1
|
Historical and Modern Classifications of the Plague Agent. PROBLEMS OF PARTICULARLY DANGEROUS INFECTIONS 2023. [DOI: 10.21055/0370-1069-2022-4-14-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The review presents the data on domestic and foreign phenotypic classifications of Yersinia pestis strains developed in the XX century; genetic classifications of the XXI century; as well as on the genealogy of ancient strains of the plague microbe, reconstructed using paleogenomic technologies. Since the discovery of the plague agent in 1894, many classifications were created that corresponded to the level of development of microbiology at that time. The intraspecific classification schemes of the XX century were based on three principles: phenotypic differences between strains, features of the species composition of carriers, and geographical affiliation. With the development of molecular microbiology early on in the XXI century, a genetic nomenclature of the branches of the pathogen evolution was developed and a number of classifications based on the analysis of the population structure of Y. pestis were created. Through the prism of the genetic diversity of Y. pestis strains from natural plague foci in Russia, near and far abroad countries, an improved classification with a division into seven subspecies has been developed: pestis, tibetica, caucasica, qinghaica, angolica, central asiatica, ulegeica, which allocates the subspecies according to the phylogenetic principle and epidemic significance. With the advancements in paleomicrobiology, prehistoric lineages of evolution have been included in the genealogy of Y. pestis, which expand the data on the intraspecific diversity of the plague microbe.
Collapse
|
2
|
Kontro MH, Kirsi M, Laitinen SK. Exposure to bacterial and fungal bioaerosols in facilities processing biodegradable waste. Front Public Health 2022; 10:789861. [PMID: 36466510 PMCID: PMC9708704 DOI: 10.3389/fpubh.2022.789861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/21/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of the study was to determine the exposure of workers within biodegradable waste processing facilities to bacteria and fungi to identify any exposures of potential concern to health. Occupational measurements were performed in six composting and three bioenergy (bioethanol or methane/biogas) producing facilities. Bioaerosols were measured from breathing zones with Button aerosol or open face cassette filter samplers, and swab specimens were taken from the nasal mucous membranes of the workers. Aspergillus fumigatus, Bacillus cereus group, Campylobacter spp., Salmonella spp., Streptomyces spp., and Yersinia spp. were determined by real-time polymerase chain reaction (qPCR). A. fumigatus, and mesophilic and thermophilic actinobacteria were also cultivated from filters. Bacterial airborne endotoxins collected by IOM samplers were analyzed using a Limulus assay. Bioaerosol levels were high, especially in composting compared to bioenergy producing facilities. Endotoxin concentrations in composting often exceeded the occupational exposure value of 90 EU/m3, which may be harmful to the health. In addition to endotoxins, the concentrations of A. fumigatus (up to 2.4 × 105 copies/m3) and actinobacteria/Streptomyces spp. (up to 1.6 × 106 copies/m3) in the air of composting facilities were often high. Microbial and endotoxin concentrations were typically highest in waste reception and pre-treatment, equal or decreased during processing and handling of treated waste, and lowest in wheel loader cabins and control rooms/outdoors. Still, the parameters measured in wheel loader cabins were often higher than in the control sites, which suggests that the use of preventive measures could be improved. B. cereus group, Salmonella spp., and Yersinia spp. were rarely detected in bioaerosols or nasal swabs. Although Campylobacter spp. DNA was rarely detected in air, as a new finding, Campylobacter ureolyticus DNA was frequently detected in the nasal mucous membranes of workers, based on partial 16S rDNA sequencing. Moreover, especially A. fumigatus and C. ureolyticus spp. DNA concentrations in swabs after the work shift were significantly higher than before the shift, which indicates their inhalation or growth during the work shift. Microbial qPCR analysis of bioaerosols and swab samples of nasal mucosa allowed measuring exposure in various work operations and during the work shift, identifying problems for health risk assessment to improve working conditions, and evaluating the effectiveness of preventive measures and personal protection of workers.
Collapse
Affiliation(s)
- Merja H. Kontro
- Ecosystems and Environment Research Programme, University of Helsinki, Helsinki, Finland
| | - Maija Kirsi
- Work Environment Laboratories, Finnish Institute of Occupational Health, Helsinki, Finland
| | - Sirpa K. Laitinen
- Department of Occupational Safety, Finnish Institute of Occupational Health, Helsinki, Finland,*Correspondence: Sirpa K. Laitinen
| |
Collapse
|
3
|
Zhang Y, Wang Z, Wang W, Yu H, Jin M. Applications of polymerase chain reaction‑based methods for the diagnosis of plague (Review). Exp Ther Med 2022; 24:511. [DOI: 10.3892/etm.2022.11438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/22/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Yanan Zhang
- Inner Mongolia Key Laboratory of Disease‑Related Biomarkers, Baotou Medical College, Baotou, Inner Mongolia 014060, P.R. China
| | - Zhanli Wang
- Inner Mongolia Key Laboratory of Disease‑Related Biomarkers, Baotou Medical College, Baotou, Inner Mongolia 014060, P.R. China
| | - Wenrui Wang
- General Center for Disease Control and Prevention of Inner Mongolia Autonomous Region, Huhehot, Inner Mongolia 010031, P.R. China
| | - Hui Yu
- Inner Mongolia Key Laboratory of Disease‑Related Biomarkers, Baotou Medical College, Baotou, Inner Mongolia 014060, P.R. China
| | - Min Jin
- Inner Mongolia Key Laboratory of Disease‑Related Biomarkers, Baotou Medical College, Baotou, Inner Mongolia 014060, P.R. China
| |
Collapse
|
4
|
Obtaining Specific Sequence Tags for Yersinia pestis and Visually Detecting Them Using the CRISPR-Cas12a System. Pathogens 2021; 10:pathogens10050562. [PMID: 34066578 PMCID: PMC8148545 DOI: 10.3390/pathogens10050562] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/30/2021] [Accepted: 04/30/2021] [Indexed: 12/18/2022] Open
Abstract
Three worldwide historical plague pandemics resulted in millions of deaths. Yersinia pestis, the etiologic agent of plague, is also a potential bioterrorist weapon. Simple, rapid, and specific detection of Y. pestis is important to prevent and control plague. However, the high similarity between Y. pestis and its sister species within the same genus makes detection work problematic. Here, the genome sequence from the Y. pestis CO92 strain was electronically separated into millions of fragments. These fragments were analyzed and compared with the genome sequences of 539 Y. pestis strains and 572 strains of 20 species within the Yersinia genus. Altogether, 97 Y. pestis-specific tags containing two or more single nucleotide polymorphism sites were screened out. These 97 tags efficiently distinguished Y. pestis from all other closely related species. We chose four of these tags to design a Cas12a-based detection system. PCR–fluorescence methodology was used to test the specificity of these tags, and the results showed that the fluorescence intensity produced by Y. pestis was significantly higher than that of non-Y. pestis (p < 0.0001). We then employed recombinase polymerase amplification and lateral flow dipsticks to visualize the results. Our newly developed plasmid-independent, species-specific library of tags completely and effectively screened chromosomal sequences. The detection limit of our four-tag Cas12a system reached picogram levels.
Collapse
|
5
|
Aistleitner K, Sieper T, Stürz I, Jeske R, Tritscheller S, Mantel S, Tscherne A, Zange S, Stoecker K, Wölfel R. NOTIFy (non-toxic lyophilized field)-FISH for the identification of biological agents by Fluorescence in situ Hybridization. PLoS One 2020; 15:e0230057. [PMID: 32142548 PMCID: PMC7059943 DOI: 10.1371/journal.pone.0230057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/20/2020] [Indexed: 12/02/2022] Open
Abstract
The rapid and reliable diagnostics of highly pathogenic bacteria under restricted field conditions poses one of the major challenges to medical biodefense, especially since false positive or false negative reports might have far-reaching consequences. Fluorescence in situ hybridization (FISH) has the potential to represent a powerful microscopy-based addition to the existing molecular-based diagnostic toolbox. In this study, we developed a set of FISH-probes for the fast, matrix independent and simultaneous detection of thirteen highly pathogenic bacteria in different environmental and clinical sample matrices. Furthermore, we substituted formamide, a routinely used chemical that is toxic and volatile, by non-toxic urea. This will facilitate the application of FISH under resource limited field laboratory conditions. We demonstrate that hybridizations performed with urea show the same specificity and comparable signal intensities for the FISH-probes used in this study. To further simplify the use of FISH in the field, we lyophilized the reagents needed for FISH. The signal intensities obtained with these lyophilized reagents are comparable to freshly prepared reagents even after storage for a month at room temperature. Finally, we show that by the use of non-toxic lyophilized field (NOTIFy)-FISH, specific detection of microorganisms with simple and easily transportable equipment is possible in the field.
Collapse
Affiliation(s)
| | - Tina Sieper
- Bundeswehr Institute of Microbiology, Munich, Germany
| | - Inga Stürz
- Bundeswehr Institute of Microbiology, Munich, Germany
| | - Rimma Jeske
- Bundeswehr Institute of Microbiology, Munich, Germany
| | | | - Sonja Mantel
- Bundeswehr Institute of Microbiology, Munich, Germany
| | | | - Sabine Zange
- Bundeswehr Institute of Microbiology, Munich, Germany
| | - Kilian Stoecker
- Bundeswehr Institute of Microbiology, Munich, Germany
- * E-mail:
| | - Roman Wölfel
- Bundeswehr Institute of Microbiology, Munich, Germany
| |
Collapse
|
6
|
Prudent E, Raoult D. Fluorescence in situ hybridization, a complementary molecular tool for the clinical diagnosis of infectious diseases by intracellular and fastidious bacteria. FEMS Microbiol Rev 2018; 43:88-107. [DOI: 10.1093/femsre/fuy040] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 11/07/2018] [Indexed: 12/16/2022] Open
Affiliation(s)
- Elsa Prudent
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, 19–21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Didier Raoult
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, 19–21 Boulevard Jean Moulin, 13005 Marseille, France
| |
Collapse
|
7
|
Detection of 16S rRNA and KPC Genes from Complex Matrix Utilizing a Molecular Inversion Probe Assay for Next-Generation Sequencing. Sci Rep 2018; 8:2028. [PMID: 29391471 PMCID: PMC5794912 DOI: 10.1038/s41598-018-19501-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 12/27/2017] [Indexed: 11/08/2022] Open
Abstract
Targeted sequencing promises to bring next-generation sequencing (NGS) into routine clinical use for infectious disease diagnostics. In this context, upfront processing techniques, including pathogen signature enrichment, must amplify multiple targets of interest for NGS to be relevant when applied to patient samples with limited volumes. Here, we demonstrate an optimized molecular inversion probe (MIP) assay targeting multiple variable regions within the 16S ribosomal gene for the identification of biothreat and ESKAPE pathogens in a process that significantly reduces complexity, labor, and processing time. Probes targeting the Klebsiella pneumoniae carbapenemase (KPC) antibiotic resistance (AR) gene were also included to demonstrate the ability to concurrently identify etiologic agent and ascertain valuable secondary genetic information. Our assay captured gene sequences in 100% of mock clinical samples prepared from flagged positive blood culture bottles. Using a simplified processing and adjudication method for mapped sequencing reads, genus and species level concordance was 100% and 80%, respectively. In addition, sensitivity and specificity for KPC gene detection was 100%. Our MIP assay produced sequenceable amplicons for the identification of etiologic agents and the detection of AR genes directly from blood culture bottles in a simplified single tube assay.
