1
|
Ullah N, Fusco L, Ametrano L, Bartalucci C, Giacobbe DR, Vena A, Mikulska M, Bassetti M. Diagnostic Approach to Pneumonia in Immunocompromised Hosts. J Clin Med 2025; 14:389. [PMID: 39860395 PMCID: PMC11765643 DOI: 10.3390/jcm14020389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/21/2024] [Accepted: 01/01/2025] [Indexed: 01/27/2025] Open
Abstract
In immunocompromised patients, pneumonia presents a diagnostic challenge due to diverse etiologies, nonspecific symptoms, overlapping radiological presentation, frequent co-infections, and the potential for rapid progression to severe disease. Thus, timely and accurate diagnosis of all pathogens is crucial. This narrative review explores the latest advancements in microbiological diagnostic techniques for pneumonia in immunocompromised patients. It covers major available microbiological tools for diagnosing both community-acquired and hospital-acquired pneumonia, encompassing a wide spectrum of pathogens including bacterial, viral, fungal, and parasitic. While traditional culture methods remain pivotal in identifying many pneumonia-causing etiologies, their limitations in sensitivity and time to results have led to the rise of non-invasive antigen tests and molecular diagnostics. These are increasingly employed alongside cultures and microscopy for more efficient diagnosis, mainly in viral and fungal infections. Lastly, we report the future of pneumonia diagnostics, exploring the potential of metagenomics and CRISPR/Cas13a for more precise and rapid pathogen detection in immunocompromised populations.
Collapse
Affiliation(s)
- Nadir Ullah
- Department of Health Sciences (DISSAL), University of Genoa, 16126 Genoa, Italy; (N.U.); (C.B.); (A.V.); (M.M.); (M.B.)
| | - Ludovica Fusco
- UO Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, 16126 Genoa, Italy; (L.F.); (L.A.)
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy
| | - Luigi Ametrano
- UO Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, 16126 Genoa, Italy; (L.F.); (L.A.)
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy
| | - Claudia Bartalucci
- Department of Health Sciences (DISSAL), University of Genoa, 16126 Genoa, Italy; (N.U.); (C.B.); (A.V.); (M.M.); (M.B.)
- UO Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, 16126 Genoa, Italy; (L.F.); (L.A.)
| | - Daniele Roberto Giacobbe
- Department of Health Sciences (DISSAL), University of Genoa, 16126 Genoa, Italy; (N.U.); (C.B.); (A.V.); (M.M.); (M.B.)
- UO Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, 16126 Genoa, Italy; (L.F.); (L.A.)
| | - Antonio Vena
- Department of Health Sciences (DISSAL), University of Genoa, 16126 Genoa, Italy; (N.U.); (C.B.); (A.V.); (M.M.); (M.B.)
- UO Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, 16126 Genoa, Italy; (L.F.); (L.A.)
| | - Malgorzata Mikulska
- Department of Health Sciences (DISSAL), University of Genoa, 16126 Genoa, Italy; (N.U.); (C.B.); (A.V.); (M.M.); (M.B.)
- UO Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, 16126 Genoa, Italy; (L.F.); (L.A.)
| | - Matteo Bassetti
- Department of Health Sciences (DISSAL), University of Genoa, 16126 Genoa, Italy; (N.U.); (C.B.); (A.V.); (M.M.); (M.B.)
- UO Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, 16126 Genoa, Italy; (L.F.); (L.A.)
| |
Collapse
|
2
|
Hu JC, Sethi S. New methods to detect bacterial or viral infections in patients with chronic obstructive pulmonary disease. Expert Rev Respir Med 2024; 18:693-707. [PMID: 39175157 PMCID: PMC11583054 DOI: 10.1080/17476348.2024.2396413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/22/2024] [Accepted: 08/21/2024] [Indexed: 08/24/2024]
Abstract
INTRODUCTION Patients with chronic obstructive pulmonary disease (COPD) are frequently colonized and infected by respiratory pathogens. Identifying these infectious etiologies is critical for understanding the microbial dynamics of COPD and for the appropriate use of antimicrobials during exacerbations. AREAS COVERED Traditional methods, such as bacterial and viral cultures, have been standard in diagnosing respiratory infections. However, these methods have significant limitations, including lack of sensitivity and prolonged turnaround time. Modern molecular approaches offer rapid, sensitive, and specific detection, though they also come with their own challenges. This review explores and evaluates the clinical utility of the latest advancements in detecting bacterial and viral respiratory infections in COPD, encompassing molecular techniques, biomarkers, and emerging technologies. EXPERT OPINION In the evolving landscape of COPD management, integrating molecular diagnostics and emerging technologies holds great promise. The enhanced sensitivity of molecular techniques has significantly advanced our understanding of the role of microbes in COPD. However, many of these technologies have primarily been developed for pneumonia diagnosis or research applications, and their clinical utility in managing COPD requires further evaluation.
Collapse
Affiliation(s)
- John C Hu
- Division of Infectious Diseases, Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Sanjay Sethi
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| |
Collapse
|
3
|
Xia J, Wang Z, Becker R, Li F, Wei F, Yang S, Rich J, Li K, Rufo J, Qian J, Yang K, Chen C, Gu Y, Zhong R, Lee PJ, Wong DTW, Lee LP, Huang TJ. Acoustofluidic Virus Isolation via Bessel Beam Excitation Separation Technology. ACS NANO 2024; 18:22596-22607. [PMID: 39132820 DOI: 10.1021/acsnano.4c09692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The isolation of viruses from complex biological samples is essential for creating sensitive bioassays that assess the efficacy and safety of viral therapeutics and vaccines, which have played a critical role during the COVID-19 pandemic. However, existing methods of viral isolation are time-consuming and labor-intensive due to the multiple processing steps required, resulting in low yields. Here, we introduce the rapid, efficient, and high-resolution acoustofluidic isolation of viruses from complex biological samples via Bessel beam excitation separation technology (BEST). BEST isolates viruses by utilizing the nondiffractive and self-healing properties of 2D, in-plane acoustic Bessel beams to continuously separate cell-free viruses from biofluids, with high throughput and high viral RNA yield. By tuning the acoustic parameters, the cutoff size of isolated viruses can be easily adjusted to perform dynamic, size-selective virus isolation while simultaneously trapping larger particles and separating smaller particles and contaminants from the sample, achieving high-precision isolation of the target virus. BEST was used to isolate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from human saliva samples and Moloney Murine Leukemia Virus from cell culture media, demonstrating its potential use in both practical diagnostic applications and fundamental virology research. With high separation resolution, high yield, and high purity, BEST is a powerful tool for rapidly and efficiently isolating viruses. It has the potential to play an important role in the development of next-generation viral diagnostics, therapeutics, and vaccines.
Collapse
Affiliation(s)
- Jianping Xia
- The Thomas Lord Department of Mechanical Engineering and Materials, Duke University, Durham, North Carolina 27708, United States
| | - Zeyu Wang
- The Thomas Lord Department of Mechanical Engineering and Materials, Duke University, Durham, North Carolina 27708, United States
| | - Ryan Becker
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Feng Li
- School of Dentistry, University of California, Los Angeles, California 90095, United States
| | - Fang Wei
- School of Dentistry, University of California, Los Angeles, California 90095, United States
| | - Shujie Yang
- The Thomas Lord Department of Mechanical Engineering and Materials, Duke University, Durham, North Carolina 27708, United States
| | - Joseph Rich
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Ke Li
- The Thomas Lord Department of Mechanical Engineering and Materials, Duke University, Durham, North Carolina 27708, United States
| | - Joseph Rufo
- The Thomas Lord Department of Mechanical Engineering and Materials, Duke University, Durham, North Carolina 27708, United States
| | - Jiao Qian
- The Thomas Lord Department of Mechanical Engineering and Materials, Duke University, Durham, North Carolina 27708, United States
| | - Kaichun Yang
- The Thomas Lord Department of Mechanical Engineering and Materials, Duke University, Durham, North Carolina 27708, United States
| | - Chuyi Chen
- The Thomas Lord Department of Mechanical Engineering and Materials, Duke University, Durham, North Carolina 27708, United States
| | - Yuyang Gu
- The Thomas Lord Department of Mechanical Engineering and Materials, Duke University, Durham, North Carolina 27708, United States
| | - Ruoyu Zhong
- The Thomas Lord Department of Mechanical Engineering and Materials, Duke University, Durham, North Carolina 27708, United States
| | - Patty J Lee
- Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - David T W Wong
- School of Dentistry, University of California, Los Angeles, California 90095, United States
| | - Luke P Lee
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard University, Boston, Massachusetts 02115, United States
| | - Tony Jun Huang
- The Thomas Lord Department of Mechanical Engineering and Materials, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
4
|
Mostafa HH. Is It Possible to Test for Viral Infectiousness?: The Use Case of (SARS-CoV-2). Clin Lab Med 2024; 44:85-93. [PMID: 38280800 DOI: 10.1016/j.cll.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
Identifying and managing individuals with active or chronic disease, implementing appropriate infection control measures, and mitigating the spread of the COVID-19 pandemic highlighted the need for tests of infectiousness. The gold standard for assessing infectiousness has been the recovery of infectious virus in cell culture. Using cycle threshold values, antigen testing, and SARS-CoV-2, replication intermediate strands were used to assess infectiousness, with many limitations. Infectiousness can be influenced by host factors (eg, preexisting immune responses) and virus factors (eg, evolution).
Collapse
Affiliation(s)
- Heba H Mostafa
- Johns Hopkins School of Medicine, Meyer B-121F, 600 North Wolfe Street, Baltimore, MD 21287, USA.
| |
Collapse
|
5
|
Gupta A, Lawrence SM, Fraley SI. A broad-based probe-free qPCR assay for detection and discrimination of three human herpes viruses. J Virol Methods 2023; 322:114824. [PMID: 37778538 PMCID: PMC11175599 DOI: 10.1016/j.jviromet.2023.114824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/04/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Primary infection or reactivation of latent human cytomegalovirus (HCMV) or herpes simplex viruses (HSV) 1 or 2 during pregnancy can transmit the virus in utero or during natural childbirth to the fetus. The majority of these infections are asymptomatic at birth but may present later with potentially lethal disseminated infection or meningitis (HSV), or long-term neurodevelopmental sequelae including sensorineural hearing loss or neurodevelopmental impairments (HCMV). Unfortunately, early signs and symptoms of disseminated viral infections may be misdiagnosed as bacterial sepsis. Therefore, immediate testing for viral etiologies may not be ordered or even considered by skilled clinicians. In asymptomatic HCMV infections, early detection is necessary to monitor for and treat future neurologic sequelae. In acutely ill-appearing infants, specific detection of viruses against other disease-causing agents is vital to inform correct patient management, including early administration of the correct antimicrobial(s). An ideal test should be rapid, inexpensive, require low sample volumes, and demonstrate efficacy in multiple tissue matrices to aid in timely clinical decision-making for neonatal infections. This work discusses the development of a rapid probe-free qPCR assay for HSV and HCMV that enables early and specific detection of these viruses in neonates. The assay's probe free chemistry would allow easier extension to a broad-based multiplexed pathogenic panel as compared to assays utilizing sequence-specific probes or nested PCR.
Collapse
Affiliation(s)
- Anshu Gupta
- Jacobs School of Engineering, Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Shelley M Lawrence
- Department of Pediatrics, Division of Neonatology, University of Utah, Salt Lake City, UT, USA.
| | - Stephanie I Fraley
- Jacobs School of Engineering, Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
6
|
Tavares ER, de Lima TF, Bartolomeu-Gonçalves G, de Castro IM, de Lima DG, Borges PHG, Nakazato G, Kobayashi RKT, Venancio EJ, Tarley CRT, de Almeida ERD, Pelisson M, Vespero EC, Simão ANC, Perugini MRE, Kerbauy G, Fornazieri MA, Tognim MCB, Góes VM, de Souza TDACB, Oliveira DBL, Durigon EL, Faccin-Galhardi LC, Yamauchi LM, Yamada-Ogatta SF. Development of a Melting-Curve-Based Multiplex Real-Time PCR Assay for the Simultaneous Detection of Viruses Causing Respiratory Infection. Microorganisms 2023; 11:2692. [PMID: 38004704 PMCID: PMC10672821 DOI: 10.3390/microorganisms11112692] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/19/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
The prompt and accurate identification of the etiological agents of viral respiratory infections is a critical measure in mitigating outbreaks. In this study, we developed and clinically evaluated a novel melting-curve-based multiplex real-time PCR (M-m-qPCR) assay targeting the RNA-dependent RNA polymerase (RdRp) and nucleocapsid phosphoprotein N of SARS-CoV-2, the Matrix protein 2 of the Influenza A virus, the RdRp domain of the L protein from the Human Respiratory Syncytial Virus, and the polyprotein from Rhinovirus B genes. The analytical performance of the M-m-qPCR underwent assessment using in silico analysis and a panel of reference and clinical strains, encompassing viral, bacterial, and fungal pathogens, exhibiting 100% specificity. Moreover, the assay showed a detection limit of 10 copies per reaction for all targeted pathogens using the positive controls. To validate its applicability, the assay was further tested in simulated nasal fluid spiked with the viruses mentioned above, followed by validation on nasopharyngeal swabs collected from 811 individuals. Among them, 13.4% (109/811) tested positive for SARS-CoV-2, and 1.1% (9/811) tested positive for Influenza A. Notably, these results showed 100% concordance with those obtained using a commercial kit. Therefore, the M-m-qPCR exhibits great potential for the routine screening of these respiratory viral pathogens.
