1
|
Yang W, Zhou W, Liang B, Hu X, Wang S, Wang Z, Wang T, Xia X, Feng N, Zhao Y, Yan F. A surrogate BSL2-compliant infection model recapitulating key aspects of human Marburg virus disease. Emerg Microbes Infect 2025; 14:2449083. [PMID: 39745141 PMCID: PMC11727069 DOI: 10.1080/22221751.2024.2449083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/23/2024] [Accepted: 12/29/2024] [Indexed: 01/14/2025]
Abstract
Marburg virus disease (MVD) is a severe infectious disease caused by the Marburg virus (MARV), posing a significant threat to humans. MARV needs to be operated under strict biosafety Level 4 (BSL-4) laboratory conditions. Therefore, accessible and practical animal models are urgently needed to advance prophylactic and therapeutic strategies for MARV. In this study, we constructed a recombinant vesicular stomatitis virus (VSV) expressing the Marburg virus glycoprotein (VSV-MARV/GP). Syrian hamsters infected with VSV-MARV/GP presented symptoms such as thrombocytopenia, lymphopenia, haemophilia, and multiorgan failure, developing a severe systemic disease akin to that observed in human MARV patients. Notably, the pathogenicity was found to be species-specific, age-related, sex-associated, and challenge route-dependent. Subsequently, the therapeutic efficacy of the MR191 monoclonal antibody was validated in this model. In summary, this alternative model is an effective tool for rapidly screening medical countermeasures against MARV GP in vivo under BSL-2 conditions.
Collapse
Affiliation(s)
- Wanying Yang
- State Key Laboratory of Pathogenic Microorganisms, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agriculture University, Zhengzhou, People’s Republic of China
| | - Wujie Zhou
- State Key Laboratory of Pathogenic Microorganisms, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Bo Liang
- State Key Laboratory of Pathogenic Microorganisms, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Xiaojun Hu
- State Key Laboratory of Pathogenic Microorganisms, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Shen Wang
- State Key Laboratory of Pathogenic Microorganisms, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Zhenshan Wang
- State Key Laboratory of Pathogenic Microorganisms, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Tiecheng Wang
- State Key Laboratory of Pathogenic Microorganisms, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Xianzhu Xia
- State Key Laboratory of Pathogenic Microorganisms, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Na Feng
- State Key Laboratory of Pathogenic Microorganisms, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Yongkun Zhao
- State Key Laboratory of Pathogenic Microorganisms, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Feihu Yan
- State Key Laboratory of Pathogenic Microorganisms, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| |
Collapse
|
2
|
Elbert JA, Schuh AJ, Amman BR, Guito JC, Graziano JC, Sealy TK, Howerth EW, Towner JS. Characterization of Ravn virus viral shedding dynamics in experimentally infected Egyptian rousette bats ( Rousettus aegypticus). J Virol 2025; 99:e0004525. [PMID: 40265897 PMCID: PMC12090798 DOI: 10.1128/jvi.00045-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/27/2025] [Indexed: 04/24/2025] Open
Abstract
Marburg virus (MARV) and Ravn virus (RAVV), the only two known members of the species Orthomarburgvirus marburgense (family Filoviridae), are causative agents of Marburg virus disease, a severe viral disease that typically emerges in sub-Saharan Africa and is characterized by human-to-human transmission and high case fatalities. Despite the robust characterization of MARV experimental infection in Egyptian rousette bats (ERBs; Rousettus aegyptiacus; common name: Egyptian rousettes), a natural MARV reservoir, experimental infection with RAVV in ERBs has not been completed. Here, we experimentally infect 12 ERBs with RAVV and quantify viral loads in blood, oral swabs, and rectal swabs over a 21-day timeline with serological and cumulative shedding data and baseline clinical parameters. Compared to previously described experimental MARV infection in ERBs, these bats experimentally inoculated with RAVV had significantly higher and prolonged rectal viral shedding loads, as well as significantly prolonged oral shedding and higher peak viremia. All ERBs seroconverted by 21 days post-infection. Additionally, all ERBs demonstrated marked heterogeneity in RAVV viral shedding loads consistent with the Pareto Principle and viral "supershedders." Our results introduce the possibility of variation in transmission dynamics and subsequent spillover differences between RAVV and MARV.IMPORTANCERavn virus, along with Marburg virus, causes severe viral disease in humans with high fatality but little to no clinical disease in its reservoir host, the Egyptian rousette bat. Our findings provide important insights into how Ravn virus behaves in its natural reservoir host, showing that Ravn virus infection followed a similar timeline to Marburg virus infection, with virus detected in blood, saliva, and feces. However, Ravn virus-infected bats had higher levels of viral shedding and shed the virus for a longer period, particularly in feces, compared to Marburg virus. These differences in viral shedding may impact the spread of the virus within bat populations and potentially alter the likelihood of spillover into humans, non-human primates, and other animal species. These insights are crucial for understanding Ravn virus maintenance in its bat reservoir and improving our ability to mitigate or prevent future human outbreaks.
Collapse
Affiliation(s)
- Jessica A. Elbert
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Amy J. Schuh
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, United States Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- USA Public Health Service Commissioned Corps, Rockville, Maryland, USA
| | - Brian R. Amman
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, United States Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jonathan C. Guito
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, United States Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - James C. Graziano
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, United States Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Tara K. Sealy
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, United States Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Elizabeth W. Howerth
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Jonathan S. Towner
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, United States Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Paison F, Ubuzima P, Nshimiyimana E, Habumugisha J, Atukunda S, Ayebare F, Munyurangabo G, Amikoro B, Su B. Therapeutic advances in Marburg virus disease: from experimental treatments to vaccine development. Ann Med Surg (Lond) 2025; 87:2784-2799. [PMID: 40337393 PMCID: PMC12055102 DOI: 10.1097/ms9.0000000000003213] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/14/2025] [Indexed: 05/09/2025] Open
Abstract
The Marburg virus (MARV), discovered in 1967, has led to devastating outbreaks over the world; the mortality rate of Marburg virus disease (MVD) varies according to the outbreak and viral type. The very first known filovirus hemorrhagic fever outbreaks occurred in Germany and the former Yugoslavia. MVD is a deadly illness caused by the MARV virus, part of the Filoviridae family. It progresses with early viral replication that damages immune cells, followed by destruction of organs like the spleen, liver, and lymphoid tissues. Combatting this disease requires proper health education, and strong strategies. MVD is a lethal single-stranded RNA virus transmitted by Egyptian rousette bats, with a fatality rate of approximately 90%. This work explored ongoing studies on the recent vaccine developments and experimental therapies, such as a recombinant vesicular stomatitis virus (VSV)-based vaccine and MVA-BN-Filo, aiming to combat this deadly infection. Over the previous years, MARV has also spread to non-endemic African countries, demonstrating its potential to cause epidemics. Although MARV-specific vaccines are evaluated in preclinical and clinical research, none have been approved for human use. Studies revealed that Modified Vaccinia virus Ankara, a well-established viral vector used to generate vaccines against emerging pathogens, can deliver multiple antigens and has a remarkable clinical safety and immunogenicity record. MVD has been recently reported in Rwanda in 2024, an African country, and nearly 15 outbreaks of MVD have been reported. This review describes the nature of the MVD, key outbreaks, the virus's pathogenesis, mode of transmission, clinical and laboratory diagnosis, and control and prevention measures to advance MVD treatment, drug development, vaccine creation, and prevention of MVD.
Collapse
Affiliation(s)
- Faida Paison
- School of Education, Kigali Independent University ULK, Kigali, Rwanda
| | - Pascal Ubuzima
- Department of Preventive and Community Dentistry, School of Dentistry, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
- Department of Orthodontics, Affiliated Hospital of Stomatology, Anhui Medical University, Hefei, Anhui, China
| | - Eugene Nshimiyimana
- Department of Orthodontics, Affiliated Hospital of Stomatology, Anhui Medical University, Hefei, Anhui, China
| | - Janvier Habumugisha
- Department of Biochemistry and Molecular Dentistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Secret Atukunda
- School of Medicine, University of Global Health Equity, Butaro, Rwanda
| | - Fortunate Ayebare
- Department of Clinical Medicine and Community Health, School of Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Gustave Munyurangabo
- Department of Hematology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Center for Tumor and Immunology, the Precision Medical Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Betty Amikoro
- Graduate School of Medicine and Surgery, Xi’an Jiaotong University, Xi’an, China
| | - Biyun Su
- College of Chemistry and Chemical Engineering, Xi’an Shiyou University, Xi’an, Shaanxi, China
| |
Collapse
|
4
|
Frank C, Wilking H, Lachmann R. Re: 'Marburg virus disease outbreak in Rwanda 2024' by Grobusch et al. Clin Microbiol Infect 2025; 31:873-875. [PMID: 39892514 DOI: 10.1016/j.cmi.2025.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/03/2025]
Affiliation(s)
- Christina Frank
- Department for Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany.
| | - Hendrik Wilking
- Department for Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany
| | - Raskit Lachmann
- Department for Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
5
|
Letafati A, Fakhr SSH, Najafabadi AQ, Karami N, Karami H. Marburg Virus Disease: A Narrative Review. Health Sci Rep 2025; 8:e70669. [PMID: 40330770 PMCID: PMC12053247 DOI: 10.1002/hsr2.70669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/22/2025] [Accepted: 03/21/2025] [Indexed: 05/08/2025] Open
Abstract
Background and Aims Given the recent deadly outbreaks of the Marburg virus (MARV), in early 2023 in Tanzania and Equatorial Guinea, and the most recent one in Rwanda in 2024, there has been renewed attention across Africa on the threat posed by the re-emergence of MARV as a growing concern for public health. Therefore, it needs to provide a comprehensive overview of the virus and its related infections, encompassing virus classification, historical outbreaks, transmission dynamics, the intricate interface between the virus and its hosts, the methods of diagnosis, core prevention strategies, and current therapeutic options, to better understand the virus and the disease characteristics in responding to future outbreaks. Methods For this review, four scientific online databases, including PubMed, Google Scholar, Scopus, and Web of Science were thoroughly searched for peer-reviewed journal papers (original, case reports/series, and review studies) published in English language using the following keywords: Filovirus, Marburg virus, Marburg Haemorrhagic Fever, Marburg virus disease, and Marburg virus outbreak. Results MARV shares similarities with its close cousin -the Ebola virus [EBOV]-in terms of viral characteristics and most clinical features. These two viruses are of animal origin and primarily spread to humans through infected bats (both direct and indirect close contact), which serve as the common natural host reservoirs. The potential for interhuman transmission, coupled with the ability to cross borders of endemic regions combined with the absence of a licensed vaccine and effective treatment, have made MARV a significant threat to human health. This virus is clinically characterized by a range of symptoms and organ dysfunctions. The disease is often fatal in a significant proportion of infected individuals. This viral infection is diagnosed by various diagnostic tools, prevented mainly through personal protective measures, and treated usually with clinical management and supportive care. Conclusion The outbreaks of MARV are continuously threaten public health; therefore, the world must be alert and well-prepared. For MVD, taking precautions along with investing in research and preparedness at regional, national, and global levels is of crucial importance and should be prioritized.
Collapse
Affiliation(s)
- Arash Letafati
- Department of Virology, Faculty of Public HealthTehran University of Medical Sciences (TUMS)TehranIran
| | | | - Ali Qaraee Najafabadi
- Department of Biochemistry, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Negin Karami
- Department of Nursing, Faculty of NursingAlborz University of Medical SciencesKarajIran
| | - Hassan Karami
- Department of Virology, Faculty of Public HealthTehran University of Medical Sciences (TUMS)TehranIran
| |
Collapse
|
6
|
Ngai S, Evers ES, Seoane AKL, Ameh G, Anoko JN, Barnadas C, Choi MJ, Diaz J, Fontana L, Formenty P, Nezu IH, Jacquerioz F, Klena J, Laurenson-Schafer H, de Waroux OLP, Legand A, Carrera RM, Metcalf T, Montgomery J, Morreale S, Negrón ME, Nvé JO, Ayekaba MO, Pavlin BI, Shoemaker T, Hernandez YT, Venta MV, Gutierrez EZ, Ndoho FAO. Outbreak of Marburg Virus Disease, Equatorial Guinea, 2023. Emerg Infect Dis 2025; 31:887-895. [PMID: 40180579 PMCID: PMC12044228 DOI: 10.3201/eid3105.241749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Abstract
In February 2023, the government of Equatorial Guinea declared an outbreak of Marburg virus disease. We describe the response structure and epidemiologic characteristics, including case-patient demographics, clinical manifestations, risk factors, and the serial interval and timing of symptom onset, treatment seeking, and recovery or death. We identified 16 laboratory-confirmed and 23 probable cases of Marburg virus disease in 5 districts and noted several unlinked chains of transmission and a case-fatality ratio of 90% (35/39 cases). Transmission was concentrated in family clusters and healthcare settings. The median serial interval was 18.5 days; most transmission occurred during late-stage disease. Rapid isolation of symptomatic case-patients is critical in preventing transmission and improving patient outcomes; community engagement and surveillance strengthening should be prioritized in emerging outbreaks. Further analysis of this outbreak and a One Health surveillance approach can help prevent and prepare for future potential spillover events.
Collapse
|
7
|
Cross RW, Woolsey C, Prasad AN, Borisevich V, Agans KN, Deer DJ, Harrison MB, Dobias NS, Fenton KA, Cihlar T, Nguyen AQ, Babusis D, Bannister R, Vermillion MS, Chu VC, Geisbert TW. Oral obeldesivir provides postexposure protection against Marburg virus in nonhuman primates. Nat Med 2025; 31:1303-1311. [PMID: 39805309 PMCID: PMC12003170 DOI: 10.1038/s41591-025-03496-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
The recent outbreak of Marburg virus (MARV) in Rwanda underscores the need for effective countermeasures against this highly fatal pathogen, with case fatality rates reaching 90%. Currently, no vaccines or approved treatments exist for MARV infection, distinguishing it from related viruses such as Ebola. Our study demonstrates that the oral drug obeldesivir (ODV), a nucleoside analog prodrug, shows promising antiviral activity against filoviruses in vitro and offers significant protection in animal models. Here with cynomolgus macaques (n = 6), a 10 day regimen of once-daily ODV, initiated 24 h after exposure, provided 80% protection against a thousandfold lethal MARV challenge, delaying viral replication and disease onset. Transcriptome analysis revealed that early adaptive responses correlated with successful outcomes. Compared with intravenous options, oral antivirals such as ODV offer logistical advantages in outbreak settings, enabling easier administration and broader contact coverage. Our findings support the potential of ODV as a broad-spectrum, oral postexposure prophylaxis for filoviruses.
Collapse
Affiliation(s)
- Robert W Cross
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Courtney Woolsey
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Abhishek N Prasad
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Viktoriya Borisevich
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Krystle N Agans
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Daniel J Deer
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Mack B Harrison
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Natalie S Dobias
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Karla A Fenton
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | | | | | | | | | | | | | - Thomas W Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA.
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
8
|
Havens JL, Kosakovsky Pond SL, Zehr JD, Pekar JE, Parker E, Worobey M, Andersen KG, Wertheim JO. Dynamics of natural selection preceding human viral epidemics and pandemics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.26.640439. [PMID: 40060453 PMCID: PMC11888428 DOI: 10.1101/2025.02.26.640439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Using a phylogenetic framework to characterize natural selection, we investigate the hypothesis that zoonotic viruses require adaptation prior to zoonosis to sustain human-to-human transmission. Examining the zoonotic emergence of Ebola virus, Marburg virus, influenza A virus, SARS-CoV, and SARS-CoV-2, we find no evidence of a change in the intensity of natural selection immediately prior to a host switch, compared with typical selection within reservoir hosts. We conclude that extensive pre-zoonotic adaptation is not necessary for human-to-human transmission of zoonotic viruses. In contrast, the reemergence of H1N1 influenza A virus in 1977 showed a change in selection, consistent with the hypothesis of passage in a laboratory setting prior to its reintroduction into the human population, purportedly during a vaccine trial. Holistic phylogenetic analysis of selection regimes can be used to detect evolutionary signals of host switching or laboratory passage, providing insight into the circumstances of past and future viral emergence.
