless of the C. auris clade, rezafungin activity in vivo was comparable to or improved over that of the three previously approved echinocandins.
Collapse
Affiliation(s)
- Dávid Balázsi
- Medical Microbiology, Clinical Center, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary
| | - Zoltán Tóth
- Medical Microbiology, Clinical Center, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Jeffrey B. Locke
- Cidara Therapeutics, Inc., 6310 Nancy Ridge Dr., Suite 101, San Diego, CA 92121, USA
| | - Andrew M. Borman
- UK National Mycology Reference Laboratory, UK Health Security Agency, Science Quarter, Southmead Hospital, Bristol BS10 5NB, UK
- Medical Research Council Centre for Medical Mycology (MRC CMM), University of Exeter, Exeter EX4 4QD, UK
| | - Lajos Forgács
- Medical Microbiology, Clinical Center, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary
| | - Noémi Balla
- Medical Microbiology, Clinical Center, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary
| | - Fruzsina Kovács
- Medical Microbiology, Clinical Center, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary
| | - Renátó Kovács
- Medical Microbiology, Clinical Center, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Chiaki Amano
- Medical Microbiology, Clinical Center, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Tugba Ilay Baran
- Medical Microbiology, Clinical Center, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - László Majoros
- Medical Microbiology, Clinical Center, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
12
|
Mulet-Bayona JV, Cancino-Muñoz I, Salvador-García C, Tormo-Palop N, Guna-Serrano MDR, Ferrer-Gómez C, Melero-García M, González-Candelas F, Gimeno-Cardona C. Genotypic and phenotypic characterisation of a nosocomial outbreak of Candida auris in Spain during 5 years. Mycoses 2024; 67:e13776. [PMID: 39086009 DOI: 10.1111/myc.13776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
OBJECTIVES The investigation of Candida auris outbreaks is needed to provide insights into its population structure and transmission dynamics. We genotypically and phenotypically characterised a C. auris nosocomial outbreak occurred in Consorcio Hospital General Universitario de Valencia (CHGUV), Spain. METHODS Data and isolates were collected from CHGUV from September 2017 (first case) until September 2021. Thirty-five isolates, including one from an environmental source, were randomly selected for whole genome sequencing (WGS), and the genomes were analysed along with a database with 335 publicly available genomes, assigning them to one of the five major clades. In order to identify polymorphisms associated with drug resistance, we used the fully susceptible GCA_003014415.1 strain as reference sequence. Known mutations in genes ERG11 and FKS1 conferring resistance to fluconazole and echinocandins, respectively, were investigated. Isolates were classified into aggregating or non-aggregating. RESULTS All isolates belonged to clade III and were from an outbreak with a single origin. They clustered close to three publicly available genomes from a hospital from where the first patient was transferred, being the probable origin. The mutation VF125AL in the ERG11 gene, conferring resistance to fluconazole, was present in all the isolates and one isolate also carried the mutation S639Y in the FKS1 gene. All the isolates had a non-aggregating phenotype (potentially more virulent). CONCLUSIONS Isolates are genotypically related and phenotypically identical but one with resistance to echinocandins, which seems to indicate that they all belong to an outbreak originated from a single isolate, remaining largely invariable over the years. This result stresses the importance of implementing infection control practices as soon as the first case is detected or when a patient is transferred from a setting with known cases.
Collapse
Affiliation(s)
- Juan Vicente Mulet-Bayona
- Servicio de Microbiología y Parasitología, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
| | - Irving Cancino-Muñoz
- Unidad Mixta Infección y Salud Pública FISABIO-Universidad de Valencia, Valencia, Spain
- Instituto de Biología Integrativa de Sistemas, I2SysBio (CSIC-UV), Valencia, Spain
| | - Carme Salvador-García
- Servicio de Microbiología y Parasitología, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
| | - Nuria Tormo-Palop
- Servicio de Microbiología y Parasitología, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
| | - María Del Remedio Guna-Serrano
- Servicio de Microbiología y Parasitología, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
- Departamento de Microbiología y Ecología, Universidad de Valencia, Valencia, Spain
| | - Carolina Ferrer-Gómez
- Servicio de Anestesiología, Reanimación y Terapéutica del Dolor, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
| | - Mercedes Melero-García
- Servicio de Medicina Preventiva, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
| | - Fernando González-Candelas
- Unidad Mixta Infección y Salud Pública FISABIO-Universidad de Valencia, Valencia, Spain
- Instituto de Biología Integrativa de Sistemas, I2SysBio (CSIC-UV), Valencia, Spain
- CIBER en Epidemiología y Salud Pública, ISCIII, Madrid, Spain
| | - Concepción Gimeno-Cardona
- Servicio de Microbiología y Parasitología, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
- Departamento de Microbiología y Ecología, Universidad de Valencia, Valencia, Spain
| |
Collapse
|
13
|
Martinez M, Garsin DA, Lorenz MC. Vertebrate and invertebrate animal infection models of Candida auris pathogenicity. Curr Opin Microbiol 2024; 80:102506. [PMID: 38925077 PMCID: PMC11432150 DOI: 10.1016/j.mib.2024.102506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Candida auris is an emerging fungal pathogen with several concerning qualities. First recognized in 2009, it has arisen in multiple geographically distinct genomic clades nearly simultaneously. C. auris strains are typically multidrug resistant and colonize the skin much better than most other pathogenic fungi; it also persists on abiotic surfaces, enabling outbreaks due to transmission in health care facilities. All these suggest a biology substantially different from the 'model' fungal pathogen, Candida albicans and support intensive investigation of C. auris biology directly. To uncover novel virulence mechanisms in this species requires the development of appropriate animal infection models. Various studies using mice, the definitive model, are inconsistent due to differences in mouse and fungal strains, immunosuppressive regimes, doses, and outcome metrics. At the same time, developing models of skin colonization present a route to new insights into an aspect of fungal pathogenesis that has not been well studied in other species. We also discuss the growing use of nonmammalian model systems, including both vertebrates and invertebrates, such as zebrafish, C. elegans, Drosophila, and Galleria mellonella, that have been productively employed in virulence studies with other fungal species. This review will discuss progress in developing appropriate animal models, outline current challenges, and highlight opportunities in demystifying this curious species.
Collapse
Affiliation(s)
- Melissa Martinez
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School and the University of Texas Graduate School of Biomedical Sciences, USA
| | - Danielle A Garsin
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School and the University of Texas Graduate School of Biomedical Sciences, USA
| | - Michael C Lorenz
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School and the University of Texas Graduate School of Biomedical Sciences, USA.
| |
Collapse
|
14
|
Jones CR, Neill C, Borman AM, Budd EL, Cummins M, Fry C, Guy RL, Jeffery K, Johnson EM, Manuel R, Mirfenderesky M, Moore G, Patel B, Schelenz S, Staniforth K, Taori SK, Brown CS. The laboratory investigation, management, and infection prevention and control of Candida auris: a narrative review to inform the 2024 national guidance update in England. J Med Microbiol 2024; 73:001820. [PMID: 38771623 PMCID: PMC11165919 DOI: 10.1099/jmm.0.001820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/11/2024] [Indexed: 05/22/2024] Open
Abstract
The emergent fungal pathogen Candida auris is increasingly recognised as an important cause of healthcare-associated infections globally. It is highly transmissible, adaptable, and persistent, resulting in an organism with significant outbreak potential that risks devastating consequences. Progress in the ability to identify C. auris in clinical specimens is encouraging, but laboratory diagnostic capacity and surveillance systems are lacking in many countries. Intrinsic resistance to commonly used antifungals, combined with the ability to rapidly acquire resistance to therapy, substantially restricts treatment options and novel agents are desperately needed. Despite this, outbreaks can be interrupted, and mortality avoided or minimised, through the application of rigorous infection prevention and control measures with an increasing evidence base. This review provides an update on epidemiology, the impact of the COVID-19 pandemic, risk factors, identification and typing, resistance profiles, treatment, detection of colonisation, and infection prevention and control measures for C. auris. This review has informed a planned 2024 update to the United Kingdom Health Security Agency (UKHSA) guidance on the laboratory investigation, management, and infection prevention and control of Candida auris. A multidisciplinary response is needed to control C. auris transmission in a healthcare setting and should emphasise outbreak preparedness and response, rapid contact tracing and isolation or cohorting of patients and staff, strict hand hygiene and other infection prevention and control measures, dedicated or single-use equipment, appropriate disinfection, and effective communication concerning patient transfers and discharge.
Collapse
Affiliation(s)
- Christopher R. Jones
- HCAI, Fungal, AMR, AMU, and Sepsis Division, UK Health Security Agency, London, UK
| | - Claire Neill
- HCAI, Fungal, AMR, AMU, and Sepsis Division, UK Health Security Agency, London, UK
| | - Andrew M. Borman
- UKHSA Mycology Reference Laboratory, National Infection Services, UKHSA South West Laboratory, Science Quarter, Southmead Hospital, Bristol, UK
- MRC Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, UK
| | - Emma L. Budd
- HCAI, Fungal, AMR, AMU, and Sepsis Division, UK Health Security Agency, London, UK
| | - Martina Cummins
- Department of Microbiology and Infection Control, Barts Health NHS Trust, London, UK
| | - Carole Fry
- HCAI, Fungal, AMR, AMU, and Sepsis Division, UK Health Security Agency, London, UK
| | - Rebecca L. Guy
- HCAI, Fungal, AMR, AMU, and Sepsis Division, UK Health Security Agency, London, UK
| | - Katie Jeffery
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Elizabeth M. Johnson
- UKHSA Mycology Reference Laboratory, National Infection Services, UKHSA South West Laboratory, Science Quarter, Southmead Hospital, Bristol, UK
- MRC Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, UK
| | - Rohini Manuel
- Public Health Laboratory London, Science Group, UK Health Security Agency, London, UK
| | | | - Ginny Moore
- Research and Evaluation, UK Health Security Agency, Porton Down, Salisbury, UK
| | - Bharat Patel
- Public Health Laboratory London, Science Group, UK Health Security Agency, London, UK
| | - Silke Schelenz
- Department of Microbiology, King’s College Hospital NHS Foundation Trust, London, UK
| | - Karren Staniforth
- HCAI, Fungal, AMR, AMU, and Sepsis Division, UK Health Security Agency, London, UK
| | | | - Colin S. Brown
- HCAI, Fungal, AMR, AMU, and Sepsis Division, UK Health Security Agency, London, UK
- National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London, UK
| |
Collapse
|
15
|
Erkose Genc G, Caklovica Kucukkaya I, Komec S, Toker Onder I, Toptas O, Teke L, Turan D, Aygun G, Gulmez D, Arikan Akdagli S, Erturan Z. Evaluation of the first Candida auris isolates reported from Türkiye in terms of identification by various methods and susceptibility to antifungal drugs. Indian J Med Microbiol 2024; 49:100594. [PMID: 38636843 DOI: 10.1016/j.ijmmb.2024.100594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
PURPOSE Candida auris is increasingly being isolated from patients all over the world. It has five clades. In this study, it was aimed to compare the results of biochemical tests obtained using different methods and the antifungal susceptibility profiles of C. auris strains isolated from the first seven cases reported in Türkiye, and evaluate whether this information could be useful as preliminary data in determining the clade of strains in centers that lack the opportunity to apply molecular methods. METHODS Identification test results obtained using API ID 32 C, API 20 C AUX, VITEK-2 YST, and MALDI-TOF MS; colony color and morphology on Chromagar Candida, CHROMagar Candida Plus media, and cornmeal-Tween 80 agar; susceptibility to antifungals were tested and compared. Antifungal susceptibility test was studied using microdilution method according to the recommendations of EUCAST. Additionally, a pilot study was conducted to investigate the value of CHROMagar Candida Plus. RESULTS All seven strains were identified as Lachancea kluyveri with API ID 32 C, Rhodotorula glutinis; Cryptococcus neoformans with API 20 C AUX, and C. auris with both VITEK-2 YST and MALDI-TOF MS. MIC values for fluconazole were very high (≥64 mg/L) for all seven strains. It was observed that 11 (37.9%) of 29 Candida parapsilosis strains formed colonies with morphology similar to C. auris on CHROMagar Candida Plus medium, leading to false positivity. CONCLUSIONS Although there have been many isolations of C. auris in our country in recent years, clade distribution of only a small number of strains is known yet. In this study, when the biochemical properties and antifungal susceptibility profiles of the seven strains were evaluated, it was concluded that they exhibited some characteristics compatible with clade I. It was also observed that strains 1 and 2 may belong to a different clade.
