1
|
Fulton NE, Horn TD, Demerhi S. Inciting commensal human papillomavirus immunity to combat cancer. Trends Cancer 2025:S2405-8033(25)00098-6. [PMID: 40316467 DOI: 10.1016/j.trecan.2025.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/06/2025] [Accepted: 04/08/2025] [Indexed: 05/04/2025]
Abstract
The incidence of squamous cell carcinoma (SCC) is rising, especially in immunosuppressed individuals, highlighting the need for new prevention strategies. Commensal human papillomaviruses (cHPVs) are associated with cutaneous SCC (cSCC) in immunosuppressed patients. Because of the intricate interactions between T cell immunity and cHPVs in virus-colonized tissues, we propose that enhancing T cell immunity against cHPVs through vaccination could suppress SCC.
Collapse
Affiliation(s)
- Natalie E Fulton
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Thomas D Horn
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Shadmehr Demerhi
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Negroni L, Taverniti V, Tommasino M, Zanier K. Interactome of the oncogenic ΔNp73α isoform in human papillomavirus 38 E6/E7-transformed keratinocytes. Microbiol Resour Announc 2025; 14:e0107124. [PMID: 40135863 PMCID: PMC11984131 DOI: 10.1128/mra.01071-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 02/07/2025] [Indexed: 03/27/2025] Open
Abstract
ΔNp73α is a major oncogenic isoform of tumor suppressor p73. Here, we report ΔNp73α protein-binding partners in the organelle and cytoplasmic compartments of a cellular model consisting of human keratinocytes transformed by the E6 and E7 oncoproteins of the β-HPV38 virus associated with non-melanoma skin cancer.
Collapse
Affiliation(s)
- Luc Negroni
- Proteomics Platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)/INSERM U964/CNRS UMR 7104/Université de Strasbourg, Illkirch, France
| | - Valerio Taverniti
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon, Auvergne-Rhône-Alpes, France
| | - Massimo Tommasino
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon, Auvergne-Rhône-Alpes, France
| | - Katia Zanier
- Biotechnology and Cell Signaling (CNRS/Université de Strasbourg, UMR 7242), Ecole Supérieure de Biotechnologie de Strasbourg, Illkirch, Grand Est, France
| |
Collapse
|
3
|
Dickter JK, Zhao Y, Parekh V, Ma H, Modi BG, Li WY, Armenian SH, Wu X, Abdulla FR. Mining metagenomes and metatranscriptomes unveils viruses associated with cutaneous squamous cell carcinoma in hematopoietic stem cell transplant recipients. Microbiol Spectr 2025; 13:e0005325. [PMID: 40162769 PMCID: PMC12054082 DOI: 10.1128/spectrum.00053-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/07/2025] [Indexed: 04/02/2025] Open
Abstract
We investigated the presence of viral DNA and RNA in cutaneous squamous cell carcinoma (cSCC) tumor and normal tissues from nine individuals with a history of hematopoietic stem cell transplantation (HCT). Microbiome quantification through DNA and RNA sequencing (RNA-seq) revealed the presence of 18 viruses in both tumor and normal tissues. DNA sequencing (DNA-seq) identified Torque teno virus, Saimiriine herpesvirus 1, Merkel cell polyomavirus, Human parvovirus B19, Human gammaherpesvirus-4, Human herpesvirus-6, and others. RNA-seq revealed additional viruses such as Tobamovirus, Pinus nigra virus, Orthohepadnavirus, Human papillomavirus-5, Human herpesvirus-7, Human gammaherpesvirus-4, Gammaretrovirus, and others. Notably, DNA-seq indicated that tumor samples exhibited low levels of Escherichia virus in three out of nine subjects and elevated levels of Human gammaherpesvirus-4 in one subject, while normal samples frequently contained Gammaretrovirus and occasionally Escherichia virus. A comparative analysis using both DNA- and RNA-seq captured three common viruses: Abelson murine leukemia virus, Murine type C retrovirus, and Human gammaherpesvirus-4. These findings were corroborated by an independent data set, supporting the reliability of the viral detection methods utilized. The study provides insights into the viral landscape in post-HCT patients, emphasizing the need for comprehensive viral monitoring in this vulnerable population. IMPORTANCE This study is important because it explores the potential role of viruses in the development of cSCC in individuals who have undergone allogeneic HCT. cSCC is common in this population, particularly in those with chronic graft-versus-host disease on long-term immunosuppression. By using advanced metagenomic and metatranscriptomic next-generation sequencing, we aimed to identify viral pathogens present in tumor and adjacent normal tissue. The results could lead to targeted preventive or therapeutic interventions for these high-risk people, potentially improving their outcomes and management of cSCC.
Collapse
Affiliation(s)
- Jana K. Dickter
- Department of Medicine, Division of Infectious Diseases, City of Hope National Medical Center, Duarte, California, USA
| | - Yuqi Zhao
- Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Vishwas Parekh
- Department of Pathology, City of Hope National Medical Center, Duarte, California, USA
| | - Huiyan Ma
- Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Duarte, California, USA
| | - Badri G. Modi
- Department of Surgery, Division of Dermatology, City of Hope National Medical Center, Duarte, California, USA
| | - Wai-Yee Li
- Department of Surgery, Division of Plastic Surgery, City of Hope National Medical Center, Duarte, California, USA
| | - Saro H. Armenian
- Department of Population Sciences, Department of Pediatrics, City of Hope National Medical Center, Duarte, California, USA
| | - Xiwei Wu
- Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Farah R. Abdulla
- Department of Surgery, Division of Dermatology, City of Hope National Medical Center, Duarte, California, USA
| |
Collapse
|
4
|
Wenande E, Hastrup A, Wiegell S, Philipsen PA, Thomsen NB, Demehri S, Kjaer SK, Haedersdal M. Human Papillomavirus Vaccination and Actinic Keratosis Burden: The VAXAK Randomized Clinical Trial. JAMA Dermatol 2025:2831192. [PMID: 40047786 PMCID: PMC11886873 DOI: 10.1001/jamadermatol.2025.0531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/13/2025] [Indexed: 03/09/2025]
Abstract
Importance The substantial morbidity and socioeconomic costs associated with actinic keratosis (AK) management represent major public health concerns. Anecdotal evidence suggests that human papillomavirus (HPV) vaccination may offer therapeutic and preventive effects against AK and keratinocyte carcinomas (KCs). Objective To investigate the effect of HPV vaccination on burden of disease in immunocompetent patients with high numbers of AK. Design, Setting, and Participants The VAXAK trial was a parallel-design, double-blind, randomized sham-controlled clinical trial with 12 months' follow-up. This single-center trial was conducted at the Department of Dermatology, Bispebjerg University Hospital in Copenhagen, Denmark, between May 2021 and June 2024. Eligible participants were immunocompetent adults with 15 or more clinical AK lesions in a 50 cm2 to 100 cm2 test area on the head, trunk, or extremities. Interventions Participants were randomized 1:1 to blinded, 9-valent alphapapillomavirus vaccine or sham vaccine (isotonic sodium chloride solution), each administered intramuscularly at 0, 2, and 6 months. Thick AKs (Olsen grade II-III) received cryotherapy at months 6 and 9; test areas were otherwise untreated during the study. Main Outcomes and Measures The preselected primary outcome was the percentage reduction in baseline AKs assessed 2, 6, 9, and 12 months after first vaccination. Secondary outcomes included total AK number, thick lesions, new AKs, and rate of incident KCs over 12 months. Results Participants were selected by consecutive sampling of 163 screened patients following exclusion of 93 individuals due to ineligibility or patients opting out. Among 70 enrolled participants (median [IQR] age, 75.50 [69.00-79.00] years; 47 [67%] male), 69 completed the study. Median (IQR) AK reductions were higher in the HPV-vaccinated vs sham group, shown consistently over the study period (month 2: 35% [25%-44%] vs 25% [18%-33%]; P = .03; month 6: 47% [33%-53%] vs 29% [16%-44%]; P = .01; month 9: 58% [37%-63%] vs 42% [33%-56%]; P = .09; month 12: 58% [47%-69%] vs 47% [32%-65%]; P = .05). Total AK numbers were correspondingly lower in the HPV-vaccinated group (median [IQR] at month 6: 14.00 [11.00-16.00] vs 17.00 [12.00-23.00]; P = .01; month 12: 10.00 [6.00-24.00] vs 16.00 [8.50-21.00]; P = .02). Coincidingly, fewer thick AKs were observed in the HPV-vaccinated group (median [IQR] at month 6: 5.00 [3.00-7.00] vs 6.50 [3.75-10.00]; P = .02; month 12: 3.00 [2.00-5.00] vs 5.00 [2.50-8.50]; P = .049). In contrast, no significant differences in rates of new AKs (1-2 AK[s] per month) or KC numbers overall or per participant were identified during the 12-month trial. Conclusions and Relevance In this randomized clinical trial, standard alphapapillomavirus vaccination was found to reduce AK burden in immunocompetent individuals with multiple lesions. HPV-targeted vaccines may be useful for management of AK, a chronic, relapsing disease and the most common precancer in fair-skinned populations. Trial Registration ClinicalTrials.gov Identifier: NCT05202860.
Collapse
Affiliation(s)
- Emily Wenande
- Department of Dermatology, Copenhagen University Hospital–Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Anna Hastrup
- Department of Dermatology, Copenhagen University Hospital–Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Stine Wiegell
- Department of Dermatology, Copenhagen University Hospital–Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Peter A. Philipsen
- Department of Dermatology, Copenhagen University Hospital–Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | | | - Shadmehr Demehri
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Boston
| | - Susanne K. Kjaer
- Unit of Virus, Lifestyle and Genes, Danish Cancer Institute, Copenhagen, Denmark
- Department of Obstetrics and Gynecology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Merete Haedersdal
- Department of Dermatology, Copenhagen University Hospital–Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Rehm TM, Iftner T, Stubenrauch F. A splice donor in E6 influences keratinocyte immortalization by beta-HPV49. J Virol 2025; 99:e0164024. [PMID: 39840985 PMCID: PMC11852731 DOI: 10.1128/jvi.01640-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/10/2024] [Indexed: 01/23/2025] Open
Abstract
Human papillomaviruses (HPV) from the genus beta have been implicated in the development of cutaneous squamous cell cancer in epidermodysplasia verruciformis and organ transplant patients. In contrast to alpha-high-risk HPV, which cause ano-genital and oropharyngeal cancers, beta-HPV replication is not well understood. The beta-HPV49 transcriptome was analyzed by RNA sequencing using stable keratinocyte cell lines maintaining high levels of extrachromosomally replicating E8- genomes, which can be established due to a lack of the viral E8^E2 repressor protein. This analysis indicated the presence of four transcription start sites, two polyadenylation signals, and splice donor (SD) and acceptor sites consistent with the conserved gene expression patterns of animal and human PV. Surprisingly, a novel SD in the E6 oncogene (SD217) was identified resembling the SD in E6 of carcinogenic alpha-HPV. Mutation of SD217 enhanced E6 protein expression but had no influence on the growth of keratinocytes transduced with retroviral HPV49 E6 and E7 expression vectors. Inactivation of SD217 in the context of the HPV49 wild-type genome did not enable immortalization and prevented immortalization in the context of the E8- genome. The analysis of SD217 mutant genomes revealed a strong down-regulation of SD217 usage, but only weak effects on other viral transcripts. This suggests that SD217 does not contribute to immortalization by modulating viral gene expression. Usage of SD217 is increased in immortalized E8- cell lines compared with transiently transfected cells, which may indicate that long-term extrachromosomal maintenance requires reduced E6 protein levels.IMPORTANCEHigh-risk (hr) human papillomaviruses (HPV) from the genus alpha cause ano-genital and oropharyngeal cancers, whereas beta-HPV have been implicated to cause skin cancer in epidermodysplasia verruciformis and organ transplant patients. In contrast to alpha hr-HPV, the replication cycle of beta-HPV is not very well understood. Transcriptional profiling of beta-HPV49 by RNA sequencing reveals transcription start sites and splice sites conserved among HPV. Surprisingly, a splice donor site in the E6 oncogene (SD217), previously only described for hr-HPV, was identified that controls E6 oncoprotein levels and is required for immortalization of keratinocytes by the HPV49 genome.
Collapse
Affiliation(s)
- Tina M. Rehm
- Institute for Medical Virology and Epidemiology of Viral Diseases, University of Tuebingen, Tuebingen, Germany
| | - Thomas Iftner
- Institute for Medical Virology and Epidemiology of Viral Diseases, University of Tuebingen, Tuebingen, Germany
| | - Frank Stubenrauch
- Institute for Medical Virology and Epidemiology of Viral Diseases, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
6
|
Bravo IG, Belkhir S, Paget-Bailly P. Why HPV16? Why, now, HPV42? How the discovery of HPV42 in rare cancers provides an opportunity to challenge our understanding about the transition between health and disease for common members of the healthy microbiota. FEMS Microbiol Rev 2024; 48:fuae029. [PMID: 39562287 PMCID: PMC11644485 DOI: 10.1093/femsre/fuae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 11/21/2024] Open
Abstract
In 2022, a bioinformatic, agnostic approach identified HPV42 as causative agent of a rare cancer, later confirmed experimentally. This unexpected association offers an opportunity to reconsider our understanding about papillomavirus infections and cancers. We have expanded our knowledge about the diversity of papillomaviruses and the diseases they cause. Yet, we still lack answers to fundamental questions, such as what makes HPV16 different from the closely related HPV31 or HPV33; or why the very divergent HPV13 and HPV32 cause focal epithelial hyperplasia, while HPV6 or HPV42 do not, despite their evolutionary relatedness. Certain members of the healthy skin microbiota are associated to rare clinical conditions. We propose that a focus on cellular phenotypes, most often transient and influenced by intrinsic and extrinsic factors, may help understand the continuum between health and disease. A conceptual switch is required towards an interpretation of biology as a diversity of states connected by transition probabilities, rather than quasi-deterministic programs. Under this perspective, papillomaviruses may only trigger malignant transformation when specific viral genotypes interact with precise cellular states. Drawing on Canguilhem's concepts of normal and pathological, we suggest that understanding the transition between fluid cellular states can illuminate how commensal-like infections transition from benign to malignant.
Collapse
Affiliation(s)
- Ignacio G Bravo
- Laboratory MIVEGEC (Univ Montpellier, CNRS, IRD) French National Center for Scientific Research (CNRS), Montpellier, 34394, France
| | - Sophia Belkhir
- Laboratory MIVEGEC (Univ Montpellier, CNRS, IRD) French National Center for Scientific Research (CNRS), Montpellier, 34394, France
| | - Philippe Paget-Bailly
- Laboratory MIVEGEC (Univ Montpellier, CNRS, IRD) French National Center for Scientific Research (CNRS), Montpellier, 34394, France
| |
Collapse
|
7
|
Guennoun R, Alyakin A, Higuchi H, Demehri S. Commensal HPVs Have Evolved to Be More Immunogenic Compared with High-Risk α-HPVs. Vaccines (Basel) 2024; 12:749. [PMID: 39066387 PMCID: PMC11281416 DOI: 10.3390/vaccines12070749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Commensal human papillomaviruses (HPVs) are responsible for persistent asymptomatic infection in the human population by maintaining low levels of the episomal genome in the stratified epithelia. Herein, we examined the immunogenicity of cutaneotropic HPVs that are commonly found in the skin. Using an in silico platform to determine human leukocyte antigen (HLA)-peptide complex binding affinity, we observed that early genes of cutaneotropic HPV types within the same species can generate multiple conserved, homologous peptides that bind with high affinity to HLA class I alleles. Interestingly, we discovered that commensal β, γ, μ, and ν HPVs contain significantly more immunogenic peptides compared with α-HPVs, which include high-risk, oncogenic HPV types. Our findings indicate that commensal HPV proteins have evolved to generate peptides that better complement their host's HLA repertoire. Promoting higher control by host T cell immunity in this way could be a mechanism by which HPVs achieve widespread asymptomatic colonization in humans. This work supports the role of commensal HPVs as immunogenic targets within epithelial cells, which may contribute to the immune regulation of the skin and mucosa.