Collapse
|
8
|
Pattis I, Moriarty E, Billington C, Gilpin B, Hodson R, Ward N. Concentrations of Campylobacter spp., Escherichia coli, Enterococci, and Yersinia spp. in the Feces of Farmed Red Deer in New Zealand. JOURNAL OF ENVIRONMENTAL QUALITY 2017; 46:819-827. [PMID: 28783788 DOI: 10.2134/jeq2017.01.0002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Intensive deer farming can cause environmental issues, mainly by its impact on soils and water quality. In particular, there is a risk to the microbial quality of water, as high quantities of suspended sediment and fecal bacteria can enter into water systems. The feces of farmed red deer (, = 206) from Canterbury and Southland, New Zealand, were analyzed with regard to the presence of spp., , enterococci, and spp.. Enterococci and were isolated from all samples, with mean concentrations of 4.5 × 10 (95% CI 3.5 × 10, 5.6 10) and 1.3 × 10 (95% CI 1.1 × 10, 1.5 × 10) per gram of dry feces, respectively. spp. were isolated from 27 fecal samples, giving an overall prevalence of 13.1%. isolation rates were variable within and between regions (Canterbury 7.95% [95% CI 2-14%], Southland 16.95% [95% CI 10-24%]). Five out of 42 composite samples were positive for , and one sample for The overall prevalence ranges on a per-animal basis were therefore 2.43 to 11.17% and 0.49 to 2.91%, respectively. This study is the first to quantify the concentration of spp. present in healthy deer farmed in New Zealand. Deer feces are a potential source of human campylobacteriosis, with all genotypes isolated also previously observed among human cases. The fecal outputs from deer should be regarded as potentially pathogenic to humans and therefore be appropriately managed.
Collapse
|
9
|
Frickmann H, Zautner AE, Moter A, Kikhney J, Hagen RM, Stender H, Poppert S. Fluorescence in situ hybridization (FISH) in the microbiological diagnostic routine laboratory: a review. Crit Rev Microbiol 2017; 43:263-293. [PMID: 28129707 DOI: 10.3109/1040841x.2016.1169990] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Early identification of microbial pathogens is essential for rational and conservative antibiotic use especially in the case of known regional resistance patterns. Here, we describe fluorescence in situ hybridization (FISH) as one of the rapid methods for easy identification of microbial pathogens, and its advantages and disadvantages for the diagnosis of pathogens in human infections in the laboratory diagnostic routine. Binding of short fluorescence-labeled DNA or nucleic acid-mimicking PNA probes to ribosomes of infectious agents with consecutive analysis by fluorescence microscopy allows identification of bacterial and eukaryotic pathogens at genus or species level. FISH analysis leads to immediate differentiation of infectious agents without delay due to the need for microbial culture. As a microscopic technique, FISH has the unique potential to provide information about spatial resolution, morphology and identification of key pathogens in mixed species samples. On-going automation and commercialization of the FISH procedure has led to significant shortening of the time-to-result and increased test reliability. FISH is a useful tool for the rapid initial identification of microbial pathogens, even from primary materials. Among the rapidly developing alternative techniques, FISH serves as a bridging technology between microscopy, microbial culture, biochemical identification and molecular diagnostic procedures.
Collapse
Affiliation(s)
- Hagen Frickmann
- a German Armed Forces Hospital of Hamburg, Department of Tropical Medicine at the Bernhard Nocht Institute , Hamburg , Germany
| | - Andreas Erich Zautner
- b Department of Medical Microbiology, University Medical Center Göttingen , Göttingen , Germany
| | - Annette Moter
- c University Medical Center Berlin, Biofilmcenter at the German Heart Institute Berlin , Berlin , Germany
| | - Judith Kikhney
- c University Medical Center Berlin, Biofilmcenter at the German Heart Institute Berlin , Berlin , Germany
| | - Ralf Matthias Hagen
- a German Armed Forces Hospital of Hamburg, Department of Tropical Medicine at the Bernhard Nocht Institute , Hamburg , Germany
| | | | - Sven Poppert
- e Institute for Medical Microbiology, Justus-Liebig-University Giessen , Giessen , Germany
| |
Collapse
|
10
|
Differential detection of pathogenic Yersinia spp. by fluorescence in situ hybridization. Food Microbiol 2016; 62:39-45. [PMID: 27889163 DOI: 10.1016/j.fm.2016.09.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 09/16/2016] [Accepted: 09/18/2016] [Indexed: 12/12/2022]
Abstract
Yersinia enterocolitica, Y. pseudotuberculosis and Y. pestis are pathogens of major medical importance, which are responsible for a considerable number of infections every year. The detection of these species still relies on cultural methods, which are slow, labour intensive and often hampered by the presence of high amounts of accompanying flora. In this study, fluorescence in situ hybridization (FISH) was used to develop a fast, sensitive and reliable alternative to detect viable bacteria in food. For this purpose, highly specific probes targeting the 16S and 23S ribosomal RNA were employed to differentially detect each of the three species. In order to enable the differentiation of single nucleotide polymorphisms (SNPs), suitable competitor oligonucleotides and locked nucleic acids (LNAs) were used. Starved cells still showed a strong signal and a direct viable count (DVC) approach combined with FISH optimized live/dead discrimination. Sensitivity of the FISH test was high and even a single cell per gram of spiked minced pork meat could be detected within a day, demonstrating the applicability to identify foodborne hazards at an early stage. In conclusion, the established FISH tests proved to be promising tools to compensate existing drawbacks of the conventional cultural detection of these important zoonotic agents.
Collapse
|
11
|
Abstract
This chapter summarizes researches on genome and evolution features of Yersinia pestis, the young pathogen that evolved from Y. pseudotuberculosis at least 5000 years ago. Y. pestis is a highly clonal bacterial species with closed pan-genome. Comparative genomic analysis revealed that genome of Y. pestis experienced highly frequent rearrangement and genome decay events during the evolution. The genealogy of Y. pestis includes five major branches, and four of them seemed raised from a "big bang" node that is associated with the Black Death. Although whole genome-wide variation of Y. pestis reflected a neutral evolutionary process, the branch length in the genealogical tree revealed over dispersion, which was supposedly caused by varied historical molecular clock that is associated with demographical effect by alternate cycles of enzootic disease and epizootic disease in sylvatic plague foci. In recent years, palaeomicrobiology researches on victims of the Black Death, and Justinian's plague verified that two historical pandemics were indeed caused by Y. pestis, but the etiological lineages might be extinct today.
Collapse
|
12
|
Hering NA, Fromm A, Kikhney J, Lee IFM, Moter A, Schulzke JD, Bücker R. Yersinia enterocolitica Affects Intestinal Barrier Function in the Colon. J Infect Dis 2015; 213:1157-62. [PMID: 26621910 DOI: 10.1093/infdis/jiv571] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 11/19/2015] [Indexed: 11/13/2022] Open
Abstract
Infection with Yersinia enterocolitica causes acute diarrhea in early childhood. A mouse infection model presents new findings on pathological mechanisms in the colon. Symptoms involve diarrhea with watery feces and weight loss that have their functional correlates in decreased transepithelial electrical resistance and increased fluorescein permeability. Y. enterocolitica was present within the murine mucosa of both ileum and colon. Here, the bacterial insult was of focal nature and led to changes in tight junction protein expression and architecture. These findings are in concordance with observations from former cell culture studies and suggest a leak flux mechanism of diarrhea.
Collapse
Affiliation(s)
- Nina A Hering
- Department of General, Visceral, and Vascular Surgery, Institute of Clinical Physiology, Campus Benjamin Franklin, Charité-University Medicine Berlin
| | - Anja Fromm
- Department of Gastroenterology, Institute of Clinical Physiology, Campus Benjamin Franklin, Charité-University Medicine Berlin
| | - Judith Kikhney
- Biofilmcenter of the German Heart Institute Berlin, Germany
| | - In-Fah M Lee
- Department of Gastroenterology, Institute of Clinical Physiology, Campus Benjamin Franklin, Charité-University Medicine Berlin
| | - Annette Moter
- Biofilmcenter of the German Heart Institute Berlin, Germany
| | - Jörg D Schulzke
- Department of Gastroenterology, Institute of Clinical Physiology, Campus Benjamin Franklin, Charité-University Medicine Berlin
| | - Roland Bücker
- Department of Gastroenterology, Institute of Clinical Physiology, Campus Benjamin Franklin, Charité-University Medicine Berlin
| |
Collapse
|
13
|
Vogler AJ, Keim P, Wagner DM. A review of methods for subtyping Yersinia pestis: From phenotypes to whole genome sequencing. INFECTION GENETICS AND EVOLUTION 2015; 37:21-36. [PMID: 26518910 DOI: 10.1016/j.meegid.2015.10.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/23/2015] [Accepted: 10/24/2015] [Indexed: 12/28/2022]
Abstract
Numerous subtyping methods have been applied to Yersinia pestis with varying success. Here, we review the various subtyping methods that have been applied to Y. pestis and their capacity for answering questions regarding the population genetics, phylogeography, and molecular epidemiology of this important human pathogen. Methods are evaluated in terms of expense, difficulty, transferability among laboratories, discriminatory power, usefulness for different study questions, and current applicability in light of the advent of whole genome sequencing.