Collapse
Affiliation(s)
- Gonca Erkose Genc
- Istanbul University Istanbul Faculty of Medicine, Department of Medical Microbiology, Istanbul, Turkiye.
| | - Ilvana Caklovica Kucukkaya
- Istanbul University Istanbul Faculty of Medicine, Department of Medical Microbiology, Istanbul, Turkiye.
| | - Selda Komec
- Basaksehir Cam and Sakura City Hospital, Laboratory of Medical Microbiology, Istanbul, Turkiye.
| | - Ilke Toker Onder
- Hacettepe University Faculty of Medicine, Department of Medical Microbiology, Ankara, Turkiye.
| | - Oyku Toptas
- Altinbas University Faculty of Medicine, Department of Medical Microbiology, Istanbul, Turkiye.
| | - Leyla Teke
- University of Health Sciences, Gaziosmanpaşa Training and Research Hospital, Laboratory of Medical Microbiology, Istanbul, Turkiye.
| | - Deniz Turan
- University of Health Sciences, Haydarpaşa Numune Training and Research Hospital, Laboratory of Medical Microbiology, Istanbul, Turkiye.
| | - Gokhan Aygun
- Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Department of Infectious Diseases and Clinical Microbiology, Istanbul, Turkiye.
| | - Dolunay Gulmez
- Hacettepe University Faculty of Medicine, Department of Medical Microbiology, Ankara, Turkiye.
| | - Sevtap Arikan Akdagli
- Hacettepe University Faculty of Medicine, Department of Medical Microbiology, Ankara, Turkiye.
| | - Zayre Erturan
- Istanbul University Istanbul Faculty of Medicine, Department of Medical Microbiology, Istanbul, Turkiye.
| |
Collapse
|
16
|
Siopi M, Pachoulis I, Leventaki S, Spruijtenburg B, Meis JF, Pournaras S, Vrioni G, Tsakris A, Meletiadis J. Evaluation of the Vitek 2 system for antifungal susceptibility testing of Candida auris using a representative international panel of clinical isolates: overestimation of amphotericin B resistance and underestimation of fluconazole resistance. J Clin Microbiol 2024; 62:e0152823. [PMID: 38501836 PMCID: PMC11005389 DOI: 10.1128/jcm.01528-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/21/2024] [Indexed: 03/20/2024] Open
Abstract
Although the Vitek 2 system is broadly used for antifungal susceptibility testing of Candida spp., its performance against Candida auris has been assessed using limited number of isolates recovered from restricted geographic areas. We therefore compared Vitek 2 system with the reference Clinical and Laboratory Standards Institute (CLSI) broth microdilution method using an international collection of 100 C. auris isolates belonging to different clades. The agreement ±1 twofold dilution between the two methods and the categorical agreement (CA) based on the Centers for Disease Control and Prevention's (CDC's) tentative resistance breakpoints and Vitek 2-specific wild-type upper limit values (WT-ULVs) were determined. The CLSI-Vitek 2 agreement was poor for 5-flucytosine (0%), fluconazole (16%), and amphotericin B (29%), and moderate for voriconazole (61%), micafungin (67%), and caspofungin (81%). Significant interpretation errors were recorded using the CDC breakpoints for amphotericin B (31% CA, 69% major errors; MaEs) and fluconazole (69% CA, 31% very major errors; VmEs), but not for echinocandins (99% CA, 1% MaEs for both micafungin and caspofungin) for which the Vitek 2 allowed correct categorization of echinocandin-resistant FKS1 mutant isolates. Discrepancies were reduced when the Vitek 2 WT-ULV of 16 mg/L for amphotericin B (98% CA, 2% MaEs) and of 4 mg/L for fluconazole (96% CA, 1% MaEs, 3% VmEs) were used. In conclusion, the Vitek 2 system performed well for echinocandin susceptibility testing of C .auris. Resistance to fluconazole was underestimated whereas resistance to amphotericin B was overestimated using the CDC breakpoints of ≥32 and ≥2 mg/L, respectively. Vitek 2 minimun inhibitory concentrations (MICs) >4 mg/L indicated resistance to fluconazole and Vitek 2 MICs ≤16 mg/L indicated non-resistance to amphotericin B.
Collapse
Affiliation(s)
- Maria Siopi
- Clinical Microbiology Laboratory, “Attikon” University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Molecular Microbiology and Immunology Laboratory, Department of Biomedical Sciences, University of West Attica, Athens, Greece
| | - Ioannis Pachoulis
- Clinical Microbiology Laboratory, “Attikon” University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Molecular Microbiology and Immunology Laboratory, Department of Biomedical Sciences, University of West Attica, Athens, Greece
| | - Sevasti Leventaki
- Clinical Microbiology Laboratory, “Attikon” University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Molecular Microbiology and Immunology Laboratory, Department of Biomedical Sciences, University of West Attica, Athens, Greece
| | - Bram Spruijtenburg
- Canisius-Wilhelmina Hospital (CWZ)/Dicoon, Nijmegen, the Netherlands
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, the Netherlands
| | - Jacques F. Meis
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, the Netherlands
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, Germany
| | - Spyros Pournaras
- Clinical Microbiology Laboratory, “Attikon” University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgia Vrioni
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Tsakris
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Joseph Meletiadis
- Clinical Microbiology Laboratory, “Attikon” University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
17
|
Wang TW, Sofras D, Montelongo-Jauregui D, Paiva TO, Carolus H, Dufrêne YF, Alfaifi AA, McCracken C, Bruno VM, Van Dijck P, Jabra-Rizk MA. Functional Redundancy in Candida auris Cell Surface Adhesins Crucial for Cell-Cell Interaction and Aggregation. RESEARCH SQUARE 2024:rs.3.rs-4077218. [PMID: 38562859 PMCID: PMC10984083 DOI: 10.21203/rs.3.rs-4077218/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Candida auris is an emerging nosocomial fungal pathogen associated with life-threatening invasive disease due to its persistent colonization, high level of transmissibility and multi-drug resistance. Aggregative and non-aggregative growth phenotypes for C. auris strains with different biofilm forming abilities, drug susceptibilities and virulence characteristics have been described. Using comprehensive transcriptional analysis we identified key cell surface adhesins that were highly upregulated in the aggregative phenotype during in vitro and in vivo grown biofilms using a mouse model of catheter infection. Phenotypic and functional evaluations of generated null mutants demonstrated crucial roles for the adhesins Als5 and Scf1 in mediating cell-cell adherence, coaggregation and biofilm formation. While individual mutants were largely non-aggregative, in combination cells were able to co-adhere and aggregate, as directly demonstrated by measuring cell adhesion forces using single-cell atomic force spectroscopy. This co-adherence indicates their role as complementary adhesins, which despite their limited similarity, may function redundantly to promote cell-cell interaction and biofilm formation. Functional diversity of cell wall proteins may be a form of regulation that provides the aggregative phenotype of C. auris with flexibility and rapid adaptation to the environment, potentially impacting persistence and virulence.
Collapse
Affiliation(s)
- Tristan W. Wang
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| | - Dimitrios Sofras
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Daniel Montelongo-Jauregui
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| | - Telmo O. Paiva
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - Hans Carolus
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Yves F. Dufrêne
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - Areej A. Alfaifi
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| | - Carrie McCracken
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Vincent M. Bruno
- Department of Microbiology and Immunology, School of Medicine University of Maryland, Baltimore, MD 21201, USA
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Mary Ann Jabra-Rizk
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
- Department of Microbiology and Immunology, School of Medicine University of Maryland, Baltimore, MD 21201, USA
| |
Collapse
|
18
|
Bing J, Guan Z, Zheng T, Ennis CL, Nobile CJ, Chen C, Chu H, Huang G. Rapid evolution of an adaptive multicellular morphology of Candida auris during systemic infection. Nat Commun 2024; 15:2381. [PMID: 38493178 PMCID: PMC10944540 DOI: 10.1038/s41467-024-46786-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/08/2024] [Indexed: 03/18/2024] Open
Abstract
Candida auris has become a serious threat to public health. The mechanisms of how this fungal pathogen adapts to the mammalian host are poorly understood. Here we report the rapid evolution of an adaptive C. auris multicellular aggregative morphology in the murine host during systemic infection. C. auris aggregative cells accumulate in the brain and exhibit obvious advantages over the single-celled yeast-form cells during systemic infection. Genetic mutations, specifically de novo point mutations in genes associated with cell division or budding processes, underlie the rapid evolution of this aggregative phenotype. Most mutated C. auris genes are associated with the regulation of cell wall integrity, cytokinesis, cytoskeletal properties, and cellular polarization. Moreover, the multicellular aggregates are notably more recalcitrant to the host antimicrobial peptides LL-37 and PACAP relative to the single-celled yeast-form cells. Overall, to survive in the host, C. auris can rapidly evolve a multicellular aggregative morphology via genetic mutations.