Collapse
Affiliation(s)
- Ranya Guennoun
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Anton Alyakin
- Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Neurosurgery, NYU Langone Health, New York, NY 10016, USA
| | - Hiroshi Higuchi
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Shadmehr Demehri
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
8
|
Han Z, Wang S, Mu T, Zhao P, Song L, Zhang Y, Zhao J, Yin W, Wu Y, Wang H, Gong B, Ji M, Roden RBS, Yang Y, Klein M, Wu K. Vaccination with a Human Papillomavirus L2 Multimer Provides Broad Protection against 17 Human Papillomavirus Types in the Mouse Cervicovaginal Challenge Model. Vaccines (Basel) 2024; 12:689. [PMID: 38932417 PMCID: PMC11209485 DOI: 10.3390/vaccines12060689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Human papillomavirus (HPV) is a prevalent cause of mucosal and cutaneous infections and underlying conditions ranging from benign warts to anogenital and oropharyngeal cancers affecting both males and females, notably cervical cancer. Cervical cancer is the fourth leading cause of cancer deaths among women globally and is the most impactful in low- and middle-income countries (LMICs), where the costs of screening and licensed L1-based HPV vaccines pose significant barriers to comprehensive administration. Additionally, the licensed L1-based HPV vaccines fail to protect against all oncogenic HPV types. This study generated three independent lots of an L2-based target antigen (LBTA), which was engineered from conserved linear L2-protective epitopes (aa11-88) from five human alphapapillomavirus genotypes in E. coli under cGMP conditions and adjuvanted with aluminum phosphate. Vaccination of rabbits with LBTA generated high neutralizing antibody titers against all 17 HPV types tested, surpassing the nine types covered by Gardasil®9. Passive transfer of naïve mice with LBTA antiserum revealed its capacity to confer protection against vaginal challenge with all 17 αHPV types tested. LBTA shows stability at room temperature over >1 month. Standard in vitro and in vivo toxicology studies suggest a promising safety profile. These findings suggest LBTA's promise as a next-generation vaccine with comprehensive coverage aimed at reducing the economic and healthcare burden of cervical and other HPV+ cancers in LMICs, and it has received regulatory approval for a first-in-human clinical study (NCT05672966).
Collapse
Affiliation(s)
- Zhenwei Han
- Project Management Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China;
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China;
| | - Shen Wang
- Regulatory and Medical Affairs Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China; (S.W.); (L.S.); (B.G.); (M.J.)
| | - Ting Mu
- Innovative Discovery Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China; (T.M.); (Y.Z.); (H.W.)
| | - Ping Zhao
- Test Development Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China; (P.Z.); (Y.W.)
| | - Lingli Song
- Regulatory and Medical Affairs Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China; (S.W.); (L.S.); (B.G.); (M.J.)
| | - Ying Zhang
- Innovative Discovery Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China; (T.M.); (Y.Z.); (H.W.)
| | - Jin Zhao
- Test Development Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China; (P.Z.); (Y.W.)
| | - Wen Yin
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, China;
| | - Yue Wu
- Test Development Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China; (P.Z.); (Y.W.)
| | - Huan Wang
- Innovative Discovery Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China; (T.M.); (Y.Z.); (H.W.)
| | - Bo Gong
- Regulatory and Medical Affairs Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China; (S.W.); (L.S.); (B.G.); (M.J.)
| | - Min Ji
- Regulatory and Medical Affairs Department, Wuhan BravoVax Co., Ltd., Wuhan 430070, China; (S.W.); (L.S.); (B.G.); (M.J.)
| | - Richard B. S. Roden
- Departments of Pathology, Oncology and Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, MD 21287, USA
| | - Yanping Yang
- Executive Office, Wuhan BravoVax Co., Ltd., Wuhan 430070, China;
- Executive Office, Shanghai BravoBio Co., Ltd., Shanghai 200000, China
| | - Michel Klein
- Executive Office, Wuhan BravoVax Co., Ltd., Wuhan 430070, China;
- Executive Office, Shanghai BravoBio Co., Ltd., Shanghai 200000, China
| | - Ke Wu
- Executive Office, Wuhan BravoVax Co., Ltd., Wuhan 430070, China;
- Executive Office, Shanghai BravoBio Co., Ltd., Shanghai 200000, China
| |
Collapse
|
9
|
Cozma EC, Banciu LM, Celarel AM, Soare E, Srichawla BS, Kipkorir V, Găman MA. Molecular mechanisms of human papilloma virus related skin cancers: A review. Medicine (Baltimore) 2024; 103:e38202. [PMID: 38787972 PMCID: PMC11124606 DOI: 10.1097/md.0000000000038202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 04/19/2024] [Indexed: 05/26/2024] Open
Abstract
The human papillomavirus (HPV) belongs to the Papillomaviridae family of viruses which includes small, double-stranded DNA viral agents. Approximately 90% of HPV infections occur asymptomatically and resolve spontaneously. However, infection with high-risk viral strains can lead to the development of preneoplastic lesions, with an increased propensity to become cancerous. The location of these malignancies includes the oral cavity, cervix, vagina, anus, and vulva, among others. The role of HPV in carcinogenesis has already been demonstrated for the aforementioned neoplasia. However, regarding skin malignancies, the mechanisms that pinpoint the role played by HPV in their initiation and progression still elude our sight. Until now, the only fully understood mechanism of viral cutaneous oncogenesis is that of human herpes virus 8 infection in Kaposi sarcoma. In the case of HPV infection, however, most data focus on the role that beta strains exhibit in the oncogenesis of cutaneous squamous cell carcinoma (cSCC), along with ultraviolet radiation (UVR) and other environmental or genetic factors. However, recent epidemiological investigations have highlighted that HPV could also trigger the onset of other non-melanocytic, for example, basal cell carcinoma (BCC), and/or melanocytic skin cancers, for example, melanoma. Herein, we provide an overview of the role played by HPV in benign and malignant skin lesions with a particular focus on the main epidemiological, pathophysiological, and molecular aspects delineating the involvement of HPV in skin cancers.
Collapse
Affiliation(s)
- Elena-Codruta Cozma
- University of Medicine and Pharmacy of Craiova, Craiova, Romania
- Elias University Emergency Hospital, Bucharest, Romania
| | | | | | - Elena Soare
- Elias University Emergency Hospital, Bucharest, Romania
| | | | - Vincent Kipkorir
- Department of Human Anatomy and Physiology, University of Nairobi, Nairobi, Kenya
| | - Mihnea-Alexandru Găman
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- Department of Hematology, Center of Hematology and Bone Marrow Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| |
Collapse
|
10
|
Jiang R, Fritz M, Que SKT. Cutaneous Squamous Cell Carcinoma: An Updated Review. Cancers (Basel) 2024; 16:1800. [PMID: 38791879 PMCID: PMC11119634 DOI: 10.3390/cancers16101800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Representing the second most common skin cancer, the incidence and disease burden of cutaneous squamous cell carcinoma (cSCC) continues to increase. Surgical excision of the primary site effectively cures the majority of cSCC cases. However, an aggressive subset of cSCC persists with clinicopathological features that are indicative of higher recurrence, metastasis, and mortality risks. Acceleration of these features is driven by a combination of genetic and environmental factors. The past several years have seen remarkable progress in shaping the treatment landscape for advanced cSCC. Risk stratification and clinical management is a top priority. This review provides an overview of the current perspectives on cSCC with a focus on staging, treatment, and maintenance strategies, along with future research directions.
Collapse
Affiliation(s)
- Rina Jiang
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Mike Fritz
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Syril Keena T. Que
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| |
Collapse
|
11
|
Wang Z, Wang X, Shi Y, Wu S, Ding Y, Yao G, Chen J. Advancements in elucidating the pathogenesis of actinic keratosis: present state and future prospects. Front Med (Lausanne) 2024; 11:1330491. [PMID: 38566927 PMCID: PMC10985158 DOI: 10.3389/fmed.2024.1330491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/19/2024] [Indexed: 04/04/2024] Open
Abstract
Solar keratosis, also known as actinic keratosis (AK), is becoming increasingly prevalent. It is a benign tumor that develops in the epidermis. Individuals with AK typically exhibit irregular, red, scaly bumps or patches as a result of prolonged exposure to UV rays. These growths primarily appear on sun-exposed areas of the skin such as the face, scalp, and hands. Presently, dermatologists are actively studying AK due to its rising incidence rate in the United States. However, the underlying causes of AK remain poorly understood. Previous research has indicated that the onset of AK involves various mechanisms including UV ray-induced inflammation, oxidative stress, complex mutagenesis, resulting immunosuppression, inhibited apoptosis, dysregulated cell cycle, altered cell proliferation, tissue remodeling, and human papillomavirus (HPV) infection. AK can develop in three ways: spontaneous regression, persistence, or progression into invasive cutaneous squamous cell carcinoma (cSCC). Multiple risk factors and diverse signaling pathways collectively contribute to its complex pathogenesis. To mitigate the risk of cancerous changes associated with long-term UV radiation exposure, prompt identification, management, and prevention of AK are crucial. The objective of this review is to elucidate the primary mechanisms underlying AK malignancy and identify potential treatment targets for dermatologists in clinical settings.
Collapse
Affiliation(s)
- Zhongzhi Wang
- Department of Dermatology, Shanghai Fourth People’s Hospital, Tongji University, Shanghai, China
| | - Xiaolie Wang
- Department of Dermatology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yuanyang Shi
- Department of Dermatology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Siyu Wu
- Department of Dermatology, Shanghai Fourth People’s Hospital, Tongji University, Shanghai, China
| | - Yu Ding
- Department of Dermatology, Shanghai Fourth People’s Hospital, Tongji University, Shanghai, China
| | - Guotai Yao
- Department of Dermatology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jianghan Chen
- Department of Dermatology, Shanghai Fourth People’s Hospital, Tongji University, Shanghai, China
- Department of Dermatology, Naval Medical Center, Naval Medical University, Shanghai, China
| |
Collapse
|
12
|
Vella L, Sternjakob A, Lohse S, Fingerle A, Sperling T, Wickenhauser C, Stöckle M, Vogt T, Roemer K, Ołdak M, Smola S. The cutaneous beta human papillomavirus type 8 E6 protein induces CCL2 through the CEBPα/miR-203/p63 pathway to support an inflammatory microenvironment in epidermodysplasia verruciformis skin lesions. Front Cell Infect Microbiol 2024; 14:1336492. [PMID: 38510961 PMCID: PMC10953690 DOI: 10.3389/fcimb.2024.1336492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/12/2024] [Indexed: 03/22/2024] Open
Abstract
Human papillomavirus type 8 (HPV8), a cutaneous genus beta HPV type, has co-carcinogenic potential at sun-exposed sites in patients suffering from the inherited skin disease epidermodysplasia verruciformis (EV). We had previously shown that Langerhans cells responsible for epithelial immunosurveillance were strongly reduced at infected sites and that the HPV8 E7 protein interferes with the CCAAT/enhancer-binding protein (C/EBP)β to suppress the Langerhans cell chemokine CCL20. At the same time, however, we observed that EV lesions are heavily infiltrated with inflammatory immune cells, which is similar to the situation in HPV8 E6 transgenic mice. To identify critical inflammatory factors, we used a broad multiplex approach and found that the monocyte attracting chemokine CCL2 was significantly and strongly induced by HPV8 E6 but not E7-expressing HaCaT cells, which were used as a model for UV-damaged skin keratinocytes. Conditioned media from HPV8 E6-expressing keratinocytes enhanced CCL2-receptor (CCR2)-dependent monocyte recruitment in vitro, and macrophages predominated in the stroma but were also detected in the epidermal compartment of EV lesions in vivo. CCL2 induction by HPV8 E6 was even stronger than stimulation with the proinflammatory cytokine TNF-α, and both HPV8 E6 and TNF-α resulted in substantial suppression of the transcription factor C/EBPα. Using RNAi-mediated knockdown and overexpression approaches, we demonstrated a mechanistic role of the recently identified C/EBPα/miR-203/p63 pathway for HPV8 E6-mediated CCL2 induction at protein and transcriptional levels. Epithelial co-expression of p63 and CCL2 was confirmed in HPV8 E6-expressing organotypic air-liquid interface cultures and in lesional EV epidermis in vivo. In summary, our data demonstrate that HPV8 oncoproteins actively deregulate epidermal immune homeostasis through modulation of C/EBP factor-dependent pathways. While HPV8 E7 suppresses immunosurveillance required for viral persistence, the present study provides evidence that E6 involves the stemness-promoting factor p63 to support an inflammatory microenvironment that may fuel carcinogenesis in EV lesions.
Collapse
Affiliation(s)
- Luca Vella
- Institute of Virology, Saarland University Medical Center, Homburg, Germany
| | - Anna Sternjakob
- Institute of Virology, Saarland University Medical Center, Homburg, Germany
| | - Stefan Lohse
- Institute of Virology, Saarland University Medical Center, Homburg, Germany
| | - Alina Fingerle
- Institute of Virology, Saarland University Medical Center, Homburg, Germany
| | - Tanya Sperling
- Institute of Virology, University of Cologne, Cologne, Germany
| | | | - Michael Stöckle
- Department of Urology and Pediatric Urology, Saarland University Medical Center, Homburg, Germany
| | - Thomas Vogt
- Department of Dermatology, Saarland University Medical Center, Homburg, Germany
| | - Klaus Roemer
- Jose Carreras Center for Immune and Gene Therapy, Saarland University Medical Center, Homburg, Germany
| | - Monika Ołdak
- Institute of Virology, Saarland University Medical Center, Homburg, Germany
- Department of Histology and Embryology, Medical University of Warsaw, Warsaw, Poland
| | - Sigrun Smola
- Institute of Virology, Saarland University Medical Center, Homburg, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarbrücken, Germany
| |
Collapse
|
13
|
Dachani S, Kaleem M, Mujtaba MA, Mahajan N, Ali SA, Almutairy AF, Mahmood D, Anwer MK, Ali MD, Kumar S. A Comprehensive Review of Various Therapeutic Strategies for the Management of Skin Cancer. ACS OMEGA 2024; 9:10030-10048. [PMID: 38463249 PMCID: PMC10918819 DOI: 10.1021/acsomega.3c09780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 03/12/2024]
Abstract
Skin cancer (SC) poses a global threat to the healthcare system and is expected to increase significantly over the next two decades if not diagnosed at an early stage. Early diagnosis is crucial for successful treatment, as the disease becomes more challenging to cure as it progresses. However, identifying new drugs, achieving clinical success, and overcoming drug resistance remain significant challenges. To overcome these obstacles and provide effective treatment, it is crucial to understand the causes of skin cancer, how cells grow and divide, factors that affect cell growth, and how drug resistance occurs. In this review, we have explained various therapeutic approaches for SC treatment via ligands, targeted photosensitizers, natural and synthetic drugs for the treatment of SC, an epigenetic approach for management of melanoma, photodynamic therapy, and targeted therapy for BRAF-mutated melanoma. This article also provides a detailed summary of the various natural drugs that are effective in managing melanoma and reducing the occurrence of skin cancer at early stages and focuses on the current status and future prospects of various therapies available for the management of skin cancer.