Collapse
Affiliation(s)
- Amy J Vogler
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ 86011-4073, USA.
| | - Paul Keim
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ 86011-4073, USA; Translational Genomics Research Institute North, Flagstaff, AZ 86001, USA.
| | - David M Wagner
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ 86011-4073, USA.
| |
Collapse
|
14
|
Identification of Highly Pathogenic Microorganisms by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry: Results of an Interlaboratory Ring Trial. J Clin Microbiol 2015; 53:2632-40. [PMID: 26063856 DOI: 10.1128/jcm.00813-15] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/01/2015] [Indexed: 02/02/2023] Open
Abstract
In the case of a release of highly pathogenic bacteria (HPB), there is an urgent need for rapid, accurate, and reliable diagnostics. MALDI-TOF mass spectrometry is a rapid, accurate, and relatively inexpensive technique that is becoming increasingly important in microbiological diagnostics to complement classical microbiology, PCR, and genotyping of HPB. In the present study, the results of a joint exercise with 11 partner institutions from nine European countries are presented. In this exercise, 10 distinct microbial samples, among them five HPB, Bacillus anthracis, Brucella canis, Burkholderia mallei, Burkholderia pseudomallei, and Yersinia pestis, were characterized under blinded conditions. Microbial strains were inactivated by high-dose gamma irradiation before shipment. Preparatory investigations ensured that this type of inactivation induced only subtle spectral changes with negligible influence on the quality of the diagnosis. Furthermore, pilot tests on nonpathogenic strains were systematically conducted to ensure the suitability of sample preparation and to optimize and standardize the workflow for microbial identification. The analysis of the microbial mass spectra was carried out by the individual laboratories on the basis of spectral libraries available on site. All mass spectra were also tested against an in-house HPB library at the Robert Koch Institute (RKI). The averaged identification accuracy was 77% in the first case and improved to >93% when the spectral diagnoses were obtained on the basis of the RKI library. The compilation of complete and comprehensive databases with spectra from a broad strain collection is therefore considered of paramount importance for accurate microbial identification.
Collapse
|
15
|
Homology analysis of pathogenic Yersinia species Yersinia enterocolitica, Yersinia pseudotuberculosis, and Yersinia pestis based on multilocus sequence typing. J Clin Microbiol 2013; 52:20-9. [PMID: 24131695 DOI: 10.1128/jcm.02185-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We developed a multilocus sequence typing (MLST) scheme and used it to study the population structure and evolutionary relationships of three pathogenic Yersinia species. MLST of these three Yersinia species showed a complex of two clusters, one composed of Yersinia pseudotuberculosis and Yersinia pestis and the other composed of Yersinia enterocolitica. Within the first cluster, the predominant Y. pestis sequence type 90 (ST90) was linked to Y. pseudotuberculosis ST43 by one locus difference, and 81.25% of the ST43 strains were from serotype O:1b, supporting the hypothesis that Y. pestis descended from the O:1b serotype of Y. pseudotuberculosis. We also found that the worldwide-prevalent serotypes O:1a, O:1b, and O:3 were predominated by specific STs. The second cluster consisted of pathogenic and nonpathogenic Y. enterocolitica strains, two of which may not have identical STs. The pathogenic Y. enterocolitica strains formed a relatively conserved group; most strains clustered within ST186 and ST187. Serotypes O:3, O:8, and O:9 were separated into three distinct blocks. Nonpathogenic Y. enterocolitica STs were more heterogeneous, reflecting genetic diversity through evolution. By providing a better and effective MLST procedure for use with the Yersinia community, valuable information and insights into the genetic evolutionary differences of these pathogens were obtained.
Collapse
|
16
|
Turingan RS, Thomann HU, Zolotova A, Tan E, Selden RF. Rapid focused sequencing: a multiplexed assay for simultaneous detection and strain typing of Bacillus anthracis, Francisella tularensis, and Yersinia pestis. PLoS One 2013; 8:e56093. [PMID: 23418519 PMCID: PMC3572037 DOI: 10.1371/journal.pone.0056093] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 01/08/2013] [Indexed: 01/29/2023] Open
Abstract
Background The intentional release of Bacillus anthracis in the United States in 2001 has heightened concern about the use of pathogenic microorganisms in bioterrorism attacks. Many of the deadliest bacteria, including the Class A Select Agents Bacillus anthracis, Francisella tularensis, and Yersinia pestis, are highly infectious via the pulmonary route when released in aerosolized form. Hence, rapid, sensitive, and reliable methods for detection of these biothreats and characterization of their potential impact on the exposed population are of critical importance to initiate and support rapid military, public health, and clinical responses. Methodology/Principal Findings We have developed microfluidic multiplexed PCR and sequencing assays based on the simultaneous interrogation of three pathogens per assay and ten loci per pathogen. Microfluidic separation of amplified fluorescently labeled fragments generated characteristic electrophoretic signatures for identification of each agent. The three sets of primers allowed significant strain typing and discrimination from non-pathogenic closely-related species and environmental background strains based on amplicon sizes alone. Furthermore, sequencing of the 10 amplicons per pathogen, termed “Rapid Focused Sequencing,” allowed an even greater degree of strain discrimination and, in some cases, can be used to determine virulence. Both amplification and sequencing assays were performed in microfluidic biochips developed for fast thermal cycling and requiring 7 µL per reaction. The 30-plex sequencing assay resulted in genotypic resolution of 84 representative strains belonging to each of the three biothreat species. Conclusions/Significance The microfluidic multiplexed assays allowed identification and strain differentiation of the biothreat agents Bacillus anthracis, Francisella tularensis, and Yersinia pestis and clear discrimination from closely-related species and several environmental background strains. The assays may be extended to detect a large number of pathogens, are applicable to the evaluation of both environmental and clinical samples, and have the potential to be applied in military, public health, and clinical diagnostic settings.
Collapse
Affiliation(s)
| | | | - Anna Zolotova
- NetBio, Waltham, Massachusetts, United States of America
| | - Eugene Tan
- NetBio, Waltham, Massachusetts, United States of America
| | | |
Collapse
|
17
|
Nemeth NM, Blas-Machado U, Hopkins BA, Phillips A, Butler AM, Sánchez S. Granulomatous typhlocolitis, lymphangitis, and lymphadenitis in a horse infected with Listeria monocytogenes, Salmonella Typhimurium, and cyathostomes. Vet Pathol 2012; 50:252-5. [PMID: 22688587 DOI: 10.1177/0300985812450717] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A 15-year-old American Quarter horse mare was euthanized because of poor response to therapy for severe diarrhea. Significant gross findings were limited to the large intestines. The walls of the cecum and colon were thickened with widely scattered nodules in the mucosa and submucosa that extended into the enlarged colic lymph nodes. Microscopically, there was severe granulomatous typhlocolitis, lymphangitis, and lymphadenitis, with many intralesional Gram-positive, non-acid-fast coccobacilli and few cyathostomes. Intralesional bacteria were immunohistochemically and polymerase chain reaction (PCR) assay positive for Listeria monocytogenes. Concurrent infection with Salmonella enterica serovar Typhimurium was detected by PCR and culture. Infection with L. monocytogenes in horses is rare, and coinfection with Salmonella and small strongyles probably contributed to the development of granulomatous typhlocolitis.
Collapse
Affiliation(s)
- N M Nemeth
- Department of Pathology, College of Veterinary Medicine, The University of Georgia, 501 DW Brooks Dr, Athens, GA 30602, USA
| | | | | | | | | | | |
Collapse
|
18
|
Applications of Fluorescence In Situ Hybridization in Diagnostic Microbiology. Mol Microbiol 2011. [DOI: 10.1128/9781555816834.ch1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Ecological significance of microdiversity: coexistence among casing soil bacterial strains through allocation of nutritional resource. Indian J Microbiol 2011; 51:8-13. [PMID: 22282622 DOI: 10.1007/s12088-011-0068-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Accepted: 09/02/2009] [Indexed: 10/18/2022] Open
Abstract
A combination of cultivation-based methods with a molecular biological approach was employed to investigate whether bacteria with identical 16S rRNA gene sequences can represent distinct eco- and genotypes. A set of eight bacterial strains wherein three were Pseudomonas putida and rest were Acinetobacter calcoaceticus, were isolated from casing soils community by conventional plating. These strains had identical 16S rRNA gene sequences and represented the dominant phylotype in the plateable fraction. Each strain utilized a specific combination of 154 carbon substrates, and the niche overlap indices were low, suggesting that each strain occupied a different ecological niche. Our results have implications for assessment of the diversity and biogeography of bacteria and increase the perception of natural diversity beyond the level of 16S rRNA gene sequences. It is worthwhile approach to explore prokaryotic diversity in different ecological niches.