Collapse
Affiliation(s)
- Jian Bing
- Shanghai Institute of Infectious Disease and Biosecurity, Department of infectious diseases, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438, China
| | - Zhangyue Guan
- Shanghai Institute of Infectious Disease and Biosecurity, Department of infectious diseases, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Tianhong Zheng
- Shanghai Institute of Infectious Disease and Biosecurity, Department of infectious diseases, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Craig L Ennis
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, 95343, USA
- Quantitative and Systems Biology Graduate Program, University of California, Merced, Merced, CA, 95343, USA
| | - Clarissa J Nobile
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, 95343, USA
- Health Sciences Research Institute, University of California, Merced, Merced, CA, 95343, USA
| | - Changbin Chen
- The Center for Microbes, Development, and Health, Key Laboratory of Molecular Virology and Immunology, Unit of Pathogenic Fungal Infection & Host Immunity, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Haiqing Chu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
| | - Guanghua Huang
- Shanghai Institute of Infectious Disease and Biosecurity, Department of infectious diseases, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China.
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
19
|
Narayanan A, Selvakumar P, Siddharthan R, Sanyal K. Identification of C. auris clade 5 isolates using claID. Med Mycol 2024; 62:myae018. [PMID: 38414264 DOI: 10.1093/mmy/myae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/05/2024] [Accepted: 02/26/2024] [Indexed: 02/29/2024] Open
Abstract
Candida auris poses threats to the global medical community due to its multidrug resistance, ability to cause nosocomial outbreaks and resistance to common sterilization agents. Different variants that emerged at different geographical zones were classified as clades. Clade-typing becomes necessary to track its spread, possible emergence of new clades, and to predict the properties that exhibit a clade bias. We previously reported a colony-Polymerase Chain Reaction-based, clade-identification method employing whole genome alignments and identification of clade-specific sequences of four major geographical clades. Here, we expand the panel by identifying clade 5 which was later isolated in Iran, using specific primers designed through in silico analyses.
Collapse
Affiliation(s)
- Aswathy Narayanan
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore,560064, India
| | - Pavitra Selvakumar
- Computational Biology, The Institute of Mathematical Sciences, Chennai, 600113, India
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - Rahul Siddharthan
- Computational Biology, The Institute of Mathematical Sciences, Chennai, 600113, India
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore,560064, India
| |
Collapse
|
20
|
Pelletier C, Shaw S, Alsayegh S, Brown AJP, Lorenz A. Candida auris undergoes adhesin-dependent and -independent cellular aggregation. PLoS Pathog 2024; 20:e1012076. [PMID: 38466738 PMCID: PMC10957086 DOI: 10.1371/journal.ppat.1012076] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 03/21/2024] [Accepted: 02/27/2024] [Indexed: 03/13/2024] Open
Abstract
Candida auris is a fungal pathogen of humans responsible for nosocomial infections with high mortality rates. High levels of resistance to antifungal drugs and environmental persistence mean these infections are difficult to treat and eradicate from a healthcare setting. Understanding the life cycle and the genetics of this fungus underpinning clinically relevant traits, such as antifungal resistance and virulence, is of the utmost importance to develop novel treatments and therapies. Epidemiological and genomic studies have identified five geographical clades (I-V), which display phenotypic and genomic differences. Aggregation of cells, a phenotype primarily of clade III strains, has been linked to reduced virulence in some infection models. The aggregation phenotype has thus been associated with conferring an advantage for (skin) colonisation rather than for systemic infection. However, strains with different clade affiliations were compared to infer the effects of different morphologies on virulence. This makes it difficult to distinguish morphology-dependent causes from clade-specific or even strain-specific genetic factors. Here, we identify two different types of aggregation: one induced by antifungal treatment which is a result of a cell separation defect; and a second which is controlled by growth conditions and only occurs in strains with the ability to aggregate. The latter aggregation type depends on an ALS-family adhesin which is differentially expressed during aggregation in an aggregative C. auris strain. Finally, we demonstrate that macrophages cannot clear aggregates, suggesting that aggregation might after all provide a benefit during systemic infection and could facilitate long-term persistence in the host.
Collapse
Affiliation(s)
- Chloe Pelletier
- Institute of Medical Sciences (IMS), University of Aberdeen, Aberdeen, United Kingdom
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Sophie Shaw
- Centre for Genome-Enabled Biology and Medicine (CGEBM), University of Aberdeen, Aberdeen, United Kingdom
| | - Sakinah Alsayegh
- Institute of Medical Sciences (IMS), University of Aberdeen, Aberdeen, United Kingdom
| | | | - Alexander Lorenz
- Institute of Medical Sciences (IMS), University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
21
|
Li J, Aubry L, Brandalise D, Coste AT, Sanglard D, Lamoth F. Upc2-mediated mechanisms of azole resistance in Candida auris. Microbiol Spectr 2024; 12:e0352623. [PMID: 38206035 PMCID: PMC10845950 DOI: 10.1128/spectrum.03526-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
Candida auris is an emerging yeast pathogen of major concern because of its ability to cause hospital outbreaks of invasive candidiasis and to develop resistance to antifungal drugs. A majority of C. auris isolates are resistant to fluconazole, an azole drug used for the treatment of invasive candidiasis. Mechanisms of azole resistance are multiple, including mutations in the target gene ERG11 and activation of the transcription factors Tac1b and Mrr1, which control the drug transporters Cdr1 and Mdr1, respectively. We investigated the role of the transcription factor Upc2, which is known to regulate the ergosterol biosynthesis pathway and azole resistance in other Candida spp. Genetic deletion and hyperactivation of Upc2 by epitope tagging in C. auris resulted in drastic increases and decreases in susceptibility to azoles, respectively. This effect was conserved in strains with genetic hyperactivation of Tac1b or Mrr1. Reverse transcription PCR analyses showed that Upc2 regulates ERG11 expression and also activates the Mrr1/Mdr1 pathway. We showed that upregulation of MDR1 by Upc2 could occur independently from Mrr1. The impact of UPC2 deletion on MDR1 expression and azole susceptibility in a hyperactive Mrr1 background was stronger than that of MRR1 deletion in a hyperactive Upc2 background. While Upc2 hyperactivation resulted in a significant increase in the expression of TAC1b, CDR1 expression remained unchanged. Taken together, our results showed that Upc2 is crucial for azole resistance in C. auris, via regulation of the ergosterol biosynthesis pathway and activation of the Mrr1/Mdr1 pathway. Notably, Upc2 is a very potent and direct activator of Mdr1.IMPORTANCECandida auris is a yeast of major medical importance causing nosocomial outbreaks of invasive candidiasis. Its ability to develop resistance to antifungal drugs, in particular to azoles (e.g., fluconazole), is concerning. Understanding the mechanisms of azole resistance in C. auris is important and may help in identifying novel antifungal targets. This study shows the key role of the transcription factor Upc2 in azole resistance of C. auris and shows that this effect is mediated via different pathways, including the regulation of ergosterol biosynthesis and also the direct upregulation of the drug transporter Mdr1.
Collapse
Affiliation(s)
- Jizhou Li
- Department of Laboratory Medicine and Pathology, Institute of Microbiology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Lola Aubry
- Department of Laboratory Medicine and Pathology, Institute of Microbiology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Danielle Brandalise
- Department of Laboratory Medicine and Pathology, Institute of Microbiology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Alix T. Coste
- Department of Laboratory Medicine and Pathology, Institute of Microbiology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Dominique Sanglard
- Department of Laboratory Medicine and Pathology, Institute of Microbiology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Frederic Lamoth
- Department of Laboratory Medicine and Pathology, Institute of Microbiology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
22
|
Hernando-Ortiz A, Eraso E, Jauregizar N, de Groot PW, Quindós G, Mateo E. Efficacy of the combination of amphotericin B and echinocandins against Candida auris in vitro and in the Caenorhabditis elegans host model. Microbiol Spectr 2024; 12:e0208623. [PMID: 38018978 PMCID: PMC10783041 DOI: 10.1128/spectrum.02086-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/27/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE Multidrug resistance is a rising problem among non-Candida albicans species, such as Candida auris. This therapeutic problem has been very important during the COVID-19 pandemic. The World Health Organization has included C. auris in its global priority list of health-threatening fungi, to study this emerging multidrug-resistant species and to develop effective alternative therapies. In the present study, the synergistic effect of the combination of amphotericin B and echinocandins has been demonstrated against blood isolates of C. auris. Different susceptibility responses were also observed between aggregative and non-aggregative phenotypes. The antifungal activity of these drug combinations against C. auris was also demonstrated in the Caenorhabditis elegans host model of candidiasis, confirming the suitability and usefulness of this model in the search for solutions to antimicrobial resistance.
Collapse
Affiliation(s)
- Ainara Hernando-Ortiz
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Elena Eraso
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Nerea Jauregizar
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Piet W.J. de Groot
- Regional Center for Biomedical Research, University of Castilla-La Mancha, Albacete, Spain
| | - Guillermo Quindós
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Estibaliz Mateo
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Bilbao, Spain
| |
Collapse
|
23
|
Seiser S, Arzani H, Ayub T, Phan-Canh T, Staud C, Worda C, Kuchler K, Elbe-Bürger A. Native human and mouse skin infection models to study Candida auris-host interactions. Microbes Infect 2024; 26:105234. [PMID: 37813159 DOI: 10.1016/j.micinf.2023.105234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/29/2023] [Accepted: 09/30/2023] [Indexed: 10/11/2023]
Abstract
The World Health Organization (WHO) declared certain fungal pathogens as global health threats for the next decade. Candida auris (C. auris) is a newly emerging skin-tropic multidrug-resistant fungal pathogen that can cause life-threatening infections of high mortality in hospitals and healthcare settings. Here, we address an unmet need and present novel native ex vivo skin models, thus extending previous C. auris-host interaction studies. We exploit histology and immunofluorescence analysis of ex vivo skin biopsies of human adult and fetal, as well as mouse origin infected with C. auris via distinct routes. We demonstrate that an intact skin barrier efficiently protects from C. auris penetration and invasion. Although C. auris readily grows on native human skin, it can reach deeper layers only upon physical disruption of the barrier by needling or through otherwise damaged skin. By contrast, a barrier disruption is not necessary for C. auris penetration of native mouse skin. Importantly, we show that C. auris undergoes morphogenetic changes upon skin penetration, as it acquires pseudohyphal growth phenotypes in deeper human and mouse dermis. Taken together, this new human and mouse skin model toolset yields new insights into C. auris colonization, adhesion, growth and invasion properties of native versus damaged human skin. The results form a crucial basis for future studies on skin immune defense to colonizing pathogens, and offer new options for testing the action and efficacy of topical antimicrobial compound formulations.
