1
|
Gorman J, Du R, Lai YT, Ahmadi MS, King HAD, Song K, Manalang K, Gonelli CA, Schramm CA, Cheng C, Nguyen R, Ambrozak D, Druz A, Shen CH, Yang Y, Douek DC, Kwong PD, Roederer M, Mason RD. Isolation and structure of broad SIV-neutralizing antibodies reveal a proximal helical MPER epitope recognized by a rhesus multi-donor class. Cell Rep 2025; 44:115163. [PMID: 39792559 PMCID: PMC11979902 DOI: 10.1016/j.celrep.2024.115163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025] Open
Abstract
The membrane-proximal external region (MPER) of the HIV-1 envelope is a target for broadly neutralizing antibodies (bnAbs), and vaccine-elicited MPER-directed antibodies have recently been reported from a human clinical trial. In this study, we sought to identify MPER-directed nAbs in simian immunodeficiency virus (SIV)-infected rhesus macaques. We isolated four lineages of SIV MPER-directed nAbs from two SIV-infected macaques. The nAbs displayed low potency but up to 90% breadth on a 20-strain SIV panel. Crystal structures of representative nAbs in complex with SIV MPER peptides revealed the SIV antibodies to bind a helical epitope at the N-terminal (proximal) region of the MPER, defining a reproducible multi-donor class encompassing all four lineages. HIV-1 comparison showed that this class of SIV MPER-directed antibodies targets a helical region overlapping that targeted by human vaccine-elicited ones. Thus, a prevalent and reproducible class of SIV bnAbs recognizes an epitope similar to that recently observed in an HIV-1-vaccine trial.
Collapse
Affiliation(s)
- Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA.
| | - Renguang Du
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yen-Ting Lai
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mohammed S Ahmadi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hannah A D King
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kaimei Song
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kimberly Manalang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christopher A Gonelli
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chaim A Schramm
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cheng Cheng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard Nguyen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Ambrozak
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aliaksandr Druz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yongping Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rosemarie D Mason
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
2
|
Welles HC, King HAD, Nettey L, Cavett N, Gorman J, Zhou T, Tsybovsky Y, Du R, Song K, Nguyen R, Ambrozak D, Ransier A, Schramm CA, Doria-Rose NA, Swanstrom AE, Hoxie JA, LaBranche C, Montefiori DC, Douek DC, Kwong PD, Mascola JR, Roederer M, Mason RD. Broad coverage of neutralization-resistant SIV strains by second-generation SIV-specific antibodies targeting the region involved in binding CD4. PLoS Pathog 2022; 18:e1010574. [PMID: 35709309 PMCID: PMC9242510 DOI: 10.1371/journal.ppat.1010574] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/29/2022] [Accepted: 05/06/2022] [Indexed: 11/19/2022] Open
Abstract
Both SIV and SHIV are powerful tools for evaluating antibody-mediated prevention and treatment of HIV-1. However, owing to a lack of rhesus-derived SIV broadly neutralizing antibodies (bnAbs), testing of bnAbs for HIV-1 prevention or treatment has thus far been performed exclusively in the SHIV NHP model using bnAbs from HIV-1-infected individuals. Here we describe the isolation and characterization of multiple rhesus-derived SIV bnAbs capable of neutralizing most isolates of SIV. Eight antibodies belonging to two clonal families, ITS102 and ITS103, which target unique epitopes in the CD4 binding site (CD4bs) region, were found to be broadly neutralizing and together neutralized all SIV strains tested. A rare feature of these bnAbs and two additional antibody families, ITS92 and ITS101, which mediate strain-specific neutralizing activity against SIV from sooty mangabeys (SIVsm), was their ability to achieve near complete (i.e. 100%) neutralization of moderately and highly neutralization-resistant SIV. Overall, these newly identified SIV bnAbs highlight the potential for evaluating HIV-1 prophylactic and therapeutic interventions using fully simian, rhesus-derived bnAbs in the SIV NHP model, thereby circumventing issues related to rapid antibody clearance of human-derived antibodies, Fc mismatch and limited genetic diversity of SHIV compared to SIV.
Collapse
Affiliation(s)
- Hugh C. Welles
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hannah A. D. King
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Leonard Nettey
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nicole Cavett
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jason Gorman
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tongqing Zhou
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yaroslav Tsybovsky
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Renguang Du
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kaimei Song
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Richard Nguyen
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David Ambrozak
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Amy Ransier
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Chaim A. Schramm
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nicole A. Doria-Rose
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Adrienne E. Swanstrom
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - James A. Hoxie
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Celia LaBranche
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - David C. Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Daniel C. Douek
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Peter D. Kwong
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John R. Mascola
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mario Roederer
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Rosemarie D. Mason
- Vaccine Research Center, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
3
|
Morozov V, Lagaye S, Morozov A. The TZM-bl Reporter Cell Line Expresses Kynureninase That Can Neutralize 2F5-like Antibodies in the HIV-1 Neutralization Assay. Int J Mol Sci 2022; 23:ijms23020641. [PMID: 35054825 PMCID: PMC8775840 DOI: 10.3390/ijms23020641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 02/04/2023] Open
Abstract
Induction of broadly neutralizing antibodies targeting ectodomain of the transmembrane (TM) glycoprotein gp41 HIV-1 provides a basis for the development of a universal anti-viral vaccine. The HeLa cell-derived TZM-bl reporter cell line is widely used for the estimation of lentiviruses neutralization by immune sera. The cell line is highly permissive to infection by most strains of HIV, SIV, and SHIV. Here we demonstrated that TZM-bl cells express a 48 kDa non-glycosylated protein (p48) recognized by broadly neutralizing monoclonal antibody (mAb) 2F5 targeting the ELDKWA (aa 669–674) epitope of gp41TM of HIV-1. A significant amount of p48 was found in the cell supernatant. The protein was identified as human kynureninase (KYNU), which has the ELDKWA epitope. The protein is further called “p48 KYNU”. The HIV-1 neutralization by mAb 2F5 and 4E10 in the presence of p48KYNU was tested on Jurkat and TZM-bl cells. It was demonstrated that p48KYNU reduces neutralization by 2F5-like antibodies, but it has almost no effect on mAb 4E10. Therefore, p48KYNU can attenuate HIV-1 neutralization by 2F5-like antibodies and hence create false-negative results. Thus, previously tested immune sera that recognized the ELDKWA-epitope and demonstrated a “weak neutralization” of HIV-1 in TZM-bl assay should be reevaluated.
Collapse
Affiliation(s)
- Vladimir Morozov
- Institute of Human Virology, University of Maryland, Baltimore, MD 21201, USA
- Department of Infectious Diseases, Robert Koch Institute, 13353 Berlin, Germany
- Correspondence: (V.M.); (A.M.)
| | - Sylvie Lagaye
- Centre de Recherche Saint-Antoine (CRSA), INSERM—UMR-S 938/Sorbonne Université, CEDEX 12, 75571 Paris, France;
| | - Alexey Morozov
- Laboratory of Regulation of Intracellular Proteolysis, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Correspondence: (V.M.); (A.M.)
| |
Collapse
|
4
|
Le Tortorec A, Matusali G, Mahé D, Aubry F, Mazaud-Guittot S, Houzet L, Dejucq-Rainsford N. From Ancient to Emerging Infections: The Odyssey of Viruses in the Male Genital Tract. Physiol Rev 2020; 100:1349-1414. [PMID: 32031468 DOI: 10.1152/physrev.00021.2019] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The male genital tract (MGT) is the target of a number of viral infections that can have deleterious consequences at the individual, offspring, and population levels. These consequences include infertility, cancers of male organs, transmission to the embryo/fetal development abnormalities, and sexual dissemination of major viral pathogens such as human immunodeficiency virus (HIV) and hepatitis B virus. Lately, two emerging viruses, Zika and Ebola, have additionally revealed that the human MGT can constitute a reservoir for viruses cleared from peripheral circulation by the immune system, leading to their sexual transmission by cured men. This represents a concern for future epidemics and further underlines the need for a better understanding of the interplay between viruses and the MGT. We review here how viruses, from ancient viruses that integrated the germline during evolution through old viruses (e.g., papillomaviruses originating from Neanderthals) and more modern sexually transmitted infections (e.g., simian zoonotic HIV) to emerging viruses (e.g., Ebola and Zika) take advantage of genital tract colonization for horizontal dissemination, viral persistence, vertical transmission, and endogenization. The MGT immune responses to viruses and the impact of these infections are discussed. We summarize the latest data regarding the sources of viruses in semen and the complex role of this body fluid in sexual transmission. Finally, we introduce key animal findings that are relevant for our understanding of viral infection and persistence in the human MGT and suggest future research directions.