Collapse
Affiliation(s)
- Eliandro Reis Tavares
- Laboratory of Molecular Biology of Microorganisms, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (E.R.T.); (D.G.d.L.)
| | - Thiago Ferreira de Lima
- Graduate Program in Microbiology, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (T.F.d.L.); (I.M.d.C.); (P.H.G.B.); (G.N.); (R.K.T.K.); (L.C.F.-G.)
| | - Guilherme Bartolomeu-Gonçalves
- Graduate Program in Clinical and Laboratory Pathophysiology, Department of Pathology, Clinical and Toxicological Analysis, State University of Londrina, Londrina 86038-350, Brazil; (G.B.-G.); (E.J.V.); (M.P.); (E.C.V.); (A.N.C.S.); (M.R.E.P.)
| | - Isabela Madeira de Castro
- Graduate Program in Microbiology, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (T.F.d.L.); (I.M.d.C.); (P.H.G.B.); (G.N.); (R.K.T.K.); (L.C.F.-G.)
| | - Daniel Gaiotto de Lima
- Laboratory of Molecular Biology of Microorganisms, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (E.R.T.); (D.G.d.L.)
| | - Paulo Henrique Guilherme Borges
- Graduate Program in Microbiology, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (T.F.d.L.); (I.M.d.C.); (P.H.G.B.); (G.N.); (R.K.T.K.); (L.C.F.-G.)
| | - Gerson Nakazato
- Graduate Program in Microbiology, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (T.F.d.L.); (I.M.d.C.); (P.H.G.B.); (G.N.); (R.K.T.K.); (L.C.F.-G.)
| | - Renata Katsuko Takayama Kobayashi
- Graduate Program in Microbiology, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (T.F.d.L.); (I.M.d.C.); (P.H.G.B.); (G.N.); (R.K.T.K.); (L.C.F.-G.)
| | - Emerson José Venancio
- Graduate Program in Clinical and Laboratory Pathophysiology, Department of Pathology, Clinical and Toxicological Analysis, State University of Londrina, Londrina 86038-350, Brazil; (G.B.-G.); (E.J.V.); (M.P.); (E.C.V.); (A.N.C.S.); (M.R.E.P.)
| | | | | | - Marsileni Pelisson
- Graduate Program in Clinical and Laboratory Pathophysiology, Department of Pathology, Clinical and Toxicological Analysis, State University of Londrina, Londrina 86038-350, Brazil; (G.B.-G.); (E.J.V.); (M.P.); (E.C.V.); (A.N.C.S.); (M.R.E.P.)
| | - Eliana Carolina Vespero
- Graduate Program in Clinical and Laboratory Pathophysiology, Department of Pathology, Clinical and Toxicological Analysis, State University of Londrina, Londrina 86038-350, Brazil; (G.B.-G.); (E.J.V.); (M.P.); (E.C.V.); (A.N.C.S.); (M.R.E.P.)
| | - Andrea Name Colado Simão
- Graduate Program in Clinical and Laboratory Pathophysiology, Department of Pathology, Clinical and Toxicological Analysis, State University of Londrina, Londrina 86038-350, Brazil; (G.B.-G.); (E.J.V.); (M.P.); (E.C.V.); (A.N.C.S.); (M.R.E.P.)
| | - Márcia Regina Eches Perugini
- Graduate Program in Clinical and Laboratory Pathophysiology, Department of Pathology, Clinical and Toxicological Analysis, State University of Londrina, Londrina 86038-350, Brazil; (G.B.-G.); (E.J.V.); (M.P.); (E.C.V.); (A.N.C.S.); (M.R.E.P.)
| | - Gilselena Kerbauy
- Graduate Program in Nursing, Department of Nursing, State University of Londrina, Londrina 86038-350, Brazil;
| | - Marco Aurélio Fornazieri
- Graduate Program in Health Sciences, Department of Clinical Surgery, State University of Londrina, Londrina 86038-350, Brazil;
| | | | | | | | - Danielle Bruna Leal Oliveira
- Albert Einstein Hospital, São Paulo 05652-900, Brazil;
- Laboratory of Clinical and Molecular Virology, University of São Paulo, São Paulo 05508-000, Brazil;
| | - Edison Luiz Durigon
- Laboratory of Clinical and Molecular Virology, University of São Paulo, São Paulo 05508-000, Brazil;
| | - Lígia Carla Faccin-Galhardi
- Graduate Program in Microbiology, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (T.F.d.L.); (I.M.d.C.); (P.H.G.B.); (G.N.); (R.K.T.K.); (L.C.F.-G.)
| | - Lucy Megumi Yamauchi
- Laboratory of Molecular Biology of Microorganisms, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (E.R.T.); (D.G.d.L.)
- Graduate Program in Microbiology, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (T.F.d.L.); (I.M.d.C.); (P.H.G.B.); (G.N.); (R.K.T.K.); (L.C.F.-G.)
| | - Sueli Fumie Yamada-Ogatta
- Laboratory of Molecular Biology of Microorganisms, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (E.R.T.); (D.G.d.L.)
- Graduate Program in Microbiology, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (T.F.d.L.); (I.M.d.C.); (P.H.G.B.); (G.N.); (R.K.T.K.); (L.C.F.-G.)
| |
Collapse
|
7
|
Fenn D, Ahmed WM, Lilien TA, Kos R, Tuip de Boer AM, Fowler SJ, Schultz MJ, Maitland-van der Zee AH, Brinkman P, Bos LDJ. Influence of bacterial and alveolar cell co-culture on microbial VOC production using HS-GC/MS. Front Mol Biosci 2023; 10:1160106. [PMID: 37179567 PMCID: PMC10169821 DOI: 10.3389/fmolb.2023.1160106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/30/2023] [Indexed: 05/15/2023] Open
Abstract
Volatile organic compounds (VOCs) found in exhaled breath continue to garner interest as an alternative diagnostic tool in pulmonary infections yet, their clinical integration remains a challenge with difficulties in translating identified biomarkers. Alterations in bacterial metabolism secondary to host nutritional availability may explain this but is often inadequately modelled in vitro. The influence of more clinically relevant nutrients on VOC production for two common respiratory pathogens was investigated. VOCs from Staphylococcus aureus (S.aureus) and Pseudomonas aeruginosa (P.aeruginosa) cultured with and without human alveolar A549 epithelial cells were analyzed using headspace extraction coupled with gas chromatography-mass spectrometry. Untargeted and targeted analyses were performed, volatile molecules identified from published data, and the differences in VOC production evaluated. Principal component analysis (PCA) could differentiate alveolar cells from either S. aureus or P. aeruginosa when cultured in isolation based on PC1 (p = 0.0017 and 0.0498, respectively). However, this separation was lost for S. aureus (p = 0.31) but not for P. aeruginosa (p = 0.028) when they were cultured with alveolar cells. S. aureus cultured with alveolar cells led to higher concentrations of two candidate biomarkers, 3-methyl-1-butanol (p = 0.001) and 3-methylbutanal (p = 0.002) when compared to S. aureus, alone. P. aeruginosa metabolism resulted in less generation of pathogen-associated VOCs when co-cultured with alveolar cells compared to culturing in isolation. VOC biomarkers previously considered indicative of bacterial presence are influenced by the local nutritional environment and this should be considered when evaluating their biochemical origin.
Collapse
Affiliation(s)
- Dominic Fenn
- Department of Pulmonary medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Laboratory of Experimental Intensive Care and Anaesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Waqar M. Ahmed
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Thijs A. Lilien
- Laboratory of Experimental Intensive Care and Anaesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- NIHR-Manchester Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Amsterdam, United Kingdom
| | - Renate Kos
- Department of Pulmonary medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Anita M. Tuip de Boer
- Laboratory of Experimental Intensive Care and Anaesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Stephen J. Fowler
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Paediatric Intensive Care Unit, Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Marcus J. Schultz
- Intensive Care, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | | | - Paul Brinkman
- Department of Pulmonary medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Lieuwe D. J. Bos
- Department of Pulmonary medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Laboratory of Experimental Intensive Care and Anaesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Intensive Care, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
8
|
Woolf MS, Dignan LM, Karas SM, Lewis HM, Kim SN, Geise GM, DeMers HL, Hau D, Gates-Hollingsworth MA, AuCoin DP, Landers JP. Digital image analysis for biothreat detection via rapid centrifugal microfluidic orthogonal flow immunocapture. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1870-1880. [PMID: 36975002 DOI: 10.1039/d3ay00073g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We report clear proof-of-principle for centrifugally-driven, multiplexed, paper-based orthogonal flow sandwich-style immunocapture (cOFI) and colorimetric detection of Zaire Ebola virus-like particles. Capture antibodies are immobilized onto nanoporous nitrocellulose membranes that are then laminated into polymeric microfluidic discs to yield ready-to-use analytical devices. Fluid flow is controlled solely by rotational speed, obviating the need for complex pneumatic pumping systems, and providing more precise flow control than with the capillary-driven flow used in traditional lateral flow immunoassays (LFIs). Samples containing the antigen of interest and gold nanoparticle-labeled detection antibodies are pumped centrifugally through the embedded, prefunctionalized membrane where they are subsequently captured to generate a positive, colorimetric signal. When compared to the equivalent LFI counterparts, this cOFI approach generated immunochromatographic colorimetric responses that are objectively darker (saturation), more intense (grayscale), and less variable regarding total area of the color response. We also describe an image analysis approach that enables access to rich color data and area statistics without the need for a commercial 'strip reader' or custom-written image analysis algorithms. Instead, our analytical method exploits inexpensive equipment (e.g., smart phone, flatbed scanner, etc.) and freely available software (Fiji distribution of ImageJ) to permit characterization of immunochromatographic responses that includes multiple color metrics, offering insights beyond typical grayscale analysis. The findings reported here stand as clear proof-of-principle for the feasibility of disc-based, centrifugally driven orthogonal flow through a membrane with immunocapture (cOFI) and colorimetric readout of a sandwich-type immunoassay in less than 15 minutes. Once fully developed, this cOFI platform could render a faster, more accurate diagnosis, while processing multiple samples simul-taneously.
Collapse
Affiliation(s)
- M Shane Woolf
- Department of Chemistry, University of Virginia, USA
| | - Leah M Dignan
- Department of Chemistry, University of Virginia, USA
| | - Scott M Karas
- Department of Chemistry, University of Virginia, USA
| | | | - Sabrina N Kim
- Department of Chemistry, University of Virginia, USA
| | | | - Haley L DeMers
- Department of Microbiology and Immunology, University of Nevada, Reno, USA
| | - Derrick Hau
- Department of Microbiology and Immunology, University of Nevada, Reno, USA
| | | | - David P AuCoin
- Department of Microbiology and Immunology, University of Nevada, Reno, USA
| | - James P Landers
- Department of Chemistry, University of Virginia, USA
- Department of Mechanical Engineering, University of Virginia, USA
- Department of Pathology, University of Virginia, USA
| |
Collapse
|
9
|
Schmitz JE, Stratton CW, Persing DH, Tang YW. Forty Years of Molecular Diagnostics for Infectious Diseases. J Clin Microbiol 2022; 60:e0244621. [PMID: 35852340 PMCID: PMC9580468 DOI: 10.1128/jcm.02446-21] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nearly 40 years have elapsed since the invention of the PCR, with its extremely sensitive and specific ability to detect nucleic acids via in vitro enzyme-mediated amplification. In turn, more than 2 years have passed since the onset of the coronavirus disease 2019 (COVID-19) pandemic, during which time molecular diagnostics for infectious diseases have assumed a larger global role than ever before. In this context, we review broadly the progression of molecular techniques in clinical microbiology, to their current prominence. Notably, these methods now entail both the detection and quantification of microbial nucleic acids, along with their sequence-based characterization. Overall, we seek to provide a combined perspective on the techniques themselves, as well as how they have come to shape health care at the intersection of technologic innovation, pathophysiologic knowledge, clinical/laboratory logistics, and even financial/regulatory factors.
Collapse
Affiliation(s)
- Jonathan E. Schmitz
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Charles W. Stratton
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - David H. Persing
- Medical and Scientific Affairs, Cepheid, Sunnyvale, California, USA
| | - Yi-Wei Tang
- Medical Affairs, Danaher Diagnostic Platform/Cepheid, Shanghai, China
| |
Collapse
|
10
|
Punchoo R, Bhoora S, Bangalee A. Laboratory Considerations for Reporting Cycle Threshold Value in COVID-19. EJIFCC 2022; 33:80-93. [PMID: 36313906 PMCID: PMC9562486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic is caused by the SARS-CoV-2 RNA virus. Nucleic acid amplification testing (NAAT) is the mainstay to confirm infection. A large number of reverse transcriptase polymerase chain reaction (RT-PCR) assays are currently available for qualitatively assessing SARS-CoV-2 infection. Although these assays show variation in cycle threshold values (Ct), advocacy for reporting Ct values (in addition to the qualitative result) is tabled to guide patient clinical management decisions. This article provides critical commentary on qualitative RT-PCR laboratory and clinical considerations for Ct value reporting. Factors contributing to Ct variation are discussed by considering relevant viral life-cycle factors, patient factors and the laboratory total testing processes that contribute to the Ct variation and mitigate against the reporting of Ct values by qualitative NAAT.