Collapse
Affiliation(s)
- Sudharshan
Reddy Dachani
- Department
of Pharmacy Practice, College of Pharmacy, Shaqra University, Al-Dawadmi Campus, Al-Dawadmi 11961, Saudi Arabia
| | - Mohammed Kaleem
- Department
of Pharmacology, Babasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440037, Maharashtra, India
| | - Md. Ali Mujtaba
- Department
of Pharmaceutics, Faculty of Pharmacy, Northern
Border University, Arar 91911, Saudi Arabia
| | - Nilesh Mahajan
- Department
of Pharmaceutics, Dabasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440037, Maharashtra, India
| | - Sayyed A. Ali
- Department
of Pharmaceutics, Dabasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440037, Maharashtra, India
| | - Ali F Almutairy
- Department
of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Danish Mahmood
- Department
of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Md. Khalid Anwer
- Department
of Pharmaceutics, College of Pharmacy, Prince
Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Mohammad Daud Ali
- Department
of Pharmacy, Mohammed Al-Mana College for
Medical Sciences, Abdulrazaq Bin Hammam Street, Al Safa 34222, Dammam, Saudi Arabia
| | - Sanjay Kumar
- Department
of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Uttar Pradesh 201306, India
| |
Collapse
|
14
|
Șandru F, Radu AM, Petca A, Dumitrașcu MC, Petca RC, Roman AM. Unveiling the Therapeutic Horizon: HPV Vaccines and Their Impact on Cutaneous Diseases-A Comprehensive Review. Vaccines (Basel) 2024; 12:228. [PMID: 38543862 PMCID: PMC10974301 DOI: 10.3390/vaccines12030228] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 03/30/2025] Open
Abstract
Human papillomavirus (HPV) encompasses a diverse array of viruses, comprising approximately 200 serotypes that affect humans. While the majority of HPV strains are associated with benign skin or mucous membrane growths, a subset is implicated in severe health conditions, such as cervical, anal, vulvar, and vaginal cancers. Despite the established effectiveness of HPV vaccines in preventing cervical and anal carcinomas in particular, their therapeutic potential in addressing cutaneous diseases linked to diverse HPV strains remains an intriguing area of investigation. This narrative review critically examines the existing literature to assess the viability of HPV immunization as a therapeutic intervention for prevalent cutaneous conditions. These include genital and extragenital cutaneous warts, epidermodysplasia verruciformis, and keratinocyte carcinomas. The findings suggest a promising dual role for HPV vaccines in preventing and treating dermatologic conditions while emphasizing future research directions, including the immunization perspective against β-HPVs. Moreover, the presence of conflicting study outcomes underscores the imperative for larger-scale, randomized trials with well-matched control groups to validate the efficacy of HPV immunization in the dermatologic context. This review contributes valuable insights into the evolving landscape of HPV-vaccine applications in the field of dermatology.
Collapse
Affiliation(s)
- Florica Șandru
- Department of Dermatovenerology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania (A.-M.R.); (A.-M.R.)
- Dermatology Department, “Elias” University Emergency Hospital, 011461 Bucharest, Romania
| | - Andreea-Maria Radu
- Department of Dermatovenerology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania (A.-M.R.); (A.-M.R.)
- Dermatology Department, “Elias” University Emergency Hospital, 011461 Bucharest, Romania
| | - Aida Petca
- Department of Obstetrics and Gynecology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Obstetrics and Gynecology, Elias Emergency University Hospital, 011461 Bucharest, Romania
| | - Mihai Cristian Dumitrașcu
- Department of Obstetrics and Gynecology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Obstetrics and Gynecology, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| | - Răzvan-Cosmin Petca
- Department of Urology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Urology, ‘Prof. Dr. Th. Burghele’ Clinical Hospital, 050659 Bucharest, Romania
| | - Alexandra-Maria Roman
- Department of Dermatovenerology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania (A.-M.R.); (A.-M.R.)
- Dermatology Department, “Elias” University Emergency Hospital, 011461 Bucharest, Romania
| |
Collapse
|
15
|
Chen B, Wang Y, Wu Y, Xu T. Effect of HPV Oncoprotein on Carbohydrate and Lipid Metabolism in Tumor Cells. Curr Cancer Drug Targets 2024; 24:987-1004. [PMID: 38284713 DOI: 10.2174/0115680096266981231215111109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/29/2023] [Accepted: 11/13/2023] [Indexed: 01/30/2024]
Abstract
High-risk HPV infection accounts for 99.7% of cervical cancer, over 90% of anal cancer, 50% of head and neck cancers, 40% of vulvar cancer, and some cases of vaginal and penile cancer, contributing to approximately 5% of cancers worldwide. The development of cancer is a complex, multi-step process characterized by dysregulation of signaling pathways and alterations in metabolic pathways. Extensive research has demonstrated that metabolic reprogramming plays a key role in the progression of various cancers, such as cervical, head and neck, bladder, and prostate cancers, providing the material and energy foundation for rapid proliferation and migration of cancer cells. Metabolic reprogramming of tumor cells allows for the rapid generation of ATP, aiding in meeting the high energy demands of HPV-related cancer cell proliferation. The interaction between Human Papillomavirus (HPV) and its associated cancers has become a recent focus of investigation. The impact of HPV on cellular metabolism has emerged as an emerging research topic. A significant body of research has shown that HPV influences relevant metabolic signaling pathways, leading to cellular metabolic alterations. Exploring the underlying mechanisms may facilitate the discovery of biomarkers for diagnosis and treatment of HPV-associated diseases. In this review, we introduced the molecular structure of HPV and its replication process, discussed the diseases associated with HPV infection, described the energy metabolism of normal cells, highlighted the metabolic features of tumor cells, and provided an overview of recent advances in potential therapeutic targets that act on cellular metabolism. We discussed the potential mechanisms underlying these changes. This article aims to elucidate the role of Human Papillomavirus (HPV) in reshaping cellular metabolism and the application of metabolic changes in the research of related diseases. Targeting cancer metabolism may serve as an effective strategy to support traditional cancer treatments, as metabolic reprogramming is crucial for malignant transformation in cancer.
Collapse
Affiliation(s)
- Biqing Chen
- The Second Hospital of Jilin University, Changchun, China
| | - Yichao Wang
- The Second Hospital of Jilin University, Changchun, China
| | - Yishi Wu
- The Second Hospital of Jilin University, Changchun, China
| | - Tianmin Xu
- The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
16
|
Wendel S, Wallace NA. Interactions among human papillomavirus proteins and host DNA repair factors differ during the viral life cycle and virus-induced tumorigenesis. mSphere 2023; 8:e0042723. [PMID: 37850786 PMCID: PMC10732048 DOI: 10.1128/msphere.00427-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023] Open
Abstract
This review focuses on the impact of human papillomavirus (HPV) oncogenes on DNA repair pathways with a particular focus on how these relationships change as productive HPV infections transition to malignant lesions. We made specific efforts to incorporate advances in the understanding of HPV and DNA damage repair over the last 4 years. We apologize for any articles that we missed in compiling this report.
Collapse
Affiliation(s)
- Sebastian Wendel
- Kansas State University, Division of Biology, Manhattan, Kansas, USA
| | | |
Collapse
|
17
|
Romero-Masters JC, Muehlbauer LK, Hayes M, Grace M, Shishkova E, Coon JJ, Munger K, Lambert PF. MmuPV1 E6 induces cell proliferation and other hallmarks of cancer. mBio 2023; 14:e0245823. [PMID: 37905801 PMCID: PMC10746199 DOI: 10.1128/mbio.02458-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/22/2023] [Indexed: 11/02/2023] Open
Abstract
IMPORTANCE The Mus musculus papillomavirus 1 (MmuPV1) E6 and E7 proteins are required for MmuPV1-induced disease. Our understanding of the activities of MmuPV1 E6 has been based on affinity purification/mass spectrometry studies where cellular interacting partners of MmuPV1 E6 were identified, and these studies revealed that MmuPV1 E6 can inhibit keratinocyte differentiation through multiple mechanisms. We report that MmuPV1 E6 encodes additional activities including the induction of proliferation, resistance to density-mediated growth arrest, and decreased dependence on exogenous growth factors. Proteomic and transcriptomic analyses provided evidence that MmuPV1 E6 increases the expression and steady state levels of a number of cellular proteins that promote cellular proliferation and other hallmarks of cancer. These results indicate that MmuPV1 E6 is a major driver of MmuPV1-induced pathogenesis.
Collapse
Affiliation(s)
- James C. Romero-Masters
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Laura K. Muehlbauer
- Departments of Chemistry and Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mitchell Hayes
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Miranda Grace
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Evgenia Shishkova
- Departments of Chemistry and Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Joshua J. Coon
- Departments of Chemistry and Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Karl Munger
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
18
|
Skelin J, Tomaić V. Comparative Analysis of Alpha and Beta HPV E6 Oncoproteins: Insights into Functional Distinctions and Divergent Mechanisms of Pathogenesis. Viruses 2023; 15:2253. [PMID: 38005929 PMCID: PMC10674601 DOI: 10.3390/v15112253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Human papillomaviruses (HPVs) represent a diverse group of DNA viruses that infect epithelial cells of mucosal and cutaneous tissues, leading to a wide spectrum of clinical outcomes. Among various HPVs, alpha (α) and beta (β) types have garnered significant attention due to their associations with human health. α-HPVs are primarily linked to infections of the mucosa, with high-risk subtypes, such as HPV16 and HPV18, being the major etiological agents of cervical and oropharyngeal cancers. In contrast, β-HPVs are predominantly associated with cutaneous infections and are commonly found on healthy skin. However, certain β-types, notably HPV5 and HPV8, have been implicated in the development of non-melanoma skin cancers in immunocompromised individuals, highlighting their potential role in pathogenicity. In this review, we comprehensively analyze the similarities and differences between α- and β-HPV E6 oncoproteins, one of the major drivers of viral replication and cellular transformation, and how these impact viral fitness and the capacity to induce malignancy. In particular, we compare the mechanisms these oncoproteins use to modulate common cellular processes-apoptosis, DNA damage repair, cell differentiation, and the immune response-further shedding light on their shared and distinct features, which enable them to replicate at divergent locations of the human body and cause different types of cancer.
Collapse
Affiliation(s)
| | - Vjekoslav Tomaić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia;
| |
Collapse
|
19
|
Wu SC, Grace M, Munger K. The HPV8 E6 protein targets the Hippo and Wnt signaling pathways as part of its arsenal to restrain keratinocyte differentiation. mBio 2023; 14:e0155623. [PMID: 37676018 PMCID: PMC10653872 DOI: 10.1128/mbio.01556-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 09/08/2023] Open
Abstract
IMPORTANCE Human papillomaviruses (HPVs) infect basal epithelial cells and cause a dramatic expansion of basal-like, proliferative cells. This reflects the ability of papillomaviruses to delay keratinocyte differentiation, thereby maintaining aspects of the basal cell identity of persistently infected cells. This may enable papillomaviruses to establish and maintain long-term infections in squamous epithelial tissues. Previous work has revealed that the ability of β-HPV8 E6 protein to inhibit Notch and transforming growth factor β signaling importantly contributes to this activity. Here, we present evidence that HPV8 E6 also subverts Hippo and Wnt signaling and that these activities also aid in restraining keratinocyte differentiation.
Collapse
Affiliation(s)
- Sharon C. Wu
- Molecular Microbiology Program, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
- Medical Scientist Training Program, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Miranda Grace
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Karl Munger
- Molecular Microbiology Program, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
- Medical Scientist Training Program, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
20
|
Lin Y, Lin WY, Lin TW, Tseng YJ, Wang YC, Yu JR, Chung CR, Wang HY. Trend of HPV Molecular Epidemiology in the Post-Vaccine Era: A 10-Year Study. Viruses 2023; 15:2015. [PMID: 37896791 PMCID: PMC10612033 DOI: 10.3390/v15102015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 10/29/2023] Open
Abstract
Cervical cancer, a major health concern among women worldwide, is closely linked to human papillomavirus (HPV) infection. This study explores the evolving landscape of HPV molecular epidemiology in Taiwan over a decade (2010-2020), where prophylactic HPV vaccination has been implemented since 2007. Analyzing data from 40,561 vaginal swab samples, with 42.0% testing positive for HPV, we reveal shifting trends in HPV genotype distribution and infection patterns. The 12 high-risk genotypes, in order of decreasing percentage, were HPV 52, 58, 16, 18, 51, 56, 39, 59, 33, 31, 45, and 35. The predominant genotypes were HPV 52, 58, and 16, accounting for over 70% of cases annually. The proportions of high-risk and non-high-risk HPV infections varied across age groups. High-risk infections predominated in sexually active individuals aged 30-50 and were mixed-type infections. The composition of high-risk HPV genotypes was generally stable over time; however, HPV31, 33, 39, and 51 significantly decreased over the decade. Of the strains, HPV31 and 33 are shielded by the nonavalent HPV vaccine. However, no reduction was noted for the other seven genotypes. This study offers valuable insights into the post-vaccine HPV epidemiology. Future investigations should delve into HPV vaccines' effects and their implications for cervical cancer prevention strategies. These findings underscore the need for continued surveillance and research to guide effective public health interventions targeting HPV-associated diseases.
Collapse
Affiliation(s)
- Yueh Lin
- Department of Family Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan;
| | - Wan-Ying Lin
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA;
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA;
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Ting-Wei Lin
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan; (T.-W.L.); (J.-R.Y.)
| | - Yi-Ju Tseng
- Department of Computer Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan;
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Yu-Chiang Wang
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA;
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Jia-Ruei Yu
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan; (T.-W.L.); (J.-R.Y.)
| | - Chia-Ru Chung
- Department of Computer Science and Information Engineering, National Central University, Taoyuan 320317, Taiwan;
| | - Hsin-Yao Wang
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA;
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan; (T.-W.L.); (J.-R.Y.)
| |
Collapse
|
21
|
Lozar T, Keske A, Dube Mandishora RS, Yu Q, Bailey A, Xu J, Tommasino M, McGregor SM, Lambert PF, Gheit T, Fitzpatrick MB. Betapapillomaviruses in p16-Negative Vulvar Intraepithelial Lesions Associated with Squamous Cell Carcinoma. Viruses 2023; 15:1950. [PMID: 37766356 PMCID: PMC10537070 DOI: 10.3390/v15091950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/16/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
Approximately 40% of vulvar squamous cell carcinoma (vSCC) cases are etiologically associated with high-risk human papillomaviruses (HPVs) of the alpha genera (α-HPV) that cause other anogenital cancers; however, the etiology of α-HPV-negative vSCC is poorly understood. HPVs of the beta genera (β-HPV) are risk factors for cutaneous squamous cell carcinoma (cSCC) and may be related to carcinomas originating in other cutaneous sites such as the vulva. In this study, we investigate the presence of β-HPVs, with an emphasis on p16-negative squamous lesions adjacent to vSCC. We subjected 28 vulvar squamous intraepithelial lesions adjacent to vSCC for comprehensive HPV genotyping, p16 and p53 immunohistochemistry, and consensus morphology review. Selected cases were subjected to qPCR and RNA in situ hybridization. Clinical data were obtained from medical records. β-HPV DNA was detected in eight of ten p16-negative lesions and three of fourteen p16-positive high-grade squamous intraepithelial lesions. The HPV DNA loads in vulvar squamous intraepithelial lesions ranged between less than 1 HPV DNA copy per cell to more than 100 HPV DNA copies per cell. This is, to the best of our knowledge, the first report of the association of p16-negative vulvar intraepithelial squamous lesions with detection of β-HPVs. These findings expand possible etiologic mechanisms that may contribute to p16-negative lesions of the vulva.