Collapse
Affiliation(s)
- Anna Le Tortorec
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Giulia Matusali
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Dominique Mahé
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Florence Aubry
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Séverine Mazaud-Guittot
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Laurent Houzet
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Nathalie Dejucq-Rainsford
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| |
Collapse
|
5
|
Chamcha V, Reddy PBJ, Kannanganat S, Wilkins C, Gangadhara S, Velu V, Green R, Law GL, Chang J, Bowen JR, Kozlowski PA, Lifton M, Santra S, Legere T, Chea LS, Chennareddi L, Yu T, Suthar MS, Silvestri G, Derdeyn CA, Gale M, Villinger F, Hunter E, Amara RR. Strong T H1-biased CD4 T cell responses are associated with diminished SIV vaccine efficacy. Sci Transl Med 2019; 11:eaav1800. [PMID: 31748228 PMCID: PMC7227795 DOI: 10.1126/scitranslmed.aav1800] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 04/07/2019] [Accepted: 09/13/2019] [Indexed: 12/18/2022]
Abstract
Activated CD4 T cells are a major target of HIV infection. Results from the STEP HIV vaccine trial highlighted a potential role for total activated CD4 T cells in promoting HIV acquisition. However, the influence of vaccine insert-specific CD4 T cell responses on HIV acquisition is not known. Here, using the data obtained from four macaque studies, we show that the DNA prime/modified vaccinia Ankara boost vaccine induced interferon γ (IFNγ+) CD4 T cells [T helper 1 (TH1) cells] rapidly migrate to multiple tissues including colon, cervix, and vaginal mucosa. These mucosal TH1 cells persisted at higher frequencies and expressed higher density of CCR5, a viral coreceptor, compared to cells in blood. After intravaginal or intrarectal simian immunodeficiency virus (SIV)/simian-human immunodeficiency virus (SHIV) challenges, strong vaccine protection was evident only in animals that had lower frequencies of vaccine-specific TH1 cells but not in animals that had higher frequencies of TH1 cells, despite comparable vaccine-induced humoral and CD8 T cell immunity in both groups. An RNA transcriptome signature in blood at 7 days after priming immunization from one study was associated with induction of fewer TH1-type CD4 cells and enhanced protection. These results demonstrate that high and persisting frequencies of HIV vaccine-induced TH1-biased CD4 T cells in the intestinal and genital mucosa can mitigate beneficial effects of protective antibodies and CD8 T cells, highlighting a critical role of priming immunization and vaccine adjuvants in modulating HIV vaccine efficacy.
Collapse
Affiliation(s)
- Venkateswarlu Chamcha
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Pradeep B J Reddy
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Sunil Kannanganat
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Courtney Wilkins
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington School of Medicine, Seattle, WA 981909, USA
| | - Sailaja Gangadhara
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Vijayakumar Velu
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Richard Green
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington School of Medicine, Seattle, WA 981909, USA
| | - G Lynn Law
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington School of Medicine, Seattle, WA 981909, USA
| | - Jean Chang
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington School of Medicine, Seattle, WA 981909, USA
| | - James R Bowen
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Pamela A Kozlowski
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Michelle Lifton
- Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Sampa Santra
- Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Traci Legere
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Lynette S Chea
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Lakshmi Chennareddi
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Tianwei Yu
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA 30322, USA
| | - Mehul S Suthar
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Guido Silvestri
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Department of Pathology, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Cynthia A Derdeyn
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Department of Pathology, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Michael Gale
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington School of Medicine, Seattle, WA 981909, USA
| | - Francois Villinger
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Department of Pathology, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Eric Hunter
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Department of Pathology, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Rama Rao Amara
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA.
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
6
|
Current advances in HIV vaccine preclinical studies using Macaque models. Vaccine 2019; 37:3388-3399. [PMID: 31088747 DOI: 10.1016/j.vaccine.2019.04.094] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 04/02/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023]
Abstract
The macaque simian or simian/human immunodeficiency virus (SIV/SHIV) challenge model has been widely used to inform and guide human vaccine trials. Substantial advances have been made recently in the application of repeated-low-dose challenge (RLD) approach to assess SIV/SHIV vaccine efficacies (VE). Some candidate HIV vaccines have shown protective effects in preclinical studies using the macaque SIV/SHIV model but the model's true predictive value for screening potential HIV vaccine candidates needs to be evaluated further. Here, we review key parameters used in the RLD approach and discuss their relevance for evaluating VE to improve preclinical studies of candidate HIV vaccines.
Collapse
|
7
|
Tackling HIV and AIDS: contributions by non-human primate models. Lab Anim (NY) 2018; 46:259-270. [PMID: 28530684 DOI: 10.1038/laban.1279] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/19/2017] [Indexed: 12/21/2022]
Abstract
During the past three decades, non-human primate (NHP) models have gained an increasing importance in HIV basic and translational research. In contrast to natural host models, infection of macaques with virulent simian or simian-human immunodeficiency viruses (SIV, SHIV) results in a disease that closely resembles HIV infection and AIDS. Although there is no perfect animal model, and each of the available models has its benefits and limitations, carefully designed NHP studies with selection of experimental variables have unraveled important questions of basic pathogenesis and have provided the tools to explore and screen intervention strategies. For example, NHP studies have advanced our understanding of the crucial events during early infection, and have provided proof-of-concept of antiretroviral drug treatment and prevention strategies such as pre-exposure prophylaxis (PrEP) regimes that are increasingly used worldwide, and upon overcoming further barriers of implementation, have the potential to make the next generation AIDS-free. Remaining goals include the pursuit of an effective HIV vaccine, and HIV cure strategies that would allow HIV-infected people to ultimately stop taking antiretroviral drugs. Through a reiterative process with feed-back from results of human studies, NHP models can be further validated and strengthened to advance our scientific knowledge and guide clinical trials.
Collapse
|
8
|
Garber DA, Mitchell J, Adams D, Guenthner P, Deyounks F, Ellis S, Kelley K, Johnson R, Dobard C, Heneine W, McNicholl J. Development of a repeat-exposure penile SHIV infection model in macaques to evaluate biomedical preventions against HIV. PLoS One 2018; 13:e0194837. [PMID: 29584769 PMCID: PMC5870976 DOI: 10.1371/journal.pone.0194837] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/09/2018] [Indexed: 12/25/2022] Open
Abstract
Penile acquisition of HIV infection contributes substantially to the global epidemic. Our goal was to establish a preclinical macaque model of penile HIV infection for evaluating the efficacy of new HIV prevention modalities. Rhesus macaques were challenged once or twice weekly with consistent doses of SHIVsf162P3 (a chimeric simian-human immunodeficiency virus containing HIV env) ranging from 4–600 TCID50 (50% tissue culture infective dose), via two penile routes, until systemic SHIV infection was confirmed. One route exposed the inner foreskin, glans and urethral os to virus following deposition into the prepuce (foreskin) pouch. The second route introduced the virus non-traumatically into the distal urethra only. Single-route challenges resulted in dose-dependent rates of SHIV acquisition informing selection of optimal SHIV dosing. Concurrent SHIV challenges via the prepuce pouch (200 TCID50) and urethra (16 TCID50) resulted in infection of 100% (10/10) animals following a median of 2.5 virus exposures (range, 1–12). We describe the first rhesus macaque repeat-exposure SHIV challenge model of penile HIV acquisition. Utilization of the model should further our understanding of penile HIV infection and facilitate the development of new HIV prevention strategies for men.
Collapse
Affiliation(s)
- David A. Garber
- Laboratory Branch, Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- * E-mail:
| | - James Mitchell
- Laboratory Branch, Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Debra Adams
- Laboratory Branch, Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Patricia Guenthner
- Laboratory Branch, Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Frank Deyounks
- Laboratory Branch, Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Shanon Ellis
- Laboratory Branch, Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Kristen Kelley
- Laboratory Branch, Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Ryan Johnson
- Laboratory Branch, Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Charles Dobard
- Laboratory Branch, Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Walid Heneine
- Laboratory Branch, Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Janet McNicholl
- Laboratory Branch, Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| |
Collapse
|
9
|
Nonhuman Primate Models for Studies of AIDS Virus Persistence During Suppressive Combination Antiretroviral Therapy. Curr Top Microbiol Immunol 2017; 417:69-109. [PMID: 29026923 DOI: 10.1007/82_2017_73] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Nonhuman primate (NHP) models of AIDS represent a potentially powerful component of the effort to understand in vivo sources of AIDS virus that persist in the setting of suppressive combination antiretroviral therapy (cART) and to develop and evaluate novel strategies for more definitive treatment of HIV infection (i.e., viral eradication "cure", or sustained off-cART remission). Multiple different NHP models are available, each characterized by a particular NHP species, infecting virus, and cART regimen, and each with a distinct capacity to recapitulate different aspects of HIV infection. Given these different biological characteristics, and their associated strengths and limitations, different models may be preferred to address different questions pertaining to virus persistence and cure research, or to evaluate different candidate intervention approaches. Recent developments in improved cART regimens for use in NHPs, new viruses, a wider array of sensitive virologic assay approaches, and a better understanding of pathogenesis should allow even greater contributions from NHP models to this important area of HIV research in the future.
Collapse
|
10
|
TRIM5α Resistance Escape Mutations in the Capsid Are Transferable between Simian Immunodeficiency Virus Strains. J Virol 2016; 90:11087-11095. [PMID: 27681142 DOI: 10.1128/jvi.01620-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 09/25/2016] [Indexed: 11/20/2022] Open
Abstract
TRIM5α polymorphism limits and complicates the use of simian immunodeficiency virus (SIV) for evaluation of human immunodeficiency virus (HIV) vaccine strategies in rhesus macaques. We previously reported that the TRIM5α-sensitive SIV from sooty mangabeys (SIVsm) clone SIVsmE543-3 acquired amino acid substitutions in the capsid that overcame TRIM5α restriction when it was passaged in rhesus macaques expressing restrictive TRIM5α alleles. Here we generated TRIM5α-resistant clones of the related SIVsmE660 strain without animal passage by introducing the same amino acid capsid substitutions. We evaluated one of the variants in rhesus macaques expressing permissive and restrictive TRIM5α alleles. The SIVsmE660 variant infected and replicated in macaques with restrictive TRIM5α genotypes as efficiently as in macaques with permissive TRIM5α genotypes. These results demonstrated that mutations in the SIV capsid can confer SIV resistance to TRIM5α restriction without animal passage, suggesting an applicable method to generate more diverse SIV strains for HIV vaccine studies. IMPORTANCE Many strains of SIV from sooty mangabey monkeys are susceptible to resistance by common rhesus macaque TRIM5α alleles and result in reduced virus acquisition and replication in macaques that express these restrictive alleles. We previously observed that spontaneous variations in the capsid gene were associated with improved replication in macaques, and the introduction of two amino acid changes in the capsid transfers this improved replication to the parent clone. In the present study, we introduced these mutations into a related but distinct strain of SIV that is commonly used for challenge studies for vaccine trials. These mutations also improved the replication of this strain in macaques with the restrictive TRIM5α genotype and thus will eliminate the confounding effects of TRIM5α in vaccine studies.
