1
|
Broich L, Wullenkord H, Osman MK, Fu Y, Müsken M, Reuther P, Brönstrup M, Sieben C. Single influenza A viruses induce nanoscale cellular reprogramming at the virus-cell interface. Nat Commun 2025; 16:3846. [PMID: 40280912 PMCID: PMC12032206 DOI: 10.1038/s41467-025-58935-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 04/03/2025] [Indexed: 04/29/2025] Open
Abstract
During infection, individual virions trigger specific cellular signaling at the virus-cell interface, a nanoscale region of the plasma membrane in direct contact with the virus. However, virus-induced receptor recruitment and cellular activation are transient processes that occur within minutes at the nanoscale. Hence, the temporal and spatial kinetics of such early events often remain poorly understood due to technical limitations. To address this challenge, we develop a protocol to covalently immobilize labelled influenza A viruses on glass surfaces before exposing them to live epithelial cells. Our method extends the observation time for virus-plasma membrane association while minimizing viral modifications, facilitating live imaging of virus-cell interactions. Using single-molecule super-resolution microscopy, we investigate virus-receptor interaction showing that viral receptors exhibit reduced mobility at the virus-binding site, which leads to a specific local receptor accumulation and turnover. We further follow the dynamics of clathrin-mediated endocytosis at the single-virus level and demonstrate the recruitment of adaptor protein 2 (AP-2), previously thought to be uninvolved in influenza A virus infection. Finally, we examine the nanoscale organization of the actin cytoskeleton at the virus-binding site, showing a local and dynamic response of the cellular actin cortex to the infecting virus.
Collapse
Affiliation(s)
- Lukas Broich
- Nanoscale Infection Biology Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Hannah Wullenkord
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Maria Kaukab Osman
- Institute of Virology, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Yang Fu
- Nanoscale Infection Biology Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Mathias Müsken
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Peter Reuther
- Institute of Virology, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- German Center for Infection Research (DZIF), Site Hannover-Braunschweig, Braunschweig, Germany
- Institute of Organic Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Christian Sieben
- Nanoscale Infection Biology Group, Helmholtz Centre for Infection Research, Braunschweig, Germany.
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
2
|
Adu OF, Sempere Borau M, Früh SP, Karakus U, Weichert WS, Wasik BR, Stertz S, Parrish CR. Cell binding, uptake, and infection of influenza A virus using recombinant antibody-based receptors. J Virol 2025:e0227524. [PMID: 40207931 DOI: 10.1128/jvi.02275-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 03/12/2025] [Indexed: 04/11/2025] Open
Abstract
Human and avian influenza A viruses bind to sialic acid (Sia) receptors on cells as their primary receptors, and this results in endocytic uptake of the virus. While the role of Sia on glycoproteins and/or glycolipids for virus entry is crucial, the roles of the carrier proteins are still not well understood. Furthermore, it is still unclear how receptor binding leads to infection, including whether the receptor plays a structural or other roles beyond being a simple tether. To enable the investigation of the receptor binding and cell entry processes in a more controlled manner, we have designed a protein receptor for pandemic H1 influenza A viruses. The engineered receptor possesses the binding domains of an anti-HA antibody prepared as a single-chain variable fragment (scFv) fused with the stalk, transmembrane, and cytoplasmic sequences of the feline transferrin receptor type-1 (fTfR). When expressed in cells that lack efficient display of Sia due to a knockout of the Slc35A1 gene, which encodes for the solute carrier family 35 transporter (SLC35A1), the anti-H1 receptor was displayed on the cell surface, bound virus, or hemagglutinin proteins, and the virus was efficiently endocytosed into the cells. Infection occurred at similar levels to those seen after reintroducing Sia expression, and lower affinity receptor mutants displayed enhanced infections. Treatment with clathrin-mediated endocytosis (CME) inhibitors significantly reduced viral entry, indicating that virus rescue by the antibody-based receptor follows a similar internalization route as Sia-expressing cells.IMPORTANCEInfluenza A viruses primarily circulate among avian reservoir hosts but can also jump species, causing outbreaks in mammals, including humans. A key interaction of the viruses is with host cell sialic acids, which vary in chemical form, in their linkages within the oligosaccharide, and in their display on various surface glycoproteins or glycolipids with differing properties. Here, we report a new method for examining the processes of receptor binding and uptake into cells during influenza A virus infection, by use of an engineered HA-binding membrane glycoprotein, where antibody variable domains are used to bind the virus, and the transferrin receptor uptake structures mediate efficient entry. This will allow us to test and manipulate the processes of cell binding, entry, and infection.
Collapse
Affiliation(s)
- Oluwafemi F Adu
- Department of Microbiology and Immunology, College of Veterinary Medicine, Baker Institute for Animal Health, Cornell University, Ithaca, New York, USA
| | | | - Simon P Früh
- Department of Microbiology and Immunology, College of Veterinary Medicine, Baker Institute for Animal Health, Cornell University, Ithaca, New York, USA
- Department of Veterinary Sciences, Ludwig-Maximilians-University, Munich, Germany
| | - Umut Karakus
- Institute of Medical Virology, University of Zurich, Zürich, Switzerland
| | - Wendy S Weichert
- Department of Microbiology and Immunology, College of Veterinary Medicine, Baker Institute for Animal Health, Cornell University, Ithaca, New York, USA
| | - Brian R Wasik
- Department of Microbiology and Immunology, College of Veterinary Medicine, Baker Institute for Animal Health, Cornell University, Ithaca, New York, USA
| | - Silke Stertz
- Institute of Medical Virology, University of Zurich, Zürich, Switzerland
| | - Colin R Parrish
- Institute of Medical Virology, University of Zurich, Zürich, Switzerland
| |
Collapse
|
3
|
Broich L, Fu Y, Sieben C. Live-Cell Single-Molecule Imaging of Influenza A Virus-Receptor Interaction. Methods Mol Biol 2025; 2890:89-101. [PMID: 39890722 DOI: 10.1007/978-1-0716-4326-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Abstract
Influenza A viruses are a major health care burden, and their biology has been intensely studied for decades. However, many details of virus infection are still elusive, requiring the development of refined and advanced technologies. Super-resolution microscopy allows the study of virus replication at the scale of an infecting virus, offering an exciting perspective on previously unseen mechanistic details of infection. Here we describe the materials and procedures required to perform single-molecule imaging of virus-receptor interaction in live cells. We further provide hints and tips on how to analyze and visualize the obtained datasets.
Collapse
Affiliation(s)
- Lukas Broich
- Nanoscale Infection Biology Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Yang Fu
- Nanoscale Infection Biology Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Christian Sieben
- Nanoscale Infection Biology Group, Helmholtz Centre for Infection Research, Braunschweig, Germany.
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
4
|
Chakraborty S, Chauhan A. Fighting the flu: a brief review on anti-influenza agents. Biotechnol Genet Eng Rev 2024; 40:858-909. [PMID: 36946567 DOI: 10.1080/02648725.2023.2191081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023]
Abstract
The influenza virus causes one of the most prevalent and lethal infectious viral diseases of the respiratory system; the disease progression varies from acute self-limiting mild fever to disease chronicity and death. Although both the preventive and treatment measures have been vital in protecting humans against seasonal epidemics or sporadic pandemics, there are several challenges to curb the influenza virus such as limited or poor cross-protection against circulating virus strains, moderate protection in immune-compromised patients, and rapid emergence of resistance. Currently, there are four US-FDA-approved anti-influenza drugs to treat flu infection, viz. Rapivab, Relenza, Tamiflu, and Xofluza. These drugs are classified based on their mode of action against the viral replication cycle with the first three being Neuraminidase inhibitors, and the fourth one targeting the viral polymerase. The emergence of the drug-resistant strains of influenza, however, underscores the need for continuous innovation towards development and discovery of new anti-influenza agents with enhanced antiviral effects, greater safety, and improved tolerability. Here in this review, we highlighted commercially available antiviral agents besides those that are at different stages of development including under clinical trials, with a brief account of their antiviral mechanisms.
