1
|
Ogunmolasuyi AM, Adewoyin MA. Microfluidic device: A versatile biosensor platform to multiplex aptamer-based detection of malaria biomarkers. Cell Biochem Funct 2024; 42:e4104. [PMID: 39118353 DOI: 10.1002/cbf.4104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/03/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
Plasmodium falciparum malaria remains a dominant infectious disease that affects Africa than the rest of the world, considering its associated cases and death rates. It's a febrile illness that produces several reliable biomarkers, for example, P. falciparum lactate dehydrogenase (PfLDH), P. falciparum Plasmodium glutamate dehydrogenase (PfGDH), and P. falciparum histidine-rich proteins (HRP-II) in blood circulatory system that can easily be employed as targets in rapid diagnostic tests (RDTs). In recent times, several DNA aptamers have been developed via SELEX technology to detect some specific malaria biomarkers (PfLDH, PvLDH, HRP-II, PfGDH) in a biosensor mode with good binding affinity properties to overcome the trend of cross-reactivity, limited sensitivity and stability problems that have been observed with immunodiagnostics. In this review, we summarized existing diagnostic methods and relevant biomarkers to suggest promising approaches to develop sensitive and species-specific multiplexed diagnostic devices enabling effective detection of malaria in complex biological matrices and surveillance in the endemic region.
Collapse
Affiliation(s)
| | - Mary A Adewoyin
- Department of Biological Sciences, Anchor University, Lagos, Nigeria
| |
Collapse
|
2
|
Tripathi H, Bhalerao P, Singh S, Arya H, Alotaibi BS, Rashid S, Hasan MR, Bhatt TK. Malaria therapeutics: are we close enough? Parasit Vectors 2023; 16:130. [PMID: 37060004 PMCID: PMC10103679 DOI: 10.1186/s13071-023-05755-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/22/2023] [Indexed: 04/16/2023] Open
Abstract
Malaria is a vector-borne parasitic disease caused by the apicomplexan protozoan parasite Plasmodium. Malaria is a significant health problem and the leading cause of socioeconomic losses in developing countries. WHO approved several antimalarials in the last 2 decades, but the growing resistance against the available drugs has worsened the scenario. Drug resistance and diversity among Plasmodium strains hinder the path of eradicating malaria leading to the use of new technologies and strategies to develop effective vaccines and drugs. A timely and accurate diagnosis is crucial for any disease, including malaria. The available diagnostic methods for malaria include microscopy, RDT, PCR, and non-invasive diagnosis. Recently, there have been several developments in detecting malaria, with improvements leading to achieving an accurate, quick, cost-effective, and non-invasive diagnostic tool for malaria. Several vaccine candidates with new methods and antigens are under investigation and moving forward to be considered for clinical trials. This article concisely reviews basic malaria biology, the parasite's life cycle, approved drugs, vaccine candidates, and available diagnostic approaches. It emphasizes new avenues of therapeutics for malaria.
Collapse
Affiliation(s)
- Himani Tripathi
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, 305817, Rajasthan, India
| | - Preshita Bhalerao
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, 305817, Rajasthan, India
| | - Sujeet Singh
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, 305817, Rajasthan, India
| | - Hemant Arya
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, 305817, Rajasthan, India.
| | - Bader Saud Alotaibi
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Alquwayiyah, Shaqra University, Riyadh, 11971, Saudi Arabia
| | - Summya Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj, 11942, Saudi Arabia
| | - Mohammad Raghibul Hasan
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Alquwayiyah, Shaqra University, Riyadh, 11971, Saudi Arabia.
| | - Tarun Kumar Bhatt
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, 305817, Rajasthan, India.
| |
Collapse
|
3
|
Wang A, Zhu X, Chen Y, Sun Y, Liu H, Ding P, Zhou J, Liu Y, Liang C, Yin J, Zhang G. Serological survey of SARS-CoV-2 in companion animals in China. Front Vet Sci 2022; 9:986619. [PMID: 36532346 PMCID: PMC9748147 DOI: 10.3389/fvets.2022.986619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/14/2022] [Indexed: 08/09/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) can be transmitted from human to companion animals. The national wide serological surveillance against SARS-CoV-2 was conducted among pet animals, mainly in cats and dogs, 1 year after the first outbreak of COVID-19 in China. All sera were tested for SARS-CoV-2 IgG antibodies using an indirect enzyme linked immunosorbent assay (ELISA) based on the receptor binding domain (RBD) of spike protein. This late survey takes advantage of the short duration of the serological response in these animals to track recent episode of transmission. A total of 20,592 blood samples were obtained from 25 provinces across 7 geographical regions. The overall seroprevalence of SARS-CoV-2 infections in cats was 0.015% (2/13397; 95% confidence intervals (CI): 0.0, 0.1). The virus infections in cats were only detected in Central (Hubei, 0.375%) and Eastern China (Zhejiang, 0.087%) with a seroprevalence estimated at 0.090 and 0.020%, respectively. In dogs, the seroprevalence of SARS-CoV-2 infections was 0.014% (1/7159; 95% CI: 0.0, 0.1) in the entire nation, seropositive samples were limited to Beijing (0.070%) of Northern China with a prevalence of 0.054%. No seropositive cases were discovered in other geographic regions, nor in other companion animals analyzed in this study. These data reveal the circulation of SARS-CoV-2 in companion animals, although transmission of the virus to domestic cats and dogs is low in China, continuous monitoring is helpful for the better understand of the virus transmission status and the effect on animals.
Collapse
Affiliation(s)
- Aiping Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Xifang Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yumei Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Henan Zhongze Biological Engineering Co., Ltd., Zhengzhou, China
| | - Yaning Sun
- Henan Zhongze Biological Engineering Co., Ltd., Zhengzhou, China
| | - Hongliang Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Henan Zhongze Biological Engineering Co., Ltd., Zhengzhou, China
| | - Peiyang Ding
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Henan Zhongze Biological Engineering Co., Ltd., Zhengzhou, China
| | - Jingming Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yankai Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Chao Liang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Jiajia Yin
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Gaiping Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Oyegoke OO, Maharaj L, Akoniyon OP, Kwoji I, Roux AT, Adewumi TS, Maharaj R, Oyebola BT, Adeleke MA, Okpeku M. Malaria diagnostic methods with the elimination goal in view. Parasitol Res 2022; 121:1867-1885. [PMID: 35460369 PMCID: PMC9033523 DOI: 10.1007/s00436-022-07512-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 04/01/2022] [Indexed: 01/08/2023]
Abstract
Malaria control measures have been in use for years but have not completely curbed the spread of infection. Ultimately, global elimination is the goal. A major playmaker in the various approaches to reaching the goal is the issue of proper diagnosis. Various diagnostic techniques were adopted in different regions and geographical locations over the decades, and these have invariably produced diverse outcomes. In this review, we looked at the various approaches used in malaria diagnostics with a focus on methods favorably used during pre-elimination and elimination phases as well as in endemic regions. Microscopy, rapid diagnostic testing (RDT), loop-mediated isothermal amplification (LAMP), and polymerase chain reaction (PCR) are common methods applied depending on prevailing factors, each with its strengths and limitations. As the drive toward the elimination goal intensifies, the search for ideal, simple, fast, and reliable point-of-care diagnostic tools is needed more than ever before to be used in conjunction with a functional surveillance system supported by the ideal vaccine.
Collapse
Affiliation(s)
- Olukunle O Oyegoke
- Discipline of Genetics School of Life Sciences, University of KwaZulu-Natal, Westville, Durban, South Africa
| | - Leah Maharaj
- Discipline of Genetics School of Life Sciences, University of KwaZulu-Natal, Westville, Durban, South Africa
| | - Oluwasegun P Akoniyon
- Discipline of Genetics School of Life Sciences, University of KwaZulu-Natal, Westville, Durban, South Africa
| | - Illiya Kwoji
- Discipline of Genetics School of Life Sciences, University of KwaZulu-Natal, Westville, Durban, South Africa
| | - Alexandra T Roux
- Discipline of Genetics School of Life Sciences, University of KwaZulu-Natal, Westville, Durban, South Africa
| | - Taiye S Adewumi
- Discipline of Genetics School of Life Sciences, University of KwaZulu-Natal, Westville, Durban, South Africa
| | - Rajendra Maharaj
- Office of Malaria Research, Medical Research Council, Durban, South Africa
| | | | - Matthew A Adeleke
- Discipline of Genetics School of Life Sciences, University of KwaZulu-Natal, Westville, Durban, South Africa
| | - Moses Okpeku
- Discipline of Genetics School of Life Sciences, University of KwaZulu-Natal, Westville, Durban, South Africa.
| |
Collapse
|
5
|
Momin MB, Singh R. Pseudoeosinophilia on automated analyser (Sysmex XN-1000) a guide to malaria detection - An incidental finding. HAMDAN MEDICAL JOURNAL 2022. [DOI: 10.4103/hmj.hmj_67_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
6
|
Evaluation of the combination of rapid diagnostic tests and microscopy for imported malaria surveillance in Anhui Province, China. Acta Trop 2021; 222:106042. [PMID: 34252385 DOI: 10.1016/j.actatropica.2021.106042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 01/24/2023]
Abstract
BACKGROUND In the Anhui Province, China, efforts to interrupt the local malaria transmission were successful, with no endemic cases reported since 2014. Contrastingly, imported malaria cases are still being reported, indicating a disease reintroduction risk after years of elimination. A good surveillance system is key for avoiding the risk, detecting imported cases and possible cases associated with local transmission early. Therefore, rapid diagnostic tests (RDTs) were combined with microscopy to strengthen malaria surveillance in the province. Herein, we aimed to evaluate the efficacy of this surveillance strategy. METHODS We conducted a retrospective study using malaria surveillance data from January 2016 to June 2020. Epidemiological characteristics and diagnostic information were analysed using descriptive and comparative statistics. The diagnostic performance of the combined toolbox (Wondfo RDTs plus microscopy) was evaluated based on its sensitivity, specificity, positive and negative predictive values, and Cohen's kappa coefficient, using real-time polymerase chain reaction as the gold standard. RESULTS The combined toolbox displayed a higher overall sensitivity for malaria cases than that of microscopy alone (93.74% vs 89.37%; padj <0.05), which could detect 94.65%, 88.16%, 95.00%, and 100.00% of Plasmodium falciparum, P. ovale, P. vivax, and P. malariae infections, respectively. In clinical practice, Wondfo RDTs ability to detect P. falciparum infections was better than that of microscopy (97.55% vs 89.67%, padj < 0.05). In contrast, microscopy displayed a higher specificity than that of Wondfo RDTs (81.82% vs 63.28%, p adj <0.05). Moreover, the consistency between microscopy and the gold standard results was also better than that of RDTs (Kappa value:0.669 vs 0.596). CONCLUSIONS The combination of microscopy and RDTs is an effective strategy for malaria surveillance because it possibly detected more P. falciparum infections due to the introduction of RDTs. In contrast, microscopy is complementary to some limitations related to the use of RDTs in field practice. Thus, monitoring malaria cases in non-endemic areas may require employing more than one diagnostic tool in surveillance strategies. Moreover, further understanding of the advantages and disadvantages of different detection methods is necessary for applying optimum combinations in field settings.
Collapse
|
7
|
Laboratory Detection of Malaria Antigens: a Strong Tool for Malaria Research, Diagnosis, and Epidemiology. Clin Microbiol Rev 2021; 34:e0025020. [PMID: 34043447 DOI: 10.1128/cmr.00250-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The identification and characterization of proteins produced during human infection with Plasmodium spp. have guided the malaria community in research, diagnosis, epidemiology, and other efforts. Recently developed methods for the detection of these proteins (antigens) in the laboratory have provided new types of data that can inform the evaluation of malaria diagnostics, epidemiological investigations, and overall malaria control strategies. Here, the focus is primarily on antigens that are currently known to be detectable in human specimens and on their impact on the understanding of malaria in human populations. We highlight historical and contemporary laboratory assays for malaria antigen detection, the concept of an antigen profile for a biospecimen, and ways in which binary results for a panel of antigens could be interpreted and utilized for different analyses. Particular emphasis is given to the direct comparison of field-level malaria diagnostics and laboratory antigen detection for the development of an external evaluation scheme. The current limitations of laboratory antigen detection are considered, and the future of this developing field is discussed.
Collapse
|
8
|
Kim JH, Suh J, Lee WJ, Choi H, Kim JD, Kim C, Choi JY, Ko R, Kim H, Lee J, Yeom JS. Modelling the impact of rapid diagnostic tests on Plasmodium vivax malaria in South Korea: a cost-benefit analysis. BMJ Glob Health 2021; 6:e004292. [PMID: 33593755 PMCID: PMC7888375 DOI: 10.1136/bmjgh-2020-004292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/21/2020] [Accepted: 01/11/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Rapid diagnostic tests (RDTs) are widely used for diagnosing Plasmodium vivax malaria, especially in resource-limited countries. However, the impact of RDTs on P. vivax malaria incidence and national medical costs has not been evaluated. We assessed the impact of RDT implementation on P. vivax malaria incidence and overall medical expenditures in South Korea and performed a cost-benefit analysis from the payer's perspective. METHODS We developed a dynamic compartmental model for P. vivax malaria transmission in South Korea using delay differential equations. Long latency and seasonality were incorporated into the model, which was calibrated to civilian malaria incidences during 2014-2018. We then estimated averted malaria cases and total medical costs from two diagnostic scenarios: microscopy only and both microscopy and RDTs. Medical costs were extracted based on data from a hospital in an at-risk area for P. vivax malaria and were validated using Health Insurance Review and Assessment Service data. We conducted a cost-benefit analysis of RDTs using the incremental benefit:cost ratio (IBCR) considering only medical costs and performed a probabilistic sensitivity analysis to reflect the uncertainties of model parameters, costs and benefits. RESULTS The results showed that 55.3% of new P. vivax malaria cases were averted, and $696 214 in medical costs was saved over 10 years after RDT introduction. The estimated IBCR was 2.5, indicating that RDT implementation was beneficial, compared with microscopy alone. The IBCR was sensitive to the diagnosis time reduction, infectious period and short latency period, and provided beneficial results in a benefit over $10.6 or RDT cost under $39.7. CONCLUSIONS The model simulation suggested that RDTs could significantly reduce P. vivax malaria incidence and medical costs. Moreover, cost-benefit analysis demonstrated that the introduction of RDTs was beneficial over microscopy alone. These results support the need for widespread adoption of RDTs.