Collapse
|
11
|
Del Prete GQ, Lifson JD, Keele BF. Nonhuman primate models for the evaluation of HIV-1 preventive vaccine strategies: model parameter considerations and consequences. Curr Opin HIV AIDS 2016; 11:546-554. [PMID: 27559710 PMCID: PMC5100008 DOI: 10.1097/coh.0000000000000311] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW Nonhuman primate (NHP) models of AIDS are powerful systems for evaluating HIV vaccine approaches in vivo. Authentic features of HIV-1 transmission, dissemination, target cell tropism, and pathogenesis, and aspects of anti-HIV-1 immune responses, can be recapitulated in NHPs provided the appropriate, specific model parameters are considered. Here, we discuss key model parameter options and their implications for HIV-1 vaccine evaluation. RECENT FINDINGS With the availability of several different NHP host species/subspecies, different challenge viruses and challenge stock production methods, and various challenge routes and schemata, multiple NHP models of AIDS exist for HIV vaccine evaluation. The recent development of multiple new challenge viruses, including chimeric simian-human immunodeficiency viruses and simian immunodeficiency virus clones, improved characterization of challenge stocks and production methods, and increased insight into specific challenge parameters have resulted in an increase in the number of available models and a better understanding of the implications of specific study design choices. SUMMARY Recent progress and technical developments promise new insights into basic disease mechanisms and improved models for better preclinical evaluation of interventions to prevent HIV transmission.
Collapse
Affiliation(s)
- Gregory Q. Del Prete
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| |
Collapse
|
12
|
Kannanganat S, Wyatt LS, Gangadhara S, Chamcha V, Chea LS, Kozlowski PA, LaBranche CC, Chennareddi L, Lawson B, Reddy PBJ, Styles TM, Vanderford TH, Montefiori DC, Moss B, Robinson HL, Amara RR. High Doses of GM-CSF Inhibit Antibody Responses in Rectal Secretions and Diminish Modified Vaccinia Ankara/Simian Immunodeficiency Virus Vaccine Protection in TRIM5α-Restrictive Macaques. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:3586-3596. [PMID: 27683750 PMCID: PMC5101171 DOI: 10.4049/jimmunol.1600629] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 08/29/2016] [Indexed: 12/26/2022]
Abstract
We tested, in rhesus macaques, the effects of a 500-fold range of an admixed recombinant modified vaccinia Ankara (MVA) expressing rhesus GM-CSF (MVA/GM-CSF) on the immunogenicity and protection elicited by an MVA/SIV macaque 239 vaccine. High doses of MVA/GM-CSF did not affect the levels of systemic envelope (Env)-specific Ab, but it did decrease the expression of the gut-homing receptor α4β7 on plasmacytoid dendritic cells (p < 0.01) and the magnitudes of Env-specific IgA (p = 0.01) and IgG (p < 0.05) in rectal secretions. The protective effect of the vaccine was evaluated using 12 weekly rectal challenges in rhesus macaques subgrouped by tripartite motif-containing protein 5α (TRIM5α) genotypes that are restrictive or permissive for infection by the challenge virus SIVsmE660. Eight of nine TRIM5α-restrictive animals receiving no or the lowest dose (1 × 105 PFU) of MVA/GM-CSF resisted all 12 challenges. In the comparable TRIM5α-permissive group, only 1 of 12 animals resisted all 12 challenges. In the TRIM5α-restrictive animals, but not in the TRIM5α-permissive animals, the number of challenges to infection directly correlated with the magnitudes of Env-specific rectal IgG (r = +0.6) and IgA (r = +0.6), the avidity of Env-specific serum IgG (r = +0.5), and Ab dependent cell-mediated virus inhibition (r = +0.6). Titers of neutralizing Ab did not correlate with protection. We conclude that 1) protection elicited by MVA/SIVmac239 is strongly dependent on the presence of TRIM5α restriction, 2) nonneutralizing Ab responses contribute to protection against SIVsmE660 in TRIM5α-restrictive animals, and 3) high doses of codelivered MVA/GM-CSF inhibit mucosal Ab responses and the protection elicited by MVA expressing noninfectious SIV macaque 239 virus-like particles.
Collapse
Affiliation(s)
- Sunil Kannanganat
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, 30322
| | - Linda S Wyatt
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Sailaja Gangadhara
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, 30322
| | - Venkatesarlu Chamcha
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, 30322
| | - Lynette S Chea
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, 30322
| | - Pamela A Kozlowski
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - Celia C LaBranche
- Department of Surgery, Duke University Medical Center, Durham, NC 27705; and
| | - Lakshmi Chennareddi
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, 30322
| | - Benton Lawson
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, 30322
| | - Pradeep B J Reddy
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, 30322
| | - Tiffany M Styles
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, 30322
| | - Thomas H Vanderford
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, 30322
| | - David C Montefiori
- Department of Surgery, Duke University Medical Center, Durham, NC 27705; and
| | - Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | | | - Rama Rao Amara
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329;
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, 30322
| |
Collapse
|
13
|
Hayes J, Powell N, Lathrop G, Heneine W, Dobard CW. Assessment of penile erection methods in rhesus macaques to model pharmacokinetics of antiretroviral drugs and penile infection with simian immunodeficiency virus. J Med Primatol 2016; 45:34-41. [PMID: 26778321 DOI: 10.1111/jmp.12207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND An established macaque model to assess HIV interventions against penile transmission is currently not available. Physiological changes during penile erections may affect susceptibility to infection and drug pharmacokinetics (PK). Here, we identify methods to establish erections in macaques to evaluate penile transmission, PK, and efficacy under physiologic conditions. METHODS Penile rigidity and length were evaluated in eight rhesus macaques following rectal electrostimulation (RES), vibratory stimulation (VS), or pharmacological treatment with Sildenafil Citrate (Viagra) or Alprostadil. RESULTS Rectal electrostimulation treatment increased penile rigidity (>82%) and length (2.5 ± 0.58 cm), albeit the response was transient. In contrast, VS alone or coupled with Viagra or Alprostadil failed to elicit an erection response. CONCLUSION Rectal electrostimulation treatment elicits transient but consistent penile erections in macaques. High rigidity following RES treatment demonstrates increased blood flow and may provide a functional model for penile PK evaluations and possibly simian immunodeficiency virus (SIV) transmission under erect conditions.
Collapse
Affiliation(s)
- James Hayes
- Animal Resources Branch, Division of Scientific Resources, National Center for Emerging Zoonotic and Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Nathaniel Powell
- Animal Resources Branch, Division of Scientific Resources, National Center for Emerging Zoonotic and Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - George Lathrop
- Animal Resources Branch, Division of Scientific Resources, National Center for Emerging Zoonotic and Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Walid Heneine
- Laboratory Branch, Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Charles W Dobard
- Laboratory Branch, Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
14
|
Chamcha V, Kannanganat S, Gangadhara S, Nabi R, Kozlowski PA, Montefiori DC, LaBranche CC, Wrammert J, Keele BF, Balachandran H, Sahu S, Lifton M, Santra S, Basu R, Moss B, Robinson HL, Amara RR. Strong, but Age-Dependent, Protection Elicited by a Deoxyribonucleic Acid/Modified Vaccinia Ankara Simian Immunodeficiency Virus Vaccine. Open Forum Infect Dis 2016; 3:ofw034. [PMID: 27006959 PMCID: PMC4800464 DOI: 10.1093/ofid/ofw034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 02/09/2016] [Indexed: 11/12/2022] Open
Abstract
Background. In this study, we analyzed the protective efficacy of a simian immunodeficiency virus (SIV) macaque 239 (SIVmac239) analogue of the clinically tested GOVX-B11 deoxyribonucleic acid (DNA)/modified vaccinia Ankara (MVA) human immunodeficiency virus vaccine. Methods. The tested vaccine used a DNA immunogen mutated to mimic the human vaccine and a regimen with DNA deliveries at weeks 0 and 8 and MVA deliveries at weeks 16 and 32. Twelve weekly rectal challenges with 0.3 animal infectious doses of SIV sootey mangabey E660 (SIVsmE660) were administered starting at 6 months after the last immunization. Results. Over the first 6 rectal exposures to SIVsmE660, <10-year-old tripartite motif-containing protein 5 (TRIM5)α-permissive rhesus macaques showed an 80% reduction in per-exposure risk of infection as opposed to a 46% reduction in animals over 10 years old; and, over the 12 challenges, they showed a 72% as opposed to a 10% reduction. Analyses of elicited immune responses suggested that higher antibody responses in the younger animals had played a role in protection. Conclusions. The simian analogue of the GOVX-B11 HIV provided strong protection against repeated rectal challenges in young adult macaques.