Collapse
|
20
|
Distinguishing Tropical Infectious Diseases from Bioterrorism. TROPICAL INFECTIOUS DISEASES: PRINCIPLES, PATHOGENS AND PRACTICE 2011. [PMCID: PMC7150159 DOI: 10.1016/b978-0-7020-3935-5.00125-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Lasch P, Drevinek M, Nattermann H, Grunow R, Stämmler M, Dieckmann R, Schwecke T, Naumann D. Characterization of Yersinia Using MALDI-TOF Mass Spectrometry and Chemometrics. Anal Chem 2010; 82:8464-75. [DOI: 10.1021/ac101036s] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Peter Lasch
- Biomedical Spectroscopy (P 25) and Centre for Biological Security (ZBS 2), Robert-Koch-Institut, Nordufer 20, D-13353 Berlin, Germany, National Institute for Nuclear, Biological and Chemical Protection, Kamenna 71, CZ-26231 Milin, Czech Republic, and Department of Biological Safety, Antibiotic Resistance and Resistance Determinants, Federal Institute for Risk Assessment (BfR), Diedersdorfer Weg 1, D-12277 Berlin, Germany
| | - Michal Drevinek
- Biomedical Spectroscopy (P 25) and Centre for Biological Security (ZBS 2), Robert-Koch-Institut, Nordufer 20, D-13353 Berlin, Germany, National Institute for Nuclear, Biological and Chemical Protection, Kamenna 71, CZ-26231 Milin, Czech Republic, and Department of Biological Safety, Antibiotic Resistance and Resistance Determinants, Federal Institute for Risk Assessment (BfR), Diedersdorfer Weg 1, D-12277 Berlin, Germany
| | - Herbert Nattermann
- Biomedical Spectroscopy (P 25) and Centre for Biological Security (ZBS 2), Robert-Koch-Institut, Nordufer 20, D-13353 Berlin, Germany, National Institute for Nuclear, Biological and Chemical Protection, Kamenna 71, CZ-26231 Milin, Czech Republic, and Department of Biological Safety, Antibiotic Resistance and Resistance Determinants, Federal Institute for Risk Assessment (BfR), Diedersdorfer Weg 1, D-12277 Berlin, Germany
| | - Roland Grunow
- Biomedical Spectroscopy (P 25) and Centre for Biological Security (ZBS 2), Robert-Koch-Institut, Nordufer 20, D-13353 Berlin, Germany, National Institute for Nuclear, Biological and Chemical Protection, Kamenna 71, CZ-26231 Milin, Czech Republic, and Department of Biological Safety, Antibiotic Resistance and Resistance Determinants, Federal Institute for Risk Assessment (BfR), Diedersdorfer Weg 1, D-12277 Berlin, Germany
| | - Maren Stämmler
- Biomedical Spectroscopy (P 25) and Centre for Biological Security (ZBS 2), Robert-Koch-Institut, Nordufer 20, D-13353 Berlin, Germany, National Institute for Nuclear, Biological and Chemical Protection, Kamenna 71, CZ-26231 Milin, Czech Republic, and Department of Biological Safety, Antibiotic Resistance and Resistance Determinants, Federal Institute for Risk Assessment (BfR), Diedersdorfer Weg 1, D-12277 Berlin, Germany
| | - Ralf Dieckmann
- Biomedical Spectroscopy (P 25) and Centre for Biological Security (ZBS 2), Robert-Koch-Institut, Nordufer 20, D-13353 Berlin, Germany, National Institute for Nuclear, Biological and Chemical Protection, Kamenna 71, CZ-26231 Milin, Czech Republic, and Department of Biological Safety, Antibiotic Resistance and Resistance Determinants, Federal Institute for Risk Assessment (BfR), Diedersdorfer Weg 1, D-12277 Berlin, Germany
| | - Torsten Schwecke
- Biomedical Spectroscopy (P 25) and Centre for Biological Security (ZBS 2), Robert-Koch-Institut, Nordufer 20, D-13353 Berlin, Germany, National Institute for Nuclear, Biological and Chemical Protection, Kamenna 71, CZ-26231 Milin, Czech Republic, and Department of Biological Safety, Antibiotic Resistance and Resistance Determinants, Federal Institute for Risk Assessment (BfR), Diedersdorfer Weg 1, D-12277 Berlin, Germany
| | - Dieter Naumann
- Biomedical Spectroscopy (P 25) and Centre for Biological Security (ZBS 2), Robert-Koch-Institut, Nordufer 20, D-13353 Berlin, Germany, National Institute for Nuclear, Biological and Chemical Protection, Kamenna 71, CZ-26231 Milin, Czech Republic, and Department of Biological Safety, Antibiotic Resistance and Resistance Determinants, Federal Institute for Risk Assessment (BfR), Diedersdorfer Weg 1, D-12277 Berlin, Germany
| |
Collapse
|
22
|
Sergueev KV, He Y, Borschel RH, Nikolich MP, Filippov AA. Rapid and sensitive detection of Yersinia pestis using amplification of plague diagnostic bacteriophages monitored by real-time PCR. PLoS One 2010. [PMID: 20596528 DOI: 10.1371/journal.pone.0011337; 10.1371/journal.pone.0011337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Yersinia pestis, the agent of plague, has caused many millions of human deaths and still poses a serious threat to global public health. Timely and reliable detection of such a dangerous pathogen is of critical importance. Lysis by specific bacteriophages remains an essential method of Y. pestis detection and plague diagnostics. METHODOLOGY/PRINCIPAL FINDINGS The objective of this work was to develop an alternative to conventional phage lysis tests--a rapid and highly sensitive method of indirect detection of live Y. pestis cells based on quantitative real-time PCR (qPCR) monitoring of amplification of reporter Y. pestis-specific bacteriophages. Plague diagnostic phages phiA1122 and L-413C were shown to be highly effective diagnostic tools for the detection and identification of Y. pestis by using qPCR with primers specific for phage DNA. The template DNA extraction step that usually precedes qPCR was omitted. phiA1122-specific qPCR enabled the detection of an initial bacterial concentration of 10(3) CFU/ml (equivalent to as few as one Y. pestis cell per 1-microl sample) in four hours. L-413C-mediated detection of Y. pestis was less sensitive (up to 100 bacteria per sample) but more specific, and thus we propose parallel qPCR for the two phages as a rapid and reliable method of Y. pestis identification. Importantly, phiA1122 propagated in simulated clinical blood specimens containing EDTA and its titer rise was detected by both a standard plating test and qPCR. CONCLUSIONS/SIGNIFICANCE Thus, we developed a novel assay for detection and identification of Y. pestis using amplification of specific phages monitored by qPCR. The method is simple, rapid, highly sensitive, and specific and allows the detection of only live bacteria.
Collapse
Affiliation(s)
- Kirill V Sergueev
- Division of Bacterial and Rickettsial Diseases, Department of Emerging Bacterial Infections, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America.
| | | | | | | | | |
Collapse
|
23
|
Sergueev KV, He Y, Borschel RH, Nikolich MP, Filippov AA. Rapid and sensitive detection of Yersinia pestis using amplification of plague diagnostic bacteriophages monitored by real-time PCR. PLoS One 2010; 5:e11337. [PMID: 20596528 PMCID: PMC2893161 DOI: 10.1371/journal.pone.0011337] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 06/07/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Yersinia pestis, the agent of plague, has caused many millions of human deaths and still poses a serious threat to global public health. Timely and reliable detection of such a dangerous pathogen is of critical importance. Lysis by specific bacteriophages remains an essential method of Y. pestis detection and plague diagnostics. METHODOLOGY/PRINCIPAL FINDINGS The objective of this work was to develop an alternative to conventional phage lysis tests--a rapid and highly sensitive method of indirect detection of live Y. pestis cells based on quantitative real-time PCR (qPCR) monitoring of amplification of reporter Y. pestis-specific bacteriophages. Plague diagnostic phages phiA1122 and L-413C were shown to be highly effective diagnostic tools for the detection and identification of Y. pestis by using qPCR with primers specific for phage DNA. The template DNA extraction step that usually precedes qPCR was omitted. phiA1122-specific qPCR enabled the detection of an initial bacterial concentration of 10(3) CFU/ml (equivalent to as few as one Y. pestis cell per 1-microl sample) in four hours. L-413C-mediated detection of Y. pestis was less sensitive (up to 100 bacteria per sample) but more specific, and thus we propose parallel qPCR for the two phages as a rapid and reliable method of Y. pestis identification. Importantly, phiA1122 propagated in simulated clinical blood specimens containing EDTA and its titer rise was detected by both a standard plating test and qPCR. CONCLUSIONS/SIGNIFICANCE Thus, we developed a novel assay for detection and identification of Y. pestis using amplification of specific phages monitored by qPCR. The method is simple, rapid, highly sensitive, and specific and allows the detection of only live bacteria.
Collapse
Affiliation(s)
- Kirill V. Sergueev
- Division of Bacterial and Rickettsial Diseases, Department of Emerging Bacterial Infections, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Yunxiu He
- Division of Bacterial and Rickettsial Diseases, Department of Emerging Bacterial Infections, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Richard H. Borschel
- Division of Bacterial and Rickettsial Diseases, Department of Emerging Bacterial Infections, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Mikeljon P. Nikolich
- Division of Bacterial and Rickettsial Diseases, Department of Emerging Bacterial Infections, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Andrey A. Filippov
- Division of Bacterial and Rickettsial Diseases, Department of Emerging Bacterial Infections, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| |
Collapse
|
24
|
Sergueev KV, He Y, Borschel RH, Nikolich MP, Filippov AA. Rapid and sensitive detection of Yersinia pestis using amplification of plague diagnostic bacteriophages monitored by real-time PCR. PLoS One 2010; 5:e11337. [PMID: 20596528 PMCID: PMC2893161 DOI: 10.1371/journal.pone.0011337;+10.1371/journal.pone.0011337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Yersinia pestis, the agent of plague, has caused many millions of human deaths and still poses a serious threat to global public health. Timely and reliable detection of such a dangerous pathogen is of critical importance. Lysis by specific bacteriophages remains an essential method of Y. pestis detection and plague diagnostics. METHODOLOGY/PRINCIPAL FINDINGS The objective of this work was to develop an alternative to conventional phage lysis tests--a rapid and highly sensitive method of indirect detection of live Y. pestis cells based on quantitative real-time PCR (qPCR) monitoring of amplification of reporter Y. pestis-specific bacteriophages. Plague diagnostic phages phiA1122 and L-413C were shown to be highly effective diagnostic tools for the detection and identification of Y. pestis by using qPCR with primers specific for phage DNA. The template DNA extraction step that usually precedes qPCR was omitted. phiA1122-specific qPCR enabled the detection of an initial bacterial concentration of 10(3) CFU/ml (equivalent to as few as one Y. pestis cell per 1-microl sample) in four hours. L-413C-mediated detection of Y. pestis was less sensitive (up to 100 bacteria per sample) but more specific, and thus we propose parallel qPCR for the two phages as a rapid and reliable method of Y. pestis identification. Importantly, phiA1122 propagated in simulated clinical blood specimens containing EDTA and its titer rise was detected by both a standard plating test and qPCR. CONCLUSIONS/SIGNIFICANCE Thus, we developed a novel assay for detection and identification of Y. pestis using amplification of specific phages monitored by qPCR. The method is simple, rapid, highly sensitive, and specific and allows the detection of only live bacteria.