Collapse
Affiliation(s)
- Jung Ho Kim
- Department of Internal Medicine, AIDS Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Jiyeon Suh
- School of Mathematics and Computing (Computational Science and Engineering), Yonsei University, Seoul, South Korea
| | - Woon Ji Lee
- Department of Internal Medicine, AIDS Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Heun Choi
- Department of Internal Medicine, National Health Insurance Service Ilsan hospital, Goyang, South Korea
| | - Jong-Dae Kim
- Department of General Surgery, Bestian Woosong Hospital, Daejeon, South Korea
| | - Changsoo Kim
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Jun Yong Choi
- Department of Internal Medicine, AIDS Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Ryeojin Ko
- Department of Healthcare Technology Assessment Research, National Evidence-based Healthcare Collaborating Agency, Seoul, South Korea
| | - Heewon Kim
- Department of Healthcare Technology Assessment Research, National Evidence-based Healthcare Collaborating Agency, Seoul, South Korea
| | - Jeehyun Lee
- School of Mathematics and Computing, Yonsei University, Seoul, South Korea
| | - Joon Sup Yeom
- Department of Internal Medicine, AIDS Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
9
|
JAMEIE F, DALIMI A, PIRESTANI M, MOHEBALI M. Development of a Multi-Epitope Recombinant Protein for the Diagnosis of Human Visceral Leishmaniasis. IRANIAN JOURNAL OF PARASITOLOGY 2021; 16:1-10. [PMID: 33786042 PMCID: PMC7988677 DOI: 10.18502/ijpa.v16i1.5506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/10/2019] [Indexed: 11/24/2022]
Abstract
BACKGROUND Iran is one of the endemic areas of Mediterranean Visceral Leishmaniasis, a disease caused by Leishmania infantum. In this work, we examined whether Proteína quimérica 10 (PQ10) recombinant protein is suitable for immunological diagnosis of human visceral leishmaniasis. METHODS The study was carried out in Tarbiat Modares University during 2016-2018. The coding sequence of PQ10 recombinant protein was sub-cloned in pET28 expression vector and was commercially synthesized by GENERAY Biotechnology, China. Sequencing with proper primers was done, the expression, optimization of expression and protein purification were performed, and the purified recombinant protein was confirmed by western blot. The efficacy of PQ10 for serodiagnosis was evaluated with 50 positive and 50 negative serum samples, which confirmed by the direct agglutination test and collected from individuals living in the visceral leishmaniasis endemic areas of Iran. ELISA was performed with the PQ10 recombinant protein. RESULTS The 95% CI sensitivity of ELISA that was evaluated with sera from naturally infected individuals was 84%. The 95% CI specificity value of the ELISA determined with sera from healthy individuals (50 serum samples) and from individuals with other infectious diseases was 82%. The 95% CI positive predictive value (PPV) and negative predictive value (NPV) were exterminated 82.35% and 83.67%, respectively. CONCLUSION We have used a recombinant synthetic protein to improve serodiagnosis of human visceral leishmaniasis. PQ10 could be useful for diagnosis of asymptomatic cases, as well as in the early phase of infections.
Collapse
Affiliation(s)
- Farnoosh JAMEIE
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abdolhossein DALIMI
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Majid PIRESTANI
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehdi MOHEBALI
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Abstract
BACKGROUND Plasmodium vivax (P vivax) is a focus of malaria elimination. It is important because P vivax and Plasmodium falciparum infection are co-endemic in some areas. There are asymptomatic carriers of P vivax, and the treatment for P vivax and Plasmodium ovale malaria differs from that used in other types of malaria. Rapid diagnostic tests (RDTs) will help distinguish P vivax from other malaria species to help treatment and elimination. There are RDTs available that detect P vivax parasitaemia through the detection of P vivax-specific lactate dehydrogenase (LDH) antigens. OBJECTIVES To assess the diagnostic accuracy of RDTs for detecting P vivax malaria infection in people living in malaria-endemic areas who present to ambulatory healthcare facilities with symptoms suggestive of malaria; and to identify which types and brands of commercial tests best detect P vivax malaria. SEARCH METHODS We undertook a comprehensive search of the following databases up to 30 July 2019: Cochrane Infectious Diseases Group Specialized Register; Central Register of Controlled Trials (CENTRAL), published in the Cochrane Library; MEDLINE (PubMed); Embase (OVID); Science Citation Index Expanded (SCI-EXPANDED) and Conference Proceedings Citation Index-Science (CPCI-S), both in the Web of Science. SELECTION CRITERIA Studies comparing RDTs with a reference standard (microscopy or polymerase chain reaction (PCR)) in blood samples from patients attending ambulatory health facilities with symptoms suggestive of malaria in P vivax-endemic areas. DATA COLLECTION AND ANALYSIS For each included study, two review authors independently extracted data using a pre-piloted data extraction form. The methodological quality of the studies were assessed using a tailored Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool. We grouped studies according to commercial brand of the RDT and performed meta-analysis when appropriate. The results given by the index tests were based on the antibody affinity (referred to as the strength of the bond between an antibody and an antigen) and avidity (referred to as the strength of the overall bond between a multivalent antibody and multiple antigens). All analyses were stratified by the type of reference standard. The bivariate model was used to estimate the pooled sensitivity and specificity with 95% confidence intervals (CIs), this model was simplified when studies were few. We assessed the certainty of the evidence using the GRADE approach. MAIN RESULTS We included 10 studies that assessed the accuracy of six different RDT brands (CareStart Malaria Pf/Pv Combo test, Falcivax Device Rapid test, Immuno-Rapid Malaria Pf/Pv test, SD Bioline Malaria Ag Pf/Pv test, OnSite Pf/Pv test and Test Malaria Pf/Pv rapid test) for detecting P vivax malaria. One study directly compared the accuracy of two RDT brands. Of the 10 studies, six used microscopy, one used PCR, two used both microscopy and PCR separately and one used microscopy corrected by PCR as the reference standard. Four of the studies were conducted in Ethiopia, two in India, and one each in Bangladesh, Brazil, Colombia and Sudan. The studies often did not report how patients were selected. In the patient selection domain, we judged the risk of bias as unclear for nine studies. We judged all studies to be of unclear applicability concern. In the index test domain, we judged most studies to be at low risk of bias, but we judged nine studies to be of unclear applicability concern. There was poor reporting on lot testing, how the RDTs were stored, and background parasitaemia density (a key variable determining diagnostic accuracy of RDTs). Only half of the included studies were judged to be at low risk of bias in the reference standard domain, Studies often did not report whether the results of the reference standard could classify the target condition or whether investigators knew the results of the RDT when interpreting the results of the reference standard. All 10 studies were judged to be at low risk of bias in the flow and timing domain. Only two brands were evaluated by more than one study. Four studies evaluated the CareStart Malaria Pf/Pv Combo test against microscopy and two studies evaluated the Falcivax Device Rapid test against microscopy. The pooled sensitivity and specificity were 99% (95% CI 94% to 100%; 251 patients, moderate-certainty evidence) and 99% (95% CI 99% to 100%; 2147 patients, moderate-certainty evidence) for CareStart Malaria Pf/Pv Combo test. For a prevalence of 20%, about 206 people will have a positive CareStart Malaria Pf/Pv Combo test result and the remaining 794 people will have a negative result. Of the 206 people with positive results, eight will be incorrect (false positives), and of the 794 people with a negative result, two would be incorrect (false negative). For the Falcivax Device Rapid test, the pooled sensitivity was 77% (95% CI: 53% to 91%, 89 patients, low-certainty evidence) and the pooled specificity was 99% (95% CI: 98% to 100%, 621 patients, moderate-certainty evidence), respectively. For a prevalence of 20%, about 162 people will have a positive Falcivax Device Rapid test result and the remaining 838 people will have a negative result. Of the 162 people with positive results, eight will be incorrect (false positives), and of the 838 people with a negative result, 46 would be incorrect (false negative). AUTHORS' CONCLUSIONS The CareStart Malaria Pf/Pv Combo test was found to be highly sensitive and specific in comparison to microscopy for detecting P vivax in ambulatory healthcare in endemic settings, with moderate-certainty evidence. The number of studies included in this review was limited to 10 studies and we were able to estimate the accuracy of 2 out of 6 RDT brands included, the CareStart Malaria Pf/Pv Combo test and the Falcivax Device Rapid test. Thus, the differences in sensitivity and specificity between all the RDT brands could not be assessed. More high-quality studies in endemic field settings are needed to assess and compare the accuracy of RDTs designed to detect P vivax.
Collapse
Affiliation(s)
- Ridhi Agarwal
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Leslie Choi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Samuel Johnson
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Yemisi Takwoingi
- Test Evaluation Research Group, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| |
Collapse
|
11
|
Park SH, Jegal S, Ahn SK, Jung H, Lee J, Na BK, Hong SJ, Bahk YY, Kim TS. Diagnostic Performance of Three Rapid Diagnostic Test Kits for Malaria Parasite Plasmodium falciparum. THE KOREAN JOURNAL OF PARASITOLOGY 2020; 58:147-152. [PMID: 32418383 PMCID: PMC7231823 DOI: 10.3347/kjp.2020.58.2.147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 03/21/2020] [Indexed: 01/27/2023]
Abstract
Malaria is a potent burden on public healthcare worldwide due to requiring rapid diagnosis and treatment. Nowadays, prompt diagnosis with rapid diagnostic tests (RDTs) has been widely accepted as an effective diagnostic technique in malaria-endemic countries, primarily due to their easy operation, fast output, and straightforward interpretation. The global availability and use of RDTs have gradually grown over recent decades as field-applicable diagnostic tests for the reliable confirmation of malaria infection and proper case management. This study was conducted to evaluate diagnostic performance of 3 commercially available malaria RDT kits : BIOCREDITTM Malaria Ag Pf(pLDH), Malaria Ag Pf(pLDH/pHRPII), and Malaria Ag Pf/Pv(pLDH/pLDH) (where pLDH and pHRPII stand for plasmodium lactate dehydrogenase and histidine-rich protein 2, respectively) for the specific detection of Plasmodium falciparum. A total of 1,129 blood samples including 95 blood samples, confirmed as vivax malaria infection by microscopic examinations and a nested-PCR method, were tested for falciparum malaria infection. The overall sensitivity and specificity of Malaria Ag Pf(pLDH/pHRPII), Malaria Ag Pf/Pv(pLDH/pLDH), and Pf(pLDH) for P. falciparum were 99.0% and 100%, 95.8% and 100%, and 100% and 100%, respectively. It is proposed that the 3 RDT kits perform reliable level of diagnostic accuracy of detection for P. falciparum parasites.
Collapse
Affiliation(s)
- Seo Hye Park
- Department of Tropical Medicine & Global Resource Bank of Parasitic Protozoa Pathogens, Inha University School of Medicine, Incheon 22212, Korea
| | - Seung Jegal
- Department of Infectious Diseases Diagnosis, Incheon Metropolitan City Institute of Public Health and Environment, Incheon 22320, Korea
| | - Seong Kyu Ahn
- Department of Tropical Medicine & Global Resource Bank of Parasitic Protozoa Pathogens, Inha University School of Medicine, Incheon 22212, Korea
| | - Haneul Jung
- Department of Tropical Medicine & Global Resource Bank of Parasitic Protozoa Pathogens, Inha University School of Medicine, Incheon 22212, Korea
| | - Jinyoung Lee
- Department of Tropical Medicine & Global Resource Bank of Parasitic Protozoa Pathogens, Inha University School of Medicine, Incheon 22212, Korea
| | - Byoung-Kuk Na
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 52828, Korea.,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju 2828, Korea
| | - Sung-Jong Hong
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul 06974, Korea
| | - Young Yil Bahk
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju 27478, Korea
| | - Tong-Soo Kim
- Department of Tropical Medicine & Global Resource Bank of Parasitic Protozoa Pathogens, Inha University School of Medicine, Incheon 22212, Korea
| |
Collapse
|
12
|
Garrison A, Khoshnood B, Courtin D, Milet J, Garcia A, Massougbodji A, Ayotte P, Cot M, Bodeau-Livinec F. Blood lead level in infants and subsequent risk of malaria: A prospective cohort study in Benin, Sub-Saharan Africa. PLoS One 2019; 14:e0220023. [PMID: 31318954 PMCID: PMC6638975 DOI: 10.1371/journal.pone.0220023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 07/08/2019] [Indexed: 11/23/2022] Open
Abstract
Lead and malaria both present significant health risks to children in Sub-Saharan Africa. Previous studies have shown that high blood lead levels in children act as a protective factor against subsequent malaria incidence. The main objective of this study was to investigate associations between blood lead level and malaria outcomes prospectively in Beninese children from 12 to 24 months of age. Two-hundred and four children were assessed for lead at 12 months and closely followed until 24 months for malaria; when symptoms and parasite density were also recorded. Univariate and multivariate negative binomial and linear regression models tested associations between blood lead level quartile and total episodes of malaria (total symptomatic and asymptomatic episodes) and parasite density, respectively. Median blood lead level among children measured at 12 months was 56.50 (4.81-578) μg/L. During the 12-month follow-up, 172 (84.31%) children had at least one malaria episode. Univariate and multivariate negative binomial and linear regressions did not reveal significant associations between blood lead level quartile and malaria outcomes. Iron deficiency was not found to be an effect modifier. Results from this prospective child-cohort study investigating associations between blood lead level and malaria did not confirm results from previous cross-sectional studies. Further research is needed to further explore this relationship and other co-morbidities due to malaria and lead.
Collapse
Affiliation(s)
- Amanda Garrison
- INSERM UMR1153 Equipe de recherche en Epidémiologie Obstétricale, Périnatale, et Pédiatrique (EPOPé), Center for Epidemiology and Statistics, Sorbonne Paris Cité (CRESS), Paris, France
- Sorbonne Universités, UPMC Université Paris 6, Paris, France
- Ecole des Hautes Etudes en Santé Publique (EHESP), Saint Denis, France
| | - Babak Khoshnood
- INSERM UMR1153 Equipe de recherche en Epidémiologie Obstétricale, Périnatale, et Pédiatrique (EPOPé), Center for Epidemiology and Statistics, Sorbonne Paris Cité (CRESS), Paris, France
| | - David Courtin
- Mère et enfant face aux infections tropicales (MERIT), l’Institut de Recherche pour le Développement (IRD), Université Paris 5, Sorbonne Paris Cité, Paris, France
| | - Jacqueline Milet
- Mère et enfant face aux infections tropicales (MERIT), l’Institut de Recherche pour le Développement (IRD), Université Paris 5, Sorbonne Paris Cité, Paris, France
| | - André Garcia
- Mère et enfant face aux infections tropicales (MERIT), l’Institut de Recherche pour le Développement (IRD), Université Paris 5, Sorbonne Paris Cité, Paris, France
| | | | - Pierre Ayotte
- Institut National de Santé Publique du Québec, Québec City, Canada
| | - Michel Cot
- Mère et enfant face aux infections tropicales (MERIT), l’Institut de Recherche pour le Développement (IRD), Université Paris 5, Sorbonne Paris Cité, Paris, France
| | - Florence Bodeau-Livinec
- INSERM UMR1153 Equipe de recherche en Epidémiologie Obstétricale, Périnatale, et Pédiatrique (EPOPé), Center for Epidemiology and Statistics, Sorbonne Paris Cité (CRESS), Paris, France
- Ecole des Hautes Etudes en Santé Publique (EHESP), Saint Denis, France
| |
Collapse
|
13
|
Dalrymple U, Arambepola R, Gething PW, Cameron E. How long do rapid diagnostic tests remain positive after anti-malarial treatment? Malar J 2018; 17:228. [PMID: 29884184 PMCID: PMC5994115 DOI: 10.1186/s12936-018-2371-9] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 05/28/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Rapid diagnostic tests (RDTs) are increasingly becoming a paradigm for both clinical diagnosis of malaria infections and for estimating community parasite prevalence in household malaria indicator surveys in malaria-endemic countries. The antigens detected by RDTs are known to persist in the blood after treatment with anti-malarials, but reports on the duration of persistence (and the effect this has on RDT positivity) of these antigens post-treatment have been variable. METHODS In this review, published studies on the persistence of positivity of RDTs post-treatment are collated, and a bespoke Bayesian survival model is fit to estimate the number of days RDTs remain positive after treatment. RESULTS Half of RDTs that detect the antigen histidine-rich protein II (HRP2) are still positive 15 (5-32) days post-treatment, 13 days longer than RDTs that detect the antigen Plasmodium lactate dehydrogenase, and that 5% of HRP2 RDTs are still positive 36 (21-61) days after treatment. The duration of persistent positivity for combination RDTs that detect both antigens falls between that for HRP2- or pLDH-only RDTs, with half of RDTs remaining positive at 7 (2-20) days post-treatment. This study shows that children display persistent RDT positivity for longer after treatment than adults, and that persistent positivity is more common when an individual is treated with artemisinin combination therapy than when treated with other anti-malarials. CONCLUSIONS RDTs remain positive for a highly variable amount of time after treatment with anti-malarials, and the duration of positivity is highly dependent on the type of RDT used for diagnosis. Additionally, age and treatment both impact the duration of persistence of RDT positivity. The results presented here suggest that caution should be taken when using RDT-derived diagnostic outcomes from cross-sectional data where individuals have had a recent history of anti-malarial treatment.