Collapse
Affiliation(s)
- Rivak Punchoo
- Tshwane Academic Division, National Health Laboratory Services, Pretoria, South Africa
- Department of Chemical Pathology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Sachin Bhoora
- Department of Chemical Pathology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Avania Bangalee
- Tshwane Academic Division, National Health Laboratory Services, Pretoria, South Africa
- Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
11
|
Bartlow AW, Stromberg ZR, Gleasner CD, Hu B, Davenport KW, Jakhar S, Li PE, Vosburg M, Garimella M, Chain PSG, Erkkila TH, Fair JM, Mukundan H. Comparing variability in diagnosis of upper respiratory tract infections in patients using syndromic, next generation sequencing, and PCR-based methods. PLOS GLOBAL PUBLIC HEALTH 2022; 2:e0000811. [PMID: 36962439 PMCID: PMC10022352 DOI: 10.1371/journal.pgph.0000811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 06/29/2022] [Indexed: 11/18/2022]
Abstract
Early and accurate diagnosis of respiratory pathogens and associated outbreaks can allow for the control of spread, epidemiological modeling, targeted treatment, and decision making-as is evident with the current COVID-19 pandemic. Many respiratory infections share common symptoms, making them difficult to diagnose using only syndromic presentation. Yet, with delays in getting reference laboratory tests and limited availability and poor sensitivity of point-of-care tests, syndromic diagnosis is the most-relied upon method in clinical practice today. Here, we examine the variability in diagnostic identification of respiratory infections during the annual infection cycle in northern New Mexico, by comparing syndromic diagnostics with polymerase chain reaction (PCR) and sequencing-based methods, with the goal of assessing gaps in our current ability to identify respiratory pathogens. Of 97 individuals that presented with symptoms of respiratory infection, only 23 were positive for at least one RNA virus, as confirmed by sequencing. Whereas influenza virus (n = 7) was expected during this infection cycle, we also observed coronavirus (n = 7), respiratory syncytial virus (n = 8), parainfluenza virus (n = 4), and human metapneumovirus (n = 1) in individuals with respiratory infection symptoms. Four patients were coinfected with two viruses. In 21 individuals that tested positive using PCR, RNA sequencing completely matched in only 12 (57%) of these individuals. Few individuals (37.1%) were diagnosed to have an upper respiratory tract infection or viral syndrome by syndromic diagnostics, and the type of virus could only be distinguished in one patient. Thus, current syndromic diagnostic approaches fail to accurately identify respiratory pathogens associated with infection and are not suited to capture emerging threats in an accurate fashion. We conclude there is a critical and urgent need for layered agnostic diagnostics to track known and unknown pathogens at the point of care to control future outbreaks.
Collapse
Affiliation(s)
- Andrew W. Bartlow
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Zachary R. Stromberg
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Cheryl D. Gleasner
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Bin Hu
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Karen W. Davenport
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Shailja Jakhar
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Po-E Li
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Molly Vosburg
- Medical Associates of Northern New Mexico, Los Alamos, New Mexico, United States of America
| | - Madhavi Garimella
- Medical Associates of Northern New Mexico, Los Alamos, New Mexico, United States of America
| | - Patrick S. G. Chain
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Tracy H. Erkkila
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Jeanne M. Fair
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Harshini Mukundan
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| |
Collapse
|
12
|
Alhaddad F, Abdulkareem A, Alsharrah D, Alkandari A, Bin-Hasan S, Al-Ahmad M, Al Hashemi H, Alghounaim M. Incidence of SARS-CoV-2 reinfection in a paediatric cohort in Kuwait. BMJ Open 2022; 12:e056371. [PMID: 35768102 PMCID: PMC9240452 DOI: 10.1136/bmjopen-2021-056371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE Subsequent protection from SARS-CoV-2 infection in paediatrics is not well reported in the literature. We aimed to describe the clinical characteristics and dynamics of SARS-CoV-2 PCR repositivity in children. DESIGN This is a population-level retrospective cohort study. SETTING Patients were identified through multiple national-level electronic COVID-19 databases that cover all primary, secondary and tertiary centres in Kuwait. PARTICIPANTS The study included children 12 years and younger between 28 February 2020 and 6 March 2021. SARS-CoV-2 reinfection was defined as having two or more positive SARS-CoV-2 PCR tests done on a respiratory sample, at least 45 days apart. Clinical data were obtained from the Pediatric COVID-19 Registry in Kuwait. PRIMARY AND SECONDARY OUTCOME MEASURES The primary measure is to estimate SARS-CoV-2 PCR repositivity rate. The secondary objective was to establish average duration between first and subsequent SARS-CoV-2 infection. Descriptive statistics were used to present clinical data for each infection episode. Also, incidence-sensitivity analysis was performed to evaluate 60-day and 90-day PCR repositivity intervals. RESULTS Thirty paediatric patients with COVID-19 had SARS-CoV-2 reinfection at an incidence of 1.02 (95% CI 0.71 to 1.45) infection per 100 000 person-days and a median time to reinfection of 83 (IQR 62-128.75) days. The incidence of reinfection decreased to 0.78 (95% CI 0.52 to 1.17) and 0.47 (95% CI 0.28 to 0.79) per person-day when the minimum interval between PCR repositivity was increased to 60 and 90 days, respectively. The mean age of reinfected subjects was 8.5 (IQR 3.7-10.3) years and the majority (70%) were girls. Most children (55.2%) had asymptomatic reinfection. Fever was the most common presentation in symptomatic patients. One immunocompromised experienced two reinfection episodes. CONCLUSION SARS-CoV-2 reinfection is uncommon in children. Previous confirmed COVID-19 in children seems to result in a milder reinfection.
Collapse
Affiliation(s)
| | - Ali Abdulkareem
- Department of Pediatrics, Farwaniya Hospital, Farwaniya, Kuwait
| | - Danah Alsharrah
- Department of Pediatrics, Farwaniya Hospital, Farwaniya, Kuwait
| | - Abdullah Alkandari
- Department of Population Health, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Saadoun Bin-Hasan
- Department of Pediatrics, Farwaniya Hospital, Farwaniya, Kuwait
- Department of Population Health, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Mona Al-Ahmad
- Department of Microbiology, Kuwait University Faculty of Medicine, Safat, Al Asimah, Kuwait
| | | | | |
Collapse
|
13
|
Wang C, Sani ES, Gao W. Wearable Bioelectronics for Chronic Wound Management. ADVANCED FUNCTIONAL MATERIALS 2022; 32:2111022. [PMID: 36186921 PMCID: PMC9518812 DOI: 10.1002/adfm.202111022] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Indexed: 05/05/2023]
Abstract
Chronic wounds are a major healthcare issue and can adversely affect the lives of millions of patients around the world. The current wound management strategies have limited clinical efficacy due to labor-intensive lab analysis requirements, need for clinicians' experiences, long-term and frequent interventions, limiting therapeutic efficiency and applicability. The growing field of flexible bioelectronics enables a great potential for personalized wound care owing to its advantages such as wearability, low-cost, and rapid and simple application. Herein, recent advances in the development of wearable bioelectronics for monitoring and management of chronic wounds are comprehensively reviewed. First, the design principles and the key features of bioelectronics that can adapt to the unique wound milieu features are introduced. Next, the current state of wound biosensors and on-demand therapeutic systems are summarized and highlighted. Furthermore, we discuss the design criteria of the integrated closed loop devices. Finally, the future perspectives and challenges in wearable bioelectronics for wound care are discussed.
Collapse
Affiliation(s)
- Canran Wang
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ehsan Shirzaei Sani
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
14
|
Kakavandi S, Goudarzi H, Faghihloo E. Evaluation of genotypes of human papilloma virus in cervical cancer samples collected from 2010 to 2020. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Zarei A, Javid H, Sanjarian S, Senemar S, Zarei H. Metagenomics studies for the diagnosis and treatment of prostate cancer. Prostate 2022; 82:289-297. [PMID: 34855234 DOI: 10.1002/pros.24276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/09/2021] [Accepted: 11/19/2021] [Indexed: 12/19/2022]
Abstract
AIM Mutation occurs in the prostate cell genes, leading to abnormal prostate proliferation and ultimately cancer. Prostate cancer (PC) is one of the most common cancers amongst men, and its prevalence worldwide increases relative to men's age. About 16% of the world's cancers are the result of microbes in the human body. Impaired population balance of symbiosis microbes in the human reproductive system is linked to PC development. DISCUSSION With the advent of metagenomics science, the genome sequence of the microbiota of the human body has been unveiled. Therefore, it is now possible to identify a higher range of microbiome changes in PC tissue via the Next Generation Technique, which will have positive consequences in personalized medicine. In this review, we intend to question the role of metagenomics studies in the diagnosis and treatment of PC. CONCLUSION The microbial imbalance in the men's genital tract might have an effect on prostate health. Based on next-generation sequencing-generated data, Proteobacteria, Firmicutes, Actinobacteria, and Bacteriodetes are the nine frequent phyla detected in a PC sample, which might be involved in inducing mutation in the prostate cells that cause cancer.
Collapse
Affiliation(s)
- Ali Zarei
- Department of Human Genetics, Iranian Academic Center for Education, Culture and Research (ACECR)-Fars Branch Institute for Human Genetics Research, Shiraz, Iran
| | - Hossein Javid
- Department of Human Genetics, Iranian Academic Center for Education, Culture and Research (ACECR)-Fars Branch Institute for Human Genetics Research, Shiraz, Iran
| | - Sara Sanjarian
- Department of Human Genetics, Iranian Academic Center for Education, Culture and Research (ACECR)-Fars Branch Institute for Human Genetics Research, Shiraz, Iran
| | - Sara Senemar
- Department of Human Genetics, Iranian Academic Center for Education, Culture and Research (ACECR)-Fars Branch Institute for Human Genetics Research, Shiraz, Iran
| | - Hanieh Zarei
- Department of Physical Therapy, School of Rehabilitation Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
16
|
Lee J, Kim SC, Rhee CK, Lee J, Lee JW, Lee DG. Prevalence and clinical course of upper airway respiratory virus infection in critically ill patients with hematologic malignancies. PLoS One 2021; 16:e0260741. [PMID: 34905565 PMCID: PMC8670702 DOI: 10.1371/journal.pone.0260741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 11/15/2021] [Indexed: 11/18/2022] Open
Abstract
Background The clinical significance of upper airway respiratory virus (RV) detection in patients with hematologic malignancies remains unclear. We aimed to investigate the association between upper airway RV detection and prognosis in critically ill patients with hematologic malignancies. Methods This retrospective observational study included 331 critically ill patients with hematologic malignancies who presented respiratory symptoms and their nasopharyngeal swab was tested using a multiplex PCR assay between January 2017 and December 2018. A logistic regression model was used to adjust for potential confounding factors in the association between assay positivity and in-hospital mortality. Results Among the 331 analyzed patients, RVs were detected in 29.0%. The overall mortality rates in the intensive care unit and hospital were 56.8% and 65.9%, respectively. Positive upper airway RV detection was associated with relapsed hematologic malignancies, higher level of C-reactive protein, and prior use of high dose steroids and anti-cancer chemotherapeutic drugs. Furthermore, it was independently associated with in-hospital mortality (adjusted odds ratio, 2.36; 95% confidence interval, 1.23 to 4.54). Among different RVs, parainfluenza virus was more prevalent among patients who died in the hospital than among those who survived (11.5% vs. 3.5%, P = 0.027). Conclusions RV detection in the upper respiratory tract was relatively common in our cohort and was significantly associated with a poor prognosis. Thus, it can be used as a predictor of prognosis. Moreover, RV presence in the upper respiratory tract should be examined in patients who have previously been prescribed with high dose corticosteroids and anti-cancer drugs.
Collapse
Affiliation(s)
- Jongmin Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seok Chan Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chin Kook Rhee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jaewoong Lee
- Department of Laboratory Medicine, Catholic Genetic Laboratory Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jong Wook Lee
- Catholic Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dong-Gun Lee
- Catholic Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Divison of Infectious Diseases, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
17
|
Ghosh SK, Ray A, Goel A, Das S. Peristomal Herpes. Indian J Surg 2021. [DOI: 10.1007/s12262-020-02608-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
18
|
Sang Y, Miller LC, Nelli RK, Giménez-Lirola LG. Harness Organoid Models for Virological Studies in Animals: A Cross-Species Perspective. Front Microbiol 2021; 12:725074. [PMID: 34603253 PMCID: PMC8481363 DOI: 10.3389/fmicb.2021.725074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/27/2021] [Indexed: 02/02/2023] Open
Abstract
Animal models and cell culture in vitro are primarily used in virus and antiviral immune research. Whereas the limitation of these models to recapitulate the viral pathogenesis in humans has been made well aware, it is imperative to introduce more efficient systems to validate emerging viruses in both domestic and wild animals. Organoids ascribe to representative miniatures of organs (i.e., mini-organs), which are derived from three-dimensional culture of stem cells under respective differential conditions mimicking endogenous organogenetic niches. Organoids have broadened virological studies in the human context, particularly in recent uses for COVID19 research. This review examines the status and potential for cross-species applied organotypic culture in validating emerging animal, particularly zoonotic, viruses in domestic and wild animals.
Collapse
Affiliation(s)
- Yongming Sang
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, United States
| | - Laura C Miller
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, IA, United States
| | - Rahul K Nelli
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Luis Gabriel Giménez-Lirola
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
19
|
The epidemiology and etiologies of respiratory tract infection in Northern Taiwan during the early phase of coronavirus disease 2019 (COVID-19) outbreak. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2021; 54:801-807. [PMID: 34217634 PMCID: PMC8217336 DOI: 10.1016/j.jmii.2021.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 03/02/2021] [Accepted: 05/13/2021] [Indexed: 12/16/2022]
Abstract
Background Coronavirus disease 2019 (COVID-19) manifests symptoms as common etiologies of respiratory tract infections (RTIs). During the pandemic of COVID-19, identifying the etiologies correctly from patients with RTI symptoms was crucial in not only disease control but preventing healthcare system from collapsing. By applying sensitive PCR-based molecular assays, we detected the etiologic agents and delineated the epidemiologic picture of RTIs in the early phase of COVID-19 pandemic. Methods From December 2019 to February 2020, we screened patients presented with RTIs using multiplex PCR-based diagnostic assays. Data from pediatric and adult patients were compared with different months and units in the hospital. Results Of all 1631 patients including 1445 adult and 186 pediatric patients screened, 8 viruses and 4 bacteria were identified. Positive rates were 25% in December, 37% in January, and 20% in February, with pediatric patients having higher positive rates than adults (Ps < 0.001). In pediatric patients, RhV/EnV was the most commonly detected, followed by parainfluenza viruses. Most Mycoplasma pneumoniae infection occurred in pediatric patients. RhV/EnV was the most commonly detected agent in pediatric patients admitted to intensive care units (ICUs), while influenza accounted for the majority of adult cases with critical illness. Noticeably, seasonal coronavirus ranked second in both adult and pediatric patients with ICU admission. Conclusion While we focused on the pandemic of COVID-19, common etiologies still accounted for the majority of RTIs and lead to severe diseases, including other seasonal coronaviruses.