Collapse
Affiliation(s)
- Jennifer L. Havens
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | - Jordan D. Zehr
- Institute for Genomics and Evolutionary Medicine, Temple University, 19122, Philadelphia, USA
- Department of Public and Ecosystem Health, Cornell University, Ithaca, NY 14850, USA
| | - Jonathan E. Pekar
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, UK
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Edyth Parker
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Michael Worobey
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Kristian G. Andersen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Joel O. Wertheim
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
9
|
Butera Y, Mutesa L, Parker E, Muvunyi R, Umumararungu E, Ayitewala A, Musabyimana JP, Olono A, Sesonga P, Ogunsanya O, Kabalisa E, Adedokun O, Gahima N, Irankunda L, Mutezemariya C, Niyonkuru R, Uwituze A, Uwizera I, Kagame J, Umugwaneza A, Rwabuhihi J, Umwanankabandi F, Mbonitegeka V, Ntagwabira E, Kayigi E, Izuwayo G, Murenzi H, Mukankwiro T, Tuyiringire N, Uwimana JMV, Gasengayire A, Sindayiheba R, Onyeugo GU, Aragaw M, Gitundu L, Bigirimana R, Fallah M, Ejikeme A, Sembuche S, Kabanda A, Mugisha JC, Francis EES, Gashema P, Ndayisenga J, Rugamba A, Kanyabwisha F, Murenzi G, Happi A, Ngabonziza JCS, Gashegu M, Ahmed A, Bigirimana N, Rwagasore E, Semakula M, Rwabihama JP, Musanabaganwa C, Seruyange E, Nkeshimana M, Twagirumugabe T, Turatsinze D, Remera E, Gahamanyi N, Tessema SK, Mukagatare I, Nsanzimana S, Happi C, Muvunyi CM. Genomic and transmission dynamics of the 2024 Marburg virus outbreak in Rwanda. Nat Med 2025; 31:422-426. [PMID: 39681304 PMCID: PMC11835718 DOI: 10.1038/s41591-024-03459-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 12/12/2024] [Indexed: 12/18/2024]
Abstract
The ongoing outbreak of Marburg virus disease in Rwanda marks the third largest historically, although it has shown the lowest fatality rate. Genomic analysis of samples from 18 cases identified a lineage with limited internal diversity, closely related to a 2014 Ugandan case. Our findings suggest that the Rwandan lineage diverged decades ago from a common ancestor shared with diversity sampled from bats in Uganda. Our genomic data reveal limited genetic variation, consistent with a single zoonotic transmission event and limited human-to-human transmission. Investigations including contact tracing, clinical assessments, sequencing and serology, linked the index case to a mining cave inhabited by Rousettus aegyptiacus. Serology tests identified three individuals seropositive for immunoglobulin G and immunoglobulin M, further supporting the zoonotic origin of the outbreak through human-animal interactions.
Collapse
Affiliation(s)
- Yvan Butera
- Rwanda Joint Task Force for Marburg Virus Disease Outbreak, Ministry of Health, Rwanda Biomedical Centre, Kigali, Rwanda.
- Ministry of Health, Kigali, Rwanda.
| | - Leon Mutesa
- Rwanda Joint Task Force for Marburg Virus Disease Outbreak, Ministry of Health, Rwanda Biomedical Centre, Kigali, Rwanda.
- Center for Human Genetics, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda.
- Africa Centre for Disease Control and Prevention, Addis Ababa, Ethiopia.
| | - Edyth Parker
- Rwanda Joint Task Force for Marburg Virus Disease Outbreak, Ministry of Health, Rwanda Biomedical Centre, Kigali, Rwanda
- African Center of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Nigeria
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Raissa Muvunyi
- Rwanda Joint Task Force for Marburg Virus Disease Outbreak, Ministry of Health, Rwanda Biomedical Centre, Kigali, Rwanda
- Rwanda Biomedical Centre, Kigali, Rwanda
| | - Esperance Umumararungu
- Rwanda Joint Task Force for Marburg Virus Disease Outbreak, Ministry of Health, Rwanda Biomedical Centre, Kigali, Rwanda
- Rwanda Biomedical Centre, Kigali, Rwanda
| | - Alisen Ayitewala
- Rwanda Joint Task Force for Marburg Virus Disease Outbreak, Ministry of Health, Rwanda Biomedical Centre, Kigali, Rwanda
- Africa Centre for Disease Control and Prevention, Addis Ababa, Ethiopia
| | - Jean Pierre Musabyimana
- Rwanda Joint Task Force for Marburg Virus Disease Outbreak, Ministry of Health, Rwanda Biomedical Centre, Kigali, Rwanda
- Rwanda Biomedical Centre, Kigali, Rwanda
| | - Alhaji Olono
- Rwanda Joint Task Force for Marburg Virus Disease Outbreak, Ministry of Health, Rwanda Biomedical Centre, Kigali, Rwanda
- African Center of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Nigeria
| | - Placide Sesonga
- Rwanda Joint Task Force for Marburg Virus Disease Outbreak, Ministry of Health, Rwanda Biomedical Centre, Kigali, Rwanda
- Center for Human Genetics, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
- Africa Centre for Disease Control and Prevention, Addis Ababa, Ethiopia
| | - Olusola Ogunsanya
- Rwanda Joint Task Force for Marburg Virus Disease Outbreak, Ministry of Health, Rwanda Biomedical Centre, Kigali, Rwanda
- African Center of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Nigeria
| | - Emmanuel Kabalisa
- Rwanda Joint Task Force for Marburg Virus Disease Outbreak, Ministry of Health, Rwanda Biomedical Centre, Kigali, Rwanda
- Rwanda Biomedical Centre, Kigali, Rwanda
| | - Oluwatobi Adedokun
- Rwanda Joint Task Force for Marburg Virus Disease Outbreak, Ministry of Health, Rwanda Biomedical Centre, Kigali, Rwanda
- African Center of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Nigeria
| | - Nelson Gahima
- Rwanda Joint Task Force for Marburg Virus Disease Outbreak, Ministry of Health, Rwanda Biomedical Centre, Kigali, Rwanda
- Rwanda Biomedical Centre, Kigali, Rwanda
| | - Laetitia Irankunda
- Rwanda Joint Task Force for Marburg Virus Disease Outbreak, Ministry of Health, Rwanda Biomedical Centre, Kigali, Rwanda
- Rwanda Biomedical Centre, Kigali, Rwanda
| | - Chantal Mutezemariya
- Rwanda Joint Task Force for Marburg Virus Disease Outbreak, Ministry of Health, Rwanda Biomedical Centre, Kigali, Rwanda
- Rwanda Biomedical Centre, Kigali, Rwanda
| | - Richard Niyonkuru
- Rwanda Joint Task Force for Marburg Virus Disease Outbreak, Ministry of Health, Rwanda Biomedical Centre, Kigali, Rwanda
- Rwanda Biomedical Centre, Kigali, Rwanda
| | - Arlene Uwituze
- Rwanda Joint Task Force for Marburg Virus Disease Outbreak, Ministry of Health, Rwanda Biomedical Centre, Kigali, Rwanda
- Rwanda Biomedical Centre, Kigali, Rwanda
| | - Ithiel Uwizera
- Rwanda Joint Task Force for Marburg Virus Disease Outbreak, Ministry of Health, Rwanda Biomedical Centre, Kigali, Rwanda
- Rwanda Biomedical Centre, Kigali, Rwanda
| | - James Kagame
- Rwanda Joint Task Force for Marburg Virus Disease Outbreak, Ministry of Health, Rwanda Biomedical Centre, Kigali, Rwanda
- Rwanda Biomedical Centre, Kigali, Rwanda
| | - Arlette Umugwaneza
- Rwanda Joint Task Force for Marburg Virus Disease Outbreak, Ministry of Health, Rwanda Biomedical Centre, Kigali, Rwanda
- Rwanda Biomedical Centre, Kigali, Rwanda
| | - John Rwabuhihi
- Rwanda Joint Task Force for Marburg Virus Disease Outbreak, Ministry of Health, Rwanda Biomedical Centre, Kigali, Rwanda
- Rwanda Biomedical Centre, Kigali, Rwanda
| | - Fidele Umwanankabandi
- Rwanda Joint Task Force for Marburg Virus Disease Outbreak, Ministry of Health, Rwanda Biomedical Centre, Kigali, Rwanda
- Rwanda Biomedical Centre, Kigali, Rwanda
| | - Valens Mbonitegeka
- Rwanda Joint Task Force for Marburg Virus Disease Outbreak, Ministry of Health, Rwanda Biomedical Centre, Kigali, Rwanda
- Rwanda Biomedical Centre, Kigali, Rwanda
| | - Edouard Ntagwabira
- Rwanda Joint Task Force for Marburg Virus Disease Outbreak, Ministry of Health, Rwanda Biomedical Centre, Kigali, Rwanda
- Rwanda Biomedical Centre, Kigali, Rwanda
| | - Etienne Kayigi
- Rwanda Joint Task Force for Marburg Virus Disease Outbreak, Ministry of Health, Rwanda Biomedical Centre, Kigali, Rwanda
- Rwanda Biomedical Centre, Kigali, Rwanda
| | - Gerard Izuwayo
- Rwanda Joint Task Force for Marburg Virus Disease Outbreak, Ministry of Health, Rwanda Biomedical Centre, Kigali, Rwanda
- Rwanda Biomedical Centre, Kigali, Rwanda
| | - Herve Murenzi
- Rwanda Joint Task Force for Marburg Virus Disease Outbreak, Ministry of Health, Rwanda Biomedical Centre, Kigali, Rwanda
- Rwanda Biomedical Centre, Kigali, Rwanda
| | - Therese Mukankwiro
- Rwanda Joint Task Force for Marburg Virus Disease Outbreak, Ministry of Health, Rwanda Biomedical Centre, Kigali, Rwanda
- Rwanda Biomedical Centre, Kigali, Rwanda
| | - Nasson Tuyiringire
- Rwanda Joint Task Force for Marburg Virus Disease Outbreak, Ministry of Health, Rwanda Biomedical Centre, Kigali, Rwanda
- Rwanda Biomedical Centre, Kigali, Rwanda
| | - Jean Marie Vianney Uwimana
- Rwanda Joint Task Force for Marburg Virus Disease Outbreak, Ministry of Health, Rwanda Biomedical Centre, Kigali, Rwanda
- Rwanda Biomedical Centre, Kigali, Rwanda
| | - Agnes Gasengayire
- Rwanda Joint Task Force for Marburg Virus Disease Outbreak, Ministry of Health, Rwanda Biomedical Centre, Kigali, Rwanda
- Rwanda Biomedical Centre, Kigali, Rwanda
| | - Reuben Sindayiheba
- Rwanda Joint Task Force for Marburg Virus Disease Outbreak, Ministry of Health, Rwanda Biomedical Centre, Kigali, Rwanda
- Rwanda Biomedical Centre, Kigali, Rwanda
| | - Glory-Ugochi Onyeugo
- Rwanda Joint Task Force for Marburg Virus Disease Outbreak, Ministry of Health, Rwanda Biomedical Centre, Kigali, Rwanda
- Africa Centre for Disease Control and Prevention, Addis Ababa, Ethiopia
| | - Merawi Aragaw
- Rwanda Joint Task Force for Marburg Virus Disease Outbreak, Ministry of Health, Rwanda Biomedical Centre, Kigali, Rwanda
- Africa Centre for Disease Control and Prevention, Addis Ababa, Ethiopia
| | - Lenny Gitundu
- Rwanda Joint Task Force for Marburg Virus Disease Outbreak, Ministry of Health, Rwanda Biomedical Centre, Kigali, Rwanda
- Africa Centre for Disease Control and Prevention, Addis Ababa, Ethiopia
| | - Radjabu Bigirimana
- Rwanda Joint Task Force for Marburg Virus Disease Outbreak, Ministry of Health, Rwanda Biomedical Centre, Kigali, Rwanda
- Africa Centre for Disease Control and Prevention, Addis Ababa, Ethiopia
| | - Mosoka Fallah
- Rwanda Joint Task Force for Marburg Virus Disease Outbreak, Ministry of Health, Rwanda Biomedical Centre, Kigali, Rwanda
- Africa Centre for Disease Control and Prevention, Addis Ababa, Ethiopia
| | - Adaora Ejikeme
- Rwanda Joint Task Force for Marburg Virus Disease Outbreak, Ministry of Health, Rwanda Biomedical Centre, Kigali, Rwanda
- Africa Centre for Disease Control and Prevention, Addis Ababa, Ethiopia
| | - Senga Sembuche
- Rwanda Joint Task Force for Marburg Virus Disease Outbreak, Ministry of Health, Rwanda Biomedical Centre, Kigali, Rwanda
- Africa Centre for Disease Control and Prevention, Addis Ababa, Ethiopia
| | - Alice Kabanda
- Rwanda Joint Task Force for Marburg Virus Disease Outbreak, Ministry of Health, Rwanda Biomedical Centre, Kigali, Rwanda
- Africa Centre for Disease Control and Prevention, Addis Ababa, Ethiopia
| | - Jean Claude Mugisha
- Rwanda Joint Task Force for Marburg Virus Disease Outbreak, Ministry of Health, Rwanda Biomedical Centre, Kigali, Rwanda
- Center for Human Genetics, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
- Africa Centre for Disease Control and Prevention, Addis Ababa, Ethiopia
| | - Emmanuel Edwar Siddig Francis
- Rwanda Joint Task Force for Marburg Virus Disease Outbreak, Ministry of Health, Rwanda Biomedical Centre, Kigali, Rwanda
- Africa Centre for Disease Control and Prevention, Addis Ababa, Ethiopia
| | - Pierre Gashema
- Rwanda Joint Task Force for Marburg Virus Disease Outbreak, Ministry of Health, Rwanda Biomedical Centre, Kigali, Rwanda
- Africa Centre for Disease Control and Prevention, Addis Ababa, Ethiopia
| | - Jerome Ndayisenga
- Rwanda Joint Task Force for Marburg Virus Disease Outbreak, Ministry of Health, Rwanda Biomedical Centre, Kigali, Rwanda
- Africa Centre for Disease Control and Prevention, Addis Ababa, Ethiopia
| | - Alexis Rugamba
- Rwanda Joint Task Force for Marburg Virus Disease Outbreak, Ministry of Health, Rwanda Biomedical Centre, Kigali, Rwanda
- Center for Human Genetics, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Faustin Kanyabwisha
- Rwanda Joint Task Force for Marburg Virus Disease Outbreak, Ministry of Health, Rwanda Biomedical Centre, Kigali, Rwanda
- Center for Human Genetics, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Gad Murenzi
- Rwanda Joint Task Force for Marburg Virus Disease Outbreak, Ministry of Health, Rwanda Biomedical Centre, Kigali, Rwanda
- Center for Human Genetics, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Anise Happi
- African Center of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Nigeria
| | - Jean Claude Semuto Ngabonziza
- Rwanda Joint Task Force for Marburg Virus Disease Outbreak, Ministry of Health, Rwanda Biomedical Centre, Kigali, Rwanda
- Rwanda Biomedical Centre, Kigali, Rwanda
| | - Misbah Gashegu
- Rwanda Joint Task Force for Marburg Virus Disease Outbreak, Ministry of Health, Rwanda Biomedical Centre, Kigali, Rwanda
- Rwanda Biomedical Centre, Kigali, Rwanda
| | - Ayman Ahmed
- Rwanda Joint Task Force for Marburg Virus Disease Outbreak, Ministry of Health, Rwanda Biomedical Centre, Kigali, Rwanda
- Africa Centre for Disease Control and Prevention, Addis Ababa, Ethiopia
- Rwanda Biomedical Centre, Kigali, Rwanda
| | - Noella Bigirimana
- Rwanda Joint Task Force for Marburg Virus Disease Outbreak, Ministry of Health, Rwanda Biomedical Centre, Kigali, Rwanda
- Rwanda Biomedical Centre, Kigali, Rwanda
| | - Edson Rwagasore
- Rwanda Joint Task Force for Marburg Virus Disease Outbreak, Ministry of Health, Rwanda Biomedical Centre, Kigali, Rwanda
- Rwanda Biomedical Centre, Kigali, Rwanda
| | - Muhammed Semakula
- Rwanda Joint Task Force for Marburg Virus Disease Outbreak, Ministry of Health, Rwanda Biomedical Centre, Kigali, Rwanda
- Ministry of Health, Kigali, Rwanda
| | - Jean Paul Rwabihama
- Rwanda Joint Task Force for Marburg Virus Disease Outbreak, Ministry of Health, Rwanda Biomedical Centre, Kigali, Rwanda
- Ministry of Health, Kigali, Rwanda
- Department of Internal Medicine, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Clarisse Musanabaganwa
- Rwanda Joint Task Force for Marburg Virus Disease Outbreak, Ministry of Health, Rwanda Biomedical Centre, Kigali, Rwanda
- Rwanda Biomedical Centre, Kigali, Rwanda
| | - Eric Seruyange
- Rwanda Joint Task Force for Marburg Virus Disease Outbreak, Ministry of Health, Rwanda Biomedical Centre, Kigali, Rwanda
- Department of Internal Medicine, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
- Rwanda Military Referral and Teaching Hospital, Kigali, Rwanda
| | - Menelas Nkeshimana
- Rwanda Joint Task Force for Marburg Virus Disease Outbreak, Ministry of Health, Rwanda Biomedical Centre, Kigali, Rwanda
- Ministry of Health, Kigali, Rwanda
| | - Theogene Twagirumugabe
- Rwanda Joint Task Force for Marburg Virus Disease Outbreak, Ministry of Health, Rwanda Biomedical Centre, Kigali, Rwanda
- Butare University Teaching Hospital, Huye, Rwanda
| | - David Turatsinze
- Rwanda Joint Task Force for Marburg Virus Disease Outbreak, Ministry of Health, Rwanda Biomedical Centre, Kigali, Rwanda
- Kigali University Teaching Hospital, Kigali, Rwanda
| | - Eric Remera
- Rwanda Joint Task Force for Marburg Virus Disease Outbreak, Ministry of Health, Rwanda Biomedical Centre, Kigali, Rwanda
- Rwanda Biomedical Centre, Kigali, Rwanda
| | - Noel Gahamanyi
- Rwanda Joint Task Force for Marburg Virus Disease Outbreak, Ministry of Health, Rwanda Biomedical Centre, Kigali, Rwanda
- Rwanda Biomedical Centre, Kigali, Rwanda
| | - Sofonias Kifle Tessema
- Rwanda Joint Task Force for Marburg Virus Disease Outbreak, Ministry of Health, Rwanda Biomedical Centre, Kigali, Rwanda
- Africa Centre for Disease Control and Prevention, Addis Ababa, Ethiopia
| | - Isabelle Mukagatare
- Rwanda Joint Task Force for Marburg Virus Disease Outbreak, Ministry of Health, Rwanda Biomedical Centre, Kigali, Rwanda
- Rwanda Biomedical Centre, Kigali, Rwanda
| | - Sabin Nsanzimana
- Rwanda Joint Task Force for Marburg Virus Disease Outbreak, Ministry of Health, Rwanda Biomedical Centre, Kigali, Rwanda
- Ministry of Health, Kigali, Rwanda
| | - Christian Happi
- Rwanda Joint Task Force for Marburg Virus Disease Outbreak, Ministry of Health, Rwanda Biomedical Centre, Kigali, Rwanda.