Collapse
Affiliation(s)
- Ursula Dalrymple
- Department of Zoology, University of Oxford, New Radcliffe House, Radcliffe Observatory Quarter, Woodstock Rd, Oxford, OX2 6GG, UK. .,Big Data Institute, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus, Oxford, OX3 7LF, UK.
| | - Rohan Arambepola
- Big Data Institute, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus, Oxford, OX3 7LF, UK
| | - Peter W Gething
- Big Data Institute, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus, Oxford, OX3 7LF, UK
| | - Ewan Cameron
- Big Data Institute, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus, Oxford, OX3 7LF, UK
| |
Collapse
|
14
|
Leow CH, Fischer K, Leow CY, Cheng Q, Chuah C, McCarthy J. Single Domain Antibodies as New Biomarker Detectors. Diagnostics (Basel) 2017; 7:diagnostics7040052. [PMID: 29039819 PMCID: PMC5745390 DOI: 10.3390/diagnostics7040052] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 01/02/2023] Open
Abstract
Biomarkers are defined as indicators of biological processes, pathogenic processes, or pharmacological responses to a therapeutic intervention. Biomarkers have been widely used for early detection, prediction of response after treatment, and for monitoring the progression of diseases. Antibodies represent promising tools for recognition of biomarkers, and are widely deployed as analytical tools in clinical settings. For immunodiagnostics, antibodies are now exploited as binders for antigens of interest across a range of platforms. More recently, the discovery of antibody surface display and combinatorial chemistry techniques has allowed the exploration of new binders from a range of animals, for instance variable domains of new antigen receptors (VNAR) from shark and variable heavy chain domains (VHH) or nanobodies from camelids. These single domain antibodies (sdAbs) have some advantages over conventional murine immunoglobulin owing to the lack of a light chain, making them the smallest natural biomarker binders thus far identified. In this review, we will discuss several biomarkers used as a means to validate diseases progress. The potential functionality of modern singe domain antigen binders derived from phylogenetically early animals as new biomarker detectors for current diagnostic and research platforms development will be described.
Collapse
Affiliation(s)
- Chiuan Herng Leow
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Katja Fischer
- Bacterial Pathogenesis and Scabies Laboratory, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia.
| | - Chiuan Yee Leow
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Kelantan 16150, Malaysia.
| | - Qin Cheng
- Department of Drug Resistance and Diagnostics, Australian Army Malaria Institute, Brisbane 4051, Australia.
| | - Candy Chuah
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan 16150, Malaysia.
| | - James McCarthy
- Clinical Tropical Medicine Laboratory, QIMR Berghofer Medical Research Institute, Brisbane 4029, Australia.
| |
Collapse
|
15
|
Cardoso AR, Cabral-Miranda G, Reyes-Sandoval A, Bachmann MF, Sales MGF. Detecting circulating antibodies by controlled surface modification with specific target proteins: Application to malaria. Biosens Bioelectron 2017; 91:833-841. [DOI: 10.1016/j.bios.2017.01.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 01/13/2017] [Indexed: 01/10/2023]
|
16
|
Rogier E, Plucinski M, Lucchi N, Mace K, Chang M, Lemoine JF, Candrinho B, Colborn J, Dimbu R, Fortes F, Udhayakumar V, Barnwell J. Bead-based immunoassay allows sub-picogram detection of histidine-rich protein 2 from Plasmodium falciparum and estimates reliability of malaria rapid diagnostic tests. PLoS One 2017; 12:e0172139. [PMID: 28192523 PMCID: PMC5305216 DOI: 10.1371/journal.pone.0172139] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/31/2017] [Indexed: 11/18/2022] Open
Abstract
Detection of histidine-rich protein 2 (HRP2) from the malaria parasite Plasmodium falciparum provides evidence for active or recent infection, and is utilized for both diagnostic and surveillance purposes, but current laboratory immunoassays for HRP2 are hindered by low sensitivities and high costs. Here we present a new HRP2 immunoassay based on antigen capture through a bead-based system capable of detecting HRP2 at sub-picogram levels. The assay is highly specific and cost-effective, allowing fast processing and screening of large numbers of samples. We utilized the assay to assess results of HRP2-based rapid diagnostic tests (RDTs) in different P. falciparum transmission settings, generating estimates for true performance in the field. Through this method of external validation, HRP2 RDTs were found to perform well in the high-endemic areas of Mozambique and Angola with 86.4% and 73.9% of persons with HRP2 in their blood testing positive by RDTs, respectively, and false-positive rates of 4.3% and 0.5%. However, in the low-endemic setting of Haiti, only 14.5% of persons found to be HRP2 positive by the bead assay were RDT positive. Additionally, 62.5% of Haitians showing a positive RDT test had no detectable HRP2 by the bead assay, likely indicating that these were false positive tests. In addition to RDT validation, HRP2 biomass was assessed for the populations in these different settings, and may provide an additional metric by which to estimate P. falciparum transmission intensity and measure the impact of interventions.
Collapse
Affiliation(s)
- Eric Rogier
- The Centers for Disease Control and Prevention, Center for Global Health, Division of Parasitic Diseases and Malaria, Malaria Branch, Atlanta, GA, United States of America
- * E-mail:
| | - Mateusz Plucinski
- The Centers for Disease Control and Prevention, Center for Global Health, Division of Parasitic Diseases and Malaria, Malaria Branch, Atlanta, GA, United States of America
| | - Naomi Lucchi
- The Centers for Disease Control and Prevention, Center for Global Health, Division of Parasitic Diseases and Malaria, Malaria Branch, Atlanta, GA, United States of America
| | - Kimberly Mace
- The Centers for Disease Control and Prevention, Center for Global Health, Division of Parasitic Diseases and Malaria, Malaria Branch, Atlanta, GA, United States of America
| | - Michelle Chang
- The Centers for Disease Control and Prevention, Center for Global Health, Division of Parasitic Diseases and Malaria, Malaria Branch, Atlanta, GA, United States of America
| | - Jean Frantz Lemoine
- Programme National de Contrôle de la Malaria, Ministère de la Santé Publique et de la Population (MSPP), Port-au-Prince, Haiti
| | | | - James Colborn
- Clinton Health Access Initiative, Boston, Massachusetts, United States of America
| | - Rafael Dimbu
- National Malaria Control Program, Luanda, Angola
| | | | - Venkatachalam Udhayakumar
- The Centers for Disease Control and Prevention, Center for Global Health, Division of Parasitic Diseases and Malaria, Malaria Branch, Atlanta, GA, United States of America
| | - John Barnwell
- The Centers for Disease Control and Prevention, Center for Global Health, Division of Parasitic Diseases and Malaria, Malaria Branch, Atlanta, GA, United States of America
| |
Collapse
|
17
|
Labbé AC, Pillai DR, Hongvangthong B, Vanisaveth V, Pomphida S, Inkathone S, Hay Burgess DC, Kain KC. The performance and utility of rapid diagnostic assays forPlasmodium falciparummalaria in a field setting in the Lao People's Democratic Republic. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2016. [DOI: 10.1080/00034983.2001.11813684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
18
|
Mirahmadi H, Fallahi S, Seyyed Tabaei SJ. Soluble recombinant merozoite surface antigen-142kDa of Plasmodium vivax: An improved diagnostic antigen for vivax malaria. J Microbiol Methods 2016; 123:44-50. [PMID: 26851675 DOI: 10.1016/j.mimet.2016.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/30/2016] [Accepted: 02/01/2016] [Indexed: 11/29/2022]
Abstract
Enzyme Linked Immunosorbent Assay (ELISA), as a serological test, can be a beneficial tool for epidemiological studies by screening blood donors and diagnosis of specific antibodies from Plasmodium vivax (P. vivax) infected cases. Since P. vivax cannot easily be acquired in vitro, ELISA assays using total or semi-purified antigens are seldom used. On the basis of this restriction, we examined whether recombinant protein 42 kDa related to C-terminal region of the merozoite surface antigen-1 of P. vivax (MSA-1(42)) could be suitable for serological detection of vivax malaria infection. Purified recombinant protein produced in Escherichia coli (E. coli) (GST-MSA-1(42)) was examined for its ability to bind to IgG antibodies of individuals with patent P. vivax infection. The method was tested with 262 serum samples collected from individuals living in the south and southeastern regions of Iran where malaria is endemic. Samples exposed to Plasmodium falciparum (P. falciparum) infection and patients with other infectious disease (toxoplasmosis, Leishmania infantum infection, echinococcosis and FUO (fever with unknown origin)) except for P. falciparum were residing in non- malaria endemic areas in Iran. Generally, the sensitivity of ELISA evaluated with sera from naturally infected individuals was 86.9%. The specificity value of the ELISA determined with sera from healthy individuals and from individuals with other infectious diseases was 94.05%. The positive predictive value (PPV), negative predictive value (NPV) provided, and the diagnostic efficiency of anti-rPvMSA-1(42) antibody using indirect ELISA were determined 93.58, 87.77 and 91.06% respectively. Our study demonstrated that, because MSA-1(42) kDa contains both the 33 and 19 kDa fragments in its structure, it can serve as the basis for the development of a sensitive serological test which can be used for epidemiological studies, screening blood donors and diagnosis of P. vivax malaria.
Collapse
Affiliation(s)
- Hadi Mirahmadi
- Infectious Diseases and Tropical Medicine Research Center, Zahedan University of Medical Sciences, Zahedan, Iran; Department of Parasitology and Mycology, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Shirzad Fallahi
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran; Department of Parasitology and Mycology, Facultyof Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Seyyed Javad Seyyed Tabaei
- Department of Parasitology and Mycology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Ahmed R, Levy EI, Maratina SS, de Jong JJ, Asih PBS, Rozi IE, Hawley W, Syafruddin D, ter Kuile F. Performance of four HRP-2/pLDH combination rapid diagnostic tests and field microscopy as screening tests for malaria in pregnancy in Indonesia: a cross-sectional study. Malar J 2015; 14:420. [PMID: 26511932 PMCID: PMC4625567 DOI: 10.1186/s12936-015-0943-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 10/11/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria in pregnancy poses a major public health problem in Indonesia with an estimated six million pregnancies at risk of Plasmodium falciparum or Plasmodium vivax malaria annually. In 2010, Indonesia introduced a screen and treat policy for the control of malaria in pregnancy at first antenatal visit using microscopy or rapid diagnostic tests (RDTs). A diagnostic study was conducted in Sumba, Indonesia to compare the performance of four different RDTs in predominately asymptomatic pregnant women under field condition. METHODS Women were screened for malaria at antenatal visits using field microscopy and four HRP-2/pLDH combination RDTs (Carestart™, First-Response(®), Parascreen(®) and SD-Bioline(®)). The test results were compared with expert microscopy and nested PCR. End user experience of the RDTs in the field was assessed by questionnaire. RESULTS Overall 950 were recruited and 98.7 % were asymptomatic. The prevalence of malaria was 3.0-3.4 % by RDTs, and 3.6, 5.0 and 6.6 % by field microscopy, expert microscopy and PCR, respectively. The geometric-mean parasite density was low (P. falciparum = 418, P. vivax = 147 parasites/µL). Compared with PCR, the overall sensitivity of the RDTs and field microscopy to detect any species was 24.6-31.1 %; specificities were >98.4 %. Relative to PCR, First-Response(®) had the best diagnostic accuracy (any species): sensitivity = 31.1 %, specificity = 98.9 % and diagnostic odds ratio = 39.0 (DOR). The DOR values for Carestart™, Parascreen(®), SD-Bioline(®), and field microscopy were 23.4, 23.7, 23.5 and 29.2, respectively. The sensitivity of Pan-pLDH bands to detect PCR confirmed P. vivax mono-infection were 8.6-13.0 %. The sensitivity of the HRP-2 band alone to detect PCR confirmed P. falciparum was 10.3-17.9 %. Pan-pLDH detected P. falciparum cases undetected by the HRP-2 band resulting in a better test performance when both bands were combined. First Response(®) was preferred by end-users for the overall practicality. CONCLUSION The diagnostic accuracy to detect malaria among mostly asymptomatic pregnant women and perceived ease of use was slightly better with First-Response(®), but overall, differences between the four RDTs were small and performance comparable to field microscopy. Combination RDTs are a suitable alternative to field microscopy to screen for malaria in pregnancy in rural Indonesia. The clinical relevance of low density malaria infections detected by PCR, but undetected by RDTs or microscopy needs to be determined.
Collapse
Affiliation(s)
- Rukhsana Ahmed
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | - Elvira I Levy
- Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands.
| | - Sylvia S Maratina
- Malaria Laboratory, Eijkman Institute for Molecular Biology, Jakarta, Indonesia.
| | - Judith J de Jong
- Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands.
| | - Puji B S Asih
- Malaria Laboratory, Eijkman Institute for Molecular Biology, Jakarta, Indonesia.
| | - Ismail E Rozi
- Malaria Laboratory, Eijkman Institute for Molecular Biology, Jakarta, Indonesia.
| | | | - Din Syafruddin
- Malaria Laboratory, Eijkman Institute for Molecular Biology, Jakarta, Indonesia.
| | - Feiko ter Kuile
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| |
Collapse
|
20
|
Golassa L, Baliraine FN, Enweji N, Erko B, Swedberg G, Aseffa A. Microscopic and molecular evidence of the presence of asymptomatic Plasmodium falciparum and Plasmodium vivax infections in an area with low, seasonal and unstable malaria transmission in Ethiopia. BMC Infect Dis 2015; 15:310. [PMID: 26242405 PMCID: PMC4526179 DOI: 10.1186/s12879-015-1070-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/29/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The presence of asymptomatic infections has serious implications for malaria elimination campaigns. Since asymptomatic carriers do not seek treatment for their infection and may become gametocyte carriers, they undoubtedly contribute to the persistence of malaria transmission in a population. The presence of asymptomatic parasitemias was noted in areas with seasonal malaria transmission. In Ethiopia there is a paucity of data regarding the prevalence of asymptomatic malaria carriage. This study was undertaken to assess the presence and prevalence of asymptomatic Plasmodium falciparum and Plasmodium vivax infections in south-central Oromia, Ethiopia. METHODS A total of 1094 apparently healthy individuals ≥ 2 years of age in south-central Oromia, Ethiopia, an area with seasonal and unstable malaria transmission, were screened for the presence of asymptomatic plasmodial infections. Finger-prick blood samples were taken from each participant for blood film preparation for microscopy and the rapid diagnostic test (RDT). Blood samples were also spotted on Whatman 3MM filter paper for parasite DNA extraction. RESULTS The prevalence of asymptomatic Plasmodium carriage (P. falciparum, P. vivax and mixed species) was 5.0 % (55/1,094) as determined by microscopy, while the prevalence as determined using RDT was 8.2 % (90/1,094). PCR was done on 47 of 55 microscopy-confirmed and on 79 of 90 RDT-confirmed samples. PCR detected parasite DNA in 89.4 % (42/47) of the microscopy-positive samples and in 77.2 % (61/79) of the RDT-positive samples. No significant difference was observed in the prevalence of asymptomatic P. falciparum or P. vivax infections in the study area (P > 0.1). However, the prevalence of asymptomatic parasitaemia was significantly associated with gender (OR = 0.47, P = 0.015; being higher in males than females) and age (X(2) = 25, P < 0.001; being higher in younger than in older individuals). Age and parasite densities had an inverse relationship. CONCLUSIONS This study confirms the presence of asymptomatic P. falciparum and P. vivax infections in south-central Oromia, an area with low, seasonal and unstable malaria transmission in Ethiopia. Of 55 microscopically confirmed asymptomatic infections, P. falciparum monoinfection accounted for 45.5 % and of 90 RDT positive asymptomatic infections, 66.7 % were P. falciparum. Although not statistically significant, P. falciparum accounted for a relatively large number of the asymptomatic infections as determined by both tests. The prevalence of asymptomatic parasitaemia was highest in the younger age group. HRP-2-based RDTs specific for P. falciparum showed high false positivity rate compared to Plasmodium lactate dehydrogenase (pLDH) specific to P. vivax. Although microscopy and RDT detected substantial numbers of asymptomatic infections in apparently healthy inhabitants, the use of a highly sensitive molecular diagnostics offers a more accurate assessment of the magnitude of asymptomatic infections.