Collapse
Affiliation(s)
- Taja Lozar
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (T.L.)
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA
- University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Aysenur Keske
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Racheal S. Dube Mandishora
- Center for Immunization and Infection Research in Cancer (CIIRC), Moffit Cancer Center, Tampa, FL 33612, USA
- Medical Microbiology Unit, University of Zimbabwe Faculty of Health Sciences, Harare P.O. Box A178, Zimbabwe
| | - Qiqi Yu
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA;
| | - Adam Bailey
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Jin Xu
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | | | - Stephanie M. McGregor
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (T.L.)
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA
| | - Tarik Gheit
- International Agency for Research on Cancer, 69007 Lyon, France
| | - Megan B. Fitzpatrick
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| |
Collapse
|
22
|
Taverniti V, Krynska H, Venuti A, Straub ML, Sirand C, Lohmann E, Romero-Medina MC, Moro S, Robitaille A, Negroni L, Martinez-Zapien D, Masson M, Tommasino M, Zanier K. The E2F4/p130 Repressor Complex Cooperates with Oncogenic ΔNp73α To Inhibit Gene Expression in Human Papillomavirus 38 E6/E7-Transformed Keratinocytes and in Cancer Cells. mSphere 2023; 8:e0005623. [PMID: 36883841 PMCID: PMC10117100 DOI: 10.1128/msphere.00056-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 03/09/2023] Open
Abstract
Tumor suppressor p53 and its related proteins, p63 and p73, can be synthesized as multiple isoforms lacking part of the N- or C-terminal regions. Specifically, high expression of the ΔNp73α isoform is notoriously associated with various human malignancies characterized by poor prognosis. This isoform is also accumulated by oncogenic viruses, such as Epstein-Barr virus (EBV), as well as genus beta human papillomaviruses (HPV) that appear to be involved in carcinogenesis. To gain additional insight into ΔNp73α mechanisms, we have performed proteomics analyses using human keratinocytes transformed by the E6 and E7 proteins of the beta-HPV type 38 virus as an experimental model (38HK). We find that ΔNp73α associates with the E2F4/p130 repressor complex through a direct interaction with E2F4. This interaction is favored by the N-terminal truncation of p73 characteristic of ΔNp73 isoforms. Moreover, it is independent of the C-terminal splicing status, suggesting that it could represent a general feature of ΔNp73 isoforms (α, β, γ, δ, ε, ζ, θ, η, and η1). We show that the ΔNp73α-E2F4/p130 complex inhibits the expression of specific genes, including genes encoding for negative regulators of proliferation, both in 38HK and in HPV-negative cancer-derived cell lines. Such genes are not inhibited by E2F4/p130 in primary keratinocytes lacking ΔNp73α, indicating that the interaction with ΔNp73α rewires the E2F4 transcriptional program. In conclusion, we have identified and characterized a novel transcriptional regulatory complex with potential implications in oncogenesis. IMPORTANCE The TP53 gene is mutated in about 50% of human cancers. In contrast, the TP63 and TP73 genes are rarely mutated but rather expressed as ΔNp63 and ΔNp73 isoforms in a wide range of malignancies, where they act as p53 antagonists. Accumulation of ΔNp63 and ΔNp73, which is associated with chemoresistance, can result from infection by oncogenic viruses such as EBV or HPV. Our study focuses on the highly carcinogenic ΔNp73α isoform and uses a viral model of cellular transformation. We unveil a physical interaction between ΔNp73α and the E2F4/p130 complex involved in cell cycle control, which rewires the E2F4/p130 transcriptional program. Our work shows that ΔNp73 isoforms can establish interactions with proteins that do not bind to the TAp73α tumor suppressor. This situation is analogous to the gain-of-function interactions of p53 mutants supporting cellular proliferation.
Collapse
Affiliation(s)
- Valerio Taverniti
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon, France
| | - Hanna Krynska
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon, France
- Biotechnology and Cell Signaling (CNRS/Université de Strasbourg, UMR 7242), Ecole Superieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, Illkirch, France
| | - Assunta Venuti
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon, France
| | - Marie-Laure Straub
- Biotechnology and Cell Signaling (CNRS/Université de Strasbourg, UMR 7242), Ecole Superieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, Illkirch, France
| | - Cécilia Sirand
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon, France
| | - Eugenie Lohmann
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon, France
| | | | - Stefano Moro
- Biotechnology and Cell Signaling (CNRS/Université de Strasbourg, UMR 7242), Ecole Superieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, Illkirch, France
| | - Alexis Robitaille
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon, France
| | - Luc Negroni
- Proteomics platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)/INSERM U964/CNRS UMR 7104/Université de Strasbourg, Illkirch, France
| | - Denise Martinez-Zapien
- Biotechnology and Cell Signaling (CNRS/Université de Strasbourg, UMR 7242), Ecole Superieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, Illkirch, France
| | - Murielle Masson
- Biotechnology and Cell Signaling (CNRS/Université de Strasbourg, UMR 7242), Ecole Superieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, Illkirch, France
| | | | - Katia Zanier
- Biotechnology and Cell Signaling (CNRS/Université de Strasbourg, UMR 7242), Ecole Superieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, Illkirch, France
| |
Collapse
|
23
|
Romero-Masters JC, Grace M, Lee D, Lei J, DePamphilis M, Buehler D, Hu R, Ward-Shaw E, Blaine-Sauer S, Lavoie N, White EA, Munger K, Lambert PF. MmuPV1 E7's interaction with PTPN14 delays Epithelial differentiation and contributes to virus-induced skin disease. PLoS Pathog 2023; 19:e1011215. [PMID: 37036883 PMCID: PMC10085053 DOI: 10.1371/journal.ppat.1011215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 02/17/2023] [Indexed: 04/11/2023] Open
Abstract
Human papillomaviruses (HPVs) contribute to approximately 5% of all human cancers. Species-specific barriers limit the ability to study HPV pathogenesis in animal models. Murine papillomavirus (MmuPV1) provides a powerful tool to study the roles of papillomavirus genes in pathogenesis arising from a natural infection. We previously identified Protein Tyrosine Phosphatase Non-Receptor Type 14 (PTPN14), a tumor suppressor targeted by HPV E7 proteins, as a putative cellular target of MmuPV1 E7. Here, we confirmed the MmuPV1 E7-PTPN14 interaction. Based on the published structure of the HPV18 E7/PTPN14 complex, we generated a MmuPV1 E7 mutant, E7K81S, that was defective for binding PTPN14. Wild-type (WT) and E7K81S mutant viral genomes replicated as extrachromosomal circular DNAs to comparable levels in mouse keratinocytes. E7K81S mutant virus (E7K81S MmuPV1) was generated and used to infect FoxN/Nude mice. E7K81S MmuPV1 caused neoplastic lesions at a frequency similar to that of WT MmuPV1, but the lesions arose later and were smaller than WT-induced lesions. The E7K81S MmuPV1-induced lesions also had a trend towards a less severe grade of neoplastic disease. In the lesions, E7K81S MmuPV1 supported the late (productive) stage of the viral life cycle and promoted E2F activity and cellular DNA synthesis in suprabasal epithelial cells to similar degrees as WT MmuPV1. There was a similar frequency of lateral spread of infections among mice infected with E7K81S or WT MmuPV1. Compared to WT MmuPV1-induced lesions, E7K81S MmuPV1-induced lesions had a significant expansion of cells expressing differentiation markers, Keratin 10 and Involucrin. We conclude that an intact PTPN14 binding site is necessary for MmuPV1 E7's ability to contribute to papillomavirus-induced pathogenesis and this correlates with MmuPV1 E7 causing a delay in epithelial differentiation, which is a hallmark of papillomavirus-induced neoplasia.
Collapse
Affiliation(s)
- James C. Romero-Masters
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Miranda Grace
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Denis Lee
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Joshua Lei
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Melanie DePamphilis
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Darya Buehler
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Rong Hu
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Ella Ward-Shaw
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Simon Blaine-Sauer
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Nathalie Lavoie
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Molecular Microbiology Program, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - Elizabeth A. White
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Karl Munger
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Molecular Microbiology Program, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| |
Collapse
|
24
|
Hasche D, Akgül B. Prevention and Treatment of HPV-Induced Skin Tumors. Cancers (Basel) 2023; 15:cancers15061709. [PMID: 36980594 PMCID: PMC10046090 DOI: 10.3390/cancers15061709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Non-melanoma skin cancer (NMSC) is the most common cancer in humans with increasing incidence. Meanwhile, a growing body of evidence has provided a link between skin infections with HPV of the genus beta (betaHPV) and the development of cutaneous squamous cell carcinomas (cSCCs). Based on this association, the development of vaccines against betaHPV has become an important research topic. This review summarizes the current advances in prophylactic and therapeutic betaHPV vaccines, including progresses made in preclinical testing and clinical trials.
Collapse
Affiliation(s)
- Daniel Hasche
- Division of Viral Transformation Mechanisms, Research Program “Infection, Inflammation and Cancer”, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - Baki Akgül
- Institute of Virology, Medical Faculty and University Hospital Cologne, University of Cologne, Fürst-Pückler-Str. 56, 50935 Cologne, Germany
- Correspondence:
| |
Collapse
|
25
|
Hu C, Bugbee T, Palinski R, Akinyemi IA, McIntosh MT, MacCarthy T, Bhaduri-McIntosh S, Wallace N. Beta human papillomavirus 8E6 promotes alternative end joining. eLife 2023; 12:e81923. [PMID: 36692284 PMCID: PMC9897725 DOI: 10.7554/elife.81923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 01/23/2023] [Indexed: 01/25/2023] Open
Abstract
Double strand breaks (DSBs) are one of the most lethal DNA lesions in cells. The E6 protein of beta-human papillomavirus (HPV8 E6) impairs two critical DSB repair pathways: homologous recombination (HR) and non-homologous end joining (NHEJ). However, HPV8 E6 only delays DSB repair. How DSBs are repaired in cells with HPV8 E6 remains to be studied. We hypothesize that HPV8 E6 promotes a less commonly used DSB repair pathway, alternative end joining (Alt-EJ). Using CAS9-based Alt-EJ reporters, we show that HPV8 E6 promotes Alt-EJ. Further, using small molecule inhibitors, CRISPR/CAS9 gene knockout, and HPV8 E6 mutant, we find that HPV8 E6 promotes Alt-EJ by binding p300, an acetyltransferase that facilitates DSB repair by HR and NHEJ. At least some of this repair occurs through a subset of Alt-EJ known as polymerase theta dependent end joining. Finally, whole genome sequencing analysis showed HPV8 E6 caused an increased frequency of deletions bearing the microhomology signatures of Alt-EJ. This study fills the knowledge gap of how DSB is repaired in cells with HPV8 E6 and the mutagenic consequences of HPV8 E6 mediated p300 destabilization. Broadly, this study supports the hypothesis that beta-HPV promotes cancer formation by increasing genomic instability.
Collapse
Affiliation(s)
- Changkun Hu
- Basic Sciences Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
- Division of Biology, Kansas State UniversityManhattanUnited States
| | - Taylor Bugbee
- Division of Biology, Kansas State UniversityManhattanUnited States
| | - Rachel Palinski
- Veterinary Diagnostic Laboratory, Kansas State UniversityManhattanUnited States
| | - Ibukun A Akinyemi
- Child Health Research Institute, Department of Pediatrics, University of FloridaGainesvilleUnited States
- Department of Molecular Genetics and Microbiology, University of FloridaGainesvilleUnited States
| | - Michael T McIntosh
- Child Health Research Institute, Department of Pediatrics, University of FloridaGainesvilleUnited States
| | - Thomas MacCarthy
- Laufer Center for Physical and Quantitative Biology, Stony Brook UniversityStony BrookUnited States
| | - Sumita Bhaduri-McIntosh
- Child Health Research Institute, Department of Pediatrics, University of FloridaGainesvilleUnited States
- Department of Molecular Genetics and Microbiology, University of FloridaGainesvilleUnited States
| | - Nicholas Wallace
- Division of Biology, Kansas State UniversityManhattanUnited States
| |
Collapse
|
26
|
Borgogna C, Martuscelli L, Olivero C, Lo Cigno I, De Andrea M, Caneparo V, Boldorini R, Patel G, Gariglio M. Enhanced Spontaneous Skin Tumorigenesis and Aberrant Inflammatory Response to UVB Exposure in Immunosuppressed Human Papillomavirus Type 8‒Transgenic Mice. J Invest Dermatol 2022; 143:740-750.e4. [PMID: 36481357 DOI: 10.1016/j.jid.2022.10.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 10/09/2022] [Accepted: 10/24/2022] [Indexed: 12/12/2022]
Abstract
Human papillomaviruses (HPVs) from the beta genus are commensal viruses of the skin usually associated with asymptomatic infection in the general population. However, in individuals with specific genetic backgrounds, such as patients with epidermodysplasia verruciformis, or those with immune defects, such as organ transplant recipients, they are functionally involved in sunlight-induced skin cancer development, mainly keratinocyte carcinoma. Despite their well-established protumorigenic role, the cooperation between β-HPV infection, impaired host immunosurveillance, and UVB exposure has never been formally shown in animal models. In this study, by crossing skin-specific HPV8-transgenic mice with Rag2-deficient mice, we have generated a preclinical mouse model, named Rag2‒/‒:K14-HPV8. These mice display an unhealthy skin phenotype and spontaneously develop papilloma-like lesions spreading to the entire skin much more rapidly compared with Rag2+/+:K14-HPV8 mice. Exposure to low doses of UVB radiation is sufficient to trigger severe skin inflammation in Rag2‒/‒:K14-HPV8 but not in Rag2+/+:K14-HPV8 mice. Their inflamed skin very much resembled that observed in cutaneous field cancerization in organ transplant recipients, showing high levels of UVB-damaged cells, enhanced production of proinflammatory cytokines, and mast cell recruitment to the dermis. Overall, this immunocompromised HPV8-transgenic mouse model shows that the coexistence of immune defects, β-HPV, and UVB exposure promotes skin cancer development.