Collapse
Affiliation(s)
| | - Ashwini Chauhan
- Department of Microbiology, Tripura University, Agartala, India
| |
Collapse
|
5
|
Yu L, Liu X, Wei X, Ren J, Wang X, Wu S, Lan K. C1QTNF5 is a novel attachment factor that facilitates the entry of influenza A virus. Virol Sin 2024; 39:277-289. [PMID: 38246238 PMCID: PMC11074642 DOI: 10.1016/j.virs.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
Influenza A virus (IAV) binds sialic acid receptors on the cell surface to enter the host cells, which is the key step in initiating infection, transmission and pathogenesis. Understanding the factors that contribute to the highly efficient entry of IAV into human cells will help elucidate the mechanism of viral entry and pathogenicity, and provide new targets for intervention. In the present study, we reported a novel membrane protein, C1QTNF5, which binds to the hemagglutinin protein of IAV and promotes IAV infection in vitro and in vivo. We found that the HA1 region of IAV hemagglutinin is critical for the interaction with C1QTNF5 protein, and C1QTNF5 interacts with hemagglutinin mainly through its N-terminus (1-103 aa). In addition, we further demonstrated that overexpression of C1QTNF5 promotes IAV entry, while blocking the interaction between C1QTNF5 and IAV hemagglutinin greatly inhibits viral entry. However, C1QTNF5 does not function as a receptor to mediate IAV infection in sialic acid-deficient CHO-Lec2 cells, but promotes IAV to attach to these cells, suggesting that C1QTNF5 is an important attachment factor for IAV. This work reveals C1QTNF5 as a novel IAV attachment factor and provides a new perspective for antiviral strategies.
Collapse
Affiliation(s)
- Lei Yu
- State Key Laboratory of Virology, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xinjin Liu
- State Key Laboratory of Virology, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiaoqin Wei
- State Key Laboratory of Virology, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Junrui Ren
- State Key Laboratory of Virology, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xueyun Wang
- State Key Laboratory of Virology, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Shuwen Wu
- State Key Laboratory of Virology, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Ke Lan
- State Key Laboratory of Virology, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430072, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
6
|
Liang CY, Huang I, Han J, Sownthirarajan B, Kulhankova K, Murray NB, Taherzadeh M, Archer-Hartmann S, Pepi L, Manivasagam S, Plung J, Sturtz M, Yu Y, Vogel OA, Kandasamy M, Gourronc FA, Klingelhutz AJ, Choudhury B, Rong L, Perez JT, Azadi P, McCray PB, Neelamegham S, Manicassamy B. Avian influenza A viruses exhibit plasticity in sialylglycoconjugate receptor usage in human lung cells. J Virol 2023; 97:e0090623. [PMID: 37843369 PMCID: PMC10688379 DOI: 10.1128/jvi.00906-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023] Open
Abstract
IMPORTANCE It is well known that influenza A viruses (IAV) initiate host cell infection by binding to sialic acid, a sugar molecule present at the ends of various sugar chains called glycoconjugates. These sugar chains can vary in chain length, structure, and composition. However, it remains unknown if IAV strains preferentially bind to sialic acid on specific glycoconjugate type(s) for host cell infection. Here, we utilized CRISPR gene editing to abolish sialic acid on different glycoconjugate types in human lung cells, and evaluated human versus avian IAV infections. Our studies show that both human and avian IAV strains can infect human lung cells by utilizing any of the three major sialic acid-containing glycoconjugate types, specifically N-glycans, O-glycans, and glycolipids. Interestingly, simultaneous elimination of sialic acid on all three major glycoconjugate types in human lung cells dramatically decreased human IAV infection, yet had little effect on avian IAV infection. These studies show that avian IAV strains effectively utilize other less prevalent glycoconjugates for infection, whereas human IAV strains rely on a limited repertoire of glycoconjugate types. The remarkable ability of avian IAV strains to utilize diverse glycoconjugate types may allow for easy transmission into new host species.
Collapse
Affiliation(s)
- Chieh-Yu Liang
- Department of Microbiology and Immunology, University of Iowa, Iowa City, lowa, USA
| | - Iris Huang
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Julianna Han
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | | | | | - Nathan B. Murray
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Mehrnoush Taherzadeh
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | | | - Lauren Pepi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | | | - Jesse Plung
- Department of Microbiology and Immunology, University of Iowa, Iowa City, lowa, USA
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Miranda Sturtz
- Department of Microbiology and Immunology, University of Iowa, Iowa City, lowa, USA
| | - Yolanda Yu
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Olivia A. Vogel
- Department of Microbiology and Immunology, University of Iowa, Iowa City, lowa, USA
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | | | | | | | - Biswa Choudhury
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA
| | - Lijun Rong
- Department of Microbiology and Immunology, University of Illinois, Chicago, Illinois, USA
| | - Jasmine T. Perez
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Paul B. McCray
- Department of Microbiology and Immunology, University of Iowa, Iowa City, lowa, USA
- Department of Pediatrics, University of Iowa, Iowa City, lowa, USA
| | - Sriram Neelamegham
- Department of Chemical and Biomedical Engineering, University at Buffalo, Buffalo, New York, USA
| | - Balaji Manicassamy
- Department of Microbiology and Immunology, University of Iowa, Iowa City, lowa, USA
| |
Collapse
|
7
|
Spruit CM, Sweet IR, Maliepaard JCL, Bestebroer T, Lexmond P, Qiu B, Damen MJA, Fouchier RAM, Reiding KR, Snijder J, Herfst S, Boons GJ, de Vries RP. Contemporary human H3N2 influenza A viruses require a low threshold of suitable glycan receptors for efficient infection. Glycobiology 2023; 33:784-800. [PMID: 37471650 PMCID: PMC10629718 DOI: 10.1093/glycob/cwad060] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/03/2023] [Accepted: 07/16/2023] [Indexed: 07/22/2023] Open
Abstract
Recent human H3N2 influenza A viruses have evolved to employ elongated glycans terminating in α2,6-linked sialic acid as their receptors. These glycans are displayed in low abundancies by (humanized) Madin-Darby Canine Kidney cells, which are commonly employed to propagate influenza A virus, resulting in low or no viral propagation. Here, we examined whether the overexpression of the glycosyltransferases β-1,3-N-acetylglucosaminyltransferase and β-1,4-galactosyltransferase 1, which are responsible for the elongation of poly-N-acetyllactosamines (LacNAcs), would result in improved A/H3N2 propagation. Stable overexpression of β-1,3-N-acetylglucosaminyltransferase and β-1,4-galactosyltransferase 1 in Madin-Darby Canine Kidney and "humanized" Madin-Darby Canine Kidney cells was achieved by lentiviral integration and subsequent antibiotic selection and confirmed by qPCR and protein mass spectrometry experiments. Flow cytometry and glycan mass spectrometry experiments using the β-1,3-N-acetylglucosaminyltransferase and/or β-1,4-galactosyltransferase 1 knock-in cells demonstrated increased binding of viral hemagglutinins and the presence of a larger number of LacNAc repeating units, especially on "humanized" Madin-Darby Canine Kidney-β-1,3-N-acetylglucosaminyltransferase cells. An increase in the number of glycan receptors did, however, not result in a greater infection efficiency of recent human H3N2 viruses. Based on these results, we propose that H3N2 influenza A viruses require a low number of suitable glycan receptors to infect cells and that an increase in the glycan receptor display above this threshold does not result in improved infection efficiency.