Collapse
|
20
|
Cornish NE, Anderson NL, Arambula DG, Arduino MJ, Bryan A, Burton NC, Chen B, Dickson BA, Giri JG, Griffith NK, Pentella MA, Salerno RM, Sandhu P, Snyder JW, Tormey CA, Wagar EA, Weirich EG, Campbell S. Clinical Laboratory Biosafety Gaps: Lessons Learned from Past Outbreaks Reveal a Path to a Safer Future. Clin Microbiol Rev 2021; 34:e0012618. [PMID: 34105993 PMCID: PMC8262806 DOI: 10.1128/cmr.00126-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Patient care and public health require timely, reliable laboratory testing. However, clinical laboratory professionals rarely know whether patient specimens contain infectious agents, making ensuring biosafety while performing testing procedures challenging. The importance of biosafety in clinical laboratories was highlighted during the 2014 Ebola outbreak, where concerns about biosafety resulted in delayed diagnoses and contributed to patient deaths. This review is a collaboration between subject matter experts from large and small laboratories and the federal government to evaluate the capability of clinical laboratories to manage biosafety risks and safely test patient specimens. We discuss the complexity of clinical laboratories, including anatomic pathology, and describe how applying current biosafety guidance may be difficult as these guidelines, largely based on practices in research laboratories, do not always correspond to the unique clinical laboratory environments and their specialized equipment and processes. We retrospectively describe the biosafety gaps and opportunities for improvement in the areas of risk assessment and management; automated and manual laboratory disciplines; specimen collection, processing, and storage; test utilization; equipment and instrumentation safety; disinfection practices; personal protective equipment; waste management; laboratory personnel training and competency assessment; accreditation processes; and ethical guidance. Also addressed are the unique biosafety challenges successfully handled by a Texas community hospital clinical laboratory that performed testing for patients with Ebola without a formal biocontainment unit. The gaps in knowledge and practices identified in previous and ongoing outbreaks demonstrate the need for collaborative, comprehensive solutions to improve clinical laboratory biosafety and to better combat future emerging infectious disease outbreaks.
Collapse
Affiliation(s)
- Nancy E. Cornish
- Centers for Disease Control and Prevention, Center for Surveillance, Epidemiology and Laboratory Services (CSELS), Atlanta, Georgia, USA
| | - Nancy L. Anderson
- Centers for Disease Control and Prevention, Center for Surveillance, Epidemiology and Laboratory Services (CSELS), Atlanta, Georgia, USA
| | - Diego G. Arambula
- Centers for Disease Control and Prevention, Center for Surveillance, Epidemiology and Laboratory Services (CSELS), Atlanta, Georgia, USA
| | - Matthew J. Arduino
- Centers for Disease Control and Prevention, National Center for Emerging & Zoonotic Infectious Diseases (NCEZID), Atlanta, Georgia, USA
| | - Andrew Bryan
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Nancy C. Burton
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health (NIOSH), Cincinnati, Ohio, USA
| | - Bin Chen
- Centers for Disease Control and Prevention, Center for Surveillance, Epidemiology and Laboratory Services (CSELS), Atlanta, Georgia, USA
| | - Beverly A. Dickson
- Department of Clinical Pathology, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, USA
| | - Judith G. Giri
- Centers for Disease Control and Prevention, Center for Global Health (CGH), Atlanta, Georgia, USA
| | | | | | - Reynolds M. Salerno
- Centers for Disease Control and Prevention, Center for Surveillance, Epidemiology and Laboratory Services (CSELS), Atlanta, Georgia, USA
| | - Paramjit Sandhu
- Centers for Disease Control and Prevention, Center for Surveillance, Epidemiology and Laboratory Services (CSELS), Atlanta, Georgia, USA
| | - James W. Snyder
- Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Christopher A. Tormey
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
- Pathology & Laboratory Medicine Service, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Elizabeth A. Wagar
- Department of Laboratory Medicine, University of Texas, M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Elizabeth G. Weirich
- Centers for Disease Control and Prevention, Center for Surveillance, Epidemiology and Laboratory Services (CSELS), Atlanta, Georgia, USA
| | - Sheldon Campbell
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
- Pathology & Laboratory Medicine Service, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA
| |
Collapse
|
21
|
Ramani R, Laplante JM, Church TM, Farrell GM, Lamson DM, St George K. CACO-2 cells: A continuous cell line with sensitive and broad-spectrum utility for respiratory virus culture. J Virol Methods 2021; 293:114120. [PMID: 33676967 DOI: 10.1016/j.jviromet.2021.114120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Primary rhesus monkey kidney cells (RhMK) can be used for the detection of respiratory viruses, including influenza and parainfluenza. The human colon adeno-carcinoma cell line, CACO-2, has been previously used for the growth of multiple influenza viruses, including seasonal, novel and avian lineages. OBJECTIVE We compared CACO-2, Madin-Darby Canine Kidney (MDCK), and RhMK cells for the isolation of viruses from patients presenting with influenza like-illness (ILI). STUDY DESIGN Nasopharyngeal specimens from patients with ILI in primary care settings were processed for conventional viral culture in MDCK, RhMK, and CACO-2. Cells were examined microscopically for cytopathic effect (CPE) and confirmatory testing included immunofluorescent antigen (IFA) detection and real-time RT-PCR. Additionally, 16 specimens positive for respiratory syncytial virus (RSV) by PCR were inoculated on CACO-2 cells. Statistical analysis was done using Chi-square test with IBM Statistical Program. RESULTS Of 1031 respiratory specimens inoculated, viruses were isolated and confirmed from 331 (32.1 %) in MDCK cells, 304 (29.5 %) in RhMk cells, and 433 (42.0 %) in CACO-2 cells. These included influenza A/(H1N1)pdm09, influenza A(H3N2), influenza B, parainfluenza virus (PIV) types 1, 2, and 3, human coronavirus 229E (CoV-229E), human adenovirus (HAdV), herpes simplex virus 1 (HSV 1), and enterovirus (EV). Influenza A viruses grew best in the CACO-2 cell line. Time to observation of CPE was similar for all three cell types but unlike RhMK and MDCK cells, virus-specific morphological changes were indistinguishable in CACO-2 cells. None of the 16 specimens positive for RSV by PCR grew on CACO-2 cells. CONCLUSIONS The overall respiratory virus culture isolation rate in CACO-2 cells was significantly higher than that in RhMK or MDCK cells (p < 0.05). CACO-2 cells also supported the growth of some viruses that did not grow in either RhMK or MDCK cells. Except for RSV, CACO-2 cells provide a worthwhile addition to culture algorithms for respiratory specimens.
Collapse
Affiliation(s)
- Rama Ramani
- Laboratory of Viral Diseases, Wadsworth Center, Albany, NY, USA
| | | | | | | | - Daryl M Lamson
- Laboratory of Viral Diseases, Wadsworth Center, Albany, NY, USA
| | | |
Collapse
|
22
|
Photichai K, Guntawang T, Sittisak T, Kochagul V, Chuammitri P, Thitaram C, Thananchai H, Chewonarin T, Sringarm K, Pringproa K. Attempt to Isolate Elephant Endotheliotropic Herpesvirus (EEHV) Using a Continuous Cell Culture System. Animals (Basel) 2020; 10:E2328. [PMID: 33297581 PMCID: PMC7762348 DOI: 10.3390/ani10122328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/28/2020] [Accepted: 12/04/2020] [Indexed: 11/17/2022] Open
Abstract
Elephant endotheliotropic herpesvirus (EEHV) infection is known to cause acute fatal hemorrhagic disease, which has killed many young Asian elephants (Elephas maximus). Until recently, in vitro isolation and propagation of the virus have not been successful. This study aimed to isolate and propagate EEHV using continuous cell lines derived from human and/or animal origins. Human cell lines, including EA. hy926, A549, U937, RKO, SW620, HCT-116 and HT-29, and animal cell lines, including CT26.CL25 and sp2/0-Ag14, were investigated in this study. Mixed frozen tissue samples of the heart, lung, liver, spleen and kidney obtained from fatal EEHV1A- or EEHV4-infected cases were homogenized and used for cell inoculation. At 6, 24, 48 and 72 h post infection (hpi), EEHV-inoculated cells were observed for cytopathic effects (CPEs) or were assessed for EEHV infection by immunoperoxidase monolayer assay (IPMA) or quantitative PCR. The results were then compared to those of the mock-infected controls. Replication of EEHV in the tested cells was further determined by immunohistochemistry of cell pellets using anti-EEHV DNA polymerase antibodies or re-inoculated cells with supernatants obtained from passages 2 or 3 of the culture medium. The results reveal that no CPEs were observed in the tested cells, while immunolabeling for EEHV gB was observed in only U937 human myeloid leukemia cells. However, quantitation values of the EEHV terminase gene, as well as those of the EEHV gB or EEHV DNA polymerase proteins in U937 cells, gradually declined from passage 1 to passage 3. The findings of this study indicate that despite poor adaptation in U937 cells, this cell line displays promise and potential to be used for the isolation of EEHV1 and EEHV4 in vitro.
Collapse
Affiliation(s)
- Kornravee Photichai
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (K.P.); (T.G.); (T.S.); (P.C.)
| | - Thunyamas Guntawang
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (K.P.); (T.G.); (T.S.); (P.C.)
| | - Tidaratt Sittisak
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (K.P.); (T.G.); (T.S.); (P.C.)
| | - Varankpicha Kochagul
- Veterinary Diagnostic Laboratory, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Phongsakorn Chuammitri
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (K.P.); (T.G.); (T.S.); (P.C.)
| | - Chatchote Thitaram
- Department of Companion Animals and Wildlife Clinics, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Hathairat Thananchai
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Teera Chewonarin
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Korawan Sringarm
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Kidsadagon Pringproa
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; (K.P.); (T.G.); (T.S.); (P.C.)
- Excellence Center in Veterinary Bioscience, Chiang Mai University, Chiang Mai 50100, Thailand
| |
Collapse
|
23
|
Jefferson T, Spencer EA, Brassey J, Heneghan C. Viral cultures for COVID-19 infectious potential assessment - a systematic review. Clin Infect Dis 2020; 73:e3884-e3899. [PMID: 33270107 PMCID: PMC7799320 DOI: 10.1093/cid/ciaa1764] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE to review the evidence from studies relating SARS-CoV-2 culture with the results of reverse transcriptase polymerase chain reaction (RT-PCR) and other variables which may influence the interpretation of the test, such as time from symptom onset. METHODS We searched LitCovid, medRxiv, Google Scholar and the WHO Covid-19 database for Covid-19 to 10 September 2020. We included studies attempting to culture or observe SARS-CoV-2 in specimens with RT-PCR positivity. Studies were dual extracted and the data summarised narratively by specimen type. Where necessary we contacted corresponding authors of included papers for additional information. We assessed quality using a modified QUADAS 2 risk of bias tool. RESULTS We included 29 studies reporting attempts at culturing, or observing tissue infection by, SARS-CoV-2 in sputum, nasopharyngeal or oropharyngeal, urine, stool, blood and environmental specimens. The quality of the studies was moderate with lack of standardised reporting. The data suggest a relationship between the time from onset of symptom to the timing of the specimen test, cycle threshold (Ct) and symptom severity. Twelve studies reported that Ct values were significantly lower and log copies higher in specimens producing live virus culture. Two studies reported the odds of live virus culture reduced by approximately 33% for every one unit increase in Ct. Six of eight studies reported detectable RNA for longer than 14 days but infectious potential declined after day 8 even among cases with ongoing high viral loads. Four studies reported viral culture from stool specimens. CONCLUSION Complete live viruses are necessary for transmission, not the fragments identified by PCR. Prospective routine testing of reference and culture specimens and their relationship to symptoms, signs and patient co-factors should be used to define the reliability of PCR for assessing infectious potential. Those with high cycle threshold are unlikely to have infectious potential.
Collapse
Affiliation(s)
- T Jefferson
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Radcliffe Observatory Quarter, Oxford
| | - E A Spencer
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Radcliffe Observatory Quarter, Oxford
| | | | - C Heneghan
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Radcliffe Observatory Quarter, Oxford
| |
Collapse
|
24
|
Pham PH, Misk E, Papazotos F, Jones G, Polinski MP, Contador E, Russell S, Garver KA, Lumsden JS, Bols NC. Screening of Fish Cell Lines for Piscine Orthoreovirus-1 (PRV-1) Amplification: Identification of the Non-Supportive PRV-1 Invitrome. Pathogens 2020; 9:E833. [PMID: 33053677 PMCID: PMC7601784 DOI: 10.3390/pathogens9100833] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/05/2020] [Accepted: 10/09/2020] [Indexed: 12/16/2022] Open
Abstract
Piscine reovirus (PRV) is the causative agent of heart and skeletal muscle inflammation (HSMI), which is detrimental to Atlantic Salmon (AS) aquaculture, but so far has not been cultivatable, which impedes studying the disease and developing a vaccine. Homogenates of head kidney and red blood cells (RBC) from AS in which PRV-1 had been detected were applied to fish cell lines. The cell lines were from embryos, and from brain, blood, fin, gill, gonads, gut, heart, kidney, liver, skin, and spleen, and had the shapes of endothelial, epithelial, fibroblast, and macrophage cells. Most cell lines were derived from the Neopterygii subclass of fish, but one was from subclass Chondrostei. Cultures were examined by phase contrast microscopy for appearance, and by quantitative polymerase chain reaction (qPCR) for PRV-1 RNA amplification and for the capacity to transfer any changes to new cultures. No changes in appearance and Ct values were observed consistently or transferable to new cultures. Therefore, 31 cell lines examined were unable to support PRV-1 amplification and are described as belonging to the non-supportive PRV-1 invitrome. However, these investigations and cell lines can contribute to understanding PRV-1 cellular and host tropism, and the interactions between virus-infected and bystander cells.
Collapse
Affiliation(s)
- Phuc H. Pham
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (F.P.); (N.C.B.)