Collapse
Affiliation(s)
- Kirill V. Sergueev
- Division of Bacterial and Rickettsial Diseases, Department of Emerging Bacterial Infections, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- * E-mail: (KVS); (AAF)
| | - Yunxiu He
- Division of Bacterial and Rickettsial Diseases, Department of Emerging Bacterial Infections, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Richard H. Borschel
- Division of Bacterial and Rickettsial Diseases, Department of Emerging Bacterial Infections, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Mikeljon P. Nikolich
- Division of Bacterial and Rickettsial Diseases, Department of Emerging Bacterial Infections, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Andrey A. Filippov
- Division of Bacterial and Rickettsial Diseases, Department of Emerging Bacterial Infections, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- * E-mail: (KVS); (AAF)
| |
Collapse
|
25
|
Splettstoesser WD, Seibold E, Zeman E, Trebesius K, Podbielski A. Rapid differentiation of Francisella species and subspecies by fluorescent in situ hybridization targeting the 23S rRNA. BMC Microbiol 2010; 10:72. [PMID: 20205957 PMCID: PMC2844405 DOI: 10.1186/1471-2180-10-72] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 03/08/2010] [Indexed: 11/18/2022] Open
Abstract
Background Francisella (F.) tularensis is the causative agent of tularemia. Due to its low infectious dose, ease of dissemination and high case fatality rate, F. tularensis was the subject in diverse biological weapons programs and is among the top six agents with high potential if misused in bioterrorism. Microbiological diagnosis is cumbersome and time-consuming. Methods for the direct detection of the pathogen (immunofluorescence, PCR) have been developed but are restricted to reference laboratories. Results The complete 23S rRNA genes of representative strains of F. philomiragia and all subspecies of F. tularensis were sequenced. Single nucleotide polymorphisms on species and subspecies level were confirmed by partial amplification and sequencing of 24 additional strains. Fluorescent In Situ Hybridization (FISH) assays were established using species- and subspecies-specific probes. Different FISH protocols allowed the positive identification of all 4 F. philomiragia strains, and more than 40 F. tularensis strains tested. By combination of different probes, it was possible to differentiate the F. tularensis subspecies holarctica, tularensis, mediasiatica and novicida. No cross reactivity with strains of 71 clinically relevant bacterial species was observed. FISH was also successfully applied to detect different F. tularensis strains in infected cells or tissue samples. In blood culture systems spiked with F. tularensis, bacterial cells of different subspecies could be separated within single samples. Conclusion We could show that FISH targeting the 23S rRNA gene is a rapid and versatile method for the identification and differentiation of F. tularensis isolates from both laboratory cultures and clinical samples.
Collapse
Affiliation(s)
- Wolf D Splettstoesser
- Bundeswehr Institute of Microbiology, German Reference Laboratory for Tularemia, Neuherbergstr 11, 80937 Munich, Germany.
| | | | | | | | | |
Collapse
|
26
|
Volkmann M, Skiebe E, Kerrinnes T, Faber F, Lepka D, Pfeifer Y, Holland G, Bannert N, Wilharm G. Orbus hercynius gen. nov., sp. nov., isolated from faeces of wild boar, is most closely related to members of the orders 'Enterobacteriales' and Pasteurellales. Int J Syst Evol Microbiol 2009; 60:2601-2605. [PMID: 20023064 DOI: 10.1099/ijs.0.019026-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel gammaproteobacterium, strain CN3(T), was isolated from the faeces of wild boar. Strain CN3(T) was facultatively anaerobic and appeared coccoid or rod-shaped. The partial 16S rRNA gene sequence determined for strain CN3(T) suggested a distant relationship with members of the orders 'Enterobacteriales' and Pasteurellales. The gene sequence showed highest similarity (90.3 %) with Obesumbacterium proteus DSM 2777(T), a member of the family Enterobacteriaceae. The closest relatives outside the order 'Enterobacteriales' according to 16S rRNA gene sequence analysis were members of the order Pasteurellales with 88.7 % similarity (Mannheimia haemolytica NCTC 9380(T) and Actinobacillus lignieresii NCTC 4189(T)). In contrast to most members of the order 'Enterobacteriales', strain CN3(T) was oxidase-positive. The pattern of fatty acids, in particular the high relative abundance of C(18 : 1)ω7c (38.5 %), was clearly distinct from the conserved pattern found for members of the order Pasteurellales. EcoRI ribotyping of strain CN3(T) yielded no significant similarity to existing database entries. The major ubiquinone of strain CN3(T) was Q-8. The DNA G+C content was 36.4 mol%. Strain CN3(T) hosted a phage and secreted considerable amounts of three proteins into the culture supernatant. A spontaneous mutant of strain CN3(T) was isolated which formed long filaments. Microscopic studies revealed the presence of a capsule that the mutant strain was unable to partition after cell division. Strain CN3(T) thus represents a novel species within a new genus, for which the name Orbus hercynius gen. nov., sp. nov. is proposed. The type strain of the type species is CN3(T) (=DSM 22228(T)=CCUG 57622(T)). Classification of the novel species to the family and order level will require further investigations.
Collapse
Affiliation(s)
- Maria Volkmann
- Robert Koch-Institute, Wernigerode Branch, Burgstr. 37, D-38855 Wernigerode, Germany
| | - Evelyn Skiebe
- Robert Koch-Institute, Wernigerode Branch, Burgstr. 37, D-38855 Wernigerode, Germany
| | - Tobias Kerrinnes
- Robert Koch-Institute, Wernigerode Branch, Burgstr. 37, D-38855 Wernigerode, Germany
| | - Franziska Faber
- Robert Koch-Institute, Wernigerode Branch, Burgstr. 37, D-38855 Wernigerode, Germany
| | - Daniela Lepka
- Robert Koch-Institute, Wernigerode Branch, Burgstr. 37, D-38855 Wernigerode, Germany
| | - Yvonne Pfeifer
- Robert Koch-Institute, Wernigerode Branch, Burgstr. 37, D-38855 Wernigerode, Germany
| | - Gudrun Holland
- Robert Koch-Institute, ZBS 4, Nordufer 20, D-13353 Berlin, Germany
| | - Norbert Bannert
- Robert Koch-Institute, ZBS 4, Nordufer 20, D-13353 Berlin, Germany
| | - Gottfried Wilharm
- Robert Koch-Institute, Wernigerode Branch, Burgstr. 37, D-38855 Wernigerode, Germany
| |
Collapse
|
27
|
Matero P, Pasanen T, Laukkanen R, Tissari P, Tarkka E, Vaara M, Skurnik M. Real-time multiplex PCR assay for detection of Yersinia pestis and Yersinia pseudotuberculosis. APMIS 2009; 117:34-44. [PMID: 19161535 DOI: 10.1111/j.1600-0463.2008.00013.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A multiplex real-time polymerase chain reaction (PCR) assay was developed for the detection of Yersinia pestis and Yersinia pseudotuberculosis. The assay includes four primer pairs, two of which are specific for Y. pestis, one for Y. pestis and Y. pseudotuberculosis and one for bacteriophage lambda; the latter was used as an internal amplification control. The Y. pestis-specific target genes in the assay were ypo2088, a gene coding for a putative methyltransferase, and the pla gene coding for the plasminogen activator. In addition, the wzz gene was used as a target to specifically identify both Y. pestis and the closely related Y. pseudotuberculosis group. The primer and probe sets described for the different genes can be used either in single or in multiplex PCR assays because the individual probes were designed with different fluorochromes. The assays were found to be both sensitive and specific; the lower limit of the detection was 10-100 fg of extracted Y. pestis or Y. pseudotuberculosis total DNA. The sensitivity of the tetraplex assay was determined to be 1 cfu for the ypo2088 and pla probe labelled with FAM and JOE fluorescent dyes, respectively.
Collapse
Affiliation(s)
- Pirjo Matero
- Helsinki University Central Hospital Laboratory Diagnostics, Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
28
|
Caristo E, Parola A, Rapa A, Vivenza D, Raselli B, Dondi E, Boldorini R, Oderda G. Clarithromycin resistance of Helicobacter pylori strains isolated from children' gastric antrum and fundus as assessed by fluorescent in-situ hybridization and culture on four-sector agar plates. Helicobacter 2008; 13:557-63. [PMID: 19166422 DOI: 10.1111/j.1523-5378.2008.00642.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
AIM To assess validity of culture on four-sector agar plates and fluorescent in-situ hybridization (FISH) test, and clarithromycin resistance rate in Helicobacter pylori strains isolated from children in the last 10 years. METHODS In the last 5 years, gastric biopsy specimens from antrum and fundus were taken from 89 consecutive children (median age 9 years) with H. pylori gastritis and from 21 controls. Culture was performed on 176 gastric biopsies (89 from antrum, 87 from fundus) on four-sector agar plates, and FISH test with DNA ProbeMix. After its validity was evaluated, FISH test was applied on additional 119 biopsies from 68 children (68 from the antrum, 51 from the fundus) stored in the Pathology archive in the previous 5 years. RESULTS Culture was positive in 157 of 176 biopsies (sensitivity: 89.2%, 95% confidence interval (CI) 85-94). In 33 of 89 children (37%) resistant strains were found in one or both gastric sites. FISH test was positive in 148 of 176 biopsies from infected children (sensitivity 84.1%, 95%CI 79-89) and in none of 42 biopsies from controls (specificity 100%). When applied on archive biopsies, FISH test was positive in 96 of 119 (80.7%, 95%CI 74-88). Total children harboring resistant strains in the last 10 years, as assessed by FISH test, were 66 of 157 (42%). Mixed infection with both sensitive and resistant strains were found in 40 children (25%) and in 12 of them resistant strains were in the fundus only. CONCLUSIONS Culture on four-sector agar plates and FISH test had a high sensitivity and specificity and showed co-presence of sensitive and resistant strains. In one-third of children with mixed infection, the resistant strains were in the fundus only. Clarithromycin resistance should be assessed in biopsies both from the antrum and the fundus, utilizing antral biopsies only can underestimate its prevalence.
Collapse
Affiliation(s)
- Elisa Caristo
- Department of Pediatrics, Università del Piemonte Orientale, Novara, Italy
| | | | | | | | | | | | | | | |
Collapse
|
29
|
TaqMan-based real-time PCR method for detection of Yersinia pseudotuberculosis in food. Appl Environ Microbiol 2008; 74:6465-9. [PMID: 18757572 DOI: 10.1128/aem.01459-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A sensitive and specific assay for detection of food-borne pathogenic Yersinia pseudotuberculosis was developed. The primer-probe set was designed to target a 157-bp sequence of the chromosomally located gene ail. The complete method, including an internal amplification control, was evaluated for several different food items.
Collapse
|
30
|
Gescher DM, Kovacevic D, Schmiedel D, Siemoneit S, Mallmann C, Halle E, Göbel UB, Moter A. Fluorescence in situ hybridisation (FISH) accelerates identification of Gram-positive cocci in positive blood cultures. Int J Antimicrob Agents 2008; 32 Suppl 1:S51-9. [PMID: 18718741 DOI: 10.1016/j.ijantimicag.2008.06.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Accepted: 06/05/2008] [Indexed: 11/16/2022]
Abstract
Sepsis is a life-threatening disease with a high mortality rate. Rapid identification of blood culture isolates plays a crucial role in adequate antimicrobial therapy in sepsis patients. To accelerate microbiological diagnosis, a comprehensive panel of oligonucleotide probes for fluorescence in situ hybridisation (FISH) targeting Gram-positive cocci was compiled and evaluated on 428 positive blood culture specimens. By combining genus-specific and species-specific probes, the assay allowed discrimination of staphylococci, streptococci and enterococci as well as differentiation of therapy-relevant pathogens such as Staphylococcus aureus and Enterococcus faecium/durans. Furthermore, the newly designed FISH probes STREP2, ENCO and GRANU targeted Streptococcus pneumoniae/mitis, Enterococcus spp. (except E. faecalis) and Granulicatella adiacens group, respectively. The FISH assay achieved an overall sensitivity of 98.65% and a specificity of 99.0% and therefore allowed rapid and reliable molecular identification of Gram-positive cocci in blood culture specimens.