Collapse
Affiliation(s)
- Cindy M Spruit
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584CG Utrecht, The Netherlands
| | - Igor R Sweet
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584CG Utrecht, The Netherlands
| | - Joshua C L Maliepaard
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| | - Theo Bestebroer
- Department of Viroscience, Erasmus University Medical Center, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands
| | - Pascal Lexmond
- Department of Viroscience, Erasmus University Medical Center, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands
| | - Boning Qiu
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584CG Utrecht, The Netherlands
| | - Mirjam J A Damen
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| | - Ron A M Fouchier
- Department of Viroscience, Erasmus University Medical Center, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands
| | - Karli R Reiding
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| | - Joost Snijder
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| | - Sander Herfst
- Department of Viroscience, Erasmus University Medical Center, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands
| | - Geert-Jan Boons
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584CG Utrecht, The Netherlands
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602, United States
| | - Robert P de Vries
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584CG Utrecht, The Netherlands
| |
Collapse
|
8
|
Liu M, Bakker AS, Narimatsu Y, van Kuppeveld FJM, Clausen H, de Haan CAM, de Vries E. H3N2 influenza A virus gradually adapts to human-type receptor binding and entry specificity after the start of the 1968 pandemic. Proc Natl Acad Sci U S A 2023; 120:e2304992120. [PMID: 37467282 PMCID: PMC10401031 DOI: 10.1073/pnas.2304992120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/01/2023] [Indexed: 07/21/2023] Open
Abstract
To become established upon zoonotic transfer, influenza A viruses (IAV) need to switch binding from "avian-type" α2-3-linked sialic acid receptors (2-3Sia) to "human-type" Siaα2-6-linked sialic acid receptors (2-6Sia). For the 1968 H3N2 pandemic virus, this was accomplished by two canonical amino acid substitutions in its hemagglutinin (HA) although a full specificity shift had not occurred. The receptor repertoire on epithelial cells is highly diverse and simultaneous interaction of a virus particle with a range of low- to very low-affinity receptors results in tight heteromultivalent binding. How this range of affinities determines binding selectivity and virus motility remains largely unknown as the analysis of low-affinity monovalent HA-receptor interactions is technically challenging. Here, a biolayer interferometry assay enabled a comprehensive analysis of receptor-binding kinetics evolution upon host-switching. Virus-binding kinetics of H3N2 virus isolates slowly evolved from 1968 to 1979 from mixed 2-3/2-6Sia specificity to high 2-6Sia specificity, surprisingly followed by a decline in selectivity after 1992. By using genetically tuned HEK293 cells, presenting either a simplified 2-3Sia- or 2-6Sia-specific receptor repertoire, receptor-specific binding was shown to correlate strongly with receptor-specific entry. In conclusion, the slow and continuous evolution of entry and receptor-binding specificity of seasonal H3N2 viruses contrasts with the paradigm that human IAVs need to rapidly acquire and maintain a high specificity for 2-6Sia. Analysis of the kinetic parameters of receptor binding provides a basis for understanding virus-binding specificity, motility, and HA/neuraminidase balance at the molecular level.
Collapse
Affiliation(s)
- Mengying Liu
- Virology section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584CLUtrecht, the Netherlands
| | - A. Sophie Bakker
- Virology section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584CLUtrecht, the Netherlands
| | - Yoshiki Narimatsu
- Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200Copenhagen, Denmark
| | - Frank J. M. van Kuppeveld
- Virology section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584CLUtrecht, the Netherlands
| | - Henrik Clausen
- Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200Copenhagen, Denmark
| | - Cornelis A. M. de Haan
- Virology section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584CLUtrecht, the Netherlands
| | - Erik de Vries
- Virology section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584CLUtrecht, the Netherlands
| |
Collapse
|
9
|
Liu M, van Kuppeveld FJM, de Haan CAM, de Vries E. Gradual adaptation of animal influenza A viruses to human-type sialic acid receptors. Curr Opin Virol 2023; 60:101314. [DOI: 10.1016/j.coviro.2023.101314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 04/01/2023]
|
10
|
Escuret V, Terrier O. Co-infection of the respiratory epithelium, scene of complex functional interactions between viral, bacterial, and human neuraminidases. Front Microbiol 2023; 14:1137336. [PMID: 37213507 PMCID: PMC10192862 DOI: 10.3389/fmicb.2023.1137336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/03/2023] [Indexed: 05/23/2023] Open
Abstract
The activity of sialic acids, known to play critical roles in biology and many pathological processes, is finely regulated by a class of enzymes called sialidases, also known as neuraminidases. These are present in mammals and many other biological systems, such as viruses and bacteria. This review focuses on the very particular situation of co-infections of the respiratory epithelium, the scene of complex functional interactions between viral, bacterial, and human neuraminidases. This intrinsically multidisciplinary topic combining structural biology, biochemistry, physiology, and the study of host-pathogen interactions, opens up exciting research perspectives that could lead to a better understanding of the mechanisms underlying virus-bacteria co-infections and their contribution to the aggravation of respiratory pathology, notably in the context of pre-existing pathological contexts. Strategies that mimic or inhibit the activity of the neuraminidases could constitute interesting treatment options for viral and bacterial infections.
Collapse
|
11
|
Zhao C, Pu J. Influence of Host Sialic Acid Receptors Structure on the Host Specificity of Influenza Viruses. Viruses 2022; 14:v14102141. [PMID: 36298694 PMCID: PMC9608321 DOI: 10.3390/v14102141] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/23/2022] Open
Abstract
Influenza viruses need to use sialic acid receptors to invade host cells, and the α-2,3 and α-2,6 sialic acids glycosidic bonds linking the terminal sialic acids are generally considered to be the most important factors influencing the cross-species transmission of the influenza viruses. The development of methods to detect the binding of influenza virus HA proteins to sialic acid receptors, as well as the development of glycobiological techniques, has led to a richer understanding of the structure of the sialylated glycan in influenza virus hosts. It was found that, in addition to the sialic acid glycosidic bond, sialic acid variants, length of the sialylated glycan, Gal-GlcNAc-linked glycosidic bond within the sialylated glycan, and sulfation/fucosylation of the GlcNAc within the sialylated glycan all affect the binding properties of influenza viruses to the sialic acid receptors, thus indirectly affecting the host specificity of influenza viruses. This paper will review the sialic acid variants, internal structural differences of sialylated glycan molecules that affect the host specificity of influenza viruses, and distribution characteristics of sialic acid receptors in influenza virus hosts, in order to provide a more reliable theoretical basis for the in-depth investigation of cross-species transmission of influenza viruses and the development of new antiviral drugs.
Collapse
|
12
|
Influenza A Virus Agnostic Receptor Tropism Revealed Using a Novel Biological System with Terminal Sialic Acid Knockout Cells. J Virol 2022; 96:e0041622. [PMID: 35862707 PMCID: PMC9364805 DOI: 10.1128/jvi.00416-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Avian or human influenza A viruses bind preferentially to avian- or human-type sialic acid receptors, respectively, indicating that receptor tropism is an important factor for determining the viral host range. However, there are currently no reliable methods for analyzing receptor tropism biologically under physiological conditions. In this study, we established a novel system using MDCK cells with avian- or human-type sialic acid receptors and with both sialic acid receptors knocked out (KO). When we examined the replication of human and avian influenza viruses in these KO cells, we observed unique viral receptor tropism that could not be detected using a conventional solid-phase sialylglycan binding assay, which directly assesses physical binding between the virus and sialic acids. Furthermore, we serially passaged an engineered avian-derived H4N5 influenza virus, whose PB2 gene was deleted, in avian-type receptor KO cells stably expressing PB2 to select a mutant with enhanced replication in KO cells; however, its binding to human-type sialylglycan was undetectable using the solid-phase binding assay. These data indicate that a panel of sialic acid receptor KO cells could be a useful tool for determining the biological receptor tropism of influenza A viruses. Moreover, the PB2KO virus experimental system could help to safely and efficiently identify the mutations required for avian influenza viruses to adapt to human cells that could trigger a new influenza pandemic. IMPORTANCE The acquisition of mutations that allow avian influenza A virus hemagglutinins to recognize human-type receptors is mandatory for the transmission of avian viruses to humans, which could lead to a pandemic. In this study, we established a novel system using a set of genetically engineered MDCK cells with knocked out sialic acid receptors to biologically evaluate the receptor tropism for influenza A viruses. Using this system, we observed unique receptor tropism in several virus strains that was undetectable using conventional solid-phase binding assays that measure physical binding between the virus and artificially synthesized sialylglycans. This study contributes to elucidation of the relationship between the physical binding of virus and receptor and viral infectivity. Furthermore, the system using sialic acid knockout cells could provide a useful tool to explore the sialic acid-independent entry mechanism. In addition, our system could be safely used to identify mutations that could acquire human-type receptor tropism.