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (E.C.); (J.S.L.)
| | - Ehab Misk
- Huntsman Marine Science Centre, St. Andrews, NB E5B 2L7, Canada;
| | - Fotini Papazotos
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (F.P.); (N.C.B.)
| | - Ginny Jones
- Elanco Canada Limited, Aqua Vaccines R&D, Charlottetown, PE C1E 2A7, Canada;
| | - Mark P. Polinski
- Pacific Biological Station, Department of Fisheries and Oceans, Nanaimo, BC V9T 6N7, Canada; (M.P.P.); (K.A.G.)
| | - Elena Contador
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (E.C.); (J.S.L.)
| | - Spencer Russell
- Fisheries and Aquaculture, Vancouver Island University, Nanaimo, BC V9R 5S5, Canada;
| | - Kyle A. Garver
- Pacific Biological Station, Department of Fisheries and Oceans, Nanaimo, BC V9T 6N7, Canada; (M.P.P.); (K.A.G.)
| | - John S. Lumsden
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (E.C.); (J.S.L.)
| | - Niels C. Bols
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (F.P.); (N.C.B.)
| |
Collapse
|
25
|
Reta DH, Tessema TS, Ashenef AS, Desta AF, Labisso WL, Gizaw ST, Abay SM, Melka DS, Reta FA. Molecular and Immunological Diagnostic Techniques of Medical Viruses. Int J Microbiol 2020; 2020:8832728. [PMID: 32908530 PMCID: PMC7474384 DOI: 10.1155/2020/8832728] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/24/2020] [Accepted: 08/15/2020] [Indexed: 01/12/2023] Open
Abstract
Viral infections are causing serious problems in human population worldwide. The recent outbreak of coronavirus disease 2019 caused by SARS-CoV-2 is a perfect example how viral infection could pose a great threat to global public health and economic sectors. Therefore, the first step in combating viral pathogens is to get a timely and accurate diagnosis. Early and accurate detection of the viral presence in patient sample is crucial for appropriate treatment, control, and prevention of epidemics. Here, we summarize some of the molecular and immunological diagnostic approaches available for the detection of viral infections of humans. Molecular diagnostic techniques provide rapid viral detection in patient sample. They are also relatively inexpensive and highly sensitive and specific diagnostic methods. Immunological-based techniques have been extensively utilized for the detection and epidemiological studies of human viral infections. They can detect antiviral antibodies or viral antigens in clinical samples. There are several commercially available molecular and immunological diagnostic kits that facilitate the use of these methods in the majority of clinical laboratories worldwide. In developing countries including Ethiopia where most of viral infections are endemic, exposure to improved or new methods is highly limited as these methods are very costly to use and also require technical skills. Since researchers and clinicians in all corners of the globe are working hard, it is hoped that in the near future, they will develop good quality tests that can be accessible in low-income countries.
Collapse
Affiliation(s)
- Daniel Hussien Reta
- School of Veterinary Medicine, Wollo University, Dessie, Ethiopia
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
| | | | | | - Adey Feleke Desta
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Wajana Lako Labisso
- Department of Pathology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Solomon Tebeje Gizaw
- Department of Medical Biochemistry, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Solomon Mequanente Abay
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Daniel Seifu Melka
- Department of Medical Biochemistry, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Fisseha Alemu Reta
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Biology, College of Natural and Computational Sciences, Jigjiga University, Jigjiga, Ethiopia
| |
Collapse
|
26
|
Zhou Y, Chen L, Zhang L, Shao C, Sun J, Jiang S, Song Q, Zhou B, Yang Y, Dong W, Yang Y, Wei F, Fang W, Wang X, Song H. Simultaneous identification of 6 pathogens causing porcine reproductive failure by using multiplex ligation-dependent probe amplification. Transbound Emerg Dis 2020; 67:2467-2474. [PMID: 32304349 DOI: 10.1111/tbed.13585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/07/2020] [Accepted: 04/11/2020] [Indexed: 01/21/2023]
Abstract
We developed a multiplex ligation-dependent probe amplification (MLPA) assay for the simultaneous detection of 6 clinically relevant viral pathogens causing porcine reproductive failure, that is porcine reproductive and respiratory syndrome virus (PRRSV), Japanese encephalitis virus (JEV), classical swine fever virus (CSFV), porcine circovirus type 2 (PCV2), pseudorabies virus (PRV) and porcine parvovirus (PPV). The limits of detection for the assay varied among the 6 target organisms from 1 to 8 copies per MLPA assay. The MLPA assay was evaluated with 346 heparinized porcine umbilical cord blood specimens, and the results of the assay were compared to those of real-time PCR. The MLPA assay showed specificities and sensitivities of 99.2% and 100%, respectively, for PRRSV; 100% and 100%, respectively, for CSFV, PCV2, PRV and PPV. No sample was found to be positive for JEV by either the MLPA assay or the real-time PCR. In conclusion, the MLPA assay has comparable clinical sensitivity to that of real-time PCR assay and provides a useful tool for fast screening porcine reproductive failure-associated viruses.
Collapse
Affiliation(s)
- Yingshan Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Lin'an, Zhejiang, China
| | - Lin Chen
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Lin'an, Zhejiang, China
| | - Lifei Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Lin'an, Zhejiang, China
| | - Chunyan Shao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Lin'an, Zhejiang, China
| | - Jing Sun
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Lin'an, Zhejiang, China
| | - Sheng Jiang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Lin'an, Zhejiang, China
| | - Quanjiang Song
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Lin'an, Zhejiang, China
| | - Bin Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Lin'an, Zhejiang, China
| | - Yongchun Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Lin'an, Zhejiang, China
| | - Wanyu Dong
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Lin'an, Zhejiang, China
| | - Yang Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Lin'an, Zhejiang, China
| | - Fangfang Wei
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Lin'an, Zhejiang, China
| | - Weihuan Fang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Lin'an, Zhejiang, China.,Zhejiang Provincial Key Lab of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaodu Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Lin'an, Zhejiang, China
| | - Houhui Song
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Lin'an, Zhejiang, China
| |
Collapse
|
27
|
Martin RM, Burke K, Verma D, Xie H, Langer J, Schlaberg R, Swaminathan S, Hanson KE. Contact Transmission of Vaccinia to an Infant Diagnosed by Viral Culture and Metagenomic Sequencing. Open Forum Infect Dis 2020; 7:ofaa111. [PMID: 32685604 PMCID: PMC7357282 DOI: 10.1093/ofid/ofaa111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/25/2020] [Indexed: 12/30/2022] Open
Abstract
Targeted molecular diagnostic tests and accurate immunoassays have transformed the landscape of clinical virology, calling into question the usefulness of traditional viral culture. Here we present a case where viral culture, followed by metagenomic sequencing, was central to the diagnosis of an unexpected viral infection, with significant clinical and public health implications.
Collapse
Affiliation(s)
- Rebekah M Martin
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA.,Associated Regional and University Pathologists, Inc. (ARUP Laboratories), Salt Lake City, Utah, USA
| | - Kristina Burke
- Dermatology Clinic, Tripler Army Medical Center, Honolulu, Hawaii, USA
| | - Dinesh Verma
- Division of Infectious Diseases, Department of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Heng Xie
- IDbyDNA, Salt Lake City, Utah, USA
| | - Janine Langer
- Associated Regional and University Pathologists, Inc. (ARUP Laboratories), Salt Lake City, Utah, USA
| | - Robert Schlaberg
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA.,IDbyDNA, Salt Lake City, Utah, USA
| | - Sankar Swaminathan
- Division of Infectious Diseases, Department of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Kimberly E Hanson
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA.,Associated Regional and University Pathologists, Inc. (ARUP Laboratories), Salt Lake City, Utah, USA.,Division of Infectious Diseases, Department of Medicine, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
28
|
Abstract
Infections of the central nervous system cause significant morbidity and mortality in immunocompetent and immunocompromised individuals. A wide variety of microorganisms can cause infections, including bacteria, mycobacteria, fungi, viruses, and parasites. Although less invasive testing is preferred, surgical biopsy may be necessary to collect diagnostic tissue. Histologic findings, including special stains and immunohistochemistry, can provide a morphologic diagnosis in many cases, which can be further classified by molecular testing. Correlation of molecular, culture, and other laboratory results with histologic findings is essential for an accurate diagnosis, and to minimize false positives from microbial contamination.
Collapse
Affiliation(s)
- Isaac H Solomon
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
29
|
Borghetti IA, Zambenedetti MR, Requião L, Vieira DS, Krieger MA, de Cássia Pontello Rampazzo R. External Control Viral-Like Particle Construction for Detection of Emergent Arboviruses by Real-Time Reverse-Transcription PCR. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2560401. [PMID: 31687381 PMCID: PMC6800972 DOI: 10.1155/2019/2560401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/15/2019] [Accepted: 08/24/2019] [Indexed: 11/18/2022]
Abstract
Arboviruses have been emerging and reemerging worldwide, predominantly in tropical and subtropical areas. As many arbovirus infections, including dengue (DENV), Zika (ZIKV), and chikungunya (CHIKV), have similar signs and symptoms, clinical diagnosis of arbovirus infections is challenging. Therefore, reliable laboratory tests are necessary to improve the clinical management of patients with suspected arbovirus infections. Real-time reverse-transcription PCR (RT-qPCR) is among the more effective methods to distinguish these viruses. The aim of this study was to construct a unique positive external control derived from a unique plasmid using genetic engineering for specific use in RT-qPCR assays to detect Zika, dengue (1-4), and chikungunya. An external control derived from the MS2 bacteriophage was constructed using sequences from arbovirus and human genomes. Laboratories were asked to test the control in the ZDC Biomol kit, a RT-qPCR kit which is able to detect Zika, dengue serotypes 1-4, chikungunya, and an internal human control. RNA extracted from the external control was able to be amplified and detected in RT-qPCR assays for each virus detected by using the ZDC Biomol kit. The external control, samples from viral culture, and infected patient samples display similar amplification using this assay. The pET47b(+)MS2-ZDC vector is a viable expression system for the production of external control viral-like particles (MS2-ZDC). The RNA from the recombinant particles can be easily extracted and can function as a tool to validate all steps of process from the extraction to the amplification of all targets in specific reaction. Thus, the MS2-ZDC particles are laboratory-safe in order to avoid risk for operators, and the phages are effective as positive control for use in the ZDC Biomol kit amplifying all kit targets making them effective for commercial profile.
Collapse
Affiliation(s)
- Ivo Alberto Borghetti
- Instituto de Biologia Molecular do Paraná (IBMP), Curitiba, PR, Brazil
- Universidade Federal do Paraná, Programa de Pós-Graduação em Engenharia de Bioprocessos e Biotecnologia, Curitiba, PR, Brazil
| | | | - Luciana Requião
- Instituto de Biologia Molecular do Paraná (IBMP), Curitiba, PR, Brazil
| | | | - Marco Aurélio Krieger
- Instituto de Biologia Molecular do Paraná (IBMP), Curitiba, PR, Brazil
- Universidade Federal do Paraná, Programa de Pós-Graduação em Engenharia de Bioprocessos e Biotecnologia, Curitiba, PR, Brazil
- Instituto Carlos Chagas-ICC/FIOCRUZ, Curitiba, PR, Brazil
| | | |
Collapse
|
30
|
Allison DB, Simner PJ, Ali SZ. Identification of infectious organisms in cytopathology: A review of ancillary diagnostic techniques. Cancer Cytopathol 2019; 126 Suppl 8:643-653. [PMID: 30156776 DOI: 10.1002/cncy.22023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 11/06/2022]
Abstract
Cytology samples obtained from exfoliative sources and fine-needle aspiration (FNA) procedures can all be used to detect microorganisms and/or the associated cytopathologic effects (CPE) caused by an infection. There are many advantages to utilizing cytology samples as an adjunct to routine microbiology laboratory methods. For example, cytology samples can be obtained by non-invasive and minimally invasive techniques, and interpretation is affordable, accurate, and fast. Furthermore, routine cytology stains, including the Papanicolaou (Pap) and the Diff-Quik (DQ) stains, can adequately identify a number of microorganisms. Finally, material obtained by these procedures can also be used for cytologic ancillary testing, microbiology culture, and molecular studies. Currently, there are a variety of ancillary diagnostic techniques that are routinely utilized in the cytopathology laboratory. Additionally, the increasing utilization of molecular-based, diagnostic techniques on fluid specimens, as well as FFPE material, is expanding the role of cytopathology for infectious disease diagnostics. In this review, we provide an overview of the most practical ancillary techniques commonly used to identify microorganisms on cytology specimens.
Collapse
Affiliation(s)
- Derek B Allison
- Department of Pathology, The Johns Hopkins Hospital, Baltimore, Maryland
| | - Patricia J Simner
- Department of Pathology, The Johns Hopkins Hospital, Baltimore, Maryland
| | - Syed Z Ali
- Department of Pathology, The Johns Hopkins Hospital, Baltimore, Maryland
| |
Collapse
|
31
|
|
32
|
Abstract
The timely and accurate diagnosis of respiratory virus infections has the potential to optimize downstream (posttesting) use of limited health care resources, including antibiotics, antivirals, ancillary testing, and inpatient and emergency department beds. Cost-effective algorithms for respiratory virus testing must take into consideration numerous factors, including which patients should be tested, what testing should be performed (for example, antigen testing versus reverse transcription-PCR testing or influenza A/B testing versus testing with a comprehensive respiratory virus panel), and the turnaround time necessary to achieve the desired posttesting outcomes. Despite the clinical impact of respiratory virus infections, the cost-effectiveness of respiratory virus testing is incompletely understood. In this article, we review the literature pertaining to the cost-effectiveness of respiratory virus testing in pediatric and adult patient populations, in emergency department, outpatient, and inpatient clinical settings. Furthermore, we consider the cost-effectiveness of a variety of testing methods, including rapid antigen tests, direct fluorescent antibody assays, and nucleic acid amplification tests.