Collapse
Affiliation(s)
| | - Sunil Kannanganat
- Yerkes National Primate Research Center, Emory University , Atlanta, Georgia
| | - Sailaja Gangadhara
- Yerkes National Primate Research Center, Emory University , Atlanta, Georgia
| | - Rafiq Nabi
- Department of Microbiology , Immunology and Parasitology, Louisiana State University Health Sciences Center , New Orleans
| | - Pamela A Kozlowski
- Department of Microbiology , Immunology and Parasitology, Louisiana State University Health Sciences Center , New Orleans
| | | | | | - Jens Wrammert
- Department of Pediatrics , Emory University School of Medicine , Atlanta, Georgia
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc. , Frederick National Laboratory for Cancer Research , Maryland
| | | | - Sujata Sahu
- Harvard Medical School, Beth Israel Deaconess Medical Center , Boston, Massachusetts
| | - Michelle Lifton
- Harvard Medical School, Beth Israel Deaconess Medical Center , Boston, Massachusetts
| | - Sampa Santra
- Harvard Medical School, Beth Israel Deaconess Medical Center , Boston, Massachusetts
| | | | - Bernard Moss
- Laboratory of Viral Diseases , National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland
| | | | - Rama Rao Amara
- Yerkes National Primate Research Center, Emory University , Atlanta, Georgia
| |
Collapse
|
15
|
Sensing of HIV-1 Infection in Tzm-bl Cells with Reconstituted Expression of STING. J Virol 2015; 90:2064-76. [PMID: 26656698 DOI: 10.1128/jvi.02966-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 12/01/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Production of proinflammatory cytokines indicative of potent recognition by the host innate immune system has long been recognized as a hallmark of the acute phase of HIV-1 infection. The first components of the machinery by which primary HIV target cells sense infection have recently been described; however, the mechanistic dissection of innate immune recognition and viral evasion would be facilitated by an easily accessible cell line model. Here we describe that reconstituted expression of the innate signaling adaptor STING enhanced the ability of the well-established HIV reporter cell line Tzm-bl to sense HIV infection and to convert this information into nuclear translocation of IRF3 as well as expression of cytokine mRNA. STING-dependent immune sensing of HIV-1 required virus entry and reverse transcription but not genome integration. Particularly efficient recognition was observed for an HIV-1 variant lacking expression of the accessory protein Vpr, suggesting a role of the viral protein in circumventing STING-mediated immune signaling. Vpr as well as STING significantly impacted the magnitude and breadth of the cytokine mRNA expression profile induced upon HIV-1 infection. However, cytoplasmic DNA sensing did not result in detectable cytokine secretion in this cell system, and innate immune recognition did not affect infection rates. Despite these deficits in eliciting antiviral effector functions, these results establish Tzm-bl STING and Tzm-bl STING IRF3.GFP cells as useful tools for studies aimed at dissecting mechanisms and regulation of early innate immune recognition of HIV infection. IMPORTANCE Cell-autonomous immune recognition of HIV infection was recently established as an important aspect by which the host immune system attempts to fend off HIV-1 infection. Mechanistic studies on host cell recognition and viral evasion are hampered by the resistance of many primary HIV target cells to detailed experimental manipulation. We describe here that expression of the signaling adaptor STING renders the well-established HIV reporter cell line Tzm-bl competent for innate recognition of HIV infection. Key characteristics reflected in this cell model include nuclear translocation of IRF3, expression of a broad range of cytokine mRNAs, and an antagonistic activity of the HIV-1 protein Vpr. These results establish Tzm-bl STING and Tzm-bl STING IRF3.GFP cells as a useful tool for studies of innate recognition of HIV infection.
Collapse
|
16
|
Abstract
Rigorous testing of new HIV-prevention strategies is a time-consuming and expensive undertaking. Thus, making well informed decisions on which candidate-prevention approaches are most likely to provide the most benefit is critical to appropriately prioritizing clinical testing. In the case of biological interventions, the decision to test a given prevention approach in human trials rests largely on evidence of protection in preclinical studies. The ability of preclinical studies to predict efficacy in humans may depend on how well the model recapitulates key biological features of HIV transmission relevant to the question at hand. Here, we review our current understanding of the biology of HIV transmission based on data from animal models, cell culture, and viral sequence analysis from human infection. We summarize studies of the bottleneck in viral transmission; the characteristics of transmitted viruses; the establishment of infection; and the contribution of cell-free and cell-associated virus. We seek to highlight the implications of HIV-transmission biology for development of prevention interventions, and to discuss the limitations of existing preclinical models.
Collapse
|
17
|
Abstract
HIV type 1 (HIV-1) has a very narrow host range that is limited to humans and chimpanzees. HIV-1 cannot replicate well in Old World monkey cells such as rhesus and cynomolgus monkeys. Tripartite motif (TRIM)5α is a key molecule that confers potent resistance against HIV-1 infection and is composed of really interesting new gene, B-box2, coiled-coil and PRYSPRY domains. Interaction between TRIM5α PRYSPRY domains and HIV-1 capsid core triggers the anti-HIV-1 activity of TRIM5α. Analysis of natural HIV variants and extensive mutational experiments has revealed the presence of critical amino acid residues in both the PRYSPRY domain and HIV capsid for potent HIV suppression by TRIM5α. Genetic manipulation of the human TRIM5 gene could establish human cells totally resistant to HIV-1, which may lead to a cure for HIV-1 infection in the future.
Collapse
|
18
|
Aamer HA, Rajakumar P, Nyaundi J, Murphey-Corb M. Resistance to simian immunodeficiency virus low dose rectal challenge is associated with higher constitutive TRIM5α expression in PBMC. Retrovirology 2014; 11:39. [PMID: 24884551 PMCID: PMC4041354 DOI: 10.1186/1742-4690-11-39] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 05/14/2014] [Indexed: 01/09/2023] Open
Abstract
Background At least six host-encoded restriction factors (RFs), APOBEC3G, TRIM5α, tetherin, SAMHD1, schlafen 11, and Mx2 have now been shown to inhibit HIV and/or SIV replication in vitro. To determine their role in vivo in the resistance of macaques to mucosally-acquired SIV, we quantified both pre-exposure (basal) and post-exposure mRNA levels of these RFs, Mx1, and IFNγ in PBMC, lymph nodes, and duodenum of rhesus macaques undergoing weekly low dose rectal exposures to the primary isolate, SIV/DeltaB670. Results Repetitive challenge divided the monkeys into two groups with respect to their susceptibility to infection: highly susceptible (2–3 challenges, 5 monkeys) and poorly susceptible (≥6 challenges, 3 monkeys). Basal RF and Mx1 expression varied among the three tissues examined, with the lowest expression generally detected in duodenal tissues, and the highest observed in PBMC. The one exception was A3G whose basal expression was greatest in lymph nodes. Importantly, significantly higher basal expression of TRIM5α and Mx1 was observed in PBMC of animals more resistant to mucosal infection. Moreover, individual TRIM5α levels were stable throughout a year prior to infection. Post-exposure induction of these genes was also observed after virus appearance in plasma, with elevated levels in PBMC and duodenum transiently occurring 7–10 days post infection. They did not appear to have an effect on control of viremia. Interestingly, minimal to no induction was observed in the resistant animal that became an elite controller. Conclusions These results suggest that constitutively expressed TRIM5α appears to play a greater role in restricting mucosal transmission of SIV than that associated with type I interferon induction following virus entry. Surprisingly, this association was not observed with the other RFs. The higher basal expression of TRIM5α observed in PBMC than in duodenal tissues emphasizes the understated role of the second barrier to systemic infection involving the transport of virus from the mucosal compartment to the blood. Together, these observations provide a strong incentive for a more comprehensive examination of the intrinsic, variable control of constitutive expression of these genes in the sexual transmission of HIV.
Collapse
Affiliation(s)
| | | | | | - Michael Murphey-Corb
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
19
|
Vaccination against endogenous retrotransposable element consensus sequences does not protect rhesus macaques from SIVsmE660 infection and replication. PLoS One 2014; 9:e92012. [PMID: 24651676 PMCID: PMC3961289 DOI: 10.1371/journal.pone.0092012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 02/19/2014] [Indexed: 02/05/2023] Open
Abstract
The enormous sequence diversity of HIV remains a major roadblock to the development of a prophylactic vaccine and new approaches to induce protective immunity are needed. Endogenous retrotransposable elements (ERE) such as endogenous retrovirus K (ERV)-K and long interspersed nuclear element-1 (LINE-1) are activated during HIV-1-infection and could represent stable, surrogate targets to eliminate HIV-1-infected cells. Here, we explored the hypothesis that vaccination against ERE would protect macaques from acquisition and replication of simian immunodeficiency virus (SIV). Following vaccination with antigens derived from LINE-1 and ERV-K consensus sequences, animals mounted immune responses that failed to delay acquisition of SIVsmE660. We observed no differences in acute or set point viral loads between ERE-vaccinated and control animals suggesting that ERE-specific responses were not protective. Indeed, ERE-specific T cells failed to expand anamnestically in vivo following infection with SIVsmE660 and did not recognize SIV-infected targets in vitro, in agreement with no significant induction of targeted ERE mRNA by SIV in macaque CD4+ T cells. Instead, lower infection rates and viral loads correlated significantly to protective TRIM5α alleles. Cumulatively, these data demonstrate that vaccination against the selected ERE consensus sequences in macaques did not lead to immune-mediated recognition and killing of SIV-infected cells, as has been shown for HIV-infected human cells using patient-derived HERV-K-specific T cells. Thus, further research is required to identify the specific nonhuman primate EREs and retroviruses that recapitulate the activity of HIV-1 in human cells. These results also highlight the complexity in translating observations of the interplay between HIV-1 and human EREs to animal models.
Collapse
|
20
|
Reeves RK, Bosinger SE. Innate Immunity in Simian Immunodeficiency Virus Infection. NATURAL HOSTS OF SIV 2014. [PMCID: PMC7149674 DOI: 10.1016/b978-0-12-404734-1.00008-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The past decade has seen the emergence of innate immunity as a mature field. The study of innate immunity has had a significant impact on the concepts of HIV immunity, pathogenesis, and vaccines. In this chapter, basic concepts of innate immunity at the anatomical, cellular, and molecular levels will be introduced from the perspective of their interplay with HIV and simian immunodeficiency virus (SIV). An emphasis will be placed on studies using SIV/non-human primate (NHP) models that shape current models of HIV pathogenesis. Finally, studies modulating the innate system in vivo in NHPs will be discussed.