Collapse
Affiliation(s)
- Dorothee Maria Gescher
- Institut für Mikrobiologie und Hygiene, Charité-Universitätsmedizin Berlin, Campus Charité Mitte, Dorotheenstr. 96, D-10117 Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Kenny JH, Zhou Y, Schriefer ME, Bearden SW. Detection of viable Yersinia pestis by fluorescence in situ hybridization using peptide nucleic acid probes. J Microbiol Methods 2008; 75:293-301. [PMID: 18655809 DOI: 10.1016/j.mimet.2008.06.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 06/19/2008] [Accepted: 06/24/2008] [Indexed: 11/28/2022]
Abstract
A successful method has been developed for the detection of live Yersinia pestis, the plague bacillus, which incorporates nascent RNA synthesis. A fluorescent in situ hybridization (FISH) assay using peptide nucleic acid (PNA) probes was developed specifically to differentiate Y. pestis strains from closely related bacteria. PNA probes were chosen to target high copy mRNA of the Y. pestis caf1 gene, encoding the Fraction 1 (F1) antigen, and 16S ribosomal RNA. Among Yersinia strains tested, PNA probes Yp-16S-426 and Yp-F1-55 exhibited binding specificities of 100% and 98%, respectively. Y. pestis grown in the presence of competing bacteria, as might be encountered when recovering Y. pestis from environmental surfaces in a post-release bioterrorism event, was recognized by PNA probes and neither hybridization nor fluorescence was inhibited by competing bacterial strains which exhibited faster growth rates. Using fluorescence microscopy, individual Y. pestis bacteria were clearly differentiated from competing bacteria with an average detection sensitivity of 7.9x10(3) cells by fluorescence microscopy. In the current system, this would require an average of 2.56x10(5) viable Y. pestis organisms be recovered from a post-release environmental sample in order to achieve the minimum threshold for detection. The PNA-FISH assays described in this study allow for the sensitive and specific detection of viable Y. pestis bacteria in a timely manner.
Collapse
Affiliation(s)
- John H Kenny
- Bacterial Diseases Branch, Division of Vector-Borne Infectious Diseases, National Center for Zoonotic, Vector-Borne and Enteric Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, United States
| | | | | | | |
Collapse
|
32
|
Abstract
Yersinia pestis is the causative agent of plague, which diverged from Yersinia pseudotuberculosis within the past 20,000 years. Although these two species share a high degree of homology at the DNA level (>90%), they differ radically in their pathogenicity and transmission. In this review, we briefly outline the known virulence factors that differentiate these two species and emphasize genetic studies that have been conducted comparing Y. pestis and Y. pseudotuberculosis. These comparisons have led to a better understanding of the genetic contributions to the differences in the virulence and pathogenicity between these two organisms and have generated information that can be applied in future diagnostic and vaccine development. Comparison of the genetic differences between Y. pestis and Y. pseudotuberculosis has also lent insight into the emergence of acute pathogens from organisms causing milder diseases.
Collapse
Affiliation(s)
- Xiao-Zhe Huang
- Division of Communicable Immunology, Department of Bacterial Diseases, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
| | | | | |
Collapse
|
33
|
Erickson DL, Jarrett CO, Wren BW, Hinnebusch BJ. Serotype differences and lack of biofilm formation characterize Yersinia pseudotuberculosis infection of the Xenopsylla cheopis flea vector of Yersinia pestis. J Bacteriol 2006; 188:1113-9. [PMID: 16428415 PMCID: PMC1347331 DOI: 10.1128/jb.188.3.1113-1119.2006] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yersinia pestis, the agent of plague, is usually transmitted by fleas. To produce a transmissible infection, Y. pestis colonizes the flea midgut and forms a biofilm in the proventricular valve, which blocks normal blood feeding. The enteropathogen Yersinia pseudotuberculosis, from which Y. pestis recently evolved, is not transmitted by fleas. However, both Y. pestis and Y. pseudotuberculosis form biofilms that adhere to the external mouthparts and block feeding of Caenorhabditis elegans nematodes, which has been proposed as a model of Y. pestis-flea interactions. We compared the ability of Y. pestis and Y. pseudotuberculosis to infect the rat flea Xenopsylla cheopis and to produce biofilms in the flea and in vitro. Five of 18 Y. pseudotuberculosis strains, encompassing seven serotypes, including all three serotype O3 strains tested, were unable to stably colonize the flea midgut. The other strains persisted in the flea midgut for 4 weeks but did not increase in numbers, and none of the 18 strains colonized the proventriculus or produced a biofilm in the flea. Y. pseudotuberculosis strains also varied greatly in their ability to produce biofilms in vitro, but there was no correlation between biofilm phenotype in vitro or on the surface of C. elegans and the ability to colonize or block fleas. Our results support a model in which a genetic change in the Y. pseudotuberculosis progenitor of Y. pestis extended its pre-existing ex vivo biofilm-forming ability to the flea gut environment, thus enabling proventricular blockage and efficient flea-borne transmission.
Collapse
Affiliation(s)
- David L Erickson
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, 903 South 4th St., Hamilton, MT 59840, USA
| | | | | | | |
Collapse
|
34
|
Hunt DE, Klepac-Ceraj V, Acinas SG, Gautier C, Bertilsson S, Polz MF. Evaluation of 23S rRNA PCR primers for use in phylogenetic studies of bacterial diversity. Appl Environ Microbiol 2006; 72:2221-5. [PMID: 16517676 PMCID: PMC1393206 DOI: 10.1128/aem.72.3.2221-2225.2006] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Accepted: 12/19/2005] [Indexed: 11/20/2022] Open
Abstract
The availability of a diverse set of 23S rRNA gene sequences enabled evaluation of the specificity of 39 previously published and 4 newly designed primers specific for bacteria. An extensive clone library constructed using an optimized primer pair resulted in similar gene richness but slightly differing coverage of some phylogenetic groups, compared to a 16S rRNA gene library from the same environmental sample.
Collapse
Affiliation(s)
- Dana E Hunt
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 48-421, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
35
|
Distinguishing Tropical Infectious Diseases from Bioterrorism. TROPICAL INFECTIOUS DISEASES 2006. [PMCID: PMC7152372 DOI: 10.1016/b978-0-443-06668-9.50124-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Swidsinski A, Mendling W, Loening-Baucke V, Ladhoff A, Swidsinski S, Hale LP, Lochs H. Adherent Biofilms in Bacterial Vaginosis. Obstet Gynecol 2005; 106:1013-23. [PMID: 16260520 DOI: 10.1097/01.aog.0000183594.45524.d2] [Citation(s) in RCA: 306] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Bacterial vaginosis is a common infectious disorder. Although known since ancient times, little progress has occurred in identifying causal factors. Our aims were to study the bacterial community structure and the spatial organization of microbiota on the epithelial surfaces of vaginal biopsy specimens. METHODS We investigated the composition and spatial organization of bacteria associated with the vaginal epithelium in biopsy specimens from 20 patients with bacterial vaginosis and 40 normal premenopausal and postmenopausal controls using a broad range of fluorescent bacterial group-specific rRNA-targeted oligonucleotide probes. RESULTS Bacterial vaginosis was associated with greater occurrence and higher concentrations of a variety of bacterial groups. However, only Gardnerella vaginalis developed a characteristic adherent biofilm that was specific for bacterial vaginosis. CONCLUSION A biofilm comprised of confluent G vaginalis with other bacterial groups incorporated in the adherent layer is a prominent feature of bacterial vaginosis. LEVEL OF EVIDENCE II-2.
Collapse
|
37
|
Sing A, Reithmeier-Rost D, Granfors K, Hill J, Roggenkamp A, Heesemann J. A hypervariable N-terminal region of Yersinia LcrV determines Toll-like receptor 2-mediated IL-10 induction and mouse virulence. Proc Natl Acad Sci U S A 2005; 102:16049-54. [PMID: 16239347 PMCID: PMC1276055 DOI: 10.1073/pnas.0504728102] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The virulence antigen LcrV of Yersinia enterocolitica O:8 induces IL-10 in macrophages via Toll-like receptor 2 (TLR2). The TLR2-active region of LcrV is localized within its N-terminal amino acids (aa) 31-57. Sequencing of codons 25-92 of the lcrV gene from 59 strains of the three pathogenic Yersinia species revealed a hypervariable hotspot within aa 40-61. According to these sequence differences, seven LcrV groups were identified, with Y. pestis and Y. pseudotuberculosis represented in group I and the other six distributed within Y. enterocolitica. By testing LcrV sequence-derived synthetic oligopeptides of all seven LcrV groups in CD14/TLR2-transfected human embryonic kidney 293 cells, we found the highest TLR2 activity with a peptide derived from group IV comprising exclusively Y. enterocolitica O:8 strains. These findings were verified in murine peritoneal macrophages by using recombinant LcrV truncates representing aa 1-130 from different Yersinia spp. By systematically replacing charged aa residues by glutamine in synthetic oligopeptides, we show that the K42Q substitution leads to abrogation of TLR2 activity in both in vitro cell systems. This K42Q substitution was introduced in the lcrV gene from Y. enterocolitica O:8 WA-C(pYV), resulting in WA-C(pYVLcrV(K42Q)), which turned out to be less virulent for C57BL/6 mice than the parental strain. This difference in virulence was not observed in TLR2(-/-) or IL-10(-/-) mice, proving that LcrV contributes to virulence by TLR2-mediated IL-10 induction. LcrV is a defined bacterial virulence factor shown to target the TLR system for evasion of the host's immune response.