Collapse
|
33
|
Xiao Q, Yan L, Yao L, Lei J, Bi Z, Hu J, Chen Y, Fang A, Li H, Li Y, Yan Y, Zhou J. Development of oligonucleotide microarray for accurate and simultaneous detection of avian respiratory viral diseases. BMC Vet Res 2019; 15:253. [PMID: 31324180 PMCID: PMC6642548 DOI: 10.1186/s12917-019-1985-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 06/27/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Avian influenza virus (AIV), infectious bronchitis virus (IBV), and Newcastle disease virus (NDV) are important avian pathogens that can cause enormous economic loss on the poultry industry. Different respiratory etiological agents may induce similar clinical signs that make differential diagnosis difficult. Importantly, AIV brings about severe threat to human public health. Therefore, a novel method that can distinguish these viruses quickly and simultaneously is urgently needed. RESULTS In this study, an oligonucleotide microarray system was developed. AIV, including H5, H7, and H9 subtypes; NDV; and IBV were simultaneously detected and differentiated on a microarray. Three probes specific for AIV, NDV, and IBV, as well as three other probes for differentiating H5, H7, and H9 of AIV, were first designed and jet-printed to predetermined locations of initiator-integrated poly(dimethylsiloxane) for the synchronous detection of the six pathogens. The marked multiplex reverse transcription polymerase chain reaction (PCR) products were hybridized with the specific probes, and the results of hybridization were read directly with the naked eyes. No cross-reaction was observed with 10 other subtypes of AIV and infectious bursal disease virus, indicating that the oligonucleotide microarray assay was highly specific. The sensitivity of the method was at least 100 times higher than that of the conventional PCR, and the detection limit of NDV, AIV, H5, H7, and H9 can reach 0.1 EID50 (50% egg infective dose), except that of IBV, which was 1 EID50 per reaction. In the validation of 93 field samples, AIV, IBV, and NDV were detected in 53 (56.99%) samples by oligonucleotide microarray and virus isolation and in 50 (53.76%) samples by conventional PCR. CONCLUSIONS We have successfully developed an approach to differentiate AIV, NDV, IBV, H5, H7, and H9 subtypes of AIV using oligonucleotide microarray. The microarray is an accurate, high-throughput, and relatively simple method for the rapid detection of avian respiratory viral diseases. It can be used for the epidemiological surveillance and diagnosis of AIV, IBV, and NDV.
Collapse
Affiliation(s)
- Qian Xiao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Detection Center of Terrestrial Wildlife Disease, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Liping Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China. .,Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China. .,Jiangsu Detection Center of Terrestrial Wildlife Disease, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Lu Yao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Detection Center of Terrestrial Wildlife Disease, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jing Lei
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Detection Center of Terrestrial Wildlife Disease, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Zhenwei Bi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Detection Center of Terrestrial Wildlife Disease, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jianhua Hu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Detection Center of Terrestrial Wildlife Disease, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yuqing Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Detection Center of Terrestrial Wildlife Disease, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - An Fang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Detection Center of Terrestrial Wildlife Disease, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Hui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Detection Center of Terrestrial Wildlife Disease, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yuan Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Detection Center of Terrestrial Wildlife Disease, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yan Yan
- Key Laboratory of Animal Virology, Ministry of Agriculture, Zhejiang University, Hangzhou, 310058, People's Republic of China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Jiyong Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Jiangsu Detection Center of Terrestrial Wildlife Disease, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Key Laboratory of Animal Virology, Ministry of Agriculture, Zhejiang University, Hangzhou, 310058, People's Republic of China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310058, People's Republic of China
| |
Collapse
|
34
|
Abstract
OBJECTIVES To describe characteristics of liver transplant patients with severe sepsis in the PICU. DESIGN Retrospective descriptive analysis. SETTING Tertiary children's hospital PICU. PATIENTS Liver transplant recipients admitted January 2010 to July 2016 for pediatric severe sepsis. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Between January 2010 and July 2016, 173 liver transplants were performed, and 36 of these patients (21%) were admitted with severe sepsis (54 episodes total). Median age at admission was 2 years (1-6.5 yr), 47.2% were male. Bacterial infections were the most common (77.8%), followed by culture negative (12.9%) and viral infections (7.4%). Fungal infections accounted for only 1.9%. Median time from transplant for viral and culture negative infections was 18 days (8.25-39.75 d) and 25 days (9-41 d), whereas 54.5 days (17-131.25 d) for bacterial infections. Bloodstream and intra-abdominal were the most common bacterial sites (45% and 22.5%, respectively). Multidrug-resistant organisms accounted for 47.6% of bacterial sepsis. Vancomycin-resistant Enterococcus and extended-spectrum beta-lactamase producers were the most frequently identified multidrug-resistant organisms. Patients with multidrug-resistant organism sepsis demonstrated higher admission Pediatric Logistic Organ Dysfunction scores (p = 0.043) and were noted to have an odds ratio of 3.8 and 3.6 for mechanical ventilation and multiple organ dysfunction syndrome, respectively (p = 0.047 and p = 0.044). Overall mortality was 5.5% (n = 2 patients), with both deaths occurring in multidrug-resistant organism episodes. CONCLUSIONS We report that multidrug-resistant organisms are increasingly being identified as causative pathogens for sepsis in pediatric liver transplant recipients and are associated with significantly higher odds for mechanical ventilation and higher organ failure. The emergence of multidrug-resistant organism infections in pediatric liver transplant patients has implications for patient outcomes, antibiotic stewardship, and infection prevention strategies.
Collapse
|
35
|
Busson L, Bartiaux M, Brahim S, Konopnicki D, Dauby N, Gérard M, De Backer P, Van Vaerenbergh K, Mahadeb B, Mekkaoui L, De Foor M, Wautier M, Vandenberg O, Mols P, Levy J, Hallin M. Contribution of the FilmArray Respiratory Panel in the management of adult and pediatric patients attending the emergency room during 2015-2016 influenza epidemics: An interventional study. Int J Infect Dis 2019; 83:32-39. [PMID: 30926539 PMCID: PMC7110685 DOI: 10.1016/j.ijid.2019.03.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/18/2019] [Accepted: 03/21/2019] [Indexed: 11/17/2022] Open
Abstract
AIM To evaluate the contribution of a multiplex PCR for respiratory viruses on antibiotic and antiviral prescription, ancillary test prescription, admission and length of stay of patients. METHODS Two hundred ninety-one adult and pediatric patients visiting the emergency department during the 2015-2016 influenza epidemic were prospectively included and immediately tested 24/7 using the FilmArray Respiratory Panel. The results were communicated to the practitioner in charge as soon as they became available. Clinical and biological data were gathered and analyzed. FINDINGS Results from the FilmArray Respiratory Panel do not appear to impact admission or antibiotic prescription, with the exception of a lower admission rate for children who tested positive for influenza B. Parameters that account for the clinical decisions evaluated are CRP level, white blood cell count, suspected or proven bacterial infection and, for adult patients only, signs of respiratory distress. Length of stay is also not significantly different between patients with a positive and a negative result. A rapid influenza test result permits a more appropriate prescription of oseltamivir.
Collapse
Affiliation(s)
- L Busson
- Department of Microbiology, Laboratoire des Hôpitaux Universitaires Bruxellois, Brussels, Belgium.
| | - M Bartiaux
- Department of Emergency Medicine, Centre Hospitalier Universitaire Saint-Pierre, Université Libre de Bruxelles, Brussels, Belgium
| | - S Brahim
- Department of Emergency Medicine, Centre Hospitalier Universitaire Saint-Pierre, Université Libre de Bruxelles, Brussels, Belgium
| | - D Konopnicki
- Department of Infectious Diseases, Centre Hospitalier Universitaire Saint-Pierre, Université Libre de Bruxelles, Brussels, Belgium
| | - N Dauby
- Department of Infectious Diseases, Centre Hospitalier Universitaire Saint-Pierre, Université Libre de Bruxelles, Brussels, Belgium
| | - M Gérard
- Department of Infectious Diseases, Centre Hospitalier Universitaire Saint-Pierre, Université Libre de Bruxelles, Brussels, Belgium
| | - P De Backer
- Pediatric Department, Centre Hospitalier Universitaire Saint-Pierre, Université Libre de Bruxelles, Brussels, Belgium
| | - K Van Vaerenbergh
- Pediatric Department, Centre Hospitalier Universitaire Saint-Pierre, Université Libre de Bruxelles, Brussels, Belgium
| | - B Mahadeb
- Department of Microbiology, Laboratoire des Hôpitaux Universitaires Bruxellois, Brussels, Belgium
| | - L Mekkaoui
- Department of Microbiology, Laboratoire des Hôpitaux Universitaires Bruxellois, Brussels, Belgium
| | - M De Foor
- Department of Microbiology, Laboratoire des Hôpitaux Universitaires Bruxellois, Brussels, Belgium
| | - M Wautier
- Department of Molecular Diagnostic, Laboratoire des Hôpitaux Universitaires Bruxellois, Brussels, Belgium
| | - O Vandenberg
- Department of Microbiology, Laboratoire des Hôpitaux Universitaires Bruxellois, Brussels, Belgium; Infectious Diseases Epidemiological Unit, Public Health School, Université Libre de Bruxelles, Brussels, Belgium
| | - P Mols
- Department of Emergency Medicine, Centre Hospitalier Universitaire Saint-Pierre, Université Libre de Bruxelles, Brussels, Belgium
| | - J Levy
- Pediatric Department, Centre Hospitalier Universitaire Saint-Pierre, Université Libre de Bruxelles, Brussels, Belgium
| | - M Hallin
- Department of Microbiology, Laboratoire des Hôpitaux Universitaires Bruxellois, Brussels, Belgium
| |
Collapse
|
36
|
Ortiz de Lejarazu Leonardo R, Rojo Rello S, Sanz Muñoz I. Diagnostic challenges in influenza. Enferm Infecc Microbiol Clin 2019; 37 Suppl 1:47-55. [PMID: 31138423 DOI: 10.1016/s0213-005x(19)30182-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In 2018 there are still microbiology laboratories that do not subtype or detect influenza viruses, one of the main agents of community-acquired pneumonia. A major challenge is to introduce multiplex-type technologies into most clinical virological diagnostic laboratories, increasing the feasibility of timely etiological diagnosis of influenza and other respiratory viruses whenever required and thus limiting antibiotic treatments. Other diagnostic tools such as markers of severity and the detection of resistance are pending challenges to complete and expand. Viral culture, an essential tool in the epidemiological surveillance of viruses, has been relegated by more sensitive and affordable molecular techniques. Sequencing of the influenza virus together with the antigenic characterisation and detection techniques of antibodies against hemagglutinin and neuraminidase will, in future, be used in tandem with other techniques to detect antibodies against other structural proteins, helping to elucidate the complicated epidemiology of these viruses and the production of new vaccines and their evaluation. Supplement information: This article is part of a supplement entitled «SEIMC External Quality Control Programme. Year 2016», which is sponsored by Roche, Vircell Microbiologists, Abbott Molecular and Francisco Soria Melguizo, S.A. © 2019 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosasy Microbiología Clínica. All rights reserved.
Collapse
Affiliation(s)
- Raúl Ortiz de Lejarazu Leonardo
- Centro Nacional de Gripe de Valladolid, Universidad de Valladolid, Valladolid, España; Servicio de Microbiología e Inmunología, Hospital Clínico Universitario de Valladolid, Valladolid, España.
| | - Silvia Rojo Rello
- Centro Nacional de Gripe de Valladolid, Universidad de Valladolid, Valladolid, España; Servicio de Microbiología e Inmunología, Hospital Clínico Universitario de Valladolid, Valladolid, España
| | - Iván Sanz Muñoz
- Centro Nacional de Gripe de Valladolid, Universidad de Valladolid, Valladolid, España
| |
Collapse
|
37
|
Busson L, Bartiaux M, Brahim S, Konopnicki D, Dauby N, Gérard M, De Backer P, Van Vaerenbergh K, Mahadeb B, De Foor M, Wautier M, Vandenberg O, Mols P, Levy J, Hallin M. Prospective evaluation of diagnostic tools for respiratory viruses in children and adults. J Virol Methods 2019; 266:1-6. [PMID: 30658123 PMCID: PMC7119678 DOI: 10.1016/j.jviromet.2019.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 01/11/2019] [Accepted: 01/15/2019] [Indexed: 12/30/2022]
Abstract
Molecular techniques have considerably improved sensitivity of viral diagnosis. Interpretation of results can be delicate as DNA or RNA traces can be detected. Their use is hindered by their cost and the difficulty to absorb high workloads. Their impact in management of patients still has to be demonstrated. Tertiary care hospitals should provide a testing algorithm to suit each case.
Aim To compare the performances of molecular and non-molecular tests to diagnose respiratory viral infections and to evaluate the pros and contras of each technique. Methods Two hundred ninety-nine respiratory samples were prospectively explored using multiplex molecular techniques (FilmArray Respiratory Panel, Clart Pneumovir), immunological techniques (direct fluorescent assay, lateral flow chromatography) and cell cultures. Findings Molecular techniques permitted the recovery of up to 50% more respiratory pathogens in comparison to non-molecular methods. FilmArray detected at least 30% more pathogens than Clart Pneumovir which could be explained by the differences in their technical designs. The turnaround time under 2 hours for the FilmArray permitted delivery of results when patients were still in the emergency room.