- African Center of Excellence for Genomics of Infectious Diseases, Redeemer's University, Ede, Nigeria.
- Department of Immunology and Infectious Diseases, Harvard T H Chan School of Public Health, Boston, MA, USA.
| | - Claude Mambo Muvunyi
- Rwanda Joint Task Force for Marburg Virus Disease Outbreak, Ministry of Health, Rwanda Biomedical Centre, Kigali, Rwanda.
- Rwanda Biomedical Centre, Kigali, Rwanda.
| |
Collapse
|
10
|
Woolsey C, Geisbert TW, Cross RW. Evaluation of Vaccines and Therapeutics Against Marburg Virus in Nonhuman Primate Models. Methods Mol Biol 2025; 2877:297-315. [PMID: 39585629 DOI: 10.1007/978-1-0716-4256-6_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Marburg virus (MARV) has caused sporadic outbreaks of severe hemorrhagic fever in Africa in humans and nonhuman primates (NHPs) and has the potential to be used as a biological weapon. Currently, there are no licensed vaccines or therapeutics to respond to outbreaks or deliberate misuse. Vaccine and therapeutic efficacy testing against MARV requires animal models that accurately mimic human disease. In vitro testing in cell culture cannot appropriately model the complex immunological host responses required to accurately predict efficacy in humans, which will ultimately be required for licensure of a medical countermeasure (MCM). While small animal models for MARV have been valuable for dissecting disease processes and the screening of vaccine and drug candidates, there are several caveats to their use including required adaptation of the virus, lack of host-specific reagents, or the need of an immunocompromised host. Conversely, the NHP MARV disease model addresses all shortcomings of small animal models and closely recapitulates all hallmark features of human disease. As such, NHPs have served as the "gold standard" for testing filovirus MCMs and will most likely be required for regulatory approval. Here, we describe the use of NHPs for vaccine and therapeutic evaluation against MARV.
Collapse
Affiliation(s)
- Courtney Woolsey
- Galveston National Laboratory and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Thomas W Geisbert
- Galveston National Laboratory and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
| | - Robert W Cross
- Galveston National Laboratory and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
11
|
Massey C, Cross RW, Woolsey C. Evaluation of Marburg Virus Medical Countermeasures in Guinea Pigs. Methods Mol Biol 2025; 2877:239-257. [PMID: 39585626 DOI: 10.1007/978-1-0716-4256-6_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Various animal models have been established to gain a better understanding of the pathogenesis of Marburg virus (MARV) and Ravn virus (RAVV), and to develop medical countermeasures (MCMs) against them. Of these models, which range from rodents to nonhuman primates (NHPs), the macaque model most closely mimics the severe disease displayed in humans. Nevertheless, rodent models mirror many key aspects of human infection and are frequently used for the initial assessment of experimental vaccines and treatments. Due to the less restrictive housing and husbandry requirements for these models, large-scale experiments can be performed to evaluate a number of test articles and/or dosing regimens.Adaptation of MARV and RAVV by serial passaging is necessary to cause disease in immunocompetent rodent species. While mice provide limited predictive value of vaccine and therapeutic efficacy against these viruses, guinea pigs have emerged as a dependable indicator of outcomes in late-stage NHP testing. Additionally, the larger size of guinea pigs compared to mice permits more frequent and substantial blood sample collection. This chapter outlines the essential procedures to conduct intraperitoneal challenge, blood collection, and the administration of MCMs in MARV and RAVV guinea pig models using biosafety level 4 practices.
Collapse
Affiliation(s)
- Christopher Massey
- Institutional Office of Regulated Nonclinical Studies, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
| | - Robert W Cross
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Courtney Woolsey
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA.
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
12
|
Sprecher A, Van Herp M. Mismatch of Supply and Demand: Marburg Virus Disease Outbreaks Need Countermeasures But Will Not Provide Opportunity for Clinical Trials. Methods Mol Biol 2025; 2877:3-24. [PMID: 39585610 DOI: 10.1007/978-1-0716-4256-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
In many ways, Marburg virus disease resembles the more well-known Ebola virus disease: The clinical syndrome is similar, management of outbreaks is similar, and the fear engendered in the population experiencing the outbreak is similar. However, diagnostics, therapeutics, and vaccines to manage patients and outbreaks are not similarly available. These have been developed but not yet approved, as outbreaks have not provided the opportunity to establish an evidence base for regulators to evaluate their use in humans. The history of outbreaks of Marburg virus disease suggests that this opportunity will not come, and so alternative pathways to regulatory approval are needed.
Collapse
Affiliation(s)
- Armand Sprecher
- Médecins Sans Frontières Operational Center of Brussels, Brussels, Belgium.
| | - Michel Van Herp
- Médecins Sans Frontières Operational Center of Brussels, Brussels, Belgium
| |
Collapse
|
13
|
Muvunyi CM, Mohamed NS, Siddig EE, Ahmed A. Genomic Evolution and Phylodynamics of the Species Orthomarburgvirus marburgense (Marburg and Ravn Viruses) to Understand Viral Adaptation and Marburg Virus Disease's Transmission Dynamics. Pathogens 2024; 13:1107. [PMID: 39770366 PMCID: PMC11728648 DOI: 10.3390/pathogens13121107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
In this review, we investigated the genetic diversity and evolutionary dynamics of the Orthomarburgvirus marburgense species that includes both Marburg virus (MARV) and Ravn virus (RAVV). Using sequence data from natural reservoir hosts and human cases reported during outbreaks, we conducted comprehensive analyses to explore the genetic variability, constructing haplotype networks at both the genome and gene levels to elucidate the viral dynamics and evolutionary pathways. Our results revealed distinct evolutionary trajectories for MARV and RAVV, with MARV exhibiting higher adaptability across different ecological regions. MARV showed substantial genetic diversity and evidence of varied evolutionary pressures, suggesting an ability to adapt to diverse environments. In contrast, RAVV demonstrated limited genetic diversity, with no detected recombination events, suggesting evolutionary stability. These differences indicate that, while MARV continues to diversify and adapt across regions, RAVV may be constrained in its evolutionary potential, possibly reflecting differing roles within the viral ecology of the Orthomarburgvirus marburgense species. Our analysis explains the evolutionary mechanisms of these viruses, highlighting that MARV is going through evolutionary adaptation for human-to-human transmission, alarmingly underscoring the global concern about MARV causing the next pandemic. However, further transdisciplinary One Health research is warranted to answer some remaining questions including the host range and genetic susceptibility of domestic and wildlife species as well as the role of the biodiversity network in the disease's ecological dynamics.
Collapse
Affiliation(s)
| | - Nouh Saad Mohamed
- Pan-Africa One Health Institute (PAOHI), Kigali 11KG St 203, Rwanda;
| | - Emmanuel Edwar Siddig
- Unit of Applied Medical Sciences, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum 11111, Sudan;
| | - Ayman Ahmed
- Rwanda Biomedical Center (RBC), Kigali 11KG St 644, Rwanda;
- Pan-Africa One Health Institute (PAOHI), Kigali 11KG St 203, Rwanda;
| |
Collapse
|
14
|
Munjita SM, Mubemba B, Changula K, Tembo J, Hamoonga R, Bates M, Chitanga S, Munsaka S, Simulundu E. Unveiling the hidden threats: a review of pathogen diversity and public health risks from bats, rodents, and non-human primates in Zambia (1990-2022). Front Public Health 2024; 12:1471452. [PMID: 39651468 PMCID: PMC11621629 DOI: 10.3389/fpubh.2024.1471452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 11/06/2024] [Indexed: 12/11/2024] Open
Abstract
Background Infectious disease agents of animal origin, which can cause mild to severe illnesses in humans, are increasingly spilling over into human populations. Southern Africa, particularly Zambia as a regional transport hub, has experienced notable outbreaks of zoonotic pathogens in recent years. This context underscores the importance of research, as numerous studies over the past 33 years have reported various infectious agents with differing zoonotic potential from bats, rodents, and non-human primates (NHPs) in Zambia. However, the data remained unaggregated, hampering comprehensive and organized understanding of these threats. Methods A review spanning January 1990 to December 2022 synthesised data from selected studies conducted in bats, rodents, and NHPs across 14 of Zambia's 116 districts. Results Among the reported pathogens, viruses predominated (62%, 31/50), followed by parasites (20%, 10/50)), and bacteria (18%, 9/50). Notable pathogens included Ebola virus, Marburg virus, Hantavirus, Zika virus, Human parainfluenza virus-3, Anaplasma phagocytophilum, Borrelia faini, Coxiella burnetii, Trypanosoma brucei rhodesiense, Calodium hepaticum, and Trichinella spiralis. Most identified infectious agents came from short term cross-sectional investigations, thus, the temporal dynamics related to abundance and likelihood of outbreaks remain unknown. Conclusion The findings starkly illuminate significant zoonotic public health threats amidst glaring under-surveillance of zoonoses in humans in Zambia. This critical gap calls urgently for enhanced active, passive and syndromic surveillance activities to identify new diseases and provide evidence-based measures to safeguard public health from emerging infectious risks in Zambia and the Southern African sub-region, considering the country's position as a regional transport hub.
Collapse
Affiliation(s)
- Samuel Munalula Munjita
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | - Benjamin Mubemba
- Department of Wildlife Sciences, School of Natural Resources, Copperbelt University, Kitwe, Zambia
| | - Katendi Changula
- Department of Paraclinical Studies, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - John Tembo
- HerpeZ, University Teaching Hospital, Lusaka, Zambia
| | | | - Matthew Bates
- HerpeZ, University Teaching Hospital, Lusaka, Zambia
- School of Natural Sciences, University of Lincoln, Lincoln, Lincolnshire, United Kingdom
| | - Simbarashe Chitanga
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia
- Department of Preclinical Studies, School of Veterinary Medicine, University of Namibia, Windhoek, Namibia
| | - Sody Munsaka
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | | |
Collapse
|
15
|
Rabaan AA, Halwani MA, Garout M, Alotaibi J, AlShehail BM, Alotaibi N, Almuthree SA, Alshehri AA, Alshahrani MA, Othman B, Alqahtani A, Alissa M. Exploration of phytochemical compounds against Marburg virus using QSAR, molecular dynamics, and free energy landscape. Mol Divers 2024; 28:3261-3278. [PMID: 37925643 DOI: 10.1007/s11030-023-10753-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 10/21/2023] [Indexed: 11/07/2023]
Abstract
Marburg virus disease (MVD) is caused by the Marburg virus, a one-of-a-kind zoonotic RNA virus from the genus Filovirus. Thus, this current study employed AI-based QSAR and molecular docking-based virtual screening for identifying potential binders against the target protein (nucleoprotein (NP)) of the Marburg virus. A total of 2727 phytochemicals were used for screening, out of which the top three compounds (74977521, 90470472, and 11953909) were identified based on their predicted bioactivity (pIC50) and binding score (< - 7.4 kcal/mol). Later, MD simulation in triplicates and trajectory analysis were performed which showed that 11953909 and 74977521 had the most stable and consistent complex formations and had the most significant interactions with the highest number of hydrogen bonds. PCA (principal component analysis) and FEL (free energy landscape) analysis indicated that these compounds had favourable energy states for most of the conformations. The total binding free energy of the compounds using the MM/GBSA technique showed that 11953909 (ΔGTOTAL = - 30.78 kcal/mol) and 74977521 (ΔGTOTAL = - 30 kcal/mol) had the highest binding affinity with the protein. Overall, this in silico pipeline proposed that the phytochemicals 11953909 and 74977521 could be the possible binders of NP. This study aimed to find phytochemicals inhibiting the protein's function and potentially treating MVD.
Collapse
Affiliation(s)
- Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, 31311, Dhahran, Saudi Arabia.
- College of Medicine, Alfaisal University, 11533, Riyadh, Saudi Arabia.
- Department of Public Health and Nutrition, The University of Haripur, Haripur, 22610, Pakistan.
| | - Muhammad A Halwani
- Department of Medical Microbiology, Faculty of Medicine, Al Baha University, 4781, Al Baha, Saudi Arabia
| | - Mohammed Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Jawaher Alotaibi
- Infectious diseases Unit, Department of Medicine, King Faisal Specialist Hospital and Research Center, 11564, Riyadh, Saudi Arabia
| | - Bashayer M AlShehail
- Pharmacy Practice Department, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
| | - Nouf Alotaibi
- Clinical pharmacy Department, College of Pharmacy, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Souad A Almuthree
- Department of Infectious Disease, King Abdullah Medical City, 43442, Makkah, Saudi Arabia
| | - Ahmad A Alshehri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, 61441, Najran, Saudi Arabia
| | - Mohammed Abdulrahman Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, 61441, Najran, Saudi Arabia
| | - Basim Othman
- Department of Public Health, Faculty of Applied Medical Sciences, Al Baha University, 65779, Al Baha, Saudi Arabia
| | - Abdulaziz Alqahtani
- Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, 61321, Abha, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia.
| |
Collapse
|
16
|
Siddiquee NH, Talukder MEK, Ahmed E, Zeba LT, Aivy FS, Rahman MH, Barua D, Rumman R, Hossain MI, Shimul MEK, Rama AR, Chowdhury S, Hossain I. Cheminformatics-based analysis identified (Z)-2-(2,5-dimethoxy benzylidene)-6-(2-(4-methoxyphenyl)-2-oxoethoxy) benzofuran-3(2H)-one as an inhibitor of Marburg replication by interacting with NP. Microb Pathog 2024; 195:106892. [PMID: 39216611 DOI: 10.1016/j.micpath.2024.106892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/17/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The highly pathogenic Marburg virus (MARV) is a member of the Filoviridae family, a non-segmented negative-strand RNA virus. This article represents the computer-aided drug design (CADD) approach for identifying drug-like compounds that prevent the MARV virus disease by inhibiting nucleoprotein, which is responsible for their replication. This study used a wide range of in silico drug design techniques to identify potential drugs. Out of 368 natural compounds, 202 compounds passed ADMET, and molecular docking identified the top two molecules (CID: 1804018 and 5280520) with a high binding affinity of -6.77 and -6.672 kcal/mol, respectively. Both compounds showed interactions with the common amino acid residues SER_216, ARG_215, TYR_135, CYS_195, and ILE_108, which indicates that lead compounds and control ligands interact in the common active site/catalytic site of the protein. The negative binding free energies of CID: 1804018 and 5280520 were -66.01 and -31.29 kcal/mol, respectively. Two lead compounds were re-evaluated using MD modeling techniques, which confirmed CID: 1804018 as the most stable when complexed with the target protein. PC3 of the (Z)-2-(2,5-dimethoxybenzylidene)-6-(2-(4-methoxyphenyl)-2-oxoethoxy) benzofuran-3(2H)-one (CID: 1804018) was 8.74 %, whereas PC3 of the 2'-Hydroxydaidzein (CID: 5280520) was 11.25 %. In this study, (Z)-2-(2,5-dimethoxybenzylidene)-6-(2-(4-methoxyphenyl)-2-oxoethoxy) benzofuran-3(2H)-one (CID: 1804018) unveiled the significant stability of the proteins' binding site in ADMET, Molecular docking, MM-GBSA and MD simulation analysis studies, which also showed a high negative binding free energy value, confirming as the best drug candidate which is found in Angelica archangelica which may potentially inhibit the replication of MARV nucleoprotein.