Collapse
Affiliation(s)
- Cinzia Borgogna
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy
| | - Licia Martuscelli
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy
| | - Carlotta Olivero
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Irene Lo Cigno
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy
| | - Marco De Andrea
- Virology Unit, Department of Public Health and Pediatric Sciences, Turin Medical School, Turin, Italy; Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Novara Medical School, Novara, Italy
| | - Valeria Caneparo
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy; Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Novara Medical School, Novara, Italy
| | - Renzo Boldorini
- Pathology Unit, Department of Health Sciences, Novara Medical School, Novara, Italy
| | - Girish Patel
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Marisa Gariglio
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy; Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Novara Medical School, Novara, Italy.
| |
Collapse
|
27
|
Dacus D, Stancic S, Pollina SR, Rifrogiate E, Palinski R, Wallace NA. Beta Human Papillomavirus 8 E6 Induces Micronucleus Formation and Promotes Chromothripsis. J Virol 2022; 96:e0101522. [PMID: 36129261 PMCID: PMC9555153 DOI: 10.1128/jvi.01015-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cutaneous beta genus human papillomaviruses (β-HPVs) are suspected to promote the development of nonmelanoma skin cancer (NMSC) by destabilizing the host genome. Multiple studies have established the genome destabilizing capacities of β-HPV proteins E6 and E7 as a cofactor with UV. However, the E6 protein from β-HPV8 (HPV8 E6) induces tumors in mice without UV exposure. Here, we examined a UV-independent mechanism of HPV8 E6-induced genome destabilization. We showed that HPV8 E6 reduced the abundance of anaphase bridge resolving helicase, Bloom syndrome protein (BLM). The diminished BLM was associated with increased segregation errors and micronuclei. These HPV8 E6-induced micronuclei had disordered micronuclear envelopes but retained replication and transcription competence. HPV8 E6 decreased antiproliferative responses to micronuclei and time-lapse imaging revealed HPV8 E6 promoted cells with micronuclei to complete mitosis. Finally, whole-genome sequencing revealed that HPV8 E6 induced chromothripsis in nine chromosomes. These data provide insight into mechanisms by which HPV8 E6 induces genome instability independent of UV exposure. IMPORTANCE Some beta genus human papillomaviruses (β-HPVs) may promote skin carcinogenesis by inducing mutations in the host genome. Supporting this, the E6 protein from β-HPV8 (8 E6) promotes skin cancer in mice with or without UV exposure. Many mechanisms by which 8 E6 increases mutations caused by UV have been elucidated, but less is known about how 8 E6 induces mutations without UV. We address that knowledge gap by showing that 8 E6 causes mutations stemming from mitotic errors. Specifically, 8 E6 reduces the abundance of BLM, a helicase that resolves and prevents anaphase bridges. This hinders anaphase bridge resolution and increases their frequency. 8 E6 makes the micronuclei that can result from anaphase bridges more common. These micronuclei often have disrupted envelopes yet retain localization of nuclear-trafficked proteins. 8 E6 promotes the growth of cells with micronuclei and causes chromothripsis, a mutagenic process where hundreds to thousands of mutations occur in a chromosome.
Collapse
Affiliation(s)
- Dalton Dacus
- Division of Biology, Kansas State Universitygrid.36567.31, Manhattan, Kansas, USA
| | - Steven Stancic
- Veterinary Diagnostic Laboratory, Kansas State Universitygrid.36567.31, Manhattan, Kansas, USA
| | - Sarah R Pollina
- Division of Biology, Kansas State Universitygrid.36567.31, Manhattan, Kansas, USA
| | - Elizabeth Rifrogiate
- Division of Biology, Kansas State Universitygrid.36567.31, Manhattan, Kansas, USA
| | - Rachel Palinski
- Veterinary Diagnostic Laboratory, Kansas State Universitygrid.36567.31, Manhattan, Kansas, USA
- Diagnostic Medicine/Pathobiology, Kansas State Universitygrid.36567.31, Manhattan, Kansas, USA
| | - Nicholas A Wallace
- Division of Biology, Kansas State Universitygrid.36567.31, Manhattan, Kansas, USA
| |
Collapse
|
28
|
Voigt AY, Emiola A, Johnson JS, Fleming ES, Nguyen H, Zhou W, Tsai KY, Fink C, Oh J. Skin Microbiome Variation with Cancer Progression in Human Cutaneous Squamous Cell Carcinoma. J Invest Dermatol 2022; 142:2773-2782.e16. [PMID: 35390349 PMCID: PMC9509417 DOI: 10.1016/j.jid.2022.03.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 12/13/2022]
Abstract
The skin microbiome plays a critical role in skin homeostasis and disorders. UVR is the major cause of nonmelanoma skin cancer, but other risk factors, including immune suppression, chronic inflammation, and antibiotic usage, suggest the microbiome as an additional, unexplored risk factor and potential disease biomarker. The overarching goal was to study the skin microbiome in squamous cell carcinoma (SCC) and premalignant actinic keratosis compared with that in healthy skin to identify skin cancer‒associated changes in the skin microbiome. We performed a high-resolution analysis of shotgun metagenomes of actinic keratosis and SCC in healthy skin, revealing the microbial community shifts specific to actinic keratosis and SCC. Most prominently, the relative abundance of pathobiont Staphylococcus aureus was increased at the expense of commensal Cutibacterium acnes in SCC compared with that in healthy skin, and enrichment of functional pathways in SCC reflected this shift. Notably, C. acnes associated with lesional versus healthy skin differed at the strain level, suggesting the specific functional changes associated with its depletion in SCC. Our study revealed a transitional microbial dysbiosis from healthy skin to actinic keratosis to SCC, supporting further investigation of the skin microbiome for use as a biomarker and providing hypotheses for studies investigating how these microbes might influence skin cancer progression.
Collapse
Affiliation(s)
- Anita Y Voigt
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Akintunde Emiola
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Jethro S Johnson
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA; Oxford Centre for Microbiome Studies, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | | | - Hoan Nguyen
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Wei Zhou
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Kenneth Y Tsai
- Department of Pathology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA; Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Christine Fink
- Department of Dermatology, Venereology, and Allergology, University Medical Center, Ruprecht-Karl University of Heidelberg, Heidelberg, Germany
| | - Julia Oh
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA.
| |
Collapse
|
29
|
Olczak P, Wong M, Tsai HL, Wang H, Kirnbauer R, Griffith AJ, Lambert PF, Roden R. Vaccination with human alphapapillomavirus-derived L2 multimer protects against human betapapillomavirus challenge, including in epidermodysplasia verruciformis model mice. Virology 2022; 575:63-73. [PMID: 36070626 PMCID: PMC9710205 DOI: 10.1016/j.virol.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022]
Abstract
Human alphapapillomaviruses (αHPV) infect genital mucosa, and a high-risk subset is a necessary cause of cervical cancer. Licensed L1 virus-like particle (VLP) vaccines offer immunity against the nine most common αHPV associated with cervical cancer and genital warts. However, vaccination with an αHPV L2-based multimer vaccine, α11-88x5, protected mice and rabbits from vaginal and skin challenge with diverse αHPV types. While generally clinically inapparent, human betapapillomaviruses (βHPV) are possibly associated with cutaneous squamous cell carcinoma (CSCC) in epidermodysplasia verruciformis (EV) and immunocompromised patients. Here we show that α11-88x5 vaccination protected wild type and EV model mice against HPV5 challenge. Passive transfer of antiserum conferred protection independently of Fc receptors (FcR) or Gr-1+ phagocytes. Antisera demonstrated robust antibody titers against ten βHPV by L1/L2 VLP ELISA and neutralized and protected against challenge by 3 additional βHPV (HPV49/76/96). Thus, unlike the licensed vaccines, α11-88x5 vaccination elicits broad immunity against αHPV and βHPV.
Collapse
Affiliation(s)
- Pola Olczak
- Department of Pathology, Johns Hopkins University, 1550 Orleans St, Baltimore, MD, 21287, United States
| | - Margaret Wong
- Department of Pathology, Johns Hopkins University, 1550 Orleans St, Baltimore, MD, 21287, United States
| | - Hua-Ling Tsai
- Department of Biostatistics, Johns Hopkins University, 550 N Broadway, Baltimore, MD, 21205, United States
| | - Hao Wang
- Department of Biostatistics, Johns Hopkins University, 550 N Broadway, Baltimore, MD, 21205, United States
| | - Reinhard Kirnbauer
- Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria
| | - Andrew J Griffith
- Department of Otolaryngology Head-Neck Surgery, College of Medicine-Memphis, University of Tennessee Health Sciences Center, 910 Madison Ave, Memphis, TN, 38163, United States
| | - Paul F Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, United States
| | - Richard Roden
- Department of Pathology, Johns Hopkins University, 1550 Orleans St, Baltimore, MD, 21287, United States.
| |
Collapse
|
30
|
Johnson LH, Son HG, Ha DT, Strickley JD, Joh J, Demehri S. Compromised T Cell Immunity Links Increased Cutaneous Papillomavirus Activity to Squamous Cell Carcinoma Risk. JID INNOVATIONS 2022; 3:100163. [PMID: 36714811 PMCID: PMC9879970 DOI: 10.1016/j.xjidi.2022.100163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 02/06/2023] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second most common cancer, with increased incidence in immunosuppressed patients. β-Human papillomavirus has been proposed as a contributor to cSCC risk partly on the basis of increased β-human papillomavirus viral load and seropositivity observed among patients with cSCC. Experimental data in mice colonized with mouse papillomavirus type 1 suggest that T cell immunity against β-human papillomavirus suppresses skin cancer in immunocompetent hosts, and the loss of this immunity leads to the increased risk of cSCC. In this study, we show that CD8+ T cell depletion in mouse papillomavirus type 1‒colonized mice that underwent skin carcinogenesis protocol led to increased viral load in the skin and seropositivity for anti‒mouse papillomavirus type 1 antibodies. These findings provide evidence that compromised T cell immunity can be the link that connects increased β-human papillomavirus detection to cSCC risk.
Collapse
Affiliation(s)
- Luke H. Johnson
- University of Louisville School of Medicine, Louisville, Kentucky, USA,Center for Cancer Immunology, Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA,Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA,Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Heehwa G. Son
- Center for Cancer Immunology, Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA,Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Dat Thinh Ha
- Center for Cancer Immunology, Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA,Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA,Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - John D. Strickley
- University of Louisville School of Medicine, Louisville, Kentucky, USA,Center for Cancer Immunology, Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA,Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA,Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Joongho Joh
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Shadmehr Demehri
- Center for Cancer Immunology, Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA,Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA,Correspondence: Shadmehr Demehri, Department of Dermatology and Cancer Center, Massachusetts General Hospital, 149 13th Street, 3rd Floor, Boston, Massachusetts 02114-2621, USA.
| |
Collapse
|
31
|
Romero-Masters JC, Lambert PF, Munger K. Molecular Mechanisms of MmuPV1 E6 and E7 and Implications for Human Disease. Viruses 2022; 14:2138. [PMID: 36298698 PMCID: PMC9611894 DOI: 10.3390/v14102138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Human papillomaviruses (HPVs) cause a substantial amount of human disease from benign disease such as warts to malignant cancers including cervical carcinoma, head and neck cancer, and non-melanoma skin cancer. Our ability to model HPV-induced malignant disease has been impeded by species specific barriers and pre-clinical animal models have been challenging to develop. The recent discovery of a murine papillomavirus, MmuPV1, that infects laboratory mice and causes the same range of malignancies caused by HPVs provides the papillomavirus field the opportunity to test mechanistic hypotheses in a genetically manipulatable laboratory animal species in the context of natural infections. The E6 and E7 proteins encoded by high-risk HPVs, which are the HPV genotypes associated with human cancers, are multifunctional proteins that contribute to HPV-induced cancers in multiple ways. In this review, we describe the known activities of the MmuPV1-encoded E6 and E7 proteins and how those activities relate to the activities of HPV E6 and E7 oncoproteins encoded by mucosal and cutaneous high-risk HPV genotypes.
Collapse
Affiliation(s)
- James C. Romero-Masters
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Karl Munger
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
32
|
Wong ELY, Cheung AWL, Chen Z, Wong AYK, Yeung ACM, Yau PSY, Chan PKS. Molecular Epidemiology of Human Papillomavirus Infection Among Chinese Women With Cervical Cytological Abnormalities. Front Public Health 2022; 10:820517. [PMID: 35655449 PMCID: PMC9152134 DOI: 10.3389/fpubh.2022.820517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background Virtually all invasive cervical cancers are caused by persistent genital human papillomavirus (HPV) infection. Therefore, HPV-based screening becomes an essential tool as one of the cervical prevention strategies to reduce the disease burden. Population-specific epidemiologic information on HPV infection among women with cytological abnormalities is essential to inform the strategy of HPV-based screening programme. The study also explored the presence of cutaneous HPV types (Beta-β and Gamma-γ) in cervical infections. Methods A cross-sectional study on Chinese women aged ≥25 years who were referred to public specialist out-patient clinics for colposcopy or further management of cervical cytological abnormalities were recruited between 2015 and 2016 in Hong Kong. HPV was detected and typified by the novel PCR-based Next-Generation Sequencing (NGS) strategies. Results The overall HPV infection rate was 74% and detected in 222 of the 300 respondents, with the prevalence of cutaneous HPV infection being 2.3%. The overall prevalence of HPV infection among women with current cytological abnormalities was 79.1% (197/249). The age-specific prevalence of HPV (any-type HPV infection) among women with cytological abnormalities reached the first peak with 87.9% in the age group of 35–39 years and gradually declined to 56.0% at 55–59 years. While a second peak occurred at 65 years or above (92.9%). HPV58 (13.7%), HPV52 (11.7%), HPV53 (11.2%), HPV16 (10.0%), HPV18 (5.2%), and HPV51 (5.2%) were the top five high-risk HPV genotypes among women with cytological abnormalities. Any-HPV type infection was significantly associated with an abnormal cervical smear (OR = 3.7; 95% CI 2.0–7.1), and high-risk HPV infection was also significantly associated with an abnormal cervical smear (OR = 6.3; 95% CI 3.0–13.5). Conclusion New evidence on the second peak of HPV infection at ≥65 years old suggests the necessity to review the current guideline for the cervical screening program extending to age 65 and above. Moreover, the high prevalence of two HPV genotypes—high-risk HPV51 and potential high-risk HPV53, among women with cytological abnormalities—suggests further research work is needed to confirm the contributory role of HPV51 and HPV53 in cervical cancer and the need for inclusion in the next generation of the HPV vaccine.
Collapse
Affiliation(s)
- Eliza Lai-Yi Wong
- Centre for Health Systems and Policy Research, The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Annie Wai-Ling Cheung
- Centre for Health Systems and Policy Research, The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Zigui Chen
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Amy Yuen-Kwan Wong
- Centre for Health Systems and Policy Research, The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Apple Chung-Man Yeung
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Peter Sen-Yung Yau
- Centre for Health Systems and Policy Research, The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Paul Kay-Sheung Chan
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
33
|
Small DNA tumor viruses and human cancer: Preclinical models of virus infection and disease. Tumour Virus Res 2022; 14:200239. [PMID: 35636683 PMCID: PMC9194455 DOI: 10.1016/j.tvr.2022.200239] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/05/2022] [Accepted: 05/25/2022] [Indexed: 01/13/2023] Open
Abstract
Human tumor viruses cause various human cancers that account for at least 15% of the global cancer burden. Among the currently identified human tumor viruses, two are small DNA tumor viruses: human papillomaviruses (HPVs) and Merkel cell polyomavirus (MCPyV). The study of small DNA tumor viruses (adenoviruses, polyomaviruses, and papillomaviruses) has facilitated several significant biological discoveries and established some of the first animal models of virus-associated cancers. The development and use of preclinical in vivo models to study HPVs and MCPyV and their role in human cancer is the focus of this review. Important considerations in the design of animal models of small DNA tumor virus infection and disease, including host range, cell tropism, choice of virus isolates, and the ability to recapitulate human disease, are presented. The types of infection-based and transgenic model strategies that are used to study HPVs and MCPyV, including their strengths and limitations, are also discussed. An overview of the current models that exist to study HPV and MCPyV infection and neoplastic disease are highlighted. These comparative models provide valuable platforms to study various aspects of virus-associated human disease and will continue to expand knowledge of human tumor viruses and their relationship with their hosts.