Collapse
Affiliation(s)
- Saskia Seiser
- Medical University of Vienna, Department of Dermatology, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Hossein Arzani
- Medical University of Vienna, Max Perutz Labs Vienna, Campus Vienna Biocenter, Dr. Bohr-Gasse 9/2, 1030 Vienna, Austria
| | - Tanya Ayub
- Medical University of Vienna, Department of Dermatology, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Trinh Phan-Canh
- Medical University of Vienna, Max Perutz Labs Vienna, Campus Vienna Biocenter, Dr. Bohr-Gasse 9/2, 1030 Vienna, Austria
| | - Clement Staud
- Medical University of Vienna, Department of Plastic and Reconstructive Surgery, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Christof Worda
- Medical University of Vienna, Department of Obstetrics and Gynecology, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Karl Kuchler
- Medical University of Vienna, Max Perutz Labs Vienna, Campus Vienna Biocenter, Dr. Bohr-Gasse 9/2, 1030 Vienna, Austria.
| | - Adelheid Elbe-Bürger
- Medical University of Vienna, Department of Dermatology, Währinger Gürtel 18-20, 1090 Vienna, Austria.
| |
Collapse
|
24
|
Malavia-Jones D, Farrer RA, Stappers MH, Edmondson MB, Borman AM, Johnson EM, Lipke PN, Gow NA. Strain and temperature dependent aggregation of Candida auris is attenuated by inhibition of surface amyloid proteins. Cell Surf 2023; 10:100110. [PMID: 37559873 PMCID: PMC10407437 DOI: 10.1016/j.tcsw.2023.100110] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 08/11/2023] Open
Abstract
Candida auris is a multi-drug resistant human fungal pathogen that has become a global threat to human health due to its drug resistant phenotype, persistence in the hospital environment and propensity for patient to patient spread. Isolates display variable aggregation that may affect the relative virulence of strains. Therefore, dissection of this phenotype has gained substantial interest in recent years. We studied eight clinical isolates from four different clades (I-IV); four of which had a strongly aggregating phenotype and four of which did not. Genome analysis identified polymorphisms associated with loss of cell surface proteins were enriched in weakly-aggregating strains. Additionally, we identified down-regulation of chitin synthase genes involved in the synthesis of the chitinous septum. Characterisation of the cells revealed no ultrastructural defects in cytokinesis or cell separation in aggregating isolates. Strongly and weakly aggregating strains did not differ in net surface charge or in cell surface hydrophobicity. The capacity for aggregation and for adhesion to polystyrene microspheres were also not correlated. However, aggregation and extracellular matrix formation were all increased at higher growth temperatures, and treatment with the amyloid protein inhibitor Thioflavin-T markedly attenuated aggregation. Genome analysis further indicated strain specific differences in the genome content of GPI-anchored proteins including those encoding genes with the potential to form amyloid proteins. Collectively our data suggests that aggregation is a complex strain and temperature dependent phenomenon that may be linked in part to the ability to form extracellular matrix and cell surface amyloids.
Collapse
Affiliation(s)
- Dhara Malavia-Jones
- MRC Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Rhys A. Farrer
- MRC Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Mark H.T. Stappers
- MRC Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Matt B. Edmondson
- MRC Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Andrew M. Borman
- MRC Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
- UKHSA Mycology Reference Laboratory, National Infection Services, UKHSA South West Laboratory, Science Quarter, Southmead Hospital, Bristol BS10 5NB, UK
| | - Elizabeth M. Johnson
- MRC Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
- UKHSA Mycology Reference Laboratory, National Infection Services, UKHSA South West Laboratory, Science Quarter, Southmead Hospital, Bristol BS10 5NB, UK
| | - Peter N. Lipke
- Biology Department, Brooklyn College of City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
| | - Neil A.R. Gow
- MRC Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
25
|
Pan B, Weerasinghe H, Sezmis A, McDonald MJ, Traven A, Thompson P, Simm C. Leveraging the MMV Pathogen Box to Engineer an Antifungal Compound with Improved Efficacy and Selectivity against Candida auris. ACS Infect Dis 2023; 9:1901-1917. [PMID: 37756147 DOI: 10.1021/acsinfecdis.3c00199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Fungal infections pose a significant and increasing threat to human health, but the current arsenal of antifungal drugs is inadequate. We screened the Medicines for Malaria Venture (MMV) Pathogen Box for new antifungal agents against three of the most critical Candida species (Candida albicans, Candida auris, and Candida glabrata). Of the 14 identified hit compounds, most were active against C. albicans and C. auris. We selected the pyrazolo-pyrimidine MMV022478 for chemical modifications to build structure-activity relationships and study their antifungal properties. Two analogues, 7a and 8g, with distinct fluorine substitutions, greatly improved the efficacy against C. auris and inhibited fungal replication inside immune cells. Additionally, analogue 7a had improved selectivity toward fungal killing compared to mammalian cytotoxicity. Evolution experiments generating MMV022478-resistant isolates revealed a change in morphology from oblong to round cells. Most notably, the resistant isolates blocked the uptake of the fluorescent dye rhodamine 6G and showed reduced susceptibility toward fluconazole, indicative of structural changes in the yeast cell surface. In summary, our study identified a promising antifungal compound with activity against high-priority fungal pathogens. Additionally, we demonstrated how structure-activity relationship studies of known and publicly available compounds can expand the repertoire of molecules with antifungal efficacy and reduced cytotoxicity to drive the development of novel therapeutics.
Collapse
Affiliation(s)
- Baolong Pan
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia
| | - Harshini Weerasinghe
- Infection Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia
- Centre to Impact AMR, Monash University, Clayton 3800, VIC, Australia
| | - Aysha Sezmis
- School of Biological Sciences, Monash University, Clayton 3800, VIC, Australia
| | - Michael J McDonald
- Centre to Impact AMR, Monash University, Clayton 3800, VIC, Australia
- School of Biological Sciences, Monash University, Clayton 3800, VIC, Australia
| | - Ana Traven
- Infection Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia
- Centre to Impact AMR, Monash University, Clayton 3800, VIC, Australia
| | - Philip Thompson
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia
| | - Claudia Simm
- Infection Program and the Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia
- Centre to Impact AMR, Monash University, Clayton 3800, VIC, Australia
| |
Collapse
|
26
|
Kim JS, Bahn YS. Protein Kinase A Controls the Melanization of Candida auris through the Alteration of Cell Wall Components. Antioxidants (Basel) 2023; 12:1702. [PMID: 37760005 PMCID: PMC10525270 DOI: 10.3390/antiox12091702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Candida auris, a multidrug-resistant fungal pathogen, significantly threatens global public health. Recent studies have identified melanin production, a key virulence factor in many pathogenic fungi that protects against external threats like reactive oxygen species, in C. auris. However, the melanin regulation mechanism remains elusive. This study explores the role of the Ras/cAMP/PKA signaling pathway in C. auris melanization. It reveals that the catalytic subunits Tpk1 and Tpk2 of protein kinase A (PKA) are essential, whereas Ras1, Gpr1, Gpa2, and Cyr1 are not. Under melanin-promoting conditions, the tpk1Δ tpk2Δ strain formed melanin granules in the supernatant akin to the wild-type strain but failed to adhere them properly to the cell wall. This discrepancy is likely due to a decreased expression of chitin-synthesis-related genes. Our findings also show that Tpk1 primarily drives melanization, with Tpk2 having a lesser impact. To corroborate this, we found that C. auris must deploy Tpk1-dependent melanin deposition as a defensive mechanism against antioxidant exposure. Moreover, we confirmed that deletion mutants of multicopper oxidase and ferroxidase genes, previously assumed to influence C. auris melanization, do not directly contribute to the process. Overall, this study sheds light on the role of PKA in C. auris melanization and enhances our understanding of the pathogenicity mechanisms of this emerging fungal pathogen.
Collapse
Affiliation(s)
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea;
| |
Collapse
|
27
|
Fayed B, Lazreg IK, AlHumaidi RB, Qasem MAAA, Alajmy BMGN, Bojbarah FMAM, Senok A, Husseiny MI, Soliman SSM. Intra-clade Heterogeneity in Candida auris: Risk of Management. Curr Microbiol 2023; 80:295. [PMID: 37486431 DOI: 10.1007/s00284-023-03416-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
Candida auris has emerged as a significant nosocomial fungal pathogen with a high risk of pathogenicity. Since the initial detection of C. auris in 2009, it gained lots of attention with a recent alert by the Centers for Disease Control and Prevention (CDC) due to its high infectivity and drug resistance. Several studies showed the capability of C. auris to secrete lytic enzymes, germinate, and form a biofilm that eventually results in interactions with the host cells, leading to serious infections. Other studies demonstrated a decrease in susceptibility of C. auris strains to available antifungals, which may be caused by mutations within the target genes, or the drug efflux pumps. However, the contribution of C. auris heterogeneity in pathogenicity and drug resistance is not well studied. Here, we shed light on the factors contributing to the development of heterogeneity in C. auris. These include phenotypic changes, biofilm formation, mechanisms of drug resistance, host invasion, mode of transmission, and expression of virulence factors. C. auris exhibits different phenotypes, particularly aggregative, and non-aggregative forms that play an important role in fungal heterogeneity, which significantly affects drug resistance and pathogenicity. Collectively, heterogeneity in C. auris significantly contributes to ineffective treatment, which in turn affects the fungal pathogenicity and drug resistance. Therefore, understanding the underlying reasons for C. auris heterogeneity and applying effective antifungal stewardship could play a major role in controlling this pathogen.
Collapse
Affiliation(s)
- Bahgat Fayed
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, UAE
- Chemistry of Natural and Microbial Products, National Research Centre, Cairo, Egypt
| | - Imene K Lazreg
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, UAE
| | - Razan B AlHumaidi
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, UAE
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, UAE
| | - Maryam A A A Qasem
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, UAE
| | - Bashayir M Gh N Alajmy
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, UAE
| | - Fatemh M A M Bojbarah
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, UAE
| | - Abiola Senok
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Building 14 Dubai Healthcare City, P.O.Box 505055, Dubai, UAE
| | - Mohamed I Husseiny
- Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Sameh S M Soliman
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, UAE.