Collapse
Affiliation(s)
- Noimul Hasan Siddiquee
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh; Bioinformatics Laboratory (BioLab), Bangladesh
| | - Md Enamul Kabir Talukder
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Bangladesh
| | - Ezaz Ahmed
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh; Bioinformatics Laboratory (BioLab), Bangladesh
| | - Labiba Tasnim Zeba
- Bioinformatics Laboratory (BioLab), Bangladesh; Department of Mathematics & Natural Sciences, BRAC University, Dhaka, Bangladesh
| | - Farjana Sultana Aivy
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh; Bioinformatics Laboratory (BioLab), Bangladesh
| | - Md Hasibur Rahman
- Bioinformatics Laboratory (BioLab), Bangladesh; Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Durjoy Barua
- Bioinformatics Laboratory (BioLab), Bangladesh; Department of Pharmacy, BGC Trust University, Bangladesh
| | - Rahnumazzaman Rumman
- Bioinformatics Laboratory (BioLab), Bangladesh; Department Of Environmental Science and Disaster Management, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md Ifteker Hossain
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh; Bioinformatics Laboratory (BioLab), Bangladesh
| | - Md Ebrahim Khalil Shimul
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Bangladesh
| | - Anika Rahman Rama
- Bioinformatics Laboratory (BioLab), Bangladesh; Department of Genetic Engineering and Biotechnology, East West University, Dhaka, Bangladesh
| | - Sristi Chowdhury
- Bioinformatics Laboratory (BioLab), Bangladesh; Department of Biochemistry and Molecular Biology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Imam Hossain
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh; Bioinformatics Laboratory (BioLab), Bangladesh.
| |
Collapse
|
17
|
von Creytz I, Rohde C, Biedenkopf N. The cellular protein phosphatase 2A is a crucial host factor for Marburg virus transcription. J Virol 2024; 98:e0104724. [PMID: 39194238 PMCID: PMC11406900 DOI: 10.1128/jvi.01047-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/20/2024] [Indexed: 08/29/2024] Open
Abstract
Little is known regarding the molecular mechanisms that highly pathogenic Marburg virus (MARV) utilizes to transcribe and replicate its genome. Previous studies assumed that dephosphorylation of the filoviral transcription factor VP30 supports transcription, while phosphorylated VP30 reduces transcription. Here, we focused on the role of the host protein phosphatase 2A (PP2A) for VP30 dephosphorylation and promotion of viral transcription. We could show that MARV NP interacts with the subunit B56 of PP2A, as previously shown for the Ebola virus, and that this interaction is important for MARV transcription activity. Inhibition of the interaction between PP2A and NP either by mutating the B56 binding motif encoded on NP, or the use of a PP2A inhibitor, induced VP30 hyperphosphorylation, and as a consequence a decrease of MARV transcription as well as viral growth. These results suggest that NP plays a key role in the dephosphorylation of VP30 by recruiting PP2A. Generation of recombinant (rec) MARV lacking the PP2A-B56 interaction motif on NP was not possible suggesting an essential role of PP2A-mediated VP30 dephosphorylation for the MARV replication cycle. Likewise, we were not able to generate recMARV containing VP30 phosphomimetic mutants indicating that dynamic cycles of VP30 de- and rephosphorylation are a prerequisite for an efficient viral life cycle. As the specific binding motifs of PP2A-B56 and VP30 within NP are highly conserved among the filoviral family, our data suggest a conserved mechanism for filovirus VP30 dephosphorylation by PP2A, revealing the host factor PP2A as a promising target for pan-filoviral therapies. IMPORTANCE Our study elucidates the crucial role of host protein phosphatase 2A (PP2A) in Marburg virus (MARV) transcription. The regulatory subunit B56 of PP2A facilitates VP30 dephosphorylation, and hence transcription activation, via binding to NP. Our results, together with previous data, reveal a conserved mechanism of filovirus VP30 dephosphorylation by host factor PP2A at the NP interface and provide novel insights into potential pan-filovirus therapies.
Collapse
Affiliation(s)
- Isabel von Creytz
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Cornelius Rohde
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Nadine Biedenkopf
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
18
|
Wang S, Li W, Wang Z, Yang W, Li E, Xia X, Yan F, Chiu S. Emerging and reemerging infectious diseases: global trends and new strategies for their prevention and control. Signal Transduct Target Ther 2024; 9:223. [PMID: 39256346 PMCID: PMC11412324 DOI: 10.1038/s41392-024-01917-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/13/2024] [Accepted: 07/05/2024] [Indexed: 09/12/2024] Open
Abstract
To adequately prepare for potential hazards caused by emerging and reemerging infectious diseases, the WHO has issued a list of high-priority pathogens that are likely to cause future outbreaks and for which research and development (R&D) efforts are dedicated, known as paramount R&D blueprints. Within R&D efforts, the goal is to obtain effective prophylactic and therapeutic approaches, which depends on a comprehensive knowledge of the etiology, epidemiology, and pathogenesis of these diseases. In this process, the accessibility of animal models is a priority bottleneck because it plays a key role in bridging the gap between in-depth understanding and control efforts for infectious diseases. Here, we reviewed preclinical animal models for high priority disease in terms of their ability to simulate human infections, including both natural susceptibility models, artificially engineered models, and surrogate models. In addition, we have thoroughly reviewed the current landscape of vaccines, antibodies, and small molecule drugs, particularly hopeful candidates in the advanced stages of these infectious diseases. More importantly, focusing on global trends and novel technologies, several aspects of the prevention and control of infectious disease were discussed in detail, including but not limited to gaps in currently available animal models and medical responses, better immune correlates of protection established in animal models and humans, further understanding of disease mechanisms, and the role of artificial intelligence in guiding or supplementing the development of animal models, vaccines, and drugs. Overall, this review described pioneering approaches and sophisticated techniques involved in the study of the epidemiology, pathogenesis, prevention, and clinical theatment of WHO high-priority pathogens and proposed potential directions. Technological advances in these aspects would consolidate the line of defense, thus ensuring a timely response to WHO high priority pathogens.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Wujian Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Zhenshan Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin, China
| | - Wanying Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Entao Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, 230027, Anhui, China
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China.
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China.
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, 230027, Anhui, China.
- Department of Laboratory Medicine, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
19
|
Mmbaga V, Mrema G, Ngenzi D, Magoge W, Mwakapasa E, Jacob F, Matimba H, Beyanga M, Samweli A, Kiremeji M, Kitambi M, Sylvanus E, Kyungu E, Manase G, Hokororo J, Kanyankole C, Rwabilimbo M, Kaniki I, Kauki G, Kelly ME, Mwengee W, Ayeni G, Msemwa F, Saguti G, Mgomella GS, Mukurasi K, Mponela M, Kapyolo E, Mcharo J, Mayige M, Gatei W, Conteh I, Mala P, Swaminathan M, Horumpende P, Ruggajo P, Magembe G, Yoti Z, Kwesi E, Nagu T. Epidemiological description of Marburg virus disease outbreak in Kagera region, Northwestern Tanzania. PLoS One 2024; 19:e0309762. [PMID: 39236024 PMCID: PMC11376503 DOI: 10.1371/journal.pone.0309762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/17/2024] [Indexed: 09/07/2024] Open
Abstract
INTRODUCTION In March 2023, a Marburg Virus Disease (MVD) outbreak was declared in Kagera region, Northwestern Tanzania. This was the first MVD outbreak in the country. We describe the epidemiological characteristics of MVD cases and contacts. METHODS The Ministry of Health activated an outbreak response team. Outbreak investigation methods were applied to cases identified through MVD standard case definitions and confirmed through reverse-transcriptase polymerase chain reaction (RT PCR). All identified case contacts were added into the contact listing form and followed up in-person daily for any signs or symptoms for 21 days. Data collected from various forms was managed and analyzed using Excel and QGIS software for mapping. RESULTS A total of nine MVD cases were reported with eight laboratory-confirmed and one probable. Two of the reported cases were frontline healthcare workers and seven were family related members. Cases were children and adults between 1-59 years of age with a median age of 34 years. Six were males. Six cases died equivalent to a case fatality rate (CFR) of 66.7%. A total of 212 individuals were identified as contacts and two (2) became cases. The outbreak was localized in two geo-administrative wards (Maruku and Kanyangereko) of Bukoba District Council. CONCLUSION Transmission during this outbreak occurred among family members and healthcare workers who provided care to the cases. The delay in detection aggravated the spread and possibly the consequent fatality but once confirmed the swift response stemmed further transmission containing the disease at the epicenter wards. The outbreak lasted for 72 days but as the origin is still unknown, further research is required to explore the source of this outbreak.
Collapse
Affiliation(s)
- Vida Mmbaga
- Epidemiology and Disease Control Section, Ministry of Health, Dodoma, Tanzania
| | - George Mrema
- Epidemiology and Disease Control Section, Ministry of Health, Dodoma, Tanzania
- Tanzania Field Epidemiology and Laboratory Training Program, Ministry of Health, Dar es Salaam, Tanzania
| | - Danstan Ngenzi
- Epidemiology and Disease Control Section, Ministry of Health, Dodoma, Tanzania
| | - Welema Magoge
- Epidemiology and Disease Control Section, Ministry of Health, Dodoma, Tanzania
| | - Emmanuel Mwakapasa
- Epidemiology and Disease Control Section, Ministry of Health, Dodoma, Tanzania
| | - Frank Jacob
- Epidemiology and Disease Control Section, Ministry of Health, Dodoma, Tanzania
| | - Hamza Matimba
- National Public Health Laboratory, Ministry of Health, Dar es Salaam, Tanzania
| | - Medard Beyanga
- National Public Health Laboratory, Ministry of Health, Dar es Salaam, Tanzania
| | - Angela Samweli
- Emergency Preparedness and Response Unit, Ministry of Health, Dodoma, Tanzania
| | - Michael Kiremeji
- Emergency Preparedness and Response Unit, Ministry of Health, Dodoma, Tanzania
| | - Mary Kitambi
- Emergency Preparedness and Response Unit, Ministry of Health, Dodoma, Tanzania
| | - Erasto Sylvanus
- Emergency Preparedness and Response Unit, Ministry of Health, Dodoma, Tanzania
| | - Ernest Kyungu
- President Office Regional Administrative Local Government, Dodoma, Tanzania
| | - Gerald Manase
- President Office Regional Administrative Local Government, Dodoma, Tanzania
| | - Joseph Hokororo
- Health Quality Assurance Unit, Ministry of Health, Dodoma, Tanzania
| | | | | | | | - George Kauki
- World Health Organization, Dar es Salaam, Tanzania
| | | | | | | | | | - Grace Saguti
- World Health Organization, Dar es Salaam, Tanzania
| | | | | | - Marcelina Mponela
- US Centers for Disease Control and Prevention, Dar es Salaam, Tanzania
| | - Eliakimu Kapyolo
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Jonathan Mcharo
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Mary Mayige
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Wangeci Gatei
- US Centers for Disease Control and Prevention, Dar es Salaam, Tanzania
| | | | - Peter Mala
- World Health Organization, HQ, Geneva, Switzerland
| | | | - Pius Horumpende
- Directorate of Curative Services, Ministry of Health, Dodoma, Tanzania
| | - Paschal Ruggajo
- Directorate of Curative Services, Ministry of Health, Dodoma, Tanzania
| | - Grace Magembe
- Office of the Permanent Secretary, Ministry of Health, Dodoma, Tanzania
| | - Zabulon Yoti
- World Health Organization, Dar es Salaam, Tanzania
| | - Elias Kwesi
- Emergency Preparedness and Response Unit, Ministry of Health, Dodoma, Tanzania
| | - Tumaini Nagu
- Office of the Government Chief Medical Officer, Ministry of Health, Dodoma, Tanzania
| |
Collapse
|
20
|
Hood G, Carroll M. Host-pathogen interactions of emerging zoonotic viruses: bats, humans and filoviruses. Curr Opin Virol 2024; 68-69:101436. [PMID: 39537444 DOI: 10.1016/j.coviro.2024.101436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/15/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
This paper provides an overview of the phenomena of cross-species transmission of viruses (known as spillover), focusing on the highly pathogenic filovirus family and their natural reservoir: bats. It also describes the host-pathogen relationship of viruses and their reservoirs, in addition to humans, and discusses current theories of persistent infection.
Collapse
Affiliation(s)
- Grace Hood
- Pandemic Sciences Institute & Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK.
| | - Miles Carroll
- Pandemic Sciences Institute & Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK.
| |
Collapse
|
21
|
O’Donnell KL, Henderson CW, Anhalt H, Fusco J, Erasmus JH, Lambe T, Marzi A. Vaccine Platform Comparison: Protective Efficacy against Lethal Marburg Virus Challenge in the Hamster Model. Int J Mol Sci 2024; 25:8516. [PMID: 39126087 PMCID: PMC11313278 DOI: 10.3390/ijms25158516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/31/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024] Open
Abstract
Marburg virus (MARV), a filovirus, was first identified in 1967 in Marburg, Germany, and Belgrade, former Yugoslavia. Since then, MARV has caused sporadic outbreaks of human disease with high case fatality rates in parts of Africa, with the largest outbreak occurring in 2004/05 in Angola. From 2021 to 2023, MARV outbreaks occurred in Guinea, Ghana, New Guinea, and Tanzania, emphasizing the expansion of its endemic area into new geographical regions. There are currently no approved vaccines or therapeutics targeting MARV, but several vaccine candidates have shown promise in preclinical studies. We compared three vaccine platforms simultaneously by vaccinating hamsters with either a single dose of an adenovirus-based (ChAdOx-1 MARV) vaccine, an alphavirus replicon-based RNA (LION-MARV) vaccine, or a recombinant vesicular stomatitis virus-based (VSV-MARV) vaccine, all expressing the MARV glycoprotein as the antigen. Lethal challenge with hamster-adapted MARV 4 weeks after vaccination resulted in uniform protection of the VSV-MARV and LION-MARV groups and 83% of the ChAdOx-1 MARV group. Assessment of the antigen-specific humoral response and its functionality revealed vaccine-platform-dependent differences, particularly in the Fc effector functions.
Collapse
Affiliation(s)
- Kyle L. O’Donnell
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Corey W. Henderson
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Hanna Anhalt
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Joan Fusco
- Public Health Vaccines Inc., Cambridge, MA 02412, USA
| | | | - Teresa Lambe
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford OX3 7BN, UK
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| |
Collapse
|
22
|
Pawęska JT, Storm N, Jansen van Vuren P, Markotter W, Kemp A. Attempted Transmission of Marburg Virus by Bat-Associated Fleas Thaumapsylla breviceps breviceps (Ischnopsyllidae: Thaumapsyllinae) to the Egyptian Rousette Bat ( Rousettus aegyptiacus). Viruses 2024; 16:1197. [PMID: 39205171 PMCID: PMC11360628 DOI: 10.3390/v16081197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Egyptian rousette bats (ERBs) are implicated as reservoir hosts for Marburg virus (MARV), but natural mechanisms involved in maintenance of MARV in ERB populations remain undefined. A number of hematophagous ectoparasites, including fleas, parasitize bats. Subcutaneous (SC) inoculation of ERBs with MARV consistently results in viremia, suggesting that infectious MARV could be ingested by blood-sucking ectoparasites during feeding. In our study, MARV RNA was detected in fleas that took a blood meal during feeding on viremic bats on days 3, 7, and 11 after SC inoculation. Virus concentration in individual ectoparasites was consistent with detectable levels of viremia in the blood of infected host bats. There was neither seroconversion nor viremia in control bats kept in close contact with MARV-infected bats infested with fleas for up to 40 days post-exposure. In fleas inoculated intracoelomically, MARV was detected up to 14 days after intracoelomic (IC) inoculation, but the virus concentration was lower than that delivered in the inoculum. All bats that had been infested with inoculated, viremic fleas remained virologically and serologically negative up to 38 days after infestation. Of 493 fleas collected from a wild ERB colony in Matlapitsi Cave, South Africa, where the enzootic transmission of MARV occurs, all tested negative for MARV RNA. While our findings seem to demonstrate that bat fleas lack vectorial capacity to transmit MARV biologically, their role in mechanical transmission should not be discounted. Regular blood-feeds, intra- and interhost mobility, direct feeding on blood vessels resulting in venous damage, and roosting behaviour of ERBs provide a potential physical bridge for MARV dissemination in densely populated cave-dwelling bats by fleas. The virus transfer might take place through inoculation of skin, mucosal membranes, and wounds when contaminated fleas are squashed during auto- and allogrooming, eating, biting, or fighting.
Collapse
Affiliation(s)
- Janusz T. Pawęska
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham 2131, South Africa; (N.S.); (P.J.v.V.); (A.K.)
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa;
- Faculty of Health Sciences, University of Witwatersrand, Johannesburg 2050, South Africa
| | - Nadia Storm
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham 2131, South Africa; (N.S.); (P.J.v.V.); (A.K.)
- Department of Microbiology, School of Medicine, Boston University, Boston, MA 02118, USA
| | - Petrus Jansen van Vuren
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham 2131, South Africa; (N.S.); (P.J.v.V.); (A.K.)