Collapse
|
21
|
Boasso A. Type I Interferon at the Interface of Antiviral Immunity and Immune Regulation: The Curious Case of HIV-1. SCIENTIFICA 2013; 2013:580968. [PMID: 24455433 PMCID: PMC3885208 DOI: 10.1155/2013/580968] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 12/10/2013] [Indexed: 06/03/2023]
Abstract
Type I interferon (IFN-I) play a critical role in the innate immune response against viral infections. They actively participate in antiviral immunity by inducing molecular mechanisms of viral restriction and by limiting the spread of the infection, but they also orchestrate the initial phases of the adaptive immune response and influence the quality of T cell immunity. During infection with the human immunodeficiency virus type 1 (HIV-1), the production of and response to IFN-I may be severely altered by the lymphotropic nature of the virus. In this review I consider the different aspects of virus sensing, IFN-I production, signalling, and effects on target cells, with a particular focus on the alterations observed following HIV-1 infection.
Collapse
Affiliation(s)
- Adriano Boasso
- Immunology Section, Chelsea and Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK
| |
Collapse
|
22
|
Sui Y, Gordon S, Franchini G, Berzofsky JA. Nonhuman primate models for HIV/AIDS vaccine development. ACTA ACUST UNITED AC 2013; 102:12.14.1-12.14.30. [PMID: 24510515 DOI: 10.1002/0471142735.im1214s102] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The development of HIV vaccines has been hampered by the lack of an animal model that can accurately predict vaccine efficacy. Chimpanzees can be infected with HIV-1 but are not practical for research. However, several species of macaques are susceptible to the simian immunodeficiency viruses (SIVs) that cause disease in macaques, which also closely mimic HIV in humans. Thus, macaque-SIV models of HIV infection have become a critical foundation for AIDS vaccine development. Here we examine the multiple variables and considerations that must be taken into account in order to use this nonhuman primate (NHP) model effectively. These include the species and subspecies of macaques, virus strain, dose and route of administration, and macaque genetics, including the major histocompatibility complex molecules that affect immune responses, and other virus restriction factors. We illustrate how these NHP models can be used to carry out studies of immune responses in mucosal and other tissues that could not easily be performed on human volunteers. Furthermore, macaques are an ideal model system to optimize adjuvants, test vaccine platforms, and identify correlates of protection that can advance the HIV vaccine field. We also illustrate techniques used to identify different macaque lymphocyte populations and review some poxvirus vaccine candidates that are in various stages of clinical trials. Understanding how to effectively use this valuable model will greatly increase the likelihood of finding a successful vaccine for HIV.
Collapse
Affiliation(s)
- Yongjun Sui
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.,These authors contributed equally
| | - Shari Gordon
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.,These authors contributed equally
| | - Genoveffa Franchini
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.,These authors contributed equally
| | - Jay A Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.,These authors contributed equally
| |
Collapse
|
23
|
Wu F, Kirmaier A, Goeken R, Ourmanov I, Hall L, Morgan JS, Matsuda K, Buckler-White A, Tomioka K, Plishka R, Whitted S, Johnson W, Hirsch VM. TRIM5 alpha drives SIVsmm evolution in rhesus macaques. PLoS Pathog 2013; 9:e1003577. [PMID: 23990789 PMCID: PMC3749954 DOI: 10.1371/journal.ppat.1003577] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 07/08/2013] [Indexed: 12/22/2022] Open
Abstract
The antagonistic interaction with host restriction proteins is a major driver of evolutionary change for viruses. We previously reported that polymorphisms of the TRIM5α B30.2/SPRY domain impacted the level of SIVsmm viremia in rhesus macaques. Viremia in macaques homozygous for the non-restrictive TRIM5α allele TRIM5Q was significantly higher than in macaques expressing two restrictive TRIM5alpha alleles TRIM5TFP/TFP or TRIM5Cyp/TFP. Using this model, we observed that despite an early impact on viremia, SIVsmm overcame TRIM5α restriction at later stages of infection and that increasing viremia was associated with specific amino acid substitutions in capsid. Two amino acid substitutions (P37S and R98S) in the capsid region were associated with escape from TRIM5TFP restriction and substitutions in the CypA binding-loop (GPLPA87-91) in capsid were associated with escape from TRIM5Cyp. Introduction of these mutations into the original SIVsmE543 clone not only resulted in escape from TRIM5α restriction in vitro but the P37S and R98S substitutions improved virus fitness in macaques with homozygous restrictive TRIMTFP alleles in vivo. Similar substitutions were observed in other SIVsmm strains following transmission and passage in macaques, collectively providing direct evidence that TRIM5α exerts selective pressure on the cross-species transmission of SIV in primates. Human immunodeficiency virus (HIV) resulted from the transmission of simian immunodeficiency viruses (SIV) from nonhuman primates followed by adaptation and expansion as a pandemic in humans. This required the virus to overcome a variety of intrinsic host restriction factors in humans in order to replicate efficiently. Similarly, SIV encounters restriction factors upon cross-species transmission between nonhuman primates, specifically from a natural host species such as sooty mangabey monkeys to rhesus macaques. Previously we observed significant differences in the levels of virus replication of SIV among rhesus macaques due to subtle differences in one of these restriction factors, TRIM5 among individual macaques. Although a restrictive version of TRIM5 resulted in lower viremia, we also observed that the virus spontaneously mutated in the viral capsid gene and that these mutations were associated with escape from TRIM5 restriction. In the present study, we found that introduction of these escape mutations into the parental virus confers resistance to TRIM5 both in tissue culture and in macaques. These studies provide direct evidence that TRIM5 is a critical factor influencing the cross-species transmission of SIV in primates.
Collapse
Affiliation(s)
- Fan Wu
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Andrea Kirmaier
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Robert Goeken
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ilnour Ourmanov
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Laura Hall
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Jennifer S. Morgan
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Kenta Matsuda
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alicia Buckler-White
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Keiko Tomioka
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ronald Plishka
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sonya Whitted
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Welkin Johnson
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Vanessa M. Hirsch
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW One of the major obstacles in fully understanding HIV transmission comes from the impracticality of studying transmission in humans. Because of this encumbrance, the early phases of HIV transmission and systemic dissemination are poorly understood. In order to fully comprehend these critical steps in HIV infection, animal models must be devised to accurately reflect HIV's mode of action. This review seeks to highlight the essential nature of modelling HIV transmission in nonhuman primates (NHPs). RECENT FINDINGS Recently, it was discovered that HIV infection is established in newly infected recipients by a single or few transmitted/founder variants. This has reshaped how animal modelling is conducted with researchers currently recapitulating a physiologically relevant, low-titre infection. Pertinent animal models have been established for the most common routes of infection, including rectal, vaginal and penile transmission; models for intravenous and oral transmission are still in developmental stages. SUMMARY These limited dose models now accurately reflect HIV transmission in humans and provide a realistic experimental platform for vaccine development and other intervention strategies that can be used to inform vaccine development in humans. Using information obtained in NHP and human trials, it is conceivable to envision effective prevention modalities in the near future.
Collapse
Affiliation(s)
- Christine M. Fennessey
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| |
Collapse
|
25
|
Butler K, Morgan JS, Hanson DL, Adams D, Garcia-Lerma JG, Heneine W, Ellenberger D, Hendry RM, McNicholl J, Johnson WE, Kersh EN. Susceptibility to repeated, low-dose, rectal SHIVSF162P3 challenge is independent of TRIM5 genotype in rhesus macaques. AIDS Res Hum Retroviruses 2013; 29:1091-4. [PMID: 23461569 DOI: 10.1089/aid.2012.0383] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Infections following repeated, low-dose (RLD), mucal S(H)IV exposures of macaques are used to model sexual HIV exposures for biomedical prevention testing. Different susceptibilities among animals can complicate study designs. In rhesus macaques, TRIM5 alleles Q, CypA, and TFP are resistance factors for infection with some S(H)IV strains, but not for SIVmac239 due to its capsid properties. SIVmac239-derived SHIVSF162P3 has been demonstrated to reproducibly infect mucosally in vaginal and rectal RLD models. To further test the suitability of SHIVSF162P3 for RLD models, we studied the influence of the TRIM5 genotype on susceptibility to rectal RLD infection and on plasma viremia by analyzing 43 male Indian rhesus macaques from control arms of completed studies. The median number of exposures required for infection was three (Q/Q, n=4) (TRIM5 alleles, number of macaques, respectively), four (Q/CypA, n=7), three (TFP/Q, n=15), three (TFP/TFP, n=15), and two (TFP/CypA, n=2); TRIM5(CypA/CypA) was not represented in our study. Median peak viremia (log10 viral copies/ml) in infected animals was 7.4 (Q/Q, n=4), 7.2 (Q/CypA, n=6), 7.3 (TFP/Q, n=13), 7.1 (TFP/TFP, n=15), and 6.5 (TFP/CypA; n=2). Neither susceptibility nor peak viremia was significantly different (log rank test, Kruskal-Wallis test, respectively). Rhesus macaques' susceptibility to RLD SHIVSF162P3 is independent of the TRIM5 TFP, CypA, and Q alleles, with the limitation that the power to detect any impact of CypA/CypA and TFP/CypA genotypes was nonexistent or low, due to absence or infrequency, respectively. The finding that TRIM5 alleles do not restrict mucosal infection or ensuing replication rates suggests that SHIVSF162P3 is indeed suitable for RLD experimentation.