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, UAE.
| |
Collapse
|
28
|
Sharma C, Kadosh D. Perspective on the origin, resistance, and spread of the emerging human fungal pathogen Candida auris. PLoS Pathog 2023; 19:e1011190. [PMID: 36952448 PMCID: PMC10035752 DOI: 10.1371/journal.ppat.1011190] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023] Open
Affiliation(s)
- Cheshta Sharma
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - David Kadosh
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|
29
|
Ashkenazi-Hoffnung L, Rosenberg Danziger C. Navigating the New Reality: A Review of the Epidemiological, Clinical, and Microbiological Characteristics of Candida auris, with a Focus on Children. J Fungi (Basel) 2023; 9:176. [PMID: 36836291 PMCID: PMC9963988 DOI: 10.3390/jof9020176] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/22/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
During the past decade, Candida auris emerged across the world, causing nosocomial outbreaks in both pediatric and adult populations, particularly in intensive care settings. We reviewed the epidemiological trends and the clinical and microbiological characteristics of C. auris infection, focusing on the pediatric population. The review is based on 22 studies, which included about 250 pediatric patients with C. auris infection, across multiple countries; neonates and premature babies were the predominant pediatric patient group affected. The most common type of infection reported was bloodstream infection, which was associated with exceptionally high mortality rates. Antifungal treatment varied widely between the patients; this signifies a serious knowledge gap that should be addressed in future research. Advances in molecular diagnostic methods for rapid and accurate identification and for detection of resistance may prove especially valuable in future outbreak situations, as well as the development of investigational antifungals. However, the new reality of a highly resistant and difficult-to-treat pathogen calls for preparedness of all aspects of patient care. This spans from laboratory readiness, to raising awareness among epidemiologists and clinicians for global collaborative efforts to improve patient care and limit the spread of C. auris.
Collapse
Affiliation(s)
- Liat Ashkenazi-Hoffnung
- Department of Day Hospitalization and Pediatric Infectious Diseases Unit, Schneider Children’s Medical Center, Petach Tikva 4920235, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel
| | - Chen Rosenberg Danziger
- Department of Day Hospitalization, Schneider Children’s Medical Center, Petach Tikva 4920235, Israel
| |
Collapse
|
30
|
Spettel K, Kriz R, Wu C, Achter L, Schmid S, Galazka S, Selitsch B, Camp I, Makristathis A, Lagler H, Willinger B. Candida auris in Austria-What Is New and What Is Different. J Fungi (Basel) 2023; 9:jof9020129. [PMID: 36836244 PMCID: PMC9962151 DOI: 10.3390/jof9020129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Candida auris is a novel and emerging pathogenic yeast which represents a serious global health threat. Since its first description in Japan 2009, it has been associated with large hospital outbreaks all over the world and is often resistant to more than one antifungal drug class. To date, five C. auris isolates have been detected in Austria. Morphological characterization and antifungal susceptibility profiles against echinocandins, azoles, polyenes and pyrimidines, as well as the new antifungals ibrexafungerp and manogepix, were determined. In order to assess pathogenicity of these isolates, an infection model in Galleria mellonella was performed and whole genome sequencing (WGS) analysis was conducted to determine the phylogeographic origin. We could characterize four isolates as South Asian clade I and one isolate as African clade III. All of them had elevated minimal inhibitory concentrations to at least two different antifungal classes. The new antifungal manogepix showed high in vitro efficacy against all five C. auris isolates. One isolate, belonging to the African clade III, showed an aggregating phenotype, while the other isolates belonging to South Asian clade I were non-aggregating. In the Galleria mellonella infection model, the isolate belonging to African clade III exhibited the lowest in vivo pathogenicity. As the occurrence of C. auris increases globally, it is important to raise awareness to prevent transmission and hospital outbreaks.
Collapse
Affiliation(s)
- Kathrin Spettel
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Richard Kriz
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria
| | - Christine Wu
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Lukas Achter
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria
| | - Stefan Schmid
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Sonia Galazka
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Brigitte Selitsch
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Iris Camp
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Athanasios Makristathis
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Heimo Lagler
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria
| | - Birgit Willinger
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
- Correspondence: ; Tel.: +43-140400-51510
| |
Collapse
|
31
|
Yune PS, Coe J, Rao M, Lin MY. Candida auris in skilled nursing facilities. Ther Adv Infect Dis 2023; 10:20499361231189958. [PMID: 37529375 PMCID: PMC10387771 DOI: 10.1177/20499361231189958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/08/2023] [Indexed: 08/03/2023] Open
Abstract
Candida auris is a fungal organism resistant to several classes of antifungals. Since its identification in 2009, it has gained worldwide attention in healthcare for its virulence and resistance to commonly used antifungal therapeutics. Although its origin and mechanisms of transmission are not fully elucidated, it is widely recognized as a high priority healthcare-associated pathogen. Infection control efforts in skilled nursing facilities have been very challenging due to the tendency of C. auris to persist in the environment and colonize residents. In this narrative review, we discuss the epidemiology and infection prevention of C. auris in skilled nursing facilities. We also identify challenges in the diagnosis and management of both symptomatic infections and asymptomatic colonization.
Collapse
Affiliation(s)
- Philip S. Yune
- Division of Infectious Disease, Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA
- Division of Infectious Diseases, Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jared Coe
- Division of Infectious Diseases, Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Michael Y. Lin
- Division of Infectious Diseases, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
32
|
Synergistic Interaction of Caspofungin Combined with Posaconazole against FKS Wild-Type and Mutant Candida auris Planktonic Cells and Biofilms. Antibiotics (Basel) 2022; 11:antibiotics11111601. [PMID: 36421245 PMCID: PMC9686983 DOI: 10.3390/antibiotics11111601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Candida auris is a potential multidrug-resistant pathogen able to cause biofilm-associated outbreaks, where frequently indwelling devices are the source of infections. The number of effective therapies is limited; thus, new, even-combination-based strategies are needed. Therefore, the in vitro efficacy of caspofungin with posaconazole against FKS wild-type and mutant Candida auris isolates was determined. The interactions were assessed utilizing the fractional inhibitory concentration indices (FICIs), the Bliss model, and a LIVE/DEAD assay. Planktonic minimum inhibitory concentrations (pMICs) for the caspofungin-posaconazole combination showed a 4- to 256-fold and a 2- to 512-fold decrease compared to caspofungin and posaconazole alone, respectively. Sessile minimum inhibitory concentrations (sMICs) for caspofungin and posaconazole in combination showed an 8- to 128-fold and a 4- to 512-fold decrease, respectively. The combination showed synergy, especially against biofilms (FICIs were 0.033-0.375 and 0.091-0.5, and Bliss cumulative synergy volumes were 6.96 and 32.39 for echinocandin-susceptible and -resistant isolates, respectively). The caspofungin-exposed (4 mg/L) C. auris biofilms exhibited increased cell death in the presence of posaconazole (0.03 mg/L) compared to untreated, caspofungin-exposed and posaconazole-treated biofilms. Despite the favorable effect of caspofungin with posaconazole, in vivo studies are needed to confirm the therapeutic potential of this combination in C. auris-associated infections.
Collapse
|
33
|
Raman Metabolomics of Candida auris Clades: Profiling and Barcode Identification. Int J Mol Sci 2022; 23:ijms231911736. [PMID: 36233043 PMCID: PMC9569935 DOI: 10.3390/ijms231911736] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
This study targets on-site/real-time taxonomic identification and metabolic profiling of seven different Candida auris clades/subclades by means of Raman spectroscopy and imaging. Representative Raman spectra from different Candida auris samples were systematically deconvoluted by means of a customized machine-learning algorithm linked to a Raman database in order to decode structural differences at the molecular scale. Raman analyses of metabolites revealed clear differences in cell walls and membrane structure among clades/subclades. Such differences are key in maintaining the integrity and physical strength of the cell walls in the dynamic response to external stress and drugs. It was found that Candida cells use the glucan structure of the extracellular matrix, the degree of α-chitin crystallinity, and the concentration of hydrogen bonds between its antiparallel chains to tailor cell walls’ flexibility. Besides being an effective ploy in survivorship by providing stiff shields in the α–1,3–glucan polymorph, the α–1,3–glycosidic linkages are also water-insoluble, thus forming a rigid and hydrophobic scaffold surrounded by a matrix of pliable and hydrated β–glucans. Raman analysis revealed a variety of strategies by different clades to balance stiffness, hydrophobicity, and impermeability in their cell walls. The selected strategies lead to differences in resistance toward specific environmental stresses of cationic/osmotic, oxidative, and nitrosative origins. A statistical validation based on principal component analysis was found only partially capable of distinguishing among Raman spectra of clades and subclades. Raman barcoding based on an algorithm converting spectrally deconvoluted Raman sub-bands into barcodes allowed for circumventing any speciation deficiency. Empowered by barcoding bioinformatics, Raman analyses, which are fast and require no sample preparation, allow on-site speciation and real-time selection of appropriate treatments.
Collapse
|
34
|
Contreras DA, Morgan MA. Surveillance diagnostic algorithm using real-time PCR assay and strain typing method development to assist with the control of C. auris amid COVID-19 pandemic. Front Cell Infect Microbiol 2022; 12:887754. [PMID: 36118039 PMCID: PMC9471137 DOI: 10.3389/fcimb.2022.887754] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Candida auris continues to be a global threat for infection and transmission in hospitals and long-term care facilities. The emergence of SARS-CoV-2 has rerouted attention and resources away from this silent pandemic to the frontlines of the ongoing COVID-19 disease. Cases of C. auris continue to rise, and clinical laboratories need a contingency plan to prevent a possible outbreak amid the COVID-19 pandemic. Here, we introduce a two-tier Candida auris surveillance program that includes, first, a rapid qualitative rt-PCR for the identification of high-risk patients and, second, a method to analyze the isolated C. auris for strain typing using the Fourier-Transform Infrared spectroscopy. We have performed this two-tier surveillance for over 700 at-risk patients being admitted into our hospital and have identified 28 positive specimens (4%) over a 1-year period. Strain typing analysis by the IR spectrum acquisition typing method, supplemented by whole genome sequencing, has shown grouping of two significant clusters. The majority of our isolates belong to circulating African lineage associated with C. auris Clade III and an isolated strain grouping differently belonging to South Asian lineage C. auris Clade I. Low numbers of genomic variation point to local and ongoing transmission within the Los Angeles area not specifically within the hospital setting. Collectively, clinical laboratories having the ability to rapidly screen high-risk patients for C. auris and to participate in outbreak investigations by offering strain typing will greatly assist in the control of C. auris transmission within the hospital setting.