Collapse
|
34
|
Poirson J, Suarez IP, Straub ML, Cousido-Siah A, Peixoto P, Hervouet E, Foster A, Mitschler A, Mukobo N, Chebaro Y, Garcin D, Recberlik S, Gaiddon C, Altschuh D, Nominé Y, Podjarny A, Trave G, Masson M. High-Risk Mucosal Human Papillomavirus 16 (HPV16) E6 Protein and Cutaneous HPV5 and HPV8 E6 Proteins Employ Distinct Strategies To Interfere with Interferon Regulatory Factor 3-Mediated Beta Interferon Expression. J Virol 2022; 96:e0187521. [PMID: 35475668 PMCID: PMC9131866 DOI: 10.1128/jvi.01875-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/30/2022] [Indexed: 12/11/2022] Open
Abstract
Persistent infection with some mucosal α-genus human papillomaviruses (HPVs; the most prevalent one being HPV16) can induce cervical carcinoma, anogenital cancers, and a subset of head and neck squamous cell carcinoma (HNSCC). Cutaneous β-genus HPVs (such as HPV5 and HPV8) associate with skin lesions that can progress into squamous cell carcinoma with sun exposure in Epidermodysplasia verruciformis patients and immunosuppressed patients. Here, we analyzed mechanisms used by E6 proteins from the α- and β-genus to inhibit the interferon-β (IFNB1) response. HPV16 E6 mediates this effect by a strong direct interaction with interferon regulatory factor 3 (IRF3). The binding site of E6 was localized within a flexible linker between the DNA-binding domain and the IRF-activation domain of IRF3 containing an LxxLL motif. The crystallographic structure of the complex between HPV16 E6 and the LxxLL motif of IRF3 was solved and compared with the structure of HPV16 E6 interacting with the LxxLL motif of the ubiquitin ligase E6AP. In contrast, cutaneous HPV5 and HPV8 E6 proteins bind to the IRF3-binding domain (IBiD) of the CREB-binding protein (CBP), a key transcriptional coactivator in IRF3-mediated IFN-β expression. IMPORTANCE Persistent HPV infections can be associated with the development of several cancers. The ability to persist depends on the ability of the virus to escape the host immune system. The type I interferon (IFN) system is the first-line antiviral defense strategy. HPVs carry early proteins that can block the activation of IFN-I. Among mucosal α-genus HPV types, the HPV16 E6 protein has a remarkable property to strongly interact with the transcription factor IRF3. Instead, cutaneous HPV5 and HPV8 E6 proteins bind to the IRF3 cofactor CBP. These results highlight the versatility of E6 proteins to interact with different cellular targets. The interaction between the HPV16 E6 protein and IRF3 might contribute to the higher prevalence of HPV16 than that of other high-risk mucosal HPV types in HPV-associated cancers.
Collapse
Affiliation(s)
- Juline Poirson
- Equipe Signalisation Nucléaire, UMR 7242, CNRS, Université de Strasbourg, Ecole Supérieure de Biotechnologie de Strasbourg (ESBS), Illkirch, France
| | - Irina Paula Suarez
- Equipe Labellisée Ligue 2015, Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Marie-Laure Straub
- Equipe Signalisation Nucléaire, UMR 7242, CNRS, Université de Strasbourg, Ecole Supérieure de Biotechnologie de Strasbourg (ESBS), Illkirch, France
| | - Alexandra Cousido-Siah
- Equipe Labellisée Ligue 2015, Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Paul Peixoto
- Equipe TIM-C, groupe “Autophagy, EMT and antitumor T-cell immunity,” INSERM UMR1098, Laboratoire de Biochimie, Besançon, France
| | - Eric Hervouet
- Equipe TIM-C, groupe “Autophagy, EMT and antitumor T-cell immunity,” INSERM UMR1098, Laboratoire de Biochimie, Besançon, France
| | - Anne Foster
- Equipe Signalisation Nucléaire, UMR 7242, CNRS, Université de Strasbourg, Ecole Supérieure de Biotechnologie de Strasbourg (ESBS), Illkirch, France
| | - André Mitschler
- Equipe Labellisée Ligue 2015, Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Noella Mukobo
- Equipe Signalisation Nucléaire, UMR 7242, CNRS, Université de Strasbourg, Ecole Supérieure de Biotechnologie de Strasbourg (ESBS), Illkirch, France
| | - Yassmine Chebaro
- Equipe Labellisée Ligue 2015, Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Dominique Garcin
- Department of Microbiology and Molecular Medicine, University of Geneva School of Medicine, Geneva, Switzerland
| | | | | | - Danièle Altschuh
- Equipe Labellisée Ligue 2015, Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Yves Nominé
- Equipe Labellisée Ligue 2015, Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Alberto Podjarny
- Equipe Labellisée Ligue 2015, Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Gilles Trave
- Equipe Labellisée Ligue 2015, Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Murielle Masson
- Equipe Signalisation Nucléaire, UMR 7242, CNRS, Université de Strasbourg, Ecole Supérieure de Biotechnologie de Strasbourg (ESBS), Illkirch, France
| |
Collapse
|
35
|
Hu C, Wallace N. Beta HPV Deregulates Double-Strand Break Repair. Viruses 2022; 14:948. [PMID: 35632690 PMCID: PMC9146468 DOI: 10.3390/v14050948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Beta human papillomavirus (beta HPV) infections are common in adults. Certain types of beta HPVs are associated with nonmelanoma skin cancer (NMSC) in immunocompromised individuals. However, whether beta HPV infections promote NMSC in the immunocompetent population is unclear. They have been hypothesized to increase genomic instability stemming from ultraviolet light exposure by disrupting DNA damage responses. Implicit in this hypothesis is that the virus encodes one or more proteins that impair DNA repair signaling. Fluorescence-based reporters, next-generation sequencing, and animal models have been used to test this primarily in cells expressing beta HPV E6/E7. Of the two, beta HPV E6 appears to have the greatest ability to increase UV mutagenesis, by attenuating two major double-strand break (DSB) repair pathways, homologous recombination, and non-homologous end-joining. Here, we review this dysregulation of DSB repair and emerging approaches that can be used to further these efforts.
Collapse
Affiliation(s)
| | - Nicholas Wallace
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA;
| |
Collapse
|
36
|
Ursu RG, Damian C, Porumb-Andrese E, Ghetu N, Cobzaru RG, Lunca C, Ripa C, Costin D, Jelihovschi I, Petrariu FD, Iancu LS. Merkel Cell Polyoma Virus and Cutaneous Human Papillomavirus Types in Skin Cancers: Optimal Detection Assays, Pathogenic Mechanisms, and Therapeutic Vaccination. Pathogens 2022; 11:pathogens11040479. [PMID: 35456154 PMCID: PMC9032856 DOI: 10.3390/pathogens11040479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 02/06/2023] Open
Abstract
Oncogenic viruses are recognized to be involved in some cancers, based on very well-established criteria of carcinogenicity. For cervical cancer and liver cancer, the responsible viruses are well-known (e.g., HPV, HBV); in the case of skin cancer, there are still many studies which are trying to identify the possible viral etiologic agents as principal co-factors in the oncogenic process. We analysed scientific literature published in the last 5 years regarding mechanisms of carcinogenicity, methods of detection, available targeted therapy, and vaccination for Merkel cell polyomavirus, and beta human papillomavirus types, in relation to skin cancer. This review is targeted at presenting the recent findings which support the involvement of these viruses in the development of some types of skin cancers. In order to optimize the management of skin cancer, a health condition of very high importance, it would be ideal that the screening of skin cancer for these two analysed viruses (MCPyV and beta HPV types) to be implemented in each region's/country's cancer centres' molecular detection diagnostic platforms, with multiplex viral capability, optimal sensitivity, and specificity; clinically validated, and if possible, at acceptable costs. For confirmatory diagnosis of skin cancer, another method should be used, with a different principle, such as immunohistochemistry, with specific antibodies for each virus.
Collapse
Affiliation(s)
- Ramona Gabriela Ursu
- Department of Preventive Medicine and Interdisciplinarity (IX)—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (R.G.U.); (C.D.); (R.G.C.); (C.L.); (C.R.); (D.C.); (I.J.); (F.D.P.); (L.S.I.)
| | - Costin Damian
- Department of Preventive Medicine and Interdisciplinarity (IX)—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (R.G.U.); (C.D.); (R.G.C.); (C.L.); (C.R.); (D.C.); (I.J.); (F.D.P.); (L.S.I.)
| | - Elena Porumb-Andrese
- Department of Medical Specialties (III)—Dermatology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Nicolae Ghetu
- Department of Plastic Surgery, Regional Oncology Institute, 700483 Iasi, Romania
- Correspondence:
| | - Roxana Gabriela Cobzaru
- Department of Preventive Medicine and Interdisciplinarity (IX)—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (R.G.U.); (C.D.); (R.G.C.); (C.L.); (C.R.); (D.C.); (I.J.); (F.D.P.); (L.S.I.)
| | - Catalina Lunca
- Department of Preventive Medicine and Interdisciplinarity (IX)—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (R.G.U.); (C.D.); (R.G.C.); (C.L.); (C.R.); (D.C.); (I.J.); (F.D.P.); (L.S.I.)
| | - Carmen Ripa
- Department of Preventive Medicine and Interdisciplinarity (IX)—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (R.G.U.); (C.D.); (R.G.C.); (C.L.); (C.R.); (D.C.); (I.J.); (F.D.P.); (L.S.I.)
| | - Diana Costin
- Department of Preventive Medicine and Interdisciplinarity (IX)—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (R.G.U.); (C.D.); (R.G.C.); (C.L.); (C.R.); (D.C.); (I.J.); (F.D.P.); (L.S.I.)
| | - Igor Jelihovschi
- Department of Preventive Medicine and Interdisciplinarity (IX)—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (R.G.U.); (C.D.); (R.G.C.); (C.L.); (C.R.); (D.C.); (I.J.); (F.D.P.); (L.S.I.)
| | - Florin Dumitru Petrariu
- Department of Preventive Medicine and Interdisciplinarity (IX)—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (R.G.U.); (C.D.); (R.G.C.); (C.L.); (C.R.); (D.C.); (I.J.); (F.D.P.); (L.S.I.)
| | - Luminita Smaranda Iancu
- Department of Preventive Medicine and Interdisciplinarity (IX)—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (R.G.U.); (C.D.); (R.G.C.); (C.L.); (C.R.); (D.C.); (I.J.); (F.D.P.); (L.S.I.)
| |
Collapse
|
37
|
Feunteun J, Ostyn P, Delaloge S. TUMOR CELL MALIGNANCY: A COMPLEX TRAIT BUILT THROUGH RECIPROCAL INTERACTIONS BETWEEN TUMORS AND TISSUE-BODY SYSTEM. iScience 2022; 25:104217. [PMID: 35494254 PMCID: PMC9044163 DOI: 10.1016/j.isci.2022.104217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Since the discovery of oncogenes and tumor suppressor genes in the late past century, cancer research has been overwhelmingly focused on the genetics and biology of tumor cells and hence has addressed mostly cell-autonomous processes with emphasis on traditional driver/passenger genetic models. Nevertheless, over that same period, multiple seminal observations have accumulated highlighting the role of non-cell autonomous effectors in tumor growth and metastasis. However, given that cell autonomous and non-autonomous events are observed together at the time of diagnosis, it is in fact impossible to know whether the malignant transformation is initiated by cell autonomous oncogenic events or by non-cell autonomous conditions generated by alterations of the tissue-body ecosystem. This review aims at addressing this issue by taking the option of defining malignancy as a complex genetic trait incorporating genetically determined reciprocal interactions between tumor cells and tissue-body ecosystem.
Collapse
Affiliation(s)
- Jean Feunteun
- INSERM U981, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- UMR 9019, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Corresponding author
| | - Pauline Ostyn
- UMR 9019, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Suzette Delaloge
- Breast Cancer Group, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
38
|
Zampella J, Cohen B. Consideration of underlying immunodeficiency in refractory or recalcitrant warts: A review of the literature. SKIN HEALTH AND DISEASE 2022; 2:e98. [PMID: 35665206 PMCID: PMC9060099 DOI: 10.1002/ski2.98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/12/2022] [Accepted: 01/16/2022] [Indexed: 11/16/2022]
Abstract
Although the exact mechanisms have yet to be elucidated, it is clear that cellular immunity plays a role in clearance of human papillomavirus (HPV) infections as it relates to the development of warts. Patients with extensive, recalcitrant, or treatment‐refractory warts may have an underlying immune system impairment at the root of HPV susceptibility. Early recognition of genetic disorders associated with immunologic defects that allow for recalcitrant HPV infection may expedite appropriate treatment for patients. Early recognition is often pivotal in preventing subsequent morbidity and/or mortality that may arise from inborn errors of immunity, such as WHIM (Warts, Hypogammaglobulinemia, Infections, Myelokathexis) syndrome. Among these, cervical cancer is one of the most common malignancies associated with HPV, can be fatal if not treated early, and is seen more frequently in patients with underlying immune deficiencies. A review of diseases with susceptibility to HPV provides clues to understanding the pathophysiology of warts. We also present diagnostic guidance to facilitate the recognition of inborn errors of immunity in patients with extensive and/or recalcitrant HPV infections.
Collapse
Affiliation(s)
- J. Zampella
- Ronald O. Perelman Department of Dermatology NYU Grossman School of Medicine New York New York USA
| | - B. Cohen
- Division of Pediatric Dermatology Johns Hopkins University School of Medicine Baltimore Maryland USA
| |
Collapse
|
39
|
Lebeau A, Bruyere D, Roncarati P, Peixoto P, Hervouet E, Cobraiville G, Taminiau B, Masson M, Gallego C, Mazzucchelli G, Smargiasso N, Fleron M, Baiwir D, Hendrick E, Pilard C, Lerho T, Reynders C, Ancion M, Greimers R, Twizere JC, Daube G, Schlecht-Louf G, Bachelerie F, Combes JD, Melin P, Fillet M, Delvenne P, Hubert P, Herfs M. HPV infection alters vaginal microbiome through down-regulating host mucosal innate peptides used by Lactobacilli as amino acid sources. Nat Commun 2022; 13:1076. [PMID: 35228537 PMCID: PMC8885657 DOI: 10.1038/s41467-022-28724-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 02/03/2022] [Indexed: 02/06/2023] Open
Abstract
Despite the high prevalence of both cervico-vaginal human papillomavirus (HPV) infection and bacterial vaginosis (BV) worldwide, their causal relationship remains unclear. While BV has been presumed to be a risk factor for HPV acquisition and related carcinogenesis for a long time, here, supported by both a large retrospective follow-up study (n = 6,085) and extensive in vivo data using the K14-HPV16 transgenic mouse model, we report a novel blueprint in which the opposite association also exists. Mechanistically, by interacting with several core members (NEMO, CK1 and β-TrCP) of both NF-κB and Wnt/β-catenin signaling pathways, we show that HPV E7 oncoprotein greatly inhibits host defense peptide expression. Physiologically secreted by the squamous mucosa lining the lower female genital tract, we demonstrate that some of these latter are fundamental factors governing host-microbial interactions. More specifically, several innate molecules down-regulated in case of HPV infection are hydrolyzed, internalized and used by the predominant Lactobacillus species as amino acid source sustaining their growth/survival. Collectively, this study reveals a new viral immune evasion strategy which, by its persistent/negative impact on lactic acid bacteria, ultimately causes the dysbiosis of vaginal microbiota.