Collapse
Affiliation(s)
- Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia. .,Armauer Hansen Research Institute, Addis Ababa, Ethiopia.
| | | | - Nizar Enweji
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| | - Berhanu Erko
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia.
| | - Göte Swedberg
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia.
| |
Collapse
|
21
|
DNA Sequence Polymorphism of the Lactate Dehydrogenase Genefrom Iranian Plasmodium vivax and Plasmodium falciparum Isolates. IRANIAN JOURNAL OF PARASITOLOGY 2015; 10:505-16. [PMID: 26811715 PMCID: PMC4724825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Parasite lactate dehydrogenase (pLDH) is extensively employed as malaria rapid diagnostic tests (RDTs). Moreover, it is a well-known drug target candidate. However, the genetic diversity of this gene might influence performance of RDT kits and its drug target candidacy. This study aimed to determine polymorphism of pLDH gene from Iranian isolates of P. vivax and P. falciparum. METHODS Genomic DNA was extracted from whole blood of microscopically confirmed P. vivax and P. falciparum infected patients. pLDH gene of P. falciparum and P. vivax was amplified using conventional PCR from 43 symptomatic malaria patients from Sistan and Baluchistan Province, Southeast Iran from 2012 to 2013. RESULTS Sequence analysis of 15 P. vivax LDH showed fourteen had 100% identity with P. vivax Sal-1 and Belem strains. Two nucleotide substitutions were detected with only one resulted in amino acid change. Analysis of P. falciparum LDH sequences showed six of the seven sequences had 100% homology with P. falciparum 3D7 and Mzr-1. Moreover, PfLDH displayed three nucleotide changes that resulted in changing only one amino acid. PvLDH and PfLDH showed 75%-76% nucleotide and 90.4%-90.76% amino acid homology. CONCLUSION pLDH gene from Iranian P. falciparum and P. vivax isolates displayed 98.8-100% homology with 1-3 nucleotide substitutions. This indicated this gene was relatively conserved. Additional studies can be done weather this genetic variation can influence the performance of pLDH based RDTs or not.
Collapse
|
22
|
Abba K, Kirkham AJ, Olliaro PL, Deeks JJ, Donegan S, Garner P, Takwoingi Y. Rapid diagnostic tests for diagnosing uncomplicated non-falciparum or Plasmodium vivax malaria in endemic countries. Cochrane Database Syst Rev 2014; 2014:CD011431. [PMID: 25519857 PMCID: PMC4453861 DOI: 10.1002/14651858.cd011431] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND In settings where both Plasmodium vivax and Plasmodium falciparum infection cause malaria, rapid diagnostic tests (RDTs) need to distinguish which species is causing the patients' symptoms, as different treatments are required. Older RDTs incorporated two test lines to distinguish malaria due to P. falciparum, from malaria due to any other Plasmodium species (non-falciparum). These RDTs can be classified according to which antibodies they use: Type 2 RDTs use HRP-2 (for P. falciparum) and aldolase (all species); Type 3 RDTs use HRP-2 (for P. falciparum) and pLDH (all species); Type 4 use pLDH (fromP. falciparum) and pLDH (all species).More recently, RDTs have been developed to distinguish P. vivax parasitaemia by utilizing a pLDH antibody specific to P. vivax. OBJECTIVES To assess the diagnostic accuracy of RDTs for detecting non-falciparum or P. vivax parasitaemia in people living in malaria-endemic areas who present to ambulatory healthcare facilities with symptoms suggestive of malaria, and to identify which types and brands of commercial test best detect non-falciparum and P. vivax malaria. SEARCH METHODS We undertook a comprehensive search of the following databases up to 31 December 2013: Cochrane Infectious Diseases Group Specialized Register; MEDLINE; EMBASE; MEDION; Science Citation Index; Web of Knowledge; African Index Medicus; LILACS; and IndMED. SELECTION CRITERIA Studies comparing RDTs with a reference standard (microscopy or polymerase chain reaction) in blood samples from a random or consecutive series of patients attending ambulatory health facilities with symptoms suggestive of malaria in non-falciparum endemic areas. DATA COLLECTION AND ANALYSIS For each study, two review authors independently extracted a standard set of data using a tailored data extraction form. We grouped comparisons by type of RDT (defined by the combinations of antibodies used), and combined in meta-analysis where appropriate. Average sensitivities and specificities are presented alongside 95% confidence intervals (95% CI). MAIN RESULTS We included 47 studies enrolling 22,862 participants. Patient characteristics, sampling methods and reference standard methods were poorly reported in most studies. RDTs detecting 'non-falciparum' parasitaemiaEleven studies evaluated Type 2 tests compared with microscopy, 25 evaluated Type 3 tests, and 11 evaluated Type 4 tests. In meta-analyses, average sensitivities and specificities were 78% (95% CI 73% to 82%) and 99% (95% CI 97% to 99%) for Type 2 tests, 78% (95% CI 69% to 84%) and 99% (95% CI 98% to 99%) for Type 3 tests, and 89% (95% CI 79% to 95%) and 98% (95% CI 97% to 99%) for Type 4 tests, respectively. Type 4 tests were more sensitive than both Type 2 (P = 0.01) and Type 3 tests (P = 0.03).Five studies compared Type 3 tests with PCR; in meta-analysis, the average sensitivity and specificity were 81% (95% CI 72% to 88%) and 99% (95% CI 97% to 99%) respectively. RDTs detecting P.vivax parasitaemiaEight studies compared pLDH tests to microscopy; the average sensitivity and specificity were 95% (95% CI 86% to 99%) and 99% (95% CI 99% to 100%), respectively. AUTHORS' CONCLUSIONS RDTs designed to detect P. vivax specifically, whether alone or as part of a mixed infection, appear to be more accurate than older tests designed to distinguish P. falciparum malaria from non-falciparum malaria. Compared to microscopy, these tests fail to detect around 5% ofP. vivax cases. This Cochrane Review, in combination with other published information about in vitro test performance and stability in the field, can assist policy-makers to choose between the available RDTs.
Collapse
Affiliation(s)
- Katharine Abba
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK.
| | | | | | | | | | | | | |
Collapse
|
23
|
Chong CK, Cho PY, Na BK, Ahn SK, Kim JS, Lee JS, Lee SK, Han ET, Kim HY, Park YK, Cha SH, Kim TS. Evaluation of the accuracy of the EasyTest™ malaria Pf/Pan Ag, a rapid diagnostic test, in Uganda. THE KOREAN JOURNAL OF PARASITOLOGY 2014; 52:501-5. [PMID: 25352698 PMCID: PMC4210732 DOI: 10.3347/kjp.2014.52.5.501] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 07/10/2014] [Accepted: 07/14/2014] [Indexed: 11/23/2022]
Abstract
In recent years, rapid diagnostic tests (RDTs) have been widely used for malaria detection, primarily because of their simple operation, fast results, and straightforward interpretation. The Asan EasyTest™ Malaria Pf/Pan Ag is one of the most commonly used malaria RDTs in several countries, including Korea and India. In this study, we tested the diagnostic performance of this RDT in Uganda to evaluate its usefulness for field diagnosis of malaria in this country. Microscopic and PCR analyses, and the Asan EasyTest™ Malaria Pf/Pan Ag rapid diagnostic test, were performed on blood samples from 185 individuals with suspected malaria in several villages in Uganda. Compared to the microscopic analysis, the sensitivity of the RDT to detect malaria infection was 95.8% and 83.3% for Plasmodium falciparum and non-P. falciparum, respectively. Although the diagnostic sensitivity of the RDT decreased when parasitemia was ≤500 parasites/µl, it showed 96.8% sensitivity (98.4% for P. falciparum and 93.8% for non-P. falciparum) in blood samples with parasitemia ≥100 parasites/µl. The specificity of the RDT was 97.3% for P. falciparum and 97.3% for non-P. falciparum. These results collectively suggest that the accuracy of the Asan EasyTest™ Malaria Pf/Pan Ag makes it an effective point-of-care diagnostic tool for malaria in Uganda.
Collapse
Affiliation(s)
| | - Pyo Yun Cho
- Department of Parasitology and Tropical Medicine and Inha Research Institute for Medical Sciences, Inha University School of Medicine, Incheon 400-712, Korea
| | - Byoung-Kuk Na
- Department of Parasitology and Tropical Medicine, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 660-751, Korea
| | - Seong Kyu Ahn
- Department of Parasitology and Tropical Medicine and Inha Research Institute for Medical Sciences, Inha University School of Medicine, Incheon 400-712, Korea
| | - Jin Su Kim
- Department of Parasitology and Tropical Medicine and Inha Research Institute for Medical Sciences, Inha University School of Medicine, Incheon 400-712, Korea
| | - Jin-Soo Lee
- Department of Internal Medicine, Inha University School of Medicine, Incheon 400-712, Korea
| | - Sung-Keun Lee
- Department of Pharmacology, Inha University School of Medicine, Incheon 400-712, Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon 200-701, Korea
| | - Hak-Yong Kim
- Department of Biochemistry & CBITRC, Chungbuk National University, Cheongju 361-763, Korea
| | - Yun-Kyu Park
- Department of Parasitology and Tropical Medicine and Inha Research Institute for Medical Sciences, Inha University School of Medicine, Incheon 400-712, Korea
| | - Seok Ho Cha
- Department of Parasitology and Tropical Medicine and Inha Research Institute for Medical Sciences, Inha University School of Medicine, Incheon 400-712, Korea
| | - Tong-Soo Kim
- Department of Parasitology and Tropical Medicine and Inha Research Institute for Medical Sciences, Inha University School of Medicine, Incheon 400-712, Korea
| |
Collapse
|
24
|
Dzakah EE, Kang K, Ni C, Tang S, Wang J, Wang J. Comparative performance of aldolase and lactate dehydrogenase rapid diagnostic tests in Plasmodium vivax detection. Malar J 2014; 13:272. [PMID: 25015737 PMCID: PMC4105045 DOI: 10.1186/1475-2875-13-272] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 07/04/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Misdiagnosis of malaria by commercial rapid diagnostic tests (RDTs) is a major cause of concern in the diagnosis of malaria. This retrospective study was aimed at assessing the relative performance of four RDTs with emphasis on the detection of two Plasmodium vivax antigens: aldolase and lactate dehydrogenase (LDH). METHODS Three commercially available Plasmodium LDH or aldolase antigen detection kits (One Step Malaria P.f/P.v, ParaHit Total ver. 1.0, SD Bioline Malaria) and an anti-P. vivax aldolase-specific monoclonal antibody (mAb) pair 1C3-12 F10 were evaluated with P. vivax positive as well as non-P. vivax samples and healthy samples using blood smear examination as standard. Each test was read according to the manufacturer's instructions. RESULTS MAb 1C3-12 F10 pair targeting P. vivax-specific aldolase exhibited very good specificity and sensitivity of 100 and 97.4%, respectively. Positive predictive value (PPV) and negative predictive value (NPV) of 100 and 99.5%, respectively, were also observed. The anti-P. vivax LDH in the One-Step Malaria P.f/P.v test showed sensitivity, specificity, PPV and NPV of 93.5, 98.0, 88.9 and 98.8%, respectively. ParaHit Total ver. 1.0 targeting the pan-aldolase antigen showed sensitivity, specificity of 97.4 and 99.6%, respectively. PPV and NPV were both 99.5%. SD Bioline had sensitivity, specificity, PPV and NPV of 93.5, 100, 100 and 98.8%, respectively. The overall sensitivity and specificity of all four RDTs were acceptable, especially for the aldolase detection tests. Five (6.5%) of the P. vivax-positive samples (n = 77) that were confirmed by microscopic examination as well as the two aldolase detection RDTs (mAb 1C3-12 F10 and ParaHit Total ver.1.0) were undetected by the two LDH detection RDTs (One Step Malaria P.f/P.v and SD Bioline). Similarly, two positive samples (2.6%) that were positively confirmed by the LDH detection RDTs were also undetected by the aldolase detection test kits. CONCLUSION Aldolase and LDH antigens perform differently in different P. vivax samples; hence there is a high risk of misdiagnosis when monoclonal antibodies are used against only one particular antigen in the test. A combination of both aldolase and LDH in RDTs for the rapid diagnosis of P. vivax will enhance the sensitivity of the assay and reduce misdiagnosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Jufang Wang
- School of Bioscience and Bioengineering, South China University of Technology, University City, Panyu District, Guangzhou 510006, China.
| |
Collapse
|
25
|
Mikita K, Thakur K, Anstey NM, Piera KA, Pardo CA, Weinberg JB, Mukemba J, Florence S, Mwaikambo ED, Granger DL, Sullivan DJ. Quantification of Plasmodium falciparum histidine-rich protein-2 in cerebrospinal spinal fluid from cerebral malaria patients. Am J Trop Med Hyg 2014; 91:486-92. [PMID: 24980497 DOI: 10.4269/ajtmh.14-0210] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
A cerebrospinal fluid (CSF) biomarker for cerebral malaria (CM) has not been validated. We examined the detection, semiquantification, and clinical use of the Plasmodium falciparum histidine-rich protein-2 (PfHRP-2) as a parasite antigen biomarker for CM. The PfHRP-2 was detected in archival CSF samples from CM patients from Tanzania both by a newly developed sensitive and specific immuno-polymerase chain reaction (72 of 73) and by rapid diagnostic tests (62 of 73). The geometric mean PfHRP-2 CSF concentration was 8.76 ng/mL with no differences in those who survived (9.2 ng/mL), those who died (11.1 ng/mL), and those with neurologic sequelae (10.8 ng/mL). All aparasitemic endemic and nonendemic control samples had undetectable CSF PfHRP-2. In a separate group of 11 matched plasma and CSF cerebral malaria patient samples, the ratio of plasma to CSF PfHRP-2 was 175. The CSF PfHRP-2 reflects elevated plasma PfHRP-2 rather than elevated CM-specific CSF ratios, falling short of a validated biomarker.