- CSIRO Health & Biosecurity, Australian Centre for Disease Preparedness, Geelong, VIC 3220, Australia
| | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa;
| | - Alan Kemp
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham 2131, South Africa; (N.S.); (P.J.v.V.); (A.K.)
| |
Collapse
|
23
|
Munyeku-Bazitama Y, Edidi-Atani F, Takada A. Non-Ebola Filoviruses: Potential Threats to Global Health Security. Viruses 2024; 16:1179. [PMID: 39205153 PMCID: PMC11359311 DOI: 10.3390/v16081179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 09/04/2024] Open
Abstract
Filoviruses are negative-sense single-stranded RNA viruses often associated with severe and highly lethal hemorrhagic fever in humans and nonhuman primates, with case fatality rates as high as 90%. Of the known filoviruses, Ebola virus (EBOV), the prototype of the genus Orthoebolavirus, has been a major public health concern as it frequently causes outbreaks and was associated with an unprecedented outbreak in several Western African countries in 2013-2016, affecting 28,610 people, 11,308 of whom died. Thereafter, filovirus research mostly focused on EBOV, paying less attention to other equally deadly orthoebolaviruses (Sudan, Bundibugyo, and Taï Forest viruses) and orthomarburgviruses (Marburg and Ravn viruses). Some of these filoviruses have emerged in nonendemic areas, as exemplified by four Marburg disease outbreaks recorded in Guinea, Ghana, Tanzania, and Equatorial Guinea between 2021 and 2023. Similarly, the Sudan virus has reemerged in Uganda 10 years after the last recorded outbreak. Moreover, several novel bat-derived filoviruses have been discovered in the last 15 years (Lloviu virus, Bombali virus, Měnglà virus, and Dehong virus), most of which are poorly characterized but may display a wide host range. These novel viruses have the potential to cause outbreaks in humans. Several gaps are yet to be addressed regarding known and emerging filoviruses. These gaps include the virus ecology and pathogenicity, mechanisms of zoonotic transmission, host range and susceptibility, and the development of specific medical countermeasures. In this review, we summarize the current knowledge on non-Ebola filoviruses (Bombali virus, Bundibugyo virus, Reston virus, Sudan virus, Tai Forest virus, Marburg virus, Ravn virus, Lloviu virus, Měnglà virus, and Dehong virus) and suggest some strategies to accelerate specific countermeasure development.
Collapse
Affiliation(s)
- Yannick Munyeku-Bazitama
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (Y.M.-B.); (F.E.-A.)
- Institut National de Recherche Biomédicale, Kinshasa P.O. Box 1197, Democratic Republic of the Congo
- Département de Biologie Médicale, Faculté de Médecine, Université de Kinshasa, Kinshasa P.O. Box 123, Democratic Republic of the Congo
| | - Francois Edidi-Atani
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (Y.M.-B.); (F.E.-A.)
- Institut National de Recherche Biomédicale, Kinshasa P.O. Box 1197, Democratic Republic of the Congo
- Département de Biologie Médicale, Faculté de Médecine, Université de Kinshasa, Kinshasa P.O. Box 123, Democratic Republic of the Congo
| | - Ayato Takada
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (Y.M.-B.); (F.E.-A.)
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
- One Health Research Center, Hokkaido University, Sapporo 001-0020, Japan
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka 10101, Zambia
| |
Collapse
|
24
|
Sizikova TE, Lebedev VN, Borisevich SV. [Comparative analysis of the taxonomic classification criteria for a number of groups of pathogenic DNA and RNA viruses based on genomic data]. Vopr Virusol 2024; 69:203-218. [PMID: 38996370 DOI: 10.36233/0507-4088-238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Indexed: 07/14/2024]
Abstract
The basis for criteria of the taxonomic classification of DNA and RNA viruses based on data of the genomic sequencing are viewed in this review. The genomic sequences of viruses, which have genome represented by double-stranded DNA (orthopoxviruses as example), positive-sense single-stranded RNA (alphaviruses and flaviviruses as example), non-segmented negative-sense single-stranded RNA (filoviruses as example), segmented negative-sense single-stranded RNA (arenaviruses and phleboviruses as example) are analyzed. The levels of genetic variability that determine the assignment of compared viruses to taxa of various orders are established for each group of viruses.
Collapse
Affiliation(s)
- T E Sizikova
- 48th Central Scientific Research Institute of the Ministry of Defense of the Russian Federation
| | - V N Lebedev
- 48th Central Scientific Research Institute of the Ministry of Defense of the Russian Federation
| | - S V Borisevich
- 48th Central Scientific Research Institute of the Ministry of Defense of the Russian Federation
| |
Collapse
|
25
|
Cuomo-Dannenburg G, McCain K, McCabe R, Unwin HJT, Doohan P, Nash RK, Hicks JT, Charniga K, Geismar C, Lambert B, Nikitin D, Skarp J, Wardle J, Kont M, Bhatia S, Imai N, van Elsland S, Cori A, Morgenstern C. Marburg virus disease outbreaks, mathematical models, and disease parameters: a systematic review. THE LANCET. INFECTIOUS DISEASES 2024; 24:e307-e317. [PMID: 38040006 PMCID: PMC7615873 DOI: 10.1016/s1473-3099(23)00515-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 12/03/2023]
Abstract
The 2023 Marburg virus disease outbreaks in Equatorial Guinea and Tanzania highlighted the importance of better understanding this lethal pathogen. We did a systematic review (PROSPERO CRD42023393345) of peer-reviewed articles reporting historical outbreaks, modelling studies, and epidemiological parameters focused on Marburg virus disease. We searched PubMed and Web of Science from database inception to March 31, 2023. Two reviewers evaluated all titles and abstracts with consensus-based decision making. To ensure agreement, 13 (31%) of 42 studies were double-extracted and a custom-designed quality assessment questionnaire was used for risk of bias assessment. We present detailed information on 478 reported cases and 385 deaths from Marburg virus disease. Analysis of historical outbreaks and seroprevalence estimates suggests the possibility of undetected Marburg virus disease outbreaks, asymptomatic transmission, or cross-reactivity with other pathogens, or a combination of these. Only one study presented a mathematical model of Marburg virus transmission. We estimate an unadjusted, pooled total random effect case fatality ratio of 61·9% (95% CI 38·8-80·6; I2=93%). We identify epidemiological parameters relating to transmission and natural history, for which there are few estimates. This systematic review and the accompanying database provide a comprehensive overview of Marburg virus disease epidemiology and identify key knowledge gaps, contributing crucial information for mathematical models to support future Marburg virus disease epidemic responses.
Collapse
Affiliation(s)
- Gina Cuomo-Dannenburg
- MRC Centre for Global Infectious Disease Analysis and WHO Collaborating Centre for Infectious Disease Modelling, Jameel Institute, School of Public Health, Imperial College London, London, UK
| | - Kelly McCain
- MRC Centre for Global Infectious Disease Analysis and WHO Collaborating Centre for Infectious Disease Modelling, Jameel Institute, School of Public Health, Imperial College London, London, UK
| | - Ruth McCabe
- MRC Centre for Global Infectious Disease Analysis and WHO Collaborating Centre for Infectious Disease Modelling, Jameel Institute, School of Public Health, Imperial College London, London, UK; Department of Statistics, University of Oxford, Oxford, UK; Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, UK
| | - H Juliette T Unwin
- MRC Centre for Global Infectious Disease Analysis and WHO Collaborating Centre for Infectious Disease Modelling, Jameel Institute, School of Public Health, Imperial College London, London, UK
| | - Patrick Doohan
- MRC Centre for Global Infectious Disease Analysis and WHO Collaborating Centre for Infectious Disease Modelling, Jameel Institute, School of Public Health, Imperial College London, London, UK
| | - Rebecca K Nash
- MRC Centre for Global Infectious Disease Analysis and WHO Collaborating Centre for Infectious Disease Modelling, Jameel Institute, School of Public Health, Imperial College London, London, UK
| | - Joseph T Hicks
- MRC Centre for Global Infectious Disease Analysis and WHO Collaborating Centre for Infectious Disease Modelling, Jameel Institute, School of Public Health, Imperial College London, London, UK
| | - Kelly Charniga
- MRC Centre for Global Infectious Disease Analysis and WHO Collaborating Centre for Infectious Disease Modelling, Jameel Institute, School of Public Health, Imperial College London, London, UK
| | - Cyril Geismar
- MRC Centre for Global Infectious Disease Analysis and WHO Collaborating Centre for Infectious Disease Modelling, Jameel Institute, School of Public Health, Imperial College London, London, UK; Health Protection Research Unit in Modelling and Health Economics, Imperial College London, London, UK
| | - Ben Lambert
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Dariya Nikitin
- MRC Centre for Global Infectious Disease Analysis and WHO Collaborating Centre for Infectious Disease Modelling, Jameel Institute, School of Public Health, Imperial College London, London, UK
| | - Janetta Skarp
- MRC Centre for Global Infectious Disease Analysis and WHO Collaborating Centre for Infectious Disease Modelling, Jameel Institute, School of Public Health, Imperial College London, London, UK
| | - Jack Wardle
- MRC Centre for Global Infectious Disease Analysis and WHO Collaborating Centre for Infectious Disease Modelling, Jameel Institute, School of Public Health, Imperial College London, London, UK
| | - Mara Kont
- MRC Centre for Global Infectious Disease Analysis and WHO Collaborating Centre for Infectious Disease Modelling, Jameel Institute, School of Public Health, Imperial College London, London, UK
| | - Sangeeta Bhatia
- MRC Centre for Global Infectious Disease Analysis and WHO Collaborating Centre for Infectious Disease Modelling, Jameel Institute, School of Public Health, Imperial College London, London, UK; Health Protection Research Unit in Modelling and Health Economics, Imperial College London, London, UK; Modelling and Economics Unit, UK Health Security Agency, London, UK
| | - Natsuko Imai
- MRC Centre for Global Infectious Disease Analysis and WHO Collaborating Centre for Infectious Disease Modelling, Jameel Institute, School of Public Health, Imperial College London, London, UK
| | - Sabine van Elsland
- MRC Centre for Global Infectious Disease Analysis and WHO Collaborating Centre for Infectious Disease Modelling, Jameel Institute, School of Public Health, Imperial College London, London, UK
| | - Anne Cori
- MRC Centre for Global Infectious Disease Analysis and WHO Collaborating Centre for Infectious Disease Modelling, Jameel Institute, School of Public Health, Imperial College London, London, UK; Health Protection Research Unit in Modelling and Health Economics, Imperial College London, London, UK
| | - Christian Morgenstern
- MRC Centre for Global Infectious Disease Analysis and WHO Collaborating Centre for Infectious Disease Modelling, Jameel Institute, School of Public Health, Imperial College London, London, UK.
| |
Collapse
|
26
|
Ghazy RM, Gebreal A, El Demerdash BE, Elnagar F, Abonazel MR, Saidouni A, Alshaikh AA, Hussein M, Hussein MF. Development and validation of a French questionnaire that assesses knowledge, attitude, and practices toward Marburg diseases in sub-Saharan African countries. Public Health 2024; 230:128-137. [PMID: 38537496 DOI: 10.1016/j.puhe.2024.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/13/2024] [Accepted: 01/29/2024] [Indexed: 04/16/2024]
Abstract
OBJECTIVES Marburg virus, previously referred to as Marburg hemorrhagic fever, is a highly severe and frequently fatal illness that affects humans. This study aimed to develop and validate a French questionnaire to assess knowledge, attitude, and practice toward Marburg virus disease (FKAP-MVD). STUDY DESIGN An anonymous online survey was used, which was distributed through various platforms and emails. Data were collected from Burkina Faso, Guinea, the Democratic Republic of Congo, and Senegal. METHODS To conduct the study, an anonymous online survey was used, which was distributed through various platforms such as Facebook, Twitter, WhatsApp, and emails. The survey was uploaded onto a Google form to facilitate data collection. Data were collected from Burkina Faso, Guinea, the Democratic Republic of Congo, and Senegal. RESULTS Of the total sample of 510 participants, 60.0% were male, their mean age was 28.41 ± 6.32 years, 38.0% were married, 86.6% resided in urban areas and 64.1% had a university education. The questionnaire had good internal consistency; Cronbach's alpha was 0.87. The correlation between knowledge and attitude was 0.002, the correlation between knowledge and practice was 0.204, and the correlation between practice and attitude was relatively weak and negative at -0.060. This indicates the divergent validity of the questionnaire. The KMO value of 0.91 indicates a high level of adequacy, suggesting that the data are suitable for factor analysis. The Bartlett test of Sphericity yielded an approximate χ2 value of 4016.890 with 300 degrees of freedom and a P-value of 0.0001. The confirmatory factor analysis revealed 25 questions in three domains. The normed chi-square value is 1.224. The goodness of Fit Index (GFI) is 0.902, the Comparative Fit Index (CFI) is 0.982, the Root Mean Square Error of Approximation (RMSEA) is 0.033, and the Root Mean Square Residual (RMR) is 0.062. These values indicate a good fit of the model to the data. CONCLUSIONS In general, the developed questionnaire has significant potential to inform public health initiatives and interventions related to MVD.
Collapse
Affiliation(s)
- R M Ghazy
- Family & Community Medicine Department, College of Medicine, King Khalid University, Abha, Saudi Arabia; Tropical Health Department, High Institute of Public Health, Alexandria University, Alexandria, Egypt.
| | - A Gebreal
- Faculty of Medicine, Alexandria University, Egypt.
| | - B E El Demerdash
- Department of Operations Research and Management, Faculty of Graduate Studies for Statistical Research, Cairo University, Egypt.
| | - F Elnagar
- Health Administration and Behavioral Sciences, High Institute of Public Health, Alexandria University, Egypt.
| | - M R Abonazel
- Department of Applied Statistics and Econometrics, Faculty of Graduate Studies for Statistical Research, Cairo University, Egypt.
| | | | - A A Alshaikh
- Family & Community Medicine Department, College of Medicine, King Khalid University, Abha, Saudi Arabia.
| | - M Hussein
- Clinical Research Administration, Alexandria Health Affair Directorate, Egypt; Ministry of Health and Population, Egypt.
| | - M F Hussein
- Occupational Health and Industrial Medicine Department, High Institute of Public Health, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
27
|
Kumar S, Dubey R, Mishra R, Gupta S, Dwivedi VD, Ray S, Jha NK, Verma D, Tsai LW, Dubey NK. Repurposing of SARS-CoV-2 compounds against Marburg Virus using MD simulation, mm/GBSA, PCA analysis, and free energy landscape. J Biomol Struct Dyn 2024:1-20. [PMID: 38450706 DOI: 10.1080/07391102.2024.2323701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/22/2024] [Indexed: 03/08/2024]
Abstract
The significant mortality rate associated with Marburg virus infection made it the greatest hazard among infectious diseases. Drug repurposing using in silico methods has been crucial in identifying potential compounds that could prevent viral replication by targeting the virus's primary proteins. This study aimed at repurposing the drugs of SARS-CoV-2 for identifying potential candidates against the matrix protein VP40 of the Marburg virus. Virtual screening was performed where the control compound, Nilotinib, showed a binding score of -9.99 kcal/mol. Based on binding scores, hit compounds 9549298, 11960895, 44545852, 51039094, and 89670174 were selected that had a lower binding score than the control. Subsequent molecular dynamics (MD) simulation revealed that compound 9549298 consistently formed a hydrogen bond with the residue Gln290. This was observed both in molecular docking and MD simulation poses, indicating a strong and significant interaction with the protein. 11960895 had the most stable and consistent RMSD pattern exhibited in 100 ns simulation, while 9549298 had the most identical RMSD plot compared to the control molecule. MM/PBSA analysis showed that the binding free energy (ΔG) of 9549298 and 11960895 was lower than the control, with -30.84 and -38.86 kcal/mol, respectively. It was observed by the PCA (principal component analysis) and FEL (free energy landscape) analysis that compounds 9549298 and 11960895 had lesser conformational variation. Overall, this study proposed 9549298 and 11960895 as potential binders of VP40 MARV that can cause its inhibition, however it inherently lacks experimental validation. Furthermore, the study proposes in-vitro experiments as the next step to validate these computational findings, offering a practical approach to further explore these compounds' potential as antiviral agents.
Collapse
Affiliation(s)
- Sanjay Kumar
- Biological and Bio-computational Lab, Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, UP, India
| | - Rajni Dubey
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei City, Taiwan
| | - Richa Mishra
- Department of Computer Engineering, Parul University, Vadodara, Gujarat, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Vivek Dhar Dwivedi
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Bioinformatics Research Division, Greater Noida, UP, India
| | - Subhasree Ray
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, India
| | - Niraj Kumar Jha
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, India
- Centre of Research Impact and Outreach, Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India
| | - Devvret Verma
- Department of Biotechnology, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, India
| | - Lung-Wen Tsai
- Department of Medicine Research, Taipei Medical University Hospital, Taipei, Taiwan
- Department of Information Technology Office, Taipei Medical University Hospital, Taipei, Taiwan
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei, Taiwan
| | | |
Collapse
|
28
|
Mitu RA, Islam MR. The Current Pathogenicity and Potential Risk Evaluation of Marburg Virus to Cause Mysterious "Disease X"-An Update on Recent Evidences. ENVIRONMENTAL HEALTH INSIGHTS 2024; 18:11786302241235809. [PMID: 38440221 PMCID: PMC10910879 DOI: 10.1177/11786302241235809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/12/2024] [Indexed: 03/06/2024]
Abstract
The World Health Organization (WHO) defined Disease X as an upcoming disease with the potential to cause a pandemic. Pathogen X is responsible for Disease X. Marburg virus disease (MVD) is one of the diseases from the priority disease list published by WHO. Marburg virus is a filamentous, negative-sense RNA virus that belongs to the same filovirus family as the lethal Ebola virus. Since the first discovery of this virus in 1967, 17 outbreaks occurred sporadically till 2023. Rousettus aegyptiacus acts as the natural reservoir of the virus. With an average incubation period of 5 to 10 days, its first target is the mononuclear phagocytic system cells. It is highly contagious and can be easily transmitted from animal to human and human to human via direct contact with blood or body fluid, feces, and semen of the infected host. Although Marburg disease has a high case fatality rate of close to 90%, unfortunately, there is no approved vaccines or treatments are available. The most recent outbreak of Marburg virus in Equatorial Guinea and Tanzania in 2023 caused an alert for global health. However, based on the last global pandemic of COVID-19 and the sudden re-emerging of monkeypox around the world, we can assume that the Marburg virus has the potential to cause a global pandemic. Our modern world depends on globalization, which helps the virus transmission among countries. The Marburg virus can easily be transmitted to humans by fruit bats of the Pteropodidae family. This virus causes severe hemorrhagic disease, and there are no specific vaccines and treatments available to combat it. Therefore, community engagement and early supportive care for patients are keys to successfully controlling MVD.