Collapse
Affiliation(s)
- Alizee Lebeau
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Diane Bruyere
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Patrick Roncarati
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Paul Peixoto
- INSERM, EFS BFC, UMR 1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, University of Bourgogne Franche-Comté, Besançon, France
- EPIGENEXP platform, University of Bourgogne Franche-Comté, Besançon, France
| | - Eric Hervouet
- INSERM, EFS BFC, UMR 1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, University of Bourgogne Franche-Comté, Besançon, France
- EPIGENEXP platform, University of Bourgogne Franche-Comté, Besançon, France
| | - Gael Cobraiville
- Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, Liege, Belgium
| | - Bernard Taminiau
- Department of Food Sciences-Microbiology, Fundamental and Applied Research for Animals and Health (FARAH), Faculty of Veterinary Medicine, University of Liege, Liege, Belgium
| | - Murielle Masson
- Ecole Supérieure de Biotechnologie Strasbourg, UMR 7242, CNRS, University of Strasbourg, Illkirch, France
| | - Carmen Gallego
- INSERM UMR 996, Inflammation Microbiome and Immunosurveillance, University of Paris-Saclay, Clamart, France
| | - Gabriel Mazzucchelli
- Laboratory of Mass Spectrometry, Department of Chemistry, University of Liege, Liege, Belgium
| | - Nicolas Smargiasso
- Laboratory of Mass Spectrometry, Department of Chemistry, University of Liege, Liege, Belgium
| | - Maximilien Fleron
- Laboratory of Mass Spectrometry, Department of Chemistry, University of Liege, Liege, Belgium
- GIGA Proteomic Facility, University of Liege, Liege, Belgium
| | - Dominique Baiwir
- Laboratory of Mass Spectrometry, Department of Chemistry, University of Liege, Liege, Belgium
- GIGA Proteomic Facility, University of Liege, Liege, Belgium
| | - Elodie Hendrick
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Charlotte Pilard
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Thomas Lerho
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Celia Reynders
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Marie Ancion
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Roland Greimers
- Department of Pathology, University Hospital Center of Liege, Liege, Belgium
| | - Jean-Claude Twizere
- Laboratory of Signaling and Protein Interactions, GIGA-Molecular Biology of Diseases, University of Liege, Liege, Belgium
| | - Georges Daube
- Department of Food Sciences-Microbiology, Fundamental and Applied Research for Animals and Health (FARAH), Faculty of Veterinary Medicine, University of Liege, Liege, Belgium
| | - Geraldine Schlecht-Louf
- INSERM UMR 996, Inflammation Microbiome and Immunosurveillance, University of Paris-Saclay, Clamart, France
| | - Françoise Bachelerie
- INSERM UMR 996, Inflammation Microbiome and Immunosurveillance, University of Paris-Saclay, Clamart, France
| | - Jean-Damien Combes
- Infections and Cancer Epidemiology Group, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Pierrette Melin
- Department of Clinical Microbiology, University Hospital Center of Liege, Liege, Belgium
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, Liege, Belgium
| | - Philippe Delvenne
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
- Department of Pathology, University Hospital Center of Liege, Liege, Belgium
| | - Pascale Hubert
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Michael Herfs
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium.
| |
Collapse
|
40
|
Khan NH, Mir M, Qian L, Baloch M, Ali Khan MF, Rehman AU, Ngowi EE, Wu DD, Ji XY. Skin cancer biology and barriers to treatment: Recent applications of polymeric micro/nanostructures. J Adv Res 2022; 36:223-247. [PMID: 35127174 PMCID: PMC8799916 DOI: 10.1016/j.jare.2021.06.014] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 12/15/2022] Open
Abstract
Background Skin cancer has been the leading type of cancer worldwide. Melanoma and non-melanoma skin cancers are now the most common types of skin cancer that have been reached to epidemic proportion. Based on the rapid prevalence of skin cancers, and lack of efficient drug delivery systems, it is essential to surge the possible ways to prevent or cure the disease. Aim of review Although surgical modalities and therapies have been made great progress in recent years, however, there is still an urgent need to alleviate its increased burden. Hence, understanding the precise pathophysiological signaling mechanisms and all other factors of such skin insults will be beneficial for the development of more efficient therapies. Key scientific concepts of review In this review, we explained new understandings about onset and development of skin cancer and described its management via polymeric micro/nano carriers-based therapies, highlighting the current key bottlenecks and future prospective in this field. In therapeutic drug/gene delivery approaches, polymeric carriers-based system is the most promising strategy. This review discusses that how polymers have successfully been exploited for development of micro/nanosized systems for efficient delivery of anticancer genes and drugs overcoming all the barriers and limitations associated with available conventional therapies. In addition to drug/gene delivery, intelligent polymeric nanocarriers platforms have also been established for combination anticancer therapies including photodynamic and photothermal, and for theranostic applications. This portfolio of latest approaches could promote the blooming growth of research and their clinical availability.
Collapse
Key Words
- 5-ALA, 5-aminolevulinic acid
- 5-FU, 5-fluorouracil
- AIDS, Acquired immune deficiency syndrome
- BCC, Basal cell carcinoma
- BCCs, Basal cell carcinomas
- Basal cell carcinoma
- CREB, response element-binding protein
- DDS, Drug delivery system
- DIM-D, Di indolyl methane derivative
- Drug delivery
- GNR-PEG-MN, PEGylated gold nanorod microneedle
- Gd, Gadolinium
- Gene delivery
- HH, Hedgehog
- HPMC, Hydroxypropyl methylcellulose
- IPM, Isopropyl myristate
- MCIR, Melanocortin-1 receptor
- MNPs, Magnetic nanoparticle
- MNs, Microneedles
- MRI, Magnetic Resonance Imaging
- MSC, Melanoma skin cancer
- Microneedles
- Mn, Manganese
- NMSC, Non melanoma skin cancer
- NPs, Nano Particles
- OTR, Organ transplant recipients
- PAMAM, Poly-amidoamines
- PAN, Polyacrylonitrile
- PATCH1, Patch
- PCL, Poly (ε-caprolactone)
- PDT, Photodynamic therapy
- PEG, Polyethylene glycol
- PLA, Poly lactic acid
- PLA-HPG, Poly (d-l-lactic acid)-hyperbranched polyglycerol
- PLGA, Poly (lactide-co-glycolide) copolymers
- PLL, Poly (L-lysine)
- Polymeric nanocarriers
- QDs, Quantum dots
- SC, Skin cancer
- SCC, Squamous cell Carcinoma
- SMO, Smoothen
- SPIO, Superparamagnetic iron oxide
- Squamous cell carcinoma
- UV, Ultra Violet
- cAMP, Cyclic adenosine monophosphate
- dPG, Dendritic polyglycerol
- hTERT, Human telomerase reverse transcriptase
Collapse
Affiliation(s)
- Nazeer Hussain Khan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Life Sciences. Henan University, Kaifeng, Henan 475004, China
| | - Maria Mir
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Lei Qian
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Mahnoor Baloch
- School of Natural Sciences, National University of Science and Technology, Islamabad 44000, Pakistan
| | - Muhammad Farhan Ali Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Asim-ur- Rehman
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Ebenezeri Erasto Ngowi
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Department of Biological Sciences, Faculty of Sciences, Dar es Salaam University College of Education, Dar es Salaam 2329, Tanzania
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
41
|
Kricker A, Weber MF, Pawlita M, Sitas F, Hodgkinson VS, Rahman B, van Kemenade CH, Armstrong BK, Waterboer T. Cutaneous beta HPVs, sun exposure and risk of squamous and basal cell skin cancers in Australia. Cancer Epidemiol Biomarkers Prev 2021; 31:614-624. [PMID: 34933956 DOI: 10.1158/1055-9965.epi-21-1000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/24/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Sun exposure causes cutaneous squamous (SCC) and basal cell (BCC) carcinomas. Human papillomavirus (HPV) infection might cause SCC. METHODS We examined associations of beta and gamma HPV infection in skin-swab DNA and serum antibodies with skin cancer risk, and modification of the carcinogenic effects of sun exposure by them, in case-control studies of 385 SCC cases, 832 BCC cases and 1100 controls nested in an Australian prospective cohort study (enrolled 2006-2009). RESULTS Presence of beta-1 and beta-3 HPV DNA appeared to increase risks for SCC and BCC by 30%-40% (P adjusted <0.01). BCC was also associated with genus beta DNA, OR=1.48; 95%CI 1.10-2.00 (P adjusted <0.01). Associations were strengthened with each additional positive beta HPV DNA type: SCC (OR=1.07; 95%CI 1.02-1.12) and BCC (OR=1.06; 95%CI 1.03-1.10), P trend <0.01. Positivity to genus beta or gamma in serology, and genus gamma in DNA, was not associated with either cancer. There was little evidence that any beta HPV type was more strongly associated than others with either cancer. A weaker association of sun-exposure with SCC and BCC in the presence of beta-3 HPVs than in their absence suggests that beta-3 HPVs modify sun exposure's effect. CONCLUSIONS Our substantive findings are at the level of genus beta HPV. Like SCC, BCC risk may increase with increasing numbers of beta HPV types on skin. IMPACT The consistency in our findings that HPV infection may moderate the effects of sun exposure, the main environmental cause of SCC and BCC, merits further investigation.
Collapse
Affiliation(s)
- Anne Kricker
- The Daffodil Centre, a joint venture with Cancer Council NSW, Sydney School of Public Health, The University of Sydney
| | - Marianne F Weber
- The Daffodil Centre, a joint venture with Cancer Council NSW, Sydney School of Public Health, The University of Sydney
| | - Michael Pawlita
- Infections and Cancer Epidemiology, German Cancer Research Center
| | - Freddy Sitas
- Centre for Primary Health Care and Equity, University of New South Wales
| | | | | | | | - Bruce K Armstrong
- School of Population and Global Health, University of Western Australia
| | - Tim Waterboer
- Infections and Cancer Epidemiology, German Cancer Research Center
| |
Collapse
|
42
|
Vandiver AR, Thomas BJ, Karimzada M, Knowles BC, Botten GA, Spreafico R, Rotman JN, Gharavi NM, Chesnut C, Wesel K, Mangul S, Soriano T, Scumpia PO. Detection of viral gene expression in risk-stratified biopsies reveals no active HPV in cutaneous squamous cell carcinoma. Exp Dermatol 2021; 30:1711-1716. [PMID: 34036652 PMCID: PMC9639216 DOI: 10.1111/exd.14385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/05/2021] [Indexed: 01/23/2023]
Abstract
BACKGROUND Human papillomavirus (HPV) infection is known to promote the development of mucosal squamous cell carcinoma (mSCC), including pathologically high-grade lesions, but its role in cutaneous squamous cell carcinoma (cuSCC) remains unclear, particularly in lesions that are considered high risk. OBJECTIVE We aimed to determine whether enhanced HPV transcriptional activity can be detected in high-risk cuSCC samples compared with low-grade SCC samples or normal skin. METHODS We performed RNA sequencing of cuSCC across 23 risk-stratified skin lesions. A subset of samples was tested for the presence of HPV DNA. High-quality, non-human reads from each sample group were used for viral analysis using Microbiome Coverage Profiler. RESULTS None of the samples analysed had detectable expression of HPV RNA, while 64% of samples tested positive for HPV DNA. All samples were found to have expression of human endogenous retrovirus, and multiple samples showed expression of other viruses. CONCLUSIONS Viral and prophage gene expression can be monitored in cuSCC or normal skin biopsies, yet no sample in our study showed evidence of active HPV gene expression despite evidence of HPV genome presence. This suggests HPV transcription does not play a role in differentiating high-risk cuSCCs from low-risk cuSCCs or normal skin.
Collapse
Affiliation(s)
- Amy R. Vandiver
- Department of Medicine, Division of Dermatology, University of California, Los Angeles, CA, USA
| | - Brandon J. Thomas
- David Geffen School of Medicine, University of California at Los Angeles, CA, USA
| | - Mohammad Karimzada
- David Geffen School of Medicine, University of California at Los Angeles, CA, USA
| | - Byron C. Knowles
- Department of Dermatology, University of California at San Francisco, CA, USA
| | - Giovanni A. Botten
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA, USA
| | - Roberto Spreafico
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA, USA
| | - Jeremy N. Rotman
- Department of Computer Science, University of California, Los Angeles, CA, USA
| | - Nima M Gharavi
- Department of Dermatology and Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Cameron Chesnut
- University of Washington School of Medicine, Spokane, WAS, USA,Chestnut MD Cosmetic Surgery Fellowship at Clinic 5C, Spokane, WAS, USA
| | - Kevin Wesel
- Department of Computer Science, University of California, Los Angeles, CA, USA
| | - Serghei Mangul
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Teresa Soriano
- Department of Medicine, Division of Dermatology, University of California, Los Angeles, CA, USA
| | - Philip O. Scumpia
- Department of Medicine, Division of Dermatology, University of California, Los Angeles, CA, USA,Department of Dermatology, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| |
Collapse
|
43
|
Tampa M, Nicolae I, Mitran CI, Mitran MI, Ene C, Matei C, Georgescu SR, Ene CD. Serum Sialylation Changes in Actinic Keratosis and Cutaneous Squamous Cell Carcinoma Patients. J Pers Med 2021; 11:jpm11101027. [PMID: 34683168 PMCID: PMC8538811 DOI: 10.3390/jpm11101027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 01/16/2023] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC), a malignant proliferation of the cutaneous epithelium, is the second most common skin cancer after basal cell carcinoma (BCC). Unlike BCC, cSCC exhibits a greater aggressiveness and the ability to metastasize to any organ in the body. Chronic inflammation and immunosuppression are important processes linked to the development of cSCC. The tumor can occur de novo or from the histological transformation of preexisting actinic keratoses (AK). Malignant cells exhibit a higher amount of sialic acid in their membranes than normal cells, and changes in the amount, type, or linkage of sialic acid in malignant cell glycoconjugates are related to tumor progression and metastasis. The aim of our study was to investigate the sialyation in patients with cSCC and patients with AK. We have determined the serum levels of total sialic acid (TSA), lipid-bound sialic acid (LSA), beta-galactoside 2,6-sialyltransferase I (ST6GalI), and neuraminidase 3 (NEU3) in 40 patients with cSCC, 28 patients with AK, and 40 healthy subjects. Data analysis indicated a significant increase in serum levels of TSA (p < 0.001), LSA (p < 0.001), ST6GalI (p < 0.001), and NEU3 (p < 0.001) in the cSCC group compared to the control group, whereas in patients with AK only the serum level of TSA was significantly higher compared to the control group (p < 0.001). When the cSCC and AK groups were compared, significant differences between the serum levels of TSA (p < 0.001), LSA (p < 0.001), ST6GalI (p < 0.001) and NEU3 (p < 0.001) were found. The rate of synthesis of sialoglycoconjugates and their rate of enzymatic degradation, expressed by the ST6GalI/NEU3 ratio, is 1.64 times lower in the cSCC group compared to the control group (p < 0.01) and 1.53 times lower compared to the AK group (p < 0.01). The tumor diameter, depth of invasion, and Ki67 were associated with higher levels of TSA and LSA. These results indicate an aberrant sialylation in cSCC that correlates with tumor aggressiveness.
Collapse
Affiliation(s)
- Mircea Tampa
- Department of Dermatology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.T.); (C.M.)