Collapse
|
13
|
Liu M, Huang LZX, Smits AA, Büll C, Narimatsu Y, van Kuppeveld FJM, Clausen H, de Haan CAM, de Vries E. Human-type sialic acid receptors contribute to avian influenza A virus binding and entry by hetero-multivalent interactions. Nat Commun 2022; 13:4054. [PMID: 35831293 PMCID: PMC9279479 DOI: 10.1038/s41467-022-31840-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/06/2022] [Indexed: 11/09/2022] Open
Abstract
Establishment of zoonotic viruses, causing pandemics like the Spanish flu and Covid-19, requires adaptation to human receptors. Pandemic influenza A viruses (IAV) that crossed the avian-human species barrier switched from binding avian-type α2-3-linked sialic acid (2-3Sia) to human-type 2-6Sia receptors. Here, we show that this specificity switch is however less dichotomous as generally assumed. Binding and entry specificity were compared using mixed synthetic glycan gradients of 2-3Sia and 2-6Sia and by employing a genetically remodeled Sia repertoire on the surface of a Sia-free cell line and on a sialoglycoprotein secreted from these cells. Expression of a range of (mixed) 2-3Sia and 2-6Sia densities shows that non-binding human-type receptors efficiently enhanced avian IAV binding and entry provided the presence of a low density of high affinity avian-type receptors, and vice versa. Considering the heterogeneity of sialoglycan receptors encountered in vivo, hetero-multivalent binding is physiologically relevant and will impact evolutionary pathways leading to host adaptation. It is believed that human Influenza HA glycoprotein attaches to alpha2-6 linked sialic acids (SA) on cells, while avian viruses bind to alpha2-3 linked sialic acids, therewith contributing to host tropism. Here, Liu et al. show that mixing low-affinity alpha2-3 SA with low amounts of high-affinity alpha2-6 SA increases binding and entry of human viruses and the converse for avian virus. This shows that receptor recognition is not as strict as currently assumed and provides evidence that heteromultivalent interactions between human/avian HA and SA contributes to host adaptation.
Collapse
Affiliation(s)
- Mengying Liu
- Virology group, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Liane Z X Huang
- Virology group, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Anthony A Smits
- Virology group, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Christian Büll
- Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark.,Department of Biomolecular Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Yoshiki Narimatsu
- Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
| | - Frank J M van Kuppeveld
- Virology group, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Henrik Clausen
- Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
| | - Cornelis A M de Haan
- Virology group, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | - Erik de Vries
- Virology group, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
14
|
Das BS, Das NC, Swain SS, Mukherjee S, Bhattacharya D. Andrographolide induces anti-SARS-CoV-2 response through host-directed mechanism: an in silico study. Future Virol 2022. [PMID: 35812188 PMCID: PMC9254363 DOI: 10.2217/fvl-2021-0171] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 06/14/2022] [Indexed: 11/21/2022]
Abstract
Aim: Considering the present alarming situation of COVID-19 pandemic, we concentrated on evaluating the efficacy of a novel natural antiviral drug-candidate andrographolide against SARS-CoV-2 through an in silico model of study. Materials & methods: Interaction of andrographolide against the major host molecules that are responsible for SARS-CoV-2 pathogenesis were determined using bio-computational tools, in other words, molecular docking, molecular dynamics simulation and pharmacodynamics–pharmacokinetics analysis. Result: Computational findings represent that andrographolide efficiently interacts with the major human–host-associated putative drug-targets of viral-entry points like furin (-10.54 kcal/mol), TMPRSS-2 (-9.50 kcal/mol), ACE2 (-8.99 kcal/mol) and Cathepsin L (-8.98 kcal/mol). Moreover, it also blocks the inflammatory regulators including TLR4-MD2 and IL-6, which promote virus-induced inflammation leading to cytokine storm in the host body. Conclusion: This work elucidates that, the candidature of andrographolide can be utilized as a potent natural agent for the therapeutic intervention of SARS-CoV-2 through host-directed treatment.
Collapse
Affiliation(s)
- Bhabani Shankar Das
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| | - Nabarun Chandra Das
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, 713340, West Bengal, India
| | - Shasank Sekhar Swain
- Division of Microbiology & NCDs, ICMR-Regional Medical Research Centre, Bhubaneswar, 751023, Odisha, India
| | - Suprabhat Mukherjee
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, 713340, West Bengal, India
| | - Debapriya Bhattacharya
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| |
Collapse
|
15
|
Sriwilaijaroen N, Suzuki Y. Roles of Glycans and Non-glycans on the Epithelium and in the Immune System in H1-H18 Influenza A Virus Infections. Methods Mol Biol 2022; 2556:205-242. [PMID: 36175637 DOI: 10.1007/978-1-0716-2635-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The large variation of influenza A viruses (IAVs) in various susceptible hosts and their rapid evolution, which allows host/tissue switching, host immune escape, vaccine escape, and drug resistance, are difficult challenges for influenza control in all countries worldwide. Access and binding of the IAV to actual receptors at endocytic sites is critical for the establishment of influenza infection. In this chapter, the progress in identification of and roles of glycans and non-glycans on the epithelium and in the immune system in H1-H18 IAV infections are reviewed. The first part of the review is on current knowledge of H1-H16 IAV receptors on the epithelium including sialyl glycans, other negatively charged glycans, and annexins. The second part of the review focuses on H1-H16 IAV receptors in the immune system including acidic surfactant phospholipids, Sia on surfactant proteins, the carbohydrate recognition domain (CRD) of surfactant proteins, Sia on mucins, Sia and C-type lectins on macrophages and dendritic cells, and Sia on NK cells. The third part of the review is about a possible H17-H18 IAV receptor. Binding of these receptors to IAVs may result in inhibition or enhancement of IAV infection depending on their location, host cell type, and IAV strain. Among these receptors, host sialyl glycans are key determinants of viral hemagglutinin (HA) lectins for H1-H16 infections. HA must acquire mutations to bind to sialyl glycans that are dominant on a new target tissue when switching to a new host for efficient transmission and to bind to long sialyl glycans found in the case of seasonal HAs with multiple glycosylation sites as a consequence of immune evasion. Although sialyl receptors/C-type lectins on immune cells are decoy receptors/pathogen recognition receptors for capturing viral HA lectin/glycans protecting HA antigenic sites, some IAV strains do not escape, such as by release with neuraminidase, but hijack these molecules to gain entry and replication in immune cells. An understanding of the virus-host battle tactics at the receptor level might lead to the establishment of novel strategies for effective control of influenza.
Collapse
Affiliation(s)
- Nongluk Sriwilaijaroen
- Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, Thailand.
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan.
| | - Yasuo Suzuki
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
16
|
Hashemi B, Akram FA, Amirazad H, Dadashpour M, Sheervalilou M, Nasrabadi D, Ahmadi M, Sheervalilou R, Ameri Shah Reza M, Ghazi F, Roshangar L. Emerging importance of nanotechnology-based approaches to control the COVID-19 pandemic; focus on nanomedicine iterance in diagnosis and treatment of COVID-19 patients. J Drug Deliv Sci Technol 2022; 67:102967. [PMID: 34777586 PMCID: PMC8576597 DOI: 10.1016/j.jddst.2021.102967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 02/06/2023]
Abstract
The ongoing outbreak of the newly emerged coronavirus disease 2019, which has tremendously concerned global health safety, is the result of infection with severe acute respiratory syndrome of coronavirus 2 with high morbidity and mortality. Because of the coronavirus has no specific treatment, so it is necessary to early detection and produce antiviral agents and efficacious vaccines in order to prevent the contagion of coronavirus. Due to the unique properties of nanomaterials, nanotechnology appears to be a highly relevant discipline in this global emergency, providing expansive chemical functionalization to develop advanced biomedical tools. Fascinatingly, nanomedicine as a hopeful approach for the treatment and diagnosis of diseases, could efficiently help success the fight among coronavirus and host cells. In this review, we will critically discuss how nanomedicine can play an indispensable role in creating useful treatments and diagnostics for coronavirus.