Collapse
Affiliation(s)
- Kei Mikita
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia; Royal Darwin Hospital, Darwin Australia; Duke University and Veterans Administration Medical Centers, Durham, North Carolina; Hubert Kairuki Memorial University, Dar es Salaam, Tanzania; University of Utah School of Medicine and Veterans Administration Medical Center, Salt Lake City, Utah
| | - Kiran Thakur
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia; Royal Darwin Hospital, Darwin Australia; Duke University and Veterans Administration Medical Centers, Durham, North Carolina; Hubert Kairuki Memorial University, Dar es Salaam, Tanzania; University of Utah School of Medicine and Veterans Administration Medical Center, Salt Lake City, Utah
| | - Nicholas M Anstey
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia; Royal Darwin Hospital, Darwin Australia; Duke University and Veterans Administration Medical Centers, Durham, North Carolina; Hubert Kairuki Memorial University, Dar es Salaam, Tanzania; University of Utah School of Medicine and Veterans Administration Medical Center, Salt Lake City, Utah
| | - Kim A Piera
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia; Royal Darwin Hospital, Darwin Australia; Duke University and Veterans Administration Medical Centers, Durham, North Carolina; Hubert Kairuki Memorial University, Dar es Salaam, Tanzania; University of Utah School of Medicine and Veterans Administration Medical Center, Salt Lake City, Utah
| | - Carlos A Pardo
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia; Royal Darwin Hospital, Darwin Australia; Duke University and Veterans Administration Medical Centers, Durham, North Carolina; Hubert Kairuki Memorial University, Dar es Salaam, Tanzania; University of Utah School of Medicine and Veterans Administration Medical Center, Salt Lake City, Utah
| | - J Brice Weinberg
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia; Royal Darwin Hospital, Darwin Australia; Duke University and Veterans Administration Medical Centers, Durham, North Carolina; Hubert Kairuki Memorial University, Dar es Salaam, Tanzania; University of Utah School of Medicine and Veterans Administration Medical Center, Salt Lake City, Utah
| | - Jackson Mukemba
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia; Royal Darwin Hospital, Darwin Australia; Duke University and Veterans Administration Medical Centers, Durham, North Carolina; Hubert Kairuki Memorial University, Dar es Salaam, Tanzania; University of Utah School of Medicine and Veterans Administration Medical Center, Salt Lake City, Utah
| | - Salvatore Florence
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia; Royal Darwin Hospital, Darwin Australia; Duke University and Veterans Administration Medical Centers, Durham, North Carolina; Hubert Kairuki Memorial University, Dar es Salaam, Tanzania; University of Utah School of Medicine and Veterans Administration Medical Center, Salt Lake City, Utah
| | - Esther D Mwaikambo
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia; Royal Darwin Hospital, Darwin Australia; Duke University and Veterans Administration Medical Centers, Durham, North Carolina; Hubert Kairuki Memorial University, Dar es Salaam, Tanzania; University of Utah School of Medicine and Veterans Administration Medical Center, Salt Lake City, Utah
| | - Donald L Granger
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia; Royal Darwin Hospital, Darwin Australia; Duke University and Veterans Administration Medical Centers, Durham, North Carolina; Hubert Kairuki Memorial University, Dar es Salaam, Tanzania; University of Utah School of Medicine and Veterans Administration Medical Center, Salt Lake City, Utah
| | - David J Sullivan
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Global Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia; Royal Darwin Hospital, Darwin Australia; Duke University and Veterans Administration Medical Centers, Durham, North Carolina; Hubert Kairuki Memorial University, Dar es Salaam, Tanzania; University of Utah School of Medicine and Veterans Administration Medical Center, Salt Lake City, Utah
| |
Collapse
|
26
|
Tietje K, Hawkins K, Clerk C, Ebels K, McGray S, Crudder C, Okell L, LaBarre P. The essential role of infection-detection technologies for malaria elimination and eradication. Trends Parasitol 2014; 30:259-66. [DOI: 10.1016/j.pt.2014.03.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/11/2014] [Accepted: 03/12/2014] [Indexed: 11/26/2022]
|
27
|
Fatima A, Wang H, Kang K, Xia L, Wang Y, Ye W, Wang J, Wang X. Development of VHH antibodies against dengue virus type 2 NS1 and comparison with monoclonal antibodies for use in immunological diagnosis. PLoS One 2014; 9:e95263. [PMID: 24751715 PMCID: PMC3994031 DOI: 10.1371/journal.pone.0095263] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 03/25/2014] [Indexed: 11/22/2022] Open
Abstract
The possibility of using variable domain heavy-chain antibodies (VHH antibodies) as diagnostic tools for dengue virus (DENV) type 2 NS1 protein was investigated and compared with the use of conventional monoclonal antibodies. After successful expression of DENV type 2 NS1 protein, the genes of VHH antibodies against NS1 protein were biopanned from a non-immune llama library by phage display. VHH antibodies were then expressed and purified from Escherichia coli. Simultaneously, monoclonal antibodies were obtained by the conventional route. Sequence analysis of the VHH antibodies revealed novel and long complementarity determining regions 3 (CDR3). Epitope mapping was performed via a phage display peptide library using purified VHH and monoclonal antibodies as targets. Interestingly, the same region of NS1, which comprises amino acids 224HWPKPHTLW232, was conserved for both kinds of antibodies displaying the consensus motif histidine-tryptophan-tryptophan or tryptophan-proline-tryptophan. The two types of antibodies were used to prepare rapid diagnostic kits based on immunochromatographic assay. The VHH antibody immobilized rapid diagnostic kit showed better sensitivity and specificity than the monoclonal antibody immobilized rapid diagnostic kit, which might be due to the long CDR3 regions of the VHH antibodies and their ability to bind to the pocket and cleft of the targeted antigen. This demonstrates that VHH antibodies are likely to be an option for developing point-of-care tests against DENV infection.
Collapse
Affiliation(s)
- Aneela Fatima
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, PR China
| | - Haiying Wang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, PR China
| | - Keren Kang
- Guangzhou Wondfo Biotech Co., Ltd, Scientific City, Guangzhou, PR China
| | - Liliang Xia
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, PR China
| | - Ying Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, PR China
| | - Wei Ye
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, PR China
| | - Jufang Wang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, PR China
| | - Xiaoning Wang
- Institute of Life Science, General Hospital of The People’s Liberation Army, Beijing, PR China
| |
Collapse
|
28
|
Jain P, Chakma B, Patra S, Goswami P. Potential biomarkers and their applications for rapid and reliable detection of malaria. BIOMED RESEARCH INTERNATIONAL 2014; 2014:852645. [PMID: 24804253 PMCID: PMC3996934 DOI: 10.1155/2014/852645] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 02/11/2014] [Indexed: 12/21/2022]
Abstract
Malaria has been responsible for the highest mortality in most malaria endemic countries. Even after decades of malaria control campaigns, it still persists as a disease of high mortality due to improper diagnosis and rapidly evolving drug resistant malarial parasites. For efficient and economical malaria management, WHO recommends that all malaria suspected patients should receive proper diagnosis before administering drugs. It is thus imperative to develop fast, economical, and accurate techniques for diagnosis of malaria. In this regard an in-depth knowledge on malaria biomarkers is important to identify an appropriate biorecognition element and utilize it prudently to develop a reliable detection technique for diagnosis of the disease. Among the various biomarkers, plasmodial lactate dehydrogenase and histidine-rich protein II (HRP II) have received increasing attention for developing rapid and reliable detection techniques for malaria. The widely used rapid detection tests (RDTs) for malaria succumb to many drawbacks which promotes exploration of more efficient economical detection techniques. This paper provides an overview on the current status of malaria biomarkers, along with their potential utilization for developing different malaria diagnostic techniques and advanced biosensors.
Collapse
Affiliation(s)
- Priyamvada Jain
- Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Babina Chakma
- Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sanjukta Patra
- Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Pranab Goswami
- Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
29
|
Pakalapati D, Garg S, Middha S, Acharya J, Subudhi AK, Boopathi AP, Saxena V, Kochar SK, Kochar DK, Das A. Development and evaluation of a 28S rRNA gene-based nested PCR assay for P. falciparum and P. vivax. Pathog Glob Health 2014; 107:180-8. [PMID: 23816509 DOI: 10.1179/2047773213y.0000000090] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The 28S rRNA gene was amplified and sequenced from P. falciparum and P. vivax isolates collected from northwest India. Based upon the sequence diversity of the Plasmodium 28SrRNA gene in comparison with its human counterpart, various nested polymerase chain reaction (PCR) primers were designed from the 3R region of the 28SrRNA gene and evaluated on field isolates. This is the first report demonstrating the utility of this gene for species-specific diagnosis of malaria for these two species, prevalent in India. The initial evaluation on 363 clinical isolates indicated that, in comparison with microscopy, which showed sensitivity and specificity of 85·39% and 100% respectively, the sensitivity and specificity of the nested PCR assay was found to be 99·08% and 100% respectively. This assay was also successful in detecting mixed infections that are undetected by microscopy. Our results demonstrate the utility of the 28S rRNA gene as a diagnostic target for the detection of the major plasmodial species infecting humans.
Collapse
Affiliation(s)
- Deepak Pakalapati
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Verma P, Biswas S, Mohan T, Ali S, Rao D. Detection of histidine rich protein & lactate dehydrogenase of Plasmodium falciparum in malaria patients by sandwich ELISA using in-house reagents. Indian J Med Res 2013; 138:977-87. [PMID: 24521645 PMCID: PMC3978991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND & OBJECTIVES Despite major control efforts, malaria remains a major public health problem that still causes high mortality rate worldwide especially in Africa and Asia. Accurate and confirmatory diagnosis before treatment initiation is the only way to control the disease. The present study was undertaken to develop reagents using sandwich ELISA for simultaneous detection of PfHRP2 (Plasmodium falciparum histidine rich protein) and PfLDH (P. falciparum lactate dehydrogenase) antigens in the proven malaria cases. METHODS The antibodies were raised against two epitopes of PfHRP2 protein and three unique and unexplored epitopes of PfLDH protein. These antibodies were able to detect PfHRP2 and PfLDH antigens in culture supernatant and parasitized RBC lysate of P. falciparum, respectively up to 50 parasites/μl. The in-house reagents were tested in 200 P. falciparum positive patients residing in Baghpat district of Uttar Pradesh in northern India. RESULTS Microsphere (PLGA) with CpG ODN were used to generate high titre and high affinity antibodies against selected peptides of PfHRP-2 and pLDH antigen in mice and rabbit. The peptide specific peak titre varied from 12,800 - 102,400 with an affinity ranging 0.73 - 3.0 mM. The indigenously developed reagents are able to detect PfHRP2 and PfLDH antigens as low as 75 parasites/μl of blood with a very high sensitivity (96-100%) and specificity (100%). INTERPRETATION & CONCLUSIONS The study highlight the identification of unique epitopes of PfHRP2 and PfLDH, and the generated antibodies against these antigens were used for quantitative estimation of these two antigens using sandwich ELISA. No corresreactivity with P. vivax infected patients was observed with the sera.
Collapse
Affiliation(s)
- Priyanka Verma
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Sukla Biswas
- National Institute of Malaria Research (ICMR), New Delhi, India
| | - Teena Mohan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Shakir Ali
- Department of Biochemistry, Jamia Hamdard University, New Delhi, India
| | - D.N. Rao
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India,Reprint requests: Dr D.N. Rao, Department of Biochemistry, All India Institute of Medical Sciences Ansari Nagar, New Delhi 110 029, India e-mail:
| |
Collapse
|
31
|
Dzakah EE, Kang K, Ni C, Wang H, Wu P, Tang S, Wang J, Wang J, Wang X. Plasmodium vivax aldolase-specific monoclonal antibodies and its application in clinical diagnosis of malaria infections in China. Malar J 2013; 12:199. [PMID: 23758950 PMCID: PMC3688420 DOI: 10.1186/1475-2875-12-199] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 06/04/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Most rapid diagnostic tests (RDTs) currently used for malaria diagnosis cannot distinguish the various Plasmodium infections. The development of a Plasmodium vivax specific RDTs with high sensitivity to sufficiently differentiate the two most common Plasmodium infections would be very crucial for disease treatment and control. METHOD Plasmodium vivax aldolase gene (PvALDO) was amplified from the extracted genomic DNA and constructed into pET30a vector. Plasmodium vivax aldolase protein was successfully expressed in Escherichia coli in soluble form and the overall purity was over 95% after one-step affinity chromatography purification. The purified products were used for the immunization of mice and rabbits. Rabbit polyclonal antibodies generated were deployed to develop a novel antibody-capture ELISA for hybridoma screening. RESULTS Three PvALDO specific mAbs (14C7, 15F1 and 5H7) with high affinities were selected and used in immunochromatographic test strips. Clinical blood samples (n=190) collected from Yunnan (China) were used for evaluation and the RDT's sensitivity for P. vivax was 98.33% (95% Confidence Interval (CI): 91.03% to 99.72%) compared with microscopic examination. There was specificity of 99.23% (95% CI: 95.77% to 99.87%) for P. vivax. Only one Plasmodium falciparum sample was detected among the P. falciparum samples (n=20). All Plasmodium malariae samples (n=2) as well as healthy uninfected samples (n=108) were negative. Overall performance of this RDT was excellent with positive predictive value (PPV) and negative predictive value (NPV) of 98.33% and 99.23%, respectively, at 95% CI and a very good correlation with microscopic observations (kappa value, K=0.9757). Test strips show high sensitivity even at 6.25 ng/ml of recombinant P. vivax aldolase (rPvALDO). CONCLUSION This study further elucidates the possibility of developing aldolase-specific RDTs which can differentiate the different Plasmodium infections and improve accurate diagnosis of malaria. This RDT could adequately differentiate between P. vivax and P. falciparum infections. The novel mAb screening method developed here could find application in the screening of highly specific antibodies against other antigens.