- Department of Dermatology, ‘Victor Babes’ Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania
| | - Ilinca Nicolae
- Department of Dermatology, ‘Victor Babes’ Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania
- Correspondence: (I.N.); (S.R.G.)
| | - Cristina Iulia Mitran
- Department of Microbiology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.I.M.); (M.I.M.)
| | - Madalina Irina Mitran
- Department of Microbiology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.I.M.); (M.I.M.)
| | - Cosmin Ene
- Departments of Urology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Clara Matei
- Department of Dermatology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.T.); (C.M.)
| | - Simona Roxana Georgescu
- Department of Dermatology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.T.); (C.M.)
- Department of Dermatology, ‘Victor Babes’ Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania
- Correspondence: (I.N.); (S.R.G.)
| | - Corina Daniela Ene
- Department of Nephrology, ‘Carol Davila’ Nephrology Hospital, 010731 Bucharest, Romania;
- Departments of Nephrology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
44
|
Kirschberg M, Syed AS, Dönmez HG, Heuser S, Wilbrand-Hennes A, Alonso A, Hufbauer M, Akgül B. Novel Insights Into Cellular Changes in HPV8-E7 Positive Keratinocytes: A Transcriptomic and Proteomic Analysis. Front Microbiol 2021; 12:672201. [PMID: 34552568 PMCID: PMC8450583 DOI: 10.3389/fmicb.2021.672201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/29/2021] [Indexed: 12/16/2022] Open
Abstract
Human papillomavirus type 8 (HPV8) is associated with the development of non-melanoma skin cancer. In the past we already delved into the mechanisms involved in keratinocyte invasion, showing that the viral E7 oncoprotein is a key player that drives invasion of basal keratinocytes controlled by the extracellular protein fibronectin. To unravel further downstream effects in E7 expressing keratinocytes we now aimed at characterizing gene and protein/phosphoprotein alterations to narrow down on key cellular targets of HPV8-E7. We now show that gene expression of GADD34 and GDF15 are strongly activated in the presence of E7 in primary human keratinocytes. Further analyses of fibronectin-associated factors led to the identification of the Src kinase family members Fyn and Lyn being aberrantly activated in the presence of HPV8-E7. Phospho-proteomics further revealed that E7 not only targets cell polarity and cytoskeletal organization, but also deregulates the phosphorylation status of nuclear proteins involved in DNA damage repair and replication. Many of these differentially phosphorylated proteins turned out to be targets of Fyn and Lyn. Taken together, by using unbiased experimental approaches we have now arrived at a deeper understanding on how fibronectin may affect the signaling cascades in HPV8 positive keratinocytes, which may be key for skin tumorigenesis and that may also aid in the development of novel therapeutic approaches for betaHPV-mediated cancers.
Collapse
Affiliation(s)
- Matthias Kirschberg
- Medical Faculty and University Hospital Cologne, Institute of Virology, University of Cologne, Cologne, Germany
| | - Adnan Shahzad Syed
- Medical Faculty and University Hospital Cologne, Institute of Virology, University of Cologne, Cologne, Germany
| | - Hanife Güler Dönmez
- Medical Faculty and University Hospital Cologne, Institute of Virology, University of Cologne, Cologne, Germany.,Department of Biology, Hacettepe University, Ankara, Turkey
| | - Sandra Heuser
- Medical Faculty and University Hospital Cologne, Institute of Virology, University of Cologne, Cologne, Germany
| | - Astrid Wilbrand-Hennes
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Angel Alonso
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Hufbauer
- Medical Faculty and University Hospital Cologne, Institute of Virology, University of Cologne, Cologne, Germany
| | - Baki Akgül
- Medical Faculty and University Hospital Cologne, Institute of Virology, University of Cologne, Cologne, Germany
| |
Collapse
|
45
|
Human papillomaviruses: diversity, infection and host interactions. Nat Rev Microbiol 2021; 20:95-108. [PMID: 34522050 DOI: 10.1038/s41579-021-00617-5] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2021] [Indexed: 12/13/2022]
Abstract
Human papillomaviruses (HPVs) are an ancient and highly successful group of viruses that have co-evolved with their host to replicate in specific anatomical niches of the stratified epithelia. They replicate persistently in dividing cells, hijack key host cellular processes to manipulate the cellular environment and escape immune detection, and produce virions in terminally differentiated cells that are shed from the host. Some HPVs cause benign, proliferative lesions on the skin and mucosa, and others are associated with the development of cancer. However, most HPVs cause infections that are asymptomatic and inapparent unless the immune system becomes compromised. To date, the genomes of almost 450 distinct HPV types have been isolated and sequenced. In this Review, I explore the diversity, evolution, infectious cycle, host interactions and disease association of HPVs.
Collapse
|
46
|
Rollison DE, Amorrortu RP, Zhao Y, Messina JL, Schell MJ, Fenske NA, Cherpelis BS, Giuliano AR, Sondak VK, Pawlita M, McKay-Chopin S, Gheit T, Waterboer T, Tommasino M. Cutaneous Human Papillomaviruses and the Risk of Keratinocyte Carcinomas. Cancer Res 2021; 81:4628-4638. [PMID: 34266893 PMCID: PMC8416805 DOI: 10.1158/0008-5472.can-21-0805] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/04/2021] [Accepted: 07/14/2021] [Indexed: 11/16/2022]
Abstract
Cutaneous human papillomavirus (cuHPV) infections may be novel targets for skin cancer prevention and treatment, but critical information regarding the development of virus-positive skin cancers following cuHPV infection has been lacking. In this study, baseline cuHPV infection was measured by serology and viral DNA detection in eyebrow hairs (EBH) and forearm skin swabs (SSW) among 1,008 individuals undergoing routine skin cancer screening exams and followed for incidence of basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (cuSCC). Baseline β-HPV detection, particularly in SSW, significantly predicted cuSCC (HR = 4.32; 95% confidence interval, 1.00-18.66), whereas serologic evidence of past β-HPV infection was not associated with cuSCC. Less than 5% of baseline β-HPV types detected in SSW were present in subsequent cuSCC tumors, and cuHPV detected in SSW with higher mean fluorescence intensity values were more likely to be present in cuSCC compared with those with lower levels (P < 0.001). β-HPV-positive cuSCC occurred more often in areas of highly sun-damaged skin than did β-HPV-negative cuSCC. Overall, no clear patterns were observed between baseline β-HPV detection and subsequent development of BCC, or between baseline γ-HPV detection and either cuSCC or BCC. Collectively, these results demonstrate that β-HPV detection in SSW is a significant predictor of cuSCC risk, although evidence suggests only a small subset of cuSCC is etiologically linked to β-HPV infection. SIGNIFICANCE: β-HPV positivity may be a useful biomarker for identifying individuals who could benefit from increased screening or novel cutaneous squamous cell carcinoma prevention strategies.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Alphapapillomavirus
- Biomarkers, Tumor/metabolism
- Carcinoma, Basal Cell/diagnosis
- Carcinoma, Basal Cell/metabolism
- Carcinoma, Basal Cell/virology
- Carcinoma, Squamous Cell/diagnosis
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/virology
- DNA, Viral
- Early Detection of Cancer
- Female
- Follow-Up Studies
- Hair/metabolism
- Humans
- Keratinocytes/cytology
- Male
- Middle Aged
- Neoplasms, Basal Cell/diagnosis
- Neoplasms, Basal Cell/metabolism
- Neoplasms, Basal Cell/virology
- Papillomavirus Infections/diagnosis
- Papillomavirus Infections/metabolism
- Prospective Studies
- Risk Factors
- Skin Neoplasms/diagnosis
- Skin Neoplasms/metabolism
- Skin Neoplasms/virology
- Specimen Handling
- Surveys and Questionnaires
Collapse
Affiliation(s)
- Dana E Rollison
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida.
| | | | - Yayi Zhao
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida
| | - Jane L Messina
- Department of Anatomic Pathology, Moffitt Cancer Center, Tampa, Florida
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Michael J Schell
- Biostatistics and Bioinformatics Shared Resource, Moffitt Cancer Center, Tampa, Florida
| | - Neil A Fenske
- Department of Dermatology and Cutaneous Surgery, University of South Florida College of Medicine, Tampa, Florida
| | - Basil S Cherpelis
- Department of Dermatology and Cutaneous Surgery, University of South Florida College of Medicine, Tampa, Florida
| | - Anna R Giuliano
- Center for Immunization and Infection Research in Cancer, Moffitt Cancer Center, Tampa, Florida
| | - Vernon K Sondak
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Michael Pawlita
- Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Tarik Gheit
- International Agency for Research on Cancer, WHO, Lyon, France
| | - Tim Waterboer
- Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | |
Collapse
|
47
|
Beta-Genus Human Papillomavirus 8 E6 Destabilizes the Host Genome by Promoting p300 Degradation. Viruses 2021; 13:v13081662. [PMID: 34452526 PMCID: PMC8402844 DOI: 10.3390/v13081662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 01/10/2023] Open
Abstract
The beta genus of human papillomaviruses infects cutaneous keratinocytes. Their replication depends on actively proliferating cells and, thus, they conflict with the cellular response to the DNA damage frequently encountered by these cells. This review focus on one of these viruses (HPV8) that counters the cellular response to damaged DNA and mitotic errors by expressing a protein (HPV8 E6) that destabilizes a histone acetyltransferase, p300. The loss of p300 results in broad dysregulation of cell signaling that decreases genome stability. In addition to discussing phenotypes caused by p300 destabilization, the review contains a discussion of the extent to which E6 from other β-HPVs destabilizes p300, and provides a discussion on dissecting HPV8 E6 biology using mutants.
Collapse
|
48
|
Ramberg I, Heegaard S. Human Papillomavirus Related Neoplasia of the Ocular Adnexa. Viruses 2021; 13:v13081522. [PMID: 34452388 PMCID: PMC8402806 DOI: 10.3390/v13081522] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 01/23/2023] Open
Abstract
Human papillomaviruses (HPV) are a large group of DNA viruses that infect the basal cells of the stratified epithelium at different anatomic locations. In the ocular adnexal region, the mucosa of the conjunctiva and the lacrimal drainage system, as well as the eyelid skin, are potential locations for HPV-related neoplasia. The role of HPV in squamous cell neoplasia of the ocular adnexa has been debated for several decades. Due to the rarity of all these tumors, large studies are not available in the scientific literature, thereby hampering the precision of the HPV prevalence estimates and the ability to conclude. Nevertheless, increasing evidence supports that defined subsets of conjunctival papillomas, intraepithelial neoplasia, and carcinomas develop in an HPV-dependent pathway. The role of HPV in squamous cell tumors arising in the lacrimal drainage system and the eyelid is still uncertain. Further, the potential of HPV status as a diagnostic, prognostic, or predictive biomarker in these diseases is a topic for future research.
Collapse
Affiliation(s)
- Ingvild Ramberg
- Department of Pathology, Copenhagen University Hospital Rigshospitalet, DK-2100 Copenhagen, Denmark;
- Department of Ophthalmology, Copenhagen University Hospital Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Steffen Heegaard
- Department of Pathology, Copenhagen University Hospital Rigshospitalet, DK-2100 Copenhagen, Denmark;
- Department of Ophthalmology, Copenhagen University Hospital Rigshospitalet, DK-2100 Copenhagen, Denmark
- Correspondence:
| |
Collapse
|
49
|
Robinson C, Chanchlani R, Kitchlu A. Malignancies after pediatric solid organ transplantation. Pediatr Nephrol 2021; 36:2279-2291. [PMID: 33057766 DOI: 10.1007/s00467-020-04790-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/28/2020] [Accepted: 09/18/2020] [Indexed: 12/19/2022]
Abstract
As life expectancy among pediatric solid organ transplant recipients (SOTRs) improves, the risk of comorbid conditions such as malignancy post-transplantation has also increased. SOTRs are at elevated risks of post-transplantation lymphoproliferative disorders (PTLDs), and skin and solid cancers. PTLDs typically occur early following transplantation, while skin and solid cancers frequently arise in young adulthood (25-40 years). By 30 years following transplantation, 26-41% of pediatric SOTRs have developed cancer. Different risk factors exist for PTLD, and skin and solid cancers, which are modified by cumulative immunosuppression, infections, transplanted organ, and the underlying disease process associated with initial organ failure (e.g., kidney failure). Optimal cancer treatment strategies depend on the specific cancer type, stage, and patient comorbidities. Immunosuppression reduction may be beneficial for certain cancers but must be considered against the risks of acute and chronic rejection and allograft loss. Lifestyle counseling regarding smoking avoidance and sun protection, as well as human papillomavirus vaccination, is an important aspect of cancer prevention. Currently, no cancer screening guidelines exist specifically for pediatric SOTRs. Adult population screening guidelines have not been validated in transplant populations. Therefore, an individualized approach should be taken to cancer screening for pediatric SOTRs, accounting for other cancer risk factors.
Collapse
Affiliation(s)
- Cal Robinson
- Division of Paediatric Nephrology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Rahul Chanchlani
- Division of Pediatric Nephrology, Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
- ICES McMaster, Hamilton, Ontario, Canada
| | - Abhijat Kitchlu
- Division of Nephrology, Department of Medicine, University Health Network, University of Toronto, 200 Elizabeth Street, 8 Eaton North, 8 N-842, Toronto, Ontario, M5G 2C4, Canada.
| |
Collapse
|
50
|
Chiao EY, Coghill A, Kizub D, Fink V, Ndlovu N, Mazul A, Sigel K. The effect of non-AIDS-defining cancers on people living with HIV. Lancet Oncol 2021; 22:e240-e253. [PMID: 34087151 PMCID: PMC8628366 DOI: 10.1016/s1470-2045(21)00137-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 12/31/2022]
Abstract
Non-AIDS-defining cancers are a growing source of morbidity for people with HIV globally. Although people living with HIV have a disproportionately increased risk of developing virally mediated cancers, cancer burden for common non-AIDS-defining cancers that are not virally associated and are linked to ageing, such as prostate cancer, is becoming higher than for virally mediated cancers. Ageing, behavioural, and HIV-specific factors drive the incidence and affect the outcomes of non-AIDS-defining cancers, presenting different challenges for addressing global morbidity and mortality from non-AIDS-defining cancer. Although large population-based studies have shown that people living with HIV with non-AIDS-defining cancers have poorer cancer outcomes than do people without HIV, current guidelines emphasise that people living with HIV with non-AIDS-defining cancers should receive standard, guideline-based treatment, and infectious disease and oncology providers should work closely to address potential drug interactions between antiretroviral therapy and antineoplastic treatment. Most trials target preventive measures focusing on non-AIDS-defining cancers. However, treatment trials for the optimal management of people living with HIV and non-AIDS-defining cancer, including interventions such as immunotherapies, are needed to improve non-AIDS-defining cancer outcomes.
Collapse
Affiliation(s)
- Elizabeth Y Chiao
- Department of Epidemiology, Division of Cancer Prevention and Population Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of General Oncology, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Anna Coghill
- Cancer Epidemiology Program, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA; Center for Immunization and Infection Research in Cancer, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Darya Kizub
- Department of General Oncology, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Valeria Fink
- Clinical Research, Fundación Huésped, Buenos Aires, Argentina
| | - Ntokozo Ndlovu
- Department of Oncology, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Angela Mazul
- Department of Otolaryngology, Washington University School of Medicine, Washington University, St Louis, MO, USA
| | - Keith Sigel
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|