1
|
Mai U, Charvel E, Mirarab S. Expectation-Maximization enables Phylogenetic Dating under a Categorical Rate Model. Syst Biol 2024; 73:823-838. [PMID: 38970346 PMCID: PMC11524793 DOI: 10.1093/sysbio/syae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 06/13/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024] Open
Abstract
Dating phylogenetic trees to obtain branch lengths in time units is essential for many downstream applications but has remained challenging. Dating requires inferring substitution rates that can change across the tree. While we can assume to have information about a small subset of nodes from the fossil record or sampling times (for fast-evolving organisms), inferring the ages of the other nodes essentially requires extrapolation and interpolation. Assuming a distribution of branch rates, we can formulate dating as a constrained maximum likelihood (ML) estimation problem. While ML dating methods exist, their accuracy degrades in the face of model misspecification, where the assumed parametric statistical distribution of branch rates vastly differs from the true distribution. Notably, most existing methods assume rigid, often unimodal, branch rate distributions. A second challenge is that the likelihood function involves an integral over the continuous domain of the rates, often leading to difficult non-convex optimization problems. To tackle both challenges, we propose a new method called Molecular Dating using Categorical-models (MD-Cat). MD-Cat uses a categorical model of rates inspired by non-parametric statistics and can approximate a large family of models by discretizing the rate distribution into k categories. Under this model, we can use the Expectation-Maximization algorithm to co-estimate rate categories and branch lengths in time units. Our model has fewer assumptions about the true distribution of branch rates than parametric models such as Gamma or LogNormal distribution. Our results on two simulated and real datasets of Angiosperms and HIV and a wide selection of rate distributions show that MD-Cat is often more accurate than the alternatives, especially on datasets with exponential or multimodal rate distributions.
Collapse
Affiliation(s)
- Uyen Mai
- Department of Computer Science and Engineering, UC San Diego, CA 92093, USA
| | - Eduardo Charvel
- Bioinformatics and Systems Biology Graduate Program, UC San Diego, CA 92093, USA
| | - Siavash Mirarab
- Department of Electrical and Computer Engineering, UC San Diego, CA 92093, USA
| |
Collapse
|
2
|
Avila-Rios S, García-Morales C, Reyes-Terán G, González-Rodríguez A, Matías-Florentino M, Mehta SR, Chaillon A. Phylodynamics of HIV in the Mexico City Metropolitan Region. J Virol 2022; 96:e0070822. [PMID: 35762759 PMCID: PMC9327710 DOI: 10.1128/jvi.00708-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/06/2022] [Indexed: 12/30/2022] Open
Abstract
Evolutionary analyses of viral sequences can provide insights into transmission dynamics, which in turn can optimize prevention interventions. Here, we characterized the dynamics of HIV transmission within the Mexico City metropolitan area. HIV pol sequences from persons recently diagnosed at the largest HIV clinic in Mexico City (between 2016 and 2021) were annotated with demographic/geographic metadata. A multistep phylogenetic approach was applied to identify putative transmission clades. A data set of publicly available sequences was used to assess international introductions. Clades were analyzed with a discrete phylogeographic model to evaluate the timing and intensity of HIV introductions and transmission dynamics among municipalities in the region. A total of 6,802 sequences across 96 municipalities (5,192 from Mexico City and 1,610 from the neighboring State of Mexico) were included (93.6% cisgender men, 5.0% cisgender women, and 1.3% transgender women); 3,971 of these sequences formed 1,206 clusters, involving 78 municipalities, including 89 clusters of ≥10 sequences. Discrete phylogeographic analysis revealed (i) 1,032 viral introductions into the region, over one-half of which were from the United States, and (ii) 354 migration events between municipalities with high support (adjusted Bayes factor of ≥3). The most frequent viral migrations occurred between northern municipalities within Mexico City, i.e., Cuauhtémoc to Iztapalapa (5.2% of events), Iztapalapa to Gustavo A. Madero (5.4%), and Gustavo A. Madero to Cuauhtémoc (6.5%). Our analysis illustrates the complexity of HIV transmission within the Mexico City metropolitan area but also identifies a spatially active transmission area involving a few municipalities in the north of the city, where targeted interventions could have a more pronounced effect on the entire regional epidemic. IMPORTANCE Phylogeographic investigation of the Mexico City HIV epidemic illustrates the complexity of HIV transmission in the region. An active transmission area involving a few municipalities in the north of the city, with transmission links throughout the region, is identified and could be a location where targeted interventions could have a more pronounced effect on the entire regional epidemic, compared with those dispersed in other manners.
Collapse
Affiliation(s)
- Santiago Avila-Rios
- Center for Research in Infectious Diseases, National Institute of Respiratory Diseases, Mexico City, Mexico
| | - Claudia García-Morales
- Center for Research in Infectious Diseases, National Institute of Respiratory Diseases, Mexico City, Mexico
| | - Gustavo Reyes-Terán
- Coordinating Commission of the National Institutes of Health and High Specialty Hospitals, Ministry of Health, Mexico City, Mexico
| | | | | | - Sanjay R. Mehta
- Division of Infectious Diseases and Global Public Health, University of California, San Diego, San Diego, California, USA
- Veterans Affairs Health System, San Diego, California, USA
| | - Antoine Chaillon
- Division of Infectious Diseases and Global Public Health, University of California, San Diego, San Diego, California, USA
| |
Collapse
|
3
|
Troyano-Hernáez P, Reinosa R, Holguín A. Genetic Diversity and Low Therapeutic Impact of Variant-Specific Markers in HIV-1 Pol Proteins. Front Microbiol 2022; 13:866705. [PMID: 35910645 PMCID: PMC9330395 DOI: 10.3389/fmicb.2022.866705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
The emergence and spread of new HIV-1 variants pose a challenge for the effectiveness of antiretrovirals (ARV) targeting Pol proteins. During viral evolution, non-synonymous mutations have fixed along the viral genome, leading to amino acid (aa) changes that can be variant-specific (V-markers). Those V-markers fixed in positions associated with drug resistance mutations (DRM), or R-markers, can impact drug susceptibility and resistance pathways. All available HIV-1 Pol sequences from ARV-naïve subjects were downloaded from the United States Los Alamos HIV Sequence Database, selecting 59,733 protease (PR), 6,437 retrotranscriptase (RT), and 6,059 integrase (IN) complete sequences ascribed to the four HIV-1 groups and group M subtypes and circulating recombinant forms (CRFs). Using a bioinformatics tool developed in our laboratory (EpiMolBio), we inferred the consensus sequences for each Pol protein and HIV-1 variant to analyze the aa conservation in Pol. We analyzed the Wu–Kabat protein variability coefficient (WK) in PR, RT, and IN group M to study the susceptibility of each site to evolutionary replacements. We identified as V-markers the variant-specific aa changes present in >75% of the sequences in variants with >5 available sequences, considering R-markers those V-markers that corresponded to DRM according to the IAS-USA2019 and Stanford-Database 9.0. The mean aa conservation of HIV-1 and group M consensus was 82.60%/93.11% in PR, 88.81%/94.07% in RT, and 90.98%/96.02% in IN. The median group M WK was 10 in PR, 4 in RT, and 5 in IN. The residues involved in binding or catalytic sites showed a variability <0.5%. We identified 106 V-markers: 31 in PR, 28 in RT, and 47 in IN, present in 11, 12, and 13 variants, respectively. Among them, eight (7.5%) were R-markers, present in five variants, being minor DRM with little potential effect on ARV susceptibility. We present a thorough analysis of Pol variability among all HIV-1 variants circulating to date. The relatively high aa conservation observed in Pol proteins across HIV-1 variants highlights their critical role in the viral cycle. However, further studies are needed to understand the V-markers’ impact on the Pol proteins structure, viral cycle, or treatment strategies, and periodic variability surveillance studies are also required to understand PR, RT, and IN evolution.
Collapse
|
4
|
Troyano-Hernáez P, Reinosa R, Holguín Á. HIV Capsid Protein Genetic Diversity Across HIV-1 Variants and Impact on New Capsid-Inhibitor Lenacapavir. Front Microbiol 2022; 13:854974. [PMID: 35495642 PMCID: PMC9039614 DOI: 10.3389/fmicb.2022.854974] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/09/2022] [Indexed: 12/17/2022] Open
Abstract
The HIV p24 capsid protein has an essential, structural, and functional role in the viral replication cycle, being an interesting target for vaccine design, diagnostic tests, and new antiretroviral drugs (ARVs). The HIV-1 variability poses a challenge for the accuracy and efficiency of diagnostic and treatment tools. This study analyzes p24 diversity among HIV-1 variants and within its secondary structure in HIV-1 M, O, P, and N groups. All available HIV-1 p24 nucleotide sequences were downloaded from the Los Alamos HIV Sequence Database, selecting 23,671 sequences belonging to groups O, N, P, and M (9 subtypes, 7 sub-sub types, and 109 circulating recombinant forms or CRFs). Using a bioinformatics tool developed in our laboratory (EpiMolBio program), we analyzed the amino acid conservation compared to the HXB2 subtype B reference sequence and the V-markers, or amino acid changes that were specific for each variant with at least 10 available sequences. We inferred the p24 consensus sequence for HIV-1 and for each group to analyze the overall conservation in p24 main structural regions, reporting the percentage of substitutions per variant affecting the capsid assembly and molecule-binding, including those associated with resistance to the new capsid-inhibitor lenacapavir, and the key residues involved in lenacapavir-p24 interaction, according to the bibliography. Although the overall structure of p24 was highly conserved, the conservation in the secondary structure varied between HIV-1 variants and the type of secondary structure. All HIV-1 variants presented >80% amino acid conservation vs. HXB2 reference sequence, except for group M sub-subtype F1 (69.27%). Mutants affecting the capsid assembly or lenacapavir capsid-binding were found in <1% of the p24 consensus sequence. Our study reports the HIV-1 variants carrying 14 unique single V-markers in 9/38 group M variants and the level of p24 conservation in each secondary structure region among the 4 HIV-1 groups and group M variants, revealing no natural resistance to lenacapavir in any HIV-1 variant. We present a thorough analysis of p24 variability among all HIV-1 variants circulating to date. Since p24 genetic variability can impact the viral replication cycle and the efficacy of new p24-based diagnostic, therapeutic, and vaccine strategies, conservation studies must consider all HIV-1 variants circulating worldwide.
Collapse
Affiliation(s)
- Paloma Troyano-Hernáez
- HIV-1 Molecular Epidemiology Laboratory, Department of Microbiology, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, CIBER en Epidemiología y Salud Pública (CIBERESP), Red en Investigación Translacional en Infecciones Pediátricas (RITIP), Madrid, Spain
| | - Roberto Reinosa
- HIV-1 Molecular Epidemiology Laboratory, Department of Microbiology, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, CIBER en Epidemiología y Salud Pública (CIBERESP), Red en Investigación Translacional en Infecciones Pediátricas (RITIP), Madrid, Spain
| | - África Holguín
- HIV-1 Molecular Epidemiology Laboratory, Department of Microbiology, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, CIBER en Epidemiología y Salud Pública (CIBERESP), Red en Investigación Translacional en Infecciones Pediátricas (RITIP), Madrid, Spain
| |
Collapse
|
5
|
Bezemer D, Blenkinsop A, Hall M, van Sighem A, Cornelissen M, Wessels E, van Kampen J, van de Laar T, Reiss P, Fraser C, Ratmann O. Many but small HIV-1 non-B transmission chains in the Netherlands. AIDS 2022; 36:83-94. [PMID: 34618753 PMCID: PMC8655833 DOI: 10.1097/qad.0000000000003074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 08/26/2021] [Accepted: 09/13/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The aim of this study was to investigate introductions and spread of different HIV-1 subtypes in the Netherlands. DESIGN We identified distinct HIV-1 transmission chains in the Netherlands within the global epidemic context through viral phylogenetic analysis of partial HIV-1 polymerase sequences from individuals enrolled in the ATHENA national HIV cohort of all persons in care since 1996, and publicly available international background sequences. METHODS Viral lineages circulating in the Netherlands were identified through maximum parsimony phylogeographic analysis. The proportion of HIV-1 infections acquired in-country among heterosexuals and MSM was estimated from phylogenetically observed, national transmission chains using a branching process model that accounts for incomplete sampling. RESULTS As of 1 January 2019, 2589 (24%) of 10 971 (41%) HIV-1 sequenced individuals in ATHENA had non-B subtypes (A1, C, D, F, G) or circulating recombinant forms (CRF01AE, CRF02AG, CRF06-cpx). The 1588 heterosexuals were in 1224, and 536 MSM in 270 phylogenetically observed transmission chains. After adjustments for incomplete sampling, most heterosexual (75%) and MSM (76%) transmission chains were estimated to include only the individual introducing the virus (size = 1). Onward transmission occurred mostly in chains size 2-5 amongst heterosexuals (62%) and in chains size at least 10 amongst MSM (64%). Considering some chains originated in-country from other risk-groups, 40% (95% confidence interval: 36-44) of non-B-infected heterosexuals and 62% (95% confidence interval: 49-73) of MSM-acquired infection in-country. CONCLUSION Although most HIV-1 non-B introductions showed no or very little onward transmission, a considerable proportion of non-B infections amongst both heterosexuals and MSM in the Netherlands have been acquired in-country.
Collapse
Affiliation(s)
| | - Alexandra Blenkinsop
- Department of Mathematics, Imperial College London, London
- Department of Global Health, Amsterdam University Medical Centers, University of Amsterdam and Amsterdam Institute for Global Health and Development, Amsterdam, The Netherlands
| | - Matthew Hall
- Oxford Big Data Institute, University of Oxford, Oxford, UK
| | | | - Marion Cornelissen
- Laboratory of Clinical Virology, Department of Medical Microbiology, Academic Medical Center of the University of Amsterdam, Amsterdam
| | - Els Wessels
- Department of Medical Microbiology, Leiden University Medical Center, Leiden
| | | | - Thijs van de Laar
- Department of Donor Medicine Research, laboratory of Blood-borne Infections, Sanquin Research
- Department of Medical Microbiology, Onze Lieve Vrouwe Gasthuis, Amsterdam, The Netherlands
| | - Peter Reiss
- Stichting HIV Monitoring, Amsterdam, The Netherlands
- Department of Global Health, Amsterdam University Medical Centers, University of Amsterdam and Amsterdam Institute for Global Health and Development, Amsterdam, The Netherlands
| | | | - Oliver Ratmann
- Department of Mathematics, Imperial College London, London
| |
Collapse
|
6
|
Large Evolutionary Rate Heterogeneity among and within HIV-1 Subtypes and CRFs. Viruses 2021; 13:v13091689. [PMID: 34578270 PMCID: PMC8473000 DOI: 10.3390/v13091689] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 01/06/2023] Open
Abstract
HIV-1 is a fast-evolving, genetically diverse virus presently classified into several groups and subtypes. The virus evolves rapidly because of an error-prone polymerase, high rates of recombination, and selection in response to the host immune system and clinical management of the infection. The rate of evolution is also influenced by the rate of virus spread in a population and nature of the outbreak, among other factors. HIV-1 evolution is thus driven by a range of complex genetic, social, and epidemiological factors that complicates disease management and prevention. Here, we quantify the evolutionary (substitution) rate heterogeneity among major HIV-1 subtypes and recombinants by analyzing the largest collection of HIV-1 genetic data spanning the widest possible geographical (100 countries) and temporal (1981–2019) spread. We show that HIV-1 substitution rates vary substantially, sometimes by several folds, both across the virus genome and between major subtypes and recombinants, but also within a subtype. Across subtypes, rates ranged 3.5-fold from 1.34 × 10−3 to 4.72 × 10−3 in env and 2.3-fold from 0.95 × 10−3 to 2.18 × 10−3 substitutions site−1 year−1 in pol. Within the subtype, 3-fold rate variation was observed in env in different human populations. It is possible that HIV-1 lineages in different parts of the world are operating under different selection pressures leading to substantial rate heterogeneity within and between subtypes. We further highlight how such rate heterogeneity can complicate HIV-1 phylodynamic studies, specifically, inferences on epidemiological linkage of transmission clusters based on genetic distance or phylogenetic data, and can mislead estimates about the timing of HIV-1 lineages.
Collapse
|
7
|
Tongo M, Martin DP, Dorfman JR. Elucidation of Early Evolution of HIV-1 Group M in the Congo Basin Using Computational Methods. Genes (Basel) 2021; 12:genes12040517. [PMID: 33918115 PMCID: PMC8065694 DOI: 10.3390/genes12040517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 11/16/2022] Open
Abstract
The Congo Basin region is believed to be the site of the cross-species transmission event that yielded HIV-1 group M (HIV-1M). It is thus likely that the virus has been present and evolving in the region since that cross-species transmission. As HIV-1M was only discovered in the early 1980s, our directly observed record of the epidemic is largely limited to the past four decades. Nevertheless, by exploiting the genetic relatedness of contemporary HIV-1M sequences, phylogenetic methods provide a powerful framework for investigating simultaneously the evolutionary and epidemiologic history of the virus. Such an approach has been taken to find that the currently classified HIV-1 M subtypes and Circulating Recombinant Forms (CRFs) do not give a complete view of HIV-1 diversity. In addition, the currently identified major HIV-1M subtypes were likely genetically predisposed to becoming a major component of the present epidemic, even before the events that resulted in the global epidemic. Further efforts have identified statistically significant hot- and cold-spots of HIV-1M subtypes sequence inheritance in genomic regions of recombinant forms. In this review we provide ours and others recent findings on the emergence and spread of HIV-1M variants in the region, which have provided insights into the early evolution of this virus.
Collapse
Affiliation(s)
- Marcel Tongo
- Center for Research on Emerging and Re-Emerging Diseases (CREMER), Institute of Medical Research and Study of Medicinal Plants (IMPM), Yaoundé, Cameroon
- Correspondence:
| | - Darren P. Martin
- Division of Computational Biology, Department of Integrative Biomedical Sciences and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa;
| | - Jeffrey R. Dorfman
- Division of Medical Virology, School of Pathology, Faculty of Health Sciences, Stellenbosch University, Cape Town 7505, South Africa;
| |
Collapse
|
8
|
Chung CH, Allen AG, Atkins A, Link RW, Nonnemacher MR, Dampier W, Wigdahl B. Computational Design of gRNAs Targeting Genetic Variants Across HIV-1 Subtypes for CRISPR-Mediated Antiviral Therapy. Front Cell Infect Microbiol 2021; 11:593077. [PMID: 33768011 PMCID: PMC7985454 DOI: 10.3389/fcimb.2021.593077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 01/28/2021] [Indexed: 12/26/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-based HIV-1 genome editing has shown promising outcomes in in vitro and in vivo viral infection models. However, existing HIV-1 sequence variants have been shown to reduce CRISPR-mediated efficiency and induce viral escape. Two metrics, global patient coverage and global subtype coverage, were used to identify guide RNA (gRNA) sequences that account for this viral diversity from the perspectives of cross-patient and cross-subtype gRNA design, respectively. Computational evaluation using these parameters and over 3.6 million possible 20-bp sequences resulted in nine lead gRNAs, two of which were previously published. This analysis revealed the benefit and necessity of considering all sequence variants for gRNA design. Of the other seven identified novel gRNAs, two were of note as they targeted interesting functional regions. One was a gRNA predicted to induce structural disruption in the nucleocapsid binding site (Ψ), which holds the potential to stop HIV-1 replication during the viral genome packaging process. The other was a reverse transcriptase (RT)-targeting gRNA that was predicted to cleave the subdomain responsible for dNTP incorporation. CRISPR-mediated sequence edits were predicted to occur on critical residues where HIV-1 has been shown to develop resistance against antiretroviral therapy (ART), which may provide additional evolutionary pressure at the DNA level. Given these observations, consideration of broad-spectrum gRNAs and cross-subtype diversity for gRNA design is not only required for the development of generalizable CRISPR-based HIV-1 therapy, but also helps identify optimal target sites.
Collapse
Affiliation(s)
- Cheng-Han Chung
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Alexander G. Allen
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Andrew Atkins
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Robert W. Link
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Michael R. Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Will Dampier
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
9
|
Parczewski M, Scheibe K, Witak-Jędra M, Pynka M, Aksak-Wąs B, Urbańska A. Infection with HIV-1 subtype D adversely affects the live expectancy independently of antiretroviral drug use. INFECTION GENETICS AND EVOLUTION 2021; 90:104754. [PMID: 33540086 DOI: 10.1016/j.meegid.2021.104754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/20/2021] [Accepted: 01/29/2021] [Indexed: 11/17/2022]
Abstract
INTRODUCTION HIV-1 subtypes have been associated with less favourable clinical profiles, differences in disease progression and higher risk of neurocognitive deficit. In this study we aimed to analyse the long term survival disparities between patients infected with the most common HIV-1 variants observed in Poland. METHODS For the study data from 518 Caucasian non-immigrant patients of Polish origin infected with divergent HIV subtypes and variants [subtype A (n = 35, 6.8%), subtype B (n = 386, 74.5%), subtype C (n = 13, 2.5%), subtype D (n = 58, 11.19%) or other non-A,B,C,D (n = 26, 5.01%)variants] were analysed. Subtyping was performed using the partial pol (reverse transcriptase and protease) sequencing. HIV variant was coupled with clinical, virologic and survival data censored at 20 years of observation. Overall survival and on antiretroviral treatment survival was analysed using Kaplan-Meyer as well as unadjusted and multivariate Cox proportional hazards models. RESULTS Significantly higher mortality was observed among subtype D (28.8%) infected subjects compared to subtype B (11.7%, p = 0.0004). Increased risk of death among subtype D cases remained significant when cART treated individuals were analysed, with on-treatment mortality of 26.9% for subtype D (p = 0.006) compared to 10.73% in subtype B infected cases. Kaplan-Meyer survival estimates differed significantly across all investigated HIV-1 variant groups when overall 20 year mortality was analysed (log rank p = 0.029), being non-significant for the cART treated group. In multivariate model of overall 20 year survival, adjusted for age at diagnosis, gender, HCV and AIDS status, lymphocyte CD4 count, transmission route and HIV viral load, only age and subtype D were independently associated with higher likelihood of death [HR: 1.08 (95%CI: 1.03-1.14, p = 0.002) and HR: 7.91 (95%CI:2.33-26.86), p < 0.001, respectively]. In the on-treatment (cART) multivariate model of 20 year survival adjusted for the same parameters only subtype D remained as the independent factor associated with higher mortality risk [HR: 4.24 (95%CI:1.31-13.7), p = 0.02]. CONCLUSIONS Subtype D has an independent deleterious effect of survival, even in the setting of antiretroviral treatment. Observed effect indicated higher clinical vigilance for patients infected with this subtype even after long time of stable antiretroviral treatment.
Collapse
Affiliation(s)
- Miłosz Parczewski
- Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, Szczecin, Poland.
| | - Kaja Scheibe
- Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Magdalena Witak-Jędra
- Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Magdalena Pynka
- Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Bogusz Aksak-Wąs
- Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Anna Urbańska
- Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, Szczecin, Poland
| |
Collapse
|
10
|
Ashokkumar M, Pattabiraman S, Tripathy SP, Neogi U, Hanna LE. Deep Profiling Identifies Selection of Nonsynonymous Amino Acid Substitutions in HIV-1 Envelope During Early Infection. AIDS Res Hum Retroviruses 2020; 36:1024-1032. [PMID: 32781829 DOI: 10.1089/aid.2020.0143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Understanding the evolutionary dynamics of the viruses within an individual at or near the moment of transmission can provide critical inputs for the design of an effective vaccine for HIV infection. In this study, high-throughput sequencing technology was employed to analyze the evolutionary rate in viruses obtained at a single time point from drug-naive recently infected infants and adults in the chronic stage of disease. Gene-wise nonsynonymous (pN) and synonymous (pS) mutation rates were estimated and compared between the two groups. Significant differences were observed in the evolutionary rates between viruses in the early and late stages of infection. Higher rates of adaptive mutations in the HIV-1 envelope gene (env) were found in the chronic viruses as compared with those in the early stages of HIV infection. Conversely, percentage of nonsynonymous substitutions in env was found to be higher in recently transmitted viruses. In addition, a positive correlation was found between mutation and the evolutionary rate, and infectivity titer in recent infection. Despite the small sample size, the study identified useful information about viral evolution on transmission-associated bottlenecks. The effect of intraindividual HIV-1 evolution at the population level was highly contemporary, and the higher percentage of nonsynonymous substitutions seen in env during recent HIV-1 infection has suggested a pattern of convergent evolution leading to a positive selection for survival fitness and disease progression.
Collapse
Affiliation(s)
- Manickam Ashokkumar
- Department of HIV/AIDS, National Institute for Research in Tuberculosis, Chennai, India
| | | | - Srikanth P. Tripathy
- Department of HIV/AIDS, National Institute for Research in Tuberculosis, Chennai, India
| | - Ujjwal Neogi
- Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Luke Elizabeth Hanna
- Department of HIV/AIDS, National Institute for Research in Tuberculosis, Chennai, India
| |
Collapse
|
11
|
Vrancken B, Zhao B, Li X, Han X, Liu H, Zhao J, Zhong P, Lin Y, Zai J, Liu M, Smith DM, Dellicour S, Chaillon A. Comparative Circulation Dynamics of the Five Main HIV Types in China. J Virol 2020; 94:e00683-20. [PMID: 32938762 PMCID: PMC7654276 DOI: 10.1128/jvi.00683-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/02/2020] [Indexed: 01/17/2023] Open
Abstract
The HIV epidemic in China accounts for 3% of the global HIV incidence. We compared the patterns and determinants of interprovincial spread of the five most prevalent circulating types. HIV pol sequences sampled across China were used to identify relevant transmission networks of the five most relevant HIV-1 types (B and circulating recombinant forms [CRFs] CRF01_AE, CRF07_BC, CRF08_BC, and CRF55_01B) in China. From these, the dispersal history across provinces was inferred. A generalized linear model (GLM) was used to test the association between migration rates among provinces and several measures of human mobility. A total of 10,707 sequences were collected between 2004 and 2017 across 26 provinces, among which 1,962 are newly reported here. A mean of 18 (minimum and maximum, 1 and 54) independent transmission networks involving up to 17 provinces were identified. Discrete phylogeographic analysis largely recapitulates the documented spread of the HIV types, which in turn, mirrors within-China population migration flows to a large extent. In line with the different spatiotemporal spread dynamics, the identified drivers thereof were also heterogeneous but are consistent with a central role of human mobility. The comparative analysis of the dispersal dynamics of the five main HIV types circulating in China suggests a key role of large population centers and developed transportation infrastructures as hubs of HIV dispersal. This advocates for coordinated public health efforts in addition to local targeted interventions.IMPORTANCE While traditional epidemiological studies are of great interest in describing the dynamics of epidemics, they struggle to fully capture the geospatial dynamics and factors driving the dispersal of pathogens like HIV as they have difficulties capturing linkages between infections. To overcome this, we used a discrete phylogeographic approach coupled to a generalized linear model extension to characterize the dynamics and drivers of the across-province spread of the five main HIV types circulating in China. Our results indicate that large urbanized areas with dense populations and developed transportation infrastructures are facilitators of HIV dispersal throughout China and highlight the need to consider harmonized country-wide public policies to control local HIV epidemics.
Collapse
Affiliation(s)
- Bram Vrancken
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Computational and Evolutionary Virology, KU Leuven, Leuven, Belgium
| | - Bin Zhao
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xingguang Li
- Department of Hospital Office, The First People's Hospital of Fangchenggang, Fangchenggang, China
| | - Xiaoxu Han
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Haizhou Liu
- Centre for Emerging Infectious Diseases, The State Key Laboratory of Virology, Wuhan Institute of Virology, University of Chinese Academy of Sciences, Wuhan, China
| | - Jin Zhao
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Ping Zhong
- Department of AIDS and STD, Shanghai Municipal Center for Disease Control and Prevention; Shanghai Municipal Institutes for Preventive Medicine, Shanghai, China
| | - Yi Lin
- Department of AIDS and STD, Shanghai Municipal Center for Disease Control and Prevention; Shanghai Municipal Institutes for Preventive Medicine, Shanghai, China
| | - Junjie Zai
- Immunology innovation Team, School of Medicine, Ningbo University, Ningbo, Zhejiang China
| | - Mingchen Liu
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Davey M Smith
- Division of Infectious Diseases and Global Public Health, University of California San Diego, California, USA
| | - Simon Dellicour
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Computational and Evolutionary Virology, KU Leuven, Leuven, Belgium
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Brussels, Belgium
| | - Antoine Chaillon
- Division of Infectious Diseases and Global Public Health, University of California San Diego, California, USA
| |
Collapse
|
12
|
Vasylyeva TI, Zarebski A, Smyrnov P, Williams LD, Korobchuk A, Liulchuk M, Zadorozhna V, Nikolopoulos G, Paraskevis D, Schneider J, Skaathun B, Hatzakis A, Pybus OG, Friedman SR. Phylodynamics Helps to Evaluate the Impact of an HIV Prevention Intervention. Viruses 2020; 12:E469. [PMID: 32326127 PMCID: PMC7232463 DOI: 10.3390/v12040469] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/02/2020] [Accepted: 04/15/2020] [Indexed: 01/01/2023] Open
Abstract
Assessment of the long-term population-level effects of HIV interventions is an ongoing public health challenge. Following the implementation of a Transmission Reduction Intervention Project (TRIP) in Odessa, Ukraine, in 2013-2016, we obtained HIV pol gene sequences and used phylogenetics to identify HIV transmission clusters. We further applied the birth-death skyline model to the sequences from Odessa (n = 275) and Kyiv (n = 92) in order to estimate changes in the epidemic's effective reproductive number (Re) and rate of becoming uninfectious (δ). We identified 12 transmission clusters in Odessa; phylogenetic clustering was correlated with younger age and higher average viral load at the time of sampling. Estimated Re were similar in Odessa and Kyiv before the initiation of TRIP; Re started to decline in 2013 and is now below Re = 1 in Odessa (Re = 0.4, 95%HPD 0.06-0.75), but not in Kyiv (Re = 2.3, 95%HPD 0.2-5.4). Similarly, estimates of δ increased in Odessa after the initiation of TRIP. Given that both cities shared the same HIV prevention programs in 2013-2019, apart from TRIP, the observed changes in transmission parameters are likely attributable to the TRIP intervention. We propose that molecular epidemiology analysis can be used as a post-intervention effectiveness assessment tool.
Collapse
Affiliation(s)
- Tetyana I. Vasylyeva
- Department of Zoology, University of Oxford, OX1 3SY Oxford, UK
- New College, University of Oxford, OX1 3BN Oxford, UK
| | | | | | - Leslie D. Williams
- Division of Community Health Sciences, University of Illinois at Chicago School of Public Health, Chicago, IL 60612, USA
| | | | - Mariia Liulchuk
- State Institution “The L.V. Gromashevsky Institute of Epidemiology and Infectious Diseases of NAMS of Ukraine”, Kyiv 03038, Ukraine
| | - Viktoriia Zadorozhna
- State Institution “The L.V. Gromashevsky Institute of Epidemiology and Infectious Diseases of NAMS of Ukraine”, Kyiv 03038, Ukraine
| | | | - Dimitrios Paraskevis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - John Schneider
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Britt Skaathun
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Angelos Hatzakis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Oliver G. Pybus
- Department of Zoology, University of Oxford, OX1 3SY Oxford, UK
| | - Samuel R. Friedman
- Department of Population Health, New York University, New York, NY 10003, USA
| |
Collapse
|
13
|
Nazziwa J, Faria NR, Chaplin B, Rawizza H, Kanki P, Dakum P, Abimiku A, Charurat M, Ndembi N, Esbjörnsson J. Characterisation of HIV-1 Molecular Epidemiology in Nigeria: Origin, Diversity, Demography and Geographic Spread. Sci Rep 2020; 10:3468. [PMID: 32103028 PMCID: PMC7044301 DOI: 10.1038/s41598-020-59944-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 02/05/2020] [Indexed: 11/23/2022] Open
Abstract
Nigeria has the highest number of AIDS-related deaths in the world. In this study, we characterised the HIV-1 molecular epidemiology by analysing 1442 HIV-1 pol sequences collected 1999-2014 from four geopolitical zones in Nigeria using state-of-the-art maximum-likelihood and Bayesian phylogenetic analyses. The main circulating forms were the circulating recombinant form (CRF) 02_AG (44% of the analysed sequences), CRF43_02G (16%), and subtype G (8%). Twenty-three percent of the sequences represented unique recombinant forms (URFs), whereof 37 (11%) could be grouped into seven potentially novel CRFs. Bayesian phylodynamic analysis suggested that five major Nigerian HIV-1 sub-epidemics were introduced in the 1960s and 1970s, close to the Nigerian Civil War. The analysis also indicated that the number of effective infections decreased in Nigeria after the introduction of free antiretroviral treatment in 2006. Finally, Bayesian phylogeographic analysis suggested gravity-like dynamics in which virus lineages first emerge and expand within large urban centers such as Abuja and Lagos, before migrating towards smaller rural areas. This study provides novel insight into the Nigerian HIV-1 epidemic and may have implications for future HIV-1 prevention strategies in Nigeria and other severely affected countries.
Collapse
Affiliation(s)
- Jamirah Nazziwa
- Department of Translational Medicine, Lund University, Lund, Sweden
| | | | - Beth Chaplin
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Holly Rawizza
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Phyllis Kanki
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Patrick Dakum
- Institute of Human Virology Nigeria, Abuja, Nigeria
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, USA
| | - Alash'le Abimiku
- Institute of Human Virology Nigeria, Abuja, Nigeria
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, USA
| | - Man Charurat
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, USA
| | - Nicaise Ndembi
- Institute of Human Virology Nigeria, Abuja, Nigeria
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, USA
| | - Joakim Esbjörnsson
- Department of Translational Medicine, Lund University, Lund, Sweden.
- Nuffield Department Medicine, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
14
|
Distinct rates and patterns of spread of the major HIV-1 subtypes in Central and East Africa. PLoS Pathog 2019; 15:e1007976. [PMID: 31809523 PMCID: PMC6897401 DOI: 10.1371/journal.ppat.1007976] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 07/11/2019] [Indexed: 12/21/2022] Open
Abstract
Since the ignition of the HIV-1 group M pandemic in the beginning of the 20th century, group M lineages have spread heterogeneously throughout the world. Subtype C spread rapidly through sub-Saharan Africa and is currently the dominant HIV lineage worldwide. Yet the epidemiological and evolutionary circumstances that contributed to its epidemiological expansion remain poorly understood. Here, we analyse 346 novel pol sequences from the DRC to compare the evolutionary dynamics of the main HIV-1 lineages, subtypes A1, C and D. Our results place the origins of subtype C in the 1950s in Mbuji-Mayi, the mining city of southern DRC, while subtypes A1 and D emerged in the capital city of Kinshasa, and subtypes H and J in the less accessible port city of Matadi. Following a 15-year period of local transmission in southern DRC, we find that subtype C spread at least three-fold faster than other subtypes circulating in Central and East Africa. In conclusion, our results shed light on the origins of HIV-1 main lineages and suggest that socio-historical rather than evolutionary factors may have determined the epidemiological fate of subtype C in sub-Saharan Africa.
Collapse
|
15
|
Ciccozzi M, Lai A, Zehender G, Borsetti A, Cella E, Ciotti M, Sagnelli E, Sagnelli C, Angeletti S. The phylogenetic approach for viral infectious disease evolution and epidemiology: An updating review. J Med Virol 2019; 91:1707-1724. [PMID: 31243773 DOI: 10.1002/jmv.25526] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/24/2019] [Indexed: 12/16/2022]
Abstract
In the last decade, the phylogenetic approach is recurrent in molecular evolutionary analysis. On 12 May, 2019, about 2 296 213 papers are found, but typing "phylogeny" or "epidemiology AND phylogeny" only 199 804 and 20 133 are retrieved, respectively. Molecular epidemiology in infectious diseases is widely used to define the source of infection as so as the ancestral relationships of individuals sampled from a population. Coalescent theory and phylogeographic analysis have had scientific application in several, recent pandemic events, and nosocomial outbreaks. Hepatitis viruses and immunodeficiency virus (human immunodeficiency virus) have been largely studied. Phylogenetic analysis has been recently applied on Polyomaviruses so as in the more recent outbreaks due to different arboviruses type as Zika and chikungunya viruses discovering the source of infection and the geographic spread. Data on sequences isolated by the microorganism are essential to apply the phylogenetic tools and research in the field of infectious disease phylodinamics is growing up. There is the need to apply molecular phylogenetic and evolutionary methods in areas out of infectious diseases, as translational genomics and personalized medicine. Lastly, the application of these tools in vaccine strategy so as in antibiotic and antiviral researchers are encouraged.
Collapse
Affiliation(s)
- Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, Rome, Italy
| | - Alessia Lai
- Department of Biomedical and Clinical Sciences 'L. Sacco', University of Milan, Milan, Italy
| | - Gianguglielmo Zehender
- Department of Biomedical and Clinical Sciences 'L. Sacco', University of Milan, Milan, Italy
| | - Alessandra Borsetti
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Roma, Italy
| | - Eleonora Cella
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, Rome, Italy
| | - Marco Ciotti
- Laboratory of Molecular Virology, Polyclinic Tor Vergata Foundation, Rome, Italy
| | - Evangelista Sagnelli
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Caterina Sagnelli
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Silvia Angeletti
- Unit of Clinical Laboratory Science, University Campus Bio-Medico of Rome, Rome, Italy
| |
Collapse
|
16
|
Patiño-Galindo JÁ, González-Candelas F, Pybus OG. The Effect of RNA Substitution Models on Viroid and RNA Virus Phylogenies. Genome Biol Evol 2019; 10:657-666. [PMID: 29325030 PMCID: PMC5814974 DOI: 10.1093/gbe/evx273] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2018] [Indexed: 12/16/2022] Open
Abstract
Many viroids and RNA viruses have genomes that exhibit secondary structure, with paired nucleotides forming stems and loops. Such structures violate a key assumption of most methods of phylogenetic reconstruction, that sequence change is independent among sites. However, phylogenetic analyses of these transmissible agents rarely use evolutionary models that account for RNA secondary structure. Here, we assess the effect of using RNA-specific nucleotide substitution models on the phylogenetic inference of viroids and RNA viruses. We obtained data sets comprising full-genome nucleotide sequences from six viroid and ten single-stranded RNA virus species. For each alignment, we inferred consensus RNA secondary structures, then evaluated different DNA and RNA substitution models. We used model selection to choose the best-fitting model and evaluate estimated Bayesian phylogenies. Further, for each data set we generated and compared Robinson–Foulds (RF) statistics in order to test whether the distributions of trees generated under alternative models are notably different to each other. In all alignments, the best-fitting model was one that considers RNA secondary structure: RNA models that allow a nonzero rate of double substitution (RNA16A and RNA16C) fitted best for both viral and viroid data sets. In 14 of 16 data sets, the use of an RNA-specific model led to significantly longer tree lengths, but only in three cases did it have a significant effect on RFs. In conclusion, using RNA model when undertaking phylogenetic inference of viroids and RNA viruses can provide a better model fit than standard approaches and model choice can significantly affect branch length estimates.
Collapse
Affiliation(s)
- Juan Ángel Patiño-Galindo
- Unidad Mixta Infección y Salud Pública FISABIO-Salud Púbica/Universitat de València-I2SysBio, València, Spain.,CIBER Epidemiología y Salud Pública, València, Spain
| | - Fernando González-Candelas
- Unidad Mixta Infección y Salud Pública FISABIO-Salud Púbica/Universitat de València-I2SysBio, València, Spain.,CIBER Epidemiología y Salud Pública, València, Spain
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, United Kingdom
| |
Collapse
|
17
|
Chung YS, Choi JY, Yoo MS, Seong JH, Choi BS, Kang C. Phylogenetic transmission clusters among newly diagnosed antiretroviral drug-naïve patients with human immunodeficiency virus-1 in Korea: A study from 1999 to 2012. PLoS One 2019; 14:e0217817. [PMID: 31166970 PMCID: PMC6550428 DOI: 10.1371/journal.pone.0217817] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 05/21/2019] [Indexed: 11/29/2022] Open
Abstract
Population-level phylogenetic patterns reflect both transmission dynamics and genetic changes, which accumulate because of selection or drift. In this study, we determined whether a longitudinally sampled dataset derived from human immunodeficiency virus (HIV)-1-infected individuals over a 14-year period (1999–2012) could shed light on the transmission processes involved in the initiation of the HIV-1 epidemic in Korea. In total, 927 sequences were acquired from 1999 to 2012; each sequence was acquired from an individual patient who had not received treatment. Sequences were used for drug resistance and phylogenetic analyses. Phylogenetic and other analyses were conducted using MEGA version 6.06 based on the GTR G+I parameter model and SAS. Of the 927 samples, 863 (93.1%) were classified as subtype B and 64 were classified as other subtypes. Phylogenetic analysis demonstrated that 104 of 927 patient samples (11.2%) were grouped into 37 clusters. Being part of a transmission cluster was significantly associated with subtype-B viruses, infection via sexual contact, and the infection of young males. Of all clusters, three (~8.1%) that comprised 10 individual samples (22.2% of 45 individuals) included at least one member with total transmitted drug resistance (TDR). In summary, HIV transmission cluster analyses can integrate laboratory data with behavioral data to enable the identification of key transmission patterns to develop tailored interventions aimed at interrupting transmission chains.
Collapse
Affiliation(s)
- Yoon-Seok Chung
- Division of Viral Diseases, Center for Laboratory Control and Infectious Diseases, Korea Centers for Disease Control and Prevention, Cheongju, Republic of Korea
| | - Ju-Yeon Choi
- Division of Viral Diseases, Center for Laboratory Control and Infectious Diseases, Korea Centers for Disease Control and Prevention, Cheongju, Republic of Korea
| | - Myoung-Su Yoo
- Division of Viral Diseases Research, Center for Research of Infectious Diseases, National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju, Republic of Korea
| | - Jae Hyun Seong
- Division of Viral Diseases Research, Center for Research of Infectious Diseases, National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju, Republic of Korea
| | - Byeong-Sun Choi
- Division of Viral Diseases Research, Center for Research of Infectious Diseases, National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju, Republic of Korea
| | - Chun Kang
- Division of Viral Diseases, Center for Laboratory Control and Infectious Diseases, Korea Centers for Disease Control and Prevention, Cheongju, Republic of Korea
- * E-mail:
| |
Collapse
|
18
|
Wertheim JO, Oster AM, Murrell B, Saduvala N, Heneine W, Switzer WM, Johnson JA. Maintenance and reappearance of extremely divergent intra-host HIV-1 variants. Virus Evol 2018; 4:vey030. [PMID: 30538823 PMCID: PMC6279948 DOI: 10.1093/ve/vey030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Understanding genetic variation in human immunodeficiency virus (HIV) is clinically and immunologically important for patient treatment and vaccine development. We investigated the longitudinal intra-host genetic variation of HIV in over 3,000 individuals in the US National HIV Surveillance System with at least four reported HIV-1 polymerase (pol) sequences. In this population, we identified 149 putative instances of superinfection (i.e. an individual sequentially infected with genetically divergent, polyphyletic viruses). Unexpectedly, we discovered a group of 240 individuals with consecutively sampled viral strains that were >0.015 substitutions/site divergent, despite remaining monophyletic in the phylogeny. Viruses in some of these individuals had a maximum genetic divergence approaching that found between two random, unrelated HIV-1 subtype-B pol sequences within the US population. Individuals with these highly divergent viruses tended to be diagnosed nearly a decade earlier in the epidemic than people with superinfection or virus with less intra-host genetic variation, and they had distinct transmission risk factor profiles. To better understand this genetic variation in cases with extremely divergent, monophyletic viruses, we performed molecular clock phylogenetic analysis. Our findings suggest that, like Hepatitis C virus, extremely divergent HIV lineages can be maintained within an individual and reemerge over a period of years.
Collapse
Affiliation(s)
- Joel O Wertheim
- Department of Medicine, University of California, San Diego, USA
| | - Alexandra M Oster
- Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, USA
| | - Ben Murrell
- Department of Medicine, University of California, San Diego, USA
| | | | - Walid Heneine
- Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, USA
| | - William M Switzer
- Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, USA
| | - Jeffrey A Johnson
- Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, USA
| |
Collapse
|
19
|
Patiño-Galindo JÁ, Domínguez F, Cuevas MT, Delgado E, Sánchez M, Pérez-Álvarez L, Thomson MM, Sanjuán R, González-Candelas F, Cuevas JM. Genome-scale analysis of evolutionary rate and selection in a fast-expanding Spanish cluster of HIV-1 subtype F1. INFECTION GENETICS AND EVOLUTION 2018; 66:43-47. [PMID: 30219320 DOI: 10.1016/j.meegid.2018.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/06/2018] [Accepted: 09/12/2018] [Indexed: 12/15/2022]
Abstract
This work is aimed at assessing the presence of positive selection and/or shifts of the evolutionary rate in a fast-expanding HIV-1 subtype F1 transmission cluster affecting men who have sex with men in Spain. We applied Bayesian coalescent phylogenetics and selection analyses to 23 full-coding region sequences from patients belonging to that cluster, along with other 19 F1 epidemiologically-unrelated sequences. A shift in the overall evolutionary rate of the virus, explained by positively selected sites in the cluster, was detected. We also found one substitution in Nef (H89F) that was specific to the cluster and experienced positive selection. These results suggest that fast transmission could have been facilitated by some inherent genetic properties of this HIV-1 variant.
Collapse
Affiliation(s)
- Juan Á Patiño-Galindo
- Joint Research Unit "Infection and Public Health" FISABIO-Universitat de València, València, Spain; CIBER in Epidemiology and Public Health, Madrid, Spain
| | - Francisco Domínguez
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - María T Cuevas
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Elena Delgado
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Mónica Sánchez
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Lucía Pérez-Álvarez
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Michael M Thomson
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València, València, Spain.; Department of Genetics, Universitat de València, València, Spain
| | - Fernando González-Candelas
- Joint Research Unit "Infection and Public Health" FISABIO-Universitat de València, València, Spain; CIBER in Epidemiology and Public Health, Madrid, Spain; Institute for Integrative Systems Biology (I2SysBio), Universitat de València, València, Spain.; Department of Genetics, Universitat de València, València, Spain
| | - José M Cuevas
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València, València, Spain.; Department of Genetics, Universitat de València, València, Spain.
| |
Collapse
|
20
|
Rhee SY, Shafer RW. Geographically-stratified HIV-1 group M pol subtype and circulating recombinant form sequences. Sci Data 2018; 5:180148. [PMID: 30063225 PMCID: PMC6067049 DOI: 10.1038/sdata.2018.148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 05/21/2018] [Indexed: 12/11/2022] Open
Abstract
Accurate classification of HIV-1 group M lineages, henceforth referred to as subtyping, is essential for understanding global HIV-1 molecular epidemiology. Because most HIV-1 sequencing is done for genotypic resistance testing pol gene, we sought to develop a set of geographically-stratified pol sequences that represent HIV-1 group M sequence diversity. Representative pol sequences differ from representative complete genome sequences because not all CRFs have pol recombination points and because complete genome sequences may not faithfully reflect HIV-1 pol diversity. We developed a software pipeline that compiled 6,034 one-per-person complete HIV-1 pol sequences annotated by country and year belonging to 11 pure subtypes and 70 CRFs and selected a set of sequences whose average distance to the remaining sequences is minimized for each subtype/CRF and country to generate a Geographically-Stratified set of 716 Pol Subtype/CRF (GSPS) reference sequences. We provide extensive data on pol diversity within each subtype/CRF and country combination. The GSPS reference set will also be useful for HIV-1 pol subtyping.
Collapse
Affiliation(s)
- Soo-Yon Rhee
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA 94301, USA
| | - Robert W Shafer
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, CA 94301, USA
| |
Collapse
|
21
|
Raghwani J, Redd AD, Longosz AF, Wu CH, Serwadda D, Martens C, Kagaayi J, Sewankambo N, Porcella SF, Grabowski MK, Quinn TC, Eller MA, Eller LA, Wabwire-Mangen F, Robb ML, Fraser C, Lythgoe KA. Evolution of HIV-1 within untreated individuals and at the population scale in Uganda. PLoS Pathog 2018; 14:e1007167. [PMID: 30052678 PMCID: PMC6082572 DOI: 10.1371/journal.ppat.1007167] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 08/08/2018] [Accepted: 06/20/2018] [Indexed: 12/15/2022] Open
Abstract
HIV-1 undergoes multiple rounds of error-prone replication between transmission events, resulting in diverse viral populations within and among individuals. In addition, the virus experiences different selective pressures at multiple levels: during the course of infection, at transmission, and among individuals. Disentangling how these evolutionary forces shape the evolution of the virus at the population scale is important for understanding pathogenesis, how drug- and immune-escape variants are likely to spread in populations, and the development of preventive vaccines. To address this, we deep-sequenced two regions of the HIV-1 genome (p24 and gp41) from 34 longitudinally-sampled untreated individuals from Rakai District in Uganda, infected with subtypes A, D, and inter-subtype recombinants. This dataset substantially increases the availability of HIV-1 sequence data that spans multiple years of untreated infection, in particular for different geographical regions and viral subtypes. In line with previous studies, we estimated an approximately five-fold faster rate of evolution at the within-host compared to the population scale for both synonymous and nonsynonymous substitutions, and for all subtypes. We determined the extent to which this mismatch in evolutionary rates can be explained by the evolution of the virus towards population-level consensus, or the transmission of viruses similar to those that establish infection within individuals. Our findings indicate that both processes are likely to be important.
Collapse
Affiliation(s)
- Jayna Raghwani
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Zoology, Peter Medawar Building, University of Oxford, Oxford, United Kingdom
| | - Andrew D. Redd
- Laboratory of Immunoregulation, Division of Intramural Research, NIAID, NIH, Baltimore MD, United States of America
- Department of Medicine, Johns Hopkins Medical Institute, Johns Hopkins University, Baltimore MD, United States of America
| | - Andrew F. Longosz
- Laboratory of Immunoregulation, Division of Intramural Research, NIAID, NIH, Baltimore MD, United States of America
| | - Chieh-Hsi Wu
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - David Serwadda
- Rakai Health Sciences Program, Kalisizo, Uganda
- School of Public Health, Makerere University, Kampala, Uganda
| | - Craig Martens
- Genomics Unit, RTS, RTB, Rocky Mountain Laboratories, Division of Intramural Research, NIAID, NIH, Hamilton MT, United States of America
| | | | - Nelson Sewankambo
- Rakai Health Sciences Program, Kalisizo, Uganda
- School of Medicine, Makerere University, Kampala, Uganda
| | - Stephen F. Porcella
- Genomics Unit, RTS, RTB, Rocky Mountain Laboratories, Division of Intramural Research, NIAID, NIH, Hamilton MT, United States of America
| | - Mary K. Grabowski
- Department of Pathology, Johns Hopkins Medical Institute, Johns Hopkins University, Baltimore, MD, United States of America
| | - Thomas C. Quinn
- Laboratory of Immunoregulation, Division of Intramural Research, NIAID, NIH, Baltimore MD, United States of America
- Department of Medicine, Johns Hopkins Medical Institute, Johns Hopkins University, Baltimore MD, United States of America
| | - Michael A. Eller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - Leigh Anne Eller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - Fred Wabwire-Mangen
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - Merlin L. Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - Christophe Fraser
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Katrina A. Lythgoe
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Zoology, Peter Medawar Building, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
22
|
Patiño-Galindo JÁ, González-Candelas F. Molecular evolution methods to study HIV-1 epidemics. Future Virol 2018; 13:399-404. [PMID: 29967650 DOI: 10.2217/fvl-2017-0159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 04/04/2018] [Indexed: 01/17/2023]
Abstract
Nucleotide sequences of HIV isolates are obtained routinely to evaluate the presence of resistance mutations to antiretroviral drugs. But, beyond their clinical use, these and other viral sequences include a wealth of information that can be used to better understand and characterize the epidemiology of HIV in relevant populations. In this review, we provide a brief overview of the main methods used to analyze HIV sequences, the data bases where reference sequences can be obtained, and some caveats about the possible applications for public health of these analyses, along with some considerations about their limitations and correct usage to derive robust and reliable conclusions.
Collapse
Affiliation(s)
- Juan Á Patiño-Galindo
- Department of Systems Biology, Columbia University, New York, NY 10032, USA.,Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Fernando González-Candelas
- Joint Research Unit "Infección y Salud Pública" FISABIO-Salud Pública/Universitat de València-Institute for Integrative Systems Biology (ISysBio, CSIC-UV) Valencia, Spain.,CIBER in Epidemiology & Public Health, Valencia, Spain.,Joint Research Unit "Infección y Salud Pública" FISABIO-Salud Pública/Universitat de València-Institute for Integrative Systems Biology (ISysBio, CSIC-UV) Valencia, Spain.,CIBER in Epidemiology & Public Health, Valencia, Spain
| |
Collapse
|
23
|
Rojas Sánchez P, Cobos A, Navaro M, Ramos JT, Pagán I, Holguín Á. Impact of Clinical Parameters in the Intrahost Evolution of HIV-1 Subtype B in Pediatric Patients: A Machine Learning Approach. Genome Biol Evol 2018; 9:2715-2726. [PMID: 29044435 PMCID: PMC5647794 DOI: 10.1093/gbe/evx193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2017] [Indexed: 12/24/2022] Open
Abstract
Determining the factors modulating the genetic diversity of HIV-1 populations is essential to understand viral evolution. This study analyzes the relative importance of clinical factors in the intrahost HIV-1 subtype B (HIV-1B) evolution and in the fixation of drug resistance mutations (DRM) during longitudinal pediatric HIV-1 infection. We recovered 162 partial HIV-1B pol sequences (from 3 to 24 per patient) from 24 perinatally infected patients from the Madrid Cohort of HIV-1 infected children and adolescents in a time interval ranging from 2.2 to 20.3 years. We applied machine learning classification methods to analyze the relative importance of 28 clinical/epidemiological/virological factors in the HIV-1B evolution to predict HIV-1B genetic diversity (d), nonsynonymous and synonymous mutations (dN, dS) and DRM presence. Most of the 24 HIV-1B infected pediatric patients were Spanish (91.7%), diagnosed before 2000 (83.3%), and all were antiretroviral therapy experienced. They had from 0.3 to 18.8 years of HIV-1 exposure at sampling time. Most sequences presented DRM. The best-predictor variables for HIV-1B evolutionary parameters were the age of HIV-1 diagnosis for d, the age at first antiretroviral treatment for dN and the year of HIV-1 diagnosis for ds. The year of infection (birth year) and year of sampling seemed to be relevant for fixation of both DRM at large and, considering drug families, to protease inhibitors (PI). This study identifies, for the first time using machine learning, the factors affecting more HIV-1B pol evolution and those affecting DRM fixation in HIV-1B infected pediatric patients.
Collapse
Affiliation(s)
- Patricia Rojas Sánchez
- HIV-1 Molecular Epidemiology Laboratory, Department of Microbiology, Hospital Ramón y Cajal-IRYCIS and CIBER-ESP (Madrid Cohort of HIV-1 Infected Children and Adolescents Integrated in the Pediatric Branch of the Spanish National AIDS Network (CoRISPe), Madrid, Spain.,Transcription-associated genome instability Laboratory, Institute of Cancer and Genomic Sciences, School of Medicine, University of Birmingham, Birmingham, United Kingdom
| | - Alberto Cobos
- Department of Plant-Microbe Interaction, Centro de Biotecnología y Genómica de Plantas (UPM-INIA) and E.T.S.I. Agrónomos, Universidad Politécnica de Madrid, Spain
| | - Marisa Navaro
- Department of Infectious Diseases, Hospital General Universitario Gregorio Marañón-CORISPe, Madrid, Spain
| | - José Tomas Ramos
- Department of Infectious Diseases, Hospital Clínico Universitario and Universidad Complutense-CORISPe, Madrid, Spain
| | - Israel Pagán
- Department of Plant-Microbe Interaction, Centro de Biotecnología y Genómica de Plantas (UPM-INIA) and E.T.S.I. Agrónomos, Universidad Politécnica de Madrid, Spain
| | - África Holguín
- HIV-1 Molecular Epidemiology Laboratory, Department of Microbiology, Hospital Ramón y Cajal-IRYCIS and CIBER-ESP (Madrid Cohort of HIV-1 Infected Children and Adolescents Integrated in the Pediatric Branch of the Spanish National AIDS Network (CoRISPe), Madrid, Spain
| |
Collapse
|
24
|
Emergence as an outbreak of the HIV-1 CRF19_cpx variant in treatment-naïve patients in southern Spain. PLoS One 2018; 13:e0190544. [PMID: 29309418 PMCID: PMC5757947 DOI: 10.1371/journal.pone.0190544] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 12/15/2017] [Indexed: 11/29/2022] Open
Abstract
Background CRF19_cpx is a complex circulating recombination form (CRF) of HIV-1. We describe the characteristics of an outbreak of the CRF19_cpx variant among treatment-naïve patients in southern Spain. Methods The study was undertaken at the Virgen de la Victoria Hospital, a reference centre for the analysis of HIV-1 genotype in Malaga (Spain). Subtyping was performed through REGA v3.0 and the relationship of our CRF19_cpx sequences, among themselves and regarding other reference sequences from the same variant, was defined by phylogenetic analysis. We used PhyML program to perform a reconstruction of the phylogeny by Maximum Likelihood method as well as further confirmation of the transmission clusters by Bayesian inference. Additionally, we collected demographic, clinical and immunovirological data. Results Between 2011 and 2016, we detected 57 treatment-naïve patients with the CRF19_cpx variant. Of these, 55 conformed a very well-defined transmission cluster, phylogenetically close to CRF19_cpx sequences from the United Kingdom. The origin of this subtype in Malaga was dated between 2007 and 2010. Over 50% of the patients presented the non-nucleoside reverse transcriptase inhibitor G190A resistance mutation. This variant was mostly represented by young adult Spanish men who had sex with men. Almost half of them were recent seroconverters, though a similar percentage was diagnosed at a late state of HIV infection. Five cases of AIDS and one non-AIDS defined death occurred during follow-up. The majority of patients treated with first-line combination antiretroviral therapy (ART) responded. Conclusions We report the largest HIV-1 CRF19_cpx cohort of treatment-naïve patients outside Cuba, almost all emerging as an outbreak in the South of Spain. Half the cases had the G190A resistance mutation. Unlike previous studies, the variant from Malaga seems less pathogenic, with few AIDS events and an excellent response to ART.
Collapse
|
25
|
Tongo M, Harkins GW, Dorfman JR, Billings E, Tovanabutra S, de Oliveira T, Martin DP. Unravelling the complicated evolutionary and dissemination history of HIV-1M subtype A lineages. Virus Evol 2018; 4:vey003. [PMID: 29484203 PMCID: PMC5819727 DOI: 10.1093/ve/vey003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Subtype A is one of the rare HIV-1 group M (HIV-1M) lineages that is both widely distributed throughout the world and persists at high frequencies in the Congo Basin (CB), the site where HIV-1M likely originated. This, together with its high degree of diversity suggests that subtype A is amongst the fittest HIV-1M lineages. Here we use a comprehensive set of published near full-length subtype A sequences and A-derived genome fragments from both circulating and unique recombinant forms (CRFs/URFs) to obtain some insights into how frequently these lineages have independently seeded HIV-1M sub-epidemics in different parts of the world. We do this by inferring when and where the major subtype A lineages and subtype A-derived CRFs originated. Following its origin in the CB during the 1940s, we track the diversification and recombination history of subtype A sequences before and during its dissemination throughout much of the world between the 1950s and 1970s. Collectively, the timings and numbers of detectable subtype A recombination and dissemination events, the present broad global distribution of the sub-epidemics that were seeded by these events, and the high prevalence of subtype A sequences within the regions where these sub-epidemics occurred, suggest that ancestral subtype A viruses (and particularly sub-subtype A1 ancestral viruses) may have been genetically predisposed to become major components of the present epidemic.
Collapse
Affiliation(s)
- Marcel Tongo
- KwaZulu-Natal Research Innovation and Sequencing Platform (Krisp), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban 4041, South Africa
- Division of Computational Biology, Department of Integrative Biomedical Sciences and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- Center of Research for Emerging and Re-Emerging Diseases (CREMER), Institute of Medical Research and Study of Medicinal Plants (IMPM), Yaoundé, Cameroon
| | - Gordon W Harkins
- South African MRC Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville 7535, South Africa
| | - Jeffrey R Dorfman
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- Division of Immunology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Erik Billings
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910–7500, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20910–7500, USA
| | - Sodsai Tovanabutra
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910–7500, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20910–7500, USA
| | - Tulio de Oliveira
- KwaZulu-Natal Research Innovation and Sequencing Platform (Krisp), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Darren P Martin
- Division of Computational Biology, Department of Integrative Biomedical Sciences and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
26
|
Patiño-Galindo JÁ, González-Candelas F. The substitution rate of HIV-1 subtypes: a genomic approach. Virus Evol 2017; 3:vex029. [PMID: 29942652 PMCID: PMC6007745 DOI: 10.1093/ve/vex029] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
HIV-1M causes most infections in the AIDS pandemic. Its genetic diversity is defined by nine pure subtypes and more than sixty recombinant forms. We have performed a comparative analysis of the evolutionary rate of five pure subtypes (A1, B, C, D, and G) and two circulating recombinant forms (CRF01_AE and CRF02 AG) using data obtained from nearly complete genome coding sequences. Times to the most recent common ancestor (tMRCA) and substitution rates of these HIV genomes, and their genomic partitions, were estimated by Bayesian coalescent analyses. Genomic substitution rate estimates were compared between the HIV-1 datasets analyzed by means of randomization tests. Significant differences in the rate of evolution were found between subtypes, with subtypes C and A1 and CRF01_AE displaying the highest rates. On the other hand, CRF02_AG and subtype D were the slowest evolving types. Using a different molecular clock model for each genomic partition led to more precise tMRCA estimates than when linking the same clock along the HIV genome. Overall, the earliest tMRCA corresponded to subtype A1 (median = 1941, 95% HPD = 1943-55), whereas the most recent tMRCA corresponded to subtype G and CRF01_AE subset 3 (median = 1971, 95% HPD = 1967-75 and median = 1972, 95% HPD = 1970-75, respectively). These results suggest that both biological and epidemiological differences among HIV-1M subtypes are reflected in their evolutionary dynamics. The estimates obtained for tMRCAs and substitution rates provide information that can be used as prior distributions in future Bayesian coalescent analyses of specific HIV-1 subtypes/CRFs and genes.
Collapse
Affiliation(s)
- Juan Ángel Patiño-Galindo
- Unidad Mixta Infección y Salud Pública FISABIO-Salud Pública/Universitat de València, Institute for Integrative Systems Biology (I2SysBio), CIBERESP, c/Catedratico Jose Beltran, 2, 46980 Paterna, Valencia, Spain
| | - Fernando González-Candelas
- Unidad Mixta Infección y Salud Pública FISABIO-Salud Pública/Universitat de València, Institute for Integrative Systems Biology (I2SysBio), CIBERESP, c/Catedratico Jose Beltran, 2, 46980 Paterna, Valencia, Spain
| |
Collapse
|
27
|
|
28
|
Cho YK, Kim JE, Jeong D, Foley BT. Signature pattern analysis for the full-length env gene of the earliest Korean subclade B of HIV-1: outbreak among Korean hemophiliacs. Virus Genes 2017. [PMID: 28639219 DOI: 10.1007/s11262-017-1477-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The epidemiological link in the hypervariable env gene between viruses infecting HIV-positive hemophiliacs (HPs) and plasma donors was not studied. We determined full-length env gene sequences in 20 HPs, 3 plasma donors whose plasma was used for domestic clotting factor (DCF) production, and 54 local controls (LCs). Env genes from viruses in frozen stored sera obtained 1-3 years after diagnosis and from samples collected several years after infection were amplified via RT-PCR and subjected to direct sequencing. Phylogenetic analysis indicated that all sequences were subtype B, including 133 sequences from 77 cases (20 HPs, 3 plasma donors, and 54 LCs) belonging to the Korean subclade B (KSB) and 6 sequences from 5 cases that did not belong to the KSB. Env gene sequences from donors O and P and those of the 20 HPs comprised 2 subclusters within the KSB, although phylogenetic analysis did not support significant bootstrap values. In contrast, signature pattern analysis indicated signature nucleotides at 43 positions between the HPs and LCs (P < 0.05). In particular, specific signature nucleotides at 4 positions were fully conserved in the HPs, but not in the LCs (P < 0.0001). Furthermore, there were 26 signature residues within the KSB and were distinct from the worldwide consensus for subtype B. In conclusion, signature pattern analysis for the hypervariable env gene revealed an epidemiological link that the 20 HPs in this study had been infected with viruses from the DCF used for treatment, consistent with our previous finding.
Collapse
Affiliation(s)
- Young-Keol Cho
- Department of Microbiology, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea.
| | - Jung-Eun Kim
- Department of Microbiology, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Daeun Jeong
- Department of Microbiology, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Brian T Foley
- HIV Databases, Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
| |
Collapse
|
29
|
Lythgoe KA, Gardner A, Pybus OG, Grove J. Short-Sighted Virus Evolution and a Germline Hypothesis for Chronic Viral Infections. Trends Microbiol 2017; 25:336-348. [PMID: 28377208 PMCID: PMC5405858 DOI: 10.1016/j.tim.2017.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/03/2017] [Accepted: 03/03/2017] [Indexed: 12/24/2022]
Abstract
With extremely short generation times and high mutability, many viruses can rapidly evolve and adapt to changing environments. This ability is generally beneficial to viruses as it allows them to evade host immune responses, evolve new behaviours, and exploit ecological niches. However, natural selection typically generates adaptation in response to the immediate selection pressures that a virus experiences in its current host. Consequently, we argue that some viruses, particularly those characterised by long durations of infection and ongoing replication, may be susceptible to short-sighted evolution, whereby a virus' adaptation to its current host will be detrimental to its onward transmission within the host population. Here we outline the concept of short-sighted viral evolution and provide examples of how it may negatively impact viral transmission among hosts. We also propose that viruses that are vulnerable to short-sighted evolution may exhibit strategies that minimise its effects. We speculate on the various mechanisms by which this may be achieved, including viral life history strategies that result in low rates of within-host evolution, or the establishment of a 'germline' lineage of viruses that avoids short-sighted evolution. These concepts provide a new perspective on the way in which some viruses have been able to establish and maintain global pandemics.
Collapse
Affiliation(s)
| | - Andy Gardner
- School of Biology, University of St Andrews, St Andrews, KY16 9TH, UK
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| | - Joe Grove
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, WC1E 6BT, UK
| |
Collapse
|
30
|
The multi-faceted dynamics of HIV-1 transmission in Northern Alberta: A combined analysis of virus genetic and public health data. INFECTION GENETICS AND EVOLUTION 2017; 52:100-105. [PMID: 28427935 DOI: 10.1016/j.meegid.2017.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 03/30/2017] [Accepted: 04/05/2017] [Indexed: 01/05/2023]
Abstract
Molecular epidemiology has become a key tool for tracking infectious disease epidemics. Here, the spread of the most prevalent HIV-1 subtypes in Northern Alberta, Canada, was characterized with a Bayesian phylogenetic approach using 1146 HIV-1 pol sequences collected between 2007 and 2013 for routine clinical management purposes. Available patient metadata were qualitatively interpreted and correlated with onwards transmission using Fisher exact tests and logistic regression. Most infections were from subtypes A (n=36), B (n=815) and C (n=211). Africa is the dominant origin location for subtypes A and C while the subtype B epidemic was seeded from the USA and Middle America and, from the early 1990s onwards, mostly by interprovincial spread. Subtypes A (77.8%) and C (74.0%) were usually heterosexually transmitted and circulate predominantly among Blacks (61.1% and 85% respectively). Subtype B was mostly found among Caucasians (48.6%) and First Nations (36.8%), and its modes of transmission were stratified by ethnic origin. Compared to subtypes A (5.6%) and C (3.8-10.0%), a larger portion of subtype B patients were found within putative provincial transmission networks (20.3-29.5%), and this almost doubled when focusing on nationwide transmission clusters (37.9-57.5%). No clear association between cluster membership and particular patient characteristics was found. This study reveals complex and multi-faceted transmission dynamics of the HIV-1 epidemic in this otherwise low HIV prevalence population in Northern Alberta, Canada. These findings can aid public health planning.
Collapse
|
31
|
DeLeon O, Hodis H, O’Malley Y, Johnson J, Salimi H, Zhai Y, Winter E, Remec C, Eichelberger N, Van Cleave B, Puliadi R, Harrington RD, Stapleton JT, Haim H. Accurate predictions of population-level changes in sequence and structural properties of HIV-1 Env using a volatility-controlled diffusion model. PLoS Biol 2017; 15:e2001549. [PMID: 28384158 PMCID: PMC5383018 DOI: 10.1371/journal.pbio.2001549] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/06/2017] [Indexed: 01/08/2023] Open
Abstract
The envelope glycoproteins (Envs) of HIV-1 continuously evolve in the host by random mutations and recombination events. The resulting diversity of Env variants circulating in the population and their continuing diversification process limit the efficacy of AIDS vaccines. We examined the historic changes in Env sequence and structural features (measured by integrity of epitopes on the Env trimer) in a geographically defined population in the United States. As expected, many Env features were relatively conserved during the 1980s. From this state, some features diversified whereas others remained conserved across the years. We sought to identify “clues” to predict the observed historic diversification patterns. Comparison of viruses that cocirculate in patients at any given time revealed that each feature of Env (sequence or structural) exists at a defined level of variance. The in-host variance of each feature is highly conserved among individuals but can vary between different HIV-1 clades. We designate this property “volatility” and apply it to model evolution of features as a linear diffusion process that progresses with increasing genetic distance. Volatilities of different features are highly correlated with their divergence in longitudinally monitored patients. Volatilities of features also correlate highly with their population-level diversification. Using volatility indices measured from a small number of patient samples, we accurately predict the population diversity that developed for each feature over the course of 30 years. Amino acid variants that evolved at key antigenic sites are also predicted well. Therefore, small “fluctuations” in feature values measured in isolated patient samples accurately describe their potential for population-level diversification. These tools will likely contribute to the design of population-targeted AIDS vaccines by effectively capturing the diversity of currently circulating strains and addressing properties of variants expected to appear in the future. HIV-1 is the causative agent of the global AIDS pandemic. The envelope glycoproteins (Envs) of HIV-1 constitute a primary target for antibody-based vaccines. However, the diversity of Envs in the population limits the potential efficacy of this approach. Accurate estimates of the range of variants that currently infect patients and those expected to appear in the future will likely contribute to the design of population-targeted immunogens. We found that different properties (features) of Env have different propensities for small “fluctuations” in their values among viruses that infect patients at any given time point. This propensity of each feature for in-host variance, which we designate “volatility”, is conserved among patients. We apply this parameter to model the evolution of features (in patients and population) as a diffusion process driven by their “diffusion coefficients” (volatilities). Using volatilities measured from a few patient samples from the 1980s, we accurately predict properties of viruses that evolved in the population over the course of 30 years. The diffusion-based model described here efficiently captures evolution of phenotypes in biological systems controlled by a dominant random component.
Collapse
Affiliation(s)
- Orlando DeLeon
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Hagit Hodis
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Yunxia O’Malley
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Jacklyn Johnson
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Hamid Salimi
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Yinjie Zhai
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Elizabeth Winter
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Claire Remec
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Noah Eichelberger
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Brandon Van Cleave
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Ramya Puliadi
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Robert D. Harrington
- Center for AIDS Research (CFAR) at the University of Washington, Seattle, Washington, United States of America
| | - Jack T. Stapleton
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Veterans Affairs Medical Center, Iowa City, Iowa, United States of America
| | - Hillel Haim
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
32
|
Sallam M, Esbjörnsson J, Baldvinsdóttir G, Indriðason H, Björnsdóttir TB, Widell A, Gottfreðsson M, Löve A, Medstrand P. Molecular epidemiology of HIV-1 in Iceland: Early introductions, transmission dynamics and recent outbreaks among injection drug users. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2017; 49:157-163. [PMID: 28082188 DOI: 10.1016/j.meegid.2017.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/19/2016] [Accepted: 01/02/2017] [Indexed: 10/20/2022]
Abstract
The molecular epidemiology of HIV-1 in Iceland has not been described so far. Detailed analyses of the dynamics of HIV-1 can give insights for prevention of virus spread. The objective of the current study was to characterize the genetic diversity and transmission dynamics of HIV-1 in Iceland. Partial HIV-1 pol (1020bp) sequences were generated from 230 Icelandic samples, representing 77% of all HIV-1 infected individuals reported in the country 1985-2012. Maximum likelihood phylogenies were reconstructed for subtype/CRF assignment and determination of transmission clusters. Timing and demographic growth patterns were determined in BEAST. HIV-1 infection in Iceland was dominated by subtype B (63%, n=145) followed by subtype C (10%, n=23), CRF01_AE (10%, n=22), sub-subtype A1 (7%, n=15) and CRF02_AG (7%, n=15). Trend analysis showed an increase in non-B subtypes/CRFs in Iceland over the study period (p=0.003). The highest proportion of phylogenetic clustering was found among injection drug users (IDUs; 89%), followed by heterosexuals (70%) and men who have sex with men (35%). The time to the most recent common ancestor of the oldest subtype B cluster dated back to 1978 (median estimate, 95% highest posterior density interval: 1974-1981) suggesting an early introduction of HIV-1 into Iceland. A previously reported increase in HIV-1 incidence among IDUs 2009-2011 was revealed to be due to two separate outbreaks. Our study showed that a variety of HIV-1 subtypes and CRFs were prevalent in Iceland 1985-2012, with subtype B being the dominant form both in terms of prevalence and domestic spread. The rapid increase of HIV-1 infections among IDUs following a major economic crisis in Iceland raises questions about casual associations between economic factors, drug use and public health.
Collapse
Affiliation(s)
- Malik Sallam
- Lund University, Department of Translational Medicine, Malmö, Sweden.
| | - Joakim Esbjörnsson
- University of Oxford, Nuffield Department of Medicine, Oxford, UK; Karolinska Institute, Microbiology, Tumor and Cell Biology, Stockholm, Sweden.
| | | | - Hlynur Indriðason
- University of Iceland, Faculty of Medicine, School of Health Sciences, Reykjavik, Iceland.
| | | | - Anders Widell
- Lund University, Department of Translational Medicine, Malmö, Sweden.
| | - Magnús Gottfreðsson
- University of Iceland, Faculty of Medicine, School of Health Sciences, Reykjavik, Iceland; Landspitali University Hospital, Department of Infectious Diseases, Reykjavik, Iceland.
| | - Arthur Löve
- Landspitali University Hospital, Department of Virology, Reykjavik, Iceland; University of Iceland, Faculty of Medicine, School of Health Sciences, Reykjavik, Iceland.
| | - Patrik Medstrand
- Lund University, Department of Translational Medicine, Malmö, Sweden.
| |
Collapse
|
33
|
Pérez-Parra S, Chueca N, Álvarez M, Pasquau J, Omar M, Collado A, Vinuesa D, Lozano AB, Yebra G, García F. Phylodynamic and Phylogeographic Profiles of Subtype B HIV-1 Epidemics in South Spain. PLoS One 2016; 11:e0168099. [PMID: 28002469 PMCID: PMC5176287 DOI: 10.1371/journal.pone.0168099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 11/23/2016] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Since 1982, HIV-1 epidemics have evolved to different scenarios in terms of transmission routes, subtype distribution and characteristics of transmission clusters. We investigated the evolutionary history of HIV-1 subtype B in south Spain. PATIENTS & METHODS We studied all newly diagnosed HIV-1 subtype B patients in East Andalusia during the 2005-2012 period. For the analysis, we used the reverse transcriptase and protease sequences from baseline resistance, and the Trugene® HIV Genotyping kit (Siemens, Barcelona, Spain). Subtyping was done with REGA v3.0. The maximum likelihood trees constructed with RAxML were used to study HIV-1 clustering. Phylogeographic and phylodynamic profiles were studied by Bayesian inference methods with BEAST v1.7.5 and SPREAD v1.0.6. RESULTS Of the 493 patients infected with HIV-1 subtype B, 234 grouped into 55 clusters, most of which were small (44 clusters ≤ 5 patients, 31 with 2 patients, 13 with 3). The rest (133/234) were grouped into 11 clusters with ≥ 5 patients, and most (82%, 109/133) were men who have sex with men (MSM) grouped into 8 clusters. The association with clusters was more frequent in Spanish (p = 0.02) men (p< 0.001), MSM (p<0.001) younger than 35 years (p = 0.001) and with a CD4+ T-cell count above 350 cells/ul (p<0.001). We estimated the date of HIV-1 subtype B regional epidemic diversification around 1970 (95% CI: 1965-1987), with an evolutionary rate of 2.4 (95%CI: 1.7-3.1) x 10-3 substitutions/site/year. Most clusters originated in the 1990s in MSMs. We observed exponential subtype B HIV-1 growth in 1980-1990 and 2005-2008. The most significant migration routes for subtype B went from inland cities to seaside locations. CONCLUSIONS We provide the first data on the phylodynamic and phylogeographic profiles of HIV-1 subtype B in south Spain. Our findings of transmission clustering among MSMs should alert healthcare managers to enhance preventive measures in this risk group in order to prevent future outbreaks.
Collapse
Affiliation(s)
- Santiago Pérez-Parra
- Servicio de Microbiología Clínica, Hospital Universitario San Cecilio, Complejo Hospitalario e Instituto de Investigación IBS, Granada, Spain
| | - Natalia Chueca
- Servicio de Microbiología Clínica, Hospital Universitario San Cecilio, Complejo Hospitalario e Instituto de Investigación IBS, Granada, Spain
| | - Marta Álvarez
- Servicio de Microbiología Clínica, Hospital Universitario San Cecilio, Complejo Hospitalario e Instituto de Investigación IBS, Granada, Spain
| | - Juan Pasquau
- Servicio de Infecciosas, Hospital Virgen de las Nieves, Granada, Spain
| | - Mohamed Omar
- Servicio de Infecciosas, Hospital Ciudad de Jaén, Jaén, Spain
| | - Antonio Collado
- Servicio de Medicina Interna, Hospital de Torrecárdenas, Almería, Spain
| | - David Vinuesa
- Servicio de Infecciosas, Hospital Universitario San Cecilio, Granada, Spain
| | - Ana B. Lozano
- Servicio de Infecciosas, Hospital de Poniente, Almería, Spain
| | - Gonzalo Yebra
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Federico García
- Servicio de Microbiología Clínica, Hospital Universitario San Cecilio, Complejo Hospitalario e Instituto de Investigación IBS, Granada, Spain
| |
Collapse
|
34
|
Pagán I, Rojas P, Ramos JT, Holguín Á. Clinical Determinants of HIV-1B Between-Host Evolution and their Association with Drug Resistance in Pediatric Patients. PLoS One 2016; 11:e0167383. [PMID: 27907076 PMCID: PMC5132210 DOI: 10.1371/journal.pone.0167383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 11/14/2016] [Indexed: 01/10/2023] Open
Abstract
Understanding the factors that modulate the evolution of virus populations is essential to design efficient control strategies. Mathematical models predict that factors affecting viral within-host evolution may also determine that at the between-host level. Although HIV-1 within-host evolution has been associated with clinical factors used to monitor AIDS progression, such as patient age, CD4 cells count, viral load, and antiretroviral experience, little is known about the role of these clinical factors in determining between-host HIV-1 evolution. Moreover, whether the relative importance of such factors in HIV-1 evolution vary in adult and children patients, in which the course of infection is different, has seldom been analysed. To address these questions, HIV-1 subtype B (HIV-1B) pol sequences of 163 infected children and 450 adults of Madrid, Spain, were used to estimate genetic diversity, rates of synonymous and non-synonymous mutations, selection pressures and frequency of drug-resistance mutations (DRMs). The role and relative importance of patient age, %CD4, CD4/mm3, viral load, and antiretroviral experience in HIV-1B evolution was analysed. In the pediatric HIV-1B population, three clinical factors were primary predictors of virus evolution: Higher HIV-1B genetic diversity was observed with increasing children age, decreasing CD4/mm3 and upon antiretroviral experience. This was mostly due to higher rates of non-synonymous mutations, which were associated with higher frequency of DRMs. Using this data, we have also constructed a simple multivariate model explaining between 55% and 66% of the variance in HIV-1B evolutionary parameters in pediatric populations. On the other hand, the analysed clinical factors had little effect in adult-infecting HIV-1B evolution. These findings highlight the different evolutionary dynamics of HIV-1B in children and adults, and contribute to understand the factors shaping HIV-1B evolution and the appearance of drug-resistance mutation in pediatric patients.
Collapse
Affiliation(s)
- Israel Pagán
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA) and E.T.S.I. Agrónomos, Universidad Politécnica de Madrid, Madrid, Spain
| | - Patricia Rojas
- HIV-1 Molecular Epidemiology Laboratory, Microbiology Department, Hospital Ramón y Cajal-IRYCIS and CIBER-ESP, Madrid, Spain
| | - José Tomás Ramos
- Hospital Clínico San Carlos and Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - África Holguín
- HIV-1 Molecular Epidemiology Laboratory, Microbiology Department, Hospital Ramón y Cajal-IRYCIS and CIBER-ESP, Madrid, Spain
| |
Collapse
|
35
|
Delatorre E, Bello G. Time-scale of minor HIV-1 complex circulating recombinant forms from Central and West Africa. BMC Evol Biol 2016; 16:249. [PMID: 27852214 PMCID: PMC5112642 DOI: 10.1186/s12862-016-0824-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/08/2016] [Indexed: 11/29/2022] Open
Abstract
Background Several HIV-1 circulating recombinant forms with a complex mosaic structure (CRFs_cpx) circulate in central and western African regions. Here we reconstruct the evolutionary history of some of these complex CRFs (09_cpx, 11_cpx, 13_cpx and 45_cpx) and further investigate the dissemination dynamic of the CRF11_cpx clade by using a Bayesian coalescent-based method. Results The analysis of two HIV-1 datasets comprising 181 pol (36 CRF09_cpx, 116 CRF11_cpx, 20 CRF13_cpx and 9 CRF45_cpx) and 125 env (12 CRF09_cpx, 67 CRF11_cpx, 17 CRF13_cpx and 29 CRF45_cpx) sequences pointed to quite consistent onset dates for CRF09_cpx (~1966: 1958–1979), CRF11_cpx (~1957: 1950–1966) and CRF13_cpx (~1965: 1958–1973) clades; while some divergence was found for the estimated date of origin of CRF45_cpx clade [pol = 1970 (1964–1976); env = 1960 (1952–1969)]. Phylogeographic reconstructions indicate that the HIV-1 CRF11_cpx clade most probably emerged in Cameroon and from there it was first disseminated to the Central Africa Republic and Chad in the early 1970s and to other central and western African countries from the early 1980s onwards. Demographic reconstructions suggest that the CRF11_cpx epidemic grew between 1960 and 1990 with a median exponential growth rate of 0.27 year−1, and stabilized after. Conclusions These results reveal that HIV-1 CRFs_cpx clades have been circulating in Central Africa for a period comparable to other much more prevalent HIV-1 group M lineages. Cameroon was probably the epicenter of dissemination of the CRF11_cpx clade that seems to have experienced a long epidemic growth phase before stabilization. The epidemic growth of the CRF11_cpx clade was roughly comparable to other HIV-1 group M lineages circulating in Central Africa. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0824-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Edson Delatorre
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz - FIOCRUZ, Av. Brasil 4365, 21040-360, Rio de Janeiro, RJ, Brazil.
| | - Gonzalo Bello
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz - FIOCRUZ, Av. Brasil 4365, 21040-360, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
36
|
Wilkinson E, Rasmussen D, Ratmann O, Stadler T, Engelbrecht S, de Oliveira T. Origin, imports and exports of HIV-1 subtype C in South Africa: A historical perspective. INFECTION GENETICS AND EVOLUTION 2016; 46:200-208. [PMID: 27421210 DOI: 10.1016/j.meegid.2016.07.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/07/2016] [Accepted: 07/08/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND While the HIV epidemic in South Africa had a later onset than epidemics in other southern African countries, prevalence grew rapidly during the 1990's when the country was going through socio-political changes with the end of Apartheid. South Africa currently has the largest number of people living with HIV in the world and the epidemic is dominated by a unique subtype, HIV-1 subtype C. This large epidemic is also characterized by high level of genetic diversity. We hypothesize that this diversity is due to multiple introductions of the virus during the period of change. In this paper, we apply novel phylogeographic methods to estimate the number of viral imports and exports from the start of the epidemic to the present. METHODS We assembled 11,289 unique subtype C pol sequences from southern Africa. These represent one of the largest sequence datasets ever analyzed in the region. Sequences were stratified based on country of sampling and levels of genetic diversity were estimated for each country. Sequences were aligned and a maximum-likelihood evolutionary tree was inferred. Least-Squares Dating was then used to obtain a dated phylogeny from which we estimated the number of introductions into and exports out of South Africa using parsimony-based ancestral location reconstructions. RESULTS Our results identified 189 viral introductions into South Africa with the largest number of introductions attributed to Zambia (n=109), Botswana (n=32), Malawi (n=26) and Zimbabwe (n=13). South Africa also exported many viral lineages to its neighbours. The bulk viral imports and exports appear to have occurred between 1985 and 2000, coincident with the period of socio-political transition. CONCLUSION The high level of subtype C genetic diversity in South Africa is related to multiple introductions of the virus to the country. While the number of viral imports and exports we identified was highly sensitive to the number of samples included from each country, they mostly clustered around the period of rapid political and socio-economic change in South Africa.
Collapse
Affiliation(s)
- Eduan Wilkinson
- Africa Centre for Population Health, University of KwaZulu-Natal, Durban 4041, South Africa.
| | - David Rasmussen
- ETH Zurich, Department of Biosystems Science and Engineering, 4058 Basel, Switzerland.
| | - Oliver Ratmann
- Imperial College London, School of Public Health, Department of Infectious Disease Epidemiology, London W2 1PG, United Kingdom.
| | - Tanja Stadler
- ETH Zurich, Department of Biosystems Science and Engineering, 4058 Basel, Switzerland.
| | - Susan Engelbrecht
- Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Western Cape Province 7505, South Africa; National Health Laboratory Services (NHLS), Tygerberg Coastal, Cape Town, 8000, South Africa.
| | - Tulio de Oliveira
- Africa Centre for Population Health, University of KwaZulu-Natal, Durban 4041, South Africa; College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; Research Department of Infection, University College London, London WC1E 6BT, United Kingdom.
| |
Collapse
|
37
|
Paraskevis D, Nikolopoulos GK, Magiorkinis G, Hodges-Mameletzis I, Hatzakis A. The application of HIV molecular epidemiology to public health. INFECTION GENETICS AND EVOLUTION 2016; 46:159-168. [PMID: 27312102 DOI: 10.1016/j.meegid.2016.06.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 02/02/2023]
Abstract
HIV is responsible for one of the largest viral pandemics in human history. Despite a concerted global response for prevention and treatment, the virus persists. Thus, urgent public health action, utilizing novel interventions, is needed to prevent future transmission events, critical to eliminating HIV. For public health planning to prove effective and successful, we need to understand the dynamics of regional epidemics and to intervene appropriately. HIV molecular epidemiology tools as implemented in phylogenetic, phylodynamic and phylogeographic analyses have proven to be powerful tools in public health planning across many studies. Numerous applications with HIV suggest that molecular methods alone or in combination with mathematical modelling can provide inferences about the transmission dynamics, critical epidemiological parameters (prevalence, incidence, effective number of infections, Re, generation times, time between infection and diagnosis), or the spatiotemporal characteristics of epidemics. Molecular tools have been used to assess the impact of an intervention and outbreak investigation which are of great public health relevance. In some settings, molecular sequence data may be more readily available than HIV surveillance data, and can therefore allow for molecular analyses to be conducted more easily. Nonetheless, classic methods have an integral role in monitoring and evaluation of public health programmes, and should supplement emerging techniques from the field of molecular epidemiology. Importantly, molecular epidemiology remains a promising approach in responding to viral diseases.
Collapse
Affiliation(s)
- D Paraskevis
- Department of Hygiene Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | - G K Nikolopoulos
- Hellenic Center for Diseases Control and Prevention, Maroussi, Greece
| | - G Magiorkinis
- Department of Hygiene Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Department of Zoology, University of Oxford, South Parks Road, OX1 3PS, Oxford, United Kingdom
| | | | - A Hatzakis
- Hellenic Center for Diseases Control and Prevention, Maroussi, Greece
| |
Collapse
|
38
|
Eybpoosh S, Bahrampour A, Karamouzian M, Azadmanesh K, Jahanbakhsh F, Mostafavi E, Zolala F, Haghdoost AA. Spatio-Temporal History of HIV-1 CRF35_AD in Afghanistan and Iran. PLoS One 2016; 11:e0156499. [PMID: 27280293 PMCID: PMC4900578 DOI: 10.1371/journal.pone.0156499] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/16/2016] [Indexed: 01/28/2023] Open
Abstract
HIV-1 Circulating Recombinant Form 35_AD (CRF35_AD) has an important position in the epidemiological profile of Afghanistan and Iran. Despite the presence of this clade in Afghanistan and Iran for over a decade, our understanding of its origin and dissemination patterns is limited. In this study, we performed a Bayesian phylogeographic analysis to reconstruct the spatio-temporal dispersion pattern of this clade using eligible CRF35_AD gag and pol sequences available in the Los Alamos HIV database (432 sequences available from Iran, 16 sequences available from Afghanistan, and a single CRF35_AD-like pol sequence available from USA). Bayesian Markov Chain Monte Carlo algorithm was implemented in BEAST v1.8.1. Between-country dispersion rates were tested with Bayesian stochastic search variable selection method and were considered significant where Bayes factor values were greater than three. The findings suggested that CRF35_AD sequences were genetically similar to parental sequences from Kenya and Uganda, and to a set of subtype A1 sequences available from Afghan refugees living in Pakistan. Our results also showed that across all phylogenies, Afghan and Iranian CRF35_AD sequences formed a monophyletic cluster (posterior clade credibility> 0.7). The divergence date of this cluster was estimated to be between 1990 and 1992. Within this cluster, a bidirectional dispersion of the virus was observed across Afghanistan and Iran. We could not clearly identify if Afghanistan or Iran first established or received this epidemic, as the root location of this cluster could not be robustly estimated. Three CRF35_AD sequences from Afghan refugees living in Pakistan nested among Afghan and Iranian CRF35_AD branches. However, the CRF35_AD-like sequence available from USA diverged independently from Kenyan subtype A1 sequences, suggesting it not to be a true CRF35_AD lineage. Potential factors contributing to viral exchange between Afghanistan and Iran could be injection drug networks and mass migration of Afghan refugees and labours to Iran, which calls for extensive preventive efforts.
Collapse
Affiliation(s)
- Sana Eybpoosh
- Regional Knowledge Hub, and WHO Collaborating Centre for HIV Surveillance, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Abbas Bahrampour
- Modeling in Health Research Centre, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Karamouzian
- Regional Knowledge Hub, and WHO Collaborating Centre for HIV Surveillance, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
- School of Population and Public Health, Faculty of Medicine, University of British Colombia, Vancouver, BC, Canada
| | | | | | - Ehsan Mostafavi
- Epidemiology Department, Pasteur Institute of Iran, Tehran, Iran
- Emerging and Reemerging Infectious Diseases Research Centre, Pasteur Institute of Iran, Akanlu, Kabudar Ahang, Hamadan, Iran
| | - Farzaneh Zolala
- Modeling in Health Research Centre, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Akbar Haghdoost
- Regional Knowledge Hub, and WHO Collaborating Centre for HIV Surveillance, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
- * E-mail:
| |
Collapse
|
39
|
Delatorre E, de Azevedo SSD, Rodrigues-Pedro A, Velasco-de-Castro CA, Couto-Fernandez JC, Pilotto JH, Morgado MG. Tracing the origin of a singular HIV-1 CRF45_cpx clade identified in Brazil. INFECTION GENETICS AND EVOLUTION 2016; 46:223-232. [PMID: 27259365 DOI: 10.1016/j.meegid.2016.05.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 05/26/2016] [Accepted: 05/30/2016] [Indexed: 01/10/2023]
Abstract
The HIV-1 epidemiology has changed over the past decade toward a marked increase in the circulation of strains previously restricted to local epidemics. Recent molecular epidemiological surveys identified some HIV-1 strains of probable African origin circulating in Brazil, including the Circulating Recombinant Form (CRF) 45_cpx, a complex A1/K/U recombinant that circulates in Central Africa. Here, we characterize partial genomic sequences and reconstruct the evolutionary history of HIV-1 CRF45_cpx-related recombinant samples identified in independent studies carried out with HIV+ individuals in Brazil. The sequences were obtained by overlapping PCR amplifications followed by direct sequencing. Recombination profiles were determined by phylogenetic and bootscaning analyses. The evolutionary history was estimated by a Bayesian coalescent-based method using datasets representing the gag, pol and env gene fragments. Six of the 10 samples isolated in Rio de Janeiro showed a CRF45_cpx-like pattern throughout the sequenced genome. The remaining were classified as second-generation recombinants, showing the mosaic patterns: CRF45_cpx/B/D/F1/U, CRF45_cpx/B/F1/U, CRF45_cpx/B/U and CRF45_cpx/F1. All Brazilian CRF45_cpx sequences, except one, formed a monophyletic clade (CRF45-BR), which seems to be the result of a single introduction event that has spread to the Rio de Janeiro, São Paulo and Minas Gerais states and is related to sequences from Argentina, Italy and Belgium. The Bayesian analyses pointed out quite consistent onset dates for CRF45-BR clade (~1984: 1976-1996) in the three gene datasets. These results indicate that the CRF45-BR clade has been circulating in the Southeastern Brazilian region for about 30years, although its presence was not detected until recently due to its very low prevalence. This reinforces the relevance of large-scale molecular surveillance data to identify the emergence of new HIV variants and their impact on local epidemics.
Collapse
Affiliation(s)
- Edson Delatorre
- Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.
| | - Suwellen S D de Azevedo
- Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Adriana Rodrigues-Pedro
- Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Carlos Augusto Velasco-de-Castro
- Laboratório de Virologia, Departamento de Patologia Clínica, Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, FIOCRUZ, Rio de Janeiro, Brazil
| | | | - Jose H Pilotto
- Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil; Hospital Geral de Nova Iguaçu, Rio de Janeiro, Brazil
| | - Mariza G Morgado
- Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| |
Collapse
|
40
|
Junqueira DM, Almeida SEDM. HIV-1 subtype B: Traces of a pandemic. Virology 2016; 495:173-84. [PMID: 27228177 DOI: 10.1016/j.virol.2016.05.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/01/2016] [Accepted: 05/03/2016] [Indexed: 11/18/2022]
Abstract
Human migration is a major process that shaped the origin and dissemination of HIV. Within HIV-1, subtype B (HIV-1B) is the most disseminated variant and it is assumed to be the causative agent in approximately 11% of all cases of HIV worldwide. Phylogenetic studies have revealed that HIV-1B emerged in Kinshasa (Africa) and was introduced into the Caribbean region via Haiti in or around 1966 by human migration. After localized dispersion, the virus was brought to the United States of America via homosexual/bisexual contact around 1969. Inside USA, the incidence of HIV-1B infection increased exponentially and it became established in the population, affecting not only homosexual individuals but also heterosexual individuals and injecting drug users. Soon after, the virus was disseminated and became established in other regions, including Europe, Asia, Latin America, and Australia. Recent studies suggest that, in addition to this pandemic clade, several lineages have emerged from Haiti and reached other Caribbean and Latin American countries via short-distance dissemination. Different subtype B genetic variants have also been detected in these epidemics. Four genetic variants have been described to date: subtype B', which mainly circulates in Thailand and other Asian countries; a specific variant mainly found in Trinidad and Tobago; the GPGS variant, which is primarily detected in Korea; and the GWGR variant, which is mainly detected in Brazil. This paper reviews the evolution of HIV-1B and its impact on the human population.
Collapse
Affiliation(s)
- Dennis Maletich Junqueira
- Centro de Desenvolvimento Científico e Tecnológico (CDCT), Fundação Estadual de Produção e Pesquisa em Saúde (FEPPS), Avenida Ipiranga, 5400 - Jd Botânico, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Bento Gonçalves, 9800 - Agronomia, Porto Alegre, RS, Brazil; Centro Universitário Ritter dos Reis - UniRitter, Departamento de Ciências da Saúde, Avenida Orfanotrófio, 555 - Teresópolis, Porto Alegre, RS, Brazil.
| | - Sabrina Esteves de Matos Almeida
- Centro de Desenvolvimento Científico e Tecnológico (CDCT), Fundação Estadual de Produção e Pesquisa em Saúde (FEPPS), Avenida Ipiranga, 5400 - Jd Botânico, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Bento Gonçalves, 9800 - Agronomia, Porto Alegre, RS, Brazil; Instituto de Ciências da Saúde, Universidade FEEVALE, Rodovia RS 239, 2755 - Vila Nova, Novo Hamburgo, RS, Brazil.
| |
Collapse
|
41
|
Mir D, Jung M, Delatorre E, Vidal N, Peeters M, Bello G. Phylodynamics of the major HIV-1 CRF02_AG African lineages and its global dissemination. INFECTION GENETICS AND EVOLUTION 2016; 46:190-199. [PMID: 27180893 DOI: 10.1016/j.meegid.2016.05.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/09/2016] [Accepted: 05/11/2016] [Indexed: 12/16/2022]
Abstract
The HIV-1 CRF02_AG clade is the most prevalent HIV variant in West and West-Central Africa and its detection outside Africa is increasingly common. Little is known, however, about the number and phylodynamics of major CRF02_AG lineages circulating worldwide. To this end, a total of 3170 HIV-1 CRF02_AG-like pol sequences isolated around the world, over a period of 25years (1989 to 2013), were analyzed using Maximum Likelihood and Bayesian coalescent-based methods. Our results suggest that most of the current CRF02_AG diversity comes from the dissemination of a few founder strains out of Central Africa into West Africa and Cameroon between the late 1960s and the middle 1980s. The CRF02_AG strain introduced into West Africa established a large regional epidemic with low phylogeographic structure. This strain was also successfully disseminated out of the West African region and originated at least three large secondary outbreaks in Cameroon at around the late 1970s, in the former Soviet Union (FSU) countries at around the late 1990s, and in Bulgaria/Germany at around the early 2000s. The CRF02_AG African lineages introduced into Cameroon remained mostly restricted to this country and its neighbors. Demographic reconstructions indicate that major CRF02_AG clades circulating in Africa exhibited a decline in growth rate since the middle 1980s/1990s, whereas CRF02_AG clades in Europe and the FSU countries continue to grow exponentially until the middle to late 2000s. Substantial differences in the median estimated growth rate of the same CRF02_AG clade circulating in different regions (0.63-2.00year-1), and of different CRF02_AG clades circulating in the same country (0.41-0.75year-1) were observed. Thus, the cause of the epidemic outcome of the different HIV-1 CRF02_AG lineages is probably multifactorial.
Collapse
Affiliation(s)
- Daiana Mir
- Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Matthieu Jung
- Unité Mixte Internationale 233, Institut de Recherche pour le Développement, INSERM U1175, and Université Montpellier, Montpellier, France; Institut de Biologie Computationnelle, LIRMM, UMR 5506 CNRS - Université Montpellier, Montpellier, France
| | - Edson Delatorre
- Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Nicole Vidal
- Unité Mixte Internationale 233, Institut de Recherche pour le Développement, INSERM U1175, and Université Montpellier, Montpellier, France
| | - Martine Peeters
- Unité Mixte Internationale 233, Institut de Recherche pour le Développement, INSERM U1175, and Université Montpellier, Montpellier, France; Institut de Biologie Computationnelle, LIRMM, UMR 5506 CNRS - Université Montpellier, Montpellier, France
| | - Gonzalo Bello
- Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.
| |
Collapse
|
42
|
Yebra G, Kalish ML, Leigh Brown AJ. Reconstructing the HIV-1 CRF02_AG and CRF06_cpx epidemics in Burkina Faso and West Africa using early samples. INFECTION GENETICS AND EVOLUTION 2016; 46:209-218. [PMID: 27063411 DOI: 10.1016/j.meegid.2016.03.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/28/2016] [Accepted: 03/31/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND HIV-1 circulating recombinant forms (CRFs) represent viral recombinant lineages that play a significant role in the global epidemic. Two of them dominate the epidemic in Burkina Faso: CRF06_cpx (first described in this country) and CRF02_AG. We reconstructed the phylodynamics of both recombinant viruses in Burkina Faso and throughout West Africa. METHODS We analysed CRF06_cpx and CRF02_AG sequences (protease/gp41) from early samples collected in Burkina Faso in 1986 together with other GenBank sequences (1984-2013) in 4 datasets: African CRF06_cpx (210/60); down-sampled CRF06_cpx (146/45); Burkina Faso CRF02_AG (130/39) and West/Central African CRF02_AG (691/298). For each dataset, we analysed both protease and gp41 jointly using the BEAST multilocus analysis and conducted phylogeographic analysis to reconstruct the early migration routes between countries. RESULTS The time to the most recent common ancestor (tMRCA) of CRF06_cpx was 1979 (1973-1983) for protease and 1981 (1978-1983) for gp41. The gp41 analysis inferred the origin of CRF06_cpx (or at least its parental subtype G lineage) in the Democratic Republic of Congo but migrated to Burkina Faso soon after (1982). Both genes showed that CRF06_cpx radiated to the rest of West Africa predominantly after around 1990. These results were robust to the oversampling of Burkina Faso sequences as they were confirmed in the down-sampled dataset. The tMRCA of the Burkina Faso CRF02_AG lineage was 1979 (1977-1983) for protease and 1980 (1978-1981) for gp41. However, we reconstructed its presence in West Africa much earlier (mid-1960s), with an initial origin in Cameroon and/or Nigeria, and its phylogeographic analysis revealed much interconnection within the region with a lack of country-specific phylogenetic patterns, which prevents tracking its exact migration routes. CONCLUSIONS Burkina Faso presents a relatively young HIV epidemic, with the diversification of the current in-country CRF02_AG and CRF06_cpx lineages taking place around 1980. This country represents the main source of CRF06_cpx in West Africa. The CRF02_AG epidemic started at least a decade earlier and showed much interchange between West African countries (especially involving coastal countries) suggesting great population mobility and an extensive viral spread in the region.
Collapse
Affiliation(s)
- Gonzalo Yebra
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK.
| | - Marcia L Kalish
- Institute for Global Health, Vanderbilt University, Nashville, TN, USA
| | | |
Collapse
|
43
|
Disentangling the impact of within-host evolution and transmission dynamics on the tempo of HIV-1 evolution. AIDS 2015; 29:1549-56. [PMID: 26244394 DOI: 10.1097/qad.0000000000000731] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To determine how HIV-1 risk groups impact transmitted diversity and the tempo of viral evolution at a population scale. METHODS We investigated a set of previously described transmission chains (n = 70) using a population genetic approach, and tested whether the expected differences in proportions of multivariant transmissions are reflected by varying proportions of transmitted diversity between men having sex with men (MSM) and heterosexual (HET) subpopulations - the largest contributors to HIV spread. To assess evolutionary rate differences among the different risk groups, we compiled risk group datasets for subtypes A1, B and CRF01_AE, and directly compared the absolute substitution rate and its synonymous and non-synonymous components. RESULTS There was sufficient demographic signal to inform the transmission model in Bayesian evolutionary analysis by sampling trees using env data to compare the transmission bottleneck size between the MSM and HET risk groups. We found no indications for a different proportion of transmitted genetic diversity at the population level between these groups. In the direct rate comparisons between the risk groups, however, we consistently recovered a higher evolutionary rate in the male-dominated risk group compared to the HET datasets. CONCLUSION We find that the risk group composition affects the viral evolutionary rate and therefore potentially also the adaptation rate. In particular, risk group-specific sex ratios, and the variation in within-host evolutionary rates between men and women, impose evolutionary rate differences at the epidemic level, but we cannot exclude a role of varying transmission rates.
Collapse
|
44
|
Tongo M, Essomba RG, Nindo F, Abrahams F, Nanfack AJ, Fokam J, Takou D, Torimiro JN, Mpoudi-Ngole E, Burgers WA, Martin DP, Dorfman JR. Phylogenetics of HIV-1 subtype G env: Greater complexity and older origins than previously reported. INFECTION GENETICS AND EVOLUTION 2015; 35:9-18. [PMID: 26190450 DOI: 10.1016/j.meegid.2015.07.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/06/2015] [Accepted: 07/07/2015] [Indexed: 12/16/2022]
Abstract
HIV-1 subtype G has played an early and central role in the emergent complexity of the HIV-1 group M (HIV-1M) epidemic in central/west Africa. Here, we analysed new subtype G env sequences sampled from 8 individuals in Yaoundé, Cameroon during 2007-2010, together with all publically available subtype G-attributed full-length env sequences with known sampling dates and locations. We inferred that the most recent common ancestor (MRCA) of the analysed subtype G env sequences most likely occurred in ∼1953 (95% Highest Posterior Density interval [HPD] 1939-1963): about 15 years earlier than previous estimates. We found that the subtype G env phylogeny has a complex structure including seven distinct lineages, each likely dating back to the late 1960s or early 1970s. Sequences from Angola, Gabon and the Democratic Republic of Congo failed to group consistently in these lineages, possibly because they are related to more ancient sequences that are poorly sampled. The circulating recombinant form (CRF), CRF06_cpx env sequences but not CRF25_cpx env sequences are phylogenetically nested within the subtype G clade. This confirms that the CRF06_cpx env plausibly was derived through recombination from a subtype G parent, and suggests that the CRF25_cpx env was likely derived from an HIV-1M lineage related to the MRCA of subtype G that has remained undiscovered and may be extinct. Overall, this fills important gaps in our knowledge of the early events in the spread of HIV-1M.
Collapse
Affiliation(s)
- Marcel Tongo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa; Division of Immunology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Division of Medical Virology, Faculty of Health Sciences, and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Institute of Medical Research and Study of Medicinal plants (IMPM), Yaoundé, Cameroon
| | - René G Essomba
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa; Division of Immunology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Frederick Nindo
- Computational Biology Group, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Fatima Abrahams
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa
| | - Aubin Joseph Nanfack
- Centre International de Référence «Chantal Biya» pour la recherche sur la prévention et la prise en charge du VIH/SIDA (CIRCB), Yaoundé, Cameroon
| | - Joseph Fokam
- Centre International de Référence «Chantal Biya» pour la recherche sur la prévention et la prise en charge du VIH/SIDA (CIRCB), Yaoundé, Cameroon; Faculty of Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - Desire Takou
- Centre International de Référence «Chantal Biya» pour la recherche sur la prévention et la prise en charge du VIH/SIDA (CIRCB), Yaoundé, Cameroon
| | - Judith N Torimiro
- Centre International de Référence «Chantal Biya» pour la recherche sur la prévention et la prise en charge du VIH/SIDA (CIRCB), Yaoundé, Cameroon; Faculty of Medicine and Biomedical Sciences, University of Yaounde I, Yaounde, Cameroon
| | - Eitel Mpoudi-Ngole
- Institute of Medical Research and Study of Medicinal plants (IMPM), Yaoundé, Cameroon
| | - Wendy A Burgers
- Division of Medical Virology, Faculty of Health Sciences, and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Darren P Martin
- Computational Biology Group, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Jeffrey R Dorfman
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa; Division of Immunology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
45
|
López P, Rivera-Amill V, Paulino-Ramirez R, Yamamura Y. Short Communication: HIV-1 Subtype B in the Dominican Republic: Evolution and Molecular Epidemiology. AIDS Res Hum Retroviruses 2015; 31:679-84. [PMID: 25941939 DOI: 10.1089/aid.2014.0304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Caribbean region has the world second highest incidence rate of acquired immunodeficiency syndrome. The island of Hispaniola is composed of two sovereign nations: the Dominican Republic and Haiti. Together, they account for more than 85% of HIV/AIDS cases in the Caribbean; and the Dominican Republic alone has approximately 46,000 (33,000-59,000) HIV-1-infected adults and children. Despite this, the magnitude of the genetic variability and evolution of the HIV-1 virus in the Dominican Republic is unclear. In the current study, we analyzed 195 reverse transcriptase (RT) sequences obtained from the Los Alamos HIV database. The data were used to assess the course of the viral epidemic over time in the Dominican Republic, using a coalescent approach. Based on the data, we estimated that the timing of the most recent common ancestor (tMRCA) of local HIV-1 subtype B emerged in 1963, approximately. In addition, the Bayesian analysis provided new information that suggests that the epidemic in the Dominican Republic experienced a significant decrease in relative genetic diversity in the past 2 decades. The results suggest that adherence to antiretroviral therapy, adequate prevention campaigns, and better access to health care may be altering the virus's evolution in the Dominican Republic.
Collapse
Affiliation(s)
- Pablo López
- Ponce Health Sciences University-School of Medicine, Ponce Research Institute, AIDS Research Program, Ponce, Puerto Rico
| | - Vanessa Rivera-Amill
- Ponce Health Sciences University-School of Medicine, Ponce Research Institute, AIDS Research Program, Ponce, Puerto Rico
| | - Robert Paulino-Ramirez
- Universidad Iberoamericana, School of Medicine, Research Department, Santo Domingo, Dominican Republic
| | - Yasuhiro Yamamura
- Ponce Health Sciences University-School of Medicine, Ponce Research Institute, AIDS Research Program, Ponce, Puerto Rico
| |
Collapse
|
46
|
HIV-1 subtype B/B' and baseline drug resistance mutation are associated with virologic failure: a multicenter cohort study in China. J Acquir Immune Defic Syndr 2015; 68:289-97. [PMID: 25501612 DOI: 10.1097/qai.0000000000000473] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Distribution of HIV-1 subtypes, transmitted drug resistance (TDR)/drug resistance mutation (DRM), and their impact on response to combination antiretroviral therapy remain poorly understood in China. METHODS We analyzed data from our multicenter cohort study with 444 antiretroviral-naive participants recruited between 2008 and 2010. HIV-1 subtype and tropism were determined by V3 sequencing, and TDR/DRM was determined by Pol sequencing. Virologic and immunologic responses were monitored over 96 weeks of follow-up. The initial combination antiretroviral therapy regimen for all patients was nevirapine + lamivudine + zidovudine or stavudine. Analysis 1 included patients who finished 96 weeks of follow-up (n = 379), and analysis 2 included all 444 patients. RESULTS Subtype B/B' was associated with higher prevalence of TDR/DRM to nucleoside reverse transcriptase inhibitors and nonnucleoside reverse transcriptase inhibitors. Median time to HIV-1 suppression was 18 weeks in all 3 subtype groups. In Cox proportional models for viral suppression, neither viral tropism nor HIV-1 subtypes had any impact on viral suppression; however, subtypes CRF01_AE and C/CRF07_BC/CRF08_BC were associated with lower risk of virologic failure compared with subtype B/B', with adjusted hazard ratio of 0.11 (P = 0.032) and 0.06 (P = 0.036), respectively in analysis 1, 0.42 (P = 0.047) and 0.22 (P = 0.008), respectively in analysis 2. This association was attenuated by adding DRM profiles to multivariate regression models. Neither subtype nor HIV-1 tropism affected immunologic response. CONCLUSIONS HIV-1 subtype tended to be associated with virologic but not immunologic response; this effect could be ascribed to baseline DRM.
Collapse
|
47
|
Bęczkowski PM, Hughes J, Biek R, Litster A, Willett BJ, Hosie MJ. Rapid evolution of the env gene leader sequence in cats naturally infected with feline immunodeficiency virus. J Gen Virol 2015; 96:893-903. [PMID: 25535323 PMCID: PMC4361796 DOI: 10.1099/vir.0.000035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 12/15/2014] [Indexed: 12/13/2022] Open
Abstract
Analysing the evolution of feline immunodeficiency virus (FIV) at the intra-host level is important in order to address whether the diversity and composition of viral quasispecies affect disease progression. We examined the intra-host diversity and the evolutionary rates of the entire env and structural fragments of the env sequences obtained from sequential blood samples in 43 naturally infected domestic cats that displayed different clinical outcomes. We observed in the majority of cats that FIV env showed very low levels of intra-host diversity. We estimated that env evolved at a rate of 1.16×10(-3) substitutions per site per year and demonstrated that recombinant sequences evolved faster than non-recombinant sequences. It was evident that the V3-V5 fragment of FIV env displayed higher evolutionary rates in healthy cats than in those with terminal illness. Our study provided the first evidence that the leader sequence of env, rather than the V3-V5 sequence, had the highest intra-host diversity and the highest evolutionary rate of all env fragments, consistent with this region being under a strong selective pressure for genetic variation. Overall, FIV env displayed relatively low intra-host diversity and evolved slowly in naturally infected cats. The maximum evolutionary rate was observed in the leader sequence of env. Although genetic stability is not necessarily a prerequisite for clinical stability, the higher genetic stability of FIV compared with human immunodeficiency virus might explain why many naturally infected cats do not progress rapidly to AIDS.
Collapse
Affiliation(s)
- Paweł M Bęczkowski
- Small Animal Hospital, University of Glasgow, Glasgow, UK
- MRC University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Joseph Hughes
- MRC University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Roman Biek
- Boyd Orr Centre for Population and Ecosystem Health & Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, UK
- MRC University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Annette Litster
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Brian J Willett
- MRC University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Margaret J Hosie
- MRC University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| |
Collapse
|
48
|
Yebra G, Ragonnet-Cronin M, Ssemwanga D, Parry CM, Logue CH, Cane PA, Kaleebu P, Brown AJL. Analysis of the history and spread of HIV-1 in Uganda using phylodynamics. J Gen Virol 2015; 96:1890-8. [PMID: 25724670 PMCID: PMC4635457 DOI: 10.1099/vir.0.000107] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
HIV prevalence has decreased in Uganda since the 1990s, but remains substantial within high-risk groups. Here, we reconstruct the history and spread of HIV subtypes A1 and D in Uganda and explore the transmission dynamics in high-risk populations. We analysed HIV pol sequences from female sex workers in Kampala (n = 42), Lake Victoria fisher-folk (n = 46) and a rural clinical cohort (n = 74), together with publicly available sequences from adjacent regions in Uganda (n = 412) and newly generated sequences from samples taken in Kampala in 1986 (n = 12). Of the sequences from the three Ugandan populations, 60 (37.1 %) were classified as subtype D, 54 (33.3 %) as subtype A1, 31 (19.1 %) as A1/D recombinants, six (3.7 %) as subtype C, one (0.6 %) as subtype G and 10 (6.2 %) as other recombinants. Among the A1/D recombinants we identified a new candidate circulating recombinant form. Phylodynamic and phylogeographic analyses using BEAST indicated that the Ugandan epidemics originated in 1960 (1950-1968) for subtype A1 and 1973 (1970-1977) for D, in rural south-western Uganda with subsequent spread to Kampala. They also showed extensive interconnection with adjacent countries. The sequence analysis shows both epidemics grew exponentially during the 1970s-1980s and decreased from 1992, which agrees with HIV prevalence reports in Uganda. Inclusion of sequences from the 1980s indicated the origin of both epidemics was more recent than expected and substantially narrowed the confidence intervals in comparison to previous estimates. We identified three transmission clusters and ten pairs, none of them including patients from different populations, suggesting active transmission within a structured transmission network.
Collapse
Affiliation(s)
- Gonzalo Yebra
- 1Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | | | | | - Chris M Parry
- 2MRC/UVRI, Uganda Research Unit on AIDS, Entebbe, Uganda
| | | | | | | | | |
Collapse
|
49
|
Lunar MM, Vandamme AM, Tomažič J, Karner P, Vovko TD, Pečavar B, Volčanšek G, Poljak M, Abecasis AB. Bridging epidemiology with population genetics in a low incidence MSM-driven HIV-1 subtype B epidemic in Central Europe. BMC Infect Dis 2015; 15:65. [PMID: 25887543 PMCID: PMC4345027 DOI: 10.1186/s12879-015-0802-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 02/04/2015] [Indexed: 11/19/2022] Open
Abstract
Background The HIV-1 epidemic in Slovenia, a small Central European country, has some characteristics that make it an ideal model to study HIV-1 transmission. The epidemic is predominantly affecting men who have sex with men infected with subtype B (89% of all patients), has a low prevalence (less than 1/1000) and is growing slowly. The aim of the present study was to analyze in detail the evolutionary history and the determinants of transmission. Methods A total of 223 partial pol gene sequences from therapy naïve individuals were included, representing 52% of all patients newly diagnosed in 13 years (2000–2012) and analyzed together with genetically similar worldwide sequences, selected in a BLAST search. Results Combined analysis (maximum likelihood and Bayesian) of HIV-1 transmission chains revealed 8 major clusters (n ≥ 10 patients), 1 group of 4 patients, 2 trios and 12 transmission pairs, thus leaving only 43 (19.3%) Slovenian patients infected with subtype B without a local epidemiological link, indicating a predominance of local transmission of HIV-1 infection. Bayesian analysis performed on a full set of sequences estimated several introductions of HIV-1 into Slovenia, with the most recent common ancestor (tMRCA) of the earliest Slovenian cluster dated to the late 1980s, although tMRCAs obtained from separate independent analysis of each cluster showed considerably more recent estimates. These findings indicate inconsistencies in molecular clock estimation, which we further explored. We hypothesize that these inconsistent dating estimates across the tree could be caused by an evolutionary rate acceleration of HIV-1 after entering the Slovenia epidemic that is not taken into account by the molecular clock model. It could be caused by a lower transmission rate in this setting, as demonstrated by the low epidemic growth rate estimated by Bayesian skyline plot analysis. Conclusions HIV-1 subtype B was introduced into Slovenia at several time points from the late 80s onward. The majority of patients had a local transmission link, indicating a closed HIV community. The observed slower epidemic rate suggests that individuals with a long-lasting infection are the driving force of the epidemic in this region.
Collapse
Affiliation(s)
- Maja M Lunar
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| | - Anne-Mieke Vandamme
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, B-3000, Leuven, Belgium. .,Unidade de Microbiologia e Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal.
| | - Janez Tomažič
- Department of Infectious Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia.
| | - Primož Karner
- Department of Infectious Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia.
| | - Tomaž D Vovko
- Department of Infectious Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia.
| | - Blaž Pečavar
- Department of Infectious Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia.
| | - Gabriele Volčanšek
- Department of Infectious Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia.
| | - Mario Poljak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| | - Ana B Abecasis
- Unidade de Saúde Pública Internacional e Bioestatística e Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal.
| |
Collapse
|
50
|
Cabello M, Mendoza Y, Bello G. Spatiotemporal dynamics of dissemination of non-pandemic HIV-1 subtype B clades in the Caribbean region. PLoS One 2014; 9:e106045. [PMID: 25148215 PMCID: PMC4141835 DOI: 10.1371/journal.pone.0106045] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 07/29/2014] [Indexed: 11/18/2022] Open
Abstract
The Human immunodeficiency virus type-1 (HIV-1) epidemic in the Caribbean region is mostly driven by subtype B; but information about the pattern of viral spread in this geographic region is scarce and different studies point to quite divergent models of viral dissemination. In this study, we reconstructed the spatiotemporal and population dynamics of the HIV-1 subtype B epidemic in the Caribbean. A total of 1,806 HIV-1 subtype B pol sequences collected from 17 different Caribbean islands between 1996 and 2011 were analyzed together with sequences from the United States (n = 525) and France (n = 340) included as control. Maximum Likelihood phylogenetic analyses revealed that HIV-1 subtype B infections in the Caribbean are driven by dissemination of the pandemic clade (BPANDEMIC) responsible for most subtype B infections across the world, and older non-pandemic lineages (BCAR) characteristics of the Caribbean region. The non-pandemic BCAR strains account for >40% of HIV-1 infections in most Caribbean islands; with exception of Cuba and Puerto Rico. Bayesian phylogeographic analyses indicate that BCAR strains probably arose in the island of Hispaniola (Haiti/Dominican Republic) around the middle 1960s and were later disseminated to Trinidad and Tobago and to Jamaica between the late 1960s and the early 1970s. In the following years, the BCAR strains were also disseminated from Hispaniola and Trinidad and Tobago to other Lesser Antilles islands at multiple times. The BCAR clades circulating in Hispaniola, Jamaica and Trinidad and Tobago appear to have experienced an initial phase of exponential growth, with mean estimated growth rates of 0.35-0.45 year(-1), followed by a more recent stabilization since the middle 1990s. These results demonstrate that non-pandemic subtype B lineages have been widely disseminated through the Caribbean since the late 1960s and account for an important fraction of current HIV-1 infections in the region.
Collapse
Affiliation(s)
- Marina Cabello
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Yaxelis Mendoza
- Department of Genomics and Proteomics, Gorgas Memorial Institute for Health Studies, Panama City, Panama
- Department of Biotechnology, Acharya Nagarjuna University, Guntur City, Andhra Pradesh, India
- Department of Genetics and Molecular Biology, University of Panama, Panama City, Panama
- INDICASAT-AIP, City of Knowledge, Clayton, Panama City, Panama
| | - Gonzalo Bello
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|