Collapse
Affiliation(s)
| | | | - Debra L. Hanson
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Debra Adams
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | - Walid Heneine
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | | | - Janet McNicholl
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | - Ellen N. Kersh
- Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
26
|
A variant macaque-tropic human immunodeficiency virus type 1 is resistant to alpha interferon-induced restriction in pig-tailed macaque CD4+ T cells. J Virol 2013; 87:6678-92. [PMID: 23552412 DOI: 10.1128/jvi.00338-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) antagonizes innate restriction factors in order to infect and persistently replicate in a host. In a previous study, we demonstrated that HIV-1 NL4-3 with a simian immunodeficiency virus mne (SIVmne) vif gene substitution (HSIV-vif-NL4-3) could infect and replicate in pig-tailed macaques (PTM), indicating that APOBEC3 proteins are primary barriers to transmission. Because viral replication was persistent but low, we hypothesized that HSIV-vif-NL4-3 may be suppressed by type I interferons (IFN-I), which are known to upregulate the expression of innate restriction factors. Here, we demonstrate that IFN-α more potently suppresses HSIV-vif-NL4-3 in PTM CD4(+) T cells than it does pathogenic SIVmne027. Importantly, we identify a variant (HSIV-vif-Yu2) that is resistant to IFN-α, indicating that the IFN-α-induced barrier can be overcome by HSIV-vif chimeras in PTM CD4(+) T cells. Interestingly, HSIV-vif-Yu2 and HSIV-vif-NL4-3 are similarly restricted by PTM BST2/Tetherin, and neither virus downregulates it from the surface of infected PTM CD4(+) T cells. Resistance to IFN-α-induced restriction appears to be conferred by a determinant in HSIV-vif-Yu2 that includes env su. Finally, we show that the Yu-2 env su allele may overcome an IFN-α-induced barrier to entry. Together, our data demonstrate that the prototype macaque-tropic HIV-1 clones based on NL4-3 may not sufficiently antagonize innate restriction in PTM cells. However, variants with resistance to IFN-α-induced restriction factors in PTM CD4(+) T cells may enhance viral replication by overcoming a barrier early in the viral replication cycle.
Collapse
|
27
|
Abstract
Defining the virus-host interactions responsible for HIV-1 transmission, including the phenotypic requirements of viruses capable of establishing de novo infections, could be important for AIDS vaccine development. Previous analyses have failed to identify phenotypic properties other than chemokine receptor 5 (CCR5) and CD4+ T-cell tropism that are preferentially associated with viral transmission. However, most of these studies were limited to examining envelope (Env) function in the context of pseudoviruses. Here, we generated infectious molecular clones of transmitted founder (TF; n = 27) and chronic control (CC; n = 14) viruses of subtypes B (n = 18) and C (n = 23) and compared their phenotypic properties in assays specifically designed to probe the earliest stages of HIV-1 infection. We found that TF virions were 1.7-fold more infectious (P = 0.049) and contained 1.9-fold more Env per particle (P = 0.048) compared with CC viruses. TF viruses were also captured by monocyte-derived dendritic cells 1.7-fold more efficiently (P = 0.035) and more readily transferred to CD4+ T cells (P = 0.025). In primary CD4+ T cells, TF and CC viruses replicated with comparable kinetics; however, when propagated in the presence of IFN-α, TF viruses replicated to higher titers than CC viruses. This difference was significant for subtype B (P = 0.000013) but not subtype C (P = 0.53) viruses, possibly reflecting demographic differences of the respective patient cohorts. Together, these data indicate that TF viruses are enriched for higher Env content, enhanced cell-free infectivity, improved dendritic cell interaction, and relative IFN-α resistance. These viral properties, which likely act in concert, should be considered in the development and testing of AIDS vaccines.
Collapse
|
28
|
Heterogeneity in neutralization sensitivities of viruses comprising the simian immunodeficiency virus SIVsmE660 isolate and vaccine challenge stock. J Virol 2013; 87:5477-92. [PMID: 23468494 DOI: 10.1128/jvi.03419-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The sooty mangabey-derived simian immunodeficiency virus (SIV) strain E660 (SIVsmE660) is a genetically heterogeneous, pathogenic isolate that is commonly used as a vaccine challenge strain in the nonhuman primate (NHP) model of human immunodeficiency virus type 1 (HIV-1) infection. Though it is often employed to assess antibody-based vaccine strategies, its sensitivity to antibody-mediated neutralization has not been well characterized. Here, we utilize single-genome sequencing and infectivity assays to analyze the neutralization sensitivity of the uncloned SIVsmE660 isolate, individual viruses comprising the isolate, and transmitted/founder (T/F) viruses arising from low-dose mucosal inoculation of macaques with the isolate. We found that the SIVsmE660 isolate overall was highly sensitive to neutralization by SIV-infected macaque plasma samples (50% inhibitory concentration [IC50] < 10(-5)) and monoclonal antibodies targeting V3 (IC50 < 0.01 μg/ml), CD4-induced (IC50 < 0.1 μg/ml), CD4 binding site (IC50 ~ 1 μg/ml), and V4 (IC50, ~5 μg/ml) epitopes. In comparison, SIVmac251 and SIVmac239 were highly resistant to neutralization by these same antibodies. Differences in neutralization sensitivity between SIVsmE660 and SIVmac251/239 were not dependent on the cell type in which virus was produced or tested. These findings indicate that in comparison to SIVmac251/239 and primary HIV-1 viruses, SIVsmE660 generally exhibits substantially less masking of antigenically conserved Env epitopes. Interestingly, we identified a minor population of viruses (~10%) in both the SIVsmE660 isolate and T/F viruses arising from it that were substantially more resistant (>1,000-fold) to antibody neutralization and another fraction (~20%) that was intermediate in neutralization resistance. These findings may explain the variable natural history and variable protection afforded by heterologous Env-based vaccines in rhesus macaques challenged by high-dose versus low-dose SIVsmE660 inoculation regimens.
Collapse
|
29
|
Vaccari M, Keele BF, Bosinger SE, Doster MN, Ma ZM, Pollara J, Hryniewicz A, Ferrari G, Guan Y, Forthal DN, Venzon D, Fenizia C, Morgan T, Montefiori D, Lifson JD, Miller CJ, Silvestri G, Rosati M, Felber BK, Pavlakis GN, Tartaglia J, Franchini G. Protection afforded by an HIV vaccine candidate in macaques depends on the dose of SIVmac251 at challenge exposure. J Virol 2013; 87:3538-48. [PMID: 23325681 PMCID: PMC3592147 DOI: 10.1128/jvi.02863-12] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 01/07/2013] [Indexed: 01/10/2023] Open
Abstract
We used the simian immunodeficiency virus mac251 (SIV(mac251)) macaque model to study the effect of the dose of mucosal exposure on vaccine efficacy. We immunized macaques with a DNA prime followed by SIV gp120 protein immunization with ALVAC-SIV and gp120 in alum, and we challenged them with SIV(mac251) at either a single high dose or at two repeated low-dose exposures to a 10-fold-lower dose. Infection was neither prevented nor modified following a single high-dose challenge of the immunized macaques. However, two exposures to a 10-fold-lower dose resulted in protection from SIV(mac251) acquisition in 3 out of 12 macaques. The remaining animals that were infected had a modulated pathogenesis, significant downregulation of interferon responsive genes, and upregulation of genes involved in B- and T-cell responses. Thus, the choice of the experimental model greatly influences the vaccine efficacy of vaccines for human immunodeficiency virus (HIV).
Collapse
Affiliation(s)
- Monica Vaccari
- Animal Models and Retroviral Vaccine Section, National Cancer Institute, Bethesda, Maryland, USA
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, SAIC Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Steven E. Bosinger
- Yerkes National Primate Research Center, Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
| | - Melvin N. Doster
- Animal Models and Retroviral Vaccine Section, National Cancer Institute, Bethesda, Maryland, USA
| | - Zhong-Min Ma
- California National Primate Research Center, University of California Davis, Davis, California, USA
| | - Justin Pollara
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Anna Hryniewicz
- Animal Models and Retroviral Vaccine Section, National Cancer Institute, Bethesda, Maryland, USA
| | - Guido Ferrari
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Yongjun Guan
- Institute of Human Virology and Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | - David Venzon
- Biostatistics and Data Management Section, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Claudio Fenizia
- Animal Models and Retroviral Vaccine Section, National Cancer Institute, Bethesda, Maryland, USA
| | - Tia Morgan
- Animal Models and Retroviral Vaccine Section, National Cancer Institute, Bethesda, Maryland, USA
| | - David Montefiori
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, SAIC Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Chris J. Miller
- California National Primate Research Center, University of California Davis, Davis, California, USA
| | - Guido Silvestri
- Yerkes National Primate Research Center, Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
| | | | - Barbara K. Felber
- Human Retrovirus Pathogenesis Section, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | | | | | - Genoveffa Franchini
- Animal Models and Retroviral Vaccine Section, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
30
|
Abstract
HIV-1 is transmitted by sexual contact across mucosal surfaces, by maternal-infant exposure, and by percutaneous inoculation. For reasons that are still incompletely understood, CCR5-tropic viruses (R5 viruses) are preferentially transmitted by all routes. Transmission is followed by an orderly appearance of viral and host markers of infection in the blood plasma. In the acute phase of infection, HIV-1 replicates exponentially and diversifies randomly, allowing for an unambiguous molecular identification of transmitted/founder virus genomes and a precise characterization of the population bottleneck to virus transmission. Sexual transmission of HIV-1 most often results in productive clinical infection arising from a single virus, highlighting the extreme bottleneck and inherent inefficiency in virus transmission. It remains to be determined if HIV-1 transmission is largely a stochastic process whereby any reasonably fit R5 virus can be transmitted or if there are features of transmitted/founder viruses that facilitate their transmission in a biologically meaningful way. Human tissue explant models of HIV-1 infection and animal models of SIV/SHIV/HIV-1 transmission, coupled with new challenge virus strains that more closely reflect transmitted/founder viruses, have the potential to elucidate fundamental mechanisms in HIV-1 transmission relevant to vaccine design and other prevention strategies.