Collapse
Affiliation(s)
- Andreas Sing
- Lehrstuhl Bakteriologie, Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Pettenkoferstrasse 9a, 80336 Munich, Germany
| | | | | | | | | | | |
Collapse
|
38
|
Swidsinski A, Weber J, Loening-Baucke V, Hale LP, Lochs H. Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease. J Clin Microbiol 2005; 43:3380-9. [PMID: 16000463 PMCID: PMC1169142 DOI: 10.1128/jcm.43.7.3380-3389.2005] [Citation(s) in RCA: 661] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The composition and spatial organization of the mucosal flora in biopsy specimens from patients with inflammatory bowel disease (IBD; either Crohn's disease or ulcerative colitis), self-limiting colitis, irritable-bowel syndrome (IBS), and healthy controls were investigated by using a broad range of fluorescent bacterial group-specific rRNA-targeted oligonucleotide probes. Each group included 20 subjects. Ten patients who had IBD and who were being treated with antibiotics were also studied. Use of nonaqueous Carnoy fixative to preserve the mucus layer was crucial for detection of bacteria adherent to the mucosal surface (mucosal bacteria). No biofilm was detectable in formalin-fixed biopsy specimens. Mucosal bacteria were found at concentrations greater than 10(9)/ml in 90 to 95% of IBD patients, 95% of patients with self-limiting colitis, 65% of IBS patients, and 35% of healthy controls. The mean density of the mucosal biofilm was 2 powers higher in IBD patients than in patients with IBS or controls, and bacteria were mostly adherent. Bacteroides fragilis was responsible for >60% of the biofilm mass in patients with IBD but for only 30% of the biofilm mass in patients with self-limiting colitis and <15% of the biofilm mass in patients with IBS. In contrast, bacteria which positively hybridized with the probe specific for Eubacterium rectale-Clostridium coccoides accounted for >40% of the biofilm in IBS patients but for <15% of the biofilm in IBD patients. In patients treated with (5-ASA) or antibiotics, the biofilm could be detected with 4,6-diamidino-2-phenylindole but did not hybridize with fluorescence in situ hybridization probes. A Bacteroides fragilis biofilm is the main feature of IBD. This was not previously recognized due to a lack of appropriate tissue fixation. Both 5-ASA and antibiotics suppress but do not eliminate the adherent biofilm.
Collapse
Affiliation(s)
- Alexander Swidsinski
- Innere Klinik, Gastroenterologie, Charité Humboldt Universität, 10098 Berlin, Germany.
| | | | | | | | | |
Collapse
|
39
|
Chase CJ, Ulrich MP, Wasieloski LP, Kondig JP, Garrison J, Lindler LE, Kulesh DA. Real-time PCR assays targeting a unique chromosomal sequence of Yersinia pestis. Clin Chem 2005; 51:1778-85. [PMID: 16099940 DOI: 10.1373/clinchem.2005.051839] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Yersinia pestis, the causative agent of the zoonotic infection plague, is a major concern as a potential bioweapon. Current real-time PCR assays used for Y. pestis detection are based on plasmid targets, some of which may generate false-positive results. METHODS Using the yp48 gene of Y. pestis, we designed and tested 2 real-time TaqMan minor groove binder (MGB) assays that allowed us to use chromosomal genes as both confirmatory and differential targets for Y. pestis. We also designed several additional assays using both Simple-Probe and MGB Eclipse probe technologies for the selective differentiation of Yersinia pseudotuberculosis from Y. pestis. These assays were designed around a 25-bp insertion site recently identified within the yp48 gene of Y. pseudotuberculosis. RESULTS The Y. pestis-specific assay distinguished this bacterium from other Yersinia species but had unacceptable low-level detection of Y. pseudotuberculosis, a closely related species. Simple-Probe and MGB Eclipse probes specific for the 25-bp insertion detected only Y. pseudotuberculosis DNA. Probes that spanned the deletion site detected both Y. pestis and Y. pseudotuberculosis DNA, and the 2 species were clearly differentiated by a post-PCR melting temperature (Tm) analysis. The Simple-Probe assay produced an almost 7 degrees C Tm difference and the MGB Eclipse probe a slightly more than 4 degrees C difference. CONCLUSIONS Our method clearly discriminates Y. pestis DNA from all other Yersinia species tested and from the closely related Y. pseudotuberculosis. These chromosomal assays are important both to verify the presence of Y. pestis based on a chromosomal target and to easily distinguish it from Y. pseudotuberculosis.
Collapse
Affiliation(s)
- Catherine J Chase
- Diagnostic Systems Division, The United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702-5011, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Kotetishvili M, Kreger A, Wauters G, Morris JG, Sulakvelidze A, Stine OC. Multilocus sequence typing for studying genetic relationships among Yersinia species. J Clin Microbiol 2005; 43:2674-84. [PMID: 15956383 PMCID: PMC1151872 DOI: 10.1128/jcm.43.6.2674-2684.2005] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The intra- and interspecies genetic relationships of 58 strains representing all currently known species of the genus Yersinia were examined by multilocus sequence typing (MLST), using sequence data from 16S RNA, glnA, gyrB, recA, and Y-HSP60 loci. Yersinia aldovae, Y. bercovieri, Y. intermedia, Y. pestis, Y. pseudotuberculosis, Y. rohdei, and Y. ruckeri were genetically more homogeneous than were Y. enterocolitica, Y. frederiksenii, Y. kristensenii, and Y. mollaretii. The MLST data concerning the genetic relatedness within and among various species of Yersinia support the idea that Y. pestis and Y. pseudotuberculosis are two lineages within the same species rather than two distinct species. Y. ruckeri is the genetically most distant species within the genus. There was evidence of O-antigen switching and genetic recombination within and among various species of Yersinia. The genetic relatedness data obtained by MLST of the four housekeeping genes and 16S RNA agreed in most, but not all, instances. MLST was better suited for determining genetic relatedness among yersiniae than was 16S RNA analysis. Some strains of Y. frederiksenii and Y. kristensenii are genetically less related to other strains within those species, compared to strains of all other species within the genus. The taxonomic standing of these strains should be further examined because they may represent currently unrecognized Yersinia species.
Collapse
Affiliation(s)
- Mamuka Kotetishvili
- Department of Epidemiology and Preventive Medicine, University of Maryland School of Medicine, MSTF Bldg., 10 South Pine Street, Baltimore, MD 21201.
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
This minireview summarizes the historical development of bacterial population genetic concepts since the early 1980s. Initially multilocus enzyme electrophoresis was used to determine population structures but this technique is poorly portable between laboratories and was replaced in 1998 by multilocus sequence typing. Diverse population structures exist in different bacterial species. Two distinctive structures are described in greater detail. "Young" organisms, such as Yersinia pestis, have evolved or undergone a severe bottleneck in recent millennia and have not yet accumulated much sequence diversity. "genoclouds" in subgroup III Neisseria meningitidis arise because of the accumulation of diversity due to herd immunity, which is then purified during subsequent epidemic spread.
Collapse
Affiliation(s)
- Mark Achtman
- Department of Molecular Biology, Max-Planck Institut für Infektionsbiologie, Schumannstrasse 21122, D-10117 Berlin, Germany.
| |
Collapse
|
42
|
Schubert S, Rakin A, Heesemann J. The Yersinia high-pathogenicity island (HPI): evolutionary and functional aspects. Int J Med Microbiol 2005; 294:83-94. [PMID: 15493818 DOI: 10.1016/j.ijmm.2004.06.026] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The high-pathogenicity island (HPI) is a genomic island essential for the mouse-virulence phenotype in Yersinia and indispensable for pathogenicity of Yersinia and certain pathotypes of Escherichia coli. In contrast to most genomic islands, the HPI is a functional island widely disseminated among members of the family of Enterobacteriaceae. The HPI-encoded phage P4-like integrase together with excisionase and recombination sites make up the genetic mobility module of the island, while the siderophore yersiniabactin biosynthesis and uptake system comprises its functional part with respect to fitness and pathogenicity. The HPI-integrase promotes integration of the island into attB sites represented by three to four asn tDNAs in Yersinia pestis and E. coli. An additional enzyme, excisionase, is essential for efficient excision of the HPI from the initial site of integration. Furthermore a unique type of HPI has been characterized in the E. coli strain ECOR31 carrying a functional conjugative mating pair formation (Mpf) and a DNA-processing system, both of which are characteristic of integrative and conjugative elements (ICE). A model of conjugative transfer for the dissemination of HPIs is proposed in which the excised HPI is mobilized to a new recipient either trapped by a transmissive asn tDNA-carrying plasmid or autonomously as an ICE named ICEEcl.
Collapse
Affiliation(s)
- Sören Schubert
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Lehrstuhl für Bakteriologie, Pettenkoferstr 9a, D-80336 München, Germany
| | | | | |
Collapse
|
43
|
Schweickert B, Moter A, Lefmann M, Göbel UB. Let them fly or light them up: matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry and fluorescence in situ hybridization (FISH). APMIS 2005; 112:856-85. [PMID: 15638841 DOI: 10.1111/j.1600-0463.2004.apm11211-1210.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This review focuses on clinical bacteriology and by and large does not cover the detection of fungi, viruses or parasites. It discusses two completely different but complementary approaches that may either supplement or replace classic culture-based bacteriology. The latter view may appear provocative in the light of the actual market penetration of molecular genetic testing in clinical bacteriology. Despite its elegance, high specificity and sensitivity, molecular genetic diagnostics has not yet reached the majority of clinical laboratories. The reasons for this are manifold: Many microbiologists and medical technologists are more familiar with classical microbiological methods than with molecular biology techniques. Culture-based methods still represent the work horse of everyday routine. The number of available FDA-approved molecular genetic tests is limited and external quality control is still under development. Finally, it appears difficult to incorporate genetic testing in the routine laboratory setting due to the limited number of samples received or the lack of appropriate resources. However, financial and time constraints, particularly in hospitals as a consequence of budget cuts and reduced length of stay, lead to a demand for significantly shorter turnaround times that cannot be met by culture-dependent diagnosis. As a consequence, smaller laboratories that do not have the technical and personal equipment required for molecular genetic amplification techniques may adopt alternative methods such as fluorescence in situ hybridization (FISH) that combines easy-to-perform molecular hybridization with microscopy, a technique familiar to every microbiologist. FISH is hence one of the technologies presented here. For large hospital or reference laboratories with a high sample volume requiring massive parallel high-throughput testing we discuss matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF) of nucleic acids, a technology that has evolved from the post-genome sequencing era, for high-throughput sequence variation analysis (1, 2).
Collapse
Affiliation(s)
- Birgitta Schweickert
- Institut für Mikrobiologie und Hygiene, Charité, Universitätsmedizin Berlin, Germany
| | | | | | | |
Collapse
|
44
|
Swidsinski A, Loening-Baucke V, Lochs H, Hale LP. Spatial organization of bacterial flora in normal and inflamed intestine: A fluorescence in situ hybridization study in mice. World J Gastroenterol 2005; 11:1131-40. [PMID: 15754393 PMCID: PMC4250702 DOI: 10.3748/wjg.v11.i8.1131] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the role of intestinal flora in inflammatory bowel disease (IBD).