Collapse
Affiliation(s)
- Emmanuel E Dzakah
- School of Bioscience and Bioengineering, South China University of Technology, University City, Panyu District, Guangzhou 510006, China
- National Engineering Laboratory of Rapid Diagnostic Tests, Guangzhou Wondfo Biotech Co., Ltd, Science City, Lizhishan Rd. No. 8Luogang District, Guangzhou 510663, China
| | - Keren Kang
- School of Bioscience and Bioengineering, South China University of Technology, University City, Panyu District, Guangzhou 510006, China
- National Engineering Laboratory of Rapid Diagnostic Tests, Guangzhou Wondfo Biotech Co., Ltd, Science City, Lizhishan Rd. No. 8Luogang District, Guangzhou 510663, China
| | - Chao Ni
- School of Bioscience and Bioengineering, South China University of Technology, University City, Panyu District, Guangzhou 510006, China
- National Engineering Laboratory of Rapid Diagnostic Tests, Guangzhou Wondfo Biotech Co., Ltd, Science City, Lizhishan Rd. No. 8Luogang District, Guangzhou 510663, China
| | - Hong Wang
- School of Bioscience and Bioengineering, South China University of Technology, University City, Panyu District, Guangzhou 510006, China
- National Engineering Laboratory of Rapid Diagnostic Tests, Guangzhou Wondfo Biotech Co., Ltd, Science City, Lizhishan Rd. No. 8Luogang District, Guangzhou 510663, China
| | - Peidian Wu
- National Engineering Laboratory of Rapid Diagnostic Tests, Guangzhou Wondfo Biotech Co., Ltd, Science City, Lizhishan Rd. No. 8Luogang District, Guangzhou 510663, China
| | - Shixing Tang
- National Engineering Laboratory of Rapid Diagnostic Tests, Guangzhou Wondfo Biotech Co., Ltd, Science City, Lizhishan Rd. No. 8Luogang District, Guangzhou 510663, China
| | - Jihua Wang
- National Engineering Laboratory of Rapid Diagnostic Tests, Guangzhou Wondfo Biotech Co., Ltd, Science City, Lizhishan Rd. No. 8Luogang District, Guangzhou 510663, China
| | - Jufang Wang
- School of Bioscience and Bioengineering, South China University of Technology, University City, Panyu District, Guangzhou 510006, China
| | - Xiaoning Wang
- Institute of Life Science, General Hospital of Chinese People’s Liberation Army, Beijing 100853, China
| |
Collapse
|
32
|
Eibach D, Traore B, Bouchrik M, Coulibaly B, Coulibaly N, Siby F, Bonnot G, Bienvenu AL, Picot S. Evaluation of the malaria rapid diagnostic test VIKIA malaria Ag Pf/Pan™ in endemic and non-endemic settings. Malar J 2013; 12:188. [PMID: 23742633 PMCID: PMC3684529 DOI: 10.1186/1475-2875-12-188] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 06/03/2013] [Indexed: 11/29/2022] Open
Abstract
Background Malaria rapid diagnostic tests (RDTs) are a useful tool in endemic malaria countries, where light microscopy is not feasible. In non-endemic countries they can be used as complementary tests to provide timely results in case of microscopy inexperience. This study aims to compare the new VIKIA Malaria Ag Pf/Pan™ RDT with PCR-corrected microscopy results and the commonly used CareStart™ RDT to diagnose falciparum and non-falciparum malaria in the endemic setting of Bamako, Mali and the non-endemic setting of Lyon, France. Methods Blood samples were collected during a 12-months and six-months period in 2011 from patients suspected to have malaria in Lyon and Bamako respectively. The samples were examined by light microscopy, the VIKIA Malaria Ag Pf/Pan™ test and in Bamako additionally with the CareStart™ RDT. Discordant results were corrected by real-time PCR. Sensitivity, specificity, positive predictive value and negative predictive value were used to evaluate test performance. Results Samples of 877 patients from both sites were included. The VIKIA Malaria Ag Pf/Pan™ had a sensitivity of 98% and 96% for Plasmodium falciparum in Lyon and Bamako, respectively, performing similar to PCR-corrected microscopy. Conclusions The VIKIA Malaria Ag Pf/Pan™ performs similar to PCR-corrected microscopy for the detection of P. falciparum, making it a valuable tool in malaria endemic and non-endemic regions.
Collapse
Affiliation(s)
- Daniel Eibach
- Institut de Parasitologie et de Mycologie Médicale, Faculty of Medicine, Hospices Civils de Lyon, Lyon, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Nyunt MH, Kyaw MP, Win KK, Myint KM, Nyunt KM. Field evaluation of HRP2 and pan pLDH-based immunochromatographic assay in therapeutic monitoring of uncomplicated falciparum malaria in Myanmar. Malar J 2013; 12:123. [PMID: 23577630 PMCID: PMC3636062 DOI: 10.1186/1475-2875-12-123] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 04/06/2013] [Indexed: 11/24/2022] Open
Abstract
Background Malaria rapid diagnostic tests (RDT) are used for diagnostic purpose in malaria-endemic areas where reliable microscopy is not available. Persistence of the antigenaemia causes over-diagnosis and may limit the usefulness of the RDT in monitoring treatment. In this study, the usefulness of histidine-rich protein-2 (HRP2) and pan-specific or species-specific Plasmodium lactate dehydrogenase (pLDH) in treatment monitoring of uncomplicated falciparum malaria was carried out in an endemic setting in Myanmar. Methods A prospective longitudinal, single-arm, cohort study was done by microscopy to confirm Plasmodium falciparum mono-infected cases. After direct treatment with an artemether-lumefantrine combination, patients were followed up on day 3, 7, 14, 21, 28 and any other day of recurrent fever. Blood film examination and RDT were carried out on day 0 and all follow-up days. Results Out of 77 recruited falciparum cases, 63 became adequate clinical and parasitological response (ACPR) cases, and 60.3% of them were still positive for HRP2 up to day 28. Eleven out of 12 treatment failure cases (91.6%) were detected by pan pLDH. The mean duration required to become negative of HRP2 was 20 days (SD ± 6.03) and that of pan pLDH was six days with or without gametocytes and 3.7 days without gametocytes. Conclusion Although treatment monitoring cannot be performed by HRP2, it can be assessed by pan pLDH-based assay after day 3 if a gametocidal drug has been administered and after day 7 if the presence of gametocytes was not excluded. The pan pLDH-based assay was a suitable test to monitor the treatment response of uncomplicated falciparum malaria patients.
Collapse
|
34
|
Evaluation of the sensitivity of a pLDH-based and an aldolase-based rapid diagnostic test for diagnosis of uncomplicated and severe malaria caused by PCR-confirmed Plasmodium knowlesi, Plasmodium falciparum, and Plasmodium vivax. J Clin Microbiol 2013; 51:1118-23. [PMID: 23345297 DOI: 10.1128/jcm.03285-12] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Plasmodium knowlesi can cause severe and fatal human malaria in Southeast Asia. Rapid diagnosis of all Plasmodium species is essential for initiation of effective treatment. Rapid diagnostic tests (RDTs) are sensitive for detection of uncomplicated and severe falciparum malaria but have not been systematically evaluated in knowlesi malaria. At a tertiary referral hospital in Sabah, Malaysia, we prospectively evaluated the sensitivity of two combination RDTs for the diagnosis of uncomplicated and severe malaria from all three potentially fatal Plasmodium species, using a pan-Plasmodium lactate dehydrogenase (pLDH)-P. falciparum histidine-rich protein 2 (PfHRP2) RDT (First Response) and a pan-Plasmodium aldolase-PfHRP2 RDT (ParaHIT). Among 293 hospitalized adults with PCR-confirmed Plasmodium monoinfection, the sensitivity of the pLDH component of the pLDH-PfHRP2 RDT was 74% (95/129; 95% confidence interval [CI], 65 to 80%), 91% (110/121; 95% CI, 84 to 95%), and 95% (41/43; 95% CI, 85 to 99%) for PCR-confirmed P. knowlesi, P. falciparum, and P. vivax infections, respectively, and 88% (30/34; 95% CI, 73 to 95%), 90% (38/42; 95% CI, 78 to 96%), and 100% (12/12; 95% CI, 76 to 100%) among patients tested before antimalarial treatment was begun. Sensitivity in severe malaria was 95% (36/38; 95% CI, 83 to 99), 100% (13/13; 95% CI, 77 to 100), and 100% (7/7; 95% CI, 65 to 100%), respectively. The aldolase component of the aldolase-PfHRP2 RDT performed poorly in all Plasmodium species. The pLDH-based RDT was highly sensitive for the diagnosis of severe malaria from all species; however, neither the pLDH- nor aldolase-based RDT demonstrated sufficiently high overall sensitivity for P. knowlesi. More sensitive RDTs are needed in regions of P. knowlesi endemicity.
Collapse
|
35
|
Xiaodong S, Tambo E, Chun W, Zhibin C, Yan D, Jian W, Jiazhi W, Xiaonong Z. Diagnostic performance of CareStart™ malaria HRP2/pLDH (Pf/pan) combo test versus standard microscopy on falciparum and vivax malaria between China-Myanmar endemic borders. Malar J 2013; 12:6. [PMID: 23294729 PMCID: PMC3570328 DOI: 10.1186/1475-2875-12-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 12/29/2012] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Rapid diagnostic test (RDT) is becoming an alternative way of establishing quickly the diagnosis of malaria infections, by detecting specific malaria antigens in suspected patients' blood between the China-Myanmar endemic borders areas, towards achieving the National Malaria Elimination programme by 2020. The objective of this study is to evaluate the performance of CareStart™ Malaria Pf/Pan RDT kit for the diagnosis of malaria infections in suspected patients. Blood examination by microscopy was taken as gold standard to evaluate CareStart™ kit's sensitivity, specificity and predictive value and corrected with PCR assay. RESULTS Overall 126 of 241 (52.28%) malaria cases were detected by microscopy compared to 115 of 241(47.72%) CareStart™ kit and 128 of 241 (53.11%) PCR corrected assay. CareStart™ kit's sensitivity and specificity for the diagnosis of malaria were 89.68% and 98.26% respectively, compared to standard microscopy, whereas the sensitivity and specificity for falciparum malaria were 88.52% and 98.26%, and for vivax malaria: 90.77% and 100%. The CareStart™ positive predictive values were 98.26% (93.88-99.52%, 95% CI) compared to 100% (96.77-100%, 95% CI) for PCR-corrected, and the negative predictive values of 89.68% (83.15-93.87%, 95% CI) were the same in microscopy as PCR-corrected. The diagnostic accuracy of CareStart™ kit versus microscopy and PCR were 93.78% (89.99-96.19%, 95% CI) and 94.61% (90.99-96.82%, 95% CI) respectively. The likelihood of diagnostic of malaria positive was almost similar between microscopy and CareStart™ kit, with an entropy reduction of 60.0% compared to a weak likelihood of misdiagnosis of 0.10 (0.09-0.12, 95% CI), with an entropy reduction of 36.01%. CONCLUSION The accuracy of CareStart™ kit is comparable to gold standard microscopy in these areas, it is easy to perform and suitable for cross-border diagnosis and monitoring of local or imported malaria patterns by any local health staff in endemic remotes.
Collapse
Affiliation(s)
- Sun Xiaodong
- Yunnan Institute of Parasitic Diseases, Yunnan Center for Malaria Research, Institute of Vector and Pathogen Biology of Dali University, Puer, Yunnan, 665000, China
| | - Ernest Tambo
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention, WHO Collaborating Center on Malaria, Schisostomiasis and Filariasis, Shanghai, 200025, China
| | - Wei Chun
- Yunnan Institute of Parasitic Diseases, Yunnan Center for Malaria Research, Institute of Vector and Pathogen Biology of Dali University, Puer, Yunnan, 665000, China
| | - Cheng Zhibin
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Deng Yan
- Yunnan Institute of Parasitic Diseases, Yunnan Center for Malaria Research, Institute of Vector and Pathogen Biology of Dali University, Puer, Yunnan, 665000, China
| | - Wang Jian
- Yunnan Institute of Parasitic Diseases, Yunnan Center for Malaria Research, Institute of Vector and Pathogen Biology of Dali University, Puer, Yunnan, 665000, China
| | - Wang Jiazhi
- Tengchong Center for Disease Control and Prevention, Tengchong, Yunnan, 679100, China
| | - Zhou Xiaonong
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention, WHO Collaborating Center on Malaria, Schisostomiasis and Filariasis, Shanghai, 200025, China
| |
Collapse
|
36
|
Yanow SK, Gregson D, Chawla R. Discordant diagnosis of malaria in a family of child refugees from Sierra Leone. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2013; 24:e22-e23. [PMID: 24421796 PMCID: PMC3630033 DOI: 10.1155/2013/310789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The clinical presentation and diagnosis of malaria involving a family with seven children who arrived in Canada as refugees is reported. Discrepancies in front-line testing using microscopy and rapid diagnostic tests compared with confirmatory testing using real-time polymerase chain reaction in this cluster of symptomatic and asymptomatic patients were identified.
Collapse
Affiliation(s)
| | | | - Rupesh Chawla
- Alberta Children’s Hospital, Calgary, Alberta
- University of Calgary, Calgary, Alberta
| |
Collapse
|
37
|
Minja DTR, Schmiegelow C, Oesterholt M, Magistrado PA, Boström S, John D, Pehrson C, Andersen D, Deloron P, Salanti A, Lemnge M, Luty AJF, Alifrangis M, Theander T, Lusingu JPA. Reliability of rapid diagnostic tests in diagnosing pregnancy-associated malaria in north-eastern Tanzania. Malar J 2012; 11:211. [PMID: 22720788 PMCID: PMC3459785 DOI: 10.1186/1475-2875-11-211] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Accepted: 06/13/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Accurate diagnosis and prompt treatment of pregnancy-associated malaria (PAM) are key aspects in averting adverse pregnancy outcomes. Microscopy is the gold standard in malaria diagnosis, but it has limited detection and availability. When used appropriately, rapid diagnostic tests (RDTs) could be an ideal diagnostic complement to microscopy, due to their ease of use and adequate sensitivity in detecting even sub-microscopic infections. Polymerase chain reaction (PCR) is even more sensitive, but it is mainly used for research purposes. The accuracy and reliability of RDTs in diagnosing PAM was evaluated using microscopy and PCR. METHODS A cohort of pregnant women in north-eastern Tanzania was followed throughout pregnancy for detection of plasmodial infection using venous and placental blood samples evaluated by histidine rich protein 2 (HRP-2) and parasite lactate dehydrogenase (pLDH) based RDTs (Parascreen™) or HRP-2 only (Paracheck Pf® and ParaHIT®f), microscopy and nested Plasmodium species diagnostic PCR. RESULTS From a cohort of 924 pregnant women who completed the follow up, complete RDT and microscopy data was available for 5,555 blood samples and of these 442 samples were analysed by PCR. Of the 5,555 blood samples, 49 ((proportion and 95% confidence interval) 0.9% [0.7 -1.1]) samples were positive by microscopy and 91 (1.6% [1.3-2.0]) by RDT. Forty-six (50.5% [40.5 - 60.6]) and 45 (49.5% [39.4 - 59.5]) of the RDT positive samples were positive and negative by microscopy, respectively, whereas nineteen (42.2% [29.0 - 56.7]) of the microscopy negative, but RDT positive, samples were positive by PCR. Three (0.05% [0.02 - 0.2]) samples were positive by microscopy but negative by RDT. 351 of the 5,461 samples negative by both RDT and microscopy were tested by PCR and found negative. There was no statistically significant difference between the performances of the different RDTs. CONCLUSIONS Microscopy underestimated the real burden of malaria during pregnancy and RDTs performed better than microscopy in diagnosing PAM. In areas where intermittent preventive treatment during pregnancy may be abandoned due to low and decreasing malaria risk and instead replaced with active case management, screening with RDT is likely to identify most infections in pregnant women and out-performs microscopy as a diagnostic tool.