Collapse
Affiliation(s)
- Rahima Akter Mitu
- Department of Pharmacy, University of Asia Pacific, Farmgate, Dhaka, Bangladesh
| | - Md. Rabiul Islam
- School of Pharmacy, BRAC University, Merul Badda, Dhaka, Bangladesh
| |
Collapse
|
29
|
Viral agents (2nd section). Transfusion 2024; 64 Suppl 1:S19-S207. [PMID: 38394038 DOI: 10.1111/trf.17630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 12/02/2023] [Indexed: 02/25/2024]
|
30
|
Riesle-Sbarbaro SA, Wibbelt G, Düx A, Kouakou V, Bokelmann M, Hansen-Kant K, Kirchoff N, Laue M, Kromarek N, Lander A, Vogel U, Wahlbrink A, Wozniak DM, Scott DP, Prescott JB, Schaade L, Couacy-Hymann E, Kurth A. Selective replication and vertical transmission of Ebola virus in experimentally infected Angolan free-tailed bats. Nat Commun 2024; 15:925. [PMID: 38297087 PMCID: PMC10830451 DOI: 10.1038/s41467-024-45231-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/16/2024] [Indexed: 02/02/2024] Open
Abstract
The natural reservoir of Ebola virus (EBOV), agent of a zoonosis burdening several African countries, remains unidentified, albeit evidence points towards bats. In contrast, the ecology of the related Marburg virus is much better understood; with experimental infections of bats being instrumental for understanding reservoir-pathogen interactions. Experiments have focused on elucidating reservoir competence, infection kinetics and specifically horizontal transmission, although, vertical transmission plays a key role in many viral enzootic cycles. Herein, we investigate the permissiveness of Angolan free-tailed bats (AFBs), known to harbour Bombali virus, to other filoviruses: Ebola, Marburg, Taï Forest and Reston viruses. We demonstrate that only the bats inoculated with EBOV show high and disseminated viral replication and infectious virus shedding, without clinical disease, while the other filoviruses fail to establish productive infections. Notably, we evidence placental-specific tissue tropism and a unique ability of EBOV to traverse the placenta, infect and persist in foetal tissues of AFBs, which results in distinct genetic signatures of adaptive evolution. These findings not only demonstrate plausible routes of horizontal and vertical transmission in these bats, which are expectant of reservoir hosts, but may also reveal an ancillary transmission mechanism, potentially required for the maintenance of EBOV in small reservoir populations.
Collapse
Affiliation(s)
- S A Riesle-Sbarbaro
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - G Wibbelt
- Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - A Düx
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
- Helmholtz Institute for One Health, Greifswald, Germany
| | - V Kouakou
- LANADA, Laboratoire National d'Appui au Développement Agricole, Bingerville, Côte d'Ivoire
| | - M Bokelmann
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - K Hansen-Kant
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - N Kirchoff
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - M Laue
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - N Kromarek
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - A Lander
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - U Vogel
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - A Wahlbrink
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - D M Wozniak
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
- Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
| | - D P Scott
- Rocky Mountain Laboratories, National Institutes of Health, Hamilton, MT, USA
| | - J B Prescott
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - L Schaade
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - E Couacy-Hymann
- LANADA, Laboratoire National d'Appui au Développement Agricole, Bingerville, Côte d'Ivoire
- Centre National de Recherches Agronomiques, LIRED, Abidjan, Côte d'Ivoire
| | - A Kurth
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany.
| |
Collapse
|
31
|
To A, Wong TAS, Ball AH, Lieberman MM, Yalley-Ogunro J, Cabus M, Nezami S, Paz F, Elyard HA, Borisevich V, Agans KN, Deer DJ, Woolsey C, Cross RW, Geisbert TW, Donini O, Lehrer AT. Thermostable bivalent filovirus vaccine protects against severe and lethal Sudan ebolavirus and marburgvirus infection. Vaccine 2024; 42:598-607. [PMID: 38158300 PMCID: PMC10872277 DOI: 10.1016/j.vaccine.2023.12.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Although two vaccines for Zaire ebolavirus (EBOV) have been licensed and deployed successfully to combat recurring outbreaks of Ebolavirus Disease in West Africa, there are no vaccines for two other highly pathogenic members of the Filoviridae, Sudan ebolavirus (SUDV) and Marburg marburgvirus (MARV). The results described herein document the immunogenicity and protective efficacy in cynomolgus macaques of a single-vial, thermostabilized (lyophilized) monovalent (SUDV) and bivalent (SUDV & MARV) protein vaccines consisting of recombinant glycoproteins (GP) formulated with a clinical-grade oil-in-water nanoemulsion adjuvant (CoVaccine HT™). Lyophilized formulations of the vaccines were reconstituted with Water for Injection and used to immunize groups of cynomolgus macaques before challenge with a lethal dose of a human SUDV or MARV isolate. Sera collected after each of the three immunizations showed near maximal GP-binding IgG concentrations starting as early as the second dose. Most importantly, the vaccine candidates (monovalent or bivalent) provided 100% protection against severe and lethal filovirus disease after either SUDV or MARV infection. Although mild, subclinical infection was observed in a few macaques, all vaccinated animals remained healthy and survived the filovirus challenge. These results demonstrate the value that thermostabilized protein vaccines could provide for addressing an important gap in preparedness for future filovirus outbreaks.
Collapse
Affiliation(s)
- Albert To
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI 96813, USA
| | - Teri Ann S Wong
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI 96813, USA
| | - Aquena H Ball
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI 96813, USA
| | - Michael M Lieberman
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI 96813, USA
| | | | | | | | | | | | - Viktoriya Borisevich
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77550, USA; Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Krystle N Agans
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77550, USA; Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Daniel J Deer
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77550, USA; Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Courtney Woolsey
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77550, USA; Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Robert W Cross
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77550, USA; Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Thomas W Geisbert
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77550, USA; Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77550, USA
| | | | - Axel T Lehrer
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI 96813, USA.
| |
Collapse
|
32
|
Corda PO, Bollen M, Ribeiro D, Fardilha M. Emerging roles of the Protein Phosphatase 1 (PP1) in the context of viral infections. Cell Commun Signal 2024; 22:65. [PMID: 38267954 PMCID: PMC10807198 DOI: 10.1186/s12964-023-01468-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/30/2023] [Indexed: 01/26/2024] Open
Abstract
Protein Phosphatase 1 (PP1) is a major serine/threonine phosphatase in eukaryotes, participating in several cellular processes and metabolic pathways. Due to their low substrate specificity, PP1's catalytic subunits do not exist as free entities but instead bind to Regulatory Interactors of Protein Phosphatase One (RIPPO), which regulate PP1's substrate specificity and subcellular localization. Most RIPPOs bind to PP1 through combinations of short linear motifs (4-12 residues), forming highly specific PP1 holoenzymes. These PP1-binding motifs may, hence, represent attractive targets for the development of specific drugs that interfere with a subset of PP1 holoenzymes. Several viruses exploit the host cell protein (de)phosphorylation machinery to ensure efficient virus particle formation and propagation. While the role of many host cell kinases in viral life cycles has been extensively studied, the targeting of phosphatases by viral proteins has been studied in less detail. Here, we compile and review what is known concerning the role of PP1 in the context of viral infections and discuss how it may constitute a putative host-based target for the development of novel antiviral strategies.
Collapse
Affiliation(s)
- Pedro O Corda
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Mathieu Bollen
- Department of Cellular and Molecular Medicine, Laboratory of Biosignaling & Therapeutics, Katholieke Universiteit Leuven, Louvain, Belgium
| | - Daniela Ribeiro
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.
| | - Margarida Fardilha
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
33
|
Dong J, Ismail N, Fitts E, Walker DH. Molecular testing in emerging infectious diseases. DIAGNOSTIC MOLECULAR PATHOLOGY 2024:175-198. [DOI: 10.1016/b978-0-12-822824-1.00011-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
34
|
Salmanton-García J, Wipfler P, Leckler J, Nauclér P, Mallon PW, Bruijning-Verhagen PCJL, Schmitt HJ, Bethe U, Olesen OF, Stewart FA, Albus K, Cornely OA. Predicting the next pandemic: VACCELERATE ranking of the WorldHealth Organization's Blueprint forAction toPreventEpidemics. Travel Med Infect Dis 2024; 57:102676. [PMID: 38061408 DOI: 10.1016/j.tmaid.2023.102676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 12/20/2023]
Abstract
INTRODUCTION The World Health Organization (WHO)'s Research and Development (R&D) Blueprint for Action to Prevent Epidemics, a plan of action, highlighted several infectious diseases as crucial targets for prevention. These infections were selected based on a thorough assessment of factors such as transmissibility, infectivity, severity, and evolutionary potential. In line with this blueprint, the VACCELERATE Site Network approached infectious disease experts to rank the diseases listed in the WHO R&D Blueprint according to their perceived risk of triggering a pandemic. VACCELERATE is an EU-funded collaborative European network of clinical trial sites, established to respond to emerging pandemics and enhance vaccine development capabilities. METHODS Between February and June 2023, a survey was conducted using an online form to collect data from members of the VACCELERATE Site Network and infectious disease experts worldwide. Participants were asked to rank various pathogens based on their perceived risk of causing a pandemic, including those listed in the WHO R&D Blueprint and additional pathogens. RESULTS A total of 187 responses were obtained from infectious disease experts representing 57 countries, with Germany, Spain, and Italy providing the highest number of replies. Influenza viruses received the highest rankings among the pathogens, with 79 % of participants including them in their top rankings. Disease X, SARS-CoV-2, SARS-CoV, and Ebola virus were also ranked highly. Hantavirus, Lassa virus, Nipah virus, and henipavirus were among the bottom-ranked pathogens in terms of pandemic potential. CONCLUSION Influenza, SARS-CoV, SARS-CoV-2, and Ebola virus were found to be the most concerning pathogens with pandemic potential, characterised by transmissibility through respiratory droplets and a reported history of epidemic or pandemic outbreaks.
Collapse
Affiliation(s)
- Jon Salmanton-García
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University Hospital Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany; Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), University Hospital Cologne, Faculty of Medicine), University of Cologne, Cologne, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany.
| | - Pauline Wipfler
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University Hospital Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany; Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), University Hospital Cologne, Faculty of Medicine), University of Cologne, Cologne, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Janina Leckler
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University Hospital Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany; Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), University Hospital Cologne, Faculty of Medicine), University of Cologne, Cologne, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Pontus Nauclér
- Division of Infectious Diseases, Department of Medicine, Karolinska Institutet, Solna, Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Patrick W Mallon
- School of Medicine, University College Dublin, Dublin, Ireland; Department of Infectious Diseases, St. Vincent's University Hospital, Dublin, Ireland; Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin, Ireland
| | - Patricia C J L Bruijning-Verhagen
- Department of Epidemiology, Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Heinz-Joseph Schmitt
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University Hospital Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany; Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), University Hospital Cologne, Faculty of Medicine), University of Cologne, Cologne, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany; Global Health Press Pte. Ltd., Singapore
| | - Ullrich Bethe
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University Hospital Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany; Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), University Hospital Cologne, Faculty of Medicine), University of Cologne, Cologne, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Ole F Olesen
- European Vaccine Initiative (EVI), Heidelberg, Germany
| | - Fiona A Stewart
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University Hospital Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany; Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), University Hospital Cologne, Faculty of Medicine), University of Cologne, Cologne, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Kerstin Albus
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University Hospital Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany; Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), University Hospital Cologne, Faculty of Medicine), University of Cologne, Cologne, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Oliver A Cornely
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University Hospital Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany; Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), University Hospital Cologne, Faculty of Medicine), University of Cologne, Cologne, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinical Trials Centre Cologne (ZKS Köln), Cologne, Germany
| |
Collapse
|
35
|
Bi J, Wang H, Han Q, Pei H, Wang H, Jin H, Jin S, Chi H, Yang S, Zhao Y, Yan F, Ge L, Xia X. A rabies virus-vectored vaccine expressing two copies of the Marburg virus glycoprotein gene induced neutralizing antibodies against Marburg virus in humanized mice. Emerg Microbes Infect 2023; 12:2149351. [PMID: 36453198 PMCID: PMC9809360 DOI: 10.1080/22221751.2022.2149351] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Marburg virus disease (MVD) is a lethal viral haemorrhagic fever caused by Marburg virus (MARV) with a case fatality rate as high as 88%. There is currently no vaccine or antiviral therapy approved for MVD. Due to high variation among MARV isolates, vaccines developed against one strain fail to protect against other strains. Here we report that three recombinant rabies virus (RABV) vector vaccines encoding two copies of GPs covering both MARV lineages induced pseudovirus neutralizing antibodies in BALB/c mice. Furthermore, high-affinity human neutralizing antibodies were isolated from a humanized mouse model. The three vaccines produced a Th1-biased serological response similar to that of human patients. Adequate sequential immunization enhanced the production of neutralizing antibodies. Virtual docking suggested that neutralizing antibodies induced by the Angola strain seemed to be able to hydrogen bond to the receptor-binding site (RBS) in the GP of the Ravn strain through hypervariable regions 2 (CDR2) and CDR3 of the VH region. These findings demonstrate that three inactivated vaccines are promising candidates against different strains of MARV, and a novel fully humanized neutralizing antibody against MARV was isolated.
Collapse
Affiliation(s)
- Jinhao Bi
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, People’s Republic of China,Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Haojie Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Qiuxue Han
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China,Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, People’s Republic of China
| | - Hongyan Pei
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China,College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Hualei Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, People’s Republic of China
| | - Hongli Jin
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, People’s Republic of China
| | - Song Jin
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China,Ruminant Disease Research Center, College of Life Sciences, Shandong Normal University, Jinan, People’s Republic of China
| | - Hang Chi
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Songtao Yang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Yongkun Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Feihu Yan
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China, Feihu Yan ; Liangpeng Ge ; Xianzhu Xia
| | - Liangpeng Ge
- Chongqing Academy of Animal Sciences, Chongqing, People’s Republic of China, Feihu Yan ; Liangpeng Ge ; Xianzhu Xia
| | - Xianzhu Xia
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, People’s Republic of China,Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China,Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, People’s Republic of China, Feihu Yan ; Liangpeng Ge ; Xianzhu Xia
| |
Collapse
|
36
|
Cross RW, Fenton KA, Foster SL, Geisbert JB, Geisbert TW. Modelling Marburg Virus Disease in Syrian Golden Hamsters: Contrasted Virulence Between Angola and Ci67 Strains. J Infect Dis 2023; 228:S559-S570. [PMID: 37610176 DOI: 10.1093/infdis/jiad361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND Marburg virus (MARV) has caused numerous sporadic outbreaks of severe hemorrhagic fever in humans. Human case fatality rates of Marburg virus disease (MVD) outbreaks range from 20% to 90%. Viral genotypes of MARV can differ by over 20%, suggesting variable virulence between lineages may accompany this genetic divergence. Comparison of existing animal models of MVD employing different strains of MARV support differences in virulence across MARV genetic lineages; however, there are few systematic comparisons in models that recapitulate human disease available. METHODS We compared features of disease pathogenesis in uniformly lethal hamster models of MVD made possible through serial adaptation in rodents. RESULTS No further adaptation from a previously reported guinea pig-adapted (GPA) isolate of MARV-Angola was necessary to achieve uniform lethality in hamsters. Three passages of GPA MARV-Ci67 resulted in uniform lethality, where 4 passages of a GPA Ravn virus was 75% lethal. Hamster-adapted MARV-Ci67 demonstrated delayed time to death, protracted weight loss, lower viral burden, and slower histologic alteration compared to GPA MARV-Angola. CONCLUSIONS These data suggest isolate-dependent virulence differences are maintained even after serial adaptation in rodents and may serve to guide choice of variant and model used for development of vaccines or therapeutics for MVD.