Collapse
Affiliation(s)
- Behnam Hashemi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Firouzi-Amandi Akram
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Halimeh Amirazad
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Dadashpour
- Department of Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Biotechnology Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Milad Sheervalilou
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davood Nasrabadi
- Department of Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Biotechnology Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Farhood Ghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
17
|
Zanganeh S, Goodarzi N, Doroudian M, Movahed E. Potential COVID-19 therapeutic approaches targeting angiotensin-converting enzyme 2; An updated review. Rev Med Virol 2021; 32:e2321. [PMID: 34958163 DOI: 10.1002/rmv.2321] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 12/14/2022]
Abstract
COVID-19 has spread swiftly throughout the world posing a global health emergency. The significant numbers of deaths attributed to this pandemic have researchers battling to understand this new, dangerous virus. Researchers are looking to find possible treatment regimens and develop effective therapies. This study aims to provide an overview of published scientific information on potential treatments, emphasizing angiotensin-converting enzyme II (ACE2) inhibitors as one of the most important drug targets. SARS-CoV-2 receptor-binding domain (RBD); as a viral attachment or entry inhibitor against SARS-CoV-2, human recombinant soluble ACE2; as a genetically modified soluble form of ACE2 to compete with membrane-bound ACE2, and microRNAs (miRNAs); as a negative regulator of the expression of ACE2/TMPRSS2 to inhibit SARS-CoV2 entry into cells, are the potential therapeutic approaches discussed thoroughly in this article. This review provides the groundwork for the ongoing development of therapeutic agents and effective treatments against SARS-COV-2.
Collapse
Affiliation(s)
- Saba Zanganeh
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Nima Goodarzi
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mohammad Doroudian
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Elaheh Movahed
- Wadsworth Center, New York State Department of Health, Albany, New Year, USA
| |
Collapse
|
18
|
Shao Y, Saredy J, Xu K, Sun Y, Saaoud F, Drummer C, Lu Y, Luo JJ, Lopez-Pastrana J, Choi ET, Jiang X, Wang H, Yang X. Endothelial Immunity Trained by Coronavirus Infections, DAMP Stimulations and Regulated by Anti-Oxidant NRF2 May Contribute to Inflammations, Myelopoiesis, COVID-19 Cytokine Storms and Thromboembolism. Front Immunol 2021; 12:653110. [PMID: 34248940 PMCID: PMC8269631 DOI: 10.3389/fimmu.2021.653110] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/12/2021] [Indexed: 12/13/2022] Open
Abstract
To characterize transcriptomic changes in endothelial cells (ECs) infected by coronaviruses, and stimulated by DAMPs, the expressions of 1311 innate immune regulatomic genes (IGs) were examined in 28 EC microarray datasets with 7 monocyte datasets as controls. We made the following findings: The majority of IGs are upregulated in the first 12 hours post-infection (PI), and maintained until 48 hours PI in human microvascular EC infected by middle east respiratory syndrome-coronavirus (MERS-CoV) (an EC model for COVID-19). The expressions of IGs are modulated in 21 human EC transcriptomic datasets by various PAMPs/DAMPs, including LPS, LPC, shear stress, hyperlipidemia and oxLDL. Upregulation of many IGs such as nucleic acid sensors are shared between ECs infected by MERS-CoV and those stimulated by PAMPs and DAMPs. Human heart EC and mouse aortic EC express all four types of coronavirus receptors such as ANPEP, CEACAM1, ACE2, DPP4 and virus entry facilitator TMPRSS2 (heart EC); most of coronavirus replication-transcription protein complexes are expressed in HMEC, which contribute to viremia, thromboembolism, and cardiovascular comorbidities of COVID-19. ECs have novel trained immunity (TI), in which subsequent inflammation is enhanced. Upregulated proinflammatory cytokines such as TNFα, IL6, CSF1 and CSF3 and TI marker IL-32 as well as TI metabolic enzymes and epigenetic enzymes indicate TI function in HMEC infected by MERS-CoV, which may drive cytokine storms. Upregulated CSF1 and CSF3 demonstrate a novel function of ECs in promoting myelopoiesis. Mechanistically, the ER stress and ROS, together with decreased mitochondrial OXPHOS complexes, facilitate a proinflammatory response and TI. Additionally, an increase of the regulators of mitotic catastrophe cell death, apoptosis, ferroptosis, inflammasomes-driven pyroptosis in ECs infected with MERS-CoV and the upregulation of pro-thrombogenic factors increase thromboembolism potential. Finally, NRF2-suppressed ROS regulate innate immune responses, TI, thrombosis, EC inflammation and death. These transcriptomic results provide novel insights on the roles of ECs in coronavirus infections such as COVID-19, cardiovascular diseases (CVD), inflammation, transplantation, autoimmune disease and cancers.
Collapse
Affiliation(s)
- Ying Shao
- Centers of Cardiovascular Research, Inflammation, Translational & Clinical Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Jason Saredy
- Metabolic Disease Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Keman Xu
- Centers of Cardiovascular Research, Inflammation, Translational & Clinical Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Yu Sun
- Centers of Cardiovascular Research, Inflammation, Translational & Clinical Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Fatma Saaoud
- Centers of Cardiovascular Research, Inflammation, Translational & Clinical Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Charles Drummer
- Centers of Cardiovascular Research, Inflammation, Translational & Clinical Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Yifan Lu
- Centers of Cardiovascular Research, Inflammation, Translational & Clinical Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Jin J Luo
- Neurology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Jahaira Lopez-Pastrana
- Psychiatry and Behavioral Science, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Eric T Choi
- Surgery, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Xiaohua Jiang
- Centers of Cardiovascular Research, Inflammation, Translational & Clinical Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States.,Metabolic Disease Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Hong Wang
- Metabolic Disease Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Centers of Cardiovascular Research, Inflammation, Translational & Clinical Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States.,Metabolic Disease Research, Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
19
|
Powell H, Liu H, Pekosz A. Changes in sialic acid binding associated with egg adaptation decrease live attenuated influenza virus replication in human nasal epithelial cell cultures. Vaccine 2021; 39:3225-3235. [PMID: 33985852 PMCID: PMC8184632 DOI: 10.1016/j.vaccine.2021.04.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 04/11/2021] [Accepted: 04/28/2021] [Indexed: 11/26/2022]
Abstract
Live Attenuated Influenza Virus (LAIV) is administered to and replicates in the sinonasal epithelium. Candidate LAIV vaccine strains are selected based on their ability to replicate to a high titer in embryonated hen's eggs, a process that can lead to mutations which alter the receptor binding and antigenic structure of the hemagglutinin (HA) protein. In the 2012-2013 northern hemisphere vaccine, the H3N2 HA vaccine strain contained three amino acid changes - H156Q, G186V and S219Y - which altered HA antigenic structure and thus presumably decreased vaccine efficacy. To determine if these mutations also altered LAIV replication, reabcombinant viruses were created that encoded the wild-type (WT) parental HA of A/Victoria/361/2011 (WT HA LAIV), the egg adapted HA (EA HA LAIV) from the A/Victoria/361/2011 vaccine strain and an HA protein with additional amino acid changes to promote α2,3 sialic acid binding (2,3 EA HA LAIV). The WT HA LAIV bound α2,6 sialic compared to the EA HA LAIV and 2,3 EA HA LAIV which both demonstrated an increased preference for α2,3 sialic acid. On MDCKs, the WT HA and EA HA LAIVs showed similar replication at 32 °C but at 37 °C the EA HA LAIV replicated to lower infectious virus titers. The 2,3 EA HA LAIV replicated poorly at both temperatures. This replication phenotype was similar on human nasal epithelial cell (hNEC) cultures, however the WT HA LAIV induced the highest amount of IFN-λ and infected more nasal epithelial cells compared to the other viruses. Together, these data indicate that egg adaption mutations in the HA protein that confer preferential α2,3 sialic acid binding may adversely affect LAIV replication and contribute to reduced vaccine efficacy.