Collapse
Affiliation(s)
- L Busson
- Department of Microbiology, Laboratoire des Hôpitaux Universitaires Bruxellois, Brussels, Belgium.
| | - M Bartiaux
- Department of Emergency Medicine, Centre Hospitalier Universitaire Saint-Pierre, Université Libre de Bruxelles, Brussels, Belgium
| | - S Brahim
- Department of Emergency Medicine, Centre Hospitalier Universitaire Saint-Pierre, Université Libre de Bruxelles, Brussels, Belgium
| | - D Konopnicki
- Department of Infectious Diseases, Centre Hospitalier Universitaire Saint-Pierre, Université Libre de Bruxelles, Brussels, Belgium
| | - N Dauby
- Department of Infectious Diseases, Centre Hospitalier Universitaire Saint-Pierre, Université Libre de Bruxelles, Brussels, Belgium
| | - M Gérard
- Department of Infectious Diseases, Centre Hospitalier Universitaire Saint-Pierre, Université Libre de Bruxelles, Brussels, Belgium
| | - P De Backer
- Pediatric Department, Centre Hospitalier Universitaire Saint-Pierre, Université Libre de Bruxelles, Brussels, Belgium
| | - K Van Vaerenbergh
- Pediatric Department, Centre Hospitalier Universitaire Saint-Pierre, Université Libre de Bruxelles, Brussels, Belgium
| | - B Mahadeb
- Department of Microbiology, Laboratoire des Hôpitaux Universitaires Bruxellois, Brussels, Belgium
| | - M De Foor
- Department of Microbiology, Laboratoire des Hôpitaux Universitaires Bruxellois, Brussels, Belgium
| | - M Wautier
- Department of Molecular Diagnostic, Laboratoire des Hôpitaux Universitaires Bruxellois, Brussels, Belgium
| | - O Vandenberg
- Department of Microbiology, Laboratoire des Hôpitaux Universitaires Bruxellois, Brussels, Belgium; Infectious Diseases Epidemiological Unit, Public Health School, Université Libre de Bruxelles, Brussels, Belgium
| | - P Mols
- Department of Emergency Medicine, Centre Hospitalier Universitaire Saint-Pierre, Université Libre de Bruxelles, Brussels, Belgium
| | - J Levy
- Pediatric Department, Centre Hospitalier Universitaire Saint-Pierre, Université Libre de Bruxelles, Brussels, Belgium
| | - M Hallin
- Department of Microbiology, Laboratoire des Hôpitaux Universitaires Bruxellois, Brussels, Belgium
| |
Collapse
|
38
|
Esposito S, Principi N. Defining the aetiology of paediatric community-acquired pneumonia: an unsolved problem. Expert Rev Respir Med 2019; 13:153-161. [DOI: 10.1080/17476348.2019.1562341] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Susanna Esposito
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy
| | | |
Collapse
|
39
|
Uwizeyimana JD, Kim MK, Kim D, Byun JH, Yong D. Comparison of Multiplex Real-Time Polymerase Chain Reaction Assays for Detection of Respiratory Viruses in Nasopharyngeal Specimens. ANNALS OF CLINICAL MICROBIOLOGY 2019. [DOI: 10.5145/acm.2019.22.2.35] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Jean Damascene Uwizeyimana
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
- Department of Global Health Security, Yonsei University Graduate of Public Health, Seoul, Korea
- Department of Emergency Care, Ruli Hospital, Gakenye, Rwanda
| | - Min Kyung Kim
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Daewon Kim
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Jung-Hyun Byun
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Dongeun Yong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
40
|
Chen BC, Chang JT, Huang TS, Chen JJ, Chen YS, Jan MW, Chang TH. Parechovirus A Detection by a Comprehensive Approach in a Clinical Laboratory. Viruses 2018; 10:v10120711. [PMID: 30545147 PMCID: PMC6316871 DOI: 10.3390/v10120711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 12/15/2022] Open
Abstract
Parechovirus A (Human parechovirus, HPeV) causes symptoms ranging from severe neonatal infection to mild gastrointestinal and respiratory disease. Use of molecular approaches with RT-PCR and genotyping has improved the detection rate of HPeV. Conventional methods, such as viral culture and immunofluorescence assay, together with molecular methods facilitate comprehensive viral diagnosis. To establish the HPeV immunofluorescence assay, an antibody against HPeV capsid protein VP0 was generated by using antigenic epitope prediction data. The specificity of the anti-HPeV VP0 antibody was demonstrated on immunofluorescence assay, showing that this antibody was specific for HPeV but not enteroviruses. A total of 74 HPeV isolates, 7 non–polio-enteroviruses and 12 HPeV negative cell culture supernatant were used for evaluating the efficiency of the anti-HPeV VP0 antibody. The sensitivity of HPeV detection by the anti-HPeV VP0 antibody was consistent with 5′untranslated region (UTR) RT-PCR analysis. This study established comprehensive methods for HPeV detection that include viral culture and observation of cytopathic effect, immunofluorescence assay, RT-PCR and genotyping. The methods were incorporated into our routine clinical practice for viral diagnosis. In conclusion, this study established a protocol for enterovirus and HPeV virus identification that combines conventional and molecular methods and would be beneficial for HPeV diagnosis.
Collapse
Affiliation(s)
- Bao-Chen Chen
- Department of Microbiology, Kaohsiung Veterans General Hospital, Kaohsiung81362, Taiwan.
| | - Jenn-Tzong Chang
- Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan.
| | - Tsi-Shu Huang
- Department of Microbiology, Kaohsiung Veterans General Hospital, Kaohsiung81362, Taiwan.
| | - Jih-Jung Chen
- Faculty of Pharmacy, School of Pharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan.
| | - Yao-Shen Chen
- Department of Infectious Diseases, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan.
| | - Ming-Wei Jan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan.
| | - Tsung-Hsien Chang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan.
- Department of Medical Laboratory Science and Biotechnology, Chung Hwa University of Medical Technology, Tainan 717, Taiwan.
| |
Collapse
|
41
|
Maggi F, Pistello M, Antonelli G. Future management of viral diseases: role of new technologies and new approaches in microbial interactions. Clin Microbiol Infect 2018; 25:136-141. [PMID: 30502490 DOI: 10.1016/j.cmi.2018.11.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/03/2018] [Accepted: 11/10/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND New technologies allow rapid detecting and counting of virus genomes in clinical specimens, defining susceptibility to specific antivirals, pinpointing molecular sequences correlated to virulence traits, and identifying viral and host factors driving resolution or chronicity of infections. As a result, during the past three decades the diagnostic virology laboratory has become crucial for patient care and an integral component of the multifarious armamentarium for patient management. This change in paradigm has caused obsolescence of methods once considered the reference standard of infectious disease diagnosis that were used to detect whole or specific components of virions in the specimen. OBJECTIVES This review provides an overview of standard and novel technologies applied to molecular diagnosis of viral infections and illustrates some crucial points for correcting interpretation of the laboratory data. SOURCES Peer-reviewed literature of topics pertinent to this review. CONTENT AND IMPLICATIONS New technologies are reinventing the way virologic diagnoses are made, with a conversion to new, simpler-to-use platforms. Although indicated for the same purpose, not all methods are equal and can yield different results. Further, tests identifying multiple analytes at once can detect microorganisms present or activated as a result of pathologic processes triggered by other pathogens or noninfectious causes. Thus, new directions will have to be taken in the way in which the diagnoses of viral diseases are performed. This represents a breakthrough in the clinical virology laboratory.
Collapse
Affiliation(s)
- F Maggi
- Department of Translational Research, Retrovirus Center and Virology Section, University of Pisa, Pisa, Italy; Virology Division, Pisa University Hospital, Pisa, Italy
| | - M Pistello
- Department of Translational Research, Retrovirus Center and Virology Section, University of Pisa, Pisa, Italy; Virology Division, Pisa University Hospital, Pisa, Italy
| | - G Antonelli
- Department of Molecular Medicine, Laboratory of Virology and Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy; Microbiology and Virology Unit, Sapienza University Hospital 'Policlinico Umberto I,' Rome, Italy.
| |
Collapse
|
42
|
Qadiri SSN, Kim SJ, Krishnan R, Kim JO, Kim WS, Oh MJ. Development of an in-situ hybridization assay using riboprobes for detection of viral haemorrhagic septicemia virus (VHSV) mRNAs in a cell culture model. J Virol Methods 2018; 264:1-10. [PMID: 30414796 DOI: 10.1016/j.jviromet.2018.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/26/2018] [Accepted: 11/03/2018] [Indexed: 02/07/2023]
Abstract
An in situ hybridization (RNA-ISH) assay has been developed and optimized to detect viral haemorrhagic septicemia virus (VHSV), an OIE listed piscine rhabdovirus, in infected fish cells using fathead minnow (FHM) as a model cell line. Two antisense riboprobes (RNA probes) targeting viral transcripts from a fragment of nucleoprotein (N) and glycoprotein (G) genes were generated by reverse transcription polymerase chain reaction (RT-PCR) using VHSV specific primers followed by a transcription reaction in the presence of digoxigenin dUTP. The synthesized RNA probes were able to detect viral mRNAs in formalin fixed VHSV infected FHM cells at different time points post inoculation (pi). To correlate the signal intensity, a time dependent quantitation of the viral mRNA transcript and infectivity titer was done by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and 50% tissue culture infectivity dose (TCID50), respectively, from the infected cells and culture supernatants. Further, we compared the diagnostic sensitivity of ISH assay with immunocytochemistry (ICC). Both the riboprobes used in the ISH assay detected VHSV as early as 6 hpi in the FHM cells inoculated with a multiplicity of infection (moi) of 2. Also, the signal detection in ISH was at an early stage in comparison to ICC, wherein, signal was first detected at 12 hpi. Our results clearly highlight that current ISH assay can be of value as a diagnostic tool to localize and detect VHSV in conjunction with conventional virus isolation in cell culture.
Collapse
Affiliation(s)
- Syed Shariq Nazir Qadiri
- Department of Aqualife Medicine, College of Fisheries and Ocean Science, Chonnam National University, Yeosu, 59626, Republic of Korea
| | - Soo-Jin Kim
- Department of Aqualife Medicine, College of Fisheries and Ocean Science, Chonnam National University, Yeosu, 59626, Republic of Korea
| | - Rahul Krishnan
- Department of Aqualife Medicine, College of Fisheries and Ocean Science, Chonnam National University, Yeosu, 59626, Republic of Korea
| | - Jae-Ok Kim
- Department of Aqualife Medicine, College of Fisheries and Ocean Science, Chonnam National University, Yeosu, 59626, Republic of Korea
| | - Wi-Sik Kim
- Department of Aqualife Medicine, College of Fisheries and Ocean Science, Chonnam National University, Yeosu, 59626, Republic of Korea
| | - Myung-Joo Oh
- Department of Aqualife Medicine, College of Fisheries and Ocean Science, Chonnam National University, Yeosu, 59626, Republic of Korea.
| |
Collapse
|
43
|
Das S, Dunbar S, Tang YW. Laboratory Diagnosis of Respiratory Tract Infections in Children - the State of the Art. Front Microbiol 2018; 9:2478. [PMID: 30405553 PMCID: PMC6200861 DOI: 10.3389/fmicb.2018.02478] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/28/2018] [Indexed: 12/13/2022] Open
Abstract
In the pediatric population, respiratory infections are the most common cause of physician visits. Although many respiratory illnesses are self-limiting viral infections that resolve with time and supportive care, it can be critical to identify the causative pathogen at an early stage of the disease in order to implement effective antimicrobial therapy and infection control. Over the last few years, diagnostics for respiratory infections have evolved substantially, with the development of novel assays and the availability of updated tests for newer strains of pathogens. Newer laboratory methods are rapid, highly sensitive and specific, and are gradually replacing the conventional gold standards, although the clinical utility of these assays is still under evaluation. This article reviews the current laboratory methods available for testing for respiratory pathogens and discusses the advantages and disadvantages of each approach.
Collapse
Affiliation(s)
- Shubhagata Das
- Global Scientific Affairs, Luminex Corporation, Austin, TX, United States
| | - Sherry Dunbar
- Global Scientific Affairs, Luminex Corporation, Austin, TX, United States
| | - Yi-Wei Tang
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, Weill Medical College of Cornell University, New York, NY, United States.,Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, Weill Medical College of Cornell University, New York, NY, United States
| |
Collapse
|
44
|
Baldassarri RJ, Kumar D, Baldassarri S, Cai G. Diagnosis of Infectious Diseases in the Lower Respiratory Tract: A Cytopathologist's Perspective. Arch Pathol Lab Med 2018; 143:683-694. [PMID: 30203986 DOI: 10.5858/arpa.2017-0573-ra] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT.— Respiratory cytology continues to play an important role in the diagnosis of lower respiratory tract infections. Prompt, accurate diagnosis of causative organisms is of paramount importance, particularly in immunosuppressed patients. In addition, a rapidly expanding arsenal of ancillary testing is now available, aiding tremendously in organism identification. OBJECTIVE.— To provide an updated review on the cytomorphologic features of common organisms in lower respiratory tract infection. Relevant ancillary tests, differential diagnoses, and potential pitfalls of organism identification will also be discussed. DATA SOURCES.— Data for this review were gathered from PubMed searches of infectious diseases of the lower respiratory tract, especially related to the diagnoses. CONCLUSIONS.— The lower respiratory tract is subject to infection by a wide variety of infectious agents. Pathologists should be familiar with common organisms, including their general clinical characteristics, cytomorphologic features, differential diagnoses, and ancillary methods of detection. Above all, correlation with microbiologic and clinical information is necessary to make a confident diagnosis of infection.