Collapse
Affiliation(s)
- Daniel T R Minja
- National Institute for Medical Research, Tanga Centre, Tanga, Tanzania.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Elyazar IRF, Gething PW, Patil AP, Rogayah H, Sariwati E, Palupi NW, Tarmizi SN, Kusriastuti R, Baird JK, Hay SI. Plasmodium vivax malaria endemicity in Indonesia in 2010. PLoS One 2012; 7:e37325. [PMID: 22615978 PMCID: PMC3355104 DOI: 10.1371/journal.pone.0037325] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 04/18/2012] [Indexed: 11/25/2022] Open
Abstract
Background Plasmodium vivax imposes substantial morbidity and mortality burdens in endemic zones. Detailed understanding of the contemporary spatial distribution of this parasite is needed to combat it. We used model based geostatistics (MBG) techniques to generate a contemporary map of risk of Plasmodium vivax malaria in Indonesia in 2010. Methods Plasmodium vivax Annual Parasite Incidence data (2006–2008) and temperature masks were used to map P. vivax transmission limits. A total of 4,658 community surveys of P. vivax parasite rate (PvPR) were identified (1985–2010) for mapping quantitative estimates of contemporary endemicity within those limits. After error-checking a total of 4,457 points were included into a national database of age-standardized 1–99 year old PvPR data. A Bayesian MBG procedure created a predicted PvPR1–99 endemicity surface with uncertainty estimates. Population at risk estimates were derived with reference to a 2010 human population surface. Results We estimated 129.6 million people in Indonesia lived at risk of P. vivax transmission in 2010. Among these, 79.3% inhabited unstable transmission areas and 20.7% resided in stable transmission areas. In western Indonesia, the predicted P. vivax prevalence was uniformly low. Over 70% of the population at risk in this region lived on Java and Bali islands, where little malaria transmission occurs. High predicted prevalence areas were observed in the Lesser Sundas, Maluku and Papua. In general, prediction uncertainty was relatively low in the west and high in the east. Conclusion Most Indonesians living with endemic P. vivax experience relatively low risk of infection. However, blood surveys for this parasite are likely relatively insensitive and certainly do not detect the dormant liver stage reservoir of infection. The prospects for P. vivax elimination would be improved with deeper understanding of glucose-6-phosphate dehydrogenase deficiency (G6PDd) distribution, anti-relapse therapy practices and manageability of P. vivax importation risk, especially in Java and Bali.
Collapse
|
39
|
Lee GC, Jeon ES, Le DT, Kim TS, Yoo JH, Kim HY, Chong CK. Development and evaluation of a rapid diagnostic test for Plasmodium falciparum, P. vivax, and mixed-species malaria antigens. Am J Trop Med Hyg 2012; 85:989-93. [PMID: 22144432 DOI: 10.4269/ajtmh.2011.11-0265] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Plasmodium falciparum and P. vivax malaria are endemic to many parts of the world and humans can be co-infected with both species. Because each Plasmodium species has different biological and clinical characteristics, accurate differentiation of the infecting species is essential for effective treatment. Therefore, we produced three monoclonal antibodies that recognize the lactate dehydrogenase of P. falciparum, P. vivax, or both to develop the first P. falciparum, P. vivax, and mixed-species infections malaria antigen detection kit. The detection limits of this kit were 150 and 250 parasites/μL for P. falciparum and P. vivax, respectively, and the kit was able to detect mixed-species infections. The sensitivity and specificity of this kit was assessed with 722 clinical specimens. Our results showed that its sensitivities for P. falciparum, P. vivax, and mixed-species infection were 96.5%, 95.3%, and 85.7%, respectively. In addition, its specificity was high (99.4%).
Collapse
Affiliation(s)
- Gyu-Cheol Lee
- Research Team of Microbiology, Water Analysis and Research Center, Korea Institute of Water and Environment, K-Water, Daejeon, Republic of Korea.
| | | | | | | | | | | | | |
Collapse
|
40
|
Luchavez J, Baker J, Alcantara S, Belizario V, Cheng Q, McCarthy JS, Bell D. Laboratory demonstration of a prozone-like effect in HRP2-detecting malaria rapid diagnostic tests: implications for clinical management. Malar J 2011; 10:286. [PMID: 21957869 PMCID: PMC3214175 DOI: 10.1186/1475-2875-10-286] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Accepted: 09/29/2011] [Indexed: 11/20/2022] Open
Abstract
Background Malaria rapid diagnostic tests (RDTs) are now widely used for prompt on-site diagnosis in remote endemic areas where reliable microscopy is absent. Aberrant results, whereby negative test results occur at high parasite densities, have been variously reported for over a decade and have led to questions regarding the reliability of the tests in clinical use. Methods In the first trial, serial dilutions of recombinant HRP2 antigen were tested on an HRP2-detectiing RDT. In a second trial, serial dilutions of culture-derived Plasmodium falciparum parasites were tested against three HRP2-detecting RDTs. Results A prozone-like effect occurred in RDTs at a high concentration of the target antigen, histidine-rich protein-2 (above 15,000 ng/ml), a level that corresponds to more than 312000 parasites per μL. Similar results were noted on three RDT products using dilutions of cultured parasites up to a parasite density of 25%. While reduced line intensity was observed, no false negative results occurred. Conclusions These results suggest that false-negative malaria RDT results will rarely occur due to a prozone-like effect in high-density infections, and other causes are more likely. However, RDT line intensity is poorly indicative of parasite density in high-density infections and RDTs should, therefore, not be considered quantitative. Immediate management of suspected severe malaria should rely on clinical assessment or microscopy. Evaluation against high concentrations of antigen should be considered in malaria RDT product development and lot-release testing, to ensure that very weak or false negative results will not occur at antigen concentrations that might be seen clinically.
Collapse
Affiliation(s)
- Jennifer Luchavez
- Department of Parasitology, Research Institute for Tropical Medicine, Alabang, Muntinlupa City, The Philippines
| | | | | | | | | | | | | |
Collapse
|
41
|
Tagbor H, Bruce J, Browne E, Greenwood B, Chandramohan D. Performance of the OptiMAL dipstick in the diagnosis of malaria infection in pregnancy. Ther Clin Risk Manag 2011; 4:631-6. [PMID: 18827859 PMCID: PMC2500256 DOI: 10.2147/tcrm.s2809] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The accuracy of OptiMAL® dipsticks was compared with that of microscopy in the diagnosis of malaria infection in pregnancy. During the course of a clinical trial of antimalarial drugs in pregnancy, we screened 4500 pregnant women of all parities who accessed antenatal clinic services at St. Theresa’s Hospital’s in Nkoranza, Ghana, between March 2003 and December 2004 with OptiMAL® dipsticks and confirmed the diagnosis of malaria with microscopy. We determined the sensitivity, specificity, positive and negative predictive values, and the area under receiver operating characteristic (ROC) curve for the OptiMAL® antigen test compared to microscopy for the diagnosis of malaria infection in pregnancy. OptiMAL® dipsticks had a sensitivity of 96.6%, specificity of 85.4%, a positive predictive value of 92.7%, a negative predictive value of 92.6%, and an area under the ROC curve of 0.91 (95% CI of 0.90–0.92). The diagnostic accuracy of the OptiMAL® dipstick is high and the test may have practical use in the diagnosis of malaria infection in pregnancy in malaria endemic countries.
Collapse
Affiliation(s)
- Harry Tagbor
- Department of Community Health, School of Medical Sciences, Kwame Nkrumah University of Science and Technology Kumasi, Ghana
| | | | | | | | | |
Collapse
|
42
|
Abba K, Deeks JJ, Olliaro PL, Naing C, Jackson SM, Takwoingi Y, Donegan S, Garner P. Rapid diagnostic tests for diagnosing uncomplicated P. falciparum malaria in endemic countries. Cochrane Database Syst Rev 2011; 2011:CD008122. [PMID: 21735422 PMCID: PMC6532563 DOI: 10.1002/14651858.cd008122.pub2] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Rapid diagnostic tests (RDTs) for Plasmodium falciparum malaria use antibodies to detect either HRP-2 antigen or pLDH antigen, and can improve access to diagnostics in developing countries. OBJECTIVES To assess the diagnostic accuracy of RDTs for detecting P. falciparum parasitaemia in persons living in endemic areas who present to ambulatory healthcare facilities with symptoms suggestive of malaria by type and brand. SEARCH STRATEGY We undertook a comprehensive search of the following databases: Cochrane Infectious Diseases Group Specialized Register; MEDLINE; EMBASE; MEDION; Science Citation Index; Web of Knowledge; African Index Medicus; LILACS; IndMED; to January 14, 2010. SELECTION CRITERIA Studies comparing RDTs with a reference standard (microscopy or polymerase chain reaction) in blood samples from a random or consecutive series of patients attending ambulatory health facilities with symptoms suggestive of malaria in P. falciparum endemic areas. DATA COLLECTION AND ANALYSIS For each study, a standard set of data was extracted independently by two authors, using a tailored data extraction form. Comparisons were grouped hierarchically by target antigen, and type and brand of RDT, and combined in meta-analysis where appropriate. MAIN RESULTS We identified 74 unique studies as eligible for this review and categorized them according to the antigens they detected. Types 1 to 3 include HRP-2 (from P. falciparum) either by itself or with other antigens. Types 4 and 5 included pLDH (from P. falciparum) either by itself or with other antigens. In comparisons with microscopy, we identified 71 evaluations of Type 1 tests, eight evaluations of Type 2 tests and five evaluations of Type 3 tests. In meta-analyses, average sensitivities and specificities (95% CI) were 94.8% (93.1% to 96.1%) and 95.2% (93.2% to 96.7%) for Type 1 tests, 96.0% (94.0% to 97.3%) and 95.3% (87.3% to 98.3%) for Type 2 tests, and 99.5% (71.0% to 100.0%) and 90.6% (80.5% to 95.7%) for Type 3 tests, respectively. Overall for HRP-2, the meta-analytical average sensitivity and specificity (95% CI) were 95.0% (93.5% to 96.2%) and 95.2% (93.4% to 99.4%), respectively. For pLDH antibody-based RDTs verified with microscopy, we identified 17 evaluations of Type 4 RDTs and three evaluations of Type 5 RDTs. In meta-analyses, average sensitivity for Type 4 tests was 91.5% (84.7% to 95.3%) and average specificity was 98.7% (96.9% to 99.5%). For Type 5 tests, average sensitivity was 98.4% (95.1% to 99.5%) and average specificity was 97.5% (93.5% to 99.1%). Overall for pLDH, the meta-analytical average sensitivity and specificity (95% CI) were 93.2% (88.0% to 96.2%) and 98.5% (96.7% to 99.4%), respectively. For both categories of test, there was substantial heterogeneity in study results. Quality of the microscopy reference standard could only be assessed in 40% of studies due to inadequate reporting, but results did not seem to be influenced by the reporting quality.Overall, HRP-2 antibody-based tests (such as the Type 1 tests) tended to be more sensitive and were significantly less specific than pLDH-based tests (such as the Type 4 tests). If the point estimates for Type 1 and Type 4 tests are applied to a hypothetical cohort of 1000 patients where 30% of those presenting with symptoms have P. falciparum, Type 1 tests will miss 16 cases, and Type 4 tests will miss 26 cases. The number of people wrongly diagnosed with P. falciparum would be 34 with Type 1 tests, and nine with Type 4 tests. AUTHORS' CONCLUSIONS The sensitivity and specificity of all RDTs is such that they can replace or extend the access of diagnostic services for uncomplicated P. falciparum malaria. HRP-2 antibody types may be more sensitive but are less specific than pLDH antibody-based tests, but the differences are small. The HRP-2 antigen persists even after effective treatment and so is not useful for detecting treatment failures.
Collapse
Affiliation(s)
- Katharine Abba
- Liverpool School of Tropical MedicineInternational Health GroupPembroke PlaceLiverpoolMerseysideUKL3 5QA
| | - Jonathan J Deeks
- University of BirminghamPublic Health, Epidemiology and BiostatisticsEdgbastonBirminghamUKB15 2TT
| | - Piero L Olliaro
- World Health OrganizationUNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR)1211 Geneva 27GenevaSwitzerland
| | - Cho‐Min Naing
- International Medical UniversityDivision of Community MedicineNo.126 Jalan 19/155BBukit JalilKuala LumpurMalaysia57000
| | - Sally M Jackson
- Liverpool School of Tropical MedicineInternational Health GroupPembroke PlaceLiverpoolMerseysideUKL3 5QA
| | - Yemisi Takwoingi
- University of BirminghamPublic Health, Epidemiology and BiostatisticsEdgbastonBirminghamUKB15 2TT
| | - Sarah Donegan
- Liverpool School of Tropical MedicineInternational Health GroupPembroke PlaceLiverpoolMerseysideUKL3 5QA
| | - Paul Garner
- Liverpool School of Tropical MedicineInternational Health GroupPembroke PlaceLiverpoolMerseysideUKL3 5QA
| | | |
Collapse
|
43
|
Elyazar IRF, Hay SI, Baird JK. Malaria distribution, prevalence, drug resistance and control in Indonesia. ADVANCES IN PARASITOLOGY 2011; 74:41-175. [PMID: 21295677 PMCID: PMC3075886 DOI: 10.1016/b978-0-12-385897-9.00002-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Approximately 230 million people live in Indonesia. The country is also home to over 20 anopheline vectors of malaria which transmit all four of the species of Plasmodium that routinely infect humans. A complex mosaic of risk of infection across this 5000-km-long archipelago of thousands of islands and distinctive habitats seriously challenges efforts to control malaria. Social, economic and political dimensions contribute to these complexities. This chapter examines malaria and its control in Indonesia, from the earliest efforts by malariologists of the colonial Netherlands East Indies, through the Global Malaria Eradication Campaign of the 1950s, the tumult following the coup d'état of 1965, the global resurgence of malaria through the 1980s and 1990s and finally through to the decentralization of government authority following the fall of the authoritarian Soeharto regime in 1998. We detail important methods of control and their impact in the context of the political systems that supported them. We examine prospects for malaria control in contemporary decentralized and democratized Indonesia with multidrug-resistant malaria and greatly diminished capacities for integrated malaria control management programs.
Collapse
|
44
|
Singh N, Shukla MM, Shukla MK, Mehra RK, Sharma S, Bharti PK, Singh MP, Singh A, Gunasekar A. Field and laboratory comparative evaluation of rapid malaria diagnostic tests versus traditional and molecular techniques in India. Malar J 2010; 9:191. [PMID: 20602766 PMCID: PMC2905433 DOI: 10.1186/1475-2875-9-191] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 07/05/2010] [Indexed: 11/10/2022] Open
Abstract
Background Malaria presents a diagnostic challenge in most tropical countries. Microscopy remains the gold standard for diagnosing malaria infections in clinical practice and research. However, microscopy is labour intensive, requires significant skills and time, which causes therapeutic delays. The objective of obtaining result quickly from the examination of blood samples from patients with suspected malaria is now made possible with the introduction of rapid malaria diagnostic tests (RDTs). Several RDTs are available, which are fast, reliable and simple to use and can detect Plasmodium falciparum and non-falciparum infections or both. A study was conducted in tribal areas of central India to measure the overall performance of several RDTs for diagnosis of P. falciparum and non-falciparum infections in comparison with traditional and molecular techniques. Such data will be used to guide procurement decisions of policy makers and programme managers. Methods Five commercially available RDTs were tested simultaneously in field in parallel with peripheral blood smears in outbreak-affected areas. The evaluation is designed to provide comparative data on the performance of each RDT. In addition, molecular method i.e. polymerase chain reaction (PCR) was also carried out to compare all three methods. Results A total of 372 patients with a clinical suspicion of malaria from Bajag Primary Health Centre (PHC) of district Dindori and Satanwada PHC of district Shivpuri attending the field clinics of Regional Medical Research Centre were included in the study. The analysis revealed that the First Response Malaria Antigen pLDH/HRP2 combo test was 94.7% sensitive (95% CI 89.5-97.7) and 69.9% specific (95% CI 63.6-75.6) for P. falciparum. However, for non-falciparum infections (Plasmodium vivax) the test was 84.2% sensitive (95% CI 72.1-92.5) and 96.5% specific (95% CI 93.8-98.2). The Parascreen represented a good alternative. All other RDTs were relatively less sensitive for both P. falciparum and non-falciparum infections. Conclusions The results in this study show comparative performance between microscopy, various RDTs and PCR. Despite some inherent limitation in the five RDTs tested, First Response clearly has an advantage over other RDTs. The results suggest that RDTs could play and will play an important role in malaria diagnosis.