METHODS: The spatial organization of intestinal flora was investigated in normal mice and in two models of murine colitis using fluorescence in situ hybridization.
RESULTS: The murine small intestine was nearly bacteria-free. The normal colonic flora was organized in three distinct compartments (crypt, interlaced, and fecal), each with different bacterial compositions. Crypt bacteria were present in the cecum and proximal colon. The fecal compartment was composed of homogeneously mixed bacterial groups that directly contacted the colonic wall in the cecum but were separated from the proximal colonic wall by a dense interlaced layer. Beginning in the middle colon, a mucus gap of growing thickness physically separated all intestinal bacteria from contact with the epithelium. Colonic inflammation was accompanied with a depletion of bacteria within the fecal compartment, a reduced surface area in which feces had direct contact with the colonic wall, increased thickness and spread of the mucus gap, and massive increases of bacterial concentrations in the crypt and interlaced compartments. Adhesive and infiltrative bacteria were observed in inflamed colon only, with dominant Bacteroides species.
CONCLUSION: The proximal and distal colons are functionally different organs with respect to the intestinal flora, representing a bioreactor and a segregation device. The highly organized structure of the colonic flora, its specific arrangement in different colonic segments, and its specialized response to inflammatory stimuli indicate that the intestinal flora is an innate part of host immunity that is under complex control.
Collapse
Affiliation(s)
- Alexander Swidsinski
- Innere Klinik, Gastroenterologie, Charité Humboldt Universität, 10098 Berlin, Germany.
| | | | | | | |
Collapse
|
45
|
Gage KL, Kosoy MY. Natural history of plague: perspectives from more than a century of research. ANNUAL REVIEW OF ENTOMOLOGY 2005; 50:505-528. [PMID: 15471529 DOI: 10.1146/annurev.ento.50.071803.130337] [Citation(s) in RCA: 442] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
For more than a century, scientists have investigated the natural history of plague, a highly fatal disease caused by infection with the gram-negative bacterium Yersinia pestis. Among their most important discoveries were the zoonotic nature of the disease and that plague exists in natural cycles involving transmission between rodent hosts and flea vectors. Other significant findings include those on the evolution of Y. pestis; geographic variation among plague strains; the dynamics and maintenance of transmission cycles; mechanisms by which fleas transmit Y. pestis; resistance and susceptibility among plague hosts; the structure and typology of natural foci; and how landscape features influence the focality, maintenance, and spread of the disease. The knowledge gained from these studies is essential for the development of effective prevention and control strategies.
Collapse
Affiliation(s)
- Kenneth L Gage
- Bacterial Zoonoses Branch, Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado 80523, USA.
| | | |
Collapse
|
46
|
McGarvey JA, Miller WG, Sanchez S, Stanker L. Identification of bacterial populations in dairy wastewaters by use of 16S rRNA gene sequences and other genetic markers. Appl Environ Microbiol 2004; 70:4267-75. [PMID: 15240310 PMCID: PMC444815 DOI: 10.1128/aem.70.7.4267-4275.2004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hydraulic flush waste removal systems coupled to solid/liquid separators and circulated treatment lagoons are commonly utilized to manage the large amounts of animal waste produced on high-intensity dairy farms. Although these systems are common, little is known about the microbial populations that inhabit them or how they change as they traverse the system. Using culture-based and non-culture-based methods, we characterized the microbial community structure of manure, water from the separator pit, and water from the circulated treatment lagoon from a large dairy in the San Joaquin Valley of California. Our results show that both total bacterial numbers and bacterial diversity are highest in manure, followed by the separator pit water and the lagoon water. The most prevalent phylum in all locations was the Firmicutes (low-G+C, gram-positive bacteria). The most commonly occurring operational taxonomic unit (OTU) had a 16S rRNA gene (rDNA) sequence 96 to 99% similar to that of Clostridium lituseburense and represented approximately 6% of the manure derived sequences, 14% of the separator pit-derived sequences and 20% of the lagoon-derived sequences. Also highly prevalent was an OTU with a 16S rDNA sequence 97 to 100% similar to that of Eubacterium tenue, comprising approximately 3% of the manure-derived sequences, 6% of the separator pit-derived sequences and 9% of the lagoon-derived sequences. Taken together, these sequences represent approximately one-third of the total organisms in the lagoon waters, suggesting that they are well adapted to this environment.
Collapse
Affiliation(s)
- Jeffery A McGarvey
- Agricultural Research Service, Foodborne Contaminants Research Unit, U.S. Department of Agriculture, Albany, CA 94710, USA.
| | | | | | | |
Collapse
|
47
|
Tan L, Darby C. A movable surface: formation of Yersinia sp. biofilms on motile Caenorhabditis elegans. J Bacteriol 2004; 186:5087-92. [PMID: 15262945 PMCID: PMC451665 DOI: 10.1128/jb.186.15.5087-5092.2004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bubonic plague is transmitted by fleas whose feeding is blocked by a mass of Yersinia pestis in the digestive tract. Y. pestis and the closely related Y. pseudotuberculosis also block the feeding of Caenorhabditis elegans by forming a biofilm on the nematode head. C. elegans mutants with severe motility defects acquire almost no biofilm, indicating that normal animals accumulate the biofilm matrix as they move through a Yersinia lawn. Using the lectin wheat germ agglutinin as a probe, we show that the matrix on C. elegans contains carbohydrate produced by Yersinia. The carbohydrate is present in bacterial lawns prior to addition of nematodes, indicating that biofilm formation does not involve signaling between the two organisms. Furthermore, biofilm accumulation depends on continuous C. elegans exposure to a lawn of Yersinia bacteria.
Collapse
Affiliation(s)
- Li Tan
- Department of Microbiology, University of Alabama at Birmingham, BBRB Box 19, 1530 3rd Ave. South, Birmingham, AL 35294-2170, USA
| | | |
Collapse
|
48
|
Jaspers E, Overmann J. Ecological significance of microdiversity: identical 16S rRNA gene sequences can be found in bacteria with highly divergent genomes and ecophysiologies. Appl Environ Microbiol 2004; 70:4831-9. [PMID: 15294821 PMCID: PMC492463 DOI: 10.1128/aem.70.8.4831-4839.2004] [Citation(s) in RCA: 226] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Accepted: 04/14/2004] [Indexed: 11/20/2022] Open
Abstract
A combination of cultivation-based methods with a molecular biological approach was used to investigate whether planktonic bacteria with identical 16S rRNA gene sequences can represent distinct eco- and genotypes. A set of 11 strains of Brevundimonas alba were isolated from a bacterial freshwater community by conventional plating or by using a liquid most-probable-number (MPN) dilution series. These strains had identical 16S rRNA gene sequences and represented the dominant phylotype in the plateable fraction, as well as in the highest positive dilutions of the MPN series. However, internally transcribed spacer and enterobacterial repetitive intergenic consensus PCR fingerprinting analyses, as well as DNA-DNA hybridization analyses, revealed great genetic diversity among the 11 strains. Each strain utilized a specific combination of 59 carbon substrates, and the niche overlap indices were low, suggesting that each strain occupied a different ecological niche. In dialysis cultures incubated in situ, each strain had a different growth rate and cell yield. We thus demonstrated that the B. alba strains represent distinct populations with genetically determined adaptations and probably occupy different ecological niches. Our results have implications for assessment of the diversity and biogeography of bacteria and increase the perception of natural diversity beyond the level of 16S rRNA gene sequences.
Collapse
Affiliation(s)
- Elke Jaspers
- Institut für Chemie und Biologie des Meeres, Universität Oldenburg, Oldenburg, Germany
| | | |
Collapse
|
49
|
Splettstoesser WD, Rahalison L, Grunow R, Neubauer H, Chanteau S. Evaluation of a standardized F1 capsular antigen capture ELISA test kit for the rapid diagnosis of plague. ACTA ACUST UNITED AC 2004; 41:149-55. [PMID: 15145459 DOI: 10.1016/j.femsim.2004.02.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2003] [Revised: 10/29/2003] [Accepted: 02/26/2004] [Indexed: 11/20/2022]
Abstract
Rapid detection of soluble F1 capsular antigen in serum, bubo fluid or urine of patients proved to be a valuable tool in the presumptive diagnosis of plague. We evaluated a F1 capsular antigen capture ELISA resembling a commercially available test kit. The minimal detectable concentration was 4 ng/ml. The specificity was 100% when investigating 47 sera from healthy Malagasy subjects and 98.4% when 365 sera from German blood donors were studied. Sensitivity was determined on sera (n=11) and buboes (n=18) from bacteriologically confirmed Malagasy plague patients. Sensitivity was 90.1% for serum and 100% for buboes. A standardized F1 capsular antigen capture ELISA test kit might be well suited for the early detection of plague particularly in non-endemic areas where clinical microbiological laboratories have only limited access to alternative techniques for rapid identification of Yersinia pestis.
Collapse
Affiliation(s)
- Wolf D Splettstoesser
- Institute of Microbiology, Federal Armed Forces Medical Academy, Neuherbergstr. 11, 80937 Munich, Germany.
| | | | | | | | | |
Collapse
|
50
|
Loïez C, Herwegh S, Wallet F, Armand S, Guinet F, Courcol RJ. Detection of Yersinia pestis in sputum by real-time PCR. J Clin Microbiol 2004; 41:4873-5. [PMID: 14532247 PMCID: PMC254301 DOI: 10.1128/jcm.41.10.4873-4875.2003] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A 5' nuclease PCR assay for detection of the Yersinia pestis plasminogen activator (pla) gene in human respiratory specimens with simulated Y. pestis infection was developed. An internal positive control was added to the reaction mixture in order to detect the presence of PCR inhibitors that are often found in biological samples. The assay was 100% specific for Y. pestis. In the absence of inhibitors, a sensitivity of 10(2) CFU/ml of respiratory fluid was obtained. When inhibitors were present, detection of Y. pestis DNA required a longer sample treatment time and an initial concentration of bacteria of at least 10(4) CFU/ml. The test's total turnaround time was less than 5 h. The assay described here is well suited to the rapid diagnosis of pneumonic plague, the form of plague most likely to result from a bioterrorist attack.
Collapse
Affiliation(s)
- Caroline Loïez
- Laboratoire de Bactériologie-Hygiène, Centre Hospitalier Régional Universitaire de Lille, Lille, France
| | | | | | | | | | | |
Collapse
|