Collapse
|
35
|
Jenull S, Shivarathri R, Tsymala I, Penninger P, Trinh PC, Nogueira F, Chauhan M, Singh A, Petryshyn A, Stoiber A, Chowdhary A, Chauhan N, Kuchler K. Transcriptomics and Phenotyping Define Genetic Signatures Associated with Echinocandin Resistance in Candida auris. mBio 2022; 13:e0079922. [PMID: 35968956 PMCID: PMC9426441 DOI: 10.1128/mbio.00799-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/18/2022] [Indexed: 11/20/2022] Open
Abstract
Candida auris emerged as a human fungal pathogen only during the past decade. Remarkably, C. auris displays high degrees of genomic diversity and phenotypic plasticity, with four major clades causing hospital outbreaks with high mortality and morbidity rates. C. auris can show clinical resistance to all classes of antifungal drugs, including echinocandins that are usually recommended as first-line therapies for invasive candidiasis. Here, we exploit transcriptomics coupled with phenotypic profiling to characterize a set of clinical C. auris isolates displaying pronounced echinocandin resistance (ECN-R). A hot spot mutation in the echinocandin FKS1 target gene is present in all resistant isolates. Moreover, ECN-R strains share a core signature set of 362 genes differentially expressed in ECN-R isolates. Among others, mitochondrial gene expression and genes affecting cell wall function appear to be the most prominent, with the latter correlating well with enhanced adhesive traits, increased cell wall mannan content, and altered sensitivity to cell wall stress of ECN-R isolates. Moreover, ECN-R phenotypic signatures were also linked to pathogen recognition and interaction with immune cells. Hence, transcriptomics paired with phenotyping is a suitable tool to predict resistance and fitness traits as well as treatment outcomes in pathogen populations with complex phenotypic diversity. IMPORTANCE The surge in antimicrobial drug resistance in some bacterial and fungal pathogens constitutes a significant challenge to health care facilities. The emerging human fungal pathogen Candida auris has been particularly concerning, as isolates can display pan-antifungal resistance traits against all drugs, including echinocandins. However, the mechanisms underlying this phenotypic diversity remain poorly understood. We identify transcriptomic signatures in C. auris isolates resistant to otherwise fungicidal echinocandins. We identify a set of differentially expressed genes shared by resistant strains compared to unrelated susceptible isolates. Moreover, phenotyping demonstrates that resistant strains show distinct behaviors, with implications for host-pathogen interactions. Hence, this work provides a solid basis to identify the mechanistic links between antifungal multidrug resistance and fitness costs that affect the interaction of C. auris with host immune defenses.
Collapse
Affiliation(s)
- Sabrina Jenull
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, Vienna, Austria
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine, Vienna, Austria
| | - Raju Shivarathri
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Irina Tsymala
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Philipp Penninger
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Phan-Canh Trinh
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Filomena Nogueira
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, Vienna, Austria
- CCRI-St. Anna Children’s Cancer Research Institute, Vienna, Austria
| | - Manju Chauhan
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Ashutosh Singh
- National Reference Laboratory for Antimicrobial Resistance in Fungal Pathogens, Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Andriy Petryshyn
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Anton Stoiber
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Anuradha Chowdhary
- National Reference Laboratory for Antimicrobial Resistance in Fungal Pathogens, Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Neeraj Chauhan
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Karl Kuchler
- Department of Medical Biochemistry, Max Perutz Labs Vienna, Medical University of Vienna, Campus Vienna Biocenter, Vienna, Austria
| |
Collapse
|
36
|
Izadi A, Aghaei Gharehbolagh S, Sadeghi F, Talebi M, Darmiani K, Zarrinnia A, Zarei F, Peymaeei F, Khojasteh S, Borman AM, Mahmoudi S. Drug repurposing against Candida auris: A systematic review. Mycoses 2022; 65:784-793. [PMID: 35665544 DOI: 10.1111/myc.13477] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022]
Abstract
Candida auris is a drug-resistant pathogen with several reported outbreaks. The treatment of C. auris infections is difficult due to a limited number of available antifungal drugs. Thus, finding alternative drugs through repurposing approaches would be clinically beneficial. A systematic search in PubMed, Scopus and Web of Science databases, as well as Google Scholar up to 1 November 2021, was conducted to find all articles with data regarding the antifungal activity of non-antifungal drugs against the planktonic and biofilm forms of C. auris. During database and hand searching, 290 articles were found, of which 13 were eligible for inclusion in the present study. Planktonic and biofilm forms have been studied in 11 and 8 articles (with both forms examined in 6 articles), respectively. In total, 22 and 12 drugs/compounds have been reported as repositionable against planktonic and biofilm forms of C. auris, respectively. Antiparasitic drugs, with the dominance of miltefosine, were the most common repurposed drugs against both forms of C. auris, followed by anticancer drugs (e.g. alexidine dihydrochloride) against the planktonic form and anti-inflammatory drugs (e.g. ebselen) against the biofilm form of the fungus. A collection of other drugs from various classes have also shown promising activity against C. auris. Following drug repurposing approaches, a number of drugs/compounds from various classes have been found to inhibit the planktonic and biofilm forms of C. auris. Accordingly, drug repurposing is an encouraging approach for discovering potential alternatives to conventional antifungal agents to combat drug resistance in fungi, especially C. auris.
Collapse
Affiliation(s)
- Alireza Izadi
- Department of Medical Parasitology and Mycology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Sanaz Aghaei Gharehbolagh
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sadeghi
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Meysam Talebi
- Department of Medicinal Chemistry, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Kimia Darmiani
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Zarrinnia
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fateme Zarei
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Peymaeei
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Khojasteh
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Andrew M Borman
- Public Health England UK National Mycology Reference Laboratory, Southmead Hospital Bristol, Bristol, UK.,Medical Research Council Centre for Medical Mycology (MRC CMM), University of Exeter, Exeter, UK
| | - Shahram Mahmoudi
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Tsai YT, Lu PL, Tang HJ, Huang CH, Hung WC, Tseng YT, Lee KM, Lin SY. The First Invasive Candida auris Infection in Taiwan. Emerg Microbes Infect 2022; 11:1867-1875. [PMID: 35811508 PMCID: PMC9336481 DOI: 10.1080/22221751.2022.2100280] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Candida auris, a multidrug resistant pathogenic yeast, has spread worldwide and caused several outbreaks in healthcare settings. Here, we report the first case of C. auris candidemia in Taiwan in a patient with a two-month history of hospitalization in Vietnam. We performed further investigation on the isolate from the present case as well as the previously reported C. auris isolate identified from a wound in 2018 in Taiwan, which was the first case reported in Taiwan. Both C. auris isolates were found to be susceptible to fluconazole, amphotericin B, and echinocandins. Additionally, mutations in ERG11 or FKS1 were not detected in either isolate. Microsatellite genotyping revealed that both isolates belonged to the South Asian clade. In recent years, C. auris has emerged as a global concern, and differences in clades and susceptibility patterns mandate further awareness and systematic surveillance.
Collapse
Affiliation(s)
- Yu-Te Tsai
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Liang Lu
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hung-Jen Tang
- Department of Medicine, Chi Mei Medical Center, Tainan, Taiwan
- Department of Health and Nutrition, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Chung-Hao Huang
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Wei-Chun Hung
- Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yi-Ting Tseng
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kun-Mu Lee
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shang-Yi Lin
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
38
|
de Oliveira HC, Castelli RF, Alves LR, Nosanchuk JD, Salama EA, Seleem M, Rodrigues ML. Identification of four compounds from the Pharmakon library with antifungal activity against Candida auris and species of Cryptococcus. Med Mycol 2022; 60:myac033. [PMID: 35575621 DOI: 10.1093/mmy/myac033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/11/2022] [Accepted: 05/12/2022] [Indexed: 11/14/2022] Open
Abstract
There is an urgent need to develop novel antifungals. In this study, we screened 1600 compounds for antifungal activity against Cryptococcus neoformans and Candida auris. We evaluated 4 promising compounds against 24 additional isolates of Cr. neoformans, Ca. auris, Cr. deuterogattii, and Cr. gattii. The four compounds, dequalinium chloride (DQC), bleomycin sulfate (BMS), pentamidine isethionate salt (PIS), and clioquinol (CLQ), varied in their efficacy against these pathogens but were generally more effective against cryptococci. The compounds exerted their antifungal effect via multiple mechanisms, including interference with the capsule of cryptococci and induction of hyphal-like morphology in Ca. auris. Our results indicate that DQC, BMS, PIS, and CLQ represent potential prototypes for the future development of antifungals. LAY SUMMARY Fungal infections can be lethal and the options to fight them are scarce. We tested 1600 molecules for their ability to control the growth of two important fungal pathogens, namely Candida auris and species of Cryptococcus. Four of these compounds showed promising antifungal activities.
Collapse
Affiliation(s)
| | - Rafael F Castelli
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
- Programa de Pós-Graduação em Biologia Parasitária, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Lysangela R Alves
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
| | - Joshua D Nosanchuk
- Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Ehab A Salama
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, VA Tech, Blacksburg, Virginia, USA
| | - Mohamed Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, VA Tech, Blacksburg, Virginia, USA
| | - Marcio L Rodrigues
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, Brazil
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
39
|
Forgács L, Borman AM, Kovács R, Balázsi D, Tóth Z, Balázs B, Chun-Ju C, Kardos G, Kovacs I, Majoros L. In Vivo Efficacy of Amphotericin B against Four Candida auris Clades. J Fungi (Basel) 2022; 8:jof8050499. [PMID: 35628754 PMCID: PMC9144575 DOI: 10.3390/jof8050499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 02/01/2023] Open
Abstract
Candida auris is a multidrug-resistant fungus against which in some clinical situations amphotericin B (AMB) remains the alternative or first line drug. We compared daily 1 mg/kg of AMB efficacy in a neutropenic murine bloodstream infection model against 10 isolates representing four C. auris clades (South Asian n = 2; East Asian n = 2; South African n = 2; South American n = 4; two of which were of environmental origin). Five days of AMB treatment significantly increased the survival rates in mice infected with isolates of the East Asian clade, and 1 isolate each from the South African and South American clades (originated from bloodstream), but not in mice infected with the South Asian and 2 environmental isolates from the South American clades. AMB treatment decreased the fungal burden in mice infected with the 2 isolates each from East Asian and South African, and 1 out of 2 bloodstream isolates from South American clades in the hearts (p < 0.01), kidneys (p < 0.01) and brain (p < 0.05). AMB treatment, regardless of clades, significantly decreased colony forming units in the urine at day 3. However, histopathological examination in AMB-treated mice revealed large aggregates of yeast cells in the kidneys and hearts, and focal lesions in the cerebra and cerebelli, regardless of precise C. auris clade. Our clade-specific data confirm that the efficacy of AMB against C. auris is weak, explaining the therapeutic failures in clinical situations. Our results draw attention to the necessity to maximize the killing at the start of treatment to avoid later complications in the heart and central nervous system.