Collapse
Affiliation(s)
- Robert W Cross
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Karla A Fenton
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Stephanie L Foster
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Joan B Geisbert
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Thomas W Geisbert
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
37
|
Qian GY, Edmunds WJ, Bausch DG, Jombart T. A mathematical model of Marburg virus disease outbreaks and the potential role of vaccination in control. BMC Med 2023; 21:439. [PMID: 37964296 PMCID: PMC10648709 DOI: 10.1186/s12916-023-03108-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/10/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Marburg virus disease is an acute haemorrhagic fever caused by Marburg virus. Marburg virus is zoonotic, maintained in nature in Egyptian fruit bats, with occasional spillover infections into humans and nonhuman primates. Although rare, sporadic cases and outbreaks occur in Africa, usually associated with exposure to bats in mines or caves, and sometimes with secondary human-to-human transmission. Outbreaks outside of Africa have also occurred due to importation of infected monkeys. Although all previous Marburg virus disease outbreaks have been brought under control without vaccination, there is nevertheless the potential for large outbreaks when implementation of public health measures is not possible or breaks down. Vaccines could thus be an important additional tool, and development of several candidate vaccines is under way. METHODS We developed a branching process model of Marburg virus transmission and investigated the potential effects of several prophylactic and reactive vaccination strategies in settings driven primarily by multiple spillover events as well as human-to-human transmission. Linelist data from the 15 outbreaks up until 2022, as well as an Approximate Bayesian Computational framework, were used to inform the model parameters. RESULTS Our results show a low basic reproduction number which varied across outbreaks, from 0.5 [95% CI 0.05-1.8] to 1.2 [95% CI 1.0-1.9] but a high case fatality ratio. Of six vaccination strategies explored, the two prophylactic strategies (mass and targeted vaccination of high-risk groups), as well as a combination of ring and targeted vaccination, were generally most effective, with a probability of potential outbreaks being terminated within 1 year of 0.90 (95% CI 0.90-0.91), 0.89 (95% CI 0.88-0.90), and 0.88 (95% CI 0.87-0.89) compared with 0.68 (0.67-0.69) for no vaccination, especially if the outbreak is driven by zoonotic spillovers and the vaccination campaign initiated as soon as possible after onset of the first case. CONCLUSIONS Our study shows that various vaccination strategies can be effective in helping to control outbreaks of MVD, with the best approach varying with the particular epidemiologic circumstances of each outbreak.
Collapse
Affiliation(s)
- George Y Qian
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK.
- Department of Engineering Mathematics, University of Bristol, Bristol, UK.
| | - W John Edmunds
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Daniel G Bausch
- FIND, Geneva, Switzerland
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Thibaut Jombart
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
| |
Collapse
|
38
|
Srivastava S, Sharma D, Kumar S, Sharma A, Rijal R, Asija A, Adhikari S, Rustagi S, Sah S, Al-qaim ZH, Bashyal P, Mohanty A, Barboza JJ, Rodriguez-Morales AJ, Sah R. Emergence of Marburg virus: a global perspective on fatal outbreaks and clinical challenges. Front Microbiol 2023; 14:1239079. [PMID: 37771708 PMCID: PMC10526840 DOI: 10.3389/fmicb.2023.1239079] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/25/2023] [Indexed: 09/30/2023] Open
Abstract
The Marburg virus (MV), identified in 1967, has caused deadly outbreaks worldwide, the mortality rate of Marburg virus disease (MVD) varies depending on the outbreak and virus strain, but the average case fatality rate is around 50%. However, case fatality rates have varied from 24 to 88% in past outbreaks depending on virus strain and case management. Designated a priority pathogen by the National Institute of Allergy and Infectious Diseases (NIAID), MV induces hemorrhagic fever, organ failure, and coagulation issues in both humans and non-human primates. This review presents an extensive exploration of MVD outbreak evolution, virus structure, and genome, as well as the sources and transmission routes of MV, including human-to-human spread and involvement of natural hosts such as the Egyptian fruit bat (Rousettus aegyptiacus) and other Chiroptera species. The disease progression involves early viral replication impacting immune cells like monocytes, macrophages, and dendritic cells, followed by damage to the spleen, liver, and secondary lymphoid organs. Subsequent spread occurs to hepatocytes, endothelial cells, fibroblasts, and epithelial cells. MV can evade host immune response by inhibiting interferon type I (IFN-1) synthesis. This comprehensive investigation aims to enhance understanding of pathophysiology, cellular tropism, and injury sites in the host, aiding insights into MVD causes. Clinical data and treatments are discussed, albeit current methods to halt MVD outbreaks remain elusive. By elucidating MV infection's history and mechanisms, this review seeks to advance MV disease treatment, drug development, and vaccine creation. The World Health Organization (WHO) considers MV a high-concern filovirus causing severe and fatal hemorrhagic fever, with a death rate ranging from 24 to 88%. The virus often spreads through contact with infected individuals, originating from animals. Visitors to bat habitats like caves or mines face higher risk. We tailored this search strategy for four databases: Scopus, Web of Science, Google Scholar, and PubMed. we primarily utilized search terms such as "Marburg virus," "Epidemiology," "Vaccine," "Outbreak," and "Transmission." To enhance comprehension of the virus and associated disease, this summary offers a comprehensive overview of MV outbreaks, pathophysiology, and management strategies. Continued research and learning hold promise for preventing and controlling future MVD outbreaks. GRAPHICAL ABSTRACT.
Collapse
Affiliation(s)
- Shriyansh Srivastava
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, India
| | - Deepika Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, India
| | - Sachin Kumar
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| | - Aditya Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, India
| | - Rishikesh Rijal
- Division of Infectious Diseases, University of Louisville, Louisville, KY, United States
| | - Ankush Asija
- WVU United Hospital Center, Bridgeport, WV, United States
| | | | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Sanjit Sah
- Global Consortium for Public Health and Research, Datta Meghe Institute of Higher Education and Research, Jawaharlal Nehru Medical College, Wardha, India
- Department of Anesthesia Techniques, SR Sanjeevani Hospital, Siraha, Nepal
| | | | - Prashant Bashyal
- Lumbini Medical College and Teaching Hospital, Kathmandu University Parvas, Palpa, Nepal
| | - Aroop Mohanty
- Department of Clinical Microbiology, All India Institute of Medical Sciences, Gorakhpur, Uttar Pradesh, India
| | | | - Alfonso J. Rodriguez-Morales
- Master Program on Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Ranjit Sah
- Department of Microbiology, Tribhuvan University Teaching Spital, Institute of Medicine, Kathmandu, Nepal
- Department of Microbiology, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
- Department of Public Health Dentistry, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| |
Collapse
|
39
|
Alsaady IM, Bajrai LH, Alandijany TA, Gattan HS, El-Daly MM, Altwaim SA, Alqawas RT, Dwivedi VD, Azhar EI. Cheminformatics Strategies Unlock Marburg Virus VP35 Inhibitors from Natural Compound Library. Viruses 2023; 15:1739. [PMID: 37632081 PMCID: PMC10459822 DOI: 10.3390/v15081739] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/08/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
The Ebola virus and its close relative, the Marburg virus, both belong to the family Filoviridae and are highly hazardous and contagious viruses. With a mortality rate ranging from 23% to 90%, depending on the specific outbreak, the development of effective antiviral interventions is crucial for reducing fatalities and mitigating the impact of Marburg virus outbreaks. In this investigation, a virtual screening approach was employed to evaluate 2042 natural compounds for their potential interactions with the VP35 protein of the Marburg virus. Average and worst binding energies were calculated for all 20 poses, and compounds that exhibited binding energies <-6 kcal/mol in both criteria were selected for further analysis. Based on binding energies, only six compounds (Estradiol benzoate, INVEGA (paliperidone), Isosilybin, Protopanaxadiol, Permethrin, and Bufalin) were selected for subsequent investigations, focusing on interaction analysis. Among these selected compounds, Estradiol benzoate, INVEGA (paliperidone), and Isosilybin showed strong hydrogen bonds, while the others did not. In this study, the compounds Myricetin, Isosilybin, and Estradiol benzoate were subjected to a molecular dynamics (MD) simulation and free binding energy calculation using MM/GBSA analysis. The reference component Myricetin served as a control. Estradiol benzoate exhibited the most stable and consistent root-mean-square deviation (RMSD) values, whereas Isosilybin showed significant fluctuations in RMSD. The compound Estradiol benzoate exhibited the lowest ΔG binding free energy (-22.89 kcal/mol), surpassing the control compound's binding energy (-9.29 kcal/mol). Overall, this investigation suggested that Estradiol benzoate possesses favorable binding free energies, indicating a potential inhibitory mechanism against the VP35 protein of the Marburg virus. The study proposes that these natural compounds could serve as a therapeutic option for preventing Marburg virus infection. However, experimental validation is required to further corroborate these findings.
Collapse
Affiliation(s)
- Isra M. Alsaady
- Special Infectious Agents Unit BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia; (I.M.A.)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21362, Saudi Arabia
| | - Leena H. Bajrai
- Special Infectious Agents Unit BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia; (I.M.A.)
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah 21362, Saudi Arabia
| | - Thamir A. Alandijany
- Special Infectious Agents Unit BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia; (I.M.A.)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21362, Saudi Arabia
| | - Hattan S. Gattan
- Special Infectious Agents Unit BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia; (I.M.A.)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21362, Saudi Arabia
| | - Mai M. El-Daly
- Special Infectious Agents Unit BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia; (I.M.A.)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21362, Saudi Arabia
| | - Sarah A. Altwaim
- Special Infectious Agents Unit BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia; (I.M.A.)
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rahaf T. Alqawas
- Molecular Diagnostic Laboratory, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 21362, Saudi Arabia;
| | - Vivek Dhar Dwivedi
- Bioinformatics Research Division, Quanta Calculus, Greater Noida 201310, India
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha Medical College and Hospitals, Saveetha University, Tamil Nadu 602105, India
| | - Esam I. Azhar
- Special Infectious Agents Unit BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia; (I.M.A.)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21362, Saudi Arabia
| |
Collapse
|
40
|
Scarpa F, Bazzani L, Giovanetti M, Ciccozzi A, Benedetti F, Zella D, Sanna D, Casu M, Borsetti A, Cella E, Pascarella S, Maruotti A, Ciccozzi M. Update on the Phylodynamic and Genetic Variability of Marburg Virus. Viruses 2023; 15:1721. [PMID: 37632063 PMCID: PMC10458864 DOI: 10.3390/v15081721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
The COVID-19 pandemic has not only strained healthcare systems in Africa but has also intensified the impact of emerging and re-emerging diseases. Specifically in Equatorial Guinea, mirroring the situation in other African countries, unique zoonotic outbreaks have occurred during this challenging period. One notable resurgence is Marburg virus disease (MVD), which has further burdened the already fragile healthcare system. The re-emergence of the Marburg virus amid the COVID-19 pandemic is believed to stem from a probable zoonotic spill-over, although the precise transmission routes remain uncertain. Given the gravity of the situation, addressing the existing challenges is paramount. Though the genome sequences from the current outbreak were not available for this study, we analyzed all the available whole genome sequences of this re-emerging pathogen to advocate for a shift towards active surveillance. This is essential to ensure the successful containment of any potential Marburg virus outbreak in Equatorial Guinea and the wider African context. This study, which presents an update on the phylodynamics and the genetic variability of MARV, further confirmed the existence of at least two distinct patterns of viral spread. One pattern demonstrates a slower but continuous and recurring virus circulation, while the other exhibits a faster yet limited and episodic spread. These results highlight the critical need to strengthen genomic surveillance in the region to effectively curb the pathogen's dissemination. Moreover, the study emphasizes the importance of prompt alert management, comprehensive case investigation and analysis, contact tracing, and active case searching. These steps are vital to support the healthcare system's response to this emerging health crisis. By implementing these strategies, we can better arm ourselves against the challenges posed by the resurgence of the Marburg virus and other infectious diseases.
Collapse
Affiliation(s)
- Fabio Scarpa
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy;
| | - Liliana Bazzani
- Department of Science and Technology for Humans and the Environment, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (L.B.); (M.G.)
| | - Marta Giovanetti
- Department of Science and Technology for Humans and the Environment, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (L.B.); (M.G.)
- Instituto Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-009, MG, Brazil
| | - Alessandra Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (A.C.); (M.C.)
| | - Francesca Benedetti
- Institute of Human Virlogy and Global Virusn Network Center, Deparment of Biochemistry and Molecular Biology, University for Maryland School of Medicine, Baltimore, MD 21201, USA; (F.B.); (D.Z.)
| | - Davide Zella
- Institute of Human Virlogy and Global Virusn Network Center, Deparment of Biochemistry and Molecular Biology, University for Maryland School of Medicine, Baltimore, MD 21201, USA; (F.B.); (D.Z.)
| | - Daria Sanna
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy;
| | - Marco Casu
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy;
| | - Alessandra Borsetti
- National HIV/AIDS Research Center (CNAIDS), National Institute of Health, 00161 Rome, Italy;
| | - Eleonora Cella
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA;
| | - Stefano Pascarella
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza Università di Roma, 00185 Rome, Italy;
| | | | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (A.C.); (M.C.)
| |
Collapse
|
41
|
Bulimbe DB, Masunga DS, Paul IK, Kassim GH, Bahati PB, Thomas JA, Mwakisole C, Nazir A, Uwishema O. Marburg virus disease outbreak in Tanzania: current efforts and recommendations - a short communication. Ann Med Surg (Lond) 2023; 85:4190-4193. [PMID: 37554886 PMCID: PMC10406053 DOI: 10.1097/ms9.0000000000001063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/02/2023] [Indexed: 08/10/2023] Open
Abstract
On 21 March 2023 the Tanzania's Ministry of Health reported the first Marburg virus disease (MVD) outbreak in Bukoba District reporting a total of eight cases and five fatalities including one health care worker with a case fatality ratio of 62.5%. MVD is a filoviral infection with an estimated incubation of 3-21 days and causes severe hemorrhagic fever in humans. Fruit bats are significant reservoir host leading to animal-to-human transmission and human-to-human transmission by direct contact of body fluids from an infected person. Symptoms and signs include fever, vomiting, diarrhea, body malaise, massive hemorrhage, and multiorgan failure. Currently, no definitive treatment or licensed vaccines are available to date but only supportive care. This outbreak is an alarming concern to the neighboring countries to contain the outbreak. Within 3 years from 2020 to 2023 Tanzania has already recorded one pandemic, which is the novel coronavirus disease 2019 and two epidemics, which are Cholera, Dengue, and now MVD. Tanzanian's Ministry of Health is drawing lessons from the previous health emergencies to contain this particular epidemic. To impede the MVD outbreak in Tanzania, the focus of this commentary is on highlighting the efforts performed and the significant recommendations provided to relevant organizations and the general public.
Collapse
Affiliation(s)
- Deusdedith B. Bulimbe
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- The University of Dodoma, School of Medicine and Dentistry
| | - Daniel S. Masunga
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Faculty of Medicine, Kilimanjaro Christian Medical University College (KCMUCo), Moshi
| | - Innocent K. Paul
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, Mwanza
| | - Ghalib H. Kassim
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Muhimbili University of Health and Allied Sciences, School of Medicine, Tanzania
| | - Paschal B. Bahati
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- The University of Dodoma, School of Medicine and Dentistry
| | - Jonaviva A. Thomas
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Faculty of Medicine, Kilimanjaro Christian Medical University College (KCMUCo), Moshi
| | - Christina Mwakisole
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Muhimbili University of Health and Allied Sciences, School of Medicine, Tanzania
| | - Abubakar Nazir
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Department of Medicine, King Edward Medical University, Lahore, Pakistan
| | - Olivier Uwishema
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Clinton Global Initiative University, New York, USA
- Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
42
|
Wood MR, de Vries JL, Epstein JH, Markotter W. Variations in small-scale movements of, Rousettus aegyptiacus, a Marburg virus reservoir across a seasonal gradient. Front Zool 2023; 20:23. [PMID: 37464371 DOI: 10.1186/s12983-023-00502-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/05/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Bats are increasingly being recognized as important hosts for viruses, some of which are zoonotic and carry the potential for spillover within human and livestock populations. Biosurveillance studies focused on assessing the risk of pathogen transmission, however, have largely focused on the virological component and have not always considered the ecological implications of different species as viral hosts. The movements of known viral hosts are an important component for disease risk assessments as they can potentially identify regions of higher risk of contact and spillover. As such, this study aimed to synthesize data from both virological and ecological fields to provide a more holistic assessment of the risk of pathogen transmission from bats to people. RESULTS Using radiotelemetry, we tracked the small-scale movements of Rousettus aegyptiacus, a species of bat known to host Marburg virus and other viruses with zoonotic potential, in a rural settlement in Limpopo Province, South Africa. The tracked bats exhibited seasonal variations in their movement patterns including variable usage of residential areas which could translate to contact between bats and humans and may facilitate spillover. We identified a trend for increased usage of residential areas during the winter months with July specifically experiencing the highest levels of bat activity within residential areas. July has previously been identified as a key period for increased spillover risk for viruses associated with R. aegyptiacus from this colony and paired with the increased activity levels, illustrates the risk for spillover to human populations. CONCLUSION This study emphasizes the importance of incorporating ecological data such as movement patterns with virological data to provide a better understanding of the risk of pathogen spillover and transmission.
Collapse
Affiliation(s)
- Matthew R Wood
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, South Africa
| | - J Low de Vries
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, South Africa
| | - Jonathan H Epstein
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, South Africa
- EcoHealth Alliance, New York, NY, USA
| | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
43
|
Mane Manohar MP, Lee VJ, Chinedum Odunukwe EU, Singh PK, Mpofu BS, Oxley Md C. Advancements in Marburg (MARV) Virus Vaccine Research With Its Recent Reemergence in Equatorial Guinea and Tanzania: A Scoping Review. Cureus 2023; 15:e42014. [PMID: 37593293 PMCID: PMC10430785 DOI: 10.7759/cureus.42014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2023] [Indexed: 08/19/2023] Open
Abstract
Given the recent outbreaks of the Marburg (MARV) virus within the first quarter of the year 2023, interest in the MARV virus has been re-ignited given its shared phylogeny with the dreadful Ebola virus. This relation gives some insight into its virulence, associated morbidities, and mortality rates. The first outbreak of MARV recorded was in Germany, in 1967, of which seven died out of 31 reported cases. Ever since, subsequent cases have been reported all over Africa, a continent replete with failing healthcare systems. This reality impresses a need for a contemporary and concise revision of the MARV virus existing publications especially in the areas of vaccine research. A functional MARV vaccine will serve as a panacea to ailing communities within the African healthcare landscape. The objective of this scoping review is to provide pertinent information relating to MARV vaccine research beginning with an outline of MARV's pathology and pathogenesis in addition to the related morbidities, existing therapies, established outbreak protocols as well as areas of opportunities.