Collapse
Affiliation(s)
- George M Shaw
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | | |
Collapse
|
31
|
Nomura T, Matano T. Association of MHC-I genotypes with disease progression in HIV/SIV infections. Front Microbiol 2012; 3:234. [PMID: 22754552 PMCID: PMC3386493 DOI: 10.3389/fmicb.2012.00234] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 06/11/2012] [Indexed: 12/27/2022] Open
Abstract
Virus-specific cytotoxic T lymphocytes (CTLs) are major effectors in acquired immune responses against viral infection. Virus-specific CTLs recognize specific viral peptides presented by major histocompatibility complex class-I (MHC-I) on the surface of virus-infected target cells via their T cell receptor (TCR) and eliminate target cells by both direct and indirect mechanisms. In human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infections, host immune responses fail to contain the virus and allow persistent viral replication, leading to AIDS progression. CTL responses exert strong suppressive pressure on HIV/SIV replication and cumulative studies have indicated association of HLA/MHC-I genotypes with rapid or slow AIDS progression.
Collapse
Affiliation(s)
- Takushi Nomura
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | | |
Collapse
|
32
|
Reynolds MR, Weiler AM, Piaskowski SM, Piatak M, Robertson HT, Allison DB, Bett AJ, Casimiro DR, Shiver JW, Wilson NA, Lifson JD, Koff WC, Watkins DI. A trivalent recombinant Ad5 gag/pol/nef vaccine fails to protect rhesus macaques from infection or control virus replication after a limiting-dose heterologous SIV challenge. Vaccine 2012; 30:4465-75. [PMID: 22569124 PMCID: PMC3372643 DOI: 10.1016/j.vaccine.2012.04.082] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/28/2012] [Accepted: 04/21/2012] [Indexed: 11/25/2022]
Abstract
It has been suggested that poor immunogenicity may explain the lack of vaccine efficacy in preventing or controlling HIV infection in the Step trial. To investigate this issue we vaccinated eight Indian rhesus macaques with a trivalent replication-incompetent adenovirus serotype 5 vaccine expressing SIV Gag, Pol, and Nef using a regimen similar to that employed in the Step trial. We detected broad vaccine-induced CD8(+) (2-7 pool-specific responses) and CD4(+) (5-19 pool-specific responses) T-cell responses in IFN-γ ELISPOT assays at one week post-boost using fresh PBMC. However, using cryopreserved cells at one and four weeks post-boost we observed a reduction in both the number and magnitude of most vaccine-induced responses. This demonstrates that the time points and conditions chosen to perform immune assays may influence the observed breadth and frequency of vaccine-induced T-cell responses. To evaluate protective efficacy, we challenged the immunized macaques, along with naïve controls, with repeated, limiting doses of the heterologous swarm isolate SIVsmE660. Vaccination did not significantly affect acquisition or control of virus replication in vaccinees compared to naïve controls. Post-infection we observed an average of only two anamnestic CD8(+) T-cell responses per animal, which may not have been sufficiently broad to control heterologous virus replication. While the trivalent vaccine regimen induced relatively broad T-cell responses in rhesus macaques, it failed to protect against infection or control viral replication. Our results are consistent with those observed in the Step trial and indicate that SIV immunization and challenge studies in macaque models of HIV infection can be informative in assessing pre-clinical HIV vaccines.
Collapse
Affiliation(s)
- Matthew R. Reynolds
- AIDS Vaccine Research Laboratory, 555 Science Drive, Madison, Wisconsin 53711, USA
| | - Andrea M. Weiler
- AIDS Vaccine Research Laboratory, 555 Science Drive, Madison, Wisconsin 53711, USA
| | - Shari M. Piaskowski
- AIDS Vaccine Research Laboratory, 555 Science Drive, Madison, Wisconsin 53711, USA
| | - Michael Piatak
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., National Cancer Institute, Frederick, Maryland 21702, USA
| | - Henry T. Robertson
- Department of Biostatistics, Section on Statistical Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - David B. Allison
- Department of Biostatistics, Section on Statistical Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Andrew J. Bett
- Department of Vaccine Basic Research, Merck Research Laboratories, West Point, PA 19486, USA
| | - Danilo R. Casimiro
- Department of Vaccine Basic Research, Merck Research Laboratories, West Point, PA 19486, USA
| | - John W. Shiver
- Department of Vaccine Basic Research, Merck Research Laboratories, West Point, PA 19486, USA
| | - Nancy A. Wilson
- AIDS Vaccine Research Laboratory, 555 Science Drive, Madison, Wisconsin 53711, USA
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., National Cancer Institute, Frederick, Maryland 21702, USA
| | - Wayne C. Koff
- International AIDS Vaccine Initiative, New York, New York 10038, USA
| | - David I. Watkins
- AIDS Vaccine Research Laboratory, 555 Science Drive, Madison, Wisconsin 53711, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
33
|
Sequential evolution and escape from neutralization of simian immunodeficiency virus SIVsmE660 clones in rhesus macaques. J Virol 2012; 86:8835-47. [PMID: 22696650 DOI: 10.1128/jvi.00923-12] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Simian immunodeficiency virus (SIV) infection of rhesus macaques has become an important surrogate model for evaluating HIV vaccine strategies. The extreme resistance to neutralizing antibody (NAb) of many commonly used strains, such as SIVmac251/239 and SIVsmE543-3, limits their potential relevance for evaluating the role of NAb in vaccine protection. In contrast, SIVsmE660 is an uncloned virus that appears to be more sensitive to neutralizing antibody. To evaluate the role of NAb in this model, we generated full-length neutralization-sensitive molecular clones of SIVsmE660 and evaluated two of these by intravenous inoculation of rhesus macaques. All animals became infected and maintained persistent viremia that was accompanied by a decline in memory CD4(+) T cells in blood and bronchoalveolar lavage fluid. High titers of autologous NAb developed by 4 weeks postinoculation but were not associated with control of viremia, and neutralization escape variants were detected concurrently with the generation of NAb. Neutralization escape was associated with substitutions and insertion/deletion polymorphisms in the V1 and V4 domains of envelope. Analysis of representative variants revealed that escape variants also induced NAbs within a few weeks of their appearance in plasma, in a pattern that is reminiscent of the escape of human immunodeficiency virus type 1 (HIV-1) isolates in humans. Although early variants maintained a neutralization-sensitive phenotype, viruses obtained later in infection were significantly less sensitive to neutralization than the parental viruses. These results indicate that NAbs exert selective pressure that drives the evolution of the SIV envelope and that this model will be useful for evaluating the role of NAb in vaccine-mediated protection.
Collapse
|
34
|
The role of tripartite motif family members in mediating susceptibility to HIV-1 infection. Curr Opin HIV AIDS 2012; 7:180-6. [PMID: 22258502 DOI: 10.1097/coh.0b013e32835048e1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW This review highlights new roles of the large family of tripartite motif (TRIM) proteins in antiviral defense. RECENT FINDINGS Recent research explores the participation of several TRIM family members in regulating the innate immune response. A large number of TRIM genes are upregulated upon treatment by interferon and are directly involved in signaling (TRIM5, 13, 16, 20, 21, 22, 23, 25, 27, 30, 32 and 38). Notably, TRIM5α has been identified as a 'pattern recognition receptor' triggering a cascade of signals upon viral recognition, and contributing to the establishment of the antiviral state. SUMMARY The identification of new roles for TRIM5α and other family members contributes to an emerging paradigm of host antiretroviral factors as mediators of the innate immune response and of the antiviral state. This leads both to direct therapeutic applications, such as gene therapy, and to the possibility of immune modulation.
Collapse
|
35
|
Grütter MG, Luban J. TRIM5 structure, HIV-1 capsid recognition, and innate immune signaling. Curr Opin Virol 2012; 2:142-50. [PMID: 22482711 PMCID: PMC3322363 DOI: 10.1016/j.coviro.2012.02.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 02/01/2012] [Accepted: 02/11/2012] [Indexed: 12/19/2022]
Abstract
TRIM5 is a restriction factor that blocks retrovirus infection soon after the virion core enters the cell cytoplasm. Restriction activity is targeted to the virion core via recognition of the capsid protein lattice that encases the viral genomic RNA. In common with all of the many TRIM family members, TRIM5 has RING, B-box, and coiled-coil domains. As an E3 ubiquitin ligase TRIM5 cooperates with the heterodimeric E2, UBC13/UEV1A, to activate the TAK1 (MAP3K7) kinase, NF-κB and AP-1 signaling, and the transcription of inflammatory cytokines and chemokines. TAK1, UBC13, and UEV1A all contribute to TRIM5-mediated retrovirus restriction activity. Interaction of the carboxy-terminal PRYSPRY or cyclophilin domains of TRIM5 with the retroviral capsid lattice stimulates the formation of a complementary lattice by TRIM5, with greatly increased TRIM5 E3 activity, and host cell signal transduction. Structural and biochemical studies on TRIM5 have opened a much needed window on how the innate immune system detects the distinct molecular features of HIV-1 and other retroviruses.