Collapse
Affiliation(s)
- Lajos Forgács
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., 4032 Debrecen, Hungary; (L.F.); (R.K.); (D.B.); (Z.T.); (B.B.); (C.C.-J.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei krt. 98., 4032 Debrecen, Hungary
| | - Andrew M. Borman
- UK National Mycology Reference Laboratory, UK Health Security Agency, Science Quarter, Southmead Hospital, Bristol BS10 5NB, UK;
- Medical Research Council Centre for Medical Mycology (MRC CMM), University of Exeter, Exeter EX4 4QD, UK
| | - Renátó Kovács
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., 4032 Debrecen, Hungary; (L.F.); (R.K.); (D.B.); (Z.T.); (B.B.); (C.C.-J.)
- Faculty of Pharmacy, University of Debrecen, Nagyerdei krt. 98., 4032 Debrecen, Hungary
| | - Dávid Balázsi
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., 4032 Debrecen, Hungary; (L.F.); (R.K.); (D.B.); (Z.T.); (B.B.); (C.C.-J.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei krt. 98., 4032 Debrecen, Hungary
| | - Zoltán Tóth
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., 4032 Debrecen, Hungary; (L.F.); (R.K.); (D.B.); (Z.T.); (B.B.); (C.C.-J.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei krt. 98., 4032 Debrecen, Hungary
| | - Bence Balázs
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., 4032 Debrecen, Hungary; (L.F.); (R.K.); (D.B.); (Z.T.); (B.B.); (C.C.-J.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei krt. 98., 4032 Debrecen, Hungary
| | - Chiu Chun-Ju
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., 4032 Debrecen, Hungary; (L.F.); (R.K.); (D.B.); (Z.T.); (B.B.); (C.C.-J.)
| | - Gábor Kardos
- Department of Metagenomics, University of Debrecen, Nagyerdei krt. 98., 4032 Debrecen, Hungary;
| | - Ilona Kovacs
- Department of Pathology, Kenézy Gyula Hospital, University of Debrecen, Nagyerdei krt. 98., 4032 Debrecen, Hungary;
| | - László Majoros
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., 4032 Debrecen, Hungary; (L.F.); (R.K.); (D.B.); (Z.T.); (B.B.); (C.C.-J.)
- Correspondence: ; Tel.: +36-52-255-425; Fax: +36-52-255-424
| |
Collapse
|
40
|
Desoubeaux G, Coste AT, Imbert C, Hennequin C. Overview about Candida auris: What's up 12 years after its first description? J Mycol Med 2022; 32:101248. [DOI: 10.1016/j.mycmed.2022.101248] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/04/2022] [Accepted: 01/19/2022] [Indexed: 12/18/2022]
|
41
|
Spengler G, Gajdács M, Donadu MG, Usai M, Marchetti M, Ferrari M, Mazzarello V, Zanetti S, Nagy F, Kovács R. Evaluation of the Antimicrobial and Antivirulent Potential of Essential Oils Isolated from Juniperus oxycedrus L. ssp. macrocarpa Aerial Parts. Microorganisms 2022; 10:758. [PMID: 35456809 PMCID: PMC9032431 DOI: 10.3390/microorganisms10040758] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/17/2022] [Accepted: 03/28/2022] [Indexed: 01/01/2023] Open
Abstract
As a consequence of the worsening situation with multidrug-resistant (MDR) pathogens and a disparity in the commercialization of novel antimicrobial agents, scientists have been prompted to seek out new compounds with antimicrobial activity from a wide range of sources, including medicinal plants. In the present study, the antibacterial, antifungal, anti-virulence, and resistance-modulating properties of the essential oil from the Sardinian endemic Juniperus oxycedrus L. ssp. macrocarpa aerial parts were evaluated. The GC/MS analysis showed that the main compounds in the oil were α-pinene (56.63 ± 0.24%), limonene (14.66 ± 0.11%), and β-pinene (13.42 ± 0.09%). The essential oil showed potent antibacterial activity against Gram-positive bacteria (0.25-2 v/v%) and Salmonella spp. (4 v/v%). The strongest fungicidal activity was recorded against Candida auris sessile cells (median FICI was 0.088) but not against C. albicans biofilms (median FICI was 1). The oil showed potent efflux pump inhibitory properties in the case of Staphylococcus aureus and Escherichia coli. The therapeutic potential of Juniperus may be promising for future more extensive research and in vivo tests to develop new drugs against antibiotic and antifungal resistance.
Collapse
Affiliation(s)
- Gabriella Spengler
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis Utca 6, 6725 Szeged, Hungary;
| | - Márió Gajdács
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, Tisza Lajos krt. 63, 6720 Szeged, Hungary;
| | - Matthew Gavino Donadu
- Hospital Pharmacy, Azienda Ospedaliero Universitaria di Sassari, 07100 Sassari, Italy
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (M.F.); (V.M.); (S.Z.)
| | - Marianna Usai
- Department of Chemistry and Pharmacy, University of Sassari, 07100 Sassari, Italy;
| | - Mauro Marchetti
- Institute of Biomolecular Chemistry (CNR), Li Punti, 07100 Sassari, Italy;
| | - Marco Ferrari
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (M.F.); (V.M.); (S.Z.)
| | - Vittorio Mazzarello
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (M.F.); (V.M.); (S.Z.)
| | - Stefania Zanetti
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (M.F.); (V.M.); (S.Z.)
| | - Fruzsina Nagy
- Department of Medical Microbiology, Faculty of Medicine and Pharmacy, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary; (F.N.); (R.K.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary
| | - Renátó Kovács
- Department of Medical Microbiology, Faculty of Medicine and Pharmacy, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary; (F.N.); (R.K.)
| |
Collapse
|
42
|
ClaID: a Rapid Method of Clade-Level Identification of the Multidrug Resistant Human Fungal Pathogen Candida auris. Microbiol Spectr 2022; 10:e0063422. [PMID: 35343775 PMCID: PMC9045239 DOI: 10.1128/spectrum.00634-22] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Candida auris, the multidrug-resistant human fungal pathogen, emerged as four major distinct geographical clades (clade 1–clade 4) in the past decade. Though isolates of the same species, C. auris clinical strains exhibit clade-specific properties associated with virulence and drug resistance. In this study, we report the identification of unique DNA sequence junctions by mapping clade-specific regions through comparative analysis of whole-genome sequences of strains belonging to different clades. These unique DNA sequence stretches are used to identify C. auris isolates at the clade level in subsequent in silico and experimental analyses. We develop a colony PCR-based clade-identification system (ClaID), which is rapid and specific. In summary, we demonstrate a proof-of-concept for using unique DNA sequence junctions conserved in a clade-specific manner for the rapid identification of each of the four major clades of C. auris. IMPORTANCEC. auris was first isolated in Japan in 2009 as an antifungal drug-susceptible pathogen causing localized infections. Within a decade, it simultaneously evolved in different parts of the world as distinct clades exhibiting resistance to antifungal drugs at varying levels. Recent studies hinted the mixing of isolates belonging to different geographical clades in a single location, suggesting that the area of isolation alone may not indicate the clade status of an isolate. In this study, we compared the genomes of representative strains of the four major clades to identify clade-specific sequences, which were then used to design clade-specific primers. We propose the utilization of whole genome sequence data to extract clade-specific sequences for clade-typing. The colony PCR-based method employed can rapidly distinguish between the four major clades of C. auris, with scope for expanding the panel by adding more primer pairs.
Collapse
|
43
|
Tortorano AM, Prigitano A, Morroni G, Brescini L, Barchiesi F. Candidemia: Evolution of Drug Resistance and Novel Therapeutic Approaches. Infect Drug Resist 2022; 14:5543-5553. [PMID: 34984009 PMCID: PMC8702982 DOI: 10.2147/idr.s274872] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/30/2021] [Indexed: 12/14/2022] Open
Abstract
Candidemia and invasive candidiasis are the most common healthcare-associated invasive fungal infections, with a crude mortality rate of 25–50%. Candida albicans remains the most frequent etiology, followed by C. glabrata, C. parapsilosis and C. tropicalis. With the exception of a limited number of species (ie: C. krusei, C. glabrata and rare Candida species), resistance to fluconazole and other triazoles are quite uncommon. However, recently fluconazole-resistant C. parapsilosis, echinocandin-resistant C. glabrata and the multidrug resistant C. auris have emerged. Resistance to amphotericin B is even more rare due to the reduced fitness of resistant isolates. The mechanisms of antifungal resistance in Candida (altered drug-target interactions, reduced cellular drug concentrations, and physical barriers associated with biofilms) are analyzed. The choice of the antifungal therapy for candidemia must take into account several factors such as type of patient, presence of devices, severity of illness, recent exposure to antifungals, local epidemiology, organs involvement, and Candida species. The first-line therapy in non-neutropenic critical patient is an echinocandin switching to fluconazole in clinically stable patients with negative blood cultures and azole susceptible isolate. Similarly, an echinocandin is the drug of choice also in neutropenic patients. The treatment duration is 14 days after the first negative blood culture or longer in cases of organ involvement. An early removal of vascular catheter improves the outcome. The promising results of new antifungal molecules, such as the terpenoid derivative ibrexafungerp, the novel echinocandin with an enhanced half-life rezafungin, oteseconazole and fosmanogepix, representative of new classes of antifungals, are discussed.
Collapse
Affiliation(s)
- Anna Maria Tortorano
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
| | - Anna Prigitano
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
| | - Gianluca Morroni
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Lucia Brescini
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy.,Clinic of Infectious Diseases, Azienda Ospedaliero Universitaria, Ospedali Riuniti Umberto I-Lancisi-Salesi, Ancona, Italy
| | - Francesco Barchiesi
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy.,Clinic of Infectious Diseases, Azienda Ospedaliera Ospedali Riuniti Marche Nord, Pesaro, Italy
| |
Collapse
|
44
|
Yadav A, Singh A, Chowdhary A. Isolation of Candida auris in Clinical Specimens. Methods Mol Biol 2022; 2517:3-20. [PMID: 35674941 DOI: 10.1007/978-1-0716-2417-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Candida auris is a multidrug-resistant yeast causing healthcare-associated outbreaks of blood stream infections worldwide. Currently, C. auris isolation and identification is complicated by issues such as misidentification and long turnaround time associated with application of commonly used diagnostic tools. Based on phenotypic characteristics, differentiation of C. auris from related Candida haemulonii complex spp. is problematic. Candida auris can be misidentified using biochemical-based systems such as VITEK 2 YST, API 20C, BD Phoenix yeast identification system, and MicroScan. C. auris growth at 42 °C and in the presence of 10% NaCl helps in presumptive identification of this yeast from related Candida haemulonii complex spp. A new CHROMagar™ Candida Plus agar is an excellent alternative to current conventional mycological media for the screening of patients colonized/infected with Candida auris. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) can differentiate C. auris from other Candida species, but not all the reference databases included in MALDI-TOF devices allow for detection. Currently, accurate identification of C. auris can be performed using the updated FDA-approved libraries or "research use-only" libraries. Molecular techniques have greatly enhanced the diagnosis of C. auris. Sequencing of rDNA genetic loci, namely, internal transcribed spacer and D1/D2 region of large subunit (LSU), and PCR/qPCR assays has successfully been applied for identification of C. auris. Real-time PCR assays bear incomparable potential of being the most efficient tool for high-throughput screening of surveillance samples. If properly validated, they can deliver the diagnostic result within several hours, since the DNA can be isolated directly from the patient specimen without the need of obtaining a colony. In this chapter we detailed the isolation of Candida auris from various clinical specimens and its currently available identification methods and hitches.