Collapse
Affiliation(s)
| | - Vivian J Lee
- Medicine, Avalon University School of Medicine, Willemstad, CUW
| | | | - Pratik K Singh
- Medicine, Aureus University School of Medicine, Oranjestad, ABW
| | | | | |
Collapse
|
44
|
Rapid protection of nonhuman primates against Marburg virus disease using a single low-dose VSV-based vaccine. EBioMedicine 2023; 89:104463. [PMID: 36774693 PMCID: PMC9947254 DOI: 10.1016/j.ebiom.2023.104463] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Marburg virus (MARV) is the causative agent of Marburg virus disease (MVD) which has a case fatality rate up to ∼90% in humans. Recently, there were cases reported in Guinea and Ghana highlighting this virus as a high-consequence pathogen potentially threatening global public health. There are no licensed treatments or vaccines available today. We used a vesicular stomatitis virus (VSV)-based vaccine expressing the MARV-Angola glycoprotein (VSV-MARV) as the viral antigen. Previously, a single dose of 1 × 107 plaque-forming units (PFU) administered 7 days before challenge resulted in uniform protection from disease in cynomolgus macaques. METHODS As we sought to lower the vaccination dose to achieve a higher number of vaccine doses per vial, we administered 1 × 105 or 1 × 103 PFU 14 days or 1 × 103 PFU 7 days before challenge to cohorts of cynomolgus macaques and investigated immunity as well as protective efficacy. RESULTS Vaccination resulted in uniform protection with no detectable viremia. Antigen-specific IgG responses were induced by both vaccine concentrations and were sustained until the study endpoint. Neutralizing antibody responses and antibody-dependent cellular phagocytosis were observed. The cellular response after vaccination was characterized by an early induction of NK cell activation. Additionally, antigen-specific memory T cell subsets were detected in all vaccination cohorts indicating that while the primary protective mechanism of VSV-MARV is the humoral response, a functional cellular response is also induced. INTERPRETATION Overall, this data highlights VSV-MARV as a viable and fast-acting MARV vaccine candidate suitable for deployment in emergency outbreak situations and supports its clinical development. FUNDING This work was funded by the Intramural Research Program NIAID, NIH.
Collapse
|
45
|
Hamer MJ, Houser KV, Hofstetter AR, Ortega-Villa AM, Lee C, Preston A, Augustine B, Andrews C, Yamshchikov GV, Hickman S, Schech S, Hutter JN, Scott PT, Waterman PE, Amare MF, Kioko V, Storme C, Modjarrad K, McCauley MD, Robb ML, Gaudinski MR, Gordon IJ, Holman LA, Widge AT, Strom L, Happe M, Cox JH, Vazquez S, Stanley DA, Murray T, Dulan CNM, Hunegnaw R, Narpala SR, Swanson PA, Basappa M, Thillainathan J, Padilla M, Flach B, O'Connell S, Trofymenko O, Morgan P, Coates EE, Gall JG, McDermott AB, Koup RA, Mascola JR, Ploquin A, Sullivan NJ, Ake JA, Ledgerwood JE. Safety, tolerability, and immunogenicity of the chimpanzee adenovirus type 3-vectored Marburg virus (cAd3-Marburg) vaccine in healthy adults in the USA: a first-in-human, phase 1, open-label, dose-escalation trial. Lancet 2023; 401:294-302. [PMID: 36709074 PMCID: PMC10127441 DOI: 10.1016/s0140-6736(22)02400-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/14/2022] [Accepted: 11/15/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND WHO has identified Marburg virus as an emerging virus requiring urgent vaccine research and development, particularly due to its recent emergence in Ghana. We report results from a first-in-human clinical trial evaluating a replication-deficient recombinant chimpanzee adenovirus type 3 (cAd3)-vectored vaccine encoding a wild-type Marburg virus Angola glycoprotein (cAd3-Marburg) in healthy adults. METHODS We did a first-in-human, phase 1, open-label, dose-escalation trial of the cAd3-Marburg vaccine at the Walter Reed Army Institute of Research Clinical Trials Center in the USA. Healthy adults aged 18-50 years were assigned to receive a single intramuscular dose of cAd3-Marburg vaccine at either 1 × 1010 or 1 × 1011 particle units (pu). Primary safety endpoints included reactogenicity assessed for the first 7 days and all adverse events assessed for 28 days after vaccination. Secondary immunogenicity endpoints were assessment of binding antibody responses and T-cell responses against the Marburg virus glycoprotein insert, and assessment of neutralising antibody responses against the cAd3 vector 4 weeks after vaccination. This study is registered with ClinicalTrials.gov, NCT03475056. FINDINGS Between Oct 9, 2018, and Jan 31, 2019, 40 healthy adults were enrolled and assigned to receive a single intramuscular dose of cAd3-Marburg vaccine at either 1 × 1010 pu (n=20) or 1 × 1011 pu (n=20). The cAd3-Marburg vaccine was safe, well tolerated, and immunogenic. All enrolled participants received cAd3-Marburg vaccine, with 37 (93%) participants completing follow-up visits; two (5%) participants moved from the area and one (3%) was lost to follow-up. No serious adverse events related to vaccination occurred. Mild to moderate reactogenicity was observed after vaccination, with symptoms of injection site pain and tenderness (27 [68%] of 40 participants), malaise (18 [45%] of 40 participants), headache (17 [43%] of 40 participants), and myalgia (14 [35%] of 40 participants) most commonly reported. Glycoprotein-specific antibodies were induced in 38 (95%) of 40 participants 4 weeks after vaccination, with geometric mean titres of 421 [95% CI 209-846] in the 1 × 1010 pu group and 545 [276-1078] in the 1 × 1011 pu group, and remained significantly elevated at 48 weeks compared with baseline titres (39 [95% CI 13-119] in the 1 ×1010 pu group and 27 [95-156] in the 1 ×1011 pu group; both p<0·0001). T-cell responses to the glycoprotein insert and neutralising responses against the cAd3 vector were also increased at 4 weeks after vaccination. INTERPRETATION This first-in-human trial of this cAd3-Marburg vaccine showed the agent is safe and immunogenic, with a safety profile similar to previously tested cAd3-vectored filovirus vaccines. 95% of participants produced a glycoprotein-specific antibody response at 4 weeks after a single vaccination, which remained in 70% of participants at 48 weeks. These findings represent a crucial step in the development of a vaccine for emergency deployment against a re-emerging pathogen that has recently expanded its reach to new regions. FUNDING National Institutes of Health.
Collapse
Affiliation(s)
- Melinda J Hamer
- Walter Reed Army Institute of Research, Silver Spring, MD, USA; Department of Emergency Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Katherine V Houser
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Amelia R Hofstetter
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ana M Ortega-Villa
- Biostatistics Research Branch, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christine Lee
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Anne Preston
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | - Charla Andrews
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Galina V Yamshchikov
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Somia Hickman
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Steven Schech
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Jack N Hutter
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Paul T Scott
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | - Mihret F Amare
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Victoria Kioko
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Casey Storme
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | | | - Melanie D McCauley
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Merlin L Robb
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Martin R Gaudinski
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ingelise J Gordon
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - LaSonji A Holman
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alicia T Widge
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Larisa Strom
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Myra Happe
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Josephine H Cox
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sandra Vazquez
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Daphne A Stanley
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tamar Murray
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Caitlyn N M Dulan
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ruth Hunegnaw
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sandeep R Narpala
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Phillip A Swanson
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Manjula Basappa
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jagada Thillainathan
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Marcelino Padilla
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Britta Flach
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sarah O'Connell
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Olga Trofymenko
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Patricia Morgan
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Emily E Coates
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jason G Gall
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adrian B McDermott
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Richard A Koup
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John R Mascola
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Aurélie Ploquin
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nancy J Sullivan
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Julie A Ake
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Julie E Ledgerwood
- Vaccine Research Center, and Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
46
|
Ye X, Holland R, Wood M, Pasetka C, Palmer L, Samaridou E, McClintock K, Borisevich V, Geisbert TW, Cross RW, Heyes J. Combination treatment of mannose and GalNAc conjugated small interfering RNA protects against lethal Marburg virus infection. Mol Ther 2023; 31:269-281. [PMID: 36114672 PMCID: PMC9840110 DOI: 10.1016/j.ymthe.2022.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/28/2022] [Accepted: 09/12/2022] [Indexed: 02/02/2023] Open
Abstract
Marburg virus (MARV) infection results in severe viral hemorrhagic fever with mortalities up to 90%, and there is a pressing need for effective therapies. Here, we established a small interfering RNA (siRNA) conjugate platform that enabled successful subcutaneous delivery of siRNAs targeting the MARV nucleoprotein. We identified a hexavalent mannose ligand with high affinity to macrophages and dendritic cells, which are key cellular targets of MARV infection. This ligand enabled successful siRNA conjugate delivery to macrophages both in vitro and in vivo. The delivered hexa-mannose-siRNA conjugates rendered substantial target gene silencing in macrophages when supported by a mannose functionalized endosome release polymer. This hexa-mannose-siRNA conjugate was further evaluated alongside our hepatocyte-targeting GalNAc-siRNA conjugate, to expand targeting of infected liver cells. In MARV-Angola-infected guinea pigs, these platforms offered limited survival benefit when used as individual agents. However, in combination, they achieved up to 100% protection when dosed 24 h post infection. This novel approach, using two different ligands to simultaneously deliver siRNA to multiple cell types relevant to infection, provides a convenient subcutaneous route of administration for treating infection by these dangerous pathogens. The mannose conjugate platform has potential application to other diseases involving macrophages and dendritic cells.
Collapse
Affiliation(s)
- Xin Ye
- Genevant Sciences Corporation, Vancouver, BC V5T 4T5, Canada
| | - Richard Holland
- Genevant Sciences Corporation, Vancouver, BC V5T 4T5, Canada
| | - Mark Wood
- Genevant Sciences Corporation, Vancouver, BC V5T 4T5, Canada
| | - Chris Pasetka
- Genevant Sciences Corporation, Vancouver, BC V5T 4T5, Canada
| | - Lorne Palmer
- Genevant Sciences Corporation, Vancouver, BC V5T 4T5, Canada
| | - Eleni Samaridou
- Genevant Sciences Corporation, Vancouver, BC V5T 4T5, Canada
| | | | - Viktoriya Borisevich
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Thomas W Geisbert
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Robert W Cross
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - James Heyes
- Genevant Sciences Corporation, Vancouver, BC V5T 4T5, Canada.
| |
Collapse
|
47
|
Islam MR, Akash S, Rahman MM, Sharma R. Epidemiology, pathophysiology, transmission, genomic structure, treatment, and future perspectives of the novel Marburg virus outbreak. Int J Surg 2023; 109:36-38. [PMID: 36799786 PMCID: PMC10389455 DOI: 10.1097/js9.0000000000000096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/20/2022] [Indexed: 02/18/2023]
Affiliation(s)
- Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
48
|
Reuben RC, Abunike SA. Marburg virus disease: the paradox of Nigeria's preparedness and priority effects in co-epidemics. BULLETIN OF THE NATIONAL RESEARCH CENTRE 2023; 47:10. [PMID: 36721499 PMCID: PMC9880916 DOI: 10.1186/s42269-023-00987-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/19/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND The recent outbreaks of Marburg virus disease (MVD) in Guinea and Ghana have become a major public health concern not only to the West African sub-region but a threat to global health. MAIN BODY OF THE ABSTRACT Given the poorly elucidated ecological and epidemiological dynamics of the Marburg virus, it would be imprudent to preclude the possibility of another pandemic if urgent efforts are not put in place. However, the prior emergence and impact of COVID-19 and other co-occurring epidemics may add 'noise' to the epidemiological dynamics and public health interventions that may be required in the advent of a MVD outbreak in Nigeria. SHORT CONCLUSION Paying attention to the lessons learned from previous (and current) multiple epidemics including Avian Influenza, Yellow fever, Ebola virus disease, Monkeypox, Lassa fever, and COVID-19 could help avoid a potentially devastating public health catastrophe in Nigeria.
Collapse
Affiliation(s)
- Rine Christopher Reuben
- German Centre of Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Puschstraße 4, 04103 Leipzig, Germany
- Department of Biological Science, Anchor University, Lagos, Nigeria
| | - Sarah Adamma Abunike
- Institute for Health and Equity, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226 USA
| |
Collapse
|
49
|
Hunegnaw R, Honko AN, Wang L, Carr D, Murray T, Shi W, Nguyen L, Storm N, Dulan CNM, Foulds KE, Agans KN, Cross RW, Geisbert JB, Cheng C, Ploquin A, Stanley DA, Geisbert TW, Nabel GJ, Sullivan NJ. A single-shot ChAd3-MARV vaccine confers rapid and durable protection against Marburg virus in nonhuman primates. Sci Transl Med 2022; 14:eabq6364. [PMID: 36516269 DOI: 10.1126/scitranslmed.abq6364] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Marburg virus (MARV) causes a severe hemorrhagic fever disease in primates with mortality rates in humans of up to 90%. MARV has been identified as a category A bioterrorism agent by the Centers for Disease Control and Prevention (CDC) and priority pathogen A by the National Institute of Allergy and Infectious Diseases (NIAID), needing urgent research and development of countermeasures because of the high public health risk it poses. The recent cases of MARV in West Africa underscore the substantial outbreak potential of this virus. The potential for cross-border spread, as had occurred during the 2014-2016 Ebola virus outbreak, illustrates the critical need for MARV vaccines. To support regulatory approval of the chimpanzee adenovirus 3 (ChAd3)-MARV vaccine that has completed phase 1 trials, we showed that the nonreplicating ChAd3 vector, which has a demonstrated safety profile in humans, protected against a uniformly lethal challenge with MARV/Ang. Protective immunity was achieved within 7 days of vaccination and was maintained through 1 year after vaccination. Antigen-specific antibodies were an immune correlate of protection in the acute challenge model, and their concentration was predictive of protection. These results demonstrate that a single-shot ChAd3-MARV vaccine generated a protective immune response that was both rapid and durable with an immune correlate of protection that will support advanced clinical development.
Collapse
Affiliation(s)
- Ruth Hunegnaw
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Anna N Honko
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA.,National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA 02118, USA
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Derick Carr
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Tamar Murray
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Wei Shi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Lam Nguyen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Nadia Storm
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA 02118, USA
| | - Caitlyn N M Dulan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Kathryn E Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Krystle N Agans
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Robert W Cross
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Joan B Geisbert
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Cheng Cheng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Aurélie Ploquin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Daphne A Stanley
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Thomas W Geisbert
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Gary J Nabel
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Nancy J Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
50
|
Abir MH, Rahman T, Das A, Etu SN, Nafiz IH, Rakib A, Mitra S, Emran TB, Dhama K, Islam A, Siyadatpanah A, Mahmud S, Kim B, Hassan MM. Pathogenicity and virulence of Marburg virus. Virulence 2022; 13:609-633. [PMID: 35363588 PMCID: PMC8986239 DOI: 10.1080/21505594.2022.2054760] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/10/2022] [Accepted: 03/13/2022] [Indexed: 12/25/2022] Open
Abstract
Marburg virus (MARV) has been a major concern since 1967, with two major outbreaks occurring in 1998 and 2004. Infection from MARV results in severe hemorrhagic fever, causing organ dysfunction and death. Exposure to fruit bats in caves and mines, and human-to-human transmission had major roles in the amplification of MARV outbreaks in African countries. The high fatality rate of up to 90% demands the broad study of MARV diseases (MVD) that correspond with MARV infection. Since large outbreaks are rare for MARV, clinical investigations are often inadequate for providing the substantial data necessary to determine the treatment of MARV disease. Therefore, an overall review may contribute to minimizing the limitations associated with future medical research and improve the clinical management of MVD. In this review, we sought to analyze and amalgamate significant information regarding MARV disease epidemics, pathophysiology, and management approaches to provide a better understanding of this deadly virus and the associated infection.
Collapse
Affiliation(s)
- Mehedy Hasan Abir
- Faculty of Food Science and Technology, Chattogram Veterinary and Animal Sciences University, Chittagong, Bangladesh
| | - Tanjilur Rahman
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Ayan Das
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Silvia Naznin Etu
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Iqbal Hossain Nafiz
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Ahmed Rakib
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Ariful Islam
- EcoHealth Alliance, New York, NY, USA
- Centre for Integrative Ecology, School of Life and Environmental Science, Deakin University, Victoria, Australia
| | - Abolghasem Siyadatpanah
- Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, Birjand, Iran
| | - Shafi Mahmud
- Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Bonlgee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Mohammad Mahmudul Hassan
- Queensland Alliance for One Health Sciences, School of Veterinary Sciences, The University of Queensland, Gatton, Australia
- Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| |
Collapse
|