Collapse
Affiliation(s)
- Harrison Powell
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, United States
| | - Hsuan Liu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, United States
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, United States.
| |
Collapse
|
20
|
Muthuraman Y, Lakshminarayanan I. A review of the COVID-19 pandemic and its interaction with environmental media. ENVIRONMENTAL CHALLENGES (AMSTERDAM, NETHERLANDS) 2021; 3:100040. [PMID: 38620635 PMCID: PMC7866852 DOI: 10.1016/j.envc.2021.100040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 05/03/2023]
Abstract
Viruses are biologically active parasites that only exist inside a host they are submicroscopic level. The novel coronavirus disease, or COVID-19, is generally caused by the SARS-CoV-2 virus and is comparable to severe acute respiratory syndrome (SARS). As a result of globalization, natural alterations or changes in the SARS-CoV-2 have created significant risks to human health over time. These viruses can live and survive in different ways in the atmosphere unless they reach another host body. At this stage, we will discuss the details of the transmission and detection of this deadly SARS-CoV-2 virus via certain environmental media, such as the atmosphere, water, air, sewage water, soil, temperature, relative humidity, and bioaerosol, to better understand the diffusion, survival, infection potential and diagnosis of COVID-19.
Collapse
Key Words
- +ssRNA, single-stranded DNA
- ACE2, Angiotensin-converting enzyme 2
- COVID-19
- COVID-19, coronavirus disease 2019
- CoV, coronavirus
- Diagnosis
- Environmental media
- HCoV, Human coronavirus
- MERS, Middle East Respiratory Syndrome
- MERS-CoV, Middle East Respiratory Syndrome Coronavirus
- MERS-CoV, Middle East Respiratory Syndrome Coronavirus, RSV, Respiratory syncytial virus
- NSP, Non-Structured Protein
- ORFs, Open Reading Frames
- PPE, Personal Protecting Equipments
- RNA, Ribonucleic acid
- SARS, Severe Acute Respiratory Syndrome
- SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus-2
- Structure
- Transmission
- WHO, World Health Organization
Collapse
Affiliation(s)
- Yuvaraj Muthuraman
- Agricultural College and Research Institute, Vazhavachanur, Tiruvannamalai, Tamil Nadu Agricultural University, India
| | | |
Collapse
|
21
|
Abstract
The surfaces of all living organisms and most secreted proteins share a common feature: They are glycosylated. As the outermost-facing molecules, glycans participate in nearly all immunological processes, including driving host-pathogen interactions, immunological recognition and activation, and differentiation between self and nonself through a complex array of pathways and mechanisms. These fundamental immunologic roles are further cast into sharp relief in inflammatory, autoimmune, and cancer disease states in which immune regulation goes awry. Here, we review the broad impact of glycans on the immune system and discuss the changes and clinical opportunities associated with the onset of immunologic disease.
Collapse
Affiliation(s)
- Julie Y Zhou
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-7288, USA;
| | - Brian A Cobb
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-7288, USA;
| |
Collapse
|
22
|
Touizer E, Sieben C, Henriques R, Marsh M, Laine RF. Application of Super-Resolution and Advanced Quantitative Microscopy to the Spatio-Temporal Analysis of Influenza Virus Replication. Viruses 2021; 13:233. [PMID: 33540739 PMCID: PMC7912985 DOI: 10.3390/v13020233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 02/07/2023] Open
Abstract
With an estimated three to five million human cases annually and the potential to infect domestic and wild animal populations, influenza viruses are one of the greatest health and economic burdens to our society, and pose an ongoing threat of large-scale pandemics. Despite our knowledge of many important aspects of influenza virus biology, there is still much to learn about how influenza viruses replicate in infected cells, for instance, how they use entry receptors or exploit host cell trafficking pathways. These gaps in our knowledge are due, in part, to the difficulty of directly observing viruses in living cells. In recent years, advances in light microscopy, including super-resolution microscopy and single-molecule imaging, have enabled many viral replication steps to be visualised dynamically in living cells. In particular, the ability to track single virions and their components, in real time, now allows specific pathways to be interrogated, providing new insights to various aspects of the virus-host cell interaction. In this review, we discuss how state-of-the-art imaging technologies, notably quantitative live-cell and super-resolution microscopy, are providing new nanoscale and molecular insights into influenza virus replication and revealing new opportunities for developing antiviral strategies.
Collapse
Affiliation(s)
- Emma Touizer
- Division of Infection and Immunity, University College London, London WC1E 6AE, UK;
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; (R.H.); (M.M.)
| | - Christian Sieben
- Department of Cell Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
| | - Ricardo Henriques
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; (R.H.); (M.M.)
- The Francis Crick Institute, London NW1 1AT, UK
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Mark Marsh
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; (R.H.); (M.M.)
| | - Romain F. Laine
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; (R.H.); (M.M.)
- The Francis Crick Institute, London NW1 1AT, UK
| |
Collapse
|
23
|
Hiremath S, Kumar HDV, Nandan M, Mantesh M, Shankarappa KS, Venkataravanappa V, Basha CRJ, Reddy CNL. In silico docking analysis revealed the potential of phytochemicals present in Phyllanthus amarus and Andrographis paniculata, used in Ayurveda medicine in inhibiting SARS-CoV-2. 3 Biotech 2021; 11:44. [PMID: 33457171 PMCID: PMC7799430 DOI: 10.1007/s13205-020-02578-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/01/2020] [Indexed: 12/19/2022] Open
Abstract
The Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has resulted in outbreak of global pandemic, fatal pneumonia in human referred as Coronavirus Disease-2019 (Covid-19). Ayurveda, the age old practice of treating human ailments in India, can be considered against SARS-CoV-2. Attempt was made to provide preliminary evidences for interaction of 35 phytochemicals from two plants (Phyllanthus amarus and Andrographis paniculata used in Ayurveda) with SARS-CoV-2 proteins (open & closed state S protein, 3CLpro, PLpro and RdRp) through in silico docking analysis. The nucleotide analogue remdesivir, being used in treatment of SARS-CoV-2, was used as a positive control. The results revealed that 18 phytochemicals from P. amarus and 14 phytochemicals from A. paniculata shown binding energy affinity/dock score < - 6.0 kcal/mol, which is considered as minimum threshold for any compound to be used for drug development. Phytochemicals used for docking studies in the current study from P. amarus and A. paniculata showed binding affinity up to - 9.10 kcal/mol and - 10.60 kcal/mol, respectively. There was no significant difference in the binding affinities of these compounds with closed and open state S protein. Further, flavonoids (astragalin, kaempferol, quercetin, quercetin-3-O-glucoside and quercetin) and tannins (corilagin, furosin and geraniin) present in P. amarus have shown more binding affinity (up to - 10.60 kcal/mol) than remdesivir (up to - 9.50 kcal/mol). The pharmacokinetic predictions suggest that compounds from the two plants species studied in the current study are found to be non-carcinogenic, water soluble and biologically safe. The phytochemicals present in the extracts of P. amarus and A. paniculata might have synergistic effect with action on multiple target sites of SARS-CoV-2. The information generated here might serve as preliminary evidence for anti SARS-CoV-2 activity of phytochemicals present from P. amarus and A. paniculata and the potential of Ayurveda medicine in combating the virus. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-020-02578-7.