Collapse
Affiliation(s)
- Anamika Yadav
- Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| | - Ashutosh Singh
- Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India.
| | - Anuradha Chowdhary
- Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| |
Collapse
|
45
|
Abdolrasouli A, Fraser MA. Candida auris Identification and Profiling by MALDI-ToF Mass Spectrometry. Methods Mol Biol 2022; 2517:21-32. [PMID: 35674942 DOI: 10.1007/978-1-0716-2417-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
MALDI-ToF MS has become the standard method for routine identification of most medically important yeasts in clinical and public health laboratories and has largely replaced phenotypic identification methods as a first-line identification tool. Fungal identification is based on extensive and well-curated mass spectra libraries usually provided by the manufacturer of the MALDI-ToF MS platform; however, many centers do create specialized or in-house database collections to aid analysis. Most MALDI-ToF MS systems offer simple and standardized workflows for the identification of clinically relevant yeasts to species level with a high throughput, high accuracy, and a low overall cost per test. This makes MALDI-ToF MS an ideal platform for use in routine clinical, diagnostic, and research microbiology laboratories which may lack experience or expertise in the identification of pathogenic fungi.In this chapter we review three standard protocols for the proteomic-based identification of Candida auris isolated from cultures of clinical or environmental surveillance samples in diagnostic and research laboratories.
Collapse
Affiliation(s)
- Alireza Abdolrasouli
- Department of Medical Microbiology, King's College Hospital , London, UK.
- Department of Infectious Diseases, Imperial College London, London, UK.
| | - Mark A Fraser
- National Mycology Reference Laboratory, UK Health Security Agency, Bristol, UK
| |
Collapse
|
46
|
Abstract
Susceptibility testing of isolates of Candida auris is helpful as a guide to the selection of the most appropriate antifungal agent for treatment as different clades and strains within clades often demonstrate markedly different susceptibility profiles. Some strains are relatively susceptible to all antifungal drugs, but most demonstrate innate resistance to fluconazole, many are cross-resistant to other azoles and others demonstrate resistance to other classes of antifungal. The finding of multi-drug resistance, where an isolate is resistant to two or more classes of antifungal agent, is not uncommon, and development of resistance during a course of treatment has also been documented. This chapter describes a reference broth microdilution method for susceptibility testing and a commercially available gradient strip method.
Collapse
Affiliation(s)
- Elizabeth M Johnson
- UK National Mycology Reference Laboratory, Public Health England South-West Regional Laboratory, Southmead Hospital, Bristol, UK.
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK.
| | - Andrew M Borman
- UK National Mycology Reference Laboratory, Public Health England South-West Regional Laboratory, Southmead Hospital, Bristol, UK
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| |
Collapse
|
47
|
Borman AM. The Use of Galleria mellonella Larvae to Study the Pathogenicity and Clonal Lineage-Specific Behaviors of the Emerging Fungal Pathogen Candida auris. Methods Mol Biol 2022; 2517:287-298. [PMID: 35674963 DOI: 10.1007/978-1-0716-2417-3_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Candida species are the most common fungal causes of disseminated infections in humans. Although such infections are associated with high morbidity and mortality, it is widely accepted that virulence, antifungal susceptibility, and disease outcome vary according to individual Candida species. In this respect, the emerging pathogen Candida auris has received much attention due to its propensity to cause widespread nosocomial outbreaks, to exhibit high virulence in several infection models, and to develop resistance to multiple classes of antifungal drugs. Although mammalian models of infection have long been viewed as the gold standard for studies on fungal virulence, comparative pathogenicity, and evaluation of antifungal drug efficacy, the larvae of the greater wax moth Galleria mellonella have shown considerable promise as an alternative invertebrate model of infection. Galleria larvae are inexpensive, are easily maintained in the laboratory, tolerate incubation at human physiological temperatures, possess cellular and humoral immune systems that share many features with mammals, and allow investigation of pathogenicity/virulence using multiple different reading endpoints. Here, I describe in detail the methods that can be used to study the virulence/pathogenicity of Candida auris in G. mellonella.
Collapse
Affiliation(s)
- Andrew M Borman
- UK National Mycology Reference Laboratory, Public Health England South-West Regional Laboratory, Southmead Hospital, Bristol, UK. .,Medical Research Council Centre for Medical Mycology (MRC CMM), University of Exeter, Exeter, UK.
| |
Collapse
|
48
|
Forward and reverse genetic dissection of morphogenesis identifies filament-competent Candida auris strains. Nat Commun 2021; 12:7197. [PMID: 34893621 PMCID: PMC8664941 DOI: 10.1038/s41467-021-27545-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 11/29/2021] [Indexed: 12/19/2022] Open
Abstract
Candida auris is an emerging healthcare-associated pathogen of global concern. Recent reports have identified C. auris isolates that grow in cellular aggregates or filaments, often without a clear genetic explanation. To investigate the regulation of C. auris morphogenesis, we applied an Agrobacterium-mediated transformation system to all four C. auris clades. We identified aggregating mutants associated with disruption of chitin regulation, while disruption of ELM1 produced a polarized, filamentous growth morphology. We developed a transiently expressed Cas9 and sgRNA system for C. auris that significantly increased targeted transformation efficiency across the four C. auris clades. Using this system, we confirmed the roles of C. auris morphogenesis regulators. Morphogenic mutants showed dysregulated chitinase expression, attenuated virulence, and altered antifungal susceptibility. Our findings provide insights into the genetic regulation of aggregating and filamentous morphogenesis in C. auris. Furthermore, the genetic tools described here will allow for efficient manipulation of the C. auris genome. Some isolates of the emerging fungal pathogen Candida auris can form cellular aggregates or filaments. Here, Santana and O’Meara use Agrobacterium-mediated transformation and a CRISPR-Cas9 system to identify several genes that regulate C. auris morphogenesis.
Collapse
|
49
|
Naicker SD, Maphanga TG, Chow NA, Allam M, Kwenda S, Ismail A, Govender NP. Clade distribution of Candida auris in South Africa using whole genome sequencing of clinical and environmental isolates. Emerg Microbes Infect 2021; 10:1300-1308. [PMID: 34176429 PMCID: PMC8253216 DOI: 10.1080/22221751.2021.1944323] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/01/2021] [Accepted: 06/13/2021] [Indexed: 11/07/2022]
Abstract
In South Africa, Candida auris was the third most common cause of candidemia in 2016-2017. We performed single nucleotide polymorphism (SNP) genome-wide analysis of 115 C. auris isolates collected between 2009 and 2018 from national laboratory-based surveillance, an environmental survey at four hospitals and a colonization study during a neonatal unit outbreak. The first known South African C. auris strain from 2009 clustered in clade IV. Overall, 98 strains clustered within clade III (85%), 14 within clade I (12%) and three within clade IV (3%). All environmental and colonizing strains clustered in clade III. We also identified known clade-specific resistance mutations in the ERG11 and FKS1 genes. Identification of clade I strains between 2016 and 2018 suggests introductions from South Asia followed by local transmission. SNP analysis characterized most C. auris strains into clade III, the clade first reported from South Africa, but the presence of clades I and IV strains also suggest early introductions from other regions.
Collapse
Affiliation(s)
- Serisha D. Naicker
- National Institute for Communicable Diseases (Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses), a Division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tsidiso G. Maphanga
- National Institute for Communicable Diseases (Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses), a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Nancy A. Chow
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mushal Allam
- National Institute for Communicable Diseases (Core Sequencing Facility), a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Stanford Kwenda
- National Institute for Communicable Diseases (Core Sequencing Facility), a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Arshad Ismail
- National Institute for Communicable Diseases (Core Sequencing Facility), a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Nelesh P. Govender
- National Institute for Communicable Diseases (Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses), a Division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
50
|
Flores-Maldonado O, González GM, Andrade A, Montoya A, Treviño-Rangel R, Silva-Sánchez A, Becerril-García MA. Dissemination of Candida auris to deep organs in neonatal murine invasive candidiasis. Microb Pathog 2021; 161:105285. [PMID: 34774701 DOI: 10.1016/j.micpath.2021.105285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 10/19/2022]
Abstract
Candida auris is an emerging multidrug resistant fungal pathogen, which represents a major challenge for newborns systemic infections worldwide. Management of C. auris infections is complicated due to its intrinsic antifungal resistance and the limited information available on its pathogenesis, particularly during neonatal period. In this study, we developed a murine model of C. auris neonatal invasive infection. C. auris dissemination was evaluated by fungal burden and histopathological analysis of lung, brain, liver, kidney, and spleen at different time intervals. We found fungal cells in all the analyzed tissues, neonatal liver and brain were the most susceptible tissues to fungal invasion. This model will help to better understand pathogenesis mechanisms and facilitate strategies for control and prevention of C. auris infections in newborns.
Collapse
Affiliation(s)
- Orlando Flores-Maldonado
- Departamento de Microbiología, Universidad Autónoma de Nuevo León, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González", Av. Francisco I. Madero, Mitras Centro, 64460, Monterrey, Mexico
| | - Gloria M González
- Departamento de Microbiología, Universidad Autónoma de Nuevo León, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González", Av. Francisco I. Madero, Mitras Centro, 64460, Monterrey, Mexico
| | - Angel Andrade
- Departamento de Microbiología, Universidad Autónoma de Nuevo León, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González", Av. Francisco I. Madero, Mitras Centro, 64460, Monterrey, Mexico
| | - Alexandra Montoya
- Departamento de Microbiología, Universidad Autónoma de Nuevo León, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González", Av. Francisco I. Madero, Mitras Centro, 64460, Monterrey, Mexico
| | - Rogelio Treviño-Rangel
- Departamento de Microbiología, Universidad Autónoma de Nuevo León, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González", Av. Francisco I. Madero, Mitras Centro, 64460, Monterrey, Mexico
| | - Aarón Silva-Sánchez
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Miguel A Becerril-García
- Departamento de Microbiología, Universidad Autónoma de Nuevo León, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González", Av. Francisco I. Madero, Mitras Centro, 64460, Monterrey, Mexico.
| |
Collapse
|