Collapse
Affiliation(s)
- Markus G Grütter
- Department of Biochemistry, University of Zurich, Zurich CH-8057, Switzerland
| | - Jeremy Luban
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva CH-1211, Switzerland
| |
Collapse
|
36
|
Nakayama EE, Shioda T. Role of Human TRIM5α in Intrinsic Immunity. Front Microbiol 2012; 3:97. [PMID: 22435067 PMCID: PMC3304089 DOI: 10.3389/fmicb.2012.00097] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 02/28/2012] [Indexed: 12/14/2022] Open
Abstract
Human immunodeficiency virus (HIV) has a very narrow host range. HIV type 1 (HIV-1) does not infect Old World monkeys, such as the rhesus monkey (Rh). Rh TRIM5α was identified as a factor that confers resistance, intrinsic immunity, to HIV-1 infection. Unfortunately, human TRIM5α is almost powerless to restrict HIV-1. However, human TRIM5α potently restricts N-tropic murine leukemia viruses (MLV) but not B-tropic MLV, indicating that human TRIM5α represents the restriction factor previously designated as Ref1. African green monkey TRIM5α represents another restriction factor previously designated as Lv1, which restricts both HIV-1 and simian immunodeficiency virus isolated from macaque (SIVmac) infection. TRIM5 is a member of the tripartite motif family containing RING, B-box2, and coiled-coil domains. The RING domain is frequently found in E3 ubiquitin ligase, and TRIM5α is thought to degrade viral core via ubiquitin–proteasome-dependent and -independent pathways. The alpha isoform of TRIM5 has an additional C-terminal PRYSPRY domain, which is a determinant of species-specific retrovirus restriction by TRIM5α. On the other hand, the target regions of viral capsid protein (CA) are scattered on the surface of core. A single amino acid difference in the surface-exposed loop between α-helices 6 and 7 (L6/7) of HIV type 2 (HIV-2) CA affects viral sensitivity to human TRIM5α and was also shown to be associated with viral load in West African HIV-2 patients, indicating that human TRIM5α is a critical modulator of HIV-2 replication in vivo. Interestingly, L6/7 of CA corresponds to the MLV determinant of sensitivity to mouse factor Fv1, which potently restricts N-tropic MLV. In addition, human genetic polymorphisms also affect antiviral activity of human TRIM5α. Recently, human TRIM5α was shown to activate signaling pathways that lead to activation of NF-κB and AP-1 by interacting with TAK1 complex. TRIM5α is thus involved in control of viral infection in multiple ways.
Collapse
Affiliation(s)
- Emi E Nakayama
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University Suita, Osaka, Japan
| | | |
Collapse
|
37
|
Dinh MH, Okocha EA, Koons A, Veazey RS, Hope TJ. Expression of structural proteins in human female and male genital epithelia and implications for sexually transmitted infections. Biol Reprod 2012; 86:32. [PMID: 21976595 DOI: 10.1095/biolreprod.111.094789] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Men and women differ in their susceptibility to sexually transmittable infections (STIs) such as human immunodeficiency virus (HIV). However, a paucity of published information regarding the tissue structure of the human genital tract has limited our understanding of these gender differences. We collected cervical, vaginal, and penile tissues from human adult donors. Tissues were prepared with hematoxylin and eosin stains or immunofluorescence labeling of epithelial cell proteins and were analyzed for structural characteristics. Rhesus macaque genital tissues were evaluated to assess the use of this model for HIV/simian immunodeficiency virus transmission events. We found the stratified squamous epithelia of the male and female genital tract shared many similarities and important distinctions. Expression of E-cadherins, desmogleins 1/2, and involucrin was seen in all squamous epithelia, though expression patterns were heterogeneous. Filaggrin and a true cornified layer were markedly absent in female tissues but were clearly seen in all male epithelia. Desmogleins 1/2 were more consistent in the outermost strata of female squamous genital epithelia. Macaque tissues were similar to their respective human tissues. These initial observations highlight how male and female genital epithelia resemble and differ from one another. Further information regarding tissue structural characteristics will help to understand how STIs traverse these barriers to cause infection. This knowledge will be essential in future HIV pathogenesis, transmission, and prevention studies.
Collapse
Affiliation(s)
- Minh H Dinh
- Departments of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.
| | | | | | | | | |
Collapse
|
38
|
Nakayama EE, Shioda T. TRIM5α and Species Tropism of HIV/SIV. Front Microbiol 2012; 3:13. [PMID: 22291694 PMCID: PMC3264904 DOI: 10.3389/fmicb.2012.00013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 01/09/2012] [Indexed: 12/03/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infects humans and chimpanzees but not old world monkeys (OWMs) such as the rhesus monkey (Rh) and cynomolgus monkey (CM). HIV-1 efficiently enters cells of OWMs but encounters a block before reverse transcription. This narrow host range is attributed to a barrier in the host cell. In 2004, the screening of a Rh cDNA library identified tripartite motif 5α (TRIM5α) as a cellular antiviral factor. TRIM5α is one of splicing variants produced by TRIM5 gene and TRIM5 proteins are members of the TRIM family containing RING, B-box 2, and coiled-coil domains. The RING domain is frequently found in E3 ubiquitin ligase and TRIM5α is degraded via the ubiquitin–proteasome-dependent pathway. Among TRIM5 splicing variants, TRIM5α alone has an additional C-terminal PRYSPRY (B30.2) domain. Previous studies have shown that sequence variation in variable regions of the PRYSPRY domain among different monkey species affects species-specific retrovirus infection, while amino acid sequence differences in the viral capsid protein determine viral sensitivity to restriction. TRIM5α recognizes the multimerized capsid proteins (viral core) of an incoming virus by its PRYSPRY domain and is thus believed to control retroviral infection. There are significant intraspecies variations in the Rh-TRIM5 gene. It has also been reported that some Rh and CM individuals have retrotransposed cyclophilin A open reading frame in the TRIM5 gene, which produces TRIM5–cyclophilin A fusion protein (TRIMCyp). TRIMCyp, which was originally identified as an anti-HIV-1 factor of New World owl monkeys, is an interesting example of the gain of a new function by retrotransposition. As different TRIM5 genotypes of Rh showed different levels of simian immunodeficiency virus replication in vivo, the TRIM5 genotyping is thought to be important in acquired immunodeficiency syndrome monkey models.
Collapse
Affiliation(s)
- Emi E Nakayama
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University Suita, Osaka, Japan
| | | |
Collapse
|
39
|
Van Rompay KK. The use of nonhuman primate models of HIV infection for the evaluation of antiviral strategies. AIDS Res Hum Retroviruses 2012; 28:16-35. [PMID: 21902451 DOI: 10.1089/aid.2011.0234] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Several nonhuman primate models are used in HIV/AIDS research. In contrast to natural host models, infection of macaques with virulent simian immunodeficiency virus (SIV) isolates results in a disease (simian AIDS) that closely resembles HIV infection and AIDS. Although there is no perfect animal model, and each of the available models has its limitations, a carefully designed study allows experimental approaches that are not feasible in humans, but that can provide better insights in disease pathogenesis and proof-of-concept of novel intervention strategies. In the early years of the HIV pandemic, nonhuman primate models played a minor role in the development of antiviral strategies. Since then, a better understanding of the disease and the development of better compounds and assays to monitor antiviral effects have increased the usefulness and relevance of these animal models in the preclinical development of HIV vaccines, microbicides, and antiretroviral drugs. Several strategies that were first discovered to have efficacy in nonhuman primate models are now increasingly used in humans. Recent trends include the use of nonhuman primate models to explore strategies that could reduce viral reservoirs and, ultimately, attempt to cure infection. Ongoing comparison of results obtained in nonhuman primate models with those observed in human studies will lead to further validation and improvement of these animal models so they can continue to advance our scientific knowledge and guide clinical trials.
Collapse
Affiliation(s)
- Koen K.A. Van Rompay
- California National Primate Research Center, University of California, Davis, California
| |
Collapse
|
40
|
|
41
|
Low-dose penile SIVmac251 exposure of rhesus macaques infected with adenovirus type 5 (Ad5) and then immunized with a replication-defective Ad5-based SIV gag/pol/nef vaccine recapitulates the results of the phase IIb step trial of a similar HIV-1 vaccine. J Virol 2011; 86:2239-50. [PMID: 22156519 DOI: 10.1128/jvi.06175-11] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The Step Trial showed that the MRKAd5 HIV-1 subtype B Gag/Pol/Nef vaccine did not protect men from HIV infection or reduce setpoint plasma viral RNA (vRNA) levels but, unexpectedly, it did modestly enhance susceptibility to HIV infection in adenovirus type 5 (Ad5)-seropositive, uncircumcised men. As part of the process to understand the results of the Step Trial, we designed a study to determine whether rhesus macaques chronically infected with a host-range mutant Ad5 (Ad5hr) and then immunized with a replication defective Ad5 SIVmac239 Gag/Pol/Nef vaccine were more resistant or susceptible to SIV infection than unimmunized rhesus macaques challenged with a series of escalating dose penile exposures to SIVmac 251. The Ad5 SIV vaccine induced CD8(+) T cell responses in 70% of the monkeys, which is similar to the proportion of humans that responded to the vaccine in the Step Trial. However, the vaccine did not protect vaccinated animals from penile SIV challenge. At the lowest SIV exposure dose (10(3) 50% tissue culture infective doses), 2 of 9 Ad5-seropositive animals immunized with the Ad5 SIV vaccine became infected compared to 0 of 34 animals infected in the other animal groups (naive animals, Ad5-seropositive animals immunized with the empty Ad5 vector, Ad5-seronegative animals immunized with the Ad5 SIV vaccine, and Ad5-seronegative animals immunized with the empty Ad5 vector). Penile exposure to more concentrated virus inocula produced similar rates of infection in all animal groups. Although setpoint viral loads were unaffected in Step vaccinees, the Ad5 SIV-immunized animals had significantly lower acute-phase plasma vRNA levels compared to unimmunized animals. Thus, the results of the nonhuman primate (NHP) study described here recapitulate the lack of protection against HIV acquisition seen in the Step Trial and suggest a greater risk of infection in the Ad5-seropositive animals immunized with the Ad5 SIV vaccine. Further studies are necessary to confirm the enhancement of virus acquisition and to discern associated mechanisms.
Collapse
|