Collapse
Affiliation(s)
- Neeru Singh
- Regional Medical Research Centre for Tribals ICMR, RMRCT Campus, Nagpur Road, Jabalpur 482003, Madhya Pradesh, India.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Bendezu J, Rosas A, Grande T, Rodriguez H, Llanos-Cuentas A, Escobedo J, Gamboa D. Field evaluation of a rapid diagnostic test (Parascreen) for malaria diagnosis in the Peruvian Amazon. Malar J 2010; 9:154. [PMID: 20529273 PMCID: PMC2898785 DOI: 10.1186/1475-2875-9-154] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Accepted: 06/07/2010] [Indexed: 11/26/2022] Open
Abstract
Background The rapid diagnostic tests for malaria (RDT) constitute a fast and opportune alternative for non-complicated malaria diagnosis in areas where microscopy is not available. The objective of this study was to validate a RDT named Parascreen™ under field conditions in Iquitos, department of Loreto, Peru. Parascreen™ is a RDT that detects the histidine-rich protein 2 (HRP2) antigen from Plasmodium falciparum and lactate deshydrogenase from all Plasmodium species. Methods Parascreen™ was compared with microscopy performed by experts (EM) and polymerase chain reaction (PCR) using the following indicators: sensitivity (Se), specificity (Sp), positive (PV+) and negative predictive values (PV-), positive (LR+) and negative likehood ratio (LR-). Results 332 patients with suspected non-complicated malaria who attended to the MOH health centres were enrolled between October and December 2006. For P. falciparum malaria, Parascreen™ in comparison with EM, had Se: 53.5%, Sp: 98.7%, PV+: 66.7%, PV-: 97.8%, LR+: 42.27 and LR-: 0.47; and for non-P. falciparum malaria, Se: 77.1%, Sp: 97.6%, PV+: 91.4%, PV-: 92.7%, LR+: 32.0 and LR-: 0.22. The comparison of Parascreen™ with PCR showed, for P. falciparum malaria, Se: 81.8%, Sp: 99.1%, PV+: 75%, PV-: 99.4, LR+: 87.27 and LR-: 0.18; and for non-P. falciparum malaria Se: 76.1%, Sp: 99.2%, PV+: 97.1%, PV-: 92.0%, LR+: 92.51 and LR-: 0.24. Conclusions The study results indicate that Parascreen™ is not a valid and acceptable test for malaria diagnosis under the field conditions found in the Peruvian Amazon. The relative proportion of Plasmodium species, in addition to the genetic characteristics of the parasites in the area, must be considered before applying any RDT, especially after the finding of P. falciparum malaria parasites lacking pfhrp2 gene in this region.
Collapse
Affiliation(s)
- Jorge Bendezu
- Instituto de Medicina Tropical Alexander Von Humboldt, Universidad Peruana Cayetano Heredia, AP 4314, Lima 100, Peru
| | | | | | | | | | | | | |
Collapse
|
46
|
Hurdayal R, Achilonu I, Choveaux D, Coetzer THT, Dean Goldring JP. Anti-peptide antibodies differentiate between plasmodial lactate dehydrogenases. Peptides 2010; 31:525-32. [PMID: 20093160 DOI: 10.1016/j.peptides.2010.01.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 01/08/2010] [Accepted: 01/08/2010] [Indexed: 11/27/2022]
Abstract
Malaria lactate dehydrogenase, a glycolytic enzyme, is a malaria diagnostic target in lateral flow immunochromatographic rapid diagnostic tests. Recombinant Plasmodium yoelii LDH was cloned into the pET-28a vector, expressed and the expressed protein purified from a Ni-NTA affinity matrix. A pan-malarial LDH antibody directed against a common malaria LDH peptide (APGKSDKEWNRDDLL) and two anti-peptide antibodies, each targeting a unique Plasmodium falciparum (LISDAELEAIFDC) and Plasmodium vivax (KITDEEVEGIFDC) LDH peptide were raised in chickens. The antibodies were affinity purified with the appropriate peptide affinity matrix. The affinity purified anti-peptide antibodies detected recombinant P. falciparum, P. vivax and P. yoelii LDH and native P. falciparum and P. yoelii LDH in western blots and immunofluorescence studies. The pan-malarial antibody detected LDH from the three malaria species in western blots. The species-specific anti-peptide antibodies differentiated between P. falciparum and P. vivax LDH. Affinity purified chicken antibodies against recombinant PfLDH, PvLDH and PyLDH proteins each detected the parent and orthologous proteins with similar titers in an ELISA. The study supports an anti-peptide antibody approach to the development of diagnostic reagents.
Collapse
Affiliation(s)
- Ramona Hurdayal
- Biochemistry, University of KwaZulu-Natal, PB X01, Carbis Road, Scottsville 3209, South Africa
| | | | | | | | | |
Collapse
|
47
|
van Dijk DPJ, Gillet P, Vlieghe E, Cnops L, van Esbroeck M, Jacobs J. Evaluation of the Palutop+4 malaria rapid diagnostic test in a non-endemic setting. Malar J 2009; 8:293. [PMID: 20003378 PMCID: PMC2797810 DOI: 10.1186/1475-2875-8-293] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 12/12/2009] [Indexed: 11/23/2022] Open
Abstract
Background Palutop+4 (All. Diag, Strasbourg, France), a four-band malaria rapid diagnostic test (malaria RDT) targeting the histidine-rich protein 2 (HRP-2), Plasmodium vivax-specific parasite lactate dehydrogenase (Pv-pLDH) and pan Plasmodium-specific pLDH (pan-pLDH) was evaluated in a non-endemic setting on stored whole blood samples from international travellers suspected of malaria. Methods Microscopy corrected by PCR was the reference method. Samples include those infected by Plasmodium falciparum (n = 323), Plasmodium vivax (n = 97), Plasmodium ovale (n = 73) and Plasmodium malariae (n = 25) and 95 malaria negative samples. Results The sensitivities for the diagnosis of P. falciparum, P. vivax, P. malariae and P. ovale were 85.1%, 66.0%, 32.0% and 5.5%. Sensitivities increased at higher parasite densities and reached 90.0% for P. falciparum >100/μl and 83.8% for P. vivax > 500/μl. Fourteen P. falciparum samples reacted with the Pv-pLDH line, one P. vivax sample with the HRP-2 line, and respectively two and four P. ovale and P. malariae samples reacted with the HRP-2 line. Two negative samples gave a signal with the HRP-2 line. Faint and weak line intensities were observed for 129/289 (44.6%) HRP-2 lines in P. falciparum samples, for 50/64 (78.1%) Pv-pLDH lines in P. vivax samples and for 9/13 (69.2%) pan-pLDH lines in P. ovale and P. malariae samples combined. Inter-observer reliabilities for positive and negative readings were excellent for the HRP-2 and Pv-pLDH lines (overall agreement > 92.0% and kappa-values for each pair of readers ≥ 0.88), and good for the pan-pLDH line (85.5% overall agreement and kappa-values ≥ 0.74). Conclusions Palutop+4 performed moderately for the detection of P. falciparum and P. vivax, but sensitivities were lower than those of three-band malaria RDTs.
Collapse
Affiliation(s)
- David P J van Dijk
- Faculty of Health, Medicine and Life Sciences (FHML), Maastricht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
48
|
Khairnar K, Martin D, Lau R, Ralevski F, Pillai DR. Multiplex real-time quantitative PCR, microscopy and rapid diagnostic immuno-chromatographic tests for the detection of Plasmodium spp: performance, limit of detection analysis and quality assurance. Malar J 2009; 8:284. [PMID: 20003199 PMCID: PMC2796674 DOI: 10.1186/1475-2875-8-284] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 12/09/2009] [Indexed: 12/02/2022] Open
Abstract
Background Accurate laboratory diagnosis of malaria species in returning travelers is paramount in the treatment of this potentially fatal infectious disease. Materials and methods A total of 466 blood specimens from returning travelers to Africa, Asia, and South/Central America with suspected malaria infection were collected between 2007 and 2009 at the reference public health laboratory. These specimens were assessed by reference microscopy, multipex real-time quantitative polymerase chain reaction (QPCR), and two rapid diagnostic immuno-chromatographic tests (ICT) in a blinded manner. Key clinical laboratory parameters such as limit of detection (LOD) analysis on clinical specimens by parasite stage, inter-reader variability of ICTs, staffing implications, quality assurance and cost analysis were evaluated. Results QPCR is the most analytically sensitive method (sensitivity 99.41%), followed by CARESTART (sensitivity 88.24%), and BINAXNOW (sensitivity 86.47%) for the diagnosis of malaria in returning travelers when compared to reference microscopy. However, microscopy was unable to specifically identify Plasmodia spp. in 18 out of 170 positive samples by QPCR. Moreover, the 17 samples that were negative by microscopy and positive by QPCR were also positive by ICTs. Quality assurance was achieved for QPCR by exchanging a blinded proficiency panel with another reference laboratory. The Kappa value of inter-reader variability among three readers for BINAXNOW and CARESTART was calculated to be 0.872 and 0.898 respectively. Serial dilution studies demonstrated that the QPCR cycle threshold correlates linearly with parasitemia (R2 = 0.9746) in a clinically relevant dynamic range and retains a LOD of 11 rDNA copies/μl for P. falciparum, which was several log lower than reference microscopy and ICTs. LOD for QPCR is affected not only by parasitemia but the parasite stage distribution of each clinical specimen. QPCR was approximately 6-fold more costly than reference microscopy. Discussion These data suggest that multiplex QPCR although more costly confers a significant diagnostic advantage in terms of LOD compared to reference microscopy and ICTs for all four species. Quality assurance of QPCR is essential to the maintenance of proficiency in the clinical laboratory. ICTs showed good concordance between readers however lacked sensitivity for non-falciparum species due to antigenic differences and low parasitemia. Conclusion Multiplex QPCR but not ICTs is an essential adjunct to microscopy in the reference laboratory detection of malaria species specifically due to the superior LOD. ICTs are better suited to the non-reference laboratory where lower specimen volumes challenge microscopy proficiency in the non-endemic setting.
Collapse
Affiliation(s)
- Krishna Khairnar
- Department of Laboratory Medicine & Pathobiology, University of Toronto, 81A Resources Road, Rm 243, Toronto ON M9P 3T1, ON, Canada.
| | | | | | | | | |
Collapse
|
49
|
Uzochukwu BSC, Obikeze EN, Onwujekwe OE, Onoka CA, Griffiths UK. Cost-effectiveness analysis of rapid diagnostic test, microscopy and syndromic approach in the diagnosis of malaria in Nigeria: implications for scaling-up deployment of ACT. Malar J 2009; 8:265. [PMID: 19930666 PMCID: PMC2787522 DOI: 10.1186/1475-2875-8-265] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2009] [Accepted: 11/23/2009] [Indexed: 11/14/2022] Open
Abstract
Background The diagnosis and treatment of malaria is often based on syndromic presentation (presumptive treatment) and microscopic examination of blood films. Treatment based on syndromic approach has been found to be costly, and contributes to the development of drug resistance, while microscopic diagnosis of malaria is time-consuming and labour-intensive. Also, there is lack of trained microscopists and reliable equipment especially in rural areas of Nigeria. However, although rapid diagnostic tests (RDTs) have improved the ease of appropriate diagnosis of malaria diagnosis, the cost-effectiveness of RDTs in case management of malaria has not been evaluated in Nigeria. The study hence compares the cost-effectiveness of RDT versus syndromic diagnosis and microscopy. Methods A total of 638 patients with fever, clinically diagnosed as malaria (presumptive malaria) by health workers, were selected for examination with both RDT and microscopy. Patients positive on RDT received artemisinin-based combination therapy (ACT) and febrile patients negative on RDT received an antibiotic treatment. Using a decision tree model for a hypothetical cohort of 100,000 patients, the diagnostic alternatives considered were presumptive treatment (base strategy), RDT and microscopy. Costs were based on a consumer and provider perspective while the outcome measure was deaths averted. Information on costs and malaria epidemiology were locally generated, and along with available data on effectiveness of diagnostic tests, adherence level to drugs for treatment, and drug efficacy levels, cost-effectiveness estimates were computed using TreeAge programme. Results were reported based on costs and effects per strategy, and incremental cost-effectiveness ratios. Results The cost-effectiveness analysis at 43.1% prevalence level showed an incremental cost effectiveness ratio (ICER) of 221 per deaths averted between RDT and presumptive treatment, while microscopy is dominated at that level. There was also a lesser cost of RDT ($0.34 million) compared to presumptive treatment ($0.37 million) and microscopy ($0.39 million), with effectiveness values of 99,862, 99,735 and 99,851 for RDT, presumptive treatment and microscopy, respectively. Cost-effectiveness was affected by malaria prevalence level, ACT adherence level, cost of ACT, proportion of non-malaria febrile illness cases that were bacterial, and microscopy and RDT sensitivity. Conclusion RDT is cost-effective when compared to other diagnostic strategies for malaria treatment at malaria prevalence of 43.1% and, therefore, a very good strategy for diagnosis of malaria in Nigeria. There is opportunity for cost savings if rapid diagnostic tests are introduced in health facilities in Nigeria for case management of malaria.
Collapse
|
50
|
Syafruddin D, Krisin, Asih P, Sekartuti, Dewi RM, Coutrier F, Rozy IE, Susanti AI, Elyazar IRF, Sutamihardja A, Rahmat A, Kinzer M, Rogers WO. Seasonal prevalence of malaria in West Sumba district, Indonesia. Malar J 2009; 8:8. [PMID: 19134197 PMCID: PMC2628667 DOI: 10.1186/1475-2875-8-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 01/09/2009] [Indexed: 11/10/2022] Open
Abstract
Background Accurate information about the burden of malaria infection at the district or provincial level is required both to plan and assess local malaria control efforts. Although many studies of malaria epidemiology, immunology, and drug resistance have been conducted at many sites in Indonesia, there is little published literature describing malaria prevalence at the district, provincial, or national level. Methods Two stage cluster sampling malaria prevalence surveys were conducted in the wet season and dry season across West Sumba, Nusa Tenggara Province, Indonesia. Results Eight thousand eight hundred seventy samples were collected from 45 sub-villages in the surveys. The overall prevalence of malaria infection in the West Sumba District was 6.83% (95% CI, 4.40, 9.26) in the wet season and 4.95% (95% CI, 3.01, 6.90) in the dry. In the wet season Plasmodium falciparum accounted for 70% of infections; in the dry season P. falciparum and Plasmodium vivax were present in equal proportion. Malaria prevalence varied substantially across the district; prevalences in individual sub-villages ranged from 0–34%. The greatest malaria prevalence was in children and teenagers; the geometric mean parasitaemia in infected individuals decreased with age. Malaria infection was clearly associated with decreased haemoglobin concentration in children under 10 years of age, but it is not clear whether this association is causal. Conclusion Malaria is hypoendemic to mesoendemic in West Sumba, Indonesia. The age distribution of parasitaemia suggests that transmission has been stable enough to induce some clinical immunity. These prevalence data will aid the design of future malaria control efforts and will serve as a baseline against which the results of current and future control efforts can be assessed.
Collapse
Affiliation(s)
- Din Syafruddin
- Eijkman Institute for Molecular Biology, Diponegoro 69, Jakarta 10430, Indonesia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|