Collapse
Affiliation(s)
- Rebecca J Baldassarri
- From the Departments of Pathology (Drs R. J. Baldassarri, Kumar, and Cai) and Internal Medicine (Dr S. Baldassarri), Yale School of Medicine, New Haven, Connecticut
| | - Deepika Kumar
- From the Departments of Pathology (Drs R. J. Baldassarri, Kumar, and Cai) and Internal Medicine (Dr S. Baldassarri), Yale School of Medicine, New Haven, Connecticut
| | - Stephen Baldassarri
- From the Departments of Pathology (Drs R. J. Baldassarri, Kumar, and Cai) and Internal Medicine (Dr S. Baldassarri), Yale School of Medicine, New Haven, Connecticut
| | - Guoping Cai
- From the Departments of Pathology (Drs R. J. Baldassarri, Kumar, and Cai) and Internal Medicine (Dr S. Baldassarri), Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
45
|
Ramírez AL, Hall-Mendelin S, Doggett SL, Hewitson GR, McMahon JL, Ritchie SA, van den Hurk AF. Mosquito excreta: A sample type with many potential applications for the investigation of Ross River virus and West Nile virus ecology. PLoS Negl Trop Dis 2018; 12:e0006771. [PMID: 30169512 PMCID: PMC6136815 DOI: 10.1371/journal.pntd.0006771] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/13/2018] [Accepted: 08/20/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Emerging and re-emerging arthropod-borne viruses (arboviruses) cause human and animal disease globally. Field and laboratory investigation of mosquito-borne arboviruses requires analysis of mosquito samples, either individually, in pools, or a body component, or secretion such as saliva. We assessed the applicability of mosquito excreta as a sample type that could be utilized during studies of Ross River and West Nile viruses, which could be applied to the study of other arboviruses. METHODOLOGY/PRINCIPAL FINDINGS Mosquitoes were fed separate blood meals spiked with Ross River virus and West Nile virus. Excreta was collected daily by swabbing the bottom of containers containing batches and individual mosquitoes at different time points. The samples were analyzed by real-time RT-PCR or cell culture enzyme immunoassay. Viral RNA in excreta from batches of mosquitoes was detected continuously from day 2 to day 15 post feeding. Viral RNA was detected in excreta from at least one individual mosquito at all timepoints, with 64% and 27% of samples positive for RRV and WNV, respectively. Excretion of viral RNA was correlated with viral dissemination in the mosquito. The proportion of positive excreta samples was higher than the proportion of positive saliva samples, suggesting that excreta offers an attractive sample for analysis and could be used as an indicator of potential transmission. Importantly, only low levels of infectious virus were detected by cell culture, suggesting a relatively low risk to personnel handling mosquito excreta. CONCLUSIONS/SIGNIFICANCE Mosquito excreta is easily collected and provides a simple and efficient method for assessing viral dissemination, with applications ranging from vector competence experiments to complementing sugar-based arbovirus surveillance in the field, or potentially as a sample system for virus discovery.
Collapse
Affiliation(s)
- Ana L. Ramírez
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, Queensland, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Sonja Hall-Mendelin
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland, Australia
| | - Stephen L. Doggett
- Department of Medical Entomology, NSW Health Pathology-ICPMR, Westmead Hospital, Westmead, New South Wales, Australia
| | - Glen R. Hewitson
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland, Australia
| | - Jamie L. McMahon
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland, Australia
| | - Scott A. Ritchie
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, Queensland, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Andrew F. van den Hurk
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland, Australia
| |
Collapse
|
46
|
Xu L, Jiang X, Zhu Y, Duan Y, Huang T, Huang Z, Liu C, Xu B, Xie Z. A Multiplex Asymmetric Reverse Transcription-PCR Assay Combined With an Electrochemical DNA Sensor for Simultaneously Detecting and Subtyping Influenza A Viruses. Front Microbiol 2018; 9:1405. [PMID: 30013525 PMCID: PMC6036258 DOI: 10.3389/fmicb.2018.01405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/07/2018] [Indexed: 12/21/2022] Open
Abstract
The reliable and rapid detection of viral pathogens that cause respiratory infections provide physicians several advantages in treating patients and managing outbreaks. The Luminex respiratory virus panel (RVP) assay has been shown to be comparable to or superior to culture/direct fluorescent-antibody assays (DFAs) and nucleic acid tests that are used to diagnose respiratory viral infections. We developed a multiplex asymmetric reverse transcription (RT)-PCR assay that can simultaneously differentiate all influenza A virus epidemic subtypes. The amplified products were hybridized with an electrochemical DNA sensor, and the results were automatically acquired. The limits of detection (LoDs) of both the Luminex RVP assay and the multiplex RT-PCR-electrochemical DNA sensor were 101 TCID50 for H1N1 virus and 102 TCID50 for H3N2 virus. The specificity assessment of the multiplex RT-PCR-electrochemical DNA sensor showed no cross-reactivity among different influenza A subtypes or with other non-influenza respiratory viruses. In total, 3098 respiratory tract specimens collected from padiatric patients diagnosed with pneumonia were tested. More than half (43, 53.75%) of the specimens positive for influenza A viruses could not be further subtyped using the Luminex RVP assay. Among the remaining 15 specimens that were not subtyped, not degraded, and in sufficient amounts for the multiplex RT-PCR-electrochemical DNA sensor test, all (100%) were H3N2 positive. Therefore, the sensitivity of the Luminex RVP assay for influenza A virus was 46.25%, whereas the sensitivity of the multiplex RT-PCR-electrochemical DNA sensor for the clinical H1N1 and H3N2 specimens was 100%. The sensitivities of the multiplex RT-PCR-electrochemical DNA sensor for the avian H5N1, H5N6, H9N2, and H10N8 viruses were 100%, whereas that for H7N9 virus was 85.19%. We conclude that the multiplex RT-PCR-electrochemical DNA sensor is a reliable method for the rapid and accurate detection of highly variable influenza A viruses in respiratory infections with greater detection sensitivity than that of the Luminex xTAG assay. The high mutation rate of influenza A viruses, particularly H3N2 during the 2014 to 2016 epidemic seasons, has a strong impact on diagnosis. A study involving more positive specimens from all influenza A virus epidemic subtypes is required to fully assess the performance of the assay.
Collapse
Affiliation(s)
- Lili Xu
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Xiwen Jiang
- DAAN Gene Co., Ltd., Sun Yat-sen University, Guangzhou, China
- The Medicine and Biological Engineering Technology Research Center of the Ministry of Health, Guangzhou, China
| | - Yun Zhu
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Yali Duan
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Taosheng Huang
- DAAN Gene Co., Ltd., Sun Yat-sen University, Guangzhou, China
- The Medicine and Biological Engineering Technology Research Center of the Ministry of Health, Guangzhou, China
| | - Zhiwen Huang
- DAAN Gene Co., Ltd., Sun Yat-sen University, Guangzhou, China
- The Medicine and Biological Engineering Technology Research Center of the Ministry of Health, Guangzhou, China
| | - Chunyan Liu
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Baoping Xu
- National Clinical Research Center for Respiratory Diseases, Department of Respiratory, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Zhengde Xie
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| |
Collapse
|
47
|
Dao TNT, Lee EY, Koo B, Jin CE, Lee TY, Shin Y. A microfluidic enrichment platform with a recombinase polymerase amplification sensor for pathogen diagnosis. Anal Biochem 2017; 544:87-92. [PMID: 29289485 DOI: 10.1016/j.ab.2017.12.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/19/2017] [Accepted: 12/22/2017] [Indexed: 02/06/2023]
Abstract
Rapid and sensitive detection of low amounts of pathogen in large samples is needed for early diagnosis and treatment of patients and surveillance of pathogen. In this study, we report a microfluidic platform for detection of low pathogen levels in a large sample volume that couples an Magainin 1 based microfluidic platform for pathogen enrichment and a recombinase polymerase amplification (RPA) sensor for simultaneous pathogenic DNA amplification and detection in a label-free and real-time manner. Magainin 1 is used as a pathogen enrichment agent with a herringbone microfluidic chip. Using this enrichment platform, the detection limit was found to be 20 times more sensitive in 10 ml urine with Salmonella and 10 times more sensitive in 10 ml urine with Brucella than that of real-time PCR without the enrichment process. Furthermore, the combination system of the enrichment platform and an RPA sensor that based on an isothermal DNA amplification method with rapidity and sensitivity for detection can detect a pathogen at down to 50 CFU in 10 ml urine for Salmonella and 102 CFU in 10 ml urine for Brucella within 60 min. This system will be useful as it has the potential for better diagnosis of pathogens by increasing the capture efficiency of the pathogen in large samples, subsequently enhancing the detection limit of pathogenic DNA.
Collapse
Affiliation(s)
- Thuy Nguyen Thi Dao
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Biomedical Engineering Research Center, Asan Institute of Life Sciences, Asan Medical Center, 88 Olympicro-43gil, Songpa-gu, Seoul 05505, Republic of Korea
| | - Eun Yeong Lee
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Biomedical Engineering Research Center, Asan Institute of Life Sciences, Asan Medical Center, 88 Olympicro-43gil, Songpa-gu, Seoul 05505, Republic of Korea
| | - Bonhan Koo
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Biomedical Engineering Research Center, Asan Institute of Life Sciences, Asan Medical Center, 88 Olympicro-43gil, Songpa-gu, Seoul 05505, Republic of Korea
| | - Choong Eun Jin
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Biomedical Engineering Research Center, Asan Institute of Life Sciences, Asan Medical Center, 88 Olympicro-43gil, Songpa-gu, Seoul 05505, Republic of Korea
| | - Tae Yoon Lee
- Department of Technology Education and Department of Biomedical Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea.
| | - Yong Shin
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Biomedical Engineering Research Center, Asan Institute of Life Sciences, Asan Medical Center, 88 Olympicro-43gil, Songpa-gu, Seoul 05505, Republic of Korea.
| |
Collapse
|
48
|
Alidjinou EK, Sane F, Lefevre C, Baras A, Moumna I, Engelmann I, Vantyghem MC, Hober D. Enteroviruses in blood of patients with type 1 diabetes detected by integrated cell culture and reverse transcription quantitative real-time PCR. Acta Diabetol 2017; 54:1025-1029. [PMID: 28861621 DOI: 10.1007/s00592-017-1041-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/16/2017] [Indexed: 10/19/2022]
Abstract
AIMS Enteroviruses (EV) have been associated with type 1 diabetes (T1D), but EV RNA detection has been reported in only a small proportion of T1D patients. We studied whether integrated cell culture and reverse transcription real-time PCR could improve EV detection in blood samples from patients with T1D. METHODS Blood was collected from 13 patients with T1D. The presence of EV RNA in blood was investigated by using real-time RT-PCR. In addition, plasma and white blood cells (WBC) were inoculated to BGM and Vero cell line cultures. Culture supernatants and cells collected on day 7 and day 14 were tested for EV RNA by real-time RT-PCR. Enterovirus identification was performed through sequencing of the VP4/VP2 region. RESULTS Enterovirus RNA was detected in blood by using real-time RT-PCR in only one out of 13 patients. The detection of EV RNA in cultures inoculated with clinical samples (plasma and/or WBC) gave positive results in five other patients. The viral loads were low, ranging from 45 to 4420 copies/ng of total RNA. One isolate was successfully identified as coxsackievirus B1. CONCLUSIONS Integrated cell culture and reverse transcription real-time PCR can improve the detection rate of EV in blood samples of patients with T1D and can be useful to investigate further the relationship between EV and the disease.
Collapse
Affiliation(s)
- Enagnon Kazali Alidjinou
- Laboratoire de Virologie EA3610, Univ Lille, Faculté de Médecine, CHU Lille, 59000, Lille, France
| | - Famara Sane
- Laboratoire de Virologie EA3610, Univ Lille, Faculté de Médecine, CHU Lille, 59000, Lille, France
| | - Christine Lefevre
- Service d'Endocrinologie pédiatrique, CHU Lille, 59000, Lille, France
| | - Agathe Baras
- Laboratoire de Virologie EA3610, Univ Lille, Faculté de Médecine, CHU Lille, 59000, Lille, France
| | - Ilham Moumna
- Laboratoire de Virologie EA3610, Univ Lille, Faculté de Médecine, CHU Lille, 59000, Lille, France
| | - Ilka Engelmann
- Laboratoire de Virologie EA3610, Univ Lille, Faculté de Médecine, CHU Lille, 59000, Lille, France
| | | | - Didier Hober
- Laboratoire de Virologie EA3610, Univ Lille, Faculté de Médecine, CHU Lille, 59000, Lille, France.
| |
Collapse
|
49
|
Abstract
The "invisible army" of clinical microbiologists is facing major changes and challenges. The rate of change in both the science and technology is accelerating with no end in sight, putting pressure on our army to learn and adapt as never before. Health care funding in the United States is undergoing dramatic change which will require a new set of assumptions about how clinical microbiology is practiced here. A major challenge facing the discipline is the replacement of a generation of clinical microbiologists. In my opinion, it is incumbent on us in the invisible army to continue to work with the American Society for Microbiology (ASM) in meeting the future challenges faced by our discipline. In this commentary, I will first discuss some recent history of clinical microbiology within ASM and then some current challenges we face.
Collapse
Affiliation(s)
- Peter H Gilligan
- Clinical Microbiology-Immunology Laboratories, UNC Health Care, Chapel Hill, North Carolina, USA
| |
Collapse
|
50
|
Diagnostic yield and clinical impact of routine cell culture for respiratory viruses among children with a negative multiplex RT-PCR result. J Clin Virol 2017; 94:107-109. [PMID: 28802185 PMCID: PMC7106410 DOI: 10.1016/j.jcv.2017.07.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 12/23/2022]
Abstract
4.2% of PCR-negative respiratory specimens were positive in viral culture. Half of the recovered viruses were not part of the multiplex PCR panel. Routine viral culture on PCR-negative respiratory specimens had minimal clinical impact. The findings of this study may help resource utilization in the virology laboratory.
Background Polymerase chain reaction (PCR) is the reference standard for respiratory virus testing. However, cell culture may still have added value in identifying viruses not detected by PCR. Objectives We aimed to estimate the yield and clinical impact of routine respiratory virus culture among children with a negative PCR result. Study design A retrospective cohort study was performed from Jan. 2013 to Sept. 2015. Respiratory samples from hospitalized or immunocompromised patients <18 years old were routinely inoculated on traditional tube cell culture monolayers if they tested negative by a PCR assay for 12 respiratory viruses. We studied patients with a respiratory specimen negative by PCR and positive by culture. Duplicates and samples of sold services were excluded. Data on demographics, clinical history, laboratory findings, and patient management were collected from patients’ charts. Descriptive and multivariate statistics were performed. Results Overall, 4638 PCR-negative samples were inoculated in cell culture. Of those, 196 (4.2%) were cell culture positive, and 144 met study inclusion criteria. Most subjects (81.9%) were hospitalized. Mean age was 2.4 ± 3.4 years. The viruses most frequently isolated were cytomegalovirus (33.3%) and enteroviruses (19.4%). Cell culture results prompted a change in management in 5 patients (3.5%), all of whom had acyclovir initiated for localized HSV-1 infection. Four of these had skin or mucosal lesions that could be sampled to establish a diagnosis. Conclusion In children, routine viral culture on respiratory specimens that were negative by PCR has low yield and minimal clinical impact.
Collapse
|