Collapse
Affiliation(s)
- Shridhar Hiremath
- Department of Plant Pathology, College of Agriculture, University of Agricultural Sciences, GKVK, Bangalore, Karnataka 560065 India
| | - H. D. Vinay Kumar
- Department of Plant Pathology, College of Agriculture, University of Agricultural Sciences, GKVK, Bangalore, Karnataka 560065 India
| | - M. Nandan
- Department of Plant Pathology, College of Agriculture, University of Agricultural Sciences, GKVK, Bangalore, Karnataka 560065 India
| | - M. Mantesh
- Department of Plant Pathology, College of Agriculture, University of Agricultural Sciences, GKVK, Bangalore, Karnataka 560065 India
| | - K. S. Shankarappa
- Department of Plant Pathology, College of Horticulture, University of Horticultural Sciences, Bagalkot, Bengaluru, Karnataka 560065 India
| | - V. Venkataravanappa
- CHES, ICAR-Indian Institute of Horticultural Research, Chettalli, Madikeri District, Bangalore, Karnataka 571248 India
| | - C. R. Jahir Basha
- Department of Plant Pathology, ARS, University of Agricultural Sciences (B), Rajavanthi, Pavagada, Tumakur (Dist.), Bangalore, Karnataka India
| | - C. N. Lakshminarayana Reddy
- Department of Plant Pathology, College of Agriculture, University of Agricultural Sciences, GKVK, Bangalore, Karnataka 560065 India
| |
Collapse
|
24
|
Alon R, Sportiello M, Kozlovski S, Kumar A, Reilly EC, Zarbock A, Garbi N, Topham DJ. Leukocyte trafficking to the lungs and beyond: lessons from influenza for COVID-19. Nat Rev Immunol 2021; 21:49-64. [PMID: 33214719 PMCID: PMC7675406 DOI: 10.1038/s41577-020-00470-2] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2020] [Indexed: 01/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19). Understanding of the fundamental processes underlying the versatile clinical manifestations of COVID-19 is incomplete without comprehension of how different immune cells are recruited to various compartments of virus-infected lungs, and how this recruitment differs among individuals with different levels of disease severity. As in other respiratory infections, leukocyte recruitment to the respiratory system in people with COVID-19 is orchestrated by specific leukocyte trafficking molecules, and when uncontrolled and excessive it results in various pathological complications, both in the lungs and in other organs. In the absence of experimental data from physiologically relevant animal models, our knowledge of the trafficking signals displayed by distinct vascular beds and epithelial cell layers in response to infection by SARS-CoV-2 is still incomplete. However, SARS-CoV-2 and influenza virus elicit partially conserved inflammatory responses in the different respiratory epithelial cells encountered early in infection and may trigger partially overlapping combinations of trafficking signals in nearby blood vessels. Here, we review the molecular signals orchestrating leukocyte trafficking to airway and lung compartments during primary pneumotropic influenza virus infections and discuss potential similarities to distinct courses of primary SARS-CoV-2 infections. We also discuss how an imbalance in vascular activation by leukocytes outside the airways and lungs may contribute to extrapulmonary inflammatory complications in subsets of patients with COVID-19. These multiple molecular pathways are potential targets for therapeutic interventions in patients with severe COVID-19.
Collapse
Affiliation(s)
- Ronen Alon
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel.
| | - Mike Sportiello
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Stav Kozlovski
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Ashwin Kumar
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Emma C Reilly
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Alexander Zarbock
- Department of Cellular Immunology, Institute of Experimental Immunology Medical Faculty, University of Bonn, Bonn, Germany
| | - Natalio Garbi
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - David J Topham
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
25
|
Padmanabhan P, Desikan R, Dixit NM. Targeting TMPRSS2 and Cathepsin B/L together may be synergistic against SARS-CoV-2 infection. PLoS Comput Biol 2020; 16:e1008461. [PMID: 33290397 PMCID: PMC7748278 DOI: 10.1371/journal.pcbi.1008461] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 12/18/2020] [Accepted: 10/22/2020] [Indexed: 12/15/2022] Open
Abstract
The entry of SARS-CoV-2 into target cells requires the activation of its surface spike protein, S, by host proteases. The host serine protease TMPRSS2 and cysteine proteases Cathepsin B/L can activate S, making two independent entry pathways accessible to SARS-CoV-2. Blocking the proteases prevents SARS-CoV-2 entry in vitro. This blockade may be achieved in vivo through 'repurposing' drugs, a potential treatment option for COVID-19 that is now in clinical trials. Here, we found, surprisingly, that drugs targeting the two pathways, although independent, could display strong synergy in blocking virus entry. We predicted this synergy first using a mathematical model of SARS-CoV-2 entry and dynamics in vitro. The model considered the two pathways explicitly, let the entry efficiency through a pathway depend on the corresponding protease expression level, which varied across cells, and let inhibitors compromise the efficiency in a dose-dependent manner. The synergy predicted was novel and arose from effects of the drugs at both the single cell and the cell population levels. Validating our predictions, available in vitro data on SARS-CoV-2 and SARS-CoV entry displayed this synergy. Further, analysing the data using our model, we estimated the relative usage of the two pathways and found it to vary widely across cell lines, suggesting that targeting both pathways in vivo may be important and synergistic given the broad tissue tropism of SARS-CoV-2. Our findings provide insights into SARS-CoV-2 entry into target cells and may help improve the deployability of drug combinations targeting host proteases required for the entry.
Collapse
Affiliation(s)
- Pranesh Padmanabhan
- Clem Jones Centre for Ageing Dementia Research, Queesnsland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Rajat Desikan
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India
| | - Narendra M. Dixit
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
26
|
Mousavi SM, Hashemi SA, Parvin N, Gholami A, Ramakrishna S, Omidifar N, Moghadami M, Chiang WH, Mazraedoost S. Recent biotechnological approaches for treatment of novel COVID-19: from bench to clinical trial. Drug Metab Rev 2020; 53:141-170. [PMID: 33138652 DOI: 10.1080/03602532.2020.1845201] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The global spread of the novel coronavirus (SARS-CoV-2) and increasing rate of mortality among different countries has raised the global concern regarding this disease. This illness is able to infect human beings through person-to-person contact at an extremely high rate. World Health Organization proclaimed that COVID-19 disease is known as the sixth public health emergency of international concern (30 January 2020) and also as one pandemic (12 March 2020). Owing to the rapid outbreak of COVID-19 worldwide, health authorities focused on discovery of effective prevention and treatment techniques for this novel virus. To date, an effective drug for reliable treatment of COVID-19 has not been registered or introduced to the international community. This review aims to provide recently presented techniques and protocols for efficient treatment of COVID-19 and investigate its morphology and treatment/prevention approaches, among which usage of antiviral drugs, anti-malarial drugs, corticosteroids, and traditional medicines, biotechnological drugs (e.g. combination of HCQ and azithromycin, remdesivir, interferons, novaferon, interferon-alpha-1b, thymosin, and monoclonal antibodies) can be mentioned.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Seyyed Alireza Hashemi
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore, Singapore
| | - Najmeh Parvin
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Science, Shiraz, Iran
| | - Ahmad Gholami
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Science, Shiraz, Iran
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore, Singapore
| | - Navid Omidifar
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Moghadami
- Non-Communicable Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Sargol Mazraedoost
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Science, Shiraz, Iran
| |
Collapse
|
27
|
Abd Ellah NH, Gad SF, Muhammad K, E Batiha G, Hetta HF. Nanomedicine as a promising approach for diagnosis, treatment and prophylaxis against COVID-19. Nanomedicine (Lond) 2020; 15:2085-2102. [PMID: 32723142 PMCID: PMC7388682 DOI: 10.2217/nnm-2020-0247] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/08/2020] [Indexed: 12/13/2022] Open
Abstract
The COVID-19 pandemic caused by the newly emerged severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) puts the world in an unprecedented crisis, leaving behind huge human losses and deep socioeconomic damages. Due to the lack of specific treatment against SARS-CoV-2, effective vaccines and antiviral agents are urgently needed to properly restrain the COVID-19 pandemic. Repositioned drugs such as remdesivir have revealed a promising clinical efficacy against COVID-19. Interestingly, nanomedicine as a promising therapeutic approach could effectively help win the battle between coronaviruses (CoVs) and host cells. This review discusses the potential therapeutic approaches, in addition to the contribution of nanomedicine against CoVs in the fields of vaccination, diagnosis and therapy.
Collapse
Affiliation(s)
- Noura H Abd Ellah
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Sheryhan F Gad
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
- Department of Industrial & Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Khalid Muhammad
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Gaber E Batiha
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture & Veterinary Medicine, Nishi 2-13, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan
- Department of Pharmacology & Therapeutics, Faculty of Veterinary Medicines, Damanhour University, Damanhour, 22511, Egypt
| | - Helal F Hetta
- Department of Medical Microbiology & Immunology, Faculty of Medicine, Assiut University, Assiut, 71526, Egypt
- Department of Internal Medicine, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0595, USA
| |
Collapse
|
28
|
Vellingiri B, Jayaramayya K, Iyer M, Narayanasamy A, Govindasamy V, Giridharan B, Ganesan S, Venugopal A, Venkatesan D, Ganesan H, Rajagopalan K, Rahman PKSM, Cho SG, Kumar NS, Subramaniam MD. COVID-19: A promising cure for the global panic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 725:138277. [PMID: 32278175 PMCID: PMC7128376 DOI: 10.1016/j.scitotenv.2020.138277] [Citation(s) in RCA: 317] [Impact Index Per Article: 63.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 04/13/2023]
Abstract
The novel Coronavirus disease 2019 (COVID-19) is caused by SARS-CoV-2, which is the causative agent of a potentially fatal disease that is of great global public health concern. The outbreak of COVID-19 is wreaking havoc worldwide due to inadequate risk assessment regarding the urgency of the situation. The COVID-19 pandemic has entered a dangerous new phase. When compared with SARS and MERS, COVID-19 has spread more rapidly, due to increased globalization and adaptation of the virus in every environment. Slowing the spread of the COVID-19 cases will significantly reduce the strain on the healthcare system of the country by limiting the number of people who are severely sick by COVID-19 and need hospital care. Hence, the recent outburst of COVID-19 highlights an urgent need for therapeutics targeting SARS-CoV-2. Here, we have discussed the structure of virus; varying symptoms among COVID-19, SARS, MERS and common flu; the probable mechanism behind the infection and its immune response. Further, the current treatment options, drugs available, ongoing trials and recent diagnostics for COVID-19 have been discussed. We suggest traditional Indian medicinal plants as possible novel therapeutic approaches, exclusively targeting SARS-CoV-2 and its pathways.
Collapse
Affiliation(s)
- Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India.
| | - Kaavya Jayaramayya
- Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641 043, Tamil Nadu, India
| | - Mahalaxmi Iyer
- Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641 043, Tamil Nadu, India
| | - Arul Narayanasamy
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | | | - Bupesh Giridharan
- Virology Laboratory, Central Research and Development Wing, Sree Balaji Medical College and Hospital (SBMCH), Bharath University, (BIHER), Chromepet, Chennai 600044, Tamil Nadu, India; Department of Forest Science, Central University of Nagaland, Lumami, Zunhebeto, India
| | | | - Anila Venugopal
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Dhivya Venkatesan
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Harsha Ganesan
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Kamarajan Rajagopalan
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Pattanathu K S M Rahman
- Deploy Lead - Centre for Enzyme Innovation, Office No: 6.06, King Henry Building School of Biological Science, University of Portsmouth, Portsmouth PO1 2DY, UK
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, South Korea
| | - Nachimuthu Senthil Kumar
- Department of Biotechnology, Mizoram University (A Central University), Aizawl 796 004, Mizoram, India
| | - Mohana Devi Subramaniam
- Department of Genetics and Molecular Biology, Vision Research Foundation, Chennai 600 006, India
| |
Collapse
|
29
|
Kruse RL. Therapeutic strategies in an outbreak scenario to treat the novel coronavirus originating in Wuhan, China. F1000Res 2020; 9:72. [PMID: 32117569 PMCID: PMC7029759 DOI: 10.12688/f1000research.22211.2] [Citation(s) in RCA: 210] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/29/2020] [Indexed: 12/11/2022] Open
Abstract
A novel coronavirus (2019-nCoV) originating in Wuhan, China presents a potential respiratory viral pandemic to the world population. Current efforts are focused on containment and quarantine of infected individuals. Ultimately, the outbreak could be controlled with a protective vaccine to prevent 2019-nCoV infection. While vaccine research should be pursued intensely, there exists today no therapy to treat 2019-nCoV upon infection, despite an urgent need to find options to help these patients and preclude potential death. Herein, I review the potential options to treat 2019-nCoV in patients, with an emphasis on the necessity for speed and timeliness in developing new and effective therapies in this outbreak. I consider the options of drug repurposing, developing neutralizing monoclonal antibody therapy, and an oligonucleotide strategy targeting the viral RNA genome, emphasizing the promise and pitfalls of these approaches. Finally, I advocate for the fastest strategy to develop a treatment now, which could be resistant to any mutations the virus may have in the future. The proposal is a biologic that blocks 2019-nCoV entry using a soluble version of the viral receptor, angiotensin-converting enzyme 2 (ACE2), fused to an immunoglobulin Fc domain (ACE2-Fc), providing a neutralizing antibody with maximal breath to avoid any viral escape, while also helping to recruit the immune system to build lasting immunity. The ACE2-Fc therapy would also supplement decreased ACE2 levels in the lungs during infection, thereby directly treating acute respiratory distress pathophysiology as a third mechanism of action. The sequence of the ACE2-Fc protein is provided to investigators, allowing its possible use in recombinant protein expression systems to start producing drug today to treat patients under compassionate use, while formal clinical trials are later undertaken. Such a treatment could help infected patients before a protective vaccine is developed and widely available in the coming months to year(s).
Collapse
Affiliation(s)
- Robert L Kruse
- Department of Pathology, Johns Hopkins Hospital, Baltimore, Maryland, 21287, USA
| |
Collapse
|
30
|
Abstract
A novel coronavirus (2019-nCoV) originating in Wuhan, China presents a potential respiratory viral pandemic to the world population. Current efforts are focused on containment and quarantine of infected individuals. Ultimately, the outbreak could be controlled with a protective vaccine to prevent 2019-nCoV infection. While vaccine research should be pursued intensely, there exists today no therapy to treat 2019-nCoV upon infection, despite an urgent need to find options to help these patients and preclude potential death. Herein, I review the potential options to treat 2019-nCoV in patients, with an emphasis on the necessity for speed and timeliness in developing new and effective therapies in this outbreak. I consider the options of drug repurposing, developing neutralizing monoclonal antibody therapy, and an oligonucleotide strategy targeting the viral RNA genome, emphasizing the promise and pitfalls of these approaches. Finally, I advocate for the fastest strategy to develop a treatment now, which could be resistant to any mutations the virus may have in the future. The proposal is a biologic that blocks 2019-nCoV entry using a soluble version of the viral receptor, angiotensin-converting enzyme 2 (ACE2), fused to an immunoglobulin Fc domain, providing a neutralizing antibody with maximal breath to avoid any viral escape, while also helping to recruit the immune system to build lasting immunity. The sequence of the ACE2-Fc protein is provided to investigators, allowing its possible use in recombinant protein expression systems to start producing drug today to treat patients under compassionate use, while formal clinical trials are later undertaken. Such a treatment could help infected patients before a protective vaccine is developed and widely available in the coming months to year(s).
Collapse
Affiliation(s)
- Robert L Kruse
- Department of Pathology, Johns Hopkins Hospital, Baltimore, Maryland, 21287, USA
| |